arp.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. /* linux/net/ipv4/arp.c
  2. *
  3. * Copyright (C) 1994 by Florian La Roche
  4. *
  5. * This module implements the Address Resolution Protocol ARP (RFC 826),
  6. * which is used to convert IP addresses (or in the future maybe other
  7. * high-level addresses) into a low-level hardware address (like an Ethernet
  8. * address).
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Alan Cox : Removed the Ethernet assumptions in
  17. * Florian's code
  18. * Alan Cox : Fixed some small errors in the ARP
  19. * logic
  20. * Alan Cox : Allow >4K in /proc
  21. * Alan Cox : Make ARP add its own protocol entry
  22. * Ross Martin : Rewrote arp_rcv() and arp_get_info()
  23. * Stephen Henson : Add AX25 support to arp_get_info()
  24. * Alan Cox : Drop data when a device is downed.
  25. * Alan Cox : Use init_timer().
  26. * Alan Cox : Double lock fixes.
  27. * Martin Seine : Move the arphdr structure
  28. * to if_arp.h for compatibility.
  29. * with BSD based programs.
  30. * Andrew Tridgell : Added ARP netmask code and
  31. * re-arranged proxy handling.
  32. * Alan Cox : Changed to use notifiers.
  33. * Niibe Yutaka : Reply for this device or proxies only.
  34. * Alan Cox : Don't proxy across hardware types!
  35. * Jonathan Naylor : Added support for NET/ROM.
  36. * Mike Shaver : RFC1122 checks.
  37. * Jonathan Naylor : Only lookup the hardware address for
  38. * the correct hardware type.
  39. * Germano Caronni : Assorted subtle races.
  40. * Craig Schlenter : Don't modify permanent entry
  41. * during arp_rcv.
  42. * Russ Nelson : Tidied up a few bits.
  43. * Alexey Kuznetsov: Major changes to caching and behaviour,
  44. * eg intelligent arp probing and
  45. * generation
  46. * of host down events.
  47. * Alan Cox : Missing unlock in device events.
  48. * Eckes : ARP ioctl control errors.
  49. * Alexey Kuznetsov: Arp free fix.
  50. * Manuel Rodriguez: Gratuitous ARP.
  51. * Jonathan Layes : Added arpd support through kerneld
  52. * message queue (960314)
  53. * Mike Shaver : /proc/sys/net/ipv4/arp_* support
  54. * Mike McLagan : Routing by source
  55. * Stuart Cheshire : Metricom and grat arp fixes
  56. * *** FOR 2.1 clean this up ***
  57. * Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58. * Alan Cox : Took the AP1000 nasty FDDI hack and
  59. * folded into the mainstream FDDI code.
  60. * Ack spit, Linus how did you allow that
  61. * one in...
  62. * Jes Sorensen : Make FDDI work again in 2.1.x and
  63. * clean up the APFDDI & gen. FDDI bits.
  64. * Alexey Kuznetsov: new arp state machine;
  65. * now it is in net/core/neighbour.c.
  66. * Krzysztof Halasa: Added Frame Relay ARP support.
  67. * Arnaldo C. Melo : convert /proc/net/arp to seq_file
  68. * Shmulik Hen: Split arp_send to arp_create and
  69. * arp_xmit so intermediate drivers like
  70. * bonding can change the skb before
  71. * sending (e.g. insert 8021q tag).
  72. * Harald Welte : convert to make use of jenkins hash
  73. * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
  74. */
  75. #include <linux/module.h>
  76. #include <linux/types.h>
  77. #include <linux/string.h>
  78. #include <linux/kernel.h>
  79. #include <linux/capability.h>
  80. #include <linux/socket.h>
  81. #include <linux/sockios.h>
  82. #include <linux/errno.h>
  83. #include <linux/in.h>
  84. #include <linux/mm.h>
  85. #include <linux/inet.h>
  86. #include <linux/inetdevice.h>
  87. #include <linux/netdevice.h>
  88. #include <linux/etherdevice.h>
  89. #include <linux/fddidevice.h>
  90. #include <linux/if_arp.h>
  91. #include <linux/trdevice.h>
  92. #include <linux/skbuff.h>
  93. #include <linux/proc_fs.h>
  94. #include <linux/seq_file.h>
  95. #include <linux/stat.h>
  96. #include <linux/init.h>
  97. #include <linux/net.h>
  98. #include <linux/rcupdate.h>
  99. #include <linux/jhash.h>
  100. #include <linux/slab.h>
  101. #ifdef CONFIG_SYSCTL
  102. #include <linux/sysctl.h>
  103. #endif
  104. #include <net/net_namespace.h>
  105. #include <net/ip.h>
  106. #include <net/icmp.h>
  107. #include <net/route.h>
  108. #include <net/protocol.h>
  109. #include <net/tcp.h>
  110. #include <net/sock.h>
  111. #include <net/arp.h>
  112. #include <net/ax25.h>
  113. #include <net/netrom.h>
  114. #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
  115. #include <net/atmclip.h>
  116. struct neigh_table *clip_tbl_hook;
  117. #endif
  118. #include <asm/system.h>
  119. #include <asm/uaccess.h>
  120. #include <linux/netfilter_arp.h>
  121. /*
  122. * Interface to generic neighbour cache.
  123. */
  124. static u32 arp_hash(const void *pkey, const struct net_device *dev);
  125. static int arp_constructor(struct neighbour *neigh);
  126. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
  127. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
  128. static void parp_redo(struct sk_buff *skb);
  129. static const struct neigh_ops arp_generic_ops = {
  130. .family = AF_INET,
  131. .solicit = arp_solicit,
  132. .error_report = arp_error_report,
  133. .output = neigh_resolve_output,
  134. .connected_output = neigh_connected_output,
  135. .hh_output = dev_queue_xmit,
  136. .queue_xmit = dev_queue_xmit,
  137. };
  138. static const struct neigh_ops arp_hh_ops = {
  139. .family = AF_INET,
  140. .solicit = arp_solicit,
  141. .error_report = arp_error_report,
  142. .output = neigh_resolve_output,
  143. .connected_output = neigh_resolve_output,
  144. .hh_output = dev_queue_xmit,
  145. .queue_xmit = dev_queue_xmit,
  146. };
  147. static const struct neigh_ops arp_direct_ops = {
  148. .family = AF_INET,
  149. .output = dev_queue_xmit,
  150. .connected_output = dev_queue_xmit,
  151. .hh_output = dev_queue_xmit,
  152. .queue_xmit = dev_queue_xmit,
  153. };
  154. const struct neigh_ops arp_broken_ops = {
  155. .family = AF_INET,
  156. .solicit = arp_solicit,
  157. .error_report = arp_error_report,
  158. .output = neigh_compat_output,
  159. .connected_output = neigh_compat_output,
  160. .hh_output = dev_queue_xmit,
  161. .queue_xmit = dev_queue_xmit,
  162. };
  163. struct neigh_table arp_tbl = {
  164. .family = AF_INET,
  165. .entry_size = sizeof(struct neighbour) + 4,
  166. .key_len = 4,
  167. .hash = arp_hash,
  168. .constructor = arp_constructor,
  169. .proxy_redo = parp_redo,
  170. .id = "arp_cache",
  171. .parms = {
  172. .tbl = &arp_tbl,
  173. .base_reachable_time = 30 * HZ,
  174. .retrans_time = 1 * HZ,
  175. .gc_staletime = 60 * HZ,
  176. .reachable_time = 30 * HZ,
  177. .delay_probe_time = 5 * HZ,
  178. .queue_len = 3,
  179. .ucast_probes = 3,
  180. .mcast_probes = 3,
  181. .anycast_delay = 1 * HZ,
  182. .proxy_delay = (8 * HZ) / 10,
  183. .proxy_qlen = 64,
  184. .locktime = 1 * HZ,
  185. },
  186. .gc_interval = 30 * HZ,
  187. .gc_thresh1 = 128,
  188. .gc_thresh2 = 512,
  189. .gc_thresh3 = 1024,
  190. };
  191. int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
  192. {
  193. switch (dev->type) {
  194. case ARPHRD_ETHER:
  195. case ARPHRD_FDDI:
  196. case ARPHRD_IEEE802:
  197. ip_eth_mc_map(addr, haddr);
  198. return 0;
  199. case ARPHRD_IEEE802_TR:
  200. ip_tr_mc_map(addr, haddr);
  201. return 0;
  202. case ARPHRD_INFINIBAND:
  203. ip_ib_mc_map(addr, dev->broadcast, haddr);
  204. return 0;
  205. default:
  206. if (dir) {
  207. memcpy(haddr, dev->broadcast, dev->addr_len);
  208. return 0;
  209. }
  210. }
  211. return -EINVAL;
  212. }
  213. static u32 arp_hash(const void *pkey, const struct net_device *dev)
  214. {
  215. return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
  216. }
  217. static int arp_constructor(struct neighbour *neigh)
  218. {
  219. __be32 addr = *(__be32*)neigh->primary_key;
  220. struct net_device *dev = neigh->dev;
  221. struct in_device *in_dev;
  222. struct neigh_parms *parms;
  223. rcu_read_lock();
  224. in_dev = __in_dev_get_rcu(dev);
  225. if (in_dev == NULL) {
  226. rcu_read_unlock();
  227. return -EINVAL;
  228. }
  229. neigh->type = inet_addr_type(dev_net(dev), addr);
  230. parms = in_dev->arp_parms;
  231. __neigh_parms_put(neigh->parms);
  232. neigh->parms = neigh_parms_clone(parms);
  233. rcu_read_unlock();
  234. if (!dev->header_ops) {
  235. neigh->nud_state = NUD_NOARP;
  236. neigh->ops = &arp_direct_ops;
  237. neigh->output = neigh->ops->queue_xmit;
  238. } else {
  239. /* Good devices (checked by reading texts, but only Ethernet is
  240. tested)
  241. ARPHRD_ETHER: (ethernet, apfddi)
  242. ARPHRD_FDDI: (fddi)
  243. ARPHRD_IEEE802: (tr)
  244. ARPHRD_METRICOM: (strip)
  245. ARPHRD_ARCNET:
  246. etc. etc. etc.
  247. ARPHRD_IPDDP will also work, if author repairs it.
  248. I did not it, because this driver does not work even
  249. in old paradigm.
  250. */
  251. #if 1
  252. /* So... these "amateur" devices are hopeless.
  253. The only thing, that I can say now:
  254. It is very sad that we need to keep ugly obsolete
  255. code to make them happy.
  256. They should be moved to more reasonable state, now
  257. they use rebuild_header INSTEAD OF hard_start_xmit!!!
  258. Besides that, they are sort of out of date
  259. (a lot of redundant clones/copies, useless in 2.1),
  260. I wonder why people believe that they work.
  261. */
  262. switch (dev->type) {
  263. default:
  264. break;
  265. case ARPHRD_ROSE:
  266. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  267. case ARPHRD_AX25:
  268. #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
  269. case ARPHRD_NETROM:
  270. #endif
  271. neigh->ops = &arp_broken_ops;
  272. neigh->output = neigh->ops->output;
  273. return 0;
  274. #endif
  275. ;}
  276. #endif
  277. if (neigh->type == RTN_MULTICAST) {
  278. neigh->nud_state = NUD_NOARP;
  279. arp_mc_map(addr, neigh->ha, dev, 1);
  280. } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
  281. neigh->nud_state = NUD_NOARP;
  282. memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
  283. } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
  284. neigh->nud_state = NUD_NOARP;
  285. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  286. }
  287. if (dev->header_ops->cache)
  288. neigh->ops = &arp_hh_ops;
  289. else
  290. neigh->ops = &arp_generic_ops;
  291. if (neigh->nud_state&NUD_VALID)
  292. neigh->output = neigh->ops->connected_output;
  293. else
  294. neigh->output = neigh->ops->output;
  295. }
  296. return 0;
  297. }
  298. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
  299. {
  300. dst_link_failure(skb);
  301. kfree_skb(skb);
  302. }
  303. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
  304. {
  305. __be32 saddr = 0;
  306. u8 *dst_ha = NULL;
  307. struct net_device *dev = neigh->dev;
  308. __be32 target = *(__be32*)neigh->primary_key;
  309. int probes = atomic_read(&neigh->probes);
  310. struct in_device *in_dev = in_dev_get(dev);
  311. if (!in_dev)
  312. return;
  313. switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
  314. default:
  315. case 0: /* By default announce any local IP */
  316. if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
  317. saddr = ip_hdr(skb)->saddr;
  318. break;
  319. case 1: /* Restrict announcements of saddr in same subnet */
  320. if (!skb)
  321. break;
  322. saddr = ip_hdr(skb)->saddr;
  323. if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
  324. /* saddr should be known to target */
  325. if (inet_addr_onlink(in_dev, target, saddr))
  326. break;
  327. }
  328. saddr = 0;
  329. break;
  330. case 2: /* Avoid secondary IPs, get a primary/preferred one */
  331. break;
  332. }
  333. if (in_dev)
  334. in_dev_put(in_dev);
  335. if (!saddr)
  336. saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
  337. if ((probes -= neigh->parms->ucast_probes) < 0) {
  338. if (!(neigh->nud_state&NUD_VALID))
  339. printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
  340. dst_ha = neigh->ha;
  341. read_lock_bh(&neigh->lock);
  342. } else if ((probes -= neigh->parms->app_probes) < 0) {
  343. #ifdef CONFIG_ARPD
  344. neigh_app_ns(neigh);
  345. #endif
  346. return;
  347. }
  348. arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
  349. dst_ha, dev->dev_addr, NULL);
  350. if (dst_ha)
  351. read_unlock_bh(&neigh->lock);
  352. }
  353. static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
  354. {
  355. int scope;
  356. switch (IN_DEV_ARP_IGNORE(in_dev)) {
  357. case 0: /* Reply, the tip is already validated */
  358. return 0;
  359. case 1: /* Reply only if tip is configured on the incoming interface */
  360. sip = 0;
  361. scope = RT_SCOPE_HOST;
  362. break;
  363. case 2: /*
  364. * Reply only if tip is configured on the incoming interface
  365. * and is in same subnet as sip
  366. */
  367. scope = RT_SCOPE_HOST;
  368. break;
  369. case 3: /* Do not reply for scope host addresses */
  370. sip = 0;
  371. scope = RT_SCOPE_LINK;
  372. break;
  373. case 4: /* Reserved */
  374. case 5:
  375. case 6:
  376. case 7:
  377. return 0;
  378. case 8: /* Do not reply */
  379. return 1;
  380. default:
  381. return 0;
  382. }
  383. return !inet_confirm_addr(in_dev, sip, tip, scope);
  384. }
  385. static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
  386. {
  387. struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
  388. .saddr = tip } } };
  389. struct rtable *rt;
  390. int flag = 0;
  391. /*unsigned long now; */
  392. struct net *net = dev_net(dev);
  393. if (ip_route_output_key(net, &rt, &fl) < 0)
  394. return 1;
  395. if (rt->u.dst.dev != dev) {
  396. NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
  397. flag = 1;
  398. }
  399. ip_rt_put(rt);
  400. return flag;
  401. }
  402. /* OBSOLETE FUNCTIONS */
  403. /*
  404. * Find an arp mapping in the cache. If not found, post a request.
  405. *
  406. * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
  407. * even if it exists. It is supposed that skb->dev was mangled
  408. * by a virtual device (eql, shaper). Nobody but broken devices
  409. * is allowed to use this function, it is scheduled to be removed. --ANK
  410. */
  411. static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
  412. {
  413. switch (addr_hint) {
  414. case RTN_LOCAL:
  415. printk(KERN_DEBUG "ARP: arp called for own IP address\n");
  416. memcpy(haddr, dev->dev_addr, dev->addr_len);
  417. return 1;
  418. case RTN_MULTICAST:
  419. arp_mc_map(paddr, haddr, dev, 1);
  420. return 1;
  421. case RTN_BROADCAST:
  422. memcpy(haddr, dev->broadcast, dev->addr_len);
  423. return 1;
  424. }
  425. return 0;
  426. }
  427. int arp_find(unsigned char *haddr, struct sk_buff *skb)
  428. {
  429. struct net_device *dev = skb->dev;
  430. __be32 paddr;
  431. struct neighbour *n;
  432. if (!skb_dst(skb)) {
  433. printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
  434. kfree_skb(skb);
  435. return 1;
  436. }
  437. paddr = skb_rtable(skb)->rt_gateway;
  438. if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
  439. return 0;
  440. n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
  441. if (n) {
  442. n->used = jiffies;
  443. if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
  444. read_lock_bh(&n->lock);
  445. memcpy(haddr, n->ha, dev->addr_len);
  446. read_unlock_bh(&n->lock);
  447. neigh_release(n);
  448. return 0;
  449. }
  450. neigh_release(n);
  451. } else
  452. kfree_skb(skb);
  453. return 1;
  454. }
  455. /* END OF OBSOLETE FUNCTIONS */
  456. int arp_bind_neighbour(struct dst_entry *dst)
  457. {
  458. struct net_device *dev = dst->dev;
  459. struct neighbour *n = dst->neighbour;
  460. if (dev == NULL)
  461. return -EINVAL;
  462. if (n == NULL) {
  463. __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
  464. if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
  465. nexthop = 0;
  466. n = __neigh_lookup_errno(
  467. #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
  468. dev->type == ARPHRD_ATM ? clip_tbl_hook :
  469. #endif
  470. &arp_tbl, &nexthop, dev);
  471. if (IS_ERR(n))
  472. return PTR_ERR(n);
  473. dst->neighbour = n;
  474. }
  475. return 0;
  476. }
  477. /*
  478. * Check if we can use proxy ARP for this path
  479. */
  480. static inline int arp_fwd_proxy(struct in_device *in_dev,
  481. struct net_device *dev, struct rtable *rt)
  482. {
  483. struct in_device *out_dev;
  484. int imi, omi = -1;
  485. if (rt->u.dst.dev == dev)
  486. return 0;
  487. if (!IN_DEV_PROXY_ARP(in_dev))
  488. return 0;
  489. if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
  490. return 1;
  491. if (imi == -1)
  492. return 0;
  493. /* place to check for proxy_arp for routes */
  494. if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
  495. omi = IN_DEV_MEDIUM_ID(out_dev);
  496. in_dev_put(out_dev);
  497. }
  498. return (omi != imi && omi != -1);
  499. }
  500. /*
  501. * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
  502. *
  503. * RFC3069 supports proxy arp replies back to the same interface. This
  504. * is done to support (ethernet) switch features, like RFC 3069, where
  505. * the individual ports are not allowed to communicate with each
  506. * other, BUT they are allowed to talk to the upstream router. As
  507. * described in RFC 3069, it is possible to allow these hosts to
  508. * communicate through the upstream router, by proxy_arp'ing.
  509. *
  510. * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
  511. *
  512. * This technology is known by different names:
  513. * In RFC 3069 it is called VLAN Aggregation.
  514. * Cisco and Allied Telesyn call it Private VLAN.
  515. * Hewlett-Packard call it Source-Port filtering or port-isolation.
  516. * Ericsson call it MAC-Forced Forwarding (RFC Draft).
  517. *
  518. */
  519. static inline int arp_fwd_pvlan(struct in_device *in_dev,
  520. struct net_device *dev, struct rtable *rt,
  521. __be32 sip, __be32 tip)
  522. {
  523. /* Private VLAN is only concerned about the same ethernet segment */
  524. if (rt->u.dst.dev != dev)
  525. return 0;
  526. /* Don't reply on self probes (often done by windowz boxes)*/
  527. if (sip == tip)
  528. return 0;
  529. if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
  530. return 1;
  531. else
  532. return 0;
  533. }
  534. /*
  535. * Interface to link layer: send routine and receive handler.
  536. */
  537. /*
  538. * Create an arp packet. If (dest_hw == NULL), we create a broadcast
  539. * message.
  540. */
  541. struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
  542. struct net_device *dev, __be32 src_ip,
  543. const unsigned char *dest_hw,
  544. const unsigned char *src_hw,
  545. const unsigned char *target_hw)
  546. {
  547. struct sk_buff *skb;
  548. struct arphdr *arp;
  549. unsigned char *arp_ptr;
  550. /*
  551. * Allocate a buffer
  552. */
  553. skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
  554. if (skb == NULL)
  555. return NULL;
  556. skb_reserve(skb, LL_RESERVED_SPACE(dev));
  557. skb_reset_network_header(skb);
  558. arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
  559. skb->dev = dev;
  560. skb->protocol = htons(ETH_P_ARP);
  561. if (src_hw == NULL)
  562. src_hw = dev->dev_addr;
  563. if (dest_hw == NULL)
  564. dest_hw = dev->broadcast;
  565. /*
  566. * Fill the device header for the ARP frame
  567. */
  568. if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
  569. goto out;
  570. /*
  571. * Fill out the arp protocol part.
  572. *
  573. * The arp hardware type should match the device type, except for FDDI,
  574. * which (according to RFC 1390) should always equal 1 (Ethernet).
  575. */
  576. /*
  577. * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
  578. * DIX code for the protocol. Make these device structure fields.
  579. */
  580. switch (dev->type) {
  581. default:
  582. arp->ar_hrd = htons(dev->type);
  583. arp->ar_pro = htons(ETH_P_IP);
  584. break;
  585. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  586. case ARPHRD_AX25:
  587. arp->ar_hrd = htons(ARPHRD_AX25);
  588. arp->ar_pro = htons(AX25_P_IP);
  589. break;
  590. #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
  591. case ARPHRD_NETROM:
  592. arp->ar_hrd = htons(ARPHRD_NETROM);
  593. arp->ar_pro = htons(AX25_P_IP);
  594. break;
  595. #endif
  596. #endif
  597. #ifdef CONFIG_FDDI
  598. case ARPHRD_FDDI:
  599. arp->ar_hrd = htons(ARPHRD_ETHER);
  600. arp->ar_pro = htons(ETH_P_IP);
  601. break;
  602. #endif
  603. #ifdef CONFIG_TR
  604. case ARPHRD_IEEE802_TR:
  605. arp->ar_hrd = htons(ARPHRD_IEEE802);
  606. arp->ar_pro = htons(ETH_P_IP);
  607. break;
  608. #endif
  609. }
  610. arp->ar_hln = dev->addr_len;
  611. arp->ar_pln = 4;
  612. arp->ar_op = htons(type);
  613. arp_ptr=(unsigned char *)(arp+1);
  614. memcpy(arp_ptr, src_hw, dev->addr_len);
  615. arp_ptr += dev->addr_len;
  616. memcpy(arp_ptr, &src_ip, 4);
  617. arp_ptr += 4;
  618. if (target_hw != NULL)
  619. memcpy(arp_ptr, target_hw, dev->addr_len);
  620. else
  621. memset(arp_ptr, 0, dev->addr_len);
  622. arp_ptr += dev->addr_len;
  623. memcpy(arp_ptr, &dest_ip, 4);
  624. return skb;
  625. out:
  626. kfree_skb(skb);
  627. return NULL;
  628. }
  629. /*
  630. * Send an arp packet.
  631. */
  632. void arp_xmit(struct sk_buff *skb)
  633. {
  634. /* Send it off, maybe filter it using firewalling first. */
  635. NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
  636. }
  637. /*
  638. * Create and send an arp packet.
  639. */
  640. void arp_send(int type, int ptype, __be32 dest_ip,
  641. struct net_device *dev, __be32 src_ip,
  642. const unsigned char *dest_hw, const unsigned char *src_hw,
  643. const unsigned char *target_hw)
  644. {
  645. struct sk_buff *skb;
  646. /*
  647. * No arp on this interface.
  648. */
  649. if (dev->flags&IFF_NOARP)
  650. return;
  651. skb = arp_create(type, ptype, dest_ip, dev, src_ip,
  652. dest_hw, src_hw, target_hw);
  653. if (skb == NULL) {
  654. return;
  655. }
  656. arp_xmit(skb);
  657. }
  658. /*
  659. * Process an arp request.
  660. */
  661. static int arp_process(struct sk_buff *skb)
  662. {
  663. struct net_device *dev = skb->dev;
  664. struct in_device *in_dev = in_dev_get(dev);
  665. struct arphdr *arp;
  666. unsigned char *arp_ptr;
  667. struct rtable *rt;
  668. unsigned char *sha;
  669. __be32 sip, tip;
  670. u16 dev_type = dev->type;
  671. int addr_type;
  672. struct neighbour *n;
  673. struct net *net = dev_net(dev);
  674. /* arp_rcv below verifies the ARP header and verifies the device
  675. * is ARP'able.
  676. */
  677. if (in_dev == NULL)
  678. goto out;
  679. arp = arp_hdr(skb);
  680. switch (dev_type) {
  681. default:
  682. if (arp->ar_pro != htons(ETH_P_IP) ||
  683. htons(dev_type) != arp->ar_hrd)
  684. goto out;
  685. break;
  686. case ARPHRD_ETHER:
  687. case ARPHRD_IEEE802_TR:
  688. case ARPHRD_FDDI:
  689. case ARPHRD_IEEE802:
  690. /*
  691. * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
  692. * devices, according to RFC 2625) devices will accept ARP
  693. * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
  694. * This is the case also of FDDI, where the RFC 1390 says that
  695. * FDDI devices should accept ARP hardware of (1) Ethernet,
  696. * however, to be more robust, we'll accept both 1 (Ethernet)
  697. * or 6 (IEEE 802.2)
  698. */
  699. if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
  700. arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
  701. arp->ar_pro != htons(ETH_P_IP))
  702. goto out;
  703. break;
  704. case ARPHRD_AX25:
  705. if (arp->ar_pro != htons(AX25_P_IP) ||
  706. arp->ar_hrd != htons(ARPHRD_AX25))
  707. goto out;
  708. break;
  709. case ARPHRD_NETROM:
  710. if (arp->ar_pro != htons(AX25_P_IP) ||
  711. arp->ar_hrd != htons(ARPHRD_NETROM))
  712. goto out;
  713. break;
  714. }
  715. /* Understand only these message types */
  716. if (arp->ar_op != htons(ARPOP_REPLY) &&
  717. arp->ar_op != htons(ARPOP_REQUEST))
  718. goto out;
  719. /*
  720. * Extract fields
  721. */
  722. arp_ptr= (unsigned char *)(arp+1);
  723. sha = arp_ptr;
  724. arp_ptr += dev->addr_len;
  725. memcpy(&sip, arp_ptr, 4);
  726. arp_ptr += 4;
  727. arp_ptr += dev->addr_len;
  728. memcpy(&tip, arp_ptr, 4);
  729. /*
  730. * Check for bad requests for 127.x.x.x and requests for multicast
  731. * addresses. If this is one such, delete it.
  732. */
  733. if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
  734. goto out;
  735. /*
  736. * Special case: We must set Frame Relay source Q.922 address
  737. */
  738. if (dev_type == ARPHRD_DLCI)
  739. sha = dev->broadcast;
  740. /*
  741. * Process entry. The idea here is we want to send a reply if it is a
  742. * request for us or if it is a request for someone else that we hold
  743. * a proxy for. We want to add an entry to our cache if it is a reply
  744. * to us or if it is a request for our address.
  745. * (The assumption for this last is that if someone is requesting our
  746. * address, they are probably intending to talk to us, so it saves time
  747. * if we cache their address. Their address is also probably not in
  748. * our cache, since ours is not in their cache.)
  749. *
  750. * Putting this another way, we only care about replies if they are to
  751. * us, in which case we add them to the cache. For requests, we care
  752. * about those for us and those for our proxies. We reply to both,
  753. * and in the case of requests for us we add the requester to the arp
  754. * cache.
  755. */
  756. /* Special case: IPv4 duplicate address detection packet (RFC2131) */
  757. if (sip == 0) {
  758. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  759. inet_addr_type(net, tip) == RTN_LOCAL &&
  760. !arp_ignore(in_dev, sip, tip))
  761. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  762. dev->dev_addr, sha);
  763. goto out;
  764. }
  765. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  766. ip_route_input(skb, tip, sip, 0, dev) == 0) {
  767. rt = skb_rtable(skb);
  768. addr_type = rt->rt_type;
  769. if (addr_type == RTN_LOCAL) {
  770. int dont_send = 0;
  771. if (!dont_send)
  772. dont_send |= arp_ignore(in_dev,sip,tip);
  773. if (!dont_send && IN_DEV_ARPFILTER(in_dev))
  774. dont_send |= arp_filter(sip,tip,dev);
  775. if (!dont_send) {
  776. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  777. if (n) {
  778. arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
  779. neigh_release(n);
  780. }
  781. }
  782. goto out;
  783. } else if (IN_DEV_FORWARD(in_dev)) {
  784. if (addr_type == RTN_UNICAST &&
  785. (arp_fwd_proxy(in_dev, dev, rt) ||
  786. arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
  787. pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))
  788. {
  789. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  790. if (n)
  791. neigh_release(n);
  792. if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
  793. skb->pkt_type == PACKET_HOST ||
  794. in_dev->arp_parms->proxy_delay == 0) {
  795. arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
  796. } else {
  797. pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
  798. in_dev_put(in_dev);
  799. return 0;
  800. }
  801. goto out;
  802. }
  803. }
  804. }
  805. /* Update our ARP tables */
  806. n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
  807. if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
  808. /* Unsolicited ARP is not accepted by default.
  809. It is possible, that this option should be enabled for some
  810. devices (strip is candidate)
  811. */
  812. if (n == NULL &&
  813. (arp->ar_op == htons(ARPOP_REPLY) ||
  814. (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
  815. inet_addr_type(net, sip) == RTN_UNICAST)
  816. n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
  817. }
  818. if (n) {
  819. int state = NUD_REACHABLE;
  820. int override;
  821. /* If several different ARP replies follows back-to-back,
  822. use the FIRST one. It is possible, if several proxy
  823. agents are active. Taking the first reply prevents
  824. arp trashing and chooses the fastest router.
  825. */
  826. override = time_after(jiffies, n->updated + n->parms->locktime);
  827. /* Broadcast replies and request packets
  828. do not assert neighbour reachability.
  829. */
  830. if (arp->ar_op != htons(ARPOP_REPLY) ||
  831. skb->pkt_type != PACKET_HOST)
  832. state = NUD_STALE;
  833. neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
  834. neigh_release(n);
  835. }
  836. out:
  837. if (in_dev)
  838. in_dev_put(in_dev);
  839. consume_skb(skb);
  840. return 0;
  841. }
  842. static void parp_redo(struct sk_buff *skb)
  843. {
  844. arp_process(skb);
  845. }
  846. /*
  847. * Receive an arp request from the device layer.
  848. */
  849. static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
  850. struct packet_type *pt, struct net_device *orig_dev)
  851. {
  852. struct arphdr *arp;
  853. /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
  854. if (!pskb_may_pull(skb, arp_hdr_len(dev)))
  855. goto freeskb;
  856. arp = arp_hdr(skb);
  857. if (arp->ar_hln != dev->addr_len ||
  858. dev->flags & IFF_NOARP ||
  859. skb->pkt_type == PACKET_OTHERHOST ||
  860. skb->pkt_type == PACKET_LOOPBACK ||
  861. arp->ar_pln != 4)
  862. goto freeskb;
  863. if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
  864. goto out_of_mem;
  865. memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
  866. return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
  867. freeskb:
  868. kfree_skb(skb);
  869. out_of_mem:
  870. return 0;
  871. }
  872. /*
  873. * User level interface (ioctl)
  874. */
  875. /*
  876. * Set (create) an ARP cache entry.
  877. */
  878. static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
  879. {
  880. if (dev == NULL) {
  881. IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
  882. return 0;
  883. }
  884. if (__in_dev_get_rtnl(dev)) {
  885. IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
  886. return 0;
  887. }
  888. return -ENXIO;
  889. }
  890. static int arp_req_set_public(struct net *net, struct arpreq *r,
  891. struct net_device *dev)
  892. {
  893. __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  894. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  895. if (mask && mask != htonl(0xFFFFFFFF))
  896. return -EINVAL;
  897. if (!dev && (r->arp_flags & ATF_COM)) {
  898. dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
  899. r->arp_ha.sa_data);
  900. if (!dev)
  901. return -ENODEV;
  902. }
  903. if (mask) {
  904. if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
  905. return -ENOBUFS;
  906. return 0;
  907. }
  908. return arp_req_set_proxy(net, dev, 1);
  909. }
  910. static int arp_req_set(struct net *net, struct arpreq *r,
  911. struct net_device * dev)
  912. {
  913. __be32 ip;
  914. struct neighbour *neigh;
  915. int err;
  916. if (r->arp_flags & ATF_PUBL)
  917. return arp_req_set_public(net, r, dev);
  918. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  919. if (r->arp_flags & ATF_PERM)
  920. r->arp_flags |= ATF_COM;
  921. if (dev == NULL) {
  922. struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
  923. .tos = RTO_ONLINK } } };
  924. struct rtable * rt;
  925. if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
  926. return err;
  927. dev = rt->u.dst.dev;
  928. ip_rt_put(rt);
  929. if (!dev)
  930. return -EINVAL;
  931. }
  932. switch (dev->type) {
  933. #ifdef CONFIG_FDDI
  934. case ARPHRD_FDDI:
  935. /*
  936. * According to RFC 1390, FDDI devices should accept ARP
  937. * hardware types of 1 (Ethernet). However, to be more
  938. * robust, we'll accept hardware types of either 1 (Ethernet)
  939. * or 6 (IEEE 802.2).
  940. */
  941. if (r->arp_ha.sa_family != ARPHRD_FDDI &&
  942. r->arp_ha.sa_family != ARPHRD_ETHER &&
  943. r->arp_ha.sa_family != ARPHRD_IEEE802)
  944. return -EINVAL;
  945. break;
  946. #endif
  947. default:
  948. if (r->arp_ha.sa_family != dev->type)
  949. return -EINVAL;
  950. break;
  951. }
  952. neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
  953. err = PTR_ERR(neigh);
  954. if (!IS_ERR(neigh)) {
  955. unsigned state = NUD_STALE;
  956. if (r->arp_flags & ATF_PERM)
  957. state = NUD_PERMANENT;
  958. err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
  959. r->arp_ha.sa_data : NULL, state,
  960. NEIGH_UPDATE_F_OVERRIDE|
  961. NEIGH_UPDATE_F_ADMIN);
  962. neigh_release(neigh);
  963. }
  964. return err;
  965. }
  966. static unsigned arp_state_to_flags(struct neighbour *neigh)
  967. {
  968. unsigned flags = 0;
  969. if (neigh->nud_state&NUD_PERMANENT)
  970. flags = ATF_PERM|ATF_COM;
  971. else if (neigh->nud_state&NUD_VALID)
  972. flags = ATF_COM;
  973. return flags;
  974. }
  975. /*
  976. * Get an ARP cache entry.
  977. */
  978. static int arp_req_get(struct arpreq *r, struct net_device *dev)
  979. {
  980. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  981. struct neighbour *neigh;
  982. int err = -ENXIO;
  983. neigh = neigh_lookup(&arp_tbl, &ip, dev);
  984. if (neigh) {
  985. read_lock_bh(&neigh->lock);
  986. memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
  987. r->arp_flags = arp_state_to_flags(neigh);
  988. read_unlock_bh(&neigh->lock);
  989. r->arp_ha.sa_family = dev->type;
  990. strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
  991. neigh_release(neigh);
  992. err = 0;
  993. }
  994. return err;
  995. }
  996. static int arp_req_delete_public(struct net *net, struct arpreq *r,
  997. struct net_device *dev)
  998. {
  999. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  1000. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  1001. if (mask == htonl(0xFFFFFFFF))
  1002. return pneigh_delete(&arp_tbl, net, &ip, dev);
  1003. if (mask)
  1004. return -EINVAL;
  1005. return arp_req_set_proxy(net, dev, 0);
  1006. }
  1007. static int arp_req_delete(struct net *net, struct arpreq *r,
  1008. struct net_device * dev)
  1009. {
  1010. int err;
  1011. __be32 ip;
  1012. struct neighbour *neigh;
  1013. if (r->arp_flags & ATF_PUBL)
  1014. return arp_req_delete_public(net, r, dev);
  1015. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  1016. if (dev == NULL) {
  1017. struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
  1018. .tos = RTO_ONLINK } } };
  1019. struct rtable * rt;
  1020. if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
  1021. return err;
  1022. dev = rt->u.dst.dev;
  1023. ip_rt_put(rt);
  1024. if (!dev)
  1025. return -EINVAL;
  1026. }
  1027. err = -ENXIO;
  1028. neigh = neigh_lookup(&arp_tbl, &ip, dev);
  1029. if (neigh) {
  1030. if (neigh->nud_state&~NUD_NOARP)
  1031. err = neigh_update(neigh, NULL, NUD_FAILED,
  1032. NEIGH_UPDATE_F_OVERRIDE|
  1033. NEIGH_UPDATE_F_ADMIN);
  1034. neigh_release(neigh);
  1035. }
  1036. return err;
  1037. }
  1038. /*
  1039. * Handle an ARP layer I/O control request.
  1040. */
  1041. int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  1042. {
  1043. int err;
  1044. struct arpreq r;
  1045. struct net_device *dev = NULL;
  1046. switch (cmd) {
  1047. case SIOCDARP:
  1048. case SIOCSARP:
  1049. if (!capable(CAP_NET_ADMIN))
  1050. return -EPERM;
  1051. case SIOCGARP:
  1052. err = copy_from_user(&r, arg, sizeof(struct arpreq));
  1053. if (err)
  1054. return -EFAULT;
  1055. break;
  1056. default:
  1057. return -EINVAL;
  1058. }
  1059. if (r.arp_pa.sa_family != AF_INET)
  1060. return -EPFNOSUPPORT;
  1061. if (!(r.arp_flags & ATF_PUBL) &&
  1062. (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
  1063. return -EINVAL;
  1064. if (!(r.arp_flags & ATF_NETMASK))
  1065. ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
  1066. htonl(0xFFFFFFFFUL);
  1067. rtnl_lock();
  1068. if (r.arp_dev[0]) {
  1069. err = -ENODEV;
  1070. if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
  1071. goto out;
  1072. /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
  1073. if (!r.arp_ha.sa_family)
  1074. r.arp_ha.sa_family = dev->type;
  1075. err = -EINVAL;
  1076. if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
  1077. goto out;
  1078. } else if (cmd == SIOCGARP) {
  1079. err = -ENODEV;
  1080. goto out;
  1081. }
  1082. switch (cmd) {
  1083. case SIOCDARP:
  1084. err = arp_req_delete(net, &r, dev);
  1085. break;
  1086. case SIOCSARP:
  1087. err = arp_req_set(net, &r, dev);
  1088. break;
  1089. case SIOCGARP:
  1090. err = arp_req_get(&r, dev);
  1091. if (!err && copy_to_user(arg, &r, sizeof(r)))
  1092. err = -EFAULT;
  1093. break;
  1094. }
  1095. out:
  1096. rtnl_unlock();
  1097. return err;
  1098. }
  1099. static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
  1100. {
  1101. struct net_device *dev = ptr;
  1102. switch (event) {
  1103. case NETDEV_CHANGEADDR:
  1104. neigh_changeaddr(&arp_tbl, dev);
  1105. rt_cache_flush(dev_net(dev), 0);
  1106. break;
  1107. default:
  1108. break;
  1109. }
  1110. return NOTIFY_DONE;
  1111. }
  1112. static struct notifier_block arp_netdev_notifier = {
  1113. .notifier_call = arp_netdev_event,
  1114. };
  1115. /* Note, that it is not on notifier chain.
  1116. It is necessary, that this routine was called after route cache will be
  1117. flushed.
  1118. */
  1119. void arp_ifdown(struct net_device *dev)
  1120. {
  1121. neigh_ifdown(&arp_tbl, dev);
  1122. }
  1123. /*
  1124. * Called once on startup.
  1125. */
  1126. static struct packet_type arp_packet_type __read_mostly = {
  1127. .type = cpu_to_be16(ETH_P_ARP),
  1128. .func = arp_rcv,
  1129. };
  1130. static int arp_proc_init(void);
  1131. void __init arp_init(void)
  1132. {
  1133. neigh_table_init(&arp_tbl);
  1134. dev_add_pack(&arp_packet_type);
  1135. arp_proc_init();
  1136. #ifdef CONFIG_SYSCTL
  1137. neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
  1138. #endif
  1139. register_netdevice_notifier(&arp_netdev_notifier);
  1140. }
  1141. #ifdef CONFIG_PROC_FS
  1142. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1143. /* ------------------------------------------------------------------------ */
  1144. /*
  1145. * ax25 -> ASCII conversion
  1146. */
  1147. static char *ax2asc2(ax25_address *a, char *buf)
  1148. {
  1149. char c, *s;
  1150. int n;
  1151. for (n = 0, s = buf; n < 6; n++) {
  1152. c = (a->ax25_call[n] >> 1) & 0x7F;
  1153. if (c != ' ') *s++ = c;
  1154. }
  1155. *s++ = '-';
  1156. if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
  1157. *s++ = '1';
  1158. n -= 10;
  1159. }
  1160. *s++ = n + '0';
  1161. *s++ = '\0';
  1162. if (*buf == '\0' || *buf == '-')
  1163. return "*";
  1164. return buf;
  1165. }
  1166. #endif /* CONFIG_AX25 */
  1167. #define HBUFFERLEN 30
  1168. static void arp_format_neigh_entry(struct seq_file *seq,
  1169. struct neighbour *n)
  1170. {
  1171. char hbuffer[HBUFFERLEN];
  1172. int k, j;
  1173. char tbuf[16];
  1174. struct net_device *dev = n->dev;
  1175. int hatype = dev->type;
  1176. read_lock(&n->lock);
  1177. /* Convert hardware address to XX:XX:XX:XX ... form. */
  1178. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1179. if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
  1180. ax2asc2((ax25_address *)n->ha, hbuffer);
  1181. else {
  1182. #endif
  1183. for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
  1184. hbuffer[k++] = hex_asc_hi(n->ha[j]);
  1185. hbuffer[k++] = hex_asc_lo(n->ha[j]);
  1186. hbuffer[k++] = ':';
  1187. }
  1188. if (k != 0)
  1189. --k;
  1190. hbuffer[k] = 0;
  1191. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1192. }
  1193. #endif
  1194. sprintf(tbuf, "%pI4", n->primary_key);
  1195. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1196. tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
  1197. read_unlock(&n->lock);
  1198. }
  1199. static void arp_format_pneigh_entry(struct seq_file *seq,
  1200. struct pneigh_entry *n)
  1201. {
  1202. struct net_device *dev = n->dev;
  1203. int hatype = dev ? dev->type : 0;
  1204. char tbuf[16];
  1205. sprintf(tbuf, "%pI4", n->key);
  1206. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1207. tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
  1208. dev ? dev->name : "*");
  1209. }
  1210. static int arp_seq_show(struct seq_file *seq, void *v)
  1211. {
  1212. if (v == SEQ_START_TOKEN) {
  1213. seq_puts(seq, "IP address HW type Flags "
  1214. "HW address Mask Device\n");
  1215. } else {
  1216. struct neigh_seq_state *state = seq->private;
  1217. if (state->flags & NEIGH_SEQ_IS_PNEIGH)
  1218. arp_format_pneigh_entry(seq, v);
  1219. else
  1220. arp_format_neigh_entry(seq, v);
  1221. }
  1222. return 0;
  1223. }
  1224. static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
  1225. {
  1226. /* Don't want to confuse "arp -a" w/ magic entries,
  1227. * so we tell the generic iterator to skip NUD_NOARP.
  1228. */
  1229. return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
  1230. }
  1231. /* ------------------------------------------------------------------------ */
  1232. static const struct seq_operations arp_seq_ops = {
  1233. .start = arp_seq_start,
  1234. .next = neigh_seq_next,
  1235. .stop = neigh_seq_stop,
  1236. .show = arp_seq_show,
  1237. };
  1238. static int arp_seq_open(struct inode *inode, struct file *file)
  1239. {
  1240. return seq_open_net(inode, file, &arp_seq_ops,
  1241. sizeof(struct neigh_seq_state));
  1242. }
  1243. static const struct file_operations arp_seq_fops = {
  1244. .owner = THIS_MODULE,
  1245. .open = arp_seq_open,
  1246. .read = seq_read,
  1247. .llseek = seq_lseek,
  1248. .release = seq_release_net,
  1249. };
  1250. static int __net_init arp_net_init(struct net *net)
  1251. {
  1252. if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
  1253. return -ENOMEM;
  1254. return 0;
  1255. }
  1256. static void __net_exit arp_net_exit(struct net *net)
  1257. {
  1258. proc_net_remove(net, "arp");
  1259. }
  1260. static struct pernet_operations arp_net_ops = {
  1261. .init = arp_net_init,
  1262. .exit = arp_net_exit,
  1263. };
  1264. static int __init arp_proc_init(void)
  1265. {
  1266. return register_pernet_subsys(&arp_net_ops);
  1267. }
  1268. #else /* CONFIG_PROC_FS */
  1269. static int __init arp_proc_init(void)
  1270. {
  1271. return 0;
  1272. }
  1273. #endif /* CONFIG_PROC_FS */
  1274. EXPORT_SYMBOL(arp_broken_ops);
  1275. EXPORT_SYMBOL(arp_find);
  1276. EXPORT_SYMBOL(arp_create);
  1277. EXPORT_SYMBOL(arp_xmit);
  1278. EXPORT_SYMBOL(arp_send);
  1279. EXPORT_SYMBOL(arp_tbl);
  1280. #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
  1281. EXPORT_SYMBOL(clip_tbl_hook);
  1282. #endif