intel_dp.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include "drmP.h"
  29. #include "drm.h"
  30. #include "drm_crtc.h"
  31. #include "drm_crtc_helper.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "drm_dp_helper.h"
  36. #define DP_LINK_STATUS_SIZE 6
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. #define DP_LINK_CONFIGURATION_SIZE 9
  39. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  40. struct intel_dp_priv {
  41. uint32_t output_reg;
  42. uint32_t DP;
  43. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  44. bool has_audio;
  45. int dpms_mode;
  46. uint8_t link_bw;
  47. uint8_t lane_count;
  48. uint8_t dpcd[4];
  49. struct intel_encoder *intel_encoder;
  50. struct i2c_adapter adapter;
  51. struct i2c_algo_dp_aux_data algo;
  52. };
  53. static void
  54. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  55. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  56. static void
  57. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  58. void
  59. intel_edp_link_config (struct intel_encoder *intel_encoder,
  60. int *lane_num, int *link_bw)
  61. {
  62. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  63. *lane_num = dp_priv->lane_count;
  64. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  65. *link_bw = 162000;
  66. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  67. *link_bw = 270000;
  68. }
  69. static int
  70. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  71. {
  72. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  73. int max_lane_count = 4;
  74. if (dp_priv->dpcd[0] >= 0x11) {
  75. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  76. switch (max_lane_count) {
  77. case 1: case 2: case 4:
  78. break;
  79. default:
  80. max_lane_count = 4;
  81. }
  82. }
  83. return max_lane_count;
  84. }
  85. static int
  86. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  87. {
  88. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  89. int max_link_bw = dp_priv->dpcd[1];
  90. switch (max_link_bw) {
  91. case DP_LINK_BW_1_62:
  92. case DP_LINK_BW_2_7:
  93. break;
  94. default:
  95. max_link_bw = DP_LINK_BW_1_62;
  96. break;
  97. }
  98. return max_link_bw;
  99. }
  100. static int
  101. intel_dp_link_clock(uint8_t link_bw)
  102. {
  103. if (link_bw == DP_LINK_BW_2_7)
  104. return 270000;
  105. else
  106. return 162000;
  107. }
  108. /* I think this is a fiction */
  109. static int
  110. intel_dp_link_required(struct drm_device *dev,
  111. struct intel_encoder *intel_encoder, int pixel_clock)
  112. {
  113. struct drm_i915_private *dev_priv = dev->dev_private;
  114. if (IS_eDP(intel_encoder))
  115. return (pixel_clock * dev_priv->edp_bpp) / 8;
  116. else
  117. return pixel_clock * 3;
  118. }
  119. static int
  120. intel_dp_mode_valid(struct drm_connector *connector,
  121. struct drm_display_mode *mode)
  122. {
  123. struct drm_encoder *encoder = intel_attached_encoder(connector);
  124. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  125. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  126. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  127. if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  128. > max_link_clock * max_lanes)
  129. return MODE_CLOCK_HIGH;
  130. if (mode->clock < 10000)
  131. return MODE_CLOCK_LOW;
  132. return MODE_OK;
  133. }
  134. static uint32_t
  135. pack_aux(uint8_t *src, int src_bytes)
  136. {
  137. int i;
  138. uint32_t v = 0;
  139. if (src_bytes > 4)
  140. src_bytes = 4;
  141. for (i = 0; i < src_bytes; i++)
  142. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  143. return v;
  144. }
  145. static void
  146. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  147. {
  148. int i;
  149. if (dst_bytes > 4)
  150. dst_bytes = 4;
  151. for (i = 0; i < dst_bytes; i++)
  152. dst[i] = src >> ((3-i) * 8);
  153. }
  154. /* hrawclock is 1/4 the FSB frequency */
  155. static int
  156. intel_hrawclk(struct drm_device *dev)
  157. {
  158. struct drm_i915_private *dev_priv = dev->dev_private;
  159. uint32_t clkcfg;
  160. clkcfg = I915_READ(CLKCFG);
  161. switch (clkcfg & CLKCFG_FSB_MASK) {
  162. case CLKCFG_FSB_400:
  163. return 100;
  164. case CLKCFG_FSB_533:
  165. return 133;
  166. case CLKCFG_FSB_667:
  167. return 166;
  168. case CLKCFG_FSB_800:
  169. return 200;
  170. case CLKCFG_FSB_1067:
  171. return 266;
  172. case CLKCFG_FSB_1333:
  173. return 333;
  174. /* these two are just a guess; one of them might be right */
  175. case CLKCFG_FSB_1600:
  176. case CLKCFG_FSB_1600_ALT:
  177. return 400;
  178. default:
  179. return 133;
  180. }
  181. }
  182. static int
  183. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  184. uint8_t *send, int send_bytes,
  185. uint8_t *recv, int recv_size)
  186. {
  187. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  188. uint32_t output_reg = dp_priv->output_reg;
  189. struct drm_device *dev = intel_encoder->enc.dev;
  190. struct drm_i915_private *dev_priv = dev->dev_private;
  191. uint32_t ch_ctl = output_reg + 0x10;
  192. uint32_t ch_data = ch_ctl + 4;
  193. int i;
  194. int recv_bytes;
  195. uint32_t ctl;
  196. uint32_t status;
  197. uint32_t aux_clock_divider;
  198. int try, precharge;
  199. /* The clock divider is based off the hrawclk,
  200. * and would like to run at 2MHz. So, take the
  201. * hrawclk value and divide by 2 and use that
  202. */
  203. if (IS_eDP(intel_encoder)) {
  204. if (IS_GEN6(dev))
  205. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  206. else
  207. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  208. } else if (HAS_PCH_SPLIT(dev))
  209. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  210. else
  211. aux_clock_divider = intel_hrawclk(dev) / 2;
  212. if (IS_GEN6(dev))
  213. precharge = 3;
  214. else
  215. precharge = 5;
  216. /* Must try at least 3 times according to DP spec */
  217. for (try = 0; try < 5; try++) {
  218. /* Load the send data into the aux channel data registers */
  219. for (i = 0; i < send_bytes; i += 4) {
  220. uint32_t d = pack_aux(send + i, send_bytes - i);
  221. I915_WRITE(ch_data + i, d);
  222. }
  223. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  224. DP_AUX_CH_CTL_TIME_OUT_400us |
  225. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  226. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  227. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  228. DP_AUX_CH_CTL_DONE |
  229. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  230. DP_AUX_CH_CTL_RECEIVE_ERROR);
  231. /* Send the command and wait for it to complete */
  232. I915_WRITE(ch_ctl, ctl);
  233. (void) I915_READ(ch_ctl);
  234. for (;;) {
  235. udelay(100);
  236. status = I915_READ(ch_ctl);
  237. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  238. break;
  239. }
  240. /* Clear done status and any errors */
  241. I915_WRITE(ch_ctl, (status |
  242. DP_AUX_CH_CTL_DONE |
  243. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  244. DP_AUX_CH_CTL_RECEIVE_ERROR));
  245. (void) I915_READ(ch_ctl);
  246. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  247. break;
  248. }
  249. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  250. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  251. return -EBUSY;
  252. }
  253. /* Check for timeout or receive error.
  254. * Timeouts occur when the sink is not connected
  255. */
  256. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  257. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  258. return -EIO;
  259. }
  260. /* Timeouts occur when the device isn't connected, so they're
  261. * "normal" -- don't fill the kernel log with these */
  262. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  263. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  264. return -ETIMEDOUT;
  265. }
  266. /* Unload any bytes sent back from the other side */
  267. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  268. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  269. if (recv_bytes > recv_size)
  270. recv_bytes = recv_size;
  271. for (i = 0; i < recv_bytes; i += 4) {
  272. uint32_t d = I915_READ(ch_data + i);
  273. unpack_aux(d, recv + i, recv_bytes - i);
  274. }
  275. return recv_bytes;
  276. }
  277. /* Write data to the aux channel in native mode */
  278. static int
  279. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  280. uint16_t address, uint8_t *send, int send_bytes)
  281. {
  282. int ret;
  283. uint8_t msg[20];
  284. int msg_bytes;
  285. uint8_t ack;
  286. if (send_bytes > 16)
  287. return -1;
  288. msg[0] = AUX_NATIVE_WRITE << 4;
  289. msg[1] = address >> 8;
  290. msg[2] = address & 0xff;
  291. msg[3] = send_bytes - 1;
  292. memcpy(&msg[4], send, send_bytes);
  293. msg_bytes = send_bytes + 4;
  294. for (;;) {
  295. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  296. if (ret < 0)
  297. return ret;
  298. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  299. break;
  300. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  301. udelay(100);
  302. else
  303. return -EIO;
  304. }
  305. return send_bytes;
  306. }
  307. /* Write a single byte to the aux channel in native mode */
  308. static int
  309. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  310. uint16_t address, uint8_t byte)
  311. {
  312. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  313. }
  314. /* read bytes from a native aux channel */
  315. static int
  316. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  317. uint16_t address, uint8_t *recv, int recv_bytes)
  318. {
  319. uint8_t msg[4];
  320. int msg_bytes;
  321. uint8_t reply[20];
  322. int reply_bytes;
  323. uint8_t ack;
  324. int ret;
  325. msg[0] = AUX_NATIVE_READ << 4;
  326. msg[1] = address >> 8;
  327. msg[2] = address & 0xff;
  328. msg[3] = recv_bytes - 1;
  329. msg_bytes = 4;
  330. reply_bytes = recv_bytes + 1;
  331. for (;;) {
  332. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  333. reply, reply_bytes);
  334. if (ret == 0)
  335. return -EPROTO;
  336. if (ret < 0)
  337. return ret;
  338. ack = reply[0];
  339. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  340. memcpy(recv, reply + 1, ret - 1);
  341. return ret - 1;
  342. }
  343. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  344. udelay(100);
  345. else
  346. return -EIO;
  347. }
  348. }
  349. static int
  350. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  351. uint8_t write_byte, uint8_t *read_byte)
  352. {
  353. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  354. struct intel_dp_priv *dp_priv = container_of(adapter,
  355. struct intel_dp_priv,
  356. adapter);
  357. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  358. uint16_t address = algo_data->address;
  359. uint8_t msg[5];
  360. uint8_t reply[2];
  361. int msg_bytes;
  362. int reply_bytes;
  363. int ret;
  364. /* Set up the command byte */
  365. if (mode & MODE_I2C_READ)
  366. msg[0] = AUX_I2C_READ << 4;
  367. else
  368. msg[0] = AUX_I2C_WRITE << 4;
  369. if (!(mode & MODE_I2C_STOP))
  370. msg[0] |= AUX_I2C_MOT << 4;
  371. msg[1] = address >> 8;
  372. msg[2] = address;
  373. switch (mode) {
  374. case MODE_I2C_WRITE:
  375. msg[3] = 0;
  376. msg[4] = write_byte;
  377. msg_bytes = 5;
  378. reply_bytes = 1;
  379. break;
  380. case MODE_I2C_READ:
  381. msg[3] = 0;
  382. msg_bytes = 4;
  383. reply_bytes = 2;
  384. break;
  385. default:
  386. msg_bytes = 3;
  387. reply_bytes = 1;
  388. break;
  389. }
  390. for (;;) {
  391. ret = intel_dp_aux_ch(intel_encoder,
  392. msg, msg_bytes,
  393. reply, reply_bytes);
  394. if (ret < 0) {
  395. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  396. return ret;
  397. }
  398. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  399. case AUX_I2C_REPLY_ACK:
  400. if (mode == MODE_I2C_READ) {
  401. *read_byte = reply[1];
  402. }
  403. return reply_bytes - 1;
  404. case AUX_I2C_REPLY_NACK:
  405. DRM_DEBUG_KMS("aux_ch nack\n");
  406. return -EREMOTEIO;
  407. case AUX_I2C_REPLY_DEFER:
  408. DRM_DEBUG_KMS("aux_ch defer\n");
  409. udelay(100);
  410. break;
  411. default:
  412. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  413. return -EREMOTEIO;
  414. }
  415. }
  416. }
  417. static int
  418. intel_dp_i2c_init(struct intel_encoder *intel_encoder,
  419. struct intel_connector *intel_connector, const char *name)
  420. {
  421. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  422. DRM_DEBUG_KMS("i2c_init %s\n", name);
  423. dp_priv->algo.running = false;
  424. dp_priv->algo.address = 0;
  425. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  426. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  427. dp_priv->adapter.owner = THIS_MODULE;
  428. dp_priv->adapter.class = I2C_CLASS_DDC;
  429. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  430. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  431. dp_priv->adapter.algo_data = &dp_priv->algo;
  432. dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
  433. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  434. }
  435. static bool
  436. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  437. struct drm_display_mode *adjusted_mode)
  438. {
  439. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  440. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  441. int lane_count, clock;
  442. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  443. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  444. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  445. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  446. for (clock = 0; clock <= max_clock; clock++) {
  447. int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
  448. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  449. <= link_avail) {
  450. dp_priv->link_bw = bws[clock];
  451. dp_priv->lane_count = lane_count;
  452. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  453. DRM_DEBUG_KMS("Display port link bw %02x lane "
  454. "count %d clock %d\n",
  455. dp_priv->link_bw, dp_priv->lane_count,
  456. adjusted_mode->clock);
  457. return true;
  458. }
  459. }
  460. }
  461. return false;
  462. }
  463. struct intel_dp_m_n {
  464. uint32_t tu;
  465. uint32_t gmch_m;
  466. uint32_t gmch_n;
  467. uint32_t link_m;
  468. uint32_t link_n;
  469. };
  470. static void
  471. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  472. {
  473. while (*num > 0xffffff || *den > 0xffffff) {
  474. *num >>= 1;
  475. *den >>= 1;
  476. }
  477. }
  478. static void
  479. intel_dp_compute_m_n(int bytes_per_pixel,
  480. int nlanes,
  481. int pixel_clock,
  482. int link_clock,
  483. struct intel_dp_m_n *m_n)
  484. {
  485. m_n->tu = 64;
  486. m_n->gmch_m = pixel_clock * bytes_per_pixel;
  487. m_n->gmch_n = link_clock * nlanes;
  488. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  489. m_n->link_m = pixel_clock;
  490. m_n->link_n = link_clock;
  491. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  492. }
  493. void
  494. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  495. struct drm_display_mode *adjusted_mode)
  496. {
  497. struct drm_device *dev = crtc->dev;
  498. struct drm_mode_config *mode_config = &dev->mode_config;
  499. struct drm_encoder *encoder;
  500. struct drm_i915_private *dev_priv = dev->dev_private;
  501. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  502. int lane_count = 4;
  503. struct intel_dp_m_n m_n;
  504. /*
  505. * Find the lane count in the intel_encoder private
  506. */
  507. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  508. struct intel_encoder *intel_encoder;
  509. struct intel_dp_priv *dp_priv;
  510. if (!encoder || encoder->crtc != crtc)
  511. continue;
  512. intel_encoder = enc_to_intel_encoder(encoder);
  513. dp_priv = intel_encoder->dev_priv;
  514. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  515. lane_count = dp_priv->lane_count;
  516. break;
  517. }
  518. }
  519. /*
  520. * Compute the GMCH and Link ratios. The '3' here is
  521. * the number of bytes_per_pixel post-LUT, which we always
  522. * set up for 8-bits of R/G/B, or 3 bytes total.
  523. */
  524. intel_dp_compute_m_n(3, lane_count,
  525. mode->clock, adjusted_mode->clock, &m_n);
  526. if (HAS_PCH_SPLIT(dev)) {
  527. if (intel_crtc->pipe == 0) {
  528. I915_WRITE(TRANSA_DATA_M1,
  529. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  530. m_n.gmch_m);
  531. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  532. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  533. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  534. } else {
  535. I915_WRITE(TRANSB_DATA_M1,
  536. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  537. m_n.gmch_m);
  538. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  539. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  540. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  541. }
  542. } else {
  543. if (intel_crtc->pipe == 0) {
  544. I915_WRITE(PIPEA_GMCH_DATA_M,
  545. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  546. m_n.gmch_m);
  547. I915_WRITE(PIPEA_GMCH_DATA_N,
  548. m_n.gmch_n);
  549. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  550. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  551. } else {
  552. I915_WRITE(PIPEB_GMCH_DATA_M,
  553. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  554. m_n.gmch_m);
  555. I915_WRITE(PIPEB_GMCH_DATA_N,
  556. m_n.gmch_n);
  557. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  558. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  559. }
  560. }
  561. }
  562. static void
  563. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  564. struct drm_display_mode *adjusted_mode)
  565. {
  566. struct drm_device *dev = encoder->dev;
  567. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  568. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  569. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  570. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  571. dp_priv->DP = (DP_VOLTAGE_0_4 |
  572. DP_PRE_EMPHASIS_0);
  573. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  574. dp_priv->DP |= DP_SYNC_HS_HIGH;
  575. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  576. dp_priv->DP |= DP_SYNC_VS_HIGH;
  577. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  578. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  579. else
  580. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  581. switch (dp_priv->lane_count) {
  582. case 1:
  583. dp_priv->DP |= DP_PORT_WIDTH_1;
  584. break;
  585. case 2:
  586. dp_priv->DP |= DP_PORT_WIDTH_2;
  587. break;
  588. case 4:
  589. dp_priv->DP |= DP_PORT_WIDTH_4;
  590. break;
  591. }
  592. if (dp_priv->has_audio)
  593. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  594. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  595. dp_priv->link_configuration[0] = dp_priv->link_bw;
  596. dp_priv->link_configuration[1] = dp_priv->lane_count;
  597. /*
  598. * Check for DPCD version > 1.1,
  599. * enable enahanced frame stuff in that case
  600. */
  601. if (dp_priv->dpcd[0] >= 0x11) {
  602. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  603. dp_priv->DP |= DP_ENHANCED_FRAMING;
  604. }
  605. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  606. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  607. dp_priv->DP |= DP_PIPEB_SELECT;
  608. if (IS_eDP(intel_encoder)) {
  609. /* don't miss out required setting for eDP */
  610. dp_priv->DP |= DP_PLL_ENABLE;
  611. if (adjusted_mode->clock < 200000)
  612. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  613. else
  614. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  615. }
  616. }
  617. static void ironlake_edp_backlight_on (struct drm_device *dev)
  618. {
  619. struct drm_i915_private *dev_priv = dev->dev_private;
  620. u32 pp;
  621. DRM_DEBUG_KMS("\n");
  622. pp = I915_READ(PCH_PP_CONTROL);
  623. pp |= EDP_BLC_ENABLE;
  624. I915_WRITE(PCH_PP_CONTROL, pp);
  625. }
  626. static void ironlake_edp_backlight_off (struct drm_device *dev)
  627. {
  628. struct drm_i915_private *dev_priv = dev->dev_private;
  629. u32 pp;
  630. DRM_DEBUG_KMS("\n");
  631. pp = I915_READ(PCH_PP_CONTROL);
  632. pp &= ~EDP_BLC_ENABLE;
  633. I915_WRITE(PCH_PP_CONTROL, pp);
  634. }
  635. static void
  636. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  637. {
  638. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  639. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  640. struct drm_device *dev = encoder->dev;
  641. struct drm_i915_private *dev_priv = dev->dev_private;
  642. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  643. if (mode != DRM_MODE_DPMS_ON) {
  644. if (dp_reg & DP_PORT_EN) {
  645. intel_dp_link_down(intel_encoder, dp_priv->DP);
  646. if (IS_eDP(intel_encoder))
  647. ironlake_edp_backlight_off(dev);
  648. }
  649. } else {
  650. if (!(dp_reg & DP_PORT_EN)) {
  651. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  652. if (IS_eDP(intel_encoder))
  653. ironlake_edp_backlight_on(dev);
  654. }
  655. }
  656. dp_priv->dpms_mode = mode;
  657. }
  658. /*
  659. * Fetch AUX CH registers 0x202 - 0x207 which contain
  660. * link status information
  661. */
  662. static bool
  663. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  664. uint8_t link_status[DP_LINK_STATUS_SIZE])
  665. {
  666. int ret;
  667. ret = intel_dp_aux_native_read(intel_encoder,
  668. DP_LANE0_1_STATUS,
  669. link_status, DP_LINK_STATUS_SIZE);
  670. if (ret != DP_LINK_STATUS_SIZE)
  671. return false;
  672. return true;
  673. }
  674. static uint8_t
  675. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  676. int r)
  677. {
  678. return link_status[r - DP_LANE0_1_STATUS];
  679. }
  680. static uint8_t
  681. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  682. int lane)
  683. {
  684. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  685. int s = ((lane & 1) ?
  686. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  687. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  688. uint8_t l = intel_dp_link_status(link_status, i);
  689. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  690. }
  691. static uint8_t
  692. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  693. int lane)
  694. {
  695. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  696. int s = ((lane & 1) ?
  697. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  698. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  699. uint8_t l = intel_dp_link_status(link_status, i);
  700. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  701. }
  702. #if 0
  703. static char *voltage_names[] = {
  704. "0.4V", "0.6V", "0.8V", "1.2V"
  705. };
  706. static char *pre_emph_names[] = {
  707. "0dB", "3.5dB", "6dB", "9.5dB"
  708. };
  709. static char *link_train_names[] = {
  710. "pattern 1", "pattern 2", "idle", "off"
  711. };
  712. #endif
  713. /*
  714. * These are source-specific values; current Intel hardware supports
  715. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  716. */
  717. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  718. static uint8_t
  719. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  720. {
  721. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  722. case DP_TRAIN_VOLTAGE_SWING_400:
  723. return DP_TRAIN_PRE_EMPHASIS_6;
  724. case DP_TRAIN_VOLTAGE_SWING_600:
  725. return DP_TRAIN_PRE_EMPHASIS_6;
  726. case DP_TRAIN_VOLTAGE_SWING_800:
  727. return DP_TRAIN_PRE_EMPHASIS_3_5;
  728. case DP_TRAIN_VOLTAGE_SWING_1200:
  729. default:
  730. return DP_TRAIN_PRE_EMPHASIS_0;
  731. }
  732. }
  733. static void
  734. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  735. uint8_t link_status[DP_LINK_STATUS_SIZE],
  736. int lane_count,
  737. uint8_t train_set[4])
  738. {
  739. uint8_t v = 0;
  740. uint8_t p = 0;
  741. int lane;
  742. for (lane = 0; lane < lane_count; lane++) {
  743. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  744. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  745. if (this_v > v)
  746. v = this_v;
  747. if (this_p > p)
  748. p = this_p;
  749. }
  750. if (v >= I830_DP_VOLTAGE_MAX)
  751. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  752. if (p >= intel_dp_pre_emphasis_max(v))
  753. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  754. for (lane = 0; lane < 4; lane++)
  755. train_set[lane] = v | p;
  756. }
  757. static uint32_t
  758. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  759. {
  760. uint32_t signal_levels = 0;
  761. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  762. case DP_TRAIN_VOLTAGE_SWING_400:
  763. default:
  764. signal_levels |= DP_VOLTAGE_0_4;
  765. break;
  766. case DP_TRAIN_VOLTAGE_SWING_600:
  767. signal_levels |= DP_VOLTAGE_0_6;
  768. break;
  769. case DP_TRAIN_VOLTAGE_SWING_800:
  770. signal_levels |= DP_VOLTAGE_0_8;
  771. break;
  772. case DP_TRAIN_VOLTAGE_SWING_1200:
  773. signal_levels |= DP_VOLTAGE_1_2;
  774. break;
  775. }
  776. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  777. case DP_TRAIN_PRE_EMPHASIS_0:
  778. default:
  779. signal_levels |= DP_PRE_EMPHASIS_0;
  780. break;
  781. case DP_TRAIN_PRE_EMPHASIS_3_5:
  782. signal_levels |= DP_PRE_EMPHASIS_3_5;
  783. break;
  784. case DP_TRAIN_PRE_EMPHASIS_6:
  785. signal_levels |= DP_PRE_EMPHASIS_6;
  786. break;
  787. case DP_TRAIN_PRE_EMPHASIS_9_5:
  788. signal_levels |= DP_PRE_EMPHASIS_9_5;
  789. break;
  790. }
  791. return signal_levels;
  792. }
  793. /* Gen6's DP voltage swing and pre-emphasis control */
  794. static uint32_t
  795. intel_gen6_edp_signal_levels(uint8_t train_set)
  796. {
  797. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  798. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  799. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  800. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  801. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  802. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  803. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  804. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  805. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  806. default:
  807. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  808. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  809. }
  810. }
  811. static uint8_t
  812. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  813. int lane)
  814. {
  815. int i = DP_LANE0_1_STATUS + (lane >> 1);
  816. int s = (lane & 1) * 4;
  817. uint8_t l = intel_dp_link_status(link_status, i);
  818. return (l >> s) & 0xf;
  819. }
  820. /* Check for clock recovery is done on all channels */
  821. static bool
  822. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  823. {
  824. int lane;
  825. uint8_t lane_status;
  826. for (lane = 0; lane < lane_count; lane++) {
  827. lane_status = intel_get_lane_status(link_status, lane);
  828. if ((lane_status & DP_LANE_CR_DONE) == 0)
  829. return false;
  830. }
  831. return true;
  832. }
  833. /* Check to see if channel eq is done on all channels */
  834. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  835. DP_LANE_CHANNEL_EQ_DONE|\
  836. DP_LANE_SYMBOL_LOCKED)
  837. static bool
  838. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  839. {
  840. uint8_t lane_align;
  841. uint8_t lane_status;
  842. int lane;
  843. lane_align = intel_dp_link_status(link_status,
  844. DP_LANE_ALIGN_STATUS_UPDATED);
  845. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  846. return false;
  847. for (lane = 0; lane < lane_count; lane++) {
  848. lane_status = intel_get_lane_status(link_status, lane);
  849. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  850. return false;
  851. }
  852. return true;
  853. }
  854. static bool
  855. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  856. uint32_t dp_reg_value,
  857. uint8_t dp_train_pat,
  858. uint8_t train_set[4],
  859. bool first)
  860. {
  861. struct drm_device *dev = intel_encoder->enc.dev;
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  864. int ret;
  865. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  866. POSTING_READ(dp_priv->output_reg);
  867. if (first)
  868. intel_wait_for_vblank(dev);
  869. intel_dp_aux_native_write_1(intel_encoder,
  870. DP_TRAINING_PATTERN_SET,
  871. dp_train_pat);
  872. ret = intel_dp_aux_native_write(intel_encoder,
  873. DP_TRAINING_LANE0_SET, train_set, 4);
  874. if (ret != 4)
  875. return false;
  876. return true;
  877. }
  878. static void
  879. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  880. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  881. {
  882. struct drm_device *dev = intel_encoder->enc.dev;
  883. struct drm_i915_private *dev_priv = dev->dev_private;
  884. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  885. uint8_t train_set[4];
  886. uint8_t link_status[DP_LINK_STATUS_SIZE];
  887. int i;
  888. uint8_t voltage;
  889. bool clock_recovery = false;
  890. bool channel_eq = false;
  891. bool first = true;
  892. int tries;
  893. u32 reg;
  894. /* Write the link configuration data */
  895. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  896. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  897. DP |= DP_PORT_EN;
  898. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  899. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  900. else
  901. DP &= ~DP_LINK_TRAIN_MASK;
  902. memset(train_set, 0, 4);
  903. voltage = 0xff;
  904. tries = 0;
  905. clock_recovery = false;
  906. for (;;) {
  907. /* Use train_set[0] to set the voltage and pre emphasis values */
  908. uint32_t signal_levels;
  909. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  910. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  911. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  912. } else {
  913. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  914. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  915. }
  916. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  917. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  918. else
  919. reg = DP | DP_LINK_TRAIN_PAT_1;
  920. if (!intel_dp_set_link_train(intel_encoder, reg,
  921. DP_TRAINING_PATTERN_1, train_set, first))
  922. break;
  923. first = false;
  924. /* Set training pattern 1 */
  925. udelay(100);
  926. if (!intel_dp_get_link_status(intel_encoder, link_status))
  927. break;
  928. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  929. clock_recovery = true;
  930. break;
  931. }
  932. /* Check to see if we've tried the max voltage */
  933. for (i = 0; i < dp_priv->lane_count; i++)
  934. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  935. break;
  936. if (i == dp_priv->lane_count)
  937. break;
  938. /* Check to see if we've tried the same voltage 5 times */
  939. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  940. ++tries;
  941. if (tries == 5)
  942. break;
  943. } else
  944. tries = 0;
  945. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  946. /* Compute new train_set as requested by target */
  947. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  948. }
  949. /* channel equalization */
  950. tries = 0;
  951. channel_eq = false;
  952. for (;;) {
  953. /* Use train_set[0] to set the voltage and pre emphasis values */
  954. uint32_t signal_levels;
  955. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  956. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  957. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  958. } else {
  959. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  960. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  961. }
  962. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  963. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  964. else
  965. reg = DP | DP_LINK_TRAIN_PAT_2;
  966. /* channel eq pattern */
  967. if (!intel_dp_set_link_train(intel_encoder, reg,
  968. DP_TRAINING_PATTERN_2, train_set,
  969. false))
  970. break;
  971. udelay(400);
  972. if (!intel_dp_get_link_status(intel_encoder, link_status))
  973. break;
  974. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  975. channel_eq = true;
  976. break;
  977. }
  978. /* Try 5 times */
  979. if (tries > 5)
  980. break;
  981. /* Compute new train_set as requested by target */
  982. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  983. ++tries;
  984. }
  985. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  986. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  987. else
  988. reg = DP | DP_LINK_TRAIN_OFF;
  989. I915_WRITE(dp_priv->output_reg, reg);
  990. POSTING_READ(dp_priv->output_reg);
  991. intel_dp_aux_native_write_1(intel_encoder,
  992. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  993. }
  994. static void
  995. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  996. {
  997. struct drm_device *dev = intel_encoder->enc.dev;
  998. struct drm_i915_private *dev_priv = dev->dev_private;
  999. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1000. DRM_DEBUG_KMS("\n");
  1001. if (IS_eDP(intel_encoder)) {
  1002. DP &= ~DP_PLL_ENABLE;
  1003. I915_WRITE(dp_priv->output_reg, DP);
  1004. POSTING_READ(dp_priv->output_reg);
  1005. udelay(100);
  1006. }
  1007. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1008. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1009. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1010. POSTING_READ(dp_priv->output_reg);
  1011. } else {
  1012. DP &= ~DP_LINK_TRAIN_MASK;
  1013. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1014. POSTING_READ(dp_priv->output_reg);
  1015. }
  1016. udelay(17000);
  1017. if (IS_eDP(intel_encoder))
  1018. DP |= DP_LINK_TRAIN_OFF;
  1019. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1020. POSTING_READ(dp_priv->output_reg);
  1021. }
  1022. /*
  1023. * According to DP spec
  1024. * 5.1.2:
  1025. * 1. Read DPCD
  1026. * 2. Configure link according to Receiver Capabilities
  1027. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1028. * 4. Check link status on receipt of hot-plug interrupt
  1029. */
  1030. static void
  1031. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1032. {
  1033. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1034. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1035. if (!intel_encoder->enc.crtc)
  1036. return;
  1037. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1038. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1039. return;
  1040. }
  1041. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1042. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1043. }
  1044. static enum drm_connector_status
  1045. ironlake_dp_detect(struct drm_connector *connector)
  1046. {
  1047. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1048. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1049. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1050. enum drm_connector_status status;
  1051. status = connector_status_disconnected;
  1052. if (intel_dp_aux_native_read(intel_encoder,
  1053. 0x000, dp_priv->dpcd,
  1054. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1055. {
  1056. if (dp_priv->dpcd[0] != 0)
  1057. status = connector_status_connected;
  1058. }
  1059. return status;
  1060. }
  1061. /**
  1062. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1063. *
  1064. * \return true if DP port is connected.
  1065. * \return false if DP port is disconnected.
  1066. */
  1067. static enum drm_connector_status
  1068. intel_dp_detect(struct drm_connector *connector)
  1069. {
  1070. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1071. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1072. struct drm_device *dev = intel_encoder->enc.dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1075. uint32_t temp, bit;
  1076. enum drm_connector_status status;
  1077. dp_priv->has_audio = false;
  1078. if (HAS_PCH_SPLIT(dev))
  1079. return ironlake_dp_detect(connector);
  1080. switch (dp_priv->output_reg) {
  1081. case DP_B:
  1082. bit = DPB_HOTPLUG_INT_STATUS;
  1083. break;
  1084. case DP_C:
  1085. bit = DPC_HOTPLUG_INT_STATUS;
  1086. break;
  1087. case DP_D:
  1088. bit = DPD_HOTPLUG_INT_STATUS;
  1089. break;
  1090. default:
  1091. return connector_status_unknown;
  1092. }
  1093. temp = I915_READ(PORT_HOTPLUG_STAT);
  1094. if ((temp & bit) == 0)
  1095. return connector_status_disconnected;
  1096. status = connector_status_disconnected;
  1097. if (intel_dp_aux_native_read(intel_encoder,
  1098. 0x000, dp_priv->dpcd,
  1099. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1100. {
  1101. if (dp_priv->dpcd[0] != 0)
  1102. status = connector_status_connected;
  1103. }
  1104. return status;
  1105. }
  1106. static int intel_dp_get_modes(struct drm_connector *connector)
  1107. {
  1108. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1109. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1110. struct drm_device *dev = intel_encoder->enc.dev;
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. int ret;
  1113. /* We should parse the EDID data and find out if it has an audio sink
  1114. */
  1115. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1116. if (ret)
  1117. return ret;
  1118. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1119. if (IS_eDP(intel_encoder)) {
  1120. if (dev_priv->panel_fixed_mode != NULL) {
  1121. struct drm_display_mode *mode;
  1122. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1123. drm_mode_probed_add(connector, mode);
  1124. return 1;
  1125. }
  1126. }
  1127. return 0;
  1128. }
  1129. static void
  1130. intel_dp_destroy (struct drm_connector *connector)
  1131. {
  1132. drm_sysfs_connector_remove(connector);
  1133. drm_connector_cleanup(connector);
  1134. kfree(connector);
  1135. }
  1136. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1137. .dpms = intel_dp_dpms,
  1138. .mode_fixup = intel_dp_mode_fixup,
  1139. .prepare = intel_encoder_prepare,
  1140. .mode_set = intel_dp_mode_set,
  1141. .commit = intel_encoder_commit,
  1142. };
  1143. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1144. .dpms = drm_helper_connector_dpms,
  1145. .detect = intel_dp_detect,
  1146. .fill_modes = drm_helper_probe_single_connector_modes,
  1147. .destroy = intel_dp_destroy,
  1148. };
  1149. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1150. .get_modes = intel_dp_get_modes,
  1151. .mode_valid = intel_dp_mode_valid,
  1152. .best_encoder = intel_attached_encoder,
  1153. };
  1154. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1155. {
  1156. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1157. if (intel_encoder->i2c_bus)
  1158. intel_i2c_destroy(intel_encoder->i2c_bus);
  1159. drm_encoder_cleanup(encoder);
  1160. kfree(intel_encoder);
  1161. }
  1162. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1163. .destroy = intel_dp_enc_destroy,
  1164. };
  1165. void
  1166. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1167. {
  1168. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1169. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1170. intel_dp_check_link_status(intel_encoder);
  1171. }
  1172. /* Return which DP Port should be selected for Transcoder DP control */
  1173. int
  1174. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1175. {
  1176. struct drm_device *dev = crtc->dev;
  1177. struct drm_mode_config *mode_config = &dev->mode_config;
  1178. struct drm_encoder *encoder;
  1179. struct intel_encoder *intel_encoder = NULL;
  1180. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1181. if (!encoder || encoder->crtc != crtc)
  1182. continue;
  1183. intel_encoder = enc_to_intel_encoder(encoder);
  1184. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1185. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1186. return dp_priv->output_reg;
  1187. }
  1188. }
  1189. return -1;
  1190. }
  1191. void
  1192. intel_dp_init(struct drm_device *dev, int output_reg)
  1193. {
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. struct drm_connector *connector;
  1196. struct intel_encoder *intel_encoder;
  1197. struct intel_connector *intel_connector;
  1198. struct intel_dp_priv *dp_priv;
  1199. const char *name = NULL;
  1200. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1201. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1202. if (!intel_encoder)
  1203. return;
  1204. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1205. if (!intel_connector) {
  1206. kfree(intel_encoder);
  1207. return;
  1208. }
  1209. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1210. connector = &intel_connector->base;
  1211. drm_connector_init(dev, connector, &intel_dp_connector_funcs,
  1212. DRM_MODE_CONNECTOR_DisplayPort);
  1213. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1214. if (output_reg == DP_A)
  1215. intel_encoder->type = INTEL_OUTPUT_EDP;
  1216. else
  1217. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1218. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1219. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1220. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1221. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1222. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1223. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1224. if (IS_eDP(intel_encoder))
  1225. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1226. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1227. connector->interlace_allowed = true;
  1228. connector->doublescan_allowed = 0;
  1229. dp_priv->intel_encoder = intel_encoder;
  1230. dp_priv->output_reg = output_reg;
  1231. dp_priv->has_audio = false;
  1232. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1233. intel_encoder->dev_priv = dp_priv;
  1234. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1235. DRM_MODE_ENCODER_TMDS);
  1236. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1237. drm_mode_connector_attach_encoder(&intel_connector->base,
  1238. &intel_encoder->enc);
  1239. drm_sysfs_connector_add(connector);
  1240. /* Set up the DDC bus. */
  1241. switch (output_reg) {
  1242. case DP_A:
  1243. name = "DPDDC-A";
  1244. break;
  1245. case DP_B:
  1246. case PCH_DP_B:
  1247. dev_priv->hotplug_supported_mask |=
  1248. HDMIB_HOTPLUG_INT_STATUS;
  1249. name = "DPDDC-B";
  1250. break;
  1251. case DP_C:
  1252. case PCH_DP_C:
  1253. dev_priv->hotplug_supported_mask |=
  1254. HDMIC_HOTPLUG_INT_STATUS;
  1255. name = "DPDDC-C";
  1256. break;
  1257. case DP_D:
  1258. case PCH_DP_D:
  1259. dev_priv->hotplug_supported_mask |=
  1260. HDMID_HOTPLUG_INT_STATUS;
  1261. name = "DPDDC-D";
  1262. break;
  1263. }
  1264. intel_dp_i2c_init(intel_encoder, intel_connector, name);
  1265. intel_encoder->ddc_bus = &dp_priv->adapter;
  1266. intel_encoder->hot_plug = intel_dp_hot_plug;
  1267. if (output_reg == DP_A) {
  1268. /* initialize panel mode from VBT if available for eDP */
  1269. if (dev_priv->lfp_lvds_vbt_mode) {
  1270. dev_priv->panel_fixed_mode =
  1271. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1272. if (dev_priv->panel_fixed_mode) {
  1273. dev_priv->panel_fixed_mode->type |=
  1274. DRM_MODE_TYPE_PREFERRED;
  1275. }
  1276. }
  1277. }
  1278. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1279. * 0xd. Failure to do so will result in spurious interrupts being
  1280. * generated on the port when a cable is not attached.
  1281. */
  1282. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1283. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1284. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1285. }
  1286. }