vmalloc.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static unsigned long vmap_area_pcpu_hole;
  233. static struct vmap_area *__find_vmap_area(unsigned long addr)
  234. {
  235. struct rb_node *n = vmap_area_root.rb_node;
  236. while (n) {
  237. struct vmap_area *va;
  238. va = rb_entry(n, struct vmap_area, rb_node);
  239. if (addr < va->va_start)
  240. n = n->rb_left;
  241. else if (addr > va->va_start)
  242. n = n->rb_right;
  243. else
  244. return va;
  245. }
  246. return NULL;
  247. }
  248. static void __insert_vmap_area(struct vmap_area *va)
  249. {
  250. struct rb_node **p = &vmap_area_root.rb_node;
  251. struct rb_node *parent = NULL;
  252. struct rb_node *tmp;
  253. while (*p) {
  254. struct vmap_area *tmp;
  255. parent = *p;
  256. tmp = rb_entry(parent, struct vmap_area, rb_node);
  257. if (va->va_start < tmp->va_end)
  258. p = &(*p)->rb_left;
  259. else if (va->va_end > tmp->va_start)
  260. p = &(*p)->rb_right;
  261. else
  262. BUG();
  263. }
  264. rb_link_node(&va->rb_node, parent, p);
  265. rb_insert_color(&va->rb_node, &vmap_area_root);
  266. /* address-sort this list so it is usable like the vmlist */
  267. tmp = rb_prev(&va->rb_node);
  268. if (tmp) {
  269. struct vmap_area *prev;
  270. prev = rb_entry(tmp, struct vmap_area, rb_node);
  271. list_add_rcu(&va->list, &prev->list);
  272. } else
  273. list_add_rcu(&va->list, &vmap_area_list);
  274. }
  275. static void purge_vmap_area_lazy(void);
  276. /*
  277. * Allocate a region of KVA of the specified size and alignment, within the
  278. * vstart and vend.
  279. */
  280. static struct vmap_area *alloc_vmap_area(unsigned long size,
  281. unsigned long align,
  282. unsigned long vstart, unsigned long vend,
  283. int node, gfp_t gfp_mask)
  284. {
  285. struct vmap_area *va;
  286. struct rb_node *n;
  287. unsigned long addr;
  288. int purged = 0;
  289. BUG_ON(!size);
  290. BUG_ON(size & ~PAGE_MASK);
  291. va = kmalloc_node(sizeof(struct vmap_area),
  292. gfp_mask & GFP_RECLAIM_MASK, node);
  293. if (unlikely(!va))
  294. return ERR_PTR(-ENOMEM);
  295. retry:
  296. addr = ALIGN(vstart, align);
  297. spin_lock(&vmap_area_lock);
  298. if (addr + size - 1 < addr)
  299. goto overflow;
  300. /* XXX: could have a last_hole cache */
  301. n = vmap_area_root.rb_node;
  302. if (n) {
  303. struct vmap_area *first = NULL;
  304. do {
  305. struct vmap_area *tmp;
  306. tmp = rb_entry(n, struct vmap_area, rb_node);
  307. if (tmp->va_end >= addr) {
  308. if (!first && tmp->va_start < addr + size)
  309. first = tmp;
  310. n = n->rb_left;
  311. } else {
  312. first = tmp;
  313. n = n->rb_right;
  314. }
  315. } while (n);
  316. if (!first)
  317. goto found;
  318. if (first->va_end < addr) {
  319. n = rb_next(&first->rb_node);
  320. if (n)
  321. first = rb_entry(n, struct vmap_area, rb_node);
  322. else
  323. goto found;
  324. }
  325. while (addr + size > first->va_start && addr + size <= vend) {
  326. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  327. if (addr + size - 1 < addr)
  328. goto overflow;
  329. n = rb_next(&first->rb_node);
  330. if (n)
  331. first = rb_entry(n, struct vmap_area, rb_node);
  332. else
  333. goto found;
  334. }
  335. }
  336. found:
  337. if (addr + size > vend) {
  338. overflow:
  339. spin_unlock(&vmap_area_lock);
  340. if (!purged) {
  341. purge_vmap_area_lazy();
  342. purged = 1;
  343. goto retry;
  344. }
  345. if (printk_ratelimit())
  346. printk(KERN_WARNING
  347. "vmap allocation for size %lu failed: "
  348. "use vmalloc=<size> to increase size.\n", size);
  349. kfree(va);
  350. return ERR_PTR(-EBUSY);
  351. }
  352. BUG_ON(addr & (align-1));
  353. va->va_start = addr;
  354. va->va_end = addr + size;
  355. va->flags = 0;
  356. __insert_vmap_area(va);
  357. spin_unlock(&vmap_area_lock);
  358. return va;
  359. }
  360. static void rcu_free_va(struct rcu_head *head)
  361. {
  362. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  363. kfree(va);
  364. }
  365. static void __free_vmap_area(struct vmap_area *va)
  366. {
  367. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  368. rb_erase(&va->rb_node, &vmap_area_root);
  369. RB_CLEAR_NODE(&va->rb_node);
  370. list_del_rcu(&va->list);
  371. /*
  372. * Track the highest possible candidate for pcpu area
  373. * allocation. Areas outside of vmalloc area can be returned
  374. * here too, consider only end addresses which fall inside
  375. * vmalloc area proper.
  376. */
  377. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  378. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  379. call_rcu(&va->rcu_head, rcu_free_va);
  380. }
  381. /*
  382. * Free a region of KVA allocated by alloc_vmap_area
  383. */
  384. static void free_vmap_area(struct vmap_area *va)
  385. {
  386. spin_lock(&vmap_area_lock);
  387. __free_vmap_area(va);
  388. spin_unlock(&vmap_area_lock);
  389. }
  390. /*
  391. * Clear the pagetable entries of a given vmap_area
  392. */
  393. static void unmap_vmap_area(struct vmap_area *va)
  394. {
  395. vunmap_page_range(va->va_start, va->va_end);
  396. }
  397. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  398. {
  399. /*
  400. * Unmap page tables and force a TLB flush immediately if
  401. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  402. * bugs similarly to those in linear kernel virtual address
  403. * space after a page has been freed.
  404. *
  405. * All the lazy freeing logic is still retained, in order to
  406. * minimise intrusiveness of this debugging feature.
  407. *
  408. * This is going to be *slow* (linear kernel virtual address
  409. * debugging doesn't do a broadcast TLB flush so it is a lot
  410. * faster).
  411. */
  412. #ifdef CONFIG_DEBUG_PAGEALLOC
  413. vunmap_page_range(start, end);
  414. flush_tlb_kernel_range(start, end);
  415. #endif
  416. }
  417. /*
  418. * lazy_max_pages is the maximum amount of virtual address space we gather up
  419. * before attempting to purge with a TLB flush.
  420. *
  421. * There is a tradeoff here: a larger number will cover more kernel page tables
  422. * and take slightly longer to purge, but it will linearly reduce the number of
  423. * global TLB flushes that must be performed. It would seem natural to scale
  424. * this number up linearly with the number of CPUs (because vmapping activity
  425. * could also scale linearly with the number of CPUs), however it is likely
  426. * that in practice, workloads might be constrained in other ways that mean
  427. * vmap activity will not scale linearly with CPUs. Also, I want to be
  428. * conservative and not introduce a big latency on huge systems, so go with
  429. * a less aggressive log scale. It will still be an improvement over the old
  430. * code, and it will be simple to change the scale factor if we find that it
  431. * becomes a problem on bigger systems.
  432. */
  433. static unsigned long lazy_max_pages(void)
  434. {
  435. unsigned int log;
  436. log = fls(num_online_cpus());
  437. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  438. }
  439. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  440. /* for per-CPU blocks */
  441. static void purge_fragmented_blocks_allcpus(void);
  442. /*
  443. * Purges all lazily-freed vmap areas.
  444. *
  445. * If sync is 0 then don't purge if there is already a purge in progress.
  446. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  447. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  448. * their own TLB flushing).
  449. * Returns with *start = min(*start, lowest purged address)
  450. * *end = max(*end, highest purged address)
  451. */
  452. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  453. int sync, int force_flush)
  454. {
  455. static DEFINE_SPINLOCK(purge_lock);
  456. LIST_HEAD(valist);
  457. struct vmap_area *va;
  458. struct vmap_area *n_va;
  459. int nr = 0;
  460. /*
  461. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  462. * should not expect such behaviour. This just simplifies locking for
  463. * the case that isn't actually used at the moment anyway.
  464. */
  465. if (!sync && !force_flush) {
  466. if (!spin_trylock(&purge_lock))
  467. return;
  468. } else
  469. spin_lock(&purge_lock);
  470. if (sync)
  471. purge_fragmented_blocks_allcpus();
  472. rcu_read_lock();
  473. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  474. if (va->flags & VM_LAZY_FREE) {
  475. if (va->va_start < *start)
  476. *start = va->va_start;
  477. if (va->va_end > *end)
  478. *end = va->va_end;
  479. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  480. unmap_vmap_area(va);
  481. list_add_tail(&va->purge_list, &valist);
  482. va->flags |= VM_LAZY_FREEING;
  483. va->flags &= ~VM_LAZY_FREE;
  484. }
  485. }
  486. rcu_read_unlock();
  487. if (nr)
  488. atomic_sub(nr, &vmap_lazy_nr);
  489. if (nr || force_flush)
  490. flush_tlb_kernel_range(*start, *end);
  491. if (nr) {
  492. spin_lock(&vmap_area_lock);
  493. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  494. __free_vmap_area(va);
  495. spin_unlock(&vmap_area_lock);
  496. }
  497. spin_unlock(&purge_lock);
  498. }
  499. /*
  500. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  501. * is already purging.
  502. */
  503. static void try_purge_vmap_area_lazy(void)
  504. {
  505. unsigned long start = ULONG_MAX, end = 0;
  506. __purge_vmap_area_lazy(&start, &end, 0, 0);
  507. }
  508. /*
  509. * Kick off a purge of the outstanding lazy areas.
  510. */
  511. static void purge_vmap_area_lazy(void)
  512. {
  513. unsigned long start = ULONG_MAX, end = 0;
  514. __purge_vmap_area_lazy(&start, &end, 1, 0);
  515. }
  516. /*
  517. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  518. * called for the correct range previously.
  519. */
  520. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  521. {
  522. va->flags |= VM_LAZY_FREE;
  523. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  524. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  525. try_purge_vmap_area_lazy();
  526. }
  527. /*
  528. * Free and unmap a vmap area
  529. */
  530. static void free_unmap_vmap_area(struct vmap_area *va)
  531. {
  532. flush_cache_vunmap(va->va_start, va->va_end);
  533. free_unmap_vmap_area_noflush(va);
  534. }
  535. static struct vmap_area *find_vmap_area(unsigned long addr)
  536. {
  537. struct vmap_area *va;
  538. spin_lock(&vmap_area_lock);
  539. va = __find_vmap_area(addr);
  540. spin_unlock(&vmap_area_lock);
  541. return va;
  542. }
  543. static void free_unmap_vmap_area_addr(unsigned long addr)
  544. {
  545. struct vmap_area *va;
  546. va = find_vmap_area(addr);
  547. BUG_ON(!va);
  548. free_unmap_vmap_area(va);
  549. }
  550. /*** Per cpu kva allocator ***/
  551. /*
  552. * vmap space is limited especially on 32 bit architectures. Ensure there is
  553. * room for at least 16 percpu vmap blocks per CPU.
  554. */
  555. /*
  556. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  557. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  558. * instead (we just need a rough idea)
  559. */
  560. #if BITS_PER_LONG == 32
  561. #define VMALLOC_SPACE (128UL*1024*1024)
  562. #else
  563. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  564. #endif
  565. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  566. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  567. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  568. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  569. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  570. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  571. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  572. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  573. VMALLOC_PAGES / NR_CPUS / 16))
  574. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  575. static bool vmap_initialized __read_mostly = false;
  576. struct vmap_block_queue {
  577. spinlock_t lock;
  578. struct list_head free;
  579. };
  580. struct vmap_block {
  581. spinlock_t lock;
  582. struct vmap_area *va;
  583. struct vmap_block_queue *vbq;
  584. unsigned long free, dirty;
  585. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  586. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  587. struct list_head free_list;
  588. struct rcu_head rcu_head;
  589. struct list_head purge;
  590. };
  591. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  592. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  593. /*
  594. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  595. * in the free path. Could get rid of this if we change the API to return a
  596. * "cookie" from alloc, to be passed to free. But no big deal yet.
  597. */
  598. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  599. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  600. /*
  601. * We should probably have a fallback mechanism to allocate virtual memory
  602. * out of partially filled vmap blocks. However vmap block sizing should be
  603. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  604. * big problem.
  605. */
  606. static unsigned long addr_to_vb_idx(unsigned long addr)
  607. {
  608. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  609. addr /= VMAP_BLOCK_SIZE;
  610. return addr;
  611. }
  612. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  613. {
  614. struct vmap_block_queue *vbq;
  615. struct vmap_block *vb;
  616. struct vmap_area *va;
  617. unsigned long vb_idx;
  618. int node, err;
  619. node = numa_node_id();
  620. vb = kmalloc_node(sizeof(struct vmap_block),
  621. gfp_mask & GFP_RECLAIM_MASK, node);
  622. if (unlikely(!vb))
  623. return ERR_PTR(-ENOMEM);
  624. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  625. VMALLOC_START, VMALLOC_END,
  626. node, gfp_mask);
  627. if (unlikely(IS_ERR(va))) {
  628. kfree(vb);
  629. return ERR_PTR(PTR_ERR(va));
  630. }
  631. err = radix_tree_preload(gfp_mask);
  632. if (unlikely(err)) {
  633. kfree(vb);
  634. free_vmap_area(va);
  635. return ERR_PTR(err);
  636. }
  637. spin_lock_init(&vb->lock);
  638. vb->va = va;
  639. vb->free = VMAP_BBMAP_BITS;
  640. vb->dirty = 0;
  641. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  642. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  643. INIT_LIST_HEAD(&vb->free_list);
  644. vb_idx = addr_to_vb_idx(va->va_start);
  645. spin_lock(&vmap_block_tree_lock);
  646. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  647. spin_unlock(&vmap_block_tree_lock);
  648. BUG_ON(err);
  649. radix_tree_preload_end();
  650. vbq = &get_cpu_var(vmap_block_queue);
  651. vb->vbq = vbq;
  652. spin_lock(&vbq->lock);
  653. list_add_rcu(&vb->free_list, &vbq->free);
  654. spin_unlock(&vbq->lock);
  655. put_cpu_var(vmap_block_queue);
  656. return vb;
  657. }
  658. static void rcu_free_vb(struct rcu_head *head)
  659. {
  660. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  661. kfree(vb);
  662. }
  663. static void free_vmap_block(struct vmap_block *vb)
  664. {
  665. struct vmap_block *tmp;
  666. unsigned long vb_idx;
  667. vb_idx = addr_to_vb_idx(vb->va->va_start);
  668. spin_lock(&vmap_block_tree_lock);
  669. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  670. spin_unlock(&vmap_block_tree_lock);
  671. BUG_ON(tmp != vb);
  672. free_unmap_vmap_area_noflush(vb->va);
  673. call_rcu(&vb->rcu_head, rcu_free_vb);
  674. }
  675. static void purge_fragmented_blocks(int cpu)
  676. {
  677. LIST_HEAD(purge);
  678. struct vmap_block *vb;
  679. struct vmap_block *n_vb;
  680. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  681. rcu_read_lock();
  682. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  683. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  684. continue;
  685. spin_lock(&vb->lock);
  686. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  687. vb->free = 0; /* prevent further allocs after releasing lock */
  688. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  689. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  690. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  691. spin_lock(&vbq->lock);
  692. list_del_rcu(&vb->free_list);
  693. spin_unlock(&vbq->lock);
  694. spin_unlock(&vb->lock);
  695. list_add_tail(&vb->purge, &purge);
  696. } else
  697. spin_unlock(&vb->lock);
  698. }
  699. rcu_read_unlock();
  700. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  701. list_del(&vb->purge);
  702. free_vmap_block(vb);
  703. }
  704. }
  705. static void purge_fragmented_blocks_thiscpu(void)
  706. {
  707. purge_fragmented_blocks(smp_processor_id());
  708. }
  709. static void purge_fragmented_blocks_allcpus(void)
  710. {
  711. int cpu;
  712. for_each_possible_cpu(cpu)
  713. purge_fragmented_blocks(cpu);
  714. }
  715. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  716. {
  717. struct vmap_block_queue *vbq;
  718. struct vmap_block *vb;
  719. unsigned long addr = 0;
  720. unsigned int order;
  721. int purge = 0;
  722. BUG_ON(size & ~PAGE_MASK);
  723. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  724. order = get_order(size);
  725. again:
  726. rcu_read_lock();
  727. vbq = &get_cpu_var(vmap_block_queue);
  728. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  729. int i;
  730. spin_lock(&vb->lock);
  731. if (vb->free < 1UL << order)
  732. goto next;
  733. i = bitmap_find_free_region(vb->alloc_map,
  734. VMAP_BBMAP_BITS, order);
  735. if (i < 0) {
  736. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  737. /* fragmented and no outstanding allocations */
  738. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  739. purge = 1;
  740. }
  741. goto next;
  742. }
  743. addr = vb->va->va_start + (i << PAGE_SHIFT);
  744. BUG_ON(addr_to_vb_idx(addr) !=
  745. addr_to_vb_idx(vb->va->va_start));
  746. vb->free -= 1UL << order;
  747. if (vb->free == 0) {
  748. spin_lock(&vbq->lock);
  749. list_del_rcu(&vb->free_list);
  750. spin_unlock(&vbq->lock);
  751. }
  752. spin_unlock(&vb->lock);
  753. break;
  754. next:
  755. spin_unlock(&vb->lock);
  756. }
  757. if (purge)
  758. purge_fragmented_blocks_thiscpu();
  759. put_cpu_var(vmap_block_queue);
  760. rcu_read_unlock();
  761. if (!addr) {
  762. vb = new_vmap_block(gfp_mask);
  763. if (IS_ERR(vb))
  764. return vb;
  765. goto again;
  766. }
  767. return (void *)addr;
  768. }
  769. static void vb_free(const void *addr, unsigned long size)
  770. {
  771. unsigned long offset;
  772. unsigned long vb_idx;
  773. unsigned int order;
  774. struct vmap_block *vb;
  775. BUG_ON(size & ~PAGE_MASK);
  776. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  777. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  778. order = get_order(size);
  779. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  780. vb_idx = addr_to_vb_idx((unsigned long)addr);
  781. rcu_read_lock();
  782. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  783. rcu_read_unlock();
  784. BUG_ON(!vb);
  785. spin_lock(&vb->lock);
  786. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  787. vb->dirty += 1UL << order;
  788. if (vb->dirty == VMAP_BBMAP_BITS) {
  789. BUG_ON(vb->free);
  790. spin_unlock(&vb->lock);
  791. free_vmap_block(vb);
  792. } else
  793. spin_unlock(&vb->lock);
  794. }
  795. /**
  796. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  797. *
  798. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  799. * to amortize TLB flushing overheads. What this means is that any page you
  800. * have now, may, in a former life, have been mapped into kernel virtual
  801. * address by the vmap layer and so there might be some CPUs with TLB entries
  802. * still referencing that page (additional to the regular 1:1 kernel mapping).
  803. *
  804. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  805. * be sure that none of the pages we have control over will have any aliases
  806. * from the vmap layer.
  807. */
  808. void vm_unmap_aliases(void)
  809. {
  810. unsigned long start = ULONG_MAX, end = 0;
  811. int cpu;
  812. int flush = 0;
  813. if (unlikely(!vmap_initialized))
  814. return;
  815. for_each_possible_cpu(cpu) {
  816. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  817. struct vmap_block *vb;
  818. rcu_read_lock();
  819. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  820. int i;
  821. spin_lock(&vb->lock);
  822. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  823. while (i < VMAP_BBMAP_BITS) {
  824. unsigned long s, e;
  825. int j;
  826. j = find_next_zero_bit(vb->dirty_map,
  827. VMAP_BBMAP_BITS, i);
  828. s = vb->va->va_start + (i << PAGE_SHIFT);
  829. e = vb->va->va_start + (j << PAGE_SHIFT);
  830. vunmap_page_range(s, e);
  831. flush = 1;
  832. if (s < start)
  833. start = s;
  834. if (e > end)
  835. end = e;
  836. i = j;
  837. i = find_next_bit(vb->dirty_map,
  838. VMAP_BBMAP_BITS, i);
  839. }
  840. spin_unlock(&vb->lock);
  841. }
  842. rcu_read_unlock();
  843. }
  844. __purge_vmap_area_lazy(&start, &end, 1, flush);
  845. }
  846. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  847. /**
  848. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  849. * @mem: the pointer returned by vm_map_ram
  850. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  851. */
  852. void vm_unmap_ram(const void *mem, unsigned int count)
  853. {
  854. unsigned long size = count << PAGE_SHIFT;
  855. unsigned long addr = (unsigned long)mem;
  856. BUG_ON(!addr);
  857. BUG_ON(addr < VMALLOC_START);
  858. BUG_ON(addr > VMALLOC_END);
  859. BUG_ON(addr & (PAGE_SIZE-1));
  860. debug_check_no_locks_freed(mem, size);
  861. vmap_debug_free_range(addr, addr+size);
  862. if (likely(count <= VMAP_MAX_ALLOC))
  863. vb_free(mem, size);
  864. else
  865. free_unmap_vmap_area_addr(addr);
  866. }
  867. EXPORT_SYMBOL(vm_unmap_ram);
  868. /**
  869. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  870. * @pages: an array of pointers to the pages to be mapped
  871. * @count: number of pages
  872. * @node: prefer to allocate data structures on this node
  873. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  874. *
  875. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  876. */
  877. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  878. {
  879. unsigned long size = count << PAGE_SHIFT;
  880. unsigned long addr;
  881. void *mem;
  882. if (likely(count <= VMAP_MAX_ALLOC)) {
  883. mem = vb_alloc(size, GFP_KERNEL);
  884. if (IS_ERR(mem))
  885. return NULL;
  886. addr = (unsigned long)mem;
  887. } else {
  888. struct vmap_area *va;
  889. va = alloc_vmap_area(size, PAGE_SIZE,
  890. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  891. if (IS_ERR(va))
  892. return NULL;
  893. addr = va->va_start;
  894. mem = (void *)addr;
  895. }
  896. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  897. vm_unmap_ram(mem, count);
  898. return NULL;
  899. }
  900. return mem;
  901. }
  902. EXPORT_SYMBOL(vm_map_ram);
  903. /**
  904. * vm_area_register_early - register vmap area early during boot
  905. * @vm: vm_struct to register
  906. * @align: requested alignment
  907. *
  908. * This function is used to register kernel vm area before
  909. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  910. * proper values on entry and other fields should be zero. On return,
  911. * vm->addr contains the allocated address.
  912. *
  913. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  914. */
  915. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  916. {
  917. static size_t vm_init_off __initdata;
  918. unsigned long addr;
  919. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  920. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  921. vm->addr = (void *)addr;
  922. vm->next = vmlist;
  923. vmlist = vm;
  924. }
  925. void __init vmalloc_init(void)
  926. {
  927. struct vmap_area *va;
  928. struct vm_struct *tmp;
  929. int i;
  930. for_each_possible_cpu(i) {
  931. struct vmap_block_queue *vbq;
  932. vbq = &per_cpu(vmap_block_queue, i);
  933. spin_lock_init(&vbq->lock);
  934. INIT_LIST_HEAD(&vbq->free);
  935. }
  936. /* Import existing vmlist entries. */
  937. for (tmp = vmlist; tmp; tmp = tmp->next) {
  938. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  939. va->flags = tmp->flags | VM_VM_AREA;
  940. va->va_start = (unsigned long)tmp->addr;
  941. va->va_end = va->va_start + tmp->size;
  942. __insert_vmap_area(va);
  943. }
  944. vmap_area_pcpu_hole = VMALLOC_END;
  945. vmap_initialized = true;
  946. }
  947. /**
  948. * map_kernel_range_noflush - map kernel VM area with the specified pages
  949. * @addr: start of the VM area to map
  950. * @size: size of the VM area to map
  951. * @prot: page protection flags to use
  952. * @pages: pages to map
  953. *
  954. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  955. * specify should have been allocated using get_vm_area() and its
  956. * friends.
  957. *
  958. * NOTE:
  959. * This function does NOT do any cache flushing. The caller is
  960. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  961. * before calling this function.
  962. *
  963. * RETURNS:
  964. * The number of pages mapped on success, -errno on failure.
  965. */
  966. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  967. pgprot_t prot, struct page **pages)
  968. {
  969. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  970. }
  971. /**
  972. * unmap_kernel_range_noflush - unmap kernel VM area
  973. * @addr: start of the VM area to unmap
  974. * @size: size of the VM area to unmap
  975. *
  976. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  977. * specify should have been allocated using get_vm_area() and its
  978. * friends.
  979. *
  980. * NOTE:
  981. * This function does NOT do any cache flushing. The caller is
  982. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  983. * before calling this function and flush_tlb_kernel_range() after.
  984. */
  985. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  986. {
  987. vunmap_page_range(addr, addr + size);
  988. }
  989. /**
  990. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  991. * @addr: start of the VM area to unmap
  992. * @size: size of the VM area to unmap
  993. *
  994. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  995. * the unmapping and tlb after.
  996. */
  997. void unmap_kernel_range(unsigned long addr, unsigned long size)
  998. {
  999. unsigned long end = addr + size;
  1000. flush_cache_vunmap(addr, end);
  1001. vunmap_page_range(addr, end);
  1002. flush_tlb_kernel_range(addr, end);
  1003. }
  1004. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1005. {
  1006. unsigned long addr = (unsigned long)area->addr;
  1007. unsigned long end = addr + area->size - PAGE_SIZE;
  1008. int err;
  1009. err = vmap_page_range(addr, end, prot, *pages);
  1010. if (err > 0) {
  1011. *pages += err;
  1012. err = 0;
  1013. }
  1014. return err;
  1015. }
  1016. EXPORT_SYMBOL_GPL(map_vm_area);
  1017. /*** Old vmalloc interfaces ***/
  1018. DEFINE_RWLOCK(vmlist_lock);
  1019. struct vm_struct *vmlist;
  1020. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1021. unsigned long flags, void *caller)
  1022. {
  1023. struct vm_struct *tmp, **p;
  1024. vm->flags = flags;
  1025. vm->addr = (void *)va->va_start;
  1026. vm->size = va->va_end - va->va_start;
  1027. vm->caller = caller;
  1028. va->private = vm;
  1029. va->flags |= VM_VM_AREA;
  1030. write_lock(&vmlist_lock);
  1031. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1032. if (tmp->addr >= vm->addr)
  1033. break;
  1034. }
  1035. vm->next = *p;
  1036. *p = vm;
  1037. write_unlock(&vmlist_lock);
  1038. }
  1039. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1040. unsigned long align, unsigned long flags, unsigned long start,
  1041. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1042. {
  1043. static struct vmap_area *va;
  1044. struct vm_struct *area;
  1045. BUG_ON(in_interrupt());
  1046. if (flags & VM_IOREMAP) {
  1047. int bit = fls(size);
  1048. if (bit > IOREMAP_MAX_ORDER)
  1049. bit = IOREMAP_MAX_ORDER;
  1050. else if (bit < PAGE_SHIFT)
  1051. bit = PAGE_SHIFT;
  1052. align = 1ul << bit;
  1053. }
  1054. size = PAGE_ALIGN(size);
  1055. if (unlikely(!size))
  1056. return NULL;
  1057. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1058. if (unlikely(!area))
  1059. return NULL;
  1060. /*
  1061. * We always allocate a guard page.
  1062. */
  1063. size += PAGE_SIZE;
  1064. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1065. if (IS_ERR(va)) {
  1066. kfree(area);
  1067. return NULL;
  1068. }
  1069. insert_vmalloc_vm(area, va, flags, caller);
  1070. return area;
  1071. }
  1072. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1073. unsigned long start, unsigned long end)
  1074. {
  1075. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1076. __builtin_return_address(0));
  1077. }
  1078. EXPORT_SYMBOL_GPL(__get_vm_area);
  1079. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1080. unsigned long start, unsigned long end,
  1081. void *caller)
  1082. {
  1083. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1084. caller);
  1085. }
  1086. /**
  1087. * get_vm_area - reserve a contiguous kernel virtual area
  1088. * @size: size of the area
  1089. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1090. *
  1091. * Search an area of @size in the kernel virtual mapping area,
  1092. * and reserved it for out purposes. Returns the area descriptor
  1093. * on success or %NULL on failure.
  1094. */
  1095. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1096. {
  1097. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1098. -1, GFP_KERNEL, __builtin_return_address(0));
  1099. }
  1100. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1101. void *caller)
  1102. {
  1103. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1104. -1, GFP_KERNEL, caller);
  1105. }
  1106. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1107. int node, gfp_t gfp_mask)
  1108. {
  1109. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1110. node, gfp_mask, __builtin_return_address(0));
  1111. }
  1112. static struct vm_struct *find_vm_area(const void *addr)
  1113. {
  1114. struct vmap_area *va;
  1115. va = find_vmap_area((unsigned long)addr);
  1116. if (va && va->flags & VM_VM_AREA)
  1117. return va->private;
  1118. return NULL;
  1119. }
  1120. /**
  1121. * remove_vm_area - find and remove a continuous kernel virtual area
  1122. * @addr: base address
  1123. *
  1124. * Search for the kernel VM area starting at @addr, and remove it.
  1125. * This function returns the found VM area, but using it is NOT safe
  1126. * on SMP machines, except for its size or flags.
  1127. */
  1128. struct vm_struct *remove_vm_area(const void *addr)
  1129. {
  1130. struct vmap_area *va;
  1131. va = find_vmap_area((unsigned long)addr);
  1132. if (va && va->flags & VM_VM_AREA) {
  1133. struct vm_struct *vm = va->private;
  1134. struct vm_struct *tmp, **p;
  1135. /*
  1136. * remove from list and disallow access to this vm_struct
  1137. * before unmap. (address range confliction is maintained by
  1138. * vmap.)
  1139. */
  1140. write_lock(&vmlist_lock);
  1141. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1142. ;
  1143. *p = tmp->next;
  1144. write_unlock(&vmlist_lock);
  1145. vmap_debug_free_range(va->va_start, va->va_end);
  1146. free_unmap_vmap_area(va);
  1147. vm->size -= PAGE_SIZE;
  1148. return vm;
  1149. }
  1150. return NULL;
  1151. }
  1152. static void __vunmap(const void *addr, int deallocate_pages)
  1153. {
  1154. struct vm_struct *area;
  1155. if (!addr)
  1156. return;
  1157. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1158. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1159. return;
  1160. }
  1161. area = remove_vm_area(addr);
  1162. if (unlikely(!area)) {
  1163. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1164. addr);
  1165. return;
  1166. }
  1167. debug_check_no_locks_freed(addr, area->size);
  1168. debug_check_no_obj_freed(addr, area->size);
  1169. if (deallocate_pages) {
  1170. int i;
  1171. for (i = 0; i < area->nr_pages; i++) {
  1172. struct page *page = area->pages[i];
  1173. BUG_ON(!page);
  1174. __free_page(page);
  1175. }
  1176. if (area->flags & VM_VPAGES)
  1177. vfree(area->pages);
  1178. else
  1179. kfree(area->pages);
  1180. }
  1181. kfree(area);
  1182. return;
  1183. }
  1184. /**
  1185. * vfree - release memory allocated by vmalloc()
  1186. * @addr: memory base address
  1187. *
  1188. * Free the virtually continuous memory area starting at @addr, as
  1189. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1190. * NULL, no operation is performed.
  1191. *
  1192. * Must not be called in interrupt context.
  1193. */
  1194. void vfree(const void *addr)
  1195. {
  1196. BUG_ON(in_interrupt());
  1197. kmemleak_free(addr);
  1198. __vunmap(addr, 1);
  1199. }
  1200. EXPORT_SYMBOL(vfree);
  1201. /**
  1202. * vunmap - release virtual mapping obtained by vmap()
  1203. * @addr: memory base address
  1204. *
  1205. * Free the virtually contiguous memory area starting at @addr,
  1206. * which was created from the page array passed to vmap().
  1207. *
  1208. * Must not be called in interrupt context.
  1209. */
  1210. void vunmap(const void *addr)
  1211. {
  1212. BUG_ON(in_interrupt());
  1213. might_sleep();
  1214. __vunmap(addr, 0);
  1215. }
  1216. EXPORT_SYMBOL(vunmap);
  1217. /**
  1218. * vmap - map an array of pages into virtually contiguous space
  1219. * @pages: array of page pointers
  1220. * @count: number of pages to map
  1221. * @flags: vm_area->flags
  1222. * @prot: page protection for the mapping
  1223. *
  1224. * Maps @count pages from @pages into contiguous kernel virtual
  1225. * space.
  1226. */
  1227. void *vmap(struct page **pages, unsigned int count,
  1228. unsigned long flags, pgprot_t prot)
  1229. {
  1230. struct vm_struct *area;
  1231. might_sleep();
  1232. if (count > totalram_pages)
  1233. return NULL;
  1234. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1235. __builtin_return_address(0));
  1236. if (!area)
  1237. return NULL;
  1238. if (map_vm_area(area, prot, &pages)) {
  1239. vunmap(area->addr);
  1240. return NULL;
  1241. }
  1242. return area->addr;
  1243. }
  1244. EXPORT_SYMBOL(vmap);
  1245. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1246. gfp_t gfp_mask, pgprot_t prot,
  1247. int node, void *caller);
  1248. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1249. pgprot_t prot, int node, void *caller)
  1250. {
  1251. struct page **pages;
  1252. unsigned int nr_pages, array_size, i;
  1253. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1254. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1255. array_size = (nr_pages * sizeof(struct page *));
  1256. area->nr_pages = nr_pages;
  1257. /* Please note that the recursion is strictly bounded. */
  1258. if (array_size > PAGE_SIZE) {
  1259. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1260. PAGE_KERNEL, node, caller);
  1261. area->flags |= VM_VPAGES;
  1262. } else {
  1263. pages = kmalloc_node(array_size, nested_gfp, node);
  1264. }
  1265. area->pages = pages;
  1266. area->caller = caller;
  1267. if (!area->pages) {
  1268. remove_vm_area(area->addr);
  1269. kfree(area);
  1270. return NULL;
  1271. }
  1272. for (i = 0; i < area->nr_pages; i++) {
  1273. struct page *page;
  1274. if (node < 0)
  1275. page = alloc_page(gfp_mask);
  1276. else
  1277. page = alloc_pages_node(node, gfp_mask, 0);
  1278. if (unlikely(!page)) {
  1279. /* Successfully allocated i pages, free them in __vunmap() */
  1280. area->nr_pages = i;
  1281. goto fail;
  1282. }
  1283. area->pages[i] = page;
  1284. }
  1285. if (map_vm_area(area, prot, &pages))
  1286. goto fail;
  1287. return area->addr;
  1288. fail:
  1289. vfree(area->addr);
  1290. return NULL;
  1291. }
  1292. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1293. {
  1294. void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
  1295. __builtin_return_address(0));
  1296. /*
  1297. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1298. * structures allocated in the __get_vm_area_node() function contain
  1299. * references to the virtual address of the vmalloc'ed block.
  1300. */
  1301. kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
  1302. return addr;
  1303. }
  1304. /**
  1305. * __vmalloc_node - allocate virtually contiguous memory
  1306. * @size: allocation size
  1307. * @align: desired alignment
  1308. * @gfp_mask: flags for the page level allocator
  1309. * @prot: protection mask for the allocated pages
  1310. * @node: node to use for allocation or -1
  1311. * @caller: caller's return address
  1312. *
  1313. * Allocate enough pages to cover @size from the page level
  1314. * allocator with @gfp_mask flags. Map them into contiguous
  1315. * kernel virtual space, using a pagetable protection of @prot.
  1316. */
  1317. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1318. gfp_t gfp_mask, pgprot_t prot,
  1319. int node, void *caller)
  1320. {
  1321. struct vm_struct *area;
  1322. void *addr;
  1323. unsigned long real_size = size;
  1324. size = PAGE_ALIGN(size);
  1325. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1326. return NULL;
  1327. area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
  1328. VMALLOC_END, node, gfp_mask, caller);
  1329. if (!area)
  1330. return NULL;
  1331. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1332. /*
  1333. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1334. * structures allocated in the __get_vm_area_node() function contain
  1335. * references to the virtual address of the vmalloc'ed block.
  1336. */
  1337. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1338. return addr;
  1339. }
  1340. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1341. {
  1342. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1343. __builtin_return_address(0));
  1344. }
  1345. EXPORT_SYMBOL(__vmalloc);
  1346. /**
  1347. * vmalloc - allocate virtually contiguous memory
  1348. * @size: allocation size
  1349. * Allocate enough pages to cover @size from the page level
  1350. * allocator and map them into contiguous kernel virtual space.
  1351. *
  1352. * For tight control over page level allocator and protection flags
  1353. * use __vmalloc() instead.
  1354. */
  1355. void *vmalloc(unsigned long size)
  1356. {
  1357. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1358. -1, __builtin_return_address(0));
  1359. }
  1360. EXPORT_SYMBOL(vmalloc);
  1361. /**
  1362. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1363. * @size: allocation size
  1364. *
  1365. * The resulting memory area is zeroed so it can be mapped to userspace
  1366. * without leaking data.
  1367. */
  1368. void *vmalloc_user(unsigned long size)
  1369. {
  1370. struct vm_struct *area;
  1371. void *ret;
  1372. ret = __vmalloc_node(size, SHMLBA,
  1373. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1374. PAGE_KERNEL, -1, __builtin_return_address(0));
  1375. if (ret) {
  1376. area = find_vm_area(ret);
  1377. area->flags |= VM_USERMAP;
  1378. }
  1379. return ret;
  1380. }
  1381. EXPORT_SYMBOL(vmalloc_user);
  1382. /**
  1383. * vmalloc_node - allocate memory on a specific node
  1384. * @size: allocation size
  1385. * @node: numa node
  1386. *
  1387. * Allocate enough pages to cover @size from the page level
  1388. * allocator and map them into contiguous kernel virtual space.
  1389. *
  1390. * For tight control over page level allocator and protection flags
  1391. * use __vmalloc() instead.
  1392. */
  1393. void *vmalloc_node(unsigned long size, int node)
  1394. {
  1395. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1396. node, __builtin_return_address(0));
  1397. }
  1398. EXPORT_SYMBOL(vmalloc_node);
  1399. #ifndef PAGE_KERNEL_EXEC
  1400. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1401. #endif
  1402. /**
  1403. * vmalloc_exec - allocate virtually contiguous, executable memory
  1404. * @size: allocation size
  1405. *
  1406. * Kernel-internal function to allocate enough pages to cover @size
  1407. * the page level allocator and map them into contiguous and
  1408. * executable kernel virtual space.
  1409. *
  1410. * For tight control over page level allocator and protection flags
  1411. * use __vmalloc() instead.
  1412. */
  1413. void *vmalloc_exec(unsigned long size)
  1414. {
  1415. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1416. -1, __builtin_return_address(0));
  1417. }
  1418. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1419. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1420. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1421. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1422. #else
  1423. #define GFP_VMALLOC32 GFP_KERNEL
  1424. #endif
  1425. /**
  1426. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1427. * @size: allocation size
  1428. *
  1429. * Allocate enough 32bit PA addressable pages to cover @size from the
  1430. * page level allocator and map them into contiguous kernel virtual space.
  1431. */
  1432. void *vmalloc_32(unsigned long size)
  1433. {
  1434. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1435. -1, __builtin_return_address(0));
  1436. }
  1437. EXPORT_SYMBOL(vmalloc_32);
  1438. /**
  1439. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1440. * @size: allocation size
  1441. *
  1442. * The resulting memory area is 32bit addressable and zeroed so it can be
  1443. * mapped to userspace without leaking data.
  1444. */
  1445. void *vmalloc_32_user(unsigned long size)
  1446. {
  1447. struct vm_struct *area;
  1448. void *ret;
  1449. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1450. -1, __builtin_return_address(0));
  1451. if (ret) {
  1452. area = find_vm_area(ret);
  1453. area->flags |= VM_USERMAP;
  1454. }
  1455. return ret;
  1456. }
  1457. EXPORT_SYMBOL(vmalloc_32_user);
  1458. /*
  1459. * small helper routine , copy contents to buf from addr.
  1460. * If the page is not present, fill zero.
  1461. */
  1462. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1463. {
  1464. struct page *p;
  1465. int copied = 0;
  1466. while (count) {
  1467. unsigned long offset, length;
  1468. offset = (unsigned long)addr & ~PAGE_MASK;
  1469. length = PAGE_SIZE - offset;
  1470. if (length > count)
  1471. length = count;
  1472. p = vmalloc_to_page(addr);
  1473. /*
  1474. * To do safe access to this _mapped_ area, we need
  1475. * lock. But adding lock here means that we need to add
  1476. * overhead of vmalloc()/vfree() calles for this _debug_
  1477. * interface, rarely used. Instead of that, we'll use
  1478. * kmap() and get small overhead in this access function.
  1479. */
  1480. if (p) {
  1481. /*
  1482. * we can expect USER0 is not used (see vread/vwrite's
  1483. * function description)
  1484. */
  1485. void *map = kmap_atomic(p, KM_USER0);
  1486. memcpy(buf, map + offset, length);
  1487. kunmap_atomic(map, KM_USER0);
  1488. } else
  1489. memset(buf, 0, length);
  1490. addr += length;
  1491. buf += length;
  1492. copied += length;
  1493. count -= length;
  1494. }
  1495. return copied;
  1496. }
  1497. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1498. {
  1499. struct page *p;
  1500. int copied = 0;
  1501. while (count) {
  1502. unsigned long offset, length;
  1503. offset = (unsigned long)addr & ~PAGE_MASK;
  1504. length = PAGE_SIZE - offset;
  1505. if (length > count)
  1506. length = count;
  1507. p = vmalloc_to_page(addr);
  1508. /*
  1509. * To do safe access to this _mapped_ area, we need
  1510. * lock. But adding lock here means that we need to add
  1511. * overhead of vmalloc()/vfree() calles for this _debug_
  1512. * interface, rarely used. Instead of that, we'll use
  1513. * kmap() and get small overhead in this access function.
  1514. */
  1515. if (p) {
  1516. /*
  1517. * we can expect USER0 is not used (see vread/vwrite's
  1518. * function description)
  1519. */
  1520. void *map = kmap_atomic(p, KM_USER0);
  1521. memcpy(map + offset, buf, length);
  1522. kunmap_atomic(map, KM_USER0);
  1523. }
  1524. addr += length;
  1525. buf += length;
  1526. copied += length;
  1527. count -= length;
  1528. }
  1529. return copied;
  1530. }
  1531. /**
  1532. * vread() - read vmalloc area in a safe way.
  1533. * @buf: buffer for reading data
  1534. * @addr: vm address.
  1535. * @count: number of bytes to be read.
  1536. *
  1537. * Returns # of bytes which addr and buf should be increased.
  1538. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1539. * includes any intersect with alive vmalloc area.
  1540. *
  1541. * This function checks that addr is a valid vmalloc'ed area, and
  1542. * copy data from that area to a given buffer. If the given memory range
  1543. * of [addr...addr+count) includes some valid address, data is copied to
  1544. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1545. * IOREMAP area is treated as memory hole and no copy is done.
  1546. *
  1547. * If [addr...addr+count) doesn't includes any intersects with alive
  1548. * vm_struct area, returns 0.
  1549. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1550. * the caller should guarantee KM_USER0 is not used.
  1551. *
  1552. * Note: In usual ops, vread() is never necessary because the caller
  1553. * should know vmalloc() area is valid and can use memcpy().
  1554. * This is for routines which have to access vmalloc area without
  1555. * any informaion, as /dev/kmem.
  1556. *
  1557. */
  1558. long vread(char *buf, char *addr, unsigned long count)
  1559. {
  1560. struct vm_struct *tmp;
  1561. char *vaddr, *buf_start = buf;
  1562. unsigned long buflen = count;
  1563. unsigned long n;
  1564. /* Don't allow overflow */
  1565. if ((unsigned long) addr + count < count)
  1566. count = -(unsigned long) addr;
  1567. read_lock(&vmlist_lock);
  1568. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1569. vaddr = (char *) tmp->addr;
  1570. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1571. continue;
  1572. while (addr < vaddr) {
  1573. if (count == 0)
  1574. goto finished;
  1575. *buf = '\0';
  1576. buf++;
  1577. addr++;
  1578. count--;
  1579. }
  1580. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1581. if (n > count)
  1582. n = count;
  1583. if (!(tmp->flags & VM_IOREMAP))
  1584. aligned_vread(buf, addr, n);
  1585. else /* IOREMAP area is treated as memory hole */
  1586. memset(buf, 0, n);
  1587. buf += n;
  1588. addr += n;
  1589. count -= n;
  1590. }
  1591. finished:
  1592. read_unlock(&vmlist_lock);
  1593. if (buf == buf_start)
  1594. return 0;
  1595. /* zero-fill memory holes */
  1596. if (buf != buf_start + buflen)
  1597. memset(buf, 0, buflen - (buf - buf_start));
  1598. return buflen;
  1599. }
  1600. /**
  1601. * vwrite() - write vmalloc area in a safe way.
  1602. * @buf: buffer for source data
  1603. * @addr: vm address.
  1604. * @count: number of bytes to be read.
  1605. *
  1606. * Returns # of bytes which addr and buf should be incresed.
  1607. * (same number to @count).
  1608. * If [addr...addr+count) doesn't includes any intersect with valid
  1609. * vmalloc area, returns 0.
  1610. *
  1611. * This function checks that addr is a valid vmalloc'ed area, and
  1612. * copy data from a buffer to the given addr. If specified range of
  1613. * [addr...addr+count) includes some valid address, data is copied from
  1614. * proper area of @buf. If there are memory holes, no copy to hole.
  1615. * IOREMAP area is treated as memory hole and no copy is done.
  1616. *
  1617. * If [addr...addr+count) doesn't includes any intersects with alive
  1618. * vm_struct area, returns 0.
  1619. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1620. * the caller should guarantee KM_USER0 is not used.
  1621. *
  1622. * Note: In usual ops, vwrite() is never necessary because the caller
  1623. * should know vmalloc() area is valid and can use memcpy().
  1624. * This is for routines which have to access vmalloc area without
  1625. * any informaion, as /dev/kmem.
  1626. *
  1627. * The caller should guarantee KM_USER1 is not used.
  1628. */
  1629. long vwrite(char *buf, char *addr, unsigned long count)
  1630. {
  1631. struct vm_struct *tmp;
  1632. char *vaddr;
  1633. unsigned long n, buflen;
  1634. int copied = 0;
  1635. /* Don't allow overflow */
  1636. if ((unsigned long) addr + count < count)
  1637. count = -(unsigned long) addr;
  1638. buflen = count;
  1639. read_lock(&vmlist_lock);
  1640. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1641. vaddr = (char *) tmp->addr;
  1642. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1643. continue;
  1644. while (addr < vaddr) {
  1645. if (count == 0)
  1646. goto finished;
  1647. buf++;
  1648. addr++;
  1649. count--;
  1650. }
  1651. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1652. if (n > count)
  1653. n = count;
  1654. if (!(tmp->flags & VM_IOREMAP)) {
  1655. aligned_vwrite(buf, addr, n);
  1656. copied++;
  1657. }
  1658. buf += n;
  1659. addr += n;
  1660. count -= n;
  1661. }
  1662. finished:
  1663. read_unlock(&vmlist_lock);
  1664. if (!copied)
  1665. return 0;
  1666. return buflen;
  1667. }
  1668. /**
  1669. * remap_vmalloc_range - map vmalloc pages to userspace
  1670. * @vma: vma to cover (map full range of vma)
  1671. * @addr: vmalloc memory
  1672. * @pgoff: number of pages into addr before first page to map
  1673. *
  1674. * Returns: 0 for success, -Exxx on failure
  1675. *
  1676. * This function checks that addr is a valid vmalloc'ed area, and
  1677. * that it is big enough to cover the vma. Will return failure if
  1678. * that criteria isn't met.
  1679. *
  1680. * Similar to remap_pfn_range() (see mm/memory.c)
  1681. */
  1682. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1683. unsigned long pgoff)
  1684. {
  1685. struct vm_struct *area;
  1686. unsigned long uaddr = vma->vm_start;
  1687. unsigned long usize = vma->vm_end - vma->vm_start;
  1688. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1689. return -EINVAL;
  1690. area = find_vm_area(addr);
  1691. if (!area)
  1692. return -EINVAL;
  1693. if (!(area->flags & VM_USERMAP))
  1694. return -EINVAL;
  1695. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1696. return -EINVAL;
  1697. addr += pgoff << PAGE_SHIFT;
  1698. do {
  1699. struct page *page = vmalloc_to_page(addr);
  1700. int ret;
  1701. ret = vm_insert_page(vma, uaddr, page);
  1702. if (ret)
  1703. return ret;
  1704. uaddr += PAGE_SIZE;
  1705. addr += PAGE_SIZE;
  1706. usize -= PAGE_SIZE;
  1707. } while (usize > 0);
  1708. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1709. vma->vm_flags |= VM_RESERVED;
  1710. return 0;
  1711. }
  1712. EXPORT_SYMBOL(remap_vmalloc_range);
  1713. /*
  1714. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1715. * have one.
  1716. */
  1717. void __attribute__((weak)) vmalloc_sync_all(void)
  1718. {
  1719. }
  1720. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1721. {
  1722. /* apply_to_page_range() does all the hard work. */
  1723. return 0;
  1724. }
  1725. /**
  1726. * alloc_vm_area - allocate a range of kernel address space
  1727. * @size: size of the area
  1728. *
  1729. * Returns: NULL on failure, vm_struct on success
  1730. *
  1731. * This function reserves a range of kernel address space, and
  1732. * allocates pagetables to map that range. No actual mappings
  1733. * are created. If the kernel address space is not shared
  1734. * between processes, it syncs the pagetable across all
  1735. * processes.
  1736. */
  1737. struct vm_struct *alloc_vm_area(size_t size)
  1738. {
  1739. struct vm_struct *area;
  1740. area = get_vm_area_caller(size, VM_IOREMAP,
  1741. __builtin_return_address(0));
  1742. if (area == NULL)
  1743. return NULL;
  1744. /*
  1745. * This ensures that page tables are constructed for this region
  1746. * of kernel virtual address space and mapped into init_mm.
  1747. */
  1748. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1749. area->size, f, NULL)) {
  1750. free_vm_area(area);
  1751. return NULL;
  1752. }
  1753. /* Make sure the pagetables are constructed in process kernel
  1754. mappings */
  1755. vmalloc_sync_all();
  1756. return area;
  1757. }
  1758. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1759. void free_vm_area(struct vm_struct *area)
  1760. {
  1761. struct vm_struct *ret;
  1762. ret = remove_vm_area(area->addr);
  1763. BUG_ON(ret != area);
  1764. kfree(area);
  1765. }
  1766. EXPORT_SYMBOL_GPL(free_vm_area);
  1767. static struct vmap_area *node_to_va(struct rb_node *n)
  1768. {
  1769. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1770. }
  1771. /**
  1772. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1773. * @end: target address
  1774. * @pnext: out arg for the next vmap_area
  1775. * @pprev: out arg for the previous vmap_area
  1776. *
  1777. * Returns: %true if either or both of next and prev are found,
  1778. * %false if no vmap_area exists
  1779. *
  1780. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1781. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1782. */
  1783. static bool pvm_find_next_prev(unsigned long end,
  1784. struct vmap_area **pnext,
  1785. struct vmap_area **pprev)
  1786. {
  1787. struct rb_node *n = vmap_area_root.rb_node;
  1788. struct vmap_area *va = NULL;
  1789. while (n) {
  1790. va = rb_entry(n, struct vmap_area, rb_node);
  1791. if (end < va->va_end)
  1792. n = n->rb_left;
  1793. else if (end > va->va_end)
  1794. n = n->rb_right;
  1795. else
  1796. break;
  1797. }
  1798. if (!va)
  1799. return false;
  1800. if (va->va_end > end) {
  1801. *pnext = va;
  1802. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1803. } else {
  1804. *pprev = va;
  1805. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1806. }
  1807. return true;
  1808. }
  1809. /**
  1810. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1811. * @pnext: in/out arg for the next vmap_area
  1812. * @pprev: in/out arg for the previous vmap_area
  1813. * @align: alignment
  1814. *
  1815. * Returns: determined end address
  1816. *
  1817. * Find the highest aligned address between *@pnext and *@pprev below
  1818. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1819. * down address is between the end addresses of the two vmap_areas.
  1820. *
  1821. * Please note that the address returned by this function may fall
  1822. * inside *@pnext vmap_area. The caller is responsible for checking
  1823. * that.
  1824. */
  1825. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1826. struct vmap_area **pprev,
  1827. unsigned long align)
  1828. {
  1829. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1830. unsigned long addr;
  1831. if (*pnext)
  1832. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1833. else
  1834. addr = vmalloc_end;
  1835. while (*pprev && (*pprev)->va_end > addr) {
  1836. *pnext = *pprev;
  1837. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1838. }
  1839. return addr;
  1840. }
  1841. /**
  1842. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1843. * @offsets: array containing offset of each area
  1844. * @sizes: array containing size of each area
  1845. * @nr_vms: the number of areas to allocate
  1846. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1847. * @gfp_mask: allocation mask
  1848. *
  1849. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1850. * vm_structs on success, %NULL on failure
  1851. *
  1852. * Percpu allocator wants to use congruent vm areas so that it can
  1853. * maintain the offsets among percpu areas. This function allocates
  1854. * congruent vmalloc areas for it. These areas tend to be scattered
  1855. * pretty far, distance between two areas easily going up to
  1856. * gigabytes. To avoid interacting with regular vmallocs, these areas
  1857. * are allocated from top.
  1858. *
  1859. * Despite its complicated look, this allocator is rather simple. It
  1860. * does everything top-down and scans areas from the end looking for
  1861. * matching slot. While scanning, if any of the areas overlaps with
  1862. * existing vmap_area, the base address is pulled down to fit the
  1863. * area. Scanning is repeated till all the areas fit and then all
  1864. * necessary data structres are inserted and the result is returned.
  1865. */
  1866. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1867. const size_t *sizes, int nr_vms,
  1868. size_t align, gfp_t gfp_mask)
  1869. {
  1870. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1871. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1872. struct vmap_area **vas, *prev, *next;
  1873. struct vm_struct **vms;
  1874. int area, area2, last_area, term_area;
  1875. unsigned long base, start, end, last_end;
  1876. bool purged = false;
  1877. gfp_mask &= GFP_RECLAIM_MASK;
  1878. /* verify parameters and allocate data structures */
  1879. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1880. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1881. start = offsets[area];
  1882. end = start + sizes[area];
  1883. /* is everything aligned properly? */
  1884. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1885. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1886. /* detect the area with the highest address */
  1887. if (start > offsets[last_area])
  1888. last_area = area;
  1889. for (area2 = 0; area2 < nr_vms; area2++) {
  1890. unsigned long start2 = offsets[area2];
  1891. unsigned long end2 = start2 + sizes[area2];
  1892. if (area2 == area)
  1893. continue;
  1894. BUG_ON(start2 >= start && start2 < end);
  1895. BUG_ON(end2 <= end && end2 > start);
  1896. }
  1897. }
  1898. last_end = offsets[last_area] + sizes[last_area];
  1899. if (vmalloc_end - vmalloc_start < last_end) {
  1900. WARN_ON(true);
  1901. return NULL;
  1902. }
  1903. vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
  1904. vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
  1905. if (!vas || !vms)
  1906. goto err_free;
  1907. for (area = 0; area < nr_vms; area++) {
  1908. vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
  1909. vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
  1910. if (!vas[area] || !vms[area])
  1911. goto err_free;
  1912. }
  1913. retry:
  1914. spin_lock(&vmap_area_lock);
  1915. /* start scanning - we scan from the top, begin with the last area */
  1916. area = term_area = last_area;
  1917. start = offsets[area];
  1918. end = start + sizes[area];
  1919. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  1920. base = vmalloc_end - last_end;
  1921. goto found;
  1922. }
  1923. base = pvm_determine_end(&next, &prev, align) - end;
  1924. while (true) {
  1925. BUG_ON(next && next->va_end <= base + end);
  1926. BUG_ON(prev && prev->va_end > base + end);
  1927. /*
  1928. * base might have underflowed, add last_end before
  1929. * comparing.
  1930. */
  1931. if (base + last_end < vmalloc_start + last_end) {
  1932. spin_unlock(&vmap_area_lock);
  1933. if (!purged) {
  1934. purge_vmap_area_lazy();
  1935. purged = true;
  1936. goto retry;
  1937. }
  1938. goto err_free;
  1939. }
  1940. /*
  1941. * If next overlaps, move base downwards so that it's
  1942. * right below next and then recheck.
  1943. */
  1944. if (next && next->va_start < base + end) {
  1945. base = pvm_determine_end(&next, &prev, align) - end;
  1946. term_area = area;
  1947. continue;
  1948. }
  1949. /*
  1950. * If prev overlaps, shift down next and prev and move
  1951. * base so that it's right below new next and then
  1952. * recheck.
  1953. */
  1954. if (prev && prev->va_end > base + start) {
  1955. next = prev;
  1956. prev = node_to_va(rb_prev(&next->rb_node));
  1957. base = pvm_determine_end(&next, &prev, align) - end;
  1958. term_area = area;
  1959. continue;
  1960. }
  1961. /*
  1962. * This area fits, move on to the previous one. If
  1963. * the previous one is the terminal one, we're done.
  1964. */
  1965. area = (area + nr_vms - 1) % nr_vms;
  1966. if (area == term_area)
  1967. break;
  1968. start = offsets[area];
  1969. end = start + sizes[area];
  1970. pvm_find_next_prev(base + end, &next, &prev);
  1971. }
  1972. found:
  1973. /* we've found a fitting base, insert all va's */
  1974. for (area = 0; area < nr_vms; area++) {
  1975. struct vmap_area *va = vas[area];
  1976. va->va_start = base + offsets[area];
  1977. va->va_end = va->va_start + sizes[area];
  1978. __insert_vmap_area(va);
  1979. }
  1980. vmap_area_pcpu_hole = base + offsets[last_area];
  1981. spin_unlock(&vmap_area_lock);
  1982. /* insert all vm's */
  1983. for (area = 0; area < nr_vms; area++)
  1984. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  1985. pcpu_get_vm_areas);
  1986. kfree(vas);
  1987. return vms;
  1988. err_free:
  1989. for (area = 0; area < nr_vms; area++) {
  1990. if (vas)
  1991. kfree(vas[area]);
  1992. if (vms)
  1993. kfree(vms[area]);
  1994. }
  1995. kfree(vas);
  1996. kfree(vms);
  1997. return NULL;
  1998. }
  1999. /**
  2000. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2001. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2002. * @nr_vms: the number of allocated areas
  2003. *
  2004. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2005. */
  2006. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2007. {
  2008. int i;
  2009. for (i = 0; i < nr_vms; i++)
  2010. free_vm_area(vms[i]);
  2011. kfree(vms);
  2012. }
  2013. #ifdef CONFIG_PROC_FS
  2014. static void *s_start(struct seq_file *m, loff_t *pos)
  2015. {
  2016. loff_t n = *pos;
  2017. struct vm_struct *v;
  2018. read_lock(&vmlist_lock);
  2019. v = vmlist;
  2020. while (n > 0 && v) {
  2021. n--;
  2022. v = v->next;
  2023. }
  2024. if (!n)
  2025. return v;
  2026. return NULL;
  2027. }
  2028. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2029. {
  2030. struct vm_struct *v = p;
  2031. ++*pos;
  2032. return v->next;
  2033. }
  2034. static void s_stop(struct seq_file *m, void *p)
  2035. {
  2036. read_unlock(&vmlist_lock);
  2037. }
  2038. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2039. {
  2040. if (NUMA_BUILD) {
  2041. unsigned int nr, *counters = m->private;
  2042. if (!counters)
  2043. return;
  2044. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2045. for (nr = 0; nr < v->nr_pages; nr++)
  2046. counters[page_to_nid(v->pages[nr])]++;
  2047. for_each_node_state(nr, N_HIGH_MEMORY)
  2048. if (counters[nr])
  2049. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2050. }
  2051. }
  2052. static int s_show(struct seq_file *m, void *p)
  2053. {
  2054. struct vm_struct *v = p;
  2055. seq_printf(m, "0x%p-0x%p %7ld",
  2056. v->addr, v->addr + v->size, v->size);
  2057. if (v->caller) {
  2058. char buff[KSYM_SYMBOL_LEN];
  2059. seq_putc(m, ' ');
  2060. sprint_symbol(buff, (unsigned long)v->caller);
  2061. seq_puts(m, buff);
  2062. }
  2063. if (v->nr_pages)
  2064. seq_printf(m, " pages=%d", v->nr_pages);
  2065. if (v->phys_addr)
  2066. seq_printf(m, " phys=%lx", v->phys_addr);
  2067. if (v->flags & VM_IOREMAP)
  2068. seq_printf(m, " ioremap");
  2069. if (v->flags & VM_ALLOC)
  2070. seq_printf(m, " vmalloc");
  2071. if (v->flags & VM_MAP)
  2072. seq_printf(m, " vmap");
  2073. if (v->flags & VM_USERMAP)
  2074. seq_printf(m, " user");
  2075. if (v->flags & VM_VPAGES)
  2076. seq_printf(m, " vpages");
  2077. show_numa_info(m, v);
  2078. seq_putc(m, '\n');
  2079. return 0;
  2080. }
  2081. static const struct seq_operations vmalloc_op = {
  2082. .start = s_start,
  2083. .next = s_next,
  2084. .stop = s_stop,
  2085. .show = s_show,
  2086. };
  2087. static int vmalloc_open(struct inode *inode, struct file *file)
  2088. {
  2089. unsigned int *ptr = NULL;
  2090. int ret;
  2091. if (NUMA_BUILD)
  2092. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2093. ret = seq_open(file, &vmalloc_op);
  2094. if (!ret) {
  2095. struct seq_file *m = file->private_data;
  2096. m->private = ptr;
  2097. } else
  2098. kfree(ptr);
  2099. return ret;
  2100. }
  2101. static const struct file_operations proc_vmalloc_operations = {
  2102. .open = vmalloc_open,
  2103. .read = seq_read,
  2104. .llseek = seq_lseek,
  2105. .release = seq_release_private,
  2106. };
  2107. static int __init proc_vmalloc_init(void)
  2108. {
  2109. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2110. return 0;
  2111. }
  2112. module_init(proc_vmalloc_init);
  2113. #endif