slab.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. /*
  143. * Enforce a minimum alignment for the kmalloc caches.
  144. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  145. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  146. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  147. * alignment larger than the alignment of a 64-bit integer.
  148. * ARCH_KMALLOC_MINALIGN allows that.
  149. * Note that increasing this value may disable some debug features.
  150. */
  151. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #ifndef ARCH_SLAB_MINALIGN
  154. /*
  155. * Enforce a minimum alignment for all caches.
  156. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  157. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  158. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  159. * some debug features.
  160. */
  161. #define ARCH_SLAB_MINALIGN 0
  162. #endif
  163. #ifndef ARCH_KMALLOC_FLAGS
  164. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  165. #endif
  166. /* Legal flag mask for kmem_cache_create(). */
  167. #if DEBUG
  168. # define CREATE_MASK (SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | \
  171. SLAB_STORE_USER | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  174. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  175. #else
  176. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  177. SLAB_CACHE_DMA | \
  178. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  179. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  180. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  181. #endif
  182. /*
  183. * kmem_bufctl_t:
  184. *
  185. * Bufctl's are used for linking objs within a slab
  186. * linked offsets.
  187. *
  188. * This implementation relies on "struct page" for locating the cache &
  189. * slab an object belongs to.
  190. * This allows the bufctl structure to be small (one int), but limits
  191. * the number of objects a slab (not a cache) can contain when off-slab
  192. * bufctls are used. The limit is the size of the largest general cache
  193. * that does not use off-slab slabs.
  194. * For 32bit archs with 4 kB pages, is this 56.
  195. * This is not serious, as it is only for large objects, when it is unwise
  196. * to have too many per slab.
  197. * Note: This limit can be raised by introducing a general cache whose size
  198. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  199. */
  200. typedef unsigned int kmem_bufctl_t;
  201. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  202. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  203. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  204. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  205. /*
  206. * struct slab
  207. *
  208. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  209. * for a slab, or allocated from an general cache.
  210. * Slabs are chained into three list: fully used, partial, fully free slabs.
  211. */
  212. struct slab {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. /*
  221. * struct slab_rcu
  222. *
  223. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  224. * arrange for kmem_freepages to be called via RCU. This is useful if
  225. * we need to approach a kernel structure obliquely, from its address
  226. * obtained without the usual locking. We can lock the structure to
  227. * stabilize it and check it's still at the given address, only if we
  228. * can be sure that the memory has not been meanwhile reused for some
  229. * other kind of object (which our subsystem's lock might corrupt).
  230. *
  231. * rcu_read_lock before reading the address, then rcu_read_unlock after
  232. * taking the spinlock within the structure expected at that address.
  233. *
  234. * We assume struct slab_rcu can overlay struct slab when destroying.
  235. */
  236. struct slab_rcu {
  237. struct rcu_head head;
  238. struct kmem_cache *cachep;
  239. void *addr;
  240. };
  241. /*
  242. * struct array_cache
  243. *
  244. * Purpose:
  245. * - LIFO ordering, to hand out cache-warm objects from _alloc
  246. * - reduce the number of linked list operations
  247. * - reduce spinlock operations
  248. *
  249. * The limit is stored in the per-cpu structure to reduce the data cache
  250. * footprint.
  251. *
  252. */
  253. struct array_cache {
  254. unsigned int avail;
  255. unsigned int limit;
  256. unsigned int batchcount;
  257. unsigned int touched;
  258. spinlock_t lock;
  259. void *entry[]; /*
  260. * Must have this definition in here for the proper
  261. * alignment of array_cache. Also simplifies accessing
  262. * the entries.
  263. */
  264. };
  265. /*
  266. * bootstrap: The caches do not work without cpuarrays anymore, but the
  267. * cpuarrays are allocated from the generic caches...
  268. */
  269. #define BOOT_CPUCACHE_ENTRIES 1
  270. struct arraycache_init {
  271. struct array_cache cache;
  272. void *entries[BOOT_CPUCACHE_ENTRIES];
  273. };
  274. /*
  275. * The slab lists for all objects.
  276. */
  277. struct kmem_list3 {
  278. struct list_head slabs_partial; /* partial list first, better asm code */
  279. struct list_head slabs_full;
  280. struct list_head slabs_free;
  281. unsigned long free_objects;
  282. unsigned int free_limit;
  283. unsigned int colour_next; /* Per-node cache coloring */
  284. spinlock_t list_lock;
  285. struct array_cache *shared; /* shared per node */
  286. struct array_cache **alien; /* on other nodes */
  287. unsigned long next_reap; /* updated without locking */
  288. int free_touched; /* updated without locking */
  289. };
  290. /*
  291. * Need this for bootstrapping a per node allocator.
  292. */
  293. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  294. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  295. #define CACHE_CACHE 0
  296. #define SIZE_AC MAX_NUMNODES
  297. #define SIZE_L3 (2 * MAX_NUMNODES)
  298. static int drain_freelist(struct kmem_cache *cache,
  299. struct kmem_list3 *l3, int tofree);
  300. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  301. int node);
  302. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  303. static void cache_reap(struct work_struct *unused);
  304. /*
  305. * This function must be completely optimized away if a constant is passed to
  306. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  307. */
  308. static __always_inline int index_of(const size_t size)
  309. {
  310. extern void __bad_size(void);
  311. if (__builtin_constant_p(size)) {
  312. int i = 0;
  313. #define CACHE(x) \
  314. if (size <=x) \
  315. return i; \
  316. else \
  317. i++;
  318. #include <linux/kmalloc_sizes.h>
  319. #undef CACHE
  320. __bad_size();
  321. } else
  322. __bad_size();
  323. return 0;
  324. }
  325. static int slab_early_init = 1;
  326. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  327. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  328. static void kmem_list3_init(struct kmem_list3 *parent)
  329. {
  330. INIT_LIST_HEAD(&parent->slabs_full);
  331. INIT_LIST_HEAD(&parent->slabs_partial);
  332. INIT_LIST_HEAD(&parent->slabs_free);
  333. parent->shared = NULL;
  334. parent->alien = NULL;
  335. parent->colour_next = 0;
  336. spin_lock_init(&parent->list_lock);
  337. parent->free_objects = 0;
  338. parent->free_touched = 0;
  339. }
  340. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  341. do { \
  342. INIT_LIST_HEAD(listp); \
  343. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  344. } while (0)
  345. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  346. do { \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  348. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  349. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  350. } while (0)
  351. #define CFLGS_OFF_SLAB (0x80000000UL)
  352. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  353. #define BATCHREFILL_LIMIT 16
  354. /*
  355. * Optimization question: fewer reaps means less probability for unnessary
  356. * cpucache drain/refill cycles.
  357. *
  358. * OTOH the cpuarrays can contain lots of objects,
  359. * which could lock up otherwise freeable slabs.
  360. */
  361. #define REAPTIMEOUT_CPUC (2*HZ)
  362. #define REAPTIMEOUT_LIST3 (4*HZ)
  363. #if STATS
  364. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  365. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  366. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  367. #define STATS_INC_GROWN(x) ((x)->grown++)
  368. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  369. #define STATS_SET_HIGH(x) \
  370. do { \
  371. if ((x)->num_active > (x)->high_mark) \
  372. (x)->high_mark = (x)->num_active; \
  373. } while (0)
  374. #define STATS_INC_ERR(x) ((x)->errors++)
  375. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  376. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  377. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  378. #define STATS_SET_FREEABLE(x, i) \
  379. do { \
  380. if ((x)->max_freeable < i) \
  381. (x)->max_freeable = i; \
  382. } while (0)
  383. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  384. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  385. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  386. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  387. #else
  388. #define STATS_INC_ACTIVE(x) do { } while (0)
  389. #define STATS_DEC_ACTIVE(x) do { } while (0)
  390. #define STATS_INC_ALLOCED(x) do { } while (0)
  391. #define STATS_INC_GROWN(x) do { } while (0)
  392. #define STATS_ADD_REAPED(x,y) do { } while (0)
  393. #define STATS_SET_HIGH(x) do { } while (0)
  394. #define STATS_INC_ERR(x) do { } while (0)
  395. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  396. #define STATS_INC_NODEFREES(x) do { } while (0)
  397. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  398. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  399. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  400. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  401. #define STATS_INC_FREEHIT(x) do { } while (0)
  402. #define STATS_INC_FREEMISS(x) do { } while (0)
  403. #endif
  404. #if DEBUG
  405. /*
  406. * memory layout of objects:
  407. * 0 : objp
  408. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  409. * the end of an object is aligned with the end of the real
  410. * allocation. Catches writes behind the end of the allocation.
  411. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  412. * redzone word.
  413. * cachep->obj_offset: The real object.
  414. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  415. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  416. * [BYTES_PER_WORD long]
  417. */
  418. static int obj_offset(struct kmem_cache *cachep)
  419. {
  420. return cachep->obj_offset;
  421. }
  422. static int obj_size(struct kmem_cache *cachep)
  423. {
  424. return cachep->obj_size;
  425. }
  426. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  427. {
  428. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  429. return (unsigned long long*) (objp + obj_offset(cachep) -
  430. sizeof(unsigned long long));
  431. }
  432. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  433. {
  434. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  435. if (cachep->flags & SLAB_STORE_USER)
  436. return (unsigned long long *)(objp + cachep->buffer_size -
  437. sizeof(unsigned long long) -
  438. REDZONE_ALIGN);
  439. return (unsigned long long *) (objp + cachep->buffer_size -
  440. sizeof(unsigned long long));
  441. }
  442. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  443. {
  444. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  445. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  446. }
  447. #else
  448. #define obj_offset(x) 0
  449. #define obj_size(cachep) (cachep->buffer_size)
  450. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  451. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  452. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  453. #endif
  454. #ifdef CONFIG_TRACING
  455. size_t slab_buffer_size(struct kmem_cache *cachep)
  456. {
  457. return cachep->buffer_size;
  458. }
  459. EXPORT_SYMBOL(slab_buffer_size);
  460. #endif
  461. /*
  462. * Do not go above this order unless 0 objects fit into the slab.
  463. */
  464. #define BREAK_GFP_ORDER_HI 1
  465. #define BREAK_GFP_ORDER_LO 0
  466. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  467. /*
  468. * Functions for storing/retrieving the cachep and or slab from the page
  469. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  470. * these are used to find the cache which an obj belongs to.
  471. */
  472. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  473. {
  474. page->lru.next = (struct list_head *)cache;
  475. }
  476. static inline struct kmem_cache *page_get_cache(struct page *page)
  477. {
  478. page = compound_head(page);
  479. BUG_ON(!PageSlab(page));
  480. return (struct kmem_cache *)page->lru.next;
  481. }
  482. static inline void page_set_slab(struct page *page, struct slab *slab)
  483. {
  484. page->lru.prev = (struct list_head *)slab;
  485. }
  486. static inline struct slab *page_get_slab(struct page *page)
  487. {
  488. BUG_ON(!PageSlab(page));
  489. return (struct slab *)page->lru.prev;
  490. }
  491. static inline struct kmem_cache *virt_to_cache(const void *obj)
  492. {
  493. struct page *page = virt_to_head_page(obj);
  494. return page_get_cache(page);
  495. }
  496. static inline struct slab *virt_to_slab(const void *obj)
  497. {
  498. struct page *page = virt_to_head_page(obj);
  499. return page_get_slab(page);
  500. }
  501. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  502. unsigned int idx)
  503. {
  504. return slab->s_mem + cache->buffer_size * idx;
  505. }
  506. /*
  507. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  508. * Using the fact that buffer_size is a constant for a particular cache,
  509. * we can replace (offset / cache->buffer_size) by
  510. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  511. */
  512. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  513. const struct slab *slab, void *obj)
  514. {
  515. u32 offset = (obj - slab->s_mem);
  516. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  517. }
  518. /*
  519. * These are the default caches for kmalloc. Custom caches can have other sizes.
  520. */
  521. struct cache_sizes malloc_sizes[] = {
  522. #define CACHE(x) { .cs_size = (x) },
  523. #include <linux/kmalloc_sizes.h>
  524. CACHE(ULONG_MAX)
  525. #undef CACHE
  526. };
  527. EXPORT_SYMBOL(malloc_sizes);
  528. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  529. struct cache_names {
  530. char *name;
  531. char *name_dma;
  532. };
  533. static struct cache_names __initdata cache_names[] = {
  534. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  535. #include <linux/kmalloc_sizes.h>
  536. {NULL,}
  537. #undef CACHE
  538. };
  539. static struct arraycache_init initarray_cache __initdata =
  540. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  541. static struct arraycache_init initarray_generic =
  542. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  543. /* internal cache of cache description objs */
  544. static struct kmem_cache cache_cache = {
  545. .batchcount = 1,
  546. .limit = BOOT_CPUCACHE_ENTRIES,
  547. .shared = 1,
  548. .buffer_size = sizeof(struct kmem_cache),
  549. .name = "kmem_cache",
  550. };
  551. #define BAD_ALIEN_MAGIC 0x01020304ul
  552. /*
  553. * chicken and egg problem: delay the per-cpu array allocation
  554. * until the general caches are up.
  555. */
  556. static enum {
  557. NONE,
  558. PARTIAL_AC,
  559. PARTIAL_L3,
  560. EARLY,
  561. FULL
  562. } g_cpucache_up;
  563. /*
  564. * used by boot code to determine if it can use slab based allocator
  565. */
  566. int slab_is_available(void)
  567. {
  568. return g_cpucache_up >= EARLY;
  569. }
  570. #ifdef CONFIG_LOCKDEP
  571. /*
  572. * Slab sometimes uses the kmalloc slabs to store the slab headers
  573. * for other slabs "off slab".
  574. * The locking for this is tricky in that it nests within the locks
  575. * of all other slabs in a few places; to deal with this special
  576. * locking we put on-slab caches into a separate lock-class.
  577. *
  578. * We set lock class for alien array caches which are up during init.
  579. * The lock annotation will be lost if all cpus of a node goes down and
  580. * then comes back up during hotplug
  581. */
  582. static struct lock_class_key on_slab_l3_key;
  583. static struct lock_class_key on_slab_alc_key;
  584. static void init_node_lock_keys(int q)
  585. {
  586. struct cache_sizes *s = malloc_sizes;
  587. if (g_cpucache_up != FULL)
  588. return;
  589. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  590. struct array_cache **alc;
  591. struct kmem_list3 *l3;
  592. int r;
  593. l3 = s->cs_cachep->nodelists[q];
  594. if (!l3 || OFF_SLAB(s->cs_cachep))
  595. continue;
  596. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  597. alc = l3->alien;
  598. /*
  599. * FIXME: This check for BAD_ALIEN_MAGIC
  600. * should go away when common slab code is taught to
  601. * work even without alien caches.
  602. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  603. * for alloc_alien_cache,
  604. */
  605. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  606. continue;
  607. for_each_node(r) {
  608. if (alc[r])
  609. lockdep_set_class(&alc[r]->lock,
  610. &on_slab_alc_key);
  611. }
  612. }
  613. }
  614. static inline void init_lock_keys(void)
  615. {
  616. int node;
  617. for_each_node(node)
  618. init_node_lock_keys(node);
  619. }
  620. #else
  621. static void init_node_lock_keys(int q)
  622. {
  623. }
  624. static inline void init_lock_keys(void)
  625. {
  626. }
  627. #endif
  628. /*
  629. * Guard access to the cache-chain.
  630. */
  631. static DEFINE_MUTEX(cache_chain_mutex);
  632. static struct list_head cache_chain;
  633. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  634. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  635. {
  636. return cachep->array[smp_processor_id()];
  637. }
  638. static inline struct kmem_cache *__find_general_cachep(size_t size,
  639. gfp_t gfpflags)
  640. {
  641. struct cache_sizes *csizep = malloc_sizes;
  642. #if DEBUG
  643. /* This happens if someone tries to call
  644. * kmem_cache_create(), or __kmalloc(), before
  645. * the generic caches are initialized.
  646. */
  647. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  648. #endif
  649. if (!size)
  650. return ZERO_SIZE_PTR;
  651. while (size > csizep->cs_size)
  652. csizep++;
  653. /*
  654. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  655. * has cs_{dma,}cachep==NULL. Thus no special case
  656. * for large kmalloc calls required.
  657. */
  658. #ifdef CONFIG_ZONE_DMA
  659. if (unlikely(gfpflags & GFP_DMA))
  660. return csizep->cs_dmacachep;
  661. #endif
  662. return csizep->cs_cachep;
  663. }
  664. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  665. {
  666. return __find_general_cachep(size, gfpflags);
  667. }
  668. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  669. {
  670. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  671. }
  672. /*
  673. * Calculate the number of objects and left-over bytes for a given buffer size.
  674. */
  675. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  676. size_t align, int flags, size_t *left_over,
  677. unsigned int *num)
  678. {
  679. int nr_objs;
  680. size_t mgmt_size;
  681. size_t slab_size = PAGE_SIZE << gfporder;
  682. /*
  683. * The slab management structure can be either off the slab or
  684. * on it. For the latter case, the memory allocated for a
  685. * slab is used for:
  686. *
  687. * - The struct slab
  688. * - One kmem_bufctl_t for each object
  689. * - Padding to respect alignment of @align
  690. * - @buffer_size bytes for each object
  691. *
  692. * If the slab management structure is off the slab, then the
  693. * alignment will already be calculated into the size. Because
  694. * the slabs are all pages aligned, the objects will be at the
  695. * correct alignment when allocated.
  696. */
  697. if (flags & CFLGS_OFF_SLAB) {
  698. mgmt_size = 0;
  699. nr_objs = slab_size / buffer_size;
  700. if (nr_objs > SLAB_LIMIT)
  701. nr_objs = SLAB_LIMIT;
  702. } else {
  703. /*
  704. * Ignore padding for the initial guess. The padding
  705. * is at most @align-1 bytes, and @buffer_size is at
  706. * least @align. In the worst case, this result will
  707. * be one greater than the number of objects that fit
  708. * into the memory allocation when taking the padding
  709. * into account.
  710. */
  711. nr_objs = (slab_size - sizeof(struct slab)) /
  712. (buffer_size + sizeof(kmem_bufctl_t));
  713. /*
  714. * This calculated number will be either the right
  715. * amount, or one greater than what we want.
  716. */
  717. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  718. > slab_size)
  719. nr_objs--;
  720. if (nr_objs > SLAB_LIMIT)
  721. nr_objs = SLAB_LIMIT;
  722. mgmt_size = slab_mgmt_size(nr_objs, align);
  723. }
  724. *num = nr_objs;
  725. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  726. }
  727. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  728. static void __slab_error(const char *function, struct kmem_cache *cachep,
  729. char *msg)
  730. {
  731. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  732. function, cachep->name, msg);
  733. dump_stack();
  734. }
  735. /*
  736. * By default on NUMA we use alien caches to stage the freeing of
  737. * objects allocated from other nodes. This causes massive memory
  738. * inefficiencies when using fake NUMA setup to split memory into a
  739. * large number of small nodes, so it can be disabled on the command
  740. * line
  741. */
  742. static int use_alien_caches __read_mostly = 1;
  743. static int __init noaliencache_setup(char *s)
  744. {
  745. use_alien_caches = 0;
  746. return 1;
  747. }
  748. __setup("noaliencache", noaliencache_setup);
  749. #ifdef CONFIG_NUMA
  750. /*
  751. * Special reaping functions for NUMA systems called from cache_reap().
  752. * These take care of doing round robin flushing of alien caches (containing
  753. * objects freed on different nodes from which they were allocated) and the
  754. * flushing of remote pcps by calling drain_node_pages.
  755. */
  756. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  757. static void init_reap_node(int cpu)
  758. {
  759. int node;
  760. node = next_node(cpu_to_node(cpu), node_online_map);
  761. if (node == MAX_NUMNODES)
  762. node = first_node(node_online_map);
  763. per_cpu(slab_reap_node, cpu) = node;
  764. }
  765. static void next_reap_node(void)
  766. {
  767. int node = __get_cpu_var(slab_reap_node);
  768. node = next_node(node, node_online_map);
  769. if (unlikely(node >= MAX_NUMNODES))
  770. node = first_node(node_online_map);
  771. __get_cpu_var(slab_reap_node) = node;
  772. }
  773. #else
  774. #define init_reap_node(cpu) do { } while (0)
  775. #define next_reap_node(void) do { } while (0)
  776. #endif
  777. /*
  778. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  779. * via the workqueue/eventd.
  780. * Add the CPU number into the expiration time to minimize the possibility of
  781. * the CPUs getting into lockstep and contending for the global cache chain
  782. * lock.
  783. */
  784. static void __cpuinit start_cpu_timer(int cpu)
  785. {
  786. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  787. /*
  788. * When this gets called from do_initcalls via cpucache_init(),
  789. * init_workqueues() has already run, so keventd will be setup
  790. * at that time.
  791. */
  792. if (keventd_up() && reap_work->work.func == NULL) {
  793. init_reap_node(cpu);
  794. INIT_DELAYED_WORK(reap_work, cache_reap);
  795. schedule_delayed_work_on(cpu, reap_work,
  796. __round_jiffies_relative(HZ, cpu));
  797. }
  798. }
  799. static struct array_cache *alloc_arraycache(int node, int entries,
  800. int batchcount, gfp_t gfp)
  801. {
  802. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  803. struct array_cache *nc = NULL;
  804. nc = kmalloc_node(memsize, gfp, node);
  805. /*
  806. * The array_cache structures contain pointers to free object.
  807. * However, when such objects are allocated or transfered to another
  808. * cache the pointers are not cleared and they could be counted as
  809. * valid references during a kmemleak scan. Therefore, kmemleak must
  810. * not scan such objects.
  811. */
  812. kmemleak_no_scan(nc);
  813. if (nc) {
  814. nc->avail = 0;
  815. nc->limit = entries;
  816. nc->batchcount = batchcount;
  817. nc->touched = 0;
  818. spin_lock_init(&nc->lock);
  819. }
  820. return nc;
  821. }
  822. /*
  823. * Transfer objects in one arraycache to another.
  824. * Locking must be handled by the caller.
  825. *
  826. * Return the number of entries transferred.
  827. */
  828. static int transfer_objects(struct array_cache *to,
  829. struct array_cache *from, unsigned int max)
  830. {
  831. /* Figure out how many entries to transfer */
  832. int nr = min(min(from->avail, max), to->limit - to->avail);
  833. if (!nr)
  834. return 0;
  835. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  836. sizeof(void *) *nr);
  837. from->avail -= nr;
  838. to->avail += nr;
  839. return nr;
  840. }
  841. #ifndef CONFIG_NUMA
  842. #define drain_alien_cache(cachep, alien) do { } while (0)
  843. #define reap_alien(cachep, l3) do { } while (0)
  844. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  845. {
  846. return (struct array_cache **)BAD_ALIEN_MAGIC;
  847. }
  848. static inline void free_alien_cache(struct array_cache **ac_ptr)
  849. {
  850. }
  851. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  852. {
  853. return 0;
  854. }
  855. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  856. gfp_t flags)
  857. {
  858. return NULL;
  859. }
  860. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  861. gfp_t flags, int nodeid)
  862. {
  863. return NULL;
  864. }
  865. #else /* CONFIG_NUMA */
  866. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  867. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  868. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  869. {
  870. struct array_cache **ac_ptr;
  871. int memsize = sizeof(void *) * nr_node_ids;
  872. int i;
  873. if (limit > 1)
  874. limit = 12;
  875. ac_ptr = kzalloc_node(memsize, gfp, node);
  876. if (ac_ptr) {
  877. for_each_node(i) {
  878. if (i == node || !node_online(i))
  879. continue;
  880. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  881. if (!ac_ptr[i]) {
  882. for (i--; i >= 0; i--)
  883. kfree(ac_ptr[i]);
  884. kfree(ac_ptr);
  885. return NULL;
  886. }
  887. }
  888. }
  889. return ac_ptr;
  890. }
  891. static void free_alien_cache(struct array_cache **ac_ptr)
  892. {
  893. int i;
  894. if (!ac_ptr)
  895. return;
  896. for_each_node(i)
  897. kfree(ac_ptr[i]);
  898. kfree(ac_ptr);
  899. }
  900. static void __drain_alien_cache(struct kmem_cache *cachep,
  901. struct array_cache *ac, int node)
  902. {
  903. struct kmem_list3 *rl3 = cachep->nodelists[node];
  904. if (ac->avail) {
  905. spin_lock(&rl3->list_lock);
  906. /*
  907. * Stuff objects into the remote nodes shared array first.
  908. * That way we could avoid the overhead of putting the objects
  909. * into the free lists and getting them back later.
  910. */
  911. if (rl3->shared)
  912. transfer_objects(rl3->shared, ac, ac->limit);
  913. free_block(cachep, ac->entry, ac->avail, node);
  914. ac->avail = 0;
  915. spin_unlock(&rl3->list_lock);
  916. }
  917. }
  918. /*
  919. * Called from cache_reap() to regularly drain alien caches round robin.
  920. */
  921. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  922. {
  923. int node = __get_cpu_var(slab_reap_node);
  924. if (l3->alien) {
  925. struct array_cache *ac = l3->alien[node];
  926. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  927. __drain_alien_cache(cachep, ac, node);
  928. spin_unlock_irq(&ac->lock);
  929. }
  930. }
  931. }
  932. static void drain_alien_cache(struct kmem_cache *cachep,
  933. struct array_cache **alien)
  934. {
  935. int i = 0;
  936. struct array_cache *ac;
  937. unsigned long flags;
  938. for_each_online_node(i) {
  939. ac = alien[i];
  940. if (ac) {
  941. spin_lock_irqsave(&ac->lock, flags);
  942. __drain_alien_cache(cachep, ac, i);
  943. spin_unlock_irqrestore(&ac->lock, flags);
  944. }
  945. }
  946. }
  947. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  948. {
  949. struct slab *slabp = virt_to_slab(objp);
  950. int nodeid = slabp->nodeid;
  951. struct kmem_list3 *l3;
  952. struct array_cache *alien = NULL;
  953. int node;
  954. node = numa_node_id();
  955. /*
  956. * Make sure we are not freeing a object from another node to the array
  957. * cache on this cpu.
  958. */
  959. if (likely(slabp->nodeid == node))
  960. return 0;
  961. l3 = cachep->nodelists[node];
  962. STATS_INC_NODEFREES(cachep);
  963. if (l3->alien && l3->alien[nodeid]) {
  964. alien = l3->alien[nodeid];
  965. spin_lock(&alien->lock);
  966. if (unlikely(alien->avail == alien->limit)) {
  967. STATS_INC_ACOVERFLOW(cachep);
  968. __drain_alien_cache(cachep, alien, nodeid);
  969. }
  970. alien->entry[alien->avail++] = objp;
  971. spin_unlock(&alien->lock);
  972. } else {
  973. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  974. free_block(cachep, &objp, 1, nodeid);
  975. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  976. }
  977. return 1;
  978. }
  979. #endif
  980. static void __cpuinit cpuup_canceled(long cpu)
  981. {
  982. struct kmem_cache *cachep;
  983. struct kmem_list3 *l3 = NULL;
  984. int node = cpu_to_node(cpu);
  985. const struct cpumask *mask = cpumask_of_node(node);
  986. list_for_each_entry(cachep, &cache_chain, next) {
  987. struct array_cache *nc;
  988. struct array_cache *shared;
  989. struct array_cache **alien;
  990. /* cpu is dead; no one can alloc from it. */
  991. nc = cachep->array[cpu];
  992. cachep->array[cpu] = NULL;
  993. l3 = cachep->nodelists[node];
  994. if (!l3)
  995. goto free_array_cache;
  996. spin_lock_irq(&l3->list_lock);
  997. /* Free limit for this kmem_list3 */
  998. l3->free_limit -= cachep->batchcount;
  999. if (nc)
  1000. free_block(cachep, nc->entry, nc->avail, node);
  1001. if (!cpumask_empty(mask)) {
  1002. spin_unlock_irq(&l3->list_lock);
  1003. goto free_array_cache;
  1004. }
  1005. shared = l3->shared;
  1006. if (shared) {
  1007. free_block(cachep, shared->entry,
  1008. shared->avail, node);
  1009. l3->shared = NULL;
  1010. }
  1011. alien = l3->alien;
  1012. l3->alien = NULL;
  1013. spin_unlock_irq(&l3->list_lock);
  1014. kfree(shared);
  1015. if (alien) {
  1016. drain_alien_cache(cachep, alien);
  1017. free_alien_cache(alien);
  1018. }
  1019. free_array_cache:
  1020. kfree(nc);
  1021. }
  1022. /*
  1023. * In the previous loop, all the objects were freed to
  1024. * the respective cache's slabs, now we can go ahead and
  1025. * shrink each nodelist to its limit.
  1026. */
  1027. list_for_each_entry(cachep, &cache_chain, next) {
  1028. l3 = cachep->nodelists[node];
  1029. if (!l3)
  1030. continue;
  1031. drain_freelist(cachep, l3, l3->free_objects);
  1032. }
  1033. }
  1034. static int __cpuinit cpuup_prepare(long cpu)
  1035. {
  1036. struct kmem_cache *cachep;
  1037. struct kmem_list3 *l3 = NULL;
  1038. int node = cpu_to_node(cpu);
  1039. const int memsize = sizeof(struct kmem_list3);
  1040. /*
  1041. * We need to do this right in the beginning since
  1042. * alloc_arraycache's are going to use this list.
  1043. * kmalloc_node allows us to add the slab to the right
  1044. * kmem_list3 and not this cpu's kmem_list3
  1045. */
  1046. list_for_each_entry(cachep, &cache_chain, next) {
  1047. /*
  1048. * Set up the size64 kmemlist for cpu before we can
  1049. * begin anything. Make sure some other cpu on this
  1050. * node has not already allocated this
  1051. */
  1052. if (!cachep->nodelists[node]) {
  1053. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1054. if (!l3)
  1055. goto bad;
  1056. kmem_list3_init(l3);
  1057. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1058. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1059. /*
  1060. * The l3s don't come and go as CPUs come and
  1061. * go. cache_chain_mutex is sufficient
  1062. * protection here.
  1063. */
  1064. cachep->nodelists[node] = l3;
  1065. }
  1066. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1067. cachep->nodelists[node]->free_limit =
  1068. (1 + nr_cpus_node(node)) *
  1069. cachep->batchcount + cachep->num;
  1070. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1071. }
  1072. /*
  1073. * Now we can go ahead with allocating the shared arrays and
  1074. * array caches
  1075. */
  1076. list_for_each_entry(cachep, &cache_chain, next) {
  1077. struct array_cache *nc;
  1078. struct array_cache *shared = NULL;
  1079. struct array_cache **alien = NULL;
  1080. nc = alloc_arraycache(node, cachep->limit,
  1081. cachep->batchcount, GFP_KERNEL);
  1082. if (!nc)
  1083. goto bad;
  1084. if (cachep->shared) {
  1085. shared = alloc_arraycache(node,
  1086. cachep->shared * cachep->batchcount,
  1087. 0xbaadf00d, GFP_KERNEL);
  1088. if (!shared) {
  1089. kfree(nc);
  1090. goto bad;
  1091. }
  1092. }
  1093. if (use_alien_caches) {
  1094. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1095. if (!alien) {
  1096. kfree(shared);
  1097. kfree(nc);
  1098. goto bad;
  1099. }
  1100. }
  1101. cachep->array[cpu] = nc;
  1102. l3 = cachep->nodelists[node];
  1103. BUG_ON(!l3);
  1104. spin_lock_irq(&l3->list_lock);
  1105. if (!l3->shared) {
  1106. /*
  1107. * We are serialised from CPU_DEAD or
  1108. * CPU_UP_CANCELLED by the cpucontrol lock
  1109. */
  1110. l3->shared = shared;
  1111. shared = NULL;
  1112. }
  1113. #ifdef CONFIG_NUMA
  1114. if (!l3->alien) {
  1115. l3->alien = alien;
  1116. alien = NULL;
  1117. }
  1118. #endif
  1119. spin_unlock_irq(&l3->list_lock);
  1120. kfree(shared);
  1121. free_alien_cache(alien);
  1122. }
  1123. init_node_lock_keys(node);
  1124. return 0;
  1125. bad:
  1126. cpuup_canceled(cpu);
  1127. return -ENOMEM;
  1128. }
  1129. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1130. unsigned long action, void *hcpu)
  1131. {
  1132. long cpu = (long)hcpu;
  1133. int err = 0;
  1134. switch (action) {
  1135. case CPU_UP_PREPARE:
  1136. case CPU_UP_PREPARE_FROZEN:
  1137. mutex_lock(&cache_chain_mutex);
  1138. err = cpuup_prepare(cpu);
  1139. mutex_unlock(&cache_chain_mutex);
  1140. break;
  1141. case CPU_ONLINE:
  1142. case CPU_ONLINE_FROZEN:
  1143. start_cpu_timer(cpu);
  1144. break;
  1145. #ifdef CONFIG_HOTPLUG_CPU
  1146. case CPU_DOWN_PREPARE:
  1147. case CPU_DOWN_PREPARE_FROZEN:
  1148. /*
  1149. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1150. * held so that if cache_reap() is invoked it cannot do
  1151. * anything expensive but will only modify reap_work
  1152. * and reschedule the timer.
  1153. */
  1154. cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
  1155. /* Now the cache_reaper is guaranteed to be not running. */
  1156. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1157. break;
  1158. case CPU_DOWN_FAILED:
  1159. case CPU_DOWN_FAILED_FROZEN:
  1160. start_cpu_timer(cpu);
  1161. break;
  1162. case CPU_DEAD:
  1163. case CPU_DEAD_FROZEN:
  1164. /*
  1165. * Even if all the cpus of a node are down, we don't free the
  1166. * kmem_list3 of any cache. This to avoid a race between
  1167. * cpu_down, and a kmalloc allocation from another cpu for
  1168. * memory from the node of the cpu going down. The list3
  1169. * structure is usually allocated from kmem_cache_create() and
  1170. * gets destroyed at kmem_cache_destroy().
  1171. */
  1172. /* fall through */
  1173. #endif
  1174. case CPU_UP_CANCELED:
  1175. case CPU_UP_CANCELED_FROZEN:
  1176. mutex_lock(&cache_chain_mutex);
  1177. cpuup_canceled(cpu);
  1178. mutex_unlock(&cache_chain_mutex);
  1179. break;
  1180. }
  1181. return err ? NOTIFY_BAD : NOTIFY_OK;
  1182. }
  1183. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1184. &cpuup_callback, NULL, 0
  1185. };
  1186. /*
  1187. * swap the static kmem_list3 with kmalloced memory
  1188. */
  1189. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1190. int nodeid)
  1191. {
  1192. struct kmem_list3 *ptr;
  1193. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1194. BUG_ON(!ptr);
  1195. memcpy(ptr, list, sizeof(struct kmem_list3));
  1196. /*
  1197. * Do not assume that spinlocks can be initialized via memcpy:
  1198. */
  1199. spin_lock_init(&ptr->list_lock);
  1200. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1201. cachep->nodelists[nodeid] = ptr;
  1202. }
  1203. /*
  1204. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1205. * size of kmem_list3.
  1206. */
  1207. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1208. {
  1209. int node;
  1210. for_each_online_node(node) {
  1211. cachep->nodelists[node] = &initkmem_list3[index + node];
  1212. cachep->nodelists[node]->next_reap = jiffies +
  1213. REAPTIMEOUT_LIST3 +
  1214. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1215. }
  1216. }
  1217. /*
  1218. * Initialisation. Called after the page allocator have been initialised and
  1219. * before smp_init().
  1220. */
  1221. void __init kmem_cache_init(void)
  1222. {
  1223. size_t left_over;
  1224. struct cache_sizes *sizes;
  1225. struct cache_names *names;
  1226. int i;
  1227. int order;
  1228. int node;
  1229. if (num_possible_nodes() == 1)
  1230. use_alien_caches = 0;
  1231. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1232. kmem_list3_init(&initkmem_list3[i]);
  1233. if (i < MAX_NUMNODES)
  1234. cache_cache.nodelists[i] = NULL;
  1235. }
  1236. set_up_list3s(&cache_cache, CACHE_CACHE);
  1237. /*
  1238. * Fragmentation resistance on low memory - only use bigger
  1239. * page orders on machines with more than 32MB of memory.
  1240. */
  1241. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1242. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1243. /* Bootstrap is tricky, because several objects are allocated
  1244. * from caches that do not exist yet:
  1245. * 1) initialize the cache_cache cache: it contains the struct
  1246. * kmem_cache structures of all caches, except cache_cache itself:
  1247. * cache_cache is statically allocated.
  1248. * Initially an __init data area is used for the head array and the
  1249. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1250. * array at the end of the bootstrap.
  1251. * 2) Create the first kmalloc cache.
  1252. * The struct kmem_cache for the new cache is allocated normally.
  1253. * An __init data area is used for the head array.
  1254. * 3) Create the remaining kmalloc caches, with minimally sized
  1255. * head arrays.
  1256. * 4) Replace the __init data head arrays for cache_cache and the first
  1257. * kmalloc cache with kmalloc allocated arrays.
  1258. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1259. * the other cache's with kmalloc allocated memory.
  1260. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1261. */
  1262. node = numa_node_id();
  1263. /* 1) create the cache_cache */
  1264. INIT_LIST_HEAD(&cache_chain);
  1265. list_add(&cache_cache.next, &cache_chain);
  1266. cache_cache.colour_off = cache_line_size();
  1267. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1268. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1269. /*
  1270. * struct kmem_cache size depends on nr_node_ids, which
  1271. * can be less than MAX_NUMNODES.
  1272. */
  1273. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1274. nr_node_ids * sizeof(struct kmem_list3 *);
  1275. #if DEBUG
  1276. cache_cache.obj_size = cache_cache.buffer_size;
  1277. #endif
  1278. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1279. cache_line_size());
  1280. cache_cache.reciprocal_buffer_size =
  1281. reciprocal_value(cache_cache.buffer_size);
  1282. for (order = 0; order < MAX_ORDER; order++) {
  1283. cache_estimate(order, cache_cache.buffer_size,
  1284. cache_line_size(), 0, &left_over, &cache_cache.num);
  1285. if (cache_cache.num)
  1286. break;
  1287. }
  1288. BUG_ON(!cache_cache.num);
  1289. cache_cache.gfporder = order;
  1290. cache_cache.colour = left_over / cache_cache.colour_off;
  1291. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1292. sizeof(struct slab), cache_line_size());
  1293. /* 2+3) create the kmalloc caches */
  1294. sizes = malloc_sizes;
  1295. names = cache_names;
  1296. /*
  1297. * Initialize the caches that provide memory for the array cache and the
  1298. * kmem_list3 structures first. Without this, further allocations will
  1299. * bug.
  1300. */
  1301. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1302. sizes[INDEX_AC].cs_size,
  1303. ARCH_KMALLOC_MINALIGN,
  1304. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1305. NULL);
  1306. if (INDEX_AC != INDEX_L3) {
  1307. sizes[INDEX_L3].cs_cachep =
  1308. kmem_cache_create(names[INDEX_L3].name,
  1309. sizes[INDEX_L3].cs_size,
  1310. ARCH_KMALLOC_MINALIGN,
  1311. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1312. NULL);
  1313. }
  1314. slab_early_init = 0;
  1315. while (sizes->cs_size != ULONG_MAX) {
  1316. /*
  1317. * For performance, all the general caches are L1 aligned.
  1318. * This should be particularly beneficial on SMP boxes, as it
  1319. * eliminates "false sharing".
  1320. * Note for systems short on memory removing the alignment will
  1321. * allow tighter packing of the smaller caches.
  1322. */
  1323. if (!sizes->cs_cachep) {
  1324. sizes->cs_cachep = kmem_cache_create(names->name,
  1325. sizes->cs_size,
  1326. ARCH_KMALLOC_MINALIGN,
  1327. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1328. NULL);
  1329. }
  1330. #ifdef CONFIG_ZONE_DMA
  1331. sizes->cs_dmacachep = kmem_cache_create(
  1332. names->name_dma,
  1333. sizes->cs_size,
  1334. ARCH_KMALLOC_MINALIGN,
  1335. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1336. SLAB_PANIC,
  1337. NULL);
  1338. #endif
  1339. sizes++;
  1340. names++;
  1341. }
  1342. /* 4) Replace the bootstrap head arrays */
  1343. {
  1344. struct array_cache *ptr;
  1345. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1346. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1347. memcpy(ptr, cpu_cache_get(&cache_cache),
  1348. sizeof(struct arraycache_init));
  1349. /*
  1350. * Do not assume that spinlocks can be initialized via memcpy:
  1351. */
  1352. spin_lock_init(&ptr->lock);
  1353. cache_cache.array[smp_processor_id()] = ptr;
  1354. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1355. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1356. != &initarray_generic.cache);
  1357. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1358. sizeof(struct arraycache_init));
  1359. /*
  1360. * Do not assume that spinlocks can be initialized via memcpy:
  1361. */
  1362. spin_lock_init(&ptr->lock);
  1363. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1364. ptr;
  1365. }
  1366. /* 5) Replace the bootstrap kmem_list3's */
  1367. {
  1368. int nid;
  1369. for_each_online_node(nid) {
  1370. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1371. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1372. &initkmem_list3[SIZE_AC + nid], nid);
  1373. if (INDEX_AC != INDEX_L3) {
  1374. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1375. &initkmem_list3[SIZE_L3 + nid], nid);
  1376. }
  1377. }
  1378. }
  1379. g_cpucache_up = EARLY;
  1380. }
  1381. void __init kmem_cache_init_late(void)
  1382. {
  1383. struct kmem_cache *cachep;
  1384. /* 6) resize the head arrays to their final sizes */
  1385. mutex_lock(&cache_chain_mutex);
  1386. list_for_each_entry(cachep, &cache_chain, next)
  1387. if (enable_cpucache(cachep, GFP_NOWAIT))
  1388. BUG();
  1389. mutex_unlock(&cache_chain_mutex);
  1390. /* Done! */
  1391. g_cpucache_up = FULL;
  1392. /* Annotate slab for lockdep -- annotate the malloc caches */
  1393. init_lock_keys();
  1394. /*
  1395. * Register a cpu startup notifier callback that initializes
  1396. * cpu_cache_get for all new cpus
  1397. */
  1398. register_cpu_notifier(&cpucache_notifier);
  1399. /*
  1400. * The reap timers are started later, with a module init call: That part
  1401. * of the kernel is not yet operational.
  1402. */
  1403. }
  1404. static int __init cpucache_init(void)
  1405. {
  1406. int cpu;
  1407. /*
  1408. * Register the timers that return unneeded pages to the page allocator
  1409. */
  1410. for_each_online_cpu(cpu)
  1411. start_cpu_timer(cpu);
  1412. return 0;
  1413. }
  1414. __initcall(cpucache_init);
  1415. /*
  1416. * Interface to system's page allocator. No need to hold the cache-lock.
  1417. *
  1418. * If we requested dmaable memory, we will get it. Even if we
  1419. * did not request dmaable memory, we might get it, but that
  1420. * would be relatively rare and ignorable.
  1421. */
  1422. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1423. {
  1424. struct page *page;
  1425. int nr_pages;
  1426. int i;
  1427. #ifndef CONFIG_MMU
  1428. /*
  1429. * Nommu uses slab's for process anonymous memory allocations, and thus
  1430. * requires __GFP_COMP to properly refcount higher order allocations
  1431. */
  1432. flags |= __GFP_COMP;
  1433. #endif
  1434. flags |= cachep->gfpflags;
  1435. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1436. flags |= __GFP_RECLAIMABLE;
  1437. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1438. if (!page)
  1439. return NULL;
  1440. nr_pages = (1 << cachep->gfporder);
  1441. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1442. add_zone_page_state(page_zone(page),
  1443. NR_SLAB_RECLAIMABLE, nr_pages);
  1444. else
  1445. add_zone_page_state(page_zone(page),
  1446. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1447. for (i = 0; i < nr_pages; i++)
  1448. __SetPageSlab(page + i);
  1449. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1450. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1451. if (cachep->ctor)
  1452. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1453. else
  1454. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1455. }
  1456. return page_address(page);
  1457. }
  1458. /*
  1459. * Interface to system's page release.
  1460. */
  1461. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1462. {
  1463. unsigned long i = (1 << cachep->gfporder);
  1464. struct page *page = virt_to_page(addr);
  1465. const unsigned long nr_freed = i;
  1466. kmemcheck_free_shadow(page, cachep->gfporder);
  1467. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1468. sub_zone_page_state(page_zone(page),
  1469. NR_SLAB_RECLAIMABLE, nr_freed);
  1470. else
  1471. sub_zone_page_state(page_zone(page),
  1472. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1473. while (i--) {
  1474. BUG_ON(!PageSlab(page));
  1475. __ClearPageSlab(page);
  1476. page++;
  1477. }
  1478. if (current->reclaim_state)
  1479. current->reclaim_state->reclaimed_slab += nr_freed;
  1480. free_pages((unsigned long)addr, cachep->gfporder);
  1481. }
  1482. static void kmem_rcu_free(struct rcu_head *head)
  1483. {
  1484. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1485. struct kmem_cache *cachep = slab_rcu->cachep;
  1486. kmem_freepages(cachep, slab_rcu->addr);
  1487. if (OFF_SLAB(cachep))
  1488. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1489. }
  1490. #if DEBUG
  1491. #ifdef CONFIG_DEBUG_PAGEALLOC
  1492. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1493. unsigned long caller)
  1494. {
  1495. int size = obj_size(cachep);
  1496. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1497. if (size < 5 * sizeof(unsigned long))
  1498. return;
  1499. *addr++ = 0x12345678;
  1500. *addr++ = caller;
  1501. *addr++ = smp_processor_id();
  1502. size -= 3 * sizeof(unsigned long);
  1503. {
  1504. unsigned long *sptr = &caller;
  1505. unsigned long svalue;
  1506. while (!kstack_end(sptr)) {
  1507. svalue = *sptr++;
  1508. if (kernel_text_address(svalue)) {
  1509. *addr++ = svalue;
  1510. size -= sizeof(unsigned long);
  1511. if (size <= sizeof(unsigned long))
  1512. break;
  1513. }
  1514. }
  1515. }
  1516. *addr++ = 0x87654321;
  1517. }
  1518. #endif
  1519. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1520. {
  1521. int size = obj_size(cachep);
  1522. addr = &((char *)addr)[obj_offset(cachep)];
  1523. memset(addr, val, size);
  1524. *(unsigned char *)(addr + size - 1) = POISON_END;
  1525. }
  1526. static void dump_line(char *data, int offset, int limit)
  1527. {
  1528. int i;
  1529. unsigned char error = 0;
  1530. int bad_count = 0;
  1531. printk(KERN_ERR "%03x:", offset);
  1532. for (i = 0; i < limit; i++) {
  1533. if (data[offset + i] != POISON_FREE) {
  1534. error = data[offset + i];
  1535. bad_count++;
  1536. }
  1537. printk(" %02x", (unsigned char)data[offset + i]);
  1538. }
  1539. printk("\n");
  1540. if (bad_count == 1) {
  1541. error ^= POISON_FREE;
  1542. if (!(error & (error - 1))) {
  1543. printk(KERN_ERR "Single bit error detected. Probably "
  1544. "bad RAM.\n");
  1545. #ifdef CONFIG_X86
  1546. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1547. "test tool.\n");
  1548. #else
  1549. printk(KERN_ERR "Run a memory test tool.\n");
  1550. #endif
  1551. }
  1552. }
  1553. }
  1554. #endif
  1555. #if DEBUG
  1556. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1557. {
  1558. int i, size;
  1559. char *realobj;
  1560. if (cachep->flags & SLAB_RED_ZONE) {
  1561. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1562. *dbg_redzone1(cachep, objp),
  1563. *dbg_redzone2(cachep, objp));
  1564. }
  1565. if (cachep->flags & SLAB_STORE_USER) {
  1566. printk(KERN_ERR "Last user: [<%p>]",
  1567. *dbg_userword(cachep, objp));
  1568. print_symbol("(%s)",
  1569. (unsigned long)*dbg_userword(cachep, objp));
  1570. printk("\n");
  1571. }
  1572. realobj = (char *)objp + obj_offset(cachep);
  1573. size = obj_size(cachep);
  1574. for (i = 0; i < size && lines; i += 16, lines--) {
  1575. int limit;
  1576. limit = 16;
  1577. if (i + limit > size)
  1578. limit = size - i;
  1579. dump_line(realobj, i, limit);
  1580. }
  1581. }
  1582. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1583. {
  1584. char *realobj;
  1585. int size, i;
  1586. int lines = 0;
  1587. realobj = (char *)objp + obj_offset(cachep);
  1588. size = obj_size(cachep);
  1589. for (i = 0; i < size; i++) {
  1590. char exp = POISON_FREE;
  1591. if (i == size - 1)
  1592. exp = POISON_END;
  1593. if (realobj[i] != exp) {
  1594. int limit;
  1595. /* Mismatch ! */
  1596. /* Print header */
  1597. if (lines == 0) {
  1598. printk(KERN_ERR
  1599. "Slab corruption: %s start=%p, len=%d\n",
  1600. cachep->name, realobj, size);
  1601. print_objinfo(cachep, objp, 0);
  1602. }
  1603. /* Hexdump the affected line */
  1604. i = (i / 16) * 16;
  1605. limit = 16;
  1606. if (i + limit > size)
  1607. limit = size - i;
  1608. dump_line(realobj, i, limit);
  1609. i += 16;
  1610. lines++;
  1611. /* Limit to 5 lines */
  1612. if (lines > 5)
  1613. break;
  1614. }
  1615. }
  1616. if (lines != 0) {
  1617. /* Print some data about the neighboring objects, if they
  1618. * exist:
  1619. */
  1620. struct slab *slabp = virt_to_slab(objp);
  1621. unsigned int objnr;
  1622. objnr = obj_to_index(cachep, slabp, objp);
  1623. if (objnr) {
  1624. objp = index_to_obj(cachep, slabp, objnr - 1);
  1625. realobj = (char *)objp + obj_offset(cachep);
  1626. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1627. realobj, size);
  1628. print_objinfo(cachep, objp, 2);
  1629. }
  1630. if (objnr + 1 < cachep->num) {
  1631. objp = index_to_obj(cachep, slabp, objnr + 1);
  1632. realobj = (char *)objp + obj_offset(cachep);
  1633. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1634. realobj, size);
  1635. print_objinfo(cachep, objp, 2);
  1636. }
  1637. }
  1638. }
  1639. #endif
  1640. #if DEBUG
  1641. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1642. {
  1643. int i;
  1644. for (i = 0; i < cachep->num; i++) {
  1645. void *objp = index_to_obj(cachep, slabp, i);
  1646. if (cachep->flags & SLAB_POISON) {
  1647. #ifdef CONFIG_DEBUG_PAGEALLOC
  1648. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1649. OFF_SLAB(cachep))
  1650. kernel_map_pages(virt_to_page(objp),
  1651. cachep->buffer_size / PAGE_SIZE, 1);
  1652. else
  1653. check_poison_obj(cachep, objp);
  1654. #else
  1655. check_poison_obj(cachep, objp);
  1656. #endif
  1657. }
  1658. if (cachep->flags & SLAB_RED_ZONE) {
  1659. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1660. slab_error(cachep, "start of a freed object "
  1661. "was overwritten");
  1662. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1663. slab_error(cachep, "end of a freed object "
  1664. "was overwritten");
  1665. }
  1666. }
  1667. }
  1668. #else
  1669. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1670. {
  1671. }
  1672. #endif
  1673. /**
  1674. * slab_destroy - destroy and release all objects in a slab
  1675. * @cachep: cache pointer being destroyed
  1676. * @slabp: slab pointer being destroyed
  1677. *
  1678. * Destroy all the objs in a slab, and release the mem back to the system.
  1679. * Before calling the slab must have been unlinked from the cache. The
  1680. * cache-lock is not held/needed.
  1681. */
  1682. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1683. {
  1684. void *addr = slabp->s_mem - slabp->colouroff;
  1685. slab_destroy_debugcheck(cachep, slabp);
  1686. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1687. struct slab_rcu *slab_rcu;
  1688. slab_rcu = (struct slab_rcu *)slabp;
  1689. slab_rcu->cachep = cachep;
  1690. slab_rcu->addr = addr;
  1691. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1692. } else {
  1693. kmem_freepages(cachep, addr);
  1694. if (OFF_SLAB(cachep))
  1695. kmem_cache_free(cachep->slabp_cache, slabp);
  1696. }
  1697. }
  1698. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1699. {
  1700. int i;
  1701. struct kmem_list3 *l3;
  1702. for_each_online_cpu(i)
  1703. kfree(cachep->array[i]);
  1704. /* NUMA: free the list3 structures */
  1705. for_each_online_node(i) {
  1706. l3 = cachep->nodelists[i];
  1707. if (l3) {
  1708. kfree(l3->shared);
  1709. free_alien_cache(l3->alien);
  1710. kfree(l3);
  1711. }
  1712. }
  1713. kmem_cache_free(&cache_cache, cachep);
  1714. }
  1715. /**
  1716. * calculate_slab_order - calculate size (page order) of slabs
  1717. * @cachep: pointer to the cache that is being created
  1718. * @size: size of objects to be created in this cache.
  1719. * @align: required alignment for the objects.
  1720. * @flags: slab allocation flags
  1721. *
  1722. * Also calculates the number of objects per slab.
  1723. *
  1724. * This could be made much more intelligent. For now, try to avoid using
  1725. * high order pages for slabs. When the gfp() functions are more friendly
  1726. * towards high-order requests, this should be changed.
  1727. */
  1728. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1729. size_t size, size_t align, unsigned long flags)
  1730. {
  1731. unsigned long offslab_limit;
  1732. size_t left_over = 0;
  1733. int gfporder;
  1734. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1735. unsigned int num;
  1736. size_t remainder;
  1737. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1738. if (!num)
  1739. continue;
  1740. if (flags & CFLGS_OFF_SLAB) {
  1741. /*
  1742. * Max number of objs-per-slab for caches which
  1743. * use off-slab slabs. Needed to avoid a possible
  1744. * looping condition in cache_grow().
  1745. */
  1746. offslab_limit = size - sizeof(struct slab);
  1747. offslab_limit /= sizeof(kmem_bufctl_t);
  1748. if (num > offslab_limit)
  1749. break;
  1750. }
  1751. /* Found something acceptable - save it away */
  1752. cachep->num = num;
  1753. cachep->gfporder = gfporder;
  1754. left_over = remainder;
  1755. /*
  1756. * A VFS-reclaimable slab tends to have most allocations
  1757. * as GFP_NOFS and we really don't want to have to be allocating
  1758. * higher-order pages when we are unable to shrink dcache.
  1759. */
  1760. if (flags & SLAB_RECLAIM_ACCOUNT)
  1761. break;
  1762. /*
  1763. * Large number of objects is good, but very large slabs are
  1764. * currently bad for the gfp()s.
  1765. */
  1766. if (gfporder >= slab_break_gfp_order)
  1767. break;
  1768. /*
  1769. * Acceptable internal fragmentation?
  1770. */
  1771. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1772. break;
  1773. }
  1774. return left_over;
  1775. }
  1776. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1777. {
  1778. if (g_cpucache_up == FULL)
  1779. return enable_cpucache(cachep, gfp);
  1780. if (g_cpucache_up == NONE) {
  1781. /*
  1782. * Note: the first kmem_cache_create must create the cache
  1783. * that's used by kmalloc(24), otherwise the creation of
  1784. * further caches will BUG().
  1785. */
  1786. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1787. /*
  1788. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1789. * the first cache, then we need to set up all its list3s,
  1790. * otherwise the creation of further caches will BUG().
  1791. */
  1792. set_up_list3s(cachep, SIZE_AC);
  1793. if (INDEX_AC == INDEX_L3)
  1794. g_cpucache_up = PARTIAL_L3;
  1795. else
  1796. g_cpucache_up = PARTIAL_AC;
  1797. } else {
  1798. cachep->array[smp_processor_id()] =
  1799. kmalloc(sizeof(struct arraycache_init), gfp);
  1800. if (g_cpucache_up == PARTIAL_AC) {
  1801. set_up_list3s(cachep, SIZE_L3);
  1802. g_cpucache_up = PARTIAL_L3;
  1803. } else {
  1804. int node;
  1805. for_each_online_node(node) {
  1806. cachep->nodelists[node] =
  1807. kmalloc_node(sizeof(struct kmem_list3),
  1808. gfp, node);
  1809. BUG_ON(!cachep->nodelists[node]);
  1810. kmem_list3_init(cachep->nodelists[node]);
  1811. }
  1812. }
  1813. }
  1814. cachep->nodelists[numa_node_id()]->next_reap =
  1815. jiffies + REAPTIMEOUT_LIST3 +
  1816. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1817. cpu_cache_get(cachep)->avail = 0;
  1818. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1819. cpu_cache_get(cachep)->batchcount = 1;
  1820. cpu_cache_get(cachep)->touched = 0;
  1821. cachep->batchcount = 1;
  1822. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1823. return 0;
  1824. }
  1825. /**
  1826. * kmem_cache_create - Create a cache.
  1827. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1828. * @size: The size of objects to be created in this cache.
  1829. * @align: The required alignment for the objects.
  1830. * @flags: SLAB flags
  1831. * @ctor: A constructor for the objects.
  1832. *
  1833. * Returns a ptr to the cache on success, NULL on failure.
  1834. * Cannot be called within a int, but can be interrupted.
  1835. * The @ctor is run when new pages are allocated by the cache.
  1836. *
  1837. * @name must be valid until the cache is destroyed. This implies that
  1838. * the module calling this has to destroy the cache before getting unloaded.
  1839. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1840. * therefore applications must manage it themselves.
  1841. *
  1842. * The flags are
  1843. *
  1844. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1845. * to catch references to uninitialised memory.
  1846. *
  1847. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1848. * for buffer overruns.
  1849. *
  1850. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1851. * cacheline. This can be beneficial if you're counting cycles as closely
  1852. * as davem.
  1853. */
  1854. struct kmem_cache *
  1855. kmem_cache_create (const char *name, size_t size, size_t align,
  1856. unsigned long flags, void (*ctor)(void *))
  1857. {
  1858. size_t left_over, slab_size, ralign;
  1859. struct kmem_cache *cachep = NULL, *pc;
  1860. gfp_t gfp;
  1861. /*
  1862. * Sanity checks... these are all serious usage bugs.
  1863. */
  1864. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1865. size > KMALLOC_MAX_SIZE) {
  1866. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1867. name);
  1868. BUG();
  1869. }
  1870. /*
  1871. * We use cache_chain_mutex to ensure a consistent view of
  1872. * cpu_online_mask as well. Please see cpuup_callback
  1873. */
  1874. if (slab_is_available()) {
  1875. get_online_cpus();
  1876. mutex_lock(&cache_chain_mutex);
  1877. }
  1878. list_for_each_entry(pc, &cache_chain, next) {
  1879. char tmp;
  1880. int res;
  1881. /*
  1882. * This happens when the module gets unloaded and doesn't
  1883. * destroy its slab cache and no-one else reuses the vmalloc
  1884. * area of the module. Print a warning.
  1885. */
  1886. res = probe_kernel_address(pc->name, tmp);
  1887. if (res) {
  1888. printk(KERN_ERR
  1889. "SLAB: cache with size %d has lost its name\n",
  1890. pc->buffer_size);
  1891. continue;
  1892. }
  1893. if (!strcmp(pc->name, name)) {
  1894. printk(KERN_ERR
  1895. "kmem_cache_create: duplicate cache %s\n", name);
  1896. dump_stack();
  1897. goto oops;
  1898. }
  1899. }
  1900. #if DEBUG
  1901. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1902. #if FORCED_DEBUG
  1903. /*
  1904. * Enable redzoning and last user accounting, except for caches with
  1905. * large objects, if the increased size would increase the object size
  1906. * above the next power of two: caches with object sizes just above a
  1907. * power of two have a significant amount of internal fragmentation.
  1908. */
  1909. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1910. 2 * sizeof(unsigned long long)))
  1911. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1912. if (!(flags & SLAB_DESTROY_BY_RCU))
  1913. flags |= SLAB_POISON;
  1914. #endif
  1915. if (flags & SLAB_DESTROY_BY_RCU)
  1916. BUG_ON(flags & SLAB_POISON);
  1917. #endif
  1918. /*
  1919. * Always checks flags, a caller might be expecting debug support which
  1920. * isn't available.
  1921. */
  1922. BUG_ON(flags & ~CREATE_MASK);
  1923. /*
  1924. * Check that size is in terms of words. This is needed to avoid
  1925. * unaligned accesses for some archs when redzoning is used, and makes
  1926. * sure any on-slab bufctl's are also correctly aligned.
  1927. */
  1928. if (size & (BYTES_PER_WORD - 1)) {
  1929. size += (BYTES_PER_WORD - 1);
  1930. size &= ~(BYTES_PER_WORD - 1);
  1931. }
  1932. /* calculate the final buffer alignment: */
  1933. /* 1) arch recommendation: can be overridden for debug */
  1934. if (flags & SLAB_HWCACHE_ALIGN) {
  1935. /*
  1936. * Default alignment: as specified by the arch code. Except if
  1937. * an object is really small, then squeeze multiple objects into
  1938. * one cacheline.
  1939. */
  1940. ralign = cache_line_size();
  1941. while (size <= ralign / 2)
  1942. ralign /= 2;
  1943. } else {
  1944. ralign = BYTES_PER_WORD;
  1945. }
  1946. /*
  1947. * Redzoning and user store require word alignment or possibly larger.
  1948. * Note this will be overridden by architecture or caller mandated
  1949. * alignment if either is greater than BYTES_PER_WORD.
  1950. */
  1951. if (flags & SLAB_STORE_USER)
  1952. ralign = BYTES_PER_WORD;
  1953. if (flags & SLAB_RED_ZONE) {
  1954. ralign = REDZONE_ALIGN;
  1955. /* If redzoning, ensure that the second redzone is suitably
  1956. * aligned, by adjusting the object size accordingly. */
  1957. size += REDZONE_ALIGN - 1;
  1958. size &= ~(REDZONE_ALIGN - 1);
  1959. }
  1960. /* 2) arch mandated alignment */
  1961. if (ralign < ARCH_SLAB_MINALIGN) {
  1962. ralign = ARCH_SLAB_MINALIGN;
  1963. }
  1964. /* 3) caller mandated alignment */
  1965. if (ralign < align) {
  1966. ralign = align;
  1967. }
  1968. /* disable debug if necessary */
  1969. if (ralign > __alignof__(unsigned long long))
  1970. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1971. /*
  1972. * 4) Store it.
  1973. */
  1974. align = ralign;
  1975. if (slab_is_available())
  1976. gfp = GFP_KERNEL;
  1977. else
  1978. gfp = GFP_NOWAIT;
  1979. /* Get cache's description obj. */
  1980. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  1981. if (!cachep)
  1982. goto oops;
  1983. #if DEBUG
  1984. cachep->obj_size = size;
  1985. /*
  1986. * Both debugging options require word-alignment which is calculated
  1987. * into align above.
  1988. */
  1989. if (flags & SLAB_RED_ZONE) {
  1990. /* add space for red zone words */
  1991. cachep->obj_offset += sizeof(unsigned long long);
  1992. size += 2 * sizeof(unsigned long long);
  1993. }
  1994. if (flags & SLAB_STORE_USER) {
  1995. /* user store requires one word storage behind the end of
  1996. * the real object. But if the second red zone needs to be
  1997. * aligned to 64 bits, we must allow that much space.
  1998. */
  1999. if (flags & SLAB_RED_ZONE)
  2000. size += REDZONE_ALIGN;
  2001. else
  2002. size += BYTES_PER_WORD;
  2003. }
  2004. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2005. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2006. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2007. cachep->obj_offset += PAGE_SIZE - size;
  2008. size = PAGE_SIZE;
  2009. }
  2010. #endif
  2011. #endif
  2012. /*
  2013. * Determine if the slab management is 'on' or 'off' slab.
  2014. * (bootstrapping cannot cope with offslab caches so don't do
  2015. * it too early on. Always use on-slab management when
  2016. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2017. */
  2018. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2019. !(flags & SLAB_NOLEAKTRACE))
  2020. /*
  2021. * Size is large, assume best to place the slab management obj
  2022. * off-slab (should allow better packing of objs).
  2023. */
  2024. flags |= CFLGS_OFF_SLAB;
  2025. size = ALIGN(size, align);
  2026. left_over = calculate_slab_order(cachep, size, align, flags);
  2027. if (!cachep->num) {
  2028. printk(KERN_ERR
  2029. "kmem_cache_create: couldn't create cache %s.\n", name);
  2030. kmem_cache_free(&cache_cache, cachep);
  2031. cachep = NULL;
  2032. goto oops;
  2033. }
  2034. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2035. + sizeof(struct slab), align);
  2036. /*
  2037. * If the slab has been placed off-slab, and we have enough space then
  2038. * move it on-slab. This is at the expense of any extra colouring.
  2039. */
  2040. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2041. flags &= ~CFLGS_OFF_SLAB;
  2042. left_over -= slab_size;
  2043. }
  2044. if (flags & CFLGS_OFF_SLAB) {
  2045. /* really off slab. No need for manual alignment */
  2046. slab_size =
  2047. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2048. #ifdef CONFIG_PAGE_POISONING
  2049. /* If we're going to use the generic kernel_map_pages()
  2050. * poisoning, then it's going to smash the contents of
  2051. * the redzone and userword anyhow, so switch them off.
  2052. */
  2053. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2054. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2055. #endif
  2056. }
  2057. cachep->colour_off = cache_line_size();
  2058. /* Offset must be a multiple of the alignment. */
  2059. if (cachep->colour_off < align)
  2060. cachep->colour_off = align;
  2061. cachep->colour = left_over / cachep->colour_off;
  2062. cachep->slab_size = slab_size;
  2063. cachep->flags = flags;
  2064. cachep->gfpflags = 0;
  2065. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2066. cachep->gfpflags |= GFP_DMA;
  2067. cachep->buffer_size = size;
  2068. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2069. if (flags & CFLGS_OFF_SLAB) {
  2070. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2071. /*
  2072. * This is a possibility for one of the malloc_sizes caches.
  2073. * But since we go off slab only for object size greater than
  2074. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2075. * this should not happen at all.
  2076. * But leave a BUG_ON for some lucky dude.
  2077. */
  2078. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2079. }
  2080. cachep->ctor = ctor;
  2081. cachep->name = name;
  2082. if (setup_cpu_cache(cachep, gfp)) {
  2083. __kmem_cache_destroy(cachep);
  2084. cachep = NULL;
  2085. goto oops;
  2086. }
  2087. /* cache setup completed, link it into the list */
  2088. list_add(&cachep->next, &cache_chain);
  2089. oops:
  2090. if (!cachep && (flags & SLAB_PANIC))
  2091. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2092. name);
  2093. if (slab_is_available()) {
  2094. mutex_unlock(&cache_chain_mutex);
  2095. put_online_cpus();
  2096. }
  2097. return cachep;
  2098. }
  2099. EXPORT_SYMBOL(kmem_cache_create);
  2100. #if DEBUG
  2101. static void check_irq_off(void)
  2102. {
  2103. BUG_ON(!irqs_disabled());
  2104. }
  2105. static void check_irq_on(void)
  2106. {
  2107. BUG_ON(irqs_disabled());
  2108. }
  2109. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2110. {
  2111. #ifdef CONFIG_SMP
  2112. check_irq_off();
  2113. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2114. #endif
  2115. }
  2116. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2117. {
  2118. #ifdef CONFIG_SMP
  2119. check_irq_off();
  2120. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2121. #endif
  2122. }
  2123. #else
  2124. #define check_irq_off() do { } while(0)
  2125. #define check_irq_on() do { } while(0)
  2126. #define check_spinlock_acquired(x) do { } while(0)
  2127. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2128. #endif
  2129. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2130. struct array_cache *ac,
  2131. int force, int node);
  2132. static void do_drain(void *arg)
  2133. {
  2134. struct kmem_cache *cachep = arg;
  2135. struct array_cache *ac;
  2136. int node = numa_node_id();
  2137. check_irq_off();
  2138. ac = cpu_cache_get(cachep);
  2139. spin_lock(&cachep->nodelists[node]->list_lock);
  2140. free_block(cachep, ac->entry, ac->avail, node);
  2141. spin_unlock(&cachep->nodelists[node]->list_lock);
  2142. ac->avail = 0;
  2143. }
  2144. static void drain_cpu_caches(struct kmem_cache *cachep)
  2145. {
  2146. struct kmem_list3 *l3;
  2147. int node;
  2148. on_each_cpu(do_drain, cachep, 1);
  2149. check_irq_on();
  2150. for_each_online_node(node) {
  2151. l3 = cachep->nodelists[node];
  2152. if (l3 && l3->alien)
  2153. drain_alien_cache(cachep, l3->alien);
  2154. }
  2155. for_each_online_node(node) {
  2156. l3 = cachep->nodelists[node];
  2157. if (l3)
  2158. drain_array(cachep, l3, l3->shared, 1, node);
  2159. }
  2160. }
  2161. /*
  2162. * Remove slabs from the list of free slabs.
  2163. * Specify the number of slabs to drain in tofree.
  2164. *
  2165. * Returns the actual number of slabs released.
  2166. */
  2167. static int drain_freelist(struct kmem_cache *cache,
  2168. struct kmem_list3 *l3, int tofree)
  2169. {
  2170. struct list_head *p;
  2171. int nr_freed;
  2172. struct slab *slabp;
  2173. nr_freed = 0;
  2174. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2175. spin_lock_irq(&l3->list_lock);
  2176. p = l3->slabs_free.prev;
  2177. if (p == &l3->slabs_free) {
  2178. spin_unlock_irq(&l3->list_lock);
  2179. goto out;
  2180. }
  2181. slabp = list_entry(p, struct slab, list);
  2182. #if DEBUG
  2183. BUG_ON(slabp->inuse);
  2184. #endif
  2185. list_del(&slabp->list);
  2186. /*
  2187. * Safe to drop the lock. The slab is no longer linked
  2188. * to the cache.
  2189. */
  2190. l3->free_objects -= cache->num;
  2191. spin_unlock_irq(&l3->list_lock);
  2192. slab_destroy(cache, slabp);
  2193. nr_freed++;
  2194. }
  2195. out:
  2196. return nr_freed;
  2197. }
  2198. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2199. static int __cache_shrink(struct kmem_cache *cachep)
  2200. {
  2201. int ret = 0, i = 0;
  2202. struct kmem_list3 *l3;
  2203. drain_cpu_caches(cachep);
  2204. check_irq_on();
  2205. for_each_online_node(i) {
  2206. l3 = cachep->nodelists[i];
  2207. if (!l3)
  2208. continue;
  2209. drain_freelist(cachep, l3, l3->free_objects);
  2210. ret += !list_empty(&l3->slabs_full) ||
  2211. !list_empty(&l3->slabs_partial);
  2212. }
  2213. return (ret ? 1 : 0);
  2214. }
  2215. /**
  2216. * kmem_cache_shrink - Shrink a cache.
  2217. * @cachep: The cache to shrink.
  2218. *
  2219. * Releases as many slabs as possible for a cache.
  2220. * To help debugging, a zero exit status indicates all slabs were released.
  2221. */
  2222. int kmem_cache_shrink(struct kmem_cache *cachep)
  2223. {
  2224. int ret;
  2225. BUG_ON(!cachep || in_interrupt());
  2226. get_online_cpus();
  2227. mutex_lock(&cache_chain_mutex);
  2228. ret = __cache_shrink(cachep);
  2229. mutex_unlock(&cache_chain_mutex);
  2230. put_online_cpus();
  2231. return ret;
  2232. }
  2233. EXPORT_SYMBOL(kmem_cache_shrink);
  2234. /**
  2235. * kmem_cache_destroy - delete a cache
  2236. * @cachep: the cache to destroy
  2237. *
  2238. * Remove a &struct kmem_cache object from the slab cache.
  2239. *
  2240. * It is expected this function will be called by a module when it is
  2241. * unloaded. This will remove the cache completely, and avoid a duplicate
  2242. * cache being allocated each time a module is loaded and unloaded, if the
  2243. * module doesn't have persistent in-kernel storage across loads and unloads.
  2244. *
  2245. * The cache must be empty before calling this function.
  2246. *
  2247. * The caller must guarantee that noone will allocate memory from the cache
  2248. * during the kmem_cache_destroy().
  2249. */
  2250. void kmem_cache_destroy(struct kmem_cache *cachep)
  2251. {
  2252. BUG_ON(!cachep || in_interrupt());
  2253. /* Find the cache in the chain of caches. */
  2254. get_online_cpus();
  2255. mutex_lock(&cache_chain_mutex);
  2256. /*
  2257. * the chain is never empty, cache_cache is never destroyed
  2258. */
  2259. list_del(&cachep->next);
  2260. if (__cache_shrink(cachep)) {
  2261. slab_error(cachep, "Can't free all objects");
  2262. list_add(&cachep->next, &cache_chain);
  2263. mutex_unlock(&cache_chain_mutex);
  2264. put_online_cpus();
  2265. return;
  2266. }
  2267. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2268. rcu_barrier();
  2269. __kmem_cache_destroy(cachep);
  2270. mutex_unlock(&cache_chain_mutex);
  2271. put_online_cpus();
  2272. }
  2273. EXPORT_SYMBOL(kmem_cache_destroy);
  2274. /*
  2275. * Get the memory for a slab management obj.
  2276. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2277. * always come from malloc_sizes caches. The slab descriptor cannot
  2278. * come from the same cache which is getting created because,
  2279. * when we are searching for an appropriate cache for these
  2280. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2281. * If we are creating a malloc_sizes cache here it would not be visible to
  2282. * kmem_find_general_cachep till the initialization is complete.
  2283. * Hence we cannot have slabp_cache same as the original cache.
  2284. */
  2285. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2286. int colour_off, gfp_t local_flags,
  2287. int nodeid)
  2288. {
  2289. struct slab *slabp;
  2290. if (OFF_SLAB(cachep)) {
  2291. /* Slab management obj is off-slab. */
  2292. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2293. local_flags, nodeid);
  2294. /*
  2295. * If the first object in the slab is leaked (it's allocated
  2296. * but no one has a reference to it), we want to make sure
  2297. * kmemleak does not treat the ->s_mem pointer as a reference
  2298. * to the object. Otherwise we will not report the leak.
  2299. */
  2300. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2301. local_flags);
  2302. if (!slabp)
  2303. return NULL;
  2304. } else {
  2305. slabp = objp + colour_off;
  2306. colour_off += cachep->slab_size;
  2307. }
  2308. slabp->inuse = 0;
  2309. slabp->colouroff = colour_off;
  2310. slabp->s_mem = objp + colour_off;
  2311. slabp->nodeid = nodeid;
  2312. slabp->free = 0;
  2313. return slabp;
  2314. }
  2315. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2316. {
  2317. return (kmem_bufctl_t *) (slabp + 1);
  2318. }
  2319. static void cache_init_objs(struct kmem_cache *cachep,
  2320. struct slab *slabp)
  2321. {
  2322. int i;
  2323. for (i = 0; i < cachep->num; i++) {
  2324. void *objp = index_to_obj(cachep, slabp, i);
  2325. #if DEBUG
  2326. /* need to poison the objs? */
  2327. if (cachep->flags & SLAB_POISON)
  2328. poison_obj(cachep, objp, POISON_FREE);
  2329. if (cachep->flags & SLAB_STORE_USER)
  2330. *dbg_userword(cachep, objp) = NULL;
  2331. if (cachep->flags & SLAB_RED_ZONE) {
  2332. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2333. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2334. }
  2335. /*
  2336. * Constructors are not allowed to allocate memory from the same
  2337. * cache which they are a constructor for. Otherwise, deadlock.
  2338. * They must also be threaded.
  2339. */
  2340. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2341. cachep->ctor(objp + obj_offset(cachep));
  2342. if (cachep->flags & SLAB_RED_ZONE) {
  2343. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2344. slab_error(cachep, "constructor overwrote the"
  2345. " end of an object");
  2346. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2347. slab_error(cachep, "constructor overwrote the"
  2348. " start of an object");
  2349. }
  2350. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2351. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2352. kernel_map_pages(virt_to_page(objp),
  2353. cachep->buffer_size / PAGE_SIZE, 0);
  2354. #else
  2355. if (cachep->ctor)
  2356. cachep->ctor(objp);
  2357. #endif
  2358. slab_bufctl(slabp)[i] = i + 1;
  2359. }
  2360. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2361. }
  2362. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2363. {
  2364. if (CONFIG_ZONE_DMA_FLAG) {
  2365. if (flags & GFP_DMA)
  2366. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2367. else
  2368. BUG_ON(cachep->gfpflags & GFP_DMA);
  2369. }
  2370. }
  2371. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2372. int nodeid)
  2373. {
  2374. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2375. kmem_bufctl_t next;
  2376. slabp->inuse++;
  2377. next = slab_bufctl(slabp)[slabp->free];
  2378. #if DEBUG
  2379. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2380. WARN_ON(slabp->nodeid != nodeid);
  2381. #endif
  2382. slabp->free = next;
  2383. return objp;
  2384. }
  2385. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2386. void *objp, int nodeid)
  2387. {
  2388. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2389. #if DEBUG
  2390. /* Verify that the slab belongs to the intended node */
  2391. WARN_ON(slabp->nodeid != nodeid);
  2392. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2393. printk(KERN_ERR "slab: double free detected in cache "
  2394. "'%s', objp %p\n", cachep->name, objp);
  2395. BUG();
  2396. }
  2397. #endif
  2398. slab_bufctl(slabp)[objnr] = slabp->free;
  2399. slabp->free = objnr;
  2400. slabp->inuse--;
  2401. }
  2402. /*
  2403. * Map pages beginning at addr to the given cache and slab. This is required
  2404. * for the slab allocator to be able to lookup the cache and slab of a
  2405. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2406. */
  2407. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2408. void *addr)
  2409. {
  2410. int nr_pages;
  2411. struct page *page;
  2412. page = virt_to_page(addr);
  2413. nr_pages = 1;
  2414. if (likely(!PageCompound(page)))
  2415. nr_pages <<= cache->gfporder;
  2416. do {
  2417. page_set_cache(page, cache);
  2418. page_set_slab(page, slab);
  2419. page++;
  2420. } while (--nr_pages);
  2421. }
  2422. /*
  2423. * Grow (by 1) the number of slabs within a cache. This is called by
  2424. * kmem_cache_alloc() when there are no active objs left in a cache.
  2425. */
  2426. static int cache_grow(struct kmem_cache *cachep,
  2427. gfp_t flags, int nodeid, void *objp)
  2428. {
  2429. struct slab *slabp;
  2430. size_t offset;
  2431. gfp_t local_flags;
  2432. struct kmem_list3 *l3;
  2433. /*
  2434. * Be lazy and only check for valid flags here, keeping it out of the
  2435. * critical path in kmem_cache_alloc().
  2436. */
  2437. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2438. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2439. /* Take the l3 list lock to change the colour_next on this node */
  2440. check_irq_off();
  2441. l3 = cachep->nodelists[nodeid];
  2442. spin_lock(&l3->list_lock);
  2443. /* Get colour for the slab, and cal the next value. */
  2444. offset = l3->colour_next;
  2445. l3->colour_next++;
  2446. if (l3->colour_next >= cachep->colour)
  2447. l3->colour_next = 0;
  2448. spin_unlock(&l3->list_lock);
  2449. offset *= cachep->colour_off;
  2450. if (local_flags & __GFP_WAIT)
  2451. local_irq_enable();
  2452. /*
  2453. * The test for missing atomic flag is performed here, rather than
  2454. * the more obvious place, simply to reduce the critical path length
  2455. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2456. * will eventually be caught here (where it matters).
  2457. */
  2458. kmem_flagcheck(cachep, flags);
  2459. /*
  2460. * Get mem for the objs. Attempt to allocate a physical page from
  2461. * 'nodeid'.
  2462. */
  2463. if (!objp)
  2464. objp = kmem_getpages(cachep, local_flags, nodeid);
  2465. if (!objp)
  2466. goto failed;
  2467. /* Get slab management. */
  2468. slabp = alloc_slabmgmt(cachep, objp, offset,
  2469. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2470. if (!slabp)
  2471. goto opps1;
  2472. slab_map_pages(cachep, slabp, objp);
  2473. cache_init_objs(cachep, slabp);
  2474. if (local_flags & __GFP_WAIT)
  2475. local_irq_disable();
  2476. check_irq_off();
  2477. spin_lock(&l3->list_lock);
  2478. /* Make slab active. */
  2479. list_add_tail(&slabp->list, &(l3->slabs_free));
  2480. STATS_INC_GROWN(cachep);
  2481. l3->free_objects += cachep->num;
  2482. spin_unlock(&l3->list_lock);
  2483. return 1;
  2484. opps1:
  2485. kmem_freepages(cachep, objp);
  2486. failed:
  2487. if (local_flags & __GFP_WAIT)
  2488. local_irq_disable();
  2489. return 0;
  2490. }
  2491. #if DEBUG
  2492. /*
  2493. * Perform extra freeing checks:
  2494. * - detect bad pointers.
  2495. * - POISON/RED_ZONE checking
  2496. */
  2497. static void kfree_debugcheck(const void *objp)
  2498. {
  2499. if (!virt_addr_valid(objp)) {
  2500. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2501. (unsigned long)objp);
  2502. BUG();
  2503. }
  2504. }
  2505. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2506. {
  2507. unsigned long long redzone1, redzone2;
  2508. redzone1 = *dbg_redzone1(cache, obj);
  2509. redzone2 = *dbg_redzone2(cache, obj);
  2510. /*
  2511. * Redzone is ok.
  2512. */
  2513. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2514. return;
  2515. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2516. slab_error(cache, "double free detected");
  2517. else
  2518. slab_error(cache, "memory outside object was overwritten");
  2519. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2520. obj, redzone1, redzone2);
  2521. }
  2522. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2523. void *caller)
  2524. {
  2525. struct page *page;
  2526. unsigned int objnr;
  2527. struct slab *slabp;
  2528. BUG_ON(virt_to_cache(objp) != cachep);
  2529. objp -= obj_offset(cachep);
  2530. kfree_debugcheck(objp);
  2531. page = virt_to_head_page(objp);
  2532. slabp = page_get_slab(page);
  2533. if (cachep->flags & SLAB_RED_ZONE) {
  2534. verify_redzone_free(cachep, objp);
  2535. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2536. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2537. }
  2538. if (cachep->flags & SLAB_STORE_USER)
  2539. *dbg_userword(cachep, objp) = caller;
  2540. objnr = obj_to_index(cachep, slabp, objp);
  2541. BUG_ON(objnr >= cachep->num);
  2542. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2543. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2544. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2545. #endif
  2546. if (cachep->flags & SLAB_POISON) {
  2547. #ifdef CONFIG_DEBUG_PAGEALLOC
  2548. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2549. store_stackinfo(cachep, objp, (unsigned long)caller);
  2550. kernel_map_pages(virt_to_page(objp),
  2551. cachep->buffer_size / PAGE_SIZE, 0);
  2552. } else {
  2553. poison_obj(cachep, objp, POISON_FREE);
  2554. }
  2555. #else
  2556. poison_obj(cachep, objp, POISON_FREE);
  2557. #endif
  2558. }
  2559. return objp;
  2560. }
  2561. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2562. {
  2563. kmem_bufctl_t i;
  2564. int entries = 0;
  2565. /* Check slab's freelist to see if this obj is there. */
  2566. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2567. entries++;
  2568. if (entries > cachep->num || i >= cachep->num)
  2569. goto bad;
  2570. }
  2571. if (entries != cachep->num - slabp->inuse) {
  2572. bad:
  2573. printk(KERN_ERR "slab: Internal list corruption detected in "
  2574. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2575. cachep->name, cachep->num, slabp, slabp->inuse);
  2576. for (i = 0;
  2577. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2578. i++) {
  2579. if (i % 16 == 0)
  2580. printk("\n%03x:", i);
  2581. printk(" %02x", ((unsigned char *)slabp)[i]);
  2582. }
  2583. printk("\n");
  2584. BUG();
  2585. }
  2586. }
  2587. #else
  2588. #define kfree_debugcheck(x) do { } while(0)
  2589. #define cache_free_debugcheck(x,objp,z) (objp)
  2590. #define check_slabp(x,y) do { } while(0)
  2591. #endif
  2592. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2593. {
  2594. int batchcount;
  2595. struct kmem_list3 *l3;
  2596. struct array_cache *ac;
  2597. int node;
  2598. retry:
  2599. check_irq_off();
  2600. node = numa_node_id();
  2601. ac = cpu_cache_get(cachep);
  2602. batchcount = ac->batchcount;
  2603. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2604. /*
  2605. * If there was little recent activity on this cache, then
  2606. * perform only a partial refill. Otherwise we could generate
  2607. * refill bouncing.
  2608. */
  2609. batchcount = BATCHREFILL_LIMIT;
  2610. }
  2611. l3 = cachep->nodelists[node];
  2612. BUG_ON(ac->avail > 0 || !l3);
  2613. spin_lock(&l3->list_lock);
  2614. /* See if we can refill from the shared array */
  2615. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2616. l3->shared->touched = 1;
  2617. goto alloc_done;
  2618. }
  2619. while (batchcount > 0) {
  2620. struct list_head *entry;
  2621. struct slab *slabp;
  2622. /* Get slab alloc is to come from. */
  2623. entry = l3->slabs_partial.next;
  2624. if (entry == &l3->slabs_partial) {
  2625. l3->free_touched = 1;
  2626. entry = l3->slabs_free.next;
  2627. if (entry == &l3->slabs_free)
  2628. goto must_grow;
  2629. }
  2630. slabp = list_entry(entry, struct slab, list);
  2631. check_slabp(cachep, slabp);
  2632. check_spinlock_acquired(cachep);
  2633. /*
  2634. * The slab was either on partial or free list so
  2635. * there must be at least one object available for
  2636. * allocation.
  2637. */
  2638. BUG_ON(slabp->inuse >= cachep->num);
  2639. while (slabp->inuse < cachep->num && batchcount--) {
  2640. STATS_INC_ALLOCED(cachep);
  2641. STATS_INC_ACTIVE(cachep);
  2642. STATS_SET_HIGH(cachep);
  2643. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2644. node);
  2645. }
  2646. check_slabp(cachep, slabp);
  2647. /* move slabp to correct slabp list: */
  2648. list_del(&slabp->list);
  2649. if (slabp->free == BUFCTL_END)
  2650. list_add(&slabp->list, &l3->slabs_full);
  2651. else
  2652. list_add(&slabp->list, &l3->slabs_partial);
  2653. }
  2654. must_grow:
  2655. l3->free_objects -= ac->avail;
  2656. alloc_done:
  2657. spin_unlock(&l3->list_lock);
  2658. if (unlikely(!ac->avail)) {
  2659. int x;
  2660. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2661. /* cache_grow can reenable interrupts, then ac could change. */
  2662. ac = cpu_cache_get(cachep);
  2663. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2664. return NULL;
  2665. if (!ac->avail) /* objects refilled by interrupt? */
  2666. goto retry;
  2667. }
  2668. ac->touched = 1;
  2669. return ac->entry[--ac->avail];
  2670. }
  2671. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2672. gfp_t flags)
  2673. {
  2674. might_sleep_if(flags & __GFP_WAIT);
  2675. #if DEBUG
  2676. kmem_flagcheck(cachep, flags);
  2677. #endif
  2678. }
  2679. #if DEBUG
  2680. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2681. gfp_t flags, void *objp, void *caller)
  2682. {
  2683. if (!objp)
  2684. return objp;
  2685. if (cachep->flags & SLAB_POISON) {
  2686. #ifdef CONFIG_DEBUG_PAGEALLOC
  2687. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2688. kernel_map_pages(virt_to_page(objp),
  2689. cachep->buffer_size / PAGE_SIZE, 1);
  2690. else
  2691. check_poison_obj(cachep, objp);
  2692. #else
  2693. check_poison_obj(cachep, objp);
  2694. #endif
  2695. poison_obj(cachep, objp, POISON_INUSE);
  2696. }
  2697. if (cachep->flags & SLAB_STORE_USER)
  2698. *dbg_userword(cachep, objp) = caller;
  2699. if (cachep->flags & SLAB_RED_ZONE) {
  2700. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2701. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2702. slab_error(cachep, "double free, or memory outside"
  2703. " object was overwritten");
  2704. printk(KERN_ERR
  2705. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2706. objp, *dbg_redzone1(cachep, objp),
  2707. *dbg_redzone2(cachep, objp));
  2708. }
  2709. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2710. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2711. }
  2712. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2713. {
  2714. struct slab *slabp;
  2715. unsigned objnr;
  2716. slabp = page_get_slab(virt_to_head_page(objp));
  2717. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2718. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2719. }
  2720. #endif
  2721. objp += obj_offset(cachep);
  2722. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2723. cachep->ctor(objp);
  2724. #if ARCH_SLAB_MINALIGN
  2725. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2726. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2727. objp, ARCH_SLAB_MINALIGN);
  2728. }
  2729. #endif
  2730. return objp;
  2731. }
  2732. #else
  2733. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2734. #endif
  2735. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2736. {
  2737. if (cachep == &cache_cache)
  2738. return false;
  2739. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2740. }
  2741. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2742. {
  2743. void *objp;
  2744. struct array_cache *ac;
  2745. check_irq_off();
  2746. ac = cpu_cache_get(cachep);
  2747. if (likely(ac->avail)) {
  2748. STATS_INC_ALLOCHIT(cachep);
  2749. ac->touched = 1;
  2750. objp = ac->entry[--ac->avail];
  2751. } else {
  2752. STATS_INC_ALLOCMISS(cachep);
  2753. objp = cache_alloc_refill(cachep, flags);
  2754. /*
  2755. * the 'ac' may be updated by cache_alloc_refill(),
  2756. * and kmemleak_erase() requires its correct value.
  2757. */
  2758. ac = cpu_cache_get(cachep);
  2759. }
  2760. /*
  2761. * To avoid a false negative, if an object that is in one of the
  2762. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2763. * treat the array pointers as a reference to the object.
  2764. */
  2765. if (objp)
  2766. kmemleak_erase(&ac->entry[ac->avail]);
  2767. return objp;
  2768. }
  2769. #ifdef CONFIG_NUMA
  2770. /*
  2771. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2772. *
  2773. * If we are in_interrupt, then process context, including cpusets and
  2774. * mempolicy, may not apply and should not be used for allocation policy.
  2775. */
  2776. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2777. {
  2778. int nid_alloc, nid_here;
  2779. if (in_interrupt() || (flags & __GFP_THISNODE))
  2780. return NULL;
  2781. nid_alloc = nid_here = numa_node_id();
  2782. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2783. nid_alloc = cpuset_mem_spread_node();
  2784. else if (current->mempolicy)
  2785. nid_alloc = slab_node(current->mempolicy);
  2786. if (nid_alloc != nid_here)
  2787. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2788. return NULL;
  2789. }
  2790. /*
  2791. * Fallback function if there was no memory available and no objects on a
  2792. * certain node and fall back is permitted. First we scan all the
  2793. * available nodelists for available objects. If that fails then we
  2794. * perform an allocation without specifying a node. This allows the page
  2795. * allocator to do its reclaim / fallback magic. We then insert the
  2796. * slab into the proper nodelist and then allocate from it.
  2797. */
  2798. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2799. {
  2800. struct zonelist *zonelist;
  2801. gfp_t local_flags;
  2802. struct zoneref *z;
  2803. struct zone *zone;
  2804. enum zone_type high_zoneidx = gfp_zone(flags);
  2805. void *obj = NULL;
  2806. int nid;
  2807. if (flags & __GFP_THISNODE)
  2808. return NULL;
  2809. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2810. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2811. retry:
  2812. /*
  2813. * Look through allowed nodes for objects available
  2814. * from existing per node queues.
  2815. */
  2816. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2817. nid = zone_to_nid(zone);
  2818. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2819. cache->nodelists[nid] &&
  2820. cache->nodelists[nid]->free_objects) {
  2821. obj = ____cache_alloc_node(cache,
  2822. flags | GFP_THISNODE, nid);
  2823. if (obj)
  2824. break;
  2825. }
  2826. }
  2827. if (!obj) {
  2828. /*
  2829. * This allocation will be performed within the constraints
  2830. * of the current cpuset / memory policy requirements.
  2831. * We may trigger various forms of reclaim on the allowed
  2832. * set and go into memory reserves if necessary.
  2833. */
  2834. if (local_flags & __GFP_WAIT)
  2835. local_irq_enable();
  2836. kmem_flagcheck(cache, flags);
  2837. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2838. if (local_flags & __GFP_WAIT)
  2839. local_irq_disable();
  2840. if (obj) {
  2841. /*
  2842. * Insert into the appropriate per node queues
  2843. */
  2844. nid = page_to_nid(virt_to_page(obj));
  2845. if (cache_grow(cache, flags, nid, obj)) {
  2846. obj = ____cache_alloc_node(cache,
  2847. flags | GFP_THISNODE, nid);
  2848. if (!obj)
  2849. /*
  2850. * Another processor may allocate the
  2851. * objects in the slab since we are
  2852. * not holding any locks.
  2853. */
  2854. goto retry;
  2855. } else {
  2856. /* cache_grow already freed obj */
  2857. obj = NULL;
  2858. }
  2859. }
  2860. }
  2861. return obj;
  2862. }
  2863. /*
  2864. * A interface to enable slab creation on nodeid
  2865. */
  2866. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2867. int nodeid)
  2868. {
  2869. struct list_head *entry;
  2870. struct slab *slabp;
  2871. struct kmem_list3 *l3;
  2872. void *obj;
  2873. int x;
  2874. l3 = cachep->nodelists[nodeid];
  2875. BUG_ON(!l3);
  2876. retry:
  2877. check_irq_off();
  2878. spin_lock(&l3->list_lock);
  2879. entry = l3->slabs_partial.next;
  2880. if (entry == &l3->slabs_partial) {
  2881. l3->free_touched = 1;
  2882. entry = l3->slabs_free.next;
  2883. if (entry == &l3->slabs_free)
  2884. goto must_grow;
  2885. }
  2886. slabp = list_entry(entry, struct slab, list);
  2887. check_spinlock_acquired_node(cachep, nodeid);
  2888. check_slabp(cachep, slabp);
  2889. STATS_INC_NODEALLOCS(cachep);
  2890. STATS_INC_ACTIVE(cachep);
  2891. STATS_SET_HIGH(cachep);
  2892. BUG_ON(slabp->inuse == cachep->num);
  2893. obj = slab_get_obj(cachep, slabp, nodeid);
  2894. check_slabp(cachep, slabp);
  2895. l3->free_objects--;
  2896. /* move slabp to correct slabp list: */
  2897. list_del(&slabp->list);
  2898. if (slabp->free == BUFCTL_END)
  2899. list_add(&slabp->list, &l3->slabs_full);
  2900. else
  2901. list_add(&slabp->list, &l3->slabs_partial);
  2902. spin_unlock(&l3->list_lock);
  2903. goto done;
  2904. must_grow:
  2905. spin_unlock(&l3->list_lock);
  2906. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2907. if (x)
  2908. goto retry;
  2909. return fallback_alloc(cachep, flags);
  2910. done:
  2911. return obj;
  2912. }
  2913. /**
  2914. * kmem_cache_alloc_node - Allocate an object on the specified node
  2915. * @cachep: The cache to allocate from.
  2916. * @flags: See kmalloc().
  2917. * @nodeid: node number of the target node.
  2918. * @caller: return address of caller, used for debug information
  2919. *
  2920. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2921. * node, which can improve the performance for cpu bound structures.
  2922. *
  2923. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2924. */
  2925. static __always_inline void *
  2926. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2927. void *caller)
  2928. {
  2929. unsigned long save_flags;
  2930. void *ptr;
  2931. flags &= gfp_allowed_mask;
  2932. lockdep_trace_alloc(flags);
  2933. if (slab_should_failslab(cachep, flags))
  2934. return NULL;
  2935. cache_alloc_debugcheck_before(cachep, flags);
  2936. local_irq_save(save_flags);
  2937. if (nodeid == -1)
  2938. nodeid = numa_node_id();
  2939. if (unlikely(!cachep->nodelists[nodeid])) {
  2940. /* Node not bootstrapped yet */
  2941. ptr = fallback_alloc(cachep, flags);
  2942. goto out;
  2943. }
  2944. if (nodeid == numa_node_id()) {
  2945. /*
  2946. * Use the locally cached objects if possible.
  2947. * However ____cache_alloc does not allow fallback
  2948. * to other nodes. It may fail while we still have
  2949. * objects on other nodes available.
  2950. */
  2951. ptr = ____cache_alloc(cachep, flags);
  2952. if (ptr)
  2953. goto out;
  2954. }
  2955. /* ___cache_alloc_node can fall back to other nodes */
  2956. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2957. out:
  2958. local_irq_restore(save_flags);
  2959. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2960. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  2961. flags);
  2962. if (likely(ptr))
  2963. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  2964. if (unlikely((flags & __GFP_ZERO) && ptr))
  2965. memset(ptr, 0, obj_size(cachep));
  2966. return ptr;
  2967. }
  2968. static __always_inline void *
  2969. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2970. {
  2971. void *objp;
  2972. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2973. objp = alternate_node_alloc(cache, flags);
  2974. if (objp)
  2975. goto out;
  2976. }
  2977. objp = ____cache_alloc(cache, flags);
  2978. /*
  2979. * We may just have run out of memory on the local node.
  2980. * ____cache_alloc_node() knows how to locate memory on other nodes
  2981. */
  2982. if (!objp)
  2983. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2984. out:
  2985. return objp;
  2986. }
  2987. #else
  2988. static __always_inline void *
  2989. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2990. {
  2991. return ____cache_alloc(cachep, flags);
  2992. }
  2993. #endif /* CONFIG_NUMA */
  2994. static __always_inline void *
  2995. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2996. {
  2997. unsigned long save_flags;
  2998. void *objp;
  2999. flags &= gfp_allowed_mask;
  3000. lockdep_trace_alloc(flags);
  3001. if (slab_should_failslab(cachep, flags))
  3002. return NULL;
  3003. cache_alloc_debugcheck_before(cachep, flags);
  3004. local_irq_save(save_flags);
  3005. objp = __do_cache_alloc(cachep, flags);
  3006. local_irq_restore(save_flags);
  3007. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3008. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3009. flags);
  3010. prefetchw(objp);
  3011. if (likely(objp))
  3012. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3013. if (unlikely((flags & __GFP_ZERO) && objp))
  3014. memset(objp, 0, obj_size(cachep));
  3015. return objp;
  3016. }
  3017. /*
  3018. * Caller needs to acquire correct kmem_list's list_lock
  3019. */
  3020. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3021. int node)
  3022. {
  3023. int i;
  3024. struct kmem_list3 *l3;
  3025. for (i = 0; i < nr_objects; i++) {
  3026. void *objp = objpp[i];
  3027. struct slab *slabp;
  3028. slabp = virt_to_slab(objp);
  3029. l3 = cachep->nodelists[node];
  3030. list_del(&slabp->list);
  3031. check_spinlock_acquired_node(cachep, node);
  3032. check_slabp(cachep, slabp);
  3033. slab_put_obj(cachep, slabp, objp, node);
  3034. STATS_DEC_ACTIVE(cachep);
  3035. l3->free_objects++;
  3036. check_slabp(cachep, slabp);
  3037. /* fixup slab chains */
  3038. if (slabp->inuse == 0) {
  3039. if (l3->free_objects > l3->free_limit) {
  3040. l3->free_objects -= cachep->num;
  3041. /* No need to drop any previously held
  3042. * lock here, even if we have a off-slab slab
  3043. * descriptor it is guaranteed to come from
  3044. * a different cache, refer to comments before
  3045. * alloc_slabmgmt.
  3046. */
  3047. slab_destroy(cachep, slabp);
  3048. } else {
  3049. list_add(&slabp->list, &l3->slabs_free);
  3050. }
  3051. } else {
  3052. /* Unconditionally move a slab to the end of the
  3053. * partial list on free - maximum time for the
  3054. * other objects to be freed, too.
  3055. */
  3056. list_add_tail(&slabp->list, &l3->slabs_partial);
  3057. }
  3058. }
  3059. }
  3060. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3061. {
  3062. int batchcount;
  3063. struct kmem_list3 *l3;
  3064. int node = numa_node_id();
  3065. batchcount = ac->batchcount;
  3066. #if DEBUG
  3067. BUG_ON(!batchcount || batchcount > ac->avail);
  3068. #endif
  3069. check_irq_off();
  3070. l3 = cachep->nodelists[node];
  3071. spin_lock(&l3->list_lock);
  3072. if (l3->shared) {
  3073. struct array_cache *shared_array = l3->shared;
  3074. int max = shared_array->limit - shared_array->avail;
  3075. if (max) {
  3076. if (batchcount > max)
  3077. batchcount = max;
  3078. memcpy(&(shared_array->entry[shared_array->avail]),
  3079. ac->entry, sizeof(void *) * batchcount);
  3080. shared_array->avail += batchcount;
  3081. goto free_done;
  3082. }
  3083. }
  3084. free_block(cachep, ac->entry, batchcount, node);
  3085. free_done:
  3086. #if STATS
  3087. {
  3088. int i = 0;
  3089. struct list_head *p;
  3090. p = l3->slabs_free.next;
  3091. while (p != &(l3->slabs_free)) {
  3092. struct slab *slabp;
  3093. slabp = list_entry(p, struct slab, list);
  3094. BUG_ON(slabp->inuse);
  3095. i++;
  3096. p = p->next;
  3097. }
  3098. STATS_SET_FREEABLE(cachep, i);
  3099. }
  3100. #endif
  3101. spin_unlock(&l3->list_lock);
  3102. ac->avail -= batchcount;
  3103. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3104. }
  3105. /*
  3106. * Release an obj back to its cache. If the obj has a constructed state, it must
  3107. * be in this state _before_ it is released. Called with disabled ints.
  3108. */
  3109. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3110. {
  3111. struct array_cache *ac = cpu_cache_get(cachep);
  3112. check_irq_off();
  3113. kmemleak_free_recursive(objp, cachep->flags);
  3114. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3115. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3116. /*
  3117. * Skip calling cache_free_alien() when the platform is not numa.
  3118. * This will avoid cache misses that happen while accessing slabp (which
  3119. * is per page memory reference) to get nodeid. Instead use a global
  3120. * variable to skip the call, which is mostly likely to be present in
  3121. * the cache.
  3122. */
  3123. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3124. return;
  3125. if (likely(ac->avail < ac->limit)) {
  3126. STATS_INC_FREEHIT(cachep);
  3127. ac->entry[ac->avail++] = objp;
  3128. return;
  3129. } else {
  3130. STATS_INC_FREEMISS(cachep);
  3131. cache_flusharray(cachep, ac);
  3132. ac->entry[ac->avail++] = objp;
  3133. }
  3134. }
  3135. /**
  3136. * kmem_cache_alloc - Allocate an object
  3137. * @cachep: The cache to allocate from.
  3138. * @flags: See kmalloc().
  3139. *
  3140. * Allocate an object from this cache. The flags are only relevant
  3141. * if the cache has no available objects.
  3142. */
  3143. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3144. {
  3145. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3146. trace_kmem_cache_alloc(_RET_IP_, ret,
  3147. obj_size(cachep), cachep->buffer_size, flags);
  3148. return ret;
  3149. }
  3150. EXPORT_SYMBOL(kmem_cache_alloc);
  3151. #ifdef CONFIG_TRACING
  3152. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3153. {
  3154. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3155. }
  3156. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3157. #endif
  3158. /**
  3159. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3160. * @cachep: the cache we're checking against
  3161. * @ptr: pointer to validate
  3162. *
  3163. * This verifies that the untrusted pointer looks sane;
  3164. * it is _not_ a guarantee that the pointer is actually
  3165. * part of the slab cache in question, but it at least
  3166. * validates that the pointer can be dereferenced and
  3167. * looks half-way sane.
  3168. *
  3169. * Currently only used for dentry validation.
  3170. */
  3171. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3172. {
  3173. unsigned long size = cachep->buffer_size;
  3174. struct page *page;
  3175. if (unlikely(!kern_ptr_validate(ptr, size)))
  3176. goto out;
  3177. page = virt_to_page(ptr);
  3178. if (unlikely(!PageSlab(page)))
  3179. goto out;
  3180. if (unlikely(page_get_cache(page) != cachep))
  3181. goto out;
  3182. return 1;
  3183. out:
  3184. return 0;
  3185. }
  3186. #ifdef CONFIG_NUMA
  3187. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3188. {
  3189. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3190. __builtin_return_address(0));
  3191. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3192. obj_size(cachep), cachep->buffer_size,
  3193. flags, nodeid);
  3194. return ret;
  3195. }
  3196. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3197. #ifdef CONFIG_TRACING
  3198. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3199. gfp_t flags,
  3200. int nodeid)
  3201. {
  3202. return __cache_alloc_node(cachep, flags, nodeid,
  3203. __builtin_return_address(0));
  3204. }
  3205. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3206. #endif
  3207. static __always_inline void *
  3208. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3209. {
  3210. struct kmem_cache *cachep;
  3211. void *ret;
  3212. cachep = kmem_find_general_cachep(size, flags);
  3213. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3214. return cachep;
  3215. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3216. trace_kmalloc_node((unsigned long) caller, ret,
  3217. size, cachep->buffer_size, flags, node);
  3218. return ret;
  3219. }
  3220. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3221. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3222. {
  3223. return __do_kmalloc_node(size, flags, node,
  3224. __builtin_return_address(0));
  3225. }
  3226. EXPORT_SYMBOL(__kmalloc_node);
  3227. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3228. int node, unsigned long caller)
  3229. {
  3230. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3231. }
  3232. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3233. #else
  3234. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3235. {
  3236. return __do_kmalloc_node(size, flags, node, NULL);
  3237. }
  3238. EXPORT_SYMBOL(__kmalloc_node);
  3239. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3240. #endif /* CONFIG_NUMA */
  3241. /**
  3242. * __do_kmalloc - allocate memory
  3243. * @size: how many bytes of memory are required.
  3244. * @flags: the type of memory to allocate (see kmalloc).
  3245. * @caller: function caller for debug tracking of the caller
  3246. */
  3247. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3248. void *caller)
  3249. {
  3250. struct kmem_cache *cachep;
  3251. void *ret;
  3252. /* If you want to save a few bytes .text space: replace
  3253. * __ with kmem_.
  3254. * Then kmalloc uses the uninlined functions instead of the inline
  3255. * functions.
  3256. */
  3257. cachep = __find_general_cachep(size, flags);
  3258. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3259. return cachep;
  3260. ret = __cache_alloc(cachep, flags, caller);
  3261. trace_kmalloc((unsigned long) caller, ret,
  3262. size, cachep->buffer_size, flags);
  3263. return ret;
  3264. }
  3265. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3266. void *__kmalloc(size_t size, gfp_t flags)
  3267. {
  3268. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3269. }
  3270. EXPORT_SYMBOL(__kmalloc);
  3271. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3272. {
  3273. return __do_kmalloc(size, flags, (void *)caller);
  3274. }
  3275. EXPORT_SYMBOL(__kmalloc_track_caller);
  3276. #else
  3277. void *__kmalloc(size_t size, gfp_t flags)
  3278. {
  3279. return __do_kmalloc(size, flags, NULL);
  3280. }
  3281. EXPORT_SYMBOL(__kmalloc);
  3282. #endif
  3283. /**
  3284. * kmem_cache_free - Deallocate an object
  3285. * @cachep: The cache the allocation was from.
  3286. * @objp: The previously allocated object.
  3287. *
  3288. * Free an object which was previously allocated from this
  3289. * cache.
  3290. */
  3291. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3292. {
  3293. unsigned long flags;
  3294. local_irq_save(flags);
  3295. debug_check_no_locks_freed(objp, obj_size(cachep));
  3296. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3297. debug_check_no_obj_freed(objp, obj_size(cachep));
  3298. __cache_free(cachep, objp);
  3299. local_irq_restore(flags);
  3300. trace_kmem_cache_free(_RET_IP_, objp);
  3301. }
  3302. EXPORT_SYMBOL(kmem_cache_free);
  3303. /**
  3304. * kfree - free previously allocated memory
  3305. * @objp: pointer returned by kmalloc.
  3306. *
  3307. * If @objp is NULL, no operation is performed.
  3308. *
  3309. * Don't free memory not originally allocated by kmalloc()
  3310. * or you will run into trouble.
  3311. */
  3312. void kfree(const void *objp)
  3313. {
  3314. struct kmem_cache *c;
  3315. unsigned long flags;
  3316. trace_kfree(_RET_IP_, objp);
  3317. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3318. return;
  3319. local_irq_save(flags);
  3320. kfree_debugcheck(objp);
  3321. c = virt_to_cache(objp);
  3322. debug_check_no_locks_freed(objp, obj_size(c));
  3323. debug_check_no_obj_freed(objp, obj_size(c));
  3324. __cache_free(c, (void *)objp);
  3325. local_irq_restore(flags);
  3326. }
  3327. EXPORT_SYMBOL(kfree);
  3328. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3329. {
  3330. return obj_size(cachep);
  3331. }
  3332. EXPORT_SYMBOL(kmem_cache_size);
  3333. const char *kmem_cache_name(struct kmem_cache *cachep)
  3334. {
  3335. return cachep->name;
  3336. }
  3337. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3338. /*
  3339. * This initializes kmem_list3 or resizes various caches for all nodes.
  3340. */
  3341. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3342. {
  3343. int node;
  3344. struct kmem_list3 *l3;
  3345. struct array_cache *new_shared;
  3346. struct array_cache **new_alien = NULL;
  3347. for_each_online_node(node) {
  3348. if (use_alien_caches) {
  3349. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3350. if (!new_alien)
  3351. goto fail;
  3352. }
  3353. new_shared = NULL;
  3354. if (cachep->shared) {
  3355. new_shared = alloc_arraycache(node,
  3356. cachep->shared*cachep->batchcount,
  3357. 0xbaadf00d, gfp);
  3358. if (!new_shared) {
  3359. free_alien_cache(new_alien);
  3360. goto fail;
  3361. }
  3362. }
  3363. l3 = cachep->nodelists[node];
  3364. if (l3) {
  3365. struct array_cache *shared = l3->shared;
  3366. spin_lock_irq(&l3->list_lock);
  3367. if (shared)
  3368. free_block(cachep, shared->entry,
  3369. shared->avail, node);
  3370. l3->shared = new_shared;
  3371. if (!l3->alien) {
  3372. l3->alien = new_alien;
  3373. new_alien = NULL;
  3374. }
  3375. l3->free_limit = (1 + nr_cpus_node(node)) *
  3376. cachep->batchcount + cachep->num;
  3377. spin_unlock_irq(&l3->list_lock);
  3378. kfree(shared);
  3379. free_alien_cache(new_alien);
  3380. continue;
  3381. }
  3382. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3383. if (!l3) {
  3384. free_alien_cache(new_alien);
  3385. kfree(new_shared);
  3386. goto fail;
  3387. }
  3388. kmem_list3_init(l3);
  3389. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3390. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3391. l3->shared = new_shared;
  3392. l3->alien = new_alien;
  3393. l3->free_limit = (1 + nr_cpus_node(node)) *
  3394. cachep->batchcount + cachep->num;
  3395. cachep->nodelists[node] = l3;
  3396. }
  3397. return 0;
  3398. fail:
  3399. if (!cachep->next.next) {
  3400. /* Cache is not active yet. Roll back what we did */
  3401. node--;
  3402. while (node >= 0) {
  3403. if (cachep->nodelists[node]) {
  3404. l3 = cachep->nodelists[node];
  3405. kfree(l3->shared);
  3406. free_alien_cache(l3->alien);
  3407. kfree(l3);
  3408. cachep->nodelists[node] = NULL;
  3409. }
  3410. node--;
  3411. }
  3412. }
  3413. return -ENOMEM;
  3414. }
  3415. struct ccupdate_struct {
  3416. struct kmem_cache *cachep;
  3417. struct array_cache *new[NR_CPUS];
  3418. };
  3419. static void do_ccupdate_local(void *info)
  3420. {
  3421. struct ccupdate_struct *new = info;
  3422. struct array_cache *old;
  3423. check_irq_off();
  3424. old = cpu_cache_get(new->cachep);
  3425. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3426. new->new[smp_processor_id()] = old;
  3427. }
  3428. /* Always called with the cache_chain_mutex held */
  3429. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3430. int batchcount, int shared, gfp_t gfp)
  3431. {
  3432. struct ccupdate_struct *new;
  3433. int i;
  3434. new = kzalloc(sizeof(*new), gfp);
  3435. if (!new)
  3436. return -ENOMEM;
  3437. for_each_online_cpu(i) {
  3438. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3439. batchcount, gfp);
  3440. if (!new->new[i]) {
  3441. for (i--; i >= 0; i--)
  3442. kfree(new->new[i]);
  3443. kfree(new);
  3444. return -ENOMEM;
  3445. }
  3446. }
  3447. new->cachep = cachep;
  3448. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3449. check_irq_on();
  3450. cachep->batchcount = batchcount;
  3451. cachep->limit = limit;
  3452. cachep->shared = shared;
  3453. for_each_online_cpu(i) {
  3454. struct array_cache *ccold = new->new[i];
  3455. if (!ccold)
  3456. continue;
  3457. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3458. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3459. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3460. kfree(ccold);
  3461. }
  3462. kfree(new);
  3463. return alloc_kmemlist(cachep, gfp);
  3464. }
  3465. /* Called with cache_chain_mutex held always */
  3466. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3467. {
  3468. int err;
  3469. int limit, shared;
  3470. /*
  3471. * The head array serves three purposes:
  3472. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3473. * - reduce the number of spinlock operations.
  3474. * - reduce the number of linked list operations on the slab and
  3475. * bufctl chains: array operations are cheaper.
  3476. * The numbers are guessed, we should auto-tune as described by
  3477. * Bonwick.
  3478. */
  3479. if (cachep->buffer_size > 131072)
  3480. limit = 1;
  3481. else if (cachep->buffer_size > PAGE_SIZE)
  3482. limit = 8;
  3483. else if (cachep->buffer_size > 1024)
  3484. limit = 24;
  3485. else if (cachep->buffer_size > 256)
  3486. limit = 54;
  3487. else
  3488. limit = 120;
  3489. /*
  3490. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3491. * allocation behaviour: Most allocs on one cpu, most free operations
  3492. * on another cpu. For these cases, an efficient object passing between
  3493. * cpus is necessary. This is provided by a shared array. The array
  3494. * replaces Bonwick's magazine layer.
  3495. * On uniprocessor, it's functionally equivalent (but less efficient)
  3496. * to a larger limit. Thus disabled by default.
  3497. */
  3498. shared = 0;
  3499. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3500. shared = 8;
  3501. #if DEBUG
  3502. /*
  3503. * With debugging enabled, large batchcount lead to excessively long
  3504. * periods with disabled local interrupts. Limit the batchcount
  3505. */
  3506. if (limit > 32)
  3507. limit = 32;
  3508. #endif
  3509. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3510. if (err)
  3511. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3512. cachep->name, -err);
  3513. return err;
  3514. }
  3515. /*
  3516. * Drain an array if it contains any elements taking the l3 lock only if
  3517. * necessary. Note that the l3 listlock also protects the array_cache
  3518. * if drain_array() is used on the shared array.
  3519. */
  3520. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3521. struct array_cache *ac, int force, int node)
  3522. {
  3523. int tofree;
  3524. if (!ac || !ac->avail)
  3525. return;
  3526. if (ac->touched && !force) {
  3527. ac->touched = 0;
  3528. } else {
  3529. spin_lock_irq(&l3->list_lock);
  3530. if (ac->avail) {
  3531. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3532. if (tofree > ac->avail)
  3533. tofree = (ac->avail + 1) / 2;
  3534. free_block(cachep, ac->entry, tofree, node);
  3535. ac->avail -= tofree;
  3536. memmove(ac->entry, &(ac->entry[tofree]),
  3537. sizeof(void *) * ac->avail);
  3538. }
  3539. spin_unlock_irq(&l3->list_lock);
  3540. }
  3541. }
  3542. /**
  3543. * cache_reap - Reclaim memory from caches.
  3544. * @w: work descriptor
  3545. *
  3546. * Called from workqueue/eventd every few seconds.
  3547. * Purpose:
  3548. * - clear the per-cpu caches for this CPU.
  3549. * - return freeable pages to the main free memory pool.
  3550. *
  3551. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3552. * again on the next iteration.
  3553. */
  3554. static void cache_reap(struct work_struct *w)
  3555. {
  3556. struct kmem_cache *searchp;
  3557. struct kmem_list3 *l3;
  3558. int node = numa_node_id();
  3559. struct delayed_work *work = to_delayed_work(w);
  3560. if (!mutex_trylock(&cache_chain_mutex))
  3561. /* Give up. Setup the next iteration. */
  3562. goto out;
  3563. list_for_each_entry(searchp, &cache_chain, next) {
  3564. check_irq_on();
  3565. /*
  3566. * We only take the l3 lock if absolutely necessary and we
  3567. * have established with reasonable certainty that
  3568. * we can do some work if the lock was obtained.
  3569. */
  3570. l3 = searchp->nodelists[node];
  3571. reap_alien(searchp, l3);
  3572. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3573. /*
  3574. * These are racy checks but it does not matter
  3575. * if we skip one check or scan twice.
  3576. */
  3577. if (time_after(l3->next_reap, jiffies))
  3578. goto next;
  3579. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3580. drain_array(searchp, l3, l3->shared, 0, node);
  3581. if (l3->free_touched)
  3582. l3->free_touched = 0;
  3583. else {
  3584. int freed;
  3585. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3586. 5 * searchp->num - 1) / (5 * searchp->num));
  3587. STATS_ADD_REAPED(searchp, freed);
  3588. }
  3589. next:
  3590. cond_resched();
  3591. }
  3592. check_irq_on();
  3593. mutex_unlock(&cache_chain_mutex);
  3594. next_reap_node();
  3595. out:
  3596. /* Set up the next iteration */
  3597. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3598. }
  3599. #ifdef CONFIG_SLABINFO
  3600. static void print_slabinfo_header(struct seq_file *m)
  3601. {
  3602. /*
  3603. * Output format version, so at least we can change it
  3604. * without _too_ many complaints.
  3605. */
  3606. #if STATS
  3607. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3608. #else
  3609. seq_puts(m, "slabinfo - version: 2.1\n");
  3610. #endif
  3611. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3612. "<objperslab> <pagesperslab>");
  3613. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3614. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3615. #if STATS
  3616. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3617. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3618. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3619. #endif
  3620. seq_putc(m, '\n');
  3621. }
  3622. static void *s_start(struct seq_file *m, loff_t *pos)
  3623. {
  3624. loff_t n = *pos;
  3625. mutex_lock(&cache_chain_mutex);
  3626. if (!n)
  3627. print_slabinfo_header(m);
  3628. return seq_list_start(&cache_chain, *pos);
  3629. }
  3630. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3631. {
  3632. return seq_list_next(p, &cache_chain, pos);
  3633. }
  3634. static void s_stop(struct seq_file *m, void *p)
  3635. {
  3636. mutex_unlock(&cache_chain_mutex);
  3637. }
  3638. static int s_show(struct seq_file *m, void *p)
  3639. {
  3640. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3641. struct slab *slabp;
  3642. unsigned long active_objs;
  3643. unsigned long num_objs;
  3644. unsigned long active_slabs = 0;
  3645. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3646. const char *name;
  3647. char *error = NULL;
  3648. int node;
  3649. struct kmem_list3 *l3;
  3650. active_objs = 0;
  3651. num_slabs = 0;
  3652. for_each_online_node(node) {
  3653. l3 = cachep->nodelists[node];
  3654. if (!l3)
  3655. continue;
  3656. check_irq_on();
  3657. spin_lock_irq(&l3->list_lock);
  3658. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3659. if (slabp->inuse != cachep->num && !error)
  3660. error = "slabs_full accounting error";
  3661. active_objs += cachep->num;
  3662. active_slabs++;
  3663. }
  3664. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3665. if (slabp->inuse == cachep->num && !error)
  3666. error = "slabs_partial inuse accounting error";
  3667. if (!slabp->inuse && !error)
  3668. error = "slabs_partial/inuse accounting error";
  3669. active_objs += slabp->inuse;
  3670. active_slabs++;
  3671. }
  3672. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3673. if (slabp->inuse && !error)
  3674. error = "slabs_free/inuse accounting error";
  3675. num_slabs++;
  3676. }
  3677. free_objects += l3->free_objects;
  3678. if (l3->shared)
  3679. shared_avail += l3->shared->avail;
  3680. spin_unlock_irq(&l3->list_lock);
  3681. }
  3682. num_slabs += active_slabs;
  3683. num_objs = num_slabs * cachep->num;
  3684. if (num_objs - active_objs != free_objects && !error)
  3685. error = "free_objects accounting error";
  3686. name = cachep->name;
  3687. if (error)
  3688. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3689. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3690. name, active_objs, num_objs, cachep->buffer_size,
  3691. cachep->num, (1 << cachep->gfporder));
  3692. seq_printf(m, " : tunables %4u %4u %4u",
  3693. cachep->limit, cachep->batchcount, cachep->shared);
  3694. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3695. active_slabs, num_slabs, shared_avail);
  3696. #if STATS
  3697. { /* list3 stats */
  3698. unsigned long high = cachep->high_mark;
  3699. unsigned long allocs = cachep->num_allocations;
  3700. unsigned long grown = cachep->grown;
  3701. unsigned long reaped = cachep->reaped;
  3702. unsigned long errors = cachep->errors;
  3703. unsigned long max_freeable = cachep->max_freeable;
  3704. unsigned long node_allocs = cachep->node_allocs;
  3705. unsigned long node_frees = cachep->node_frees;
  3706. unsigned long overflows = cachep->node_overflow;
  3707. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3708. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3709. reaped, errors, max_freeable, node_allocs,
  3710. node_frees, overflows);
  3711. }
  3712. /* cpu stats */
  3713. {
  3714. unsigned long allochit = atomic_read(&cachep->allochit);
  3715. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3716. unsigned long freehit = atomic_read(&cachep->freehit);
  3717. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3718. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3719. allochit, allocmiss, freehit, freemiss);
  3720. }
  3721. #endif
  3722. seq_putc(m, '\n');
  3723. return 0;
  3724. }
  3725. /*
  3726. * slabinfo_op - iterator that generates /proc/slabinfo
  3727. *
  3728. * Output layout:
  3729. * cache-name
  3730. * num-active-objs
  3731. * total-objs
  3732. * object size
  3733. * num-active-slabs
  3734. * total-slabs
  3735. * num-pages-per-slab
  3736. * + further values on SMP and with statistics enabled
  3737. */
  3738. static const struct seq_operations slabinfo_op = {
  3739. .start = s_start,
  3740. .next = s_next,
  3741. .stop = s_stop,
  3742. .show = s_show,
  3743. };
  3744. #define MAX_SLABINFO_WRITE 128
  3745. /**
  3746. * slabinfo_write - Tuning for the slab allocator
  3747. * @file: unused
  3748. * @buffer: user buffer
  3749. * @count: data length
  3750. * @ppos: unused
  3751. */
  3752. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3753. size_t count, loff_t *ppos)
  3754. {
  3755. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3756. int limit, batchcount, shared, res;
  3757. struct kmem_cache *cachep;
  3758. if (count > MAX_SLABINFO_WRITE)
  3759. return -EINVAL;
  3760. if (copy_from_user(&kbuf, buffer, count))
  3761. return -EFAULT;
  3762. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3763. tmp = strchr(kbuf, ' ');
  3764. if (!tmp)
  3765. return -EINVAL;
  3766. *tmp = '\0';
  3767. tmp++;
  3768. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3769. return -EINVAL;
  3770. /* Find the cache in the chain of caches. */
  3771. mutex_lock(&cache_chain_mutex);
  3772. res = -EINVAL;
  3773. list_for_each_entry(cachep, &cache_chain, next) {
  3774. if (!strcmp(cachep->name, kbuf)) {
  3775. if (limit < 1 || batchcount < 1 ||
  3776. batchcount > limit || shared < 0) {
  3777. res = 0;
  3778. } else {
  3779. res = do_tune_cpucache(cachep, limit,
  3780. batchcount, shared,
  3781. GFP_KERNEL);
  3782. }
  3783. break;
  3784. }
  3785. }
  3786. mutex_unlock(&cache_chain_mutex);
  3787. if (res >= 0)
  3788. res = count;
  3789. return res;
  3790. }
  3791. static int slabinfo_open(struct inode *inode, struct file *file)
  3792. {
  3793. return seq_open(file, &slabinfo_op);
  3794. }
  3795. static const struct file_operations proc_slabinfo_operations = {
  3796. .open = slabinfo_open,
  3797. .read = seq_read,
  3798. .write = slabinfo_write,
  3799. .llseek = seq_lseek,
  3800. .release = seq_release,
  3801. };
  3802. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3803. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3804. {
  3805. mutex_lock(&cache_chain_mutex);
  3806. return seq_list_start(&cache_chain, *pos);
  3807. }
  3808. static inline int add_caller(unsigned long *n, unsigned long v)
  3809. {
  3810. unsigned long *p;
  3811. int l;
  3812. if (!v)
  3813. return 1;
  3814. l = n[1];
  3815. p = n + 2;
  3816. while (l) {
  3817. int i = l/2;
  3818. unsigned long *q = p + 2 * i;
  3819. if (*q == v) {
  3820. q[1]++;
  3821. return 1;
  3822. }
  3823. if (*q > v) {
  3824. l = i;
  3825. } else {
  3826. p = q + 2;
  3827. l -= i + 1;
  3828. }
  3829. }
  3830. if (++n[1] == n[0])
  3831. return 0;
  3832. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3833. p[0] = v;
  3834. p[1] = 1;
  3835. return 1;
  3836. }
  3837. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3838. {
  3839. void *p;
  3840. int i;
  3841. if (n[0] == n[1])
  3842. return;
  3843. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3844. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3845. continue;
  3846. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3847. return;
  3848. }
  3849. }
  3850. static void show_symbol(struct seq_file *m, unsigned long address)
  3851. {
  3852. #ifdef CONFIG_KALLSYMS
  3853. unsigned long offset, size;
  3854. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3855. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3856. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3857. if (modname[0])
  3858. seq_printf(m, " [%s]", modname);
  3859. return;
  3860. }
  3861. #endif
  3862. seq_printf(m, "%p", (void *)address);
  3863. }
  3864. static int leaks_show(struct seq_file *m, void *p)
  3865. {
  3866. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3867. struct slab *slabp;
  3868. struct kmem_list3 *l3;
  3869. const char *name;
  3870. unsigned long *n = m->private;
  3871. int node;
  3872. int i;
  3873. if (!(cachep->flags & SLAB_STORE_USER))
  3874. return 0;
  3875. if (!(cachep->flags & SLAB_RED_ZONE))
  3876. return 0;
  3877. /* OK, we can do it */
  3878. n[1] = 0;
  3879. for_each_online_node(node) {
  3880. l3 = cachep->nodelists[node];
  3881. if (!l3)
  3882. continue;
  3883. check_irq_on();
  3884. spin_lock_irq(&l3->list_lock);
  3885. list_for_each_entry(slabp, &l3->slabs_full, list)
  3886. handle_slab(n, cachep, slabp);
  3887. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3888. handle_slab(n, cachep, slabp);
  3889. spin_unlock_irq(&l3->list_lock);
  3890. }
  3891. name = cachep->name;
  3892. if (n[0] == n[1]) {
  3893. /* Increase the buffer size */
  3894. mutex_unlock(&cache_chain_mutex);
  3895. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3896. if (!m->private) {
  3897. /* Too bad, we are really out */
  3898. m->private = n;
  3899. mutex_lock(&cache_chain_mutex);
  3900. return -ENOMEM;
  3901. }
  3902. *(unsigned long *)m->private = n[0] * 2;
  3903. kfree(n);
  3904. mutex_lock(&cache_chain_mutex);
  3905. /* Now make sure this entry will be retried */
  3906. m->count = m->size;
  3907. return 0;
  3908. }
  3909. for (i = 0; i < n[1]; i++) {
  3910. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3911. show_symbol(m, n[2*i+2]);
  3912. seq_putc(m, '\n');
  3913. }
  3914. return 0;
  3915. }
  3916. static const struct seq_operations slabstats_op = {
  3917. .start = leaks_start,
  3918. .next = s_next,
  3919. .stop = s_stop,
  3920. .show = leaks_show,
  3921. };
  3922. static int slabstats_open(struct inode *inode, struct file *file)
  3923. {
  3924. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3925. int ret = -ENOMEM;
  3926. if (n) {
  3927. ret = seq_open(file, &slabstats_op);
  3928. if (!ret) {
  3929. struct seq_file *m = file->private_data;
  3930. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3931. m->private = n;
  3932. n = NULL;
  3933. }
  3934. kfree(n);
  3935. }
  3936. return ret;
  3937. }
  3938. static const struct file_operations proc_slabstats_operations = {
  3939. .open = slabstats_open,
  3940. .read = seq_read,
  3941. .llseek = seq_lseek,
  3942. .release = seq_release_private,
  3943. };
  3944. #endif
  3945. static int __init slab_proc_init(void)
  3946. {
  3947. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3948. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3949. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3950. #endif
  3951. return 0;
  3952. }
  3953. module_init(slab_proc_init);
  3954. #endif
  3955. /**
  3956. * ksize - get the actual amount of memory allocated for a given object
  3957. * @objp: Pointer to the object
  3958. *
  3959. * kmalloc may internally round up allocations and return more memory
  3960. * than requested. ksize() can be used to determine the actual amount of
  3961. * memory allocated. The caller may use this additional memory, even though
  3962. * a smaller amount of memory was initially specified with the kmalloc call.
  3963. * The caller must guarantee that objp points to a valid object previously
  3964. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3965. * must not be freed during the duration of the call.
  3966. */
  3967. size_t ksize(const void *objp)
  3968. {
  3969. BUG_ON(!objp);
  3970. if (unlikely(objp == ZERO_SIZE_PTR))
  3971. return 0;
  3972. return obj_size(virt_to_cache(objp));
  3973. }
  3974. EXPORT_SYMBOL(ksize);