af_iucv.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. /* Call Back functions */
  80. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  81. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  83. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  84. u8 ipuser[16]);
  85. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  86. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  87. static struct iucv_sock_list iucv_sk_list = {
  88. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  89. .autobind_name = ATOMIC_INIT(0)
  90. };
  91. static struct iucv_handler af_iucv_handler = {
  92. .path_pending = iucv_callback_connreq,
  93. .path_complete = iucv_callback_connack,
  94. .path_severed = iucv_callback_connrej,
  95. .message_pending = iucv_callback_rx,
  96. .message_complete = iucv_callback_txdone,
  97. .path_quiesced = iucv_callback_shutdown,
  98. };
  99. static inline void high_nmcpy(unsigned char *dst, char *src)
  100. {
  101. memcpy(dst, src, 8);
  102. }
  103. static inline void low_nmcpy(unsigned char *dst, char *src)
  104. {
  105. memcpy(&dst[8], src, 8);
  106. }
  107. static int afiucv_pm_prepare(struct device *dev)
  108. {
  109. #ifdef CONFIG_PM_DEBUG
  110. printk(KERN_WARNING "afiucv_pm_prepare\n");
  111. #endif
  112. return 0;
  113. }
  114. static void afiucv_pm_complete(struct device *dev)
  115. {
  116. #ifdef CONFIG_PM_DEBUG
  117. printk(KERN_WARNING "afiucv_pm_complete\n");
  118. #endif
  119. return;
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. struct hlist_node *node;
  132. int err = 0;
  133. #ifdef CONFIG_PM_DEBUG
  134. printk(KERN_WARNING "afiucv_pm_freeze\n");
  135. #endif
  136. read_lock(&iucv_sk_list.lock);
  137. sk_for_each(sk, node, &iucv_sk_list.head) {
  138. iucv = iucv_sk(sk);
  139. skb_queue_purge(&iucv->send_skb_q);
  140. skb_queue_purge(&iucv->backlog_skb_q);
  141. switch (sk->sk_state) {
  142. case IUCV_SEVERED:
  143. case IUCV_DISCONN:
  144. case IUCV_CLOSING:
  145. case IUCV_CONNECTED:
  146. if (iucv->path) {
  147. err = iucv_path_sever(iucv->path, NULL);
  148. iucv_path_free(iucv->path);
  149. iucv->path = NULL;
  150. }
  151. break;
  152. case IUCV_OPEN:
  153. case IUCV_BOUND:
  154. case IUCV_LISTEN:
  155. case IUCV_CLOSED:
  156. default:
  157. break;
  158. }
  159. }
  160. read_unlock(&iucv_sk_list.lock);
  161. return err;
  162. }
  163. /**
  164. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  165. * @dev: AFIUCV dummy device
  166. *
  167. * socket clean up after freeze
  168. */
  169. static int afiucv_pm_restore_thaw(struct device *dev)
  170. {
  171. struct iucv_sock *iucv;
  172. struct sock *sk;
  173. struct hlist_node *node;
  174. #ifdef CONFIG_PM_DEBUG
  175. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  176. #endif
  177. read_lock(&iucv_sk_list.lock);
  178. sk_for_each(sk, node, &iucv_sk_list.head) {
  179. iucv = iucv_sk(sk);
  180. switch (sk->sk_state) {
  181. case IUCV_CONNECTED:
  182. sk->sk_err = EPIPE;
  183. sk->sk_state = IUCV_DISCONN;
  184. sk->sk_state_change(sk);
  185. break;
  186. case IUCV_DISCONN:
  187. case IUCV_SEVERED:
  188. case IUCV_CLOSING:
  189. case IUCV_LISTEN:
  190. case IUCV_BOUND:
  191. case IUCV_OPEN:
  192. default:
  193. break;
  194. }
  195. }
  196. read_unlock(&iucv_sk_list.lock);
  197. return 0;
  198. }
  199. static const struct dev_pm_ops afiucv_pm_ops = {
  200. .prepare = afiucv_pm_prepare,
  201. .complete = afiucv_pm_complete,
  202. .freeze = afiucv_pm_freeze,
  203. .thaw = afiucv_pm_restore_thaw,
  204. .restore = afiucv_pm_restore_thaw,
  205. };
  206. static struct device_driver af_iucv_driver = {
  207. .owner = THIS_MODULE,
  208. .name = "afiucv",
  209. .bus = &iucv_bus,
  210. .pm = &afiucv_pm_ops,
  211. };
  212. /* dummy device used as trigger for PM functions */
  213. static struct device *af_iucv_dev;
  214. /**
  215. * iucv_msg_length() - Returns the length of an iucv message.
  216. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  217. *
  218. * The function returns the length of the specified iucv message @msg of data
  219. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  220. *
  221. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  222. * data:
  223. * PRMDATA[0..6] socket data (max 7 bytes);
  224. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  225. *
  226. * The socket data length is computed by substracting the socket data length
  227. * value from 0xFF.
  228. * If the socket data len is greater 7, then PRMDATA can be used for special
  229. * notifications (see iucv_sock_shutdown); and further,
  230. * if the socket data len is > 7, the function returns 8.
  231. *
  232. * Use this function to allocate socket buffers to store iucv message data.
  233. */
  234. static inline size_t iucv_msg_length(struct iucv_message *msg)
  235. {
  236. size_t datalen;
  237. if (msg->flags & IUCV_IPRMDATA) {
  238. datalen = 0xff - msg->rmmsg[7];
  239. return (datalen < 8) ? datalen : 8;
  240. }
  241. return msg->length;
  242. }
  243. /**
  244. * iucv_sock_in_state() - check for specific states
  245. * @sk: sock structure
  246. * @state: first iucv sk state
  247. * @state: second iucv sk state
  248. *
  249. * Returns true if the socket in either in the first or second state.
  250. */
  251. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  252. {
  253. return (sk->sk_state == state || sk->sk_state == state2);
  254. }
  255. /**
  256. * iucv_below_msglim() - function to check if messages can be sent
  257. * @sk: sock structure
  258. *
  259. * Returns true if the send queue length is lower than the message limit.
  260. * Always returns true if the socket is not connected (no iucv path for
  261. * checking the message limit).
  262. */
  263. static inline int iucv_below_msglim(struct sock *sk)
  264. {
  265. struct iucv_sock *iucv = iucv_sk(sk);
  266. if (sk->sk_state != IUCV_CONNECTED)
  267. return 1;
  268. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  269. }
  270. /**
  271. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  272. */
  273. static void iucv_sock_wake_msglim(struct sock *sk)
  274. {
  275. struct socket_wq *wq;
  276. rcu_read_lock();
  277. wq = rcu_dereference(sk->sk_wq);
  278. if (wq_has_sleeper(wq))
  279. wake_up_interruptible_all(&wq->wait);
  280. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  281. rcu_read_unlock();
  282. }
  283. /* Timers */
  284. static void iucv_sock_timeout(unsigned long arg)
  285. {
  286. struct sock *sk = (struct sock *)arg;
  287. bh_lock_sock(sk);
  288. sk->sk_err = ETIMEDOUT;
  289. sk->sk_state_change(sk);
  290. bh_unlock_sock(sk);
  291. iucv_sock_kill(sk);
  292. sock_put(sk);
  293. }
  294. static void iucv_sock_clear_timer(struct sock *sk)
  295. {
  296. sk_stop_timer(sk, &sk->sk_timer);
  297. }
  298. static struct sock *__iucv_get_sock_by_name(char *nm)
  299. {
  300. struct sock *sk;
  301. struct hlist_node *node;
  302. sk_for_each(sk, node, &iucv_sk_list.head)
  303. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  304. return sk;
  305. return NULL;
  306. }
  307. static void iucv_sock_destruct(struct sock *sk)
  308. {
  309. skb_queue_purge(&sk->sk_receive_queue);
  310. skb_queue_purge(&sk->sk_write_queue);
  311. }
  312. /* Cleanup Listen */
  313. static void iucv_sock_cleanup_listen(struct sock *parent)
  314. {
  315. struct sock *sk;
  316. /* Close non-accepted connections */
  317. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  318. iucv_sock_close(sk);
  319. iucv_sock_kill(sk);
  320. }
  321. parent->sk_state = IUCV_CLOSED;
  322. }
  323. /* Kill socket (only if zapped and orphaned) */
  324. static void iucv_sock_kill(struct sock *sk)
  325. {
  326. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  327. return;
  328. iucv_sock_unlink(&iucv_sk_list, sk);
  329. sock_set_flag(sk, SOCK_DEAD);
  330. sock_put(sk);
  331. }
  332. /* Close an IUCV socket */
  333. static void iucv_sock_close(struct sock *sk)
  334. {
  335. unsigned char user_data[16];
  336. struct iucv_sock *iucv = iucv_sk(sk);
  337. int err;
  338. unsigned long timeo;
  339. iucv_sock_clear_timer(sk);
  340. lock_sock(sk);
  341. switch (sk->sk_state) {
  342. case IUCV_LISTEN:
  343. iucv_sock_cleanup_listen(sk);
  344. break;
  345. case IUCV_CONNECTED:
  346. case IUCV_DISCONN:
  347. err = 0;
  348. sk->sk_state = IUCV_CLOSING;
  349. sk->sk_state_change(sk);
  350. if (!skb_queue_empty(&iucv->send_skb_q)) {
  351. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  352. timeo = sk->sk_lingertime;
  353. else
  354. timeo = IUCV_DISCONN_TIMEOUT;
  355. err = iucv_sock_wait(sk,
  356. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  357. timeo);
  358. }
  359. case IUCV_CLOSING: /* fall through */
  360. sk->sk_state = IUCV_CLOSED;
  361. sk->sk_state_change(sk);
  362. if (iucv->path) {
  363. low_nmcpy(user_data, iucv->src_name);
  364. high_nmcpy(user_data, iucv->dst_name);
  365. ASCEBC(user_data, sizeof(user_data));
  366. err = iucv_path_sever(iucv->path, user_data);
  367. iucv_path_free(iucv->path);
  368. iucv->path = NULL;
  369. }
  370. sk->sk_err = ECONNRESET;
  371. sk->sk_state_change(sk);
  372. skb_queue_purge(&iucv->send_skb_q);
  373. skb_queue_purge(&iucv->backlog_skb_q);
  374. break;
  375. default:
  376. /* nothing to do here */
  377. break;
  378. }
  379. /* mark socket for deletion by iucv_sock_kill() */
  380. sock_set_flag(sk, SOCK_ZAPPED);
  381. release_sock(sk);
  382. }
  383. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  384. {
  385. if (parent)
  386. sk->sk_type = parent->sk_type;
  387. }
  388. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  389. {
  390. struct sock *sk;
  391. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  392. if (!sk)
  393. return NULL;
  394. sock_init_data(sock, sk);
  395. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  396. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  397. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  398. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  399. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  400. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  401. iucv_sk(sk)->send_tag = 0;
  402. iucv_sk(sk)->flags = 0;
  403. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  404. iucv_sk(sk)->path = NULL;
  405. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  406. sk->sk_destruct = iucv_sock_destruct;
  407. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  408. sk->sk_allocation = GFP_DMA;
  409. sock_reset_flag(sk, SOCK_ZAPPED);
  410. sk->sk_protocol = proto;
  411. sk->sk_state = IUCV_OPEN;
  412. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  413. iucv_sock_link(&iucv_sk_list, sk);
  414. return sk;
  415. }
  416. /* Create an IUCV socket */
  417. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  418. int kern)
  419. {
  420. struct sock *sk;
  421. if (protocol && protocol != PF_IUCV)
  422. return -EPROTONOSUPPORT;
  423. sock->state = SS_UNCONNECTED;
  424. switch (sock->type) {
  425. case SOCK_STREAM:
  426. sock->ops = &iucv_sock_ops;
  427. break;
  428. case SOCK_SEQPACKET:
  429. /* currently, proto ops can handle both sk types */
  430. sock->ops = &iucv_sock_ops;
  431. break;
  432. default:
  433. return -ESOCKTNOSUPPORT;
  434. }
  435. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  436. if (!sk)
  437. return -ENOMEM;
  438. iucv_sock_init(sk, NULL);
  439. return 0;
  440. }
  441. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  442. {
  443. write_lock_bh(&l->lock);
  444. sk_add_node(sk, &l->head);
  445. write_unlock_bh(&l->lock);
  446. }
  447. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  448. {
  449. write_lock_bh(&l->lock);
  450. sk_del_node_init(sk);
  451. write_unlock_bh(&l->lock);
  452. }
  453. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  454. {
  455. unsigned long flags;
  456. struct iucv_sock *par = iucv_sk(parent);
  457. sock_hold(sk);
  458. spin_lock_irqsave(&par->accept_q_lock, flags);
  459. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  460. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  461. iucv_sk(sk)->parent = parent;
  462. sk_acceptq_added(parent);
  463. }
  464. void iucv_accept_unlink(struct sock *sk)
  465. {
  466. unsigned long flags;
  467. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  468. spin_lock_irqsave(&par->accept_q_lock, flags);
  469. list_del_init(&iucv_sk(sk)->accept_q);
  470. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  471. sk_acceptq_removed(iucv_sk(sk)->parent);
  472. iucv_sk(sk)->parent = NULL;
  473. sock_put(sk);
  474. }
  475. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  476. {
  477. struct iucv_sock *isk, *n;
  478. struct sock *sk;
  479. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  480. sk = (struct sock *) isk;
  481. lock_sock(sk);
  482. if (sk->sk_state == IUCV_CLOSED) {
  483. iucv_accept_unlink(sk);
  484. release_sock(sk);
  485. continue;
  486. }
  487. if (sk->sk_state == IUCV_CONNECTED ||
  488. sk->sk_state == IUCV_SEVERED ||
  489. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  490. !newsock) {
  491. iucv_accept_unlink(sk);
  492. if (newsock)
  493. sock_graft(sk, newsock);
  494. if (sk->sk_state == IUCV_SEVERED)
  495. sk->sk_state = IUCV_DISCONN;
  496. release_sock(sk);
  497. return sk;
  498. }
  499. release_sock(sk);
  500. }
  501. return NULL;
  502. }
  503. /* Bind an unbound socket */
  504. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  505. int addr_len)
  506. {
  507. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  508. struct sock *sk = sock->sk;
  509. struct iucv_sock *iucv;
  510. int err;
  511. /* Verify the input sockaddr */
  512. if (!addr || addr->sa_family != AF_IUCV)
  513. return -EINVAL;
  514. lock_sock(sk);
  515. if (sk->sk_state != IUCV_OPEN) {
  516. err = -EBADFD;
  517. goto done;
  518. }
  519. write_lock_bh(&iucv_sk_list.lock);
  520. iucv = iucv_sk(sk);
  521. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  522. err = -EADDRINUSE;
  523. goto done_unlock;
  524. }
  525. if (iucv->path) {
  526. err = 0;
  527. goto done_unlock;
  528. }
  529. /* Bind the socket */
  530. memcpy(iucv->src_name, sa->siucv_name, 8);
  531. /* Copy the user id */
  532. memcpy(iucv->src_user_id, iucv_userid, 8);
  533. sk->sk_state = IUCV_BOUND;
  534. err = 0;
  535. done_unlock:
  536. /* Release the socket list lock */
  537. write_unlock_bh(&iucv_sk_list.lock);
  538. done:
  539. release_sock(sk);
  540. return err;
  541. }
  542. /* Automatically bind an unbound socket */
  543. static int iucv_sock_autobind(struct sock *sk)
  544. {
  545. struct iucv_sock *iucv = iucv_sk(sk);
  546. char query_buffer[80];
  547. char name[12];
  548. int err = 0;
  549. /* Set the userid and name */
  550. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  551. if (unlikely(err))
  552. return -EPROTO;
  553. memcpy(iucv->src_user_id, query_buffer, 8);
  554. write_lock_bh(&iucv_sk_list.lock);
  555. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  556. while (__iucv_get_sock_by_name(name)) {
  557. sprintf(name, "%08x",
  558. atomic_inc_return(&iucv_sk_list.autobind_name));
  559. }
  560. write_unlock_bh(&iucv_sk_list.lock);
  561. memcpy(&iucv->src_name, name, 8);
  562. return err;
  563. }
  564. /* Connect an unconnected socket */
  565. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  566. int alen, int flags)
  567. {
  568. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  569. struct sock *sk = sock->sk;
  570. struct iucv_sock *iucv;
  571. unsigned char user_data[16];
  572. int err;
  573. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  574. return -EINVAL;
  575. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  576. return -EBADFD;
  577. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  578. return -EINVAL;
  579. if (sk->sk_state == IUCV_OPEN) {
  580. err = iucv_sock_autobind(sk);
  581. if (unlikely(err))
  582. return err;
  583. }
  584. lock_sock(sk);
  585. /* Set the destination information */
  586. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  587. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  588. high_nmcpy(user_data, sa->siucv_name);
  589. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  590. ASCEBC(user_data, sizeof(user_data));
  591. iucv = iucv_sk(sk);
  592. /* Create path. */
  593. iucv->path = iucv_path_alloc(iucv->msglimit,
  594. IUCV_IPRMDATA, GFP_KERNEL);
  595. if (!iucv->path) {
  596. err = -ENOMEM;
  597. goto done;
  598. }
  599. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  600. sa->siucv_user_id, NULL, user_data, sk);
  601. if (err) {
  602. iucv_path_free(iucv->path);
  603. iucv->path = NULL;
  604. switch (err) {
  605. case 0x0b: /* Target communicator is not logged on */
  606. err = -ENETUNREACH;
  607. break;
  608. case 0x0d: /* Max connections for this guest exceeded */
  609. case 0x0e: /* Max connections for target guest exceeded */
  610. err = -EAGAIN;
  611. break;
  612. case 0x0f: /* Missing IUCV authorization */
  613. err = -EACCES;
  614. break;
  615. default:
  616. err = -ECONNREFUSED;
  617. break;
  618. }
  619. goto done;
  620. }
  621. if (sk->sk_state != IUCV_CONNECTED) {
  622. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  623. IUCV_DISCONN),
  624. sock_sndtimeo(sk, flags & O_NONBLOCK));
  625. }
  626. if (sk->sk_state == IUCV_DISCONN) {
  627. err = -ECONNREFUSED;
  628. }
  629. if (err) {
  630. iucv_path_sever(iucv->path, NULL);
  631. iucv_path_free(iucv->path);
  632. iucv->path = NULL;
  633. }
  634. done:
  635. release_sock(sk);
  636. return err;
  637. }
  638. /* Move a socket into listening state. */
  639. static int iucv_sock_listen(struct socket *sock, int backlog)
  640. {
  641. struct sock *sk = sock->sk;
  642. int err;
  643. lock_sock(sk);
  644. err = -EINVAL;
  645. if (sk->sk_state != IUCV_BOUND)
  646. goto done;
  647. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  648. goto done;
  649. sk->sk_max_ack_backlog = backlog;
  650. sk->sk_ack_backlog = 0;
  651. sk->sk_state = IUCV_LISTEN;
  652. err = 0;
  653. done:
  654. release_sock(sk);
  655. return err;
  656. }
  657. /* Accept a pending connection */
  658. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  659. int flags)
  660. {
  661. DECLARE_WAITQUEUE(wait, current);
  662. struct sock *sk = sock->sk, *nsk;
  663. long timeo;
  664. int err = 0;
  665. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  666. if (sk->sk_state != IUCV_LISTEN) {
  667. err = -EBADFD;
  668. goto done;
  669. }
  670. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  671. /* Wait for an incoming connection */
  672. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  673. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  674. set_current_state(TASK_INTERRUPTIBLE);
  675. if (!timeo) {
  676. err = -EAGAIN;
  677. break;
  678. }
  679. release_sock(sk);
  680. timeo = schedule_timeout(timeo);
  681. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  682. if (sk->sk_state != IUCV_LISTEN) {
  683. err = -EBADFD;
  684. break;
  685. }
  686. if (signal_pending(current)) {
  687. err = sock_intr_errno(timeo);
  688. break;
  689. }
  690. }
  691. set_current_state(TASK_RUNNING);
  692. remove_wait_queue(sk_sleep(sk), &wait);
  693. if (err)
  694. goto done;
  695. newsock->state = SS_CONNECTED;
  696. done:
  697. release_sock(sk);
  698. return err;
  699. }
  700. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  701. int *len, int peer)
  702. {
  703. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  704. struct sock *sk = sock->sk;
  705. addr->sa_family = AF_IUCV;
  706. *len = sizeof(struct sockaddr_iucv);
  707. if (peer) {
  708. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  709. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  710. } else {
  711. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  712. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  713. }
  714. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  715. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  716. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  717. return 0;
  718. }
  719. /**
  720. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  721. * @path: IUCV path
  722. * @msg: Pointer to a struct iucv_message
  723. * @skb: The socket data to send, skb->len MUST BE <= 7
  724. *
  725. * Send the socket data in the parameter list in the iucv message
  726. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  727. * list and the socket data len at index 7 (last byte).
  728. * See also iucv_msg_length().
  729. *
  730. * Returns the error code from the iucv_message_send() call.
  731. */
  732. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  733. struct sk_buff *skb)
  734. {
  735. u8 prmdata[8];
  736. memcpy(prmdata, (void *) skb->data, skb->len);
  737. prmdata[7] = 0xff - (u8) skb->len;
  738. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  739. (void *) prmdata, 8);
  740. }
  741. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  742. struct msghdr *msg, size_t len)
  743. {
  744. struct sock *sk = sock->sk;
  745. struct iucv_sock *iucv = iucv_sk(sk);
  746. struct sk_buff *skb;
  747. struct iucv_message txmsg;
  748. struct cmsghdr *cmsg;
  749. int cmsg_done;
  750. long timeo;
  751. char user_id[9];
  752. char appl_id[9];
  753. int err;
  754. int noblock = msg->msg_flags & MSG_DONTWAIT;
  755. err = sock_error(sk);
  756. if (err)
  757. return err;
  758. if (msg->msg_flags & MSG_OOB)
  759. return -EOPNOTSUPP;
  760. /* SOCK_SEQPACKET: we do not support segmented records */
  761. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  762. return -EOPNOTSUPP;
  763. lock_sock(sk);
  764. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  765. err = -EPIPE;
  766. goto out;
  767. }
  768. /* Return if the socket is not in connected state */
  769. if (sk->sk_state != IUCV_CONNECTED) {
  770. err = -ENOTCONN;
  771. goto out;
  772. }
  773. /* initialize defaults */
  774. cmsg_done = 0; /* check for duplicate headers */
  775. txmsg.class = 0;
  776. /* iterate over control messages */
  777. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  778. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  779. if (!CMSG_OK(msg, cmsg)) {
  780. err = -EINVAL;
  781. goto out;
  782. }
  783. if (cmsg->cmsg_level != SOL_IUCV)
  784. continue;
  785. if (cmsg->cmsg_type & cmsg_done) {
  786. err = -EINVAL;
  787. goto out;
  788. }
  789. cmsg_done |= cmsg->cmsg_type;
  790. switch (cmsg->cmsg_type) {
  791. case SCM_IUCV_TRGCLS:
  792. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  793. err = -EINVAL;
  794. goto out;
  795. }
  796. /* set iucv message target class */
  797. memcpy(&txmsg.class,
  798. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  799. break;
  800. default:
  801. err = -EINVAL;
  802. goto out;
  803. break;
  804. }
  805. }
  806. /* allocate one skb for each iucv message:
  807. * this is fine for SOCK_SEQPACKET (unless we want to support
  808. * segmented records using the MSG_EOR flag), but
  809. * for SOCK_STREAM we might want to improve it in future */
  810. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  811. if (!skb)
  812. goto out;
  813. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  814. err = -EFAULT;
  815. goto fail;
  816. }
  817. /* wait if outstanding messages for iucv path has reached */
  818. timeo = sock_sndtimeo(sk, noblock);
  819. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  820. if (err)
  821. goto fail;
  822. /* return -ECONNRESET if the socket is no longer connected */
  823. if (sk->sk_state != IUCV_CONNECTED) {
  824. err = -ECONNRESET;
  825. goto fail;
  826. }
  827. /* increment and save iucv message tag for msg_completion cbk */
  828. txmsg.tag = iucv->send_tag++;
  829. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  830. skb_queue_tail(&iucv->send_skb_q, skb);
  831. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  832. && skb->len <= 7) {
  833. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  834. /* on success: there is no message_complete callback
  835. * for an IPRMDATA msg; remove skb from send queue */
  836. if (err == 0) {
  837. skb_unlink(skb, &iucv->send_skb_q);
  838. kfree_skb(skb);
  839. }
  840. /* this error should never happen since the
  841. * IUCV_IPRMDATA path flag is set... sever path */
  842. if (err == 0x15) {
  843. iucv_path_sever(iucv->path, NULL);
  844. skb_unlink(skb, &iucv->send_skb_q);
  845. err = -EPIPE;
  846. goto fail;
  847. }
  848. } else
  849. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  850. (void *) skb->data, skb->len);
  851. if (err) {
  852. if (err == 3) {
  853. user_id[8] = 0;
  854. memcpy(user_id, iucv->dst_user_id, 8);
  855. appl_id[8] = 0;
  856. memcpy(appl_id, iucv->dst_name, 8);
  857. pr_err("Application %s on z/VM guest %s"
  858. " exceeds message limit\n",
  859. appl_id, user_id);
  860. err = -EAGAIN;
  861. } else
  862. err = -EPIPE;
  863. skb_unlink(skb, &iucv->send_skb_q);
  864. goto fail;
  865. }
  866. release_sock(sk);
  867. return len;
  868. fail:
  869. kfree_skb(skb);
  870. out:
  871. release_sock(sk);
  872. return err;
  873. }
  874. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  875. *
  876. * Locking: must be called with message_q.lock held
  877. */
  878. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  879. {
  880. int dataleft, size, copied = 0;
  881. struct sk_buff *nskb;
  882. dataleft = len;
  883. while (dataleft) {
  884. if (dataleft >= sk->sk_rcvbuf / 4)
  885. size = sk->sk_rcvbuf / 4;
  886. else
  887. size = dataleft;
  888. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  889. if (!nskb)
  890. return -ENOMEM;
  891. /* copy target class to control buffer of new skb */
  892. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  893. /* copy data fragment */
  894. memcpy(nskb->data, skb->data + copied, size);
  895. copied += size;
  896. dataleft -= size;
  897. skb_reset_transport_header(nskb);
  898. skb_reset_network_header(nskb);
  899. nskb->len = size;
  900. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  901. }
  902. return 0;
  903. }
  904. /* iucv_process_message() - Receive a single outstanding IUCV message
  905. *
  906. * Locking: must be called with message_q.lock held
  907. */
  908. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  909. struct iucv_path *path,
  910. struct iucv_message *msg)
  911. {
  912. int rc;
  913. unsigned int len;
  914. len = iucv_msg_length(msg);
  915. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  916. /* Note: the first 4 bytes are reserved for msg tag */
  917. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  918. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  919. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  920. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  921. skb->data = NULL;
  922. skb->len = 0;
  923. }
  924. } else {
  925. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  926. skb->data, len, NULL);
  927. if (rc) {
  928. kfree_skb(skb);
  929. return;
  930. }
  931. /* we need to fragment iucv messages for SOCK_STREAM only;
  932. * for SOCK_SEQPACKET, it is only relevant if we support
  933. * record segmentation using MSG_EOR (see also recvmsg()) */
  934. if (sk->sk_type == SOCK_STREAM &&
  935. skb->truesize >= sk->sk_rcvbuf / 4) {
  936. rc = iucv_fragment_skb(sk, skb, len);
  937. kfree_skb(skb);
  938. skb = NULL;
  939. if (rc) {
  940. iucv_path_sever(path, NULL);
  941. return;
  942. }
  943. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  944. } else {
  945. skb_reset_transport_header(skb);
  946. skb_reset_network_header(skb);
  947. skb->len = len;
  948. }
  949. }
  950. if (sock_queue_rcv_skb(sk, skb))
  951. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  952. }
  953. /* iucv_process_message_q() - Process outstanding IUCV messages
  954. *
  955. * Locking: must be called with message_q.lock held
  956. */
  957. static void iucv_process_message_q(struct sock *sk)
  958. {
  959. struct iucv_sock *iucv = iucv_sk(sk);
  960. struct sk_buff *skb;
  961. struct sock_msg_q *p, *n;
  962. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  963. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  964. if (!skb)
  965. break;
  966. iucv_process_message(sk, skb, p->path, &p->msg);
  967. list_del(&p->list);
  968. kfree(p);
  969. if (!skb_queue_empty(&iucv->backlog_skb_q))
  970. break;
  971. }
  972. }
  973. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  974. struct msghdr *msg, size_t len, int flags)
  975. {
  976. int noblock = flags & MSG_DONTWAIT;
  977. struct sock *sk = sock->sk;
  978. struct iucv_sock *iucv = iucv_sk(sk);
  979. unsigned int copied, rlen;
  980. struct sk_buff *skb, *rskb, *cskb;
  981. int err = 0;
  982. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  983. skb_queue_empty(&iucv->backlog_skb_q) &&
  984. skb_queue_empty(&sk->sk_receive_queue) &&
  985. list_empty(&iucv->message_q.list))
  986. return 0;
  987. if (flags & (MSG_OOB))
  988. return -EOPNOTSUPP;
  989. /* receive/dequeue next skb:
  990. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  991. skb = skb_recv_datagram(sk, flags, noblock, &err);
  992. if (!skb) {
  993. if (sk->sk_shutdown & RCV_SHUTDOWN)
  994. return 0;
  995. return err;
  996. }
  997. rlen = skb->len; /* real length of skb */
  998. copied = min_t(unsigned int, rlen, len);
  999. cskb = skb;
  1000. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  1001. if (!(flags & MSG_PEEK))
  1002. skb_queue_head(&sk->sk_receive_queue, skb);
  1003. return -EFAULT;
  1004. }
  1005. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1006. if (sk->sk_type == SOCK_SEQPACKET) {
  1007. if (copied < rlen)
  1008. msg->msg_flags |= MSG_TRUNC;
  1009. /* each iucv message contains a complete record */
  1010. msg->msg_flags |= MSG_EOR;
  1011. }
  1012. /* create control message to store iucv msg target class:
  1013. * get the trgcls from the control buffer of the skb due to
  1014. * fragmentation of original iucv message. */
  1015. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1016. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1017. if (err) {
  1018. if (!(flags & MSG_PEEK))
  1019. skb_queue_head(&sk->sk_receive_queue, skb);
  1020. return err;
  1021. }
  1022. /* Mark read part of skb as used */
  1023. if (!(flags & MSG_PEEK)) {
  1024. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1025. if (sk->sk_type == SOCK_STREAM) {
  1026. skb_pull(skb, copied);
  1027. if (skb->len) {
  1028. skb_queue_head(&sk->sk_receive_queue, skb);
  1029. goto done;
  1030. }
  1031. }
  1032. kfree_skb(skb);
  1033. /* Queue backlog skbs */
  1034. spin_lock_bh(&iucv->message_q.lock);
  1035. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1036. while (rskb) {
  1037. if (sock_queue_rcv_skb(sk, rskb)) {
  1038. skb_queue_head(&iucv->backlog_skb_q,
  1039. rskb);
  1040. break;
  1041. } else {
  1042. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1043. }
  1044. }
  1045. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1046. if (!list_empty(&iucv->message_q.list))
  1047. iucv_process_message_q(sk);
  1048. }
  1049. spin_unlock_bh(&iucv->message_q.lock);
  1050. }
  1051. done:
  1052. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1053. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1054. copied = rlen;
  1055. return copied;
  1056. }
  1057. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1058. {
  1059. struct iucv_sock *isk, *n;
  1060. struct sock *sk;
  1061. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1062. sk = (struct sock *) isk;
  1063. if (sk->sk_state == IUCV_CONNECTED)
  1064. return POLLIN | POLLRDNORM;
  1065. }
  1066. return 0;
  1067. }
  1068. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1069. poll_table *wait)
  1070. {
  1071. struct sock *sk = sock->sk;
  1072. unsigned int mask = 0;
  1073. sock_poll_wait(file, sk_sleep(sk), wait);
  1074. if (sk->sk_state == IUCV_LISTEN)
  1075. return iucv_accept_poll(sk);
  1076. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1077. mask |= POLLERR;
  1078. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1079. mask |= POLLRDHUP;
  1080. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1081. mask |= POLLHUP;
  1082. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1083. (sk->sk_shutdown & RCV_SHUTDOWN))
  1084. mask |= POLLIN | POLLRDNORM;
  1085. if (sk->sk_state == IUCV_CLOSED)
  1086. mask |= POLLHUP;
  1087. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1088. mask |= POLLIN;
  1089. if (sock_writeable(sk))
  1090. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1091. else
  1092. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1093. return mask;
  1094. }
  1095. static int iucv_sock_shutdown(struct socket *sock, int how)
  1096. {
  1097. struct sock *sk = sock->sk;
  1098. struct iucv_sock *iucv = iucv_sk(sk);
  1099. struct iucv_message txmsg;
  1100. int err = 0;
  1101. how++;
  1102. if ((how & ~SHUTDOWN_MASK) || !how)
  1103. return -EINVAL;
  1104. lock_sock(sk);
  1105. switch (sk->sk_state) {
  1106. case IUCV_DISCONN:
  1107. case IUCV_CLOSING:
  1108. case IUCV_SEVERED:
  1109. case IUCV_CLOSED:
  1110. err = -ENOTCONN;
  1111. goto fail;
  1112. default:
  1113. sk->sk_shutdown |= how;
  1114. break;
  1115. }
  1116. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1117. txmsg.class = 0;
  1118. txmsg.tag = 0;
  1119. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  1120. (void *) iprm_shutdown, 8);
  1121. if (err) {
  1122. switch (err) {
  1123. case 1:
  1124. err = -ENOTCONN;
  1125. break;
  1126. case 2:
  1127. err = -ECONNRESET;
  1128. break;
  1129. default:
  1130. err = -ENOTCONN;
  1131. break;
  1132. }
  1133. }
  1134. }
  1135. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1136. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  1137. if (err)
  1138. err = -ENOTCONN;
  1139. skb_queue_purge(&sk->sk_receive_queue);
  1140. }
  1141. /* Wake up anyone sleeping in poll */
  1142. sk->sk_state_change(sk);
  1143. fail:
  1144. release_sock(sk);
  1145. return err;
  1146. }
  1147. static int iucv_sock_release(struct socket *sock)
  1148. {
  1149. struct sock *sk = sock->sk;
  1150. int err = 0;
  1151. if (!sk)
  1152. return 0;
  1153. iucv_sock_close(sk);
  1154. /* Unregister with IUCV base support */
  1155. if (iucv_sk(sk)->path) {
  1156. iucv_path_sever(iucv_sk(sk)->path, NULL);
  1157. iucv_path_free(iucv_sk(sk)->path);
  1158. iucv_sk(sk)->path = NULL;
  1159. }
  1160. sock_orphan(sk);
  1161. iucv_sock_kill(sk);
  1162. return err;
  1163. }
  1164. /* getsockopt and setsockopt */
  1165. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1166. char __user *optval, unsigned int optlen)
  1167. {
  1168. struct sock *sk = sock->sk;
  1169. struct iucv_sock *iucv = iucv_sk(sk);
  1170. int val;
  1171. int rc;
  1172. if (level != SOL_IUCV)
  1173. return -ENOPROTOOPT;
  1174. if (optlen < sizeof(int))
  1175. return -EINVAL;
  1176. if (get_user(val, (int __user *) optval))
  1177. return -EFAULT;
  1178. rc = 0;
  1179. lock_sock(sk);
  1180. switch (optname) {
  1181. case SO_IPRMDATA_MSG:
  1182. if (val)
  1183. iucv->flags |= IUCV_IPRMDATA;
  1184. else
  1185. iucv->flags &= ~IUCV_IPRMDATA;
  1186. break;
  1187. case SO_MSGLIMIT:
  1188. switch (sk->sk_state) {
  1189. case IUCV_OPEN:
  1190. case IUCV_BOUND:
  1191. if (val < 1 || val > (u16)(~0))
  1192. rc = -EINVAL;
  1193. else
  1194. iucv->msglimit = val;
  1195. break;
  1196. default:
  1197. rc = -EINVAL;
  1198. break;
  1199. }
  1200. break;
  1201. default:
  1202. rc = -ENOPROTOOPT;
  1203. break;
  1204. }
  1205. release_sock(sk);
  1206. return rc;
  1207. }
  1208. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1209. char __user *optval, int __user *optlen)
  1210. {
  1211. struct sock *sk = sock->sk;
  1212. struct iucv_sock *iucv = iucv_sk(sk);
  1213. int val, len;
  1214. if (level != SOL_IUCV)
  1215. return -ENOPROTOOPT;
  1216. if (get_user(len, optlen))
  1217. return -EFAULT;
  1218. if (len < 0)
  1219. return -EINVAL;
  1220. len = min_t(unsigned int, len, sizeof(int));
  1221. switch (optname) {
  1222. case SO_IPRMDATA_MSG:
  1223. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1224. break;
  1225. case SO_MSGLIMIT:
  1226. lock_sock(sk);
  1227. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1228. : iucv->msglimit; /* default */
  1229. release_sock(sk);
  1230. break;
  1231. default:
  1232. return -ENOPROTOOPT;
  1233. }
  1234. if (put_user(len, optlen))
  1235. return -EFAULT;
  1236. if (copy_to_user(optval, &val, len))
  1237. return -EFAULT;
  1238. return 0;
  1239. }
  1240. /* Callback wrappers - called from iucv base support */
  1241. static int iucv_callback_connreq(struct iucv_path *path,
  1242. u8 ipvmid[8], u8 ipuser[16])
  1243. {
  1244. unsigned char user_data[16];
  1245. unsigned char nuser_data[16];
  1246. unsigned char src_name[8];
  1247. struct hlist_node *node;
  1248. struct sock *sk, *nsk;
  1249. struct iucv_sock *iucv, *niucv;
  1250. int err;
  1251. memcpy(src_name, ipuser, 8);
  1252. EBCASC(src_name, 8);
  1253. /* Find out if this path belongs to af_iucv. */
  1254. read_lock(&iucv_sk_list.lock);
  1255. iucv = NULL;
  1256. sk = NULL;
  1257. sk_for_each(sk, node, &iucv_sk_list.head)
  1258. if (sk->sk_state == IUCV_LISTEN &&
  1259. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1260. /*
  1261. * Found a listening socket with
  1262. * src_name == ipuser[0-7].
  1263. */
  1264. iucv = iucv_sk(sk);
  1265. break;
  1266. }
  1267. read_unlock(&iucv_sk_list.lock);
  1268. if (!iucv)
  1269. /* No socket found, not one of our paths. */
  1270. return -EINVAL;
  1271. bh_lock_sock(sk);
  1272. /* Check if parent socket is listening */
  1273. low_nmcpy(user_data, iucv->src_name);
  1274. high_nmcpy(user_data, iucv->dst_name);
  1275. ASCEBC(user_data, sizeof(user_data));
  1276. if (sk->sk_state != IUCV_LISTEN) {
  1277. err = iucv_path_sever(path, user_data);
  1278. iucv_path_free(path);
  1279. goto fail;
  1280. }
  1281. /* Check for backlog size */
  1282. if (sk_acceptq_is_full(sk)) {
  1283. err = iucv_path_sever(path, user_data);
  1284. iucv_path_free(path);
  1285. goto fail;
  1286. }
  1287. /* Create the new socket */
  1288. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1289. if (!nsk) {
  1290. err = iucv_path_sever(path, user_data);
  1291. iucv_path_free(path);
  1292. goto fail;
  1293. }
  1294. niucv = iucv_sk(nsk);
  1295. iucv_sock_init(nsk, sk);
  1296. /* Set the new iucv_sock */
  1297. memcpy(niucv->dst_name, ipuser + 8, 8);
  1298. EBCASC(niucv->dst_name, 8);
  1299. memcpy(niucv->dst_user_id, ipvmid, 8);
  1300. memcpy(niucv->src_name, iucv->src_name, 8);
  1301. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1302. niucv->path = path;
  1303. /* Call iucv_accept */
  1304. high_nmcpy(nuser_data, ipuser + 8);
  1305. memcpy(nuser_data + 8, niucv->src_name, 8);
  1306. ASCEBC(nuser_data + 8, 8);
  1307. /* set message limit for path based on msglimit of accepting socket */
  1308. niucv->msglimit = iucv->msglimit;
  1309. path->msglim = iucv->msglimit;
  1310. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1311. if (err) {
  1312. err = iucv_path_sever(path, user_data);
  1313. iucv_path_free(path);
  1314. iucv_sock_kill(nsk);
  1315. goto fail;
  1316. }
  1317. iucv_accept_enqueue(sk, nsk);
  1318. /* Wake up accept */
  1319. nsk->sk_state = IUCV_CONNECTED;
  1320. sk->sk_data_ready(sk, 1);
  1321. err = 0;
  1322. fail:
  1323. bh_unlock_sock(sk);
  1324. return 0;
  1325. }
  1326. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1327. {
  1328. struct sock *sk = path->private;
  1329. sk->sk_state = IUCV_CONNECTED;
  1330. sk->sk_state_change(sk);
  1331. }
  1332. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1333. {
  1334. struct sock *sk = path->private;
  1335. struct iucv_sock *iucv = iucv_sk(sk);
  1336. struct sk_buff *skb;
  1337. struct sock_msg_q *save_msg;
  1338. int len;
  1339. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1340. iucv_message_reject(path, msg);
  1341. return;
  1342. }
  1343. spin_lock(&iucv->message_q.lock);
  1344. if (!list_empty(&iucv->message_q.list) ||
  1345. !skb_queue_empty(&iucv->backlog_skb_q))
  1346. goto save_message;
  1347. len = atomic_read(&sk->sk_rmem_alloc);
  1348. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1349. if (len > sk->sk_rcvbuf)
  1350. goto save_message;
  1351. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1352. if (!skb)
  1353. goto save_message;
  1354. iucv_process_message(sk, skb, path, msg);
  1355. goto out_unlock;
  1356. save_message:
  1357. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1358. if (!save_msg)
  1359. return;
  1360. save_msg->path = path;
  1361. save_msg->msg = *msg;
  1362. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1363. out_unlock:
  1364. spin_unlock(&iucv->message_q.lock);
  1365. }
  1366. static void iucv_callback_txdone(struct iucv_path *path,
  1367. struct iucv_message *msg)
  1368. {
  1369. struct sock *sk = path->private;
  1370. struct sk_buff *this = NULL;
  1371. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1372. struct sk_buff *list_skb = list->next;
  1373. unsigned long flags;
  1374. if (!skb_queue_empty(list)) {
  1375. spin_lock_irqsave(&list->lock, flags);
  1376. while (list_skb != (struct sk_buff *)list) {
  1377. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1378. this = list_skb;
  1379. break;
  1380. }
  1381. list_skb = list_skb->next;
  1382. }
  1383. if (this)
  1384. __skb_unlink(this, list);
  1385. spin_unlock_irqrestore(&list->lock, flags);
  1386. if (this) {
  1387. kfree_skb(this);
  1388. /* wake up any process waiting for sending */
  1389. iucv_sock_wake_msglim(sk);
  1390. }
  1391. }
  1392. BUG_ON(!this);
  1393. if (sk->sk_state == IUCV_CLOSING) {
  1394. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1395. sk->sk_state = IUCV_CLOSED;
  1396. sk->sk_state_change(sk);
  1397. }
  1398. }
  1399. }
  1400. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1401. {
  1402. struct sock *sk = path->private;
  1403. if (!list_empty(&iucv_sk(sk)->accept_q))
  1404. sk->sk_state = IUCV_SEVERED;
  1405. else
  1406. sk->sk_state = IUCV_DISCONN;
  1407. sk->sk_state_change(sk);
  1408. }
  1409. /* called if the other communication side shuts down its RECV direction;
  1410. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1411. */
  1412. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1413. {
  1414. struct sock *sk = path->private;
  1415. bh_lock_sock(sk);
  1416. if (sk->sk_state != IUCV_CLOSED) {
  1417. sk->sk_shutdown |= SEND_SHUTDOWN;
  1418. sk->sk_state_change(sk);
  1419. }
  1420. bh_unlock_sock(sk);
  1421. }
  1422. static const struct proto_ops iucv_sock_ops = {
  1423. .family = PF_IUCV,
  1424. .owner = THIS_MODULE,
  1425. .release = iucv_sock_release,
  1426. .bind = iucv_sock_bind,
  1427. .connect = iucv_sock_connect,
  1428. .listen = iucv_sock_listen,
  1429. .accept = iucv_sock_accept,
  1430. .getname = iucv_sock_getname,
  1431. .sendmsg = iucv_sock_sendmsg,
  1432. .recvmsg = iucv_sock_recvmsg,
  1433. .poll = iucv_sock_poll,
  1434. .ioctl = sock_no_ioctl,
  1435. .mmap = sock_no_mmap,
  1436. .socketpair = sock_no_socketpair,
  1437. .shutdown = iucv_sock_shutdown,
  1438. .setsockopt = iucv_sock_setsockopt,
  1439. .getsockopt = iucv_sock_getsockopt,
  1440. };
  1441. static const struct net_proto_family iucv_sock_family_ops = {
  1442. .family = AF_IUCV,
  1443. .owner = THIS_MODULE,
  1444. .create = iucv_sock_create,
  1445. };
  1446. static int __init afiucv_init(void)
  1447. {
  1448. int err;
  1449. if (!MACHINE_IS_VM) {
  1450. pr_err("The af_iucv module cannot be loaded"
  1451. " without z/VM\n");
  1452. err = -EPROTONOSUPPORT;
  1453. goto out;
  1454. }
  1455. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1456. if (unlikely(err)) {
  1457. WARN_ON(err);
  1458. err = -EPROTONOSUPPORT;
  1459. goto out;
  1460. }
  1461. err = iucv_register(&af_iucv_handler, 0);
  1462. if (err)
  1463. goto out;
  1464. err = proto_register(&iucv_proto, 0);
  1465. if (err)
  1466. goto out_iucv;
  1467. err = sock_register(&iucv_sock_family_ops);
  1468. if (err)
  1469. goto out_proto;
  1470. /* establish dummy device */
  1471. err = driver_register(&af_iucv_driver);
  1472. if (err)
  1473. goto out_sock;
  1474. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1475. if (!af_iucv_dev) {
  1476. err = -ENOMEM;
  1477. goto out_driver;
  1478. }
  1479. dev_set_name(af_iucv_dev, "af_iucv");
  1480. af_iucv_dev->bus = &iucv_bus;
  1481. af_iucv_dev->parent = iucv_root;
  1482. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1483. af_iucv_dev->driver = &af_iucv_driver;
  1484. err = device_register(af_iucv_dev);
  1485. if (err)
  1486. goto out_driver;
  1487. return 0;
  1488. out_driver:
  1489. driver_unregister(&af_iucv_driver);
  1490. out_sock:
  1491. sock_unregister(PF_IUCV);
  1492. out_proto:
  1493. proto_unregister(&iucv_proto);
  1494. out_iucv:
  1495. iucv_unregister(&af_iucv_handler, 0);
  1496. out:
  1497. return err;
  1498. }
  1499. static void __exit afiucv_exit(void)
  1500. {
  1501. device_unregister(af_iucv_dev);
  1502. driver_unregister(&af_iucv_driver);
  1503. sock_unregister(PF_IUCV);
  1504. proto_unregister(&iucv_proto);
  1505. iucv_unregister(&af_iucv_handler, 0);
  1506. }
  1507. module_init(afiucv_init);
  1508. module_exit(afiucv_exit);
  1509. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1510. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1511. MODULE_VERSION(VERSION);
  1512. MODULE_LICENSE("GPL");
  1513. MODULE_ALIAS_NETPROTO(PF_IUCV);