ip_fragment.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  9. * Alan Cox <alan@lxorguk.ukuu.org.uk>
  10. *
  11. * Fixes:
  12. * Alan Cox : Split from ip.c , see ip_input.c for history.
  13. * David S. Miller : Begin massive cleanup...
  14. * Andi Kleen : Add sysctls.
  15. * xxxx : Overlapfrag bug.
  16. * Ultima : ip_expire() kernel panic.
  17. * Bill Hawes : Frag accounting and evictor fixes.
  18. * John McDonald : 0 length frag bug.
  19. * Alexey Kuznetsov: SMP races, threading, cleanup.
  20. * Patrick McHardy : LRU queue of frag heads for evictor.
  21. */
  22. #include <linux/compiler.h>
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/mm.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/list.h>
  29. #include <linux/ip.h>
  30. #include <linux/icmp.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/jhash.h>
  33. #include <linux/random.h>
  34. #include <linux/slab.h>
  35. #include <net/route.h>
  36. #include <net/dst.h>
  37. #include <net/sock.h>
  38. #include <net/ip.h>
  39. #include <net/icmp.h>
  40. #include <net/checksum.h>
  41. #include <net/inetpeer.h>
  42. #include <net/inet_frag.h>
  43. #include <linux/tcp.h>
  44. #include <linux/udp.h>
  45. #include <linux/inet.h>
  46. #include <linux/netfilter_ipv4.h>
  47. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  48. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  49. * as well. Or notify me, at least. --ANK
  50. */
  51. static int sysctl_ipfrag_max_dist __read_mostly = 64;
  52. struct ipfrag_skb_cb
  53. {
  54. struct inet_skb_parm h;
  55. int offset;
  56. };
  57. #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
  58. /* Describe an entry in the "incomplete datagrams" queue. */
  59. struct ipq {
  60. struct inet_frag_queue q;
  61. u32 user;
  62. __be32 saddr;
  63. __be32 daddr;
  64. __be16 id;
  65. u8 protocol;
  66. int iif;
  67. unsigned int rid;
  68. struct inet_peer *peer;
  69. };
  70. static struct inet_frags ip4_frags;
  71. int ip_frag_nqueues(struct net *net)
  72. {
  73. return net->ipv4.frags.nqueues;
  74. }
  75. int ip_frag_mem(struct net *net)
  76. {
  77. return atomic_read(&net->ipv4.frags.mem);
  78. }
  79. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  80. struct net_device *dev);
  81. struct ip4_create_arg {
  82. struct iphdr *iph;
  83. u32 user;
  84. };
  85. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  86. {
  87. return jhash_3words((__force u32)id << 16 | prot,
  88. (__force u32)saddr, (__force u32)daddr,
  89. ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
  90. }
  91. static unsigned int ip4_hashfn(struct inet_frag_queue *q)
  92. {
  93. struct ipq *ipq;
  94. ipq = container_of(q, struct ipq, q);
  95. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  96. }
  97. static int ip4_frag_match(struct inet_frag_queue *q, void *a)
  98. {
  99. struct ipq *qp;
  100. struct ip4_create_arg *arg = a;
  101. qp = container_of(q, struct ipq, q);
  102. return (qp->id == arg->iph->id &&
  103. qp->saddr == arg->iph->saddr &&
  104. qp->daddr == arg->iph->daddr &&
  105. qp->protocol == arg->iph->protocol &&
  106. qp->user == arg->user);
  107. }
  108. /* Memory Tracking Functions. */
  109. static __inline__ void frag_kfree_skb(struct netns_frags *nf,
  110. struct sk_buff *skb, int *work)
  111. {
  112. if (work)
  113. *work -= skb->truesize;
  114. atomic_sub(skb->truesize, &nf->mem);
  115. kfree_skb(skb);
  116. }
  117. static void ip4_frag_init(struct inet_frag_queue *q, void *a)
  118. {
  119. struct ipq *qp = container_of(q, struct ipq, q);
  120. struct ip4_create_arg *arg = a;
  121. qp->protocol = arg->iph->protocol;
  122. qp->id = arg->iph->id;
  123. qp->saddr = arg->iph->saddr;
  124. qp->daddr = arg->iph->daddr;
  125. qp->user = arg->user;
  126. qp->peer = sysctl_ipfrag_max_dist ?
  127. inet_getpeer(arg->iph->saddr, 1) : NULL;
  128. }
  129. static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
  130. {
  131. struct ipq *qp;
  132. qp = container_of(q, struct ipq, q);
  133. if (qp->peer)
  134. inet_putpeer(qp->peer);
  135. }
  136. /* Destruction primitives. */
  137. static __inline__ void ipq_put(struct ipq *ipq)
  138. {
  139. inet_frag_put(&ipq->q, &ip4_frags);
  140. }
  141. /* Kill ipq entry. It is not destroyed immediately,
  142. * because caller (and someone more) holds reference count.
  143. */
  144. static void ipq_kill(struct ipq *ipq)
  145. {
  146. inet_frag_kill(&ipq->q, &ip4_frags);
  147. }
  148. /* Memory limiting on fragments. Evictor trashes the oldest
  149. * fragment queue until we are back under the threshold.
  150. */
  151. static void ip_evictor(struct net *net)
  152. {
  153. int evicted;
  154. evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
  155. if (evicted)
  156. IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
  157. }
  158. /*
  159. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  160. */
  161. static void ip_expire(unsigned long arg)
  162. {
  163. struct ipq *qp;
  164. struct net *net;
  165. qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
  166. net = container_of(qp->q.net, struct net, ipv4.frags);
  167. spin_lock(&qp->q.lock);
  168. if (qp->q.last_in & INET_FRAG_COMPLETE)
  169. goto out;
  170. ipq_kill(qp);
  171. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
  172. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  173. if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
  174. struct sk_buff *head = qp->q.fragments;
  175. rcu_read_lock();
  176. head->dev = dev_get_by_index_rcu(net, qp->iif);
  177. if (!head->dev)
  178. goto out_rcu_unlock;
  179. /*
  180. * Only search router table for the head fragment,
  181. * when defraging timeout at PRE_ROUTING HOOK.
  182. */
  183. if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
  184. const struct iphdr *iph = ip_hdr(head);
  185. int err = ip_route_input(head, iph->daddr, iph->saddr,
  186. iph->tos, head->dev);
  187. if (unlikely(err))
  188. goto out_rcu_unlock;
  189. /*
  190. * Only an end host needs to send an ICMP
  191. * "Fragment Reassembly Timeout" message, per RFC792.
  192. */
  193. if (skb_rtable(head)->rt_type != RTN_LOCAL)
  194. goto out_rcu_unlock;
  195. }
  196. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  197. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  198. out_rcu_unlock:
  199. rcu_read_unlock();
  200. }
  201. out:
  202. spin_unlock(&qp->q.lock);
  203. ipq_put(qp);
  204. }
  205. /* Find the correct entry in the "incomplete datagrams" queue for
  206. * this IP datagram, and create new one, if nothing is found.
  207. */
  208. static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
  209. {
  210. struct inet_frag_queue *q;
  211. struct ip4_create_arg arg;
  212. unsigned int hash;
  213. arg.iph = iph;
  214. arg.user = user;
  215. read_lock(&ip4_frags.lock);
  216. hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
  217. q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
  218. if (q == NULL)
  219. goto out_nomem;
  220. return container_of(q, struct ipq, q);
  221. out_nomem:
  222. LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
  223. return NULL;
  224. }
  225. /* Is the fragment too far ahead to be part of ipq? */
  226. static inline int ip_frag_too_far(struct ipq *qp)
  227. {
  228. struct inet_peer *peer = qp->peer;
  229. unsigned int max = sysctl_ipfrag_max_dist;
  230. unsigned int start, end;
  231. int rc;
  232. if (!peer || !max)
  233. return 0;
  234. start = qp->rid;
  235. end = atomic_inc_return(&peer->rid);
  236. qp->rid = end;
  237. rc = qp->q.fragments && (end - start) > max;
  238. if (rc) {
  239. struct net *net;
  240. net = container_of(qp->q.net, struct net, ipv4.frags);
  241. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  242. }
  243. return rc;
  244. }
  245. static int ip_frag_reinit(struct ipq *qp)
  246. {
  247. struct sk_buff *fp;
  248. if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
  249. atomic_inc(&qp->q.refcnt);
  250. return -ETIMEDOUT;
  251. }
  252. fp = qp->q.fragments;
  253. do {
  254. struct sk_buff *xp = fp->next;
  255. frag_kfree_skb(qp->q.net, fp, NULL);
  256. fp = xp;
  257. } while (fp);
  258. qp->q.last_in = 0;
  259. qp->q.len = 0;
  260. qp->q.meat = 0;
  261. qp->q.fragments = NULL;
  262. qp->iif = 0;
  263. return 0;
  264. }
  265. /* Add new segment to existing queue. */
  266. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  267. {
  268. struct sk_buff *prev, *next;
  269. struct net_device *dev;
  270. int flags, offset;
  271. int ihl, end;
  272. int err = -ENOENT;
  273. if (qp->q.last_in & INET_FRAG_COMPLETE)
  274. goto err;
  275. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  276. unlikely(ip_frag_too_far(qp)) &&
  277. unlikely(err = ip_frag_reinit(qp))) {
  278. ipq_kill(qp);
  279. goto err;
  280. }
  281. offset = ntohs(ip_hdr(skb)->frag_off);
  282. flags = offset & ~IP_OFFSET;
  283. offset &= IP_OFFSET;
  284. offset <<= 3; /* offset is in 8-byte chunks */
  285. ihl = ip_hdrlen(skb);
  286. /* Determine the position of this fragment. */
  287. end = offset + skb->len - ihl;
  288. err = -EINVAL;
  289. /* Is this the final fragment? */
  290. if ((flags & IP_MF) == 0) {
  291. /* If we already have some bits beyond end
  292. * or have different end, the segment is corrrupted.
  293. */
  294. if (end < qp->q.len ||
  295. ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
  296. goto err;
  297. qp->q.last_in |= INET_FRAG_LAST_IN;
  298. qp->q.len = end;
  299. } else {
  300. if (end&7) {
  301. end &= ~7;
  302. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  303. skb->ip_summed = CHECKSUM_NONE;
  304. }
  305. if (end > qp->q.len) {
  306. /* Some bits beyond end -> corruption. */
  307. if (qp->q.last_in & INET_FRAG_LAST_IN)
  308. goto err;
  309. qp->q.len = end;
  310. }
  311. }
  312. if (end == offset)
  313. goto err;
  314. err = -ENOMEM;
  315. if (pskb_pull(skb, ihl) == NULL)
  316. goto err;
  317. err = pskb_trim_rcsum(skb, end - offset);
  318. if (err)
  319. goto err;
  320. /* Find out which fragments are in front and at the back of us
  321. * in the chain of fragments so far. We must know where to put
  322. * this fragment, right?
  323. */
  324. prev = NULL;
  325. for (next = qp->q.fragments; next != NULL; next = next->next) {
  326. if (FRAG_CB(next)->offset >= offset)
  327. break; /* bingo! */
  328. prev = next;
  329. }
  330. /* We found where to put this one. Check for overlap with
  331. * preceding fragment, and, if needed, align things so that
  332. * any overlaps are eliminated.
  333. */
  334. if (prev) {
  335. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  336. if (i > 0) {
  337. offset += i;
  338. err = -EINVAL;
  339. if (end <= offset)
  340. goto err;
  341. err = -ENOMEM;
  342. if (!pskb_pull(skb, i))
  343. goto err;
  344. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  345. skb->ip_summed = CHECKSUM_NONE;
  346. }
  347. }
  348. err = -ENOMEM;
  349. while (next && FRAG_CB(next)->offset < end) {
  350. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  351. if (i < next->len) {
  352. /* Eat head of the next overlapped fragment
  353. * and leave the loop. The next ones cannot overlap.
  354. */
  355. if (!pskb_pull(next, i))
  356. goto err;
  357. FRAG_CB(next)->offset += i;
  358. qp->q.meat -= i;
  359. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  360. next->ip_summed = CHECKSUM_NONE;
  361. break;
  362. } else {
  363. struct sk_buff *free_it = next;
  364. /* Old fragment is completely overridden with
  365. * new one drop it.
  366. */
  367. next = next->next;
  368. if (prev)
  369. prev->next = next;
  370. else
  371. qp->q.fragments = next;
  372. qp->q.meat -= free_it->len;
  373. frag_kfree_skb(qp->q.net, free_it, NULL);
  374. }
  375. }
  376. FRAG_CB(skb)->offset = offset;
  377. /* Insert this fragment in the chain of fragments. */
  378. skb->next = next;
  379. if (prev)
  380. prev->next = skb;
  381. else
  382. qp->q.fragments = skb;
  383. dev = skb->dev;
  384. if (dev) {
  385. qp->iif = dev->ifindex;
  386. skb->dev = NULL;
  387. }
  388. qp->q.stamp = skb->tstamp;
  389. qp->q.meat += skb->len;
  390. atomic_add(skb->truesize, &qp->q.net->mem);
  391. if (offset == 0)
  392. qp->q.last_in |= INET_FRAG_FIRST_IN;
  393. if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  394. qp->q.meat == qp->q.len)
  395. return ip_frag_reasm(qp, prev, dev);
  396. write_lock(&ip4_frags.lock);
  397. list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
  398. write_unlock(&ip4_frags.lock);
  399. return -EINPROGRESS;
  400. err:
  401. kfree_skb(skb);
  402. return err;
  403. }
  404. /* Build a new IP datagram from all its fragments. */
  405. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  406. struct net_device *dev)
  407. {
  408. struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
  409. struct iphdr *iph;
  410. struct sk_buff *fp, *head = qp->q.fragments;
  411. int len;
  412. int ihlen;
  413. int err;
  414. ipq_kill(qp);
  415. /* Make the one we just received the head. */
  416. if (prev) {
  417. head = prev->next;
  418. fp = skb_clone(head, GFP_ATOMIC);
  419. if (!fp)
  420. goto out_nomem;
  421. fp->next = head->next;
  422. prev->next = fp;
  423. skb_morph(head, qp->q.fragments);
  424. head->next = qp->q.fragments->next;
  425. kfree_skb(qp->q.fragments);
  426. qp->q.fragments = head;
  427. }
  428. WARN_ON(head == NULL);
  429. WARN_ON(FRAG_CB(head)->offset != 0);
  430. /* Allocate a new buffer for the datagram. */
  431. ihlen = ip_hdrlen(head);
  432. len = ihlen + qp->q.len;
  433. err = -E2BIG;
  434. if (len > 65535)
  435. goto out_oversize;
  436. /* Head of list must not be cloned. */
  437. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  438. goto out_nomem;
  439. /* If the first fragment is fragmented itself, we split
  440. * it to two chunks: the first with data and paged part
  441. * and the second, holding only fragments. */
  442. if (skb_has_frags(head)) {
  443. struct sk_buff *clone;
  444. int i, plen = 0;
  445. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  446. goto out_nomem;
  447. clone->next = head->next;
  448. head->next = clone;
  449. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  450. skb_frag_list_init(head);
  451. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  452. plen += skb_shinfo(head)->frags[i].size;
  453. clone->len = clone->data_len = head->data_len - plen;
  454. head->data_len -= clone->len;
  455. head->len -= clone->len;
  456. clone->csum = 0;
  457. clone->ip_summed = head->ip_summed;
  458. atomic_add(clone->truesize, &qp->q.net->mem);
  459. }
  460. skb_shinfo(head)->frag_list = head->next;
  461. skb_push(head, head->data - skb_network_header(head));
  462. atomic_sub(head->truesize, &qp->q.net->mem);
  463. for (fp=head->next; fp; fp = fp->next) {
  464. head->data_len += fp->len;
  465. head->len += fp->len;
  466. if (head->ip_summed != fp->ip_summed)
  467. head->ip_summed = CHECKSUM_NONE;
  468. else if (head->ip_summed == CHECKSUM_COMPLETE)
  469. head->csum = csum_add(head->csum, fp->csum);
  470. head->truesize += fp->truesize;
  471. atomic_sub(fp->truesize, &qp->q.net->mem);
  472. }
  473. head->next = NULL;
  474. head->dev = dev;
  475. head->tstamp = qp->q.stamp;
  476. iph = ip_hdr(head);
  477. iph->frag_off = 0;
  478. iph->tot_len = htons(len);
  479. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
  480. qp->q.fragments = NULL;
  481. return 0;
  482. out_nomem:
  483. LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
  484. "queue %p\n", qp);
  485. err = -ENOMEM;
  486. goto out_fail;
  487. out_oversize:
  488. if (net_ratelimit())
  489. printk(KERN_INFO "Oversized IP packet from %pI4.\n",
  490. &qp->saddr);
  491. out_fail:
  492. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  493. return err;
  494. }
  495. /* Process an incoming IP datagram fragment. */
  496. int ip_defrag(struct sk_buff *skb, u32 user)
  497. {
  498. struct ipq *qp;
  499. struct net *net;
  500. net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
  501. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
  502. /* Start by cleaning up the memory. */
  503. if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
  504. ip_evictor(net);
  505. /* Lookup (or create) queue header */
  506. if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
  507. int ret;
  508. spin_lock(&qp->q.lock);
  509. ret = ip_frag_queue(qp, skb);
  510. spin_unlock(&qp->q.lock);
  511. ipq_put(qp);
  512. return ret;
  513. }
  514. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  515. kfree_skb(skb);
  516. return -ENOMEM;
  517. }
  518. #ifdef CONFIG_SYSCTL
  519. static int zero;
  520. static struct ctl_table ip4_frags_ns_ctl_table[] = {
  521. {
  522. .procname = "ipfrag_high_thresh",
  523. .data = &init_net.ipv4.frags.high_thresh,
  524. .maxlen = sizeof(int),
  525. .mode = 0644,
  526. .proc_handler = proc_dointvec
  527. },
  528. {
  529. .procname = "ipfrag_low_thresh",
  530. .data = &init_net.ipv4.frags.low_thresh,
  531. .maxlen = sizeof(int),
  532. .mode = 0644,
  533. .proc_handler = proc_dointvec
  534. },
  535. {
  536. .procname = "ipfrag_time",
  537. .data = &init_net.ipv4.frags.timeout,
  538. .maxlen = sizeof(int),
  539. .mode = 0644,
  540. .proc_handler = proc_dointvec_jiffies,
  541. },
  542. { }
  543. };
  544. static struct ctl_table ip4_frags_ctl_table[] = {
  545. {
  546. .procname = "ipfrag_secret_interval",
  547. .data = &ip4_frags.secret_interval,
  548. .maxlen = sizeof(int),
  549. .mode = 0644,
  550. .proc_handler = proc_dointvec_jiffies,
  551. },
  552. {
  553. .procname = "ipfrag_max_dist",
  554. .data = &sysctl_ipfrag_max_dist,
  555. .maxlen = sizeof(int),
  556. .mode = 0644,
  557. .proc_handler = proc_dointvec_minmax,
  558. .extra1 = &zero
  559. },
  560. { }
  561. };
  562. static int __net_init ip4_frags_ns_ctl_register(struct net *net)
  563. {
  564. struct ctl_table *table;
  565. struct ctl_table_header *hdr;
  566. table = ip4_frags_ns_ctl_table;
  567. if (!net_eq(net, &init_net)) {
  568. table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
  569. if (table == NULL)
  570. goto err_alloc;
  571. table[0].data = &net->ipv4.frags.high_thresh;
  572. table[1].data = &net->ipv4.frags.low_thresh;
  573. table[2].data = &net->ipv4.frags.timeout;
  574. }
  575. hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
  576. if (hdr == NULL)
  577. goto err_reg;
  578. net->ipv4.frags_hdr = hdr;
  579. return 0;
  580. err_reg:
  581. if (!net_eq(net, &init_net))
  582. kfree(table);
  583. err_alloc:
  584. return -ENOMEM;
  585. }
  586. static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
  587. {
  588. struct ctl_table *table;
  589. table = net->ipv4.frags_hdr->ctl_table_arg;
  590. unregister_net_sysctl_table(net->ipv4.frags_hdr);
  591. kfree(table);
  592. }
  593. static void ip4_frags_ctl_register(void)
  594. {
  595. register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
  596. }
  597. #else
  598. static inline int ip4_frags_ns_ctl_register(struct net *net)
  599. {
  600. return 0;
  601. }
  602. static inline void ip4_frags_ns_ctl_unregister(struct net *net)
  603. {
  604. }
  605. static inline void ip4_frags_ctl_register(void)
  606. {
  607. }
  608. #endif
  609. static int __net_init ipv4_frags_init_net(struct net *net)
  610. {
  611. /*
  612. * Fragment cache limits. We will commit 256K at one time. Should we
  613. * cross that limit we will prune down to 192K. This should cope with
  614. * even the most extreme cases without allowing an attacker to
  615. * measurably harm machine performance.
  616. */
  617. net->ipv4.frags.high_thresh = 256 * 1024;
  618. net->ipv4.frags.low_thresh = 192 * 1024;
  619. /*
  620. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  621. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  622. * by TTL.
  623. */
  624. net->ipv4.frags.timeout = IP_FRAG_TIME;
  625. inet_frags_init_net(&net->ipv4.frags);
  626. return ip4_frags_ns_ctl_register(net);
  627. }
  628. static void __net_exit ipv4_frags_exit_net(struct net *net)
  629. {
  630. ip4_frags_ns_ctl_unregister(net);
  631. inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
  632. }
  633. static struct pernet_operations ip4_frags_ops = {
  634. .init = ipv4_frags_init_net,
  635. .exit = ipv4_frags_exit_net,
  636. };
  637. void __init ipfrag_init(void)
  638. {
  639. ip4_frags_ctl_register();
  640. register_pernet_subsys(&ip4_frags_ops);
  641. ip4_frags.hashfn = ip4_hashfn;
  642. ip4_frags.constructor = ip4_frag_init;
  643. ip4_frags.destructor = ip4_frag_free;
  644. ip4_frags.skb_free = NULL;
  645. ip4_frags.qsize = sizeof(struct ipq);
  646. ip4_frags.match = ip4_frag_match;
  647. ip4_frags.frag_expire = ip_expire;
  648. ip4_frags.secret_interval = 10 * 60 * HZ;
  649. inet_frags_init(&ip4_frags);
  650. }
  651. EXPORT_SYMBOL(ip_defrag);