rmap.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. }
  134. spin_unlock(&mm->page_table_lock);
  135. spin_unlock(&anon_vma->lock);
  136. if (unlikely(allocated)) {
  137. anon_vma_free(allocated);
  138. anon_vma_chain_free(avc);
  139. }
  140. }
  141. return 0;
  142. out_enomem_free_avc:
  143. anon_vma_chain_free(avc);
  144. out_enomem:
  145. return -ENOMEM;
  146. }
  147. static void anon_vma_chain_link(struct vm_area_struct *vma,
  148. struct anon_vma_chain *avc,
  149. struct anon_vma *anon_vma)
  150. {
  151. avc->vma = vma;
  152. avc->anon_vma = anon_vma;
  153. list_add(&avc->same_vma, &vma->anon_vma_chain);
  154. spin_lock(&anon_vma->lock);
  155. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  156. spin_unlock(&anon_vma->lock);
  157. }
  158. /*
  159. * Attach the anon_vmas from src to dst.
  160. * Returns 0 on success, -ENOMEM on failure.
  161. */
  162. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  163. {
  164. struct anon_vma_chain *avc, *pavc;
  165. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  166. avc = anon_vma_chain_alloc();
  167. if (!avc)
  168. goto enomem_failure;
  169. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  170. }
  171. return 0;
  172. enomem_failure:
  173. unlink_anon_vmas(dst);
  174. return -ENOMEM;
  175. }
  176. /*
  177. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  178. * the corresponding VMA in the parent process is attached to.
  179. * Returns 0 on success, non-zero on failure.
  180. */
  181. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  182. {
  183. struct anon_vma_chain *avc;
  184. struct anon_vma *anon_vma;
  185. /* Don't bother if the parent process has no anon_vma here. */
  186. if (!pvma->anon_vma)
  187. return 0;
  188. /*
  189. * First, attach the new VMA to the parent VMA's anon_vmas,
  190. * so rmap can find non-COWed pages in child processes.
  191. */
  192. if (anon_vma_clone(vma, pvma))
  193. return -ENOMEM;
  194. /* Then add our own anon_vma. */
  195. anon_vma = anon_vma_alloc();
  196. if (!anon_vma)
  197. goto out_error;
  198. avc = anon_vma_chain_alloc();
  199. if (!avc)
  200. goto out_error_free_anon_vma;
  201. anon_vma_chain_link(vma, avc, anon_vma);
  202. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  203. vma->anon_vma = anon_vma;
  204. return 0;
  205. out_error_free_anon_vma:
  206. anon_vma_free(anon_vma);
  207. out_error:
  208. unlink_anon_vmas(vma);
  209. return -ENOMEM;
  210. }
  211. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  212. {
  213. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  214. int empty;
  215. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  216. if (!anon_vma)
  217. return;
  218. spin_lock(&anon_vma->lock);
  219. list_del(&anon_vma_chain->same_anon_vma);
  220. /* We must garbage collect the anon_vma if it's empty */
  221. empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
  222. spin_unlock(&anon_vma->lock);
  223. if (empty)
  224. anon_vma_free(anon_vma);
  225. }
  226. void unlink_anon_vmas(struct vm_area_struct *vma)
  227. {
  228. struct anon_vma_chain *avc, *next;
  229. /* Unlink each anon_vma chained to the VMA. */
  230. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  231. anon_vma_unlink(avc);
  232. list_del(&avc->same_vma);
  233. anon_vma_chain_free(avc);
  234. }
  235. }
  236. static void anon_vma_ctor(void *data)
  237. {
  238. struct anon_vma *anon_vma = data;
  239. spin_lock_init(&anon_vma->lock);
  240. ksm_refcount_init(anon_vma);
  241. INIT_LIST_HEAD(&anon_vma->head);
  242. }
  243. void __init anon_vma_init(void)
  244. {
  245. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  246. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  247. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  248. }
  249. /*
  250. * Getting a lock on a stable anon_vma from a page off the LRU is
  251. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  252. */
  253. struct anon_vma *page_lock_anon_vma(struct page *page)
  254. {
  255. struct anon_vma *anon_vma;
  256. unsigned long anon_mapping;
  257. rcu_read_lock();
  258. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  259. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  260. goto out;
  261. if (!page_mapped(page))
  262. goto out;
  263. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  264. spin_lock(&anon_vma->lock);
  265. return anon_vma;
  266. out:
  267. rcu_read_unlock();
  268. return NULL;
  269. }
  270. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  271. {
  272. spin_unlock(&anon_vma->lock);
  273. rcu_read_unlock();
  274. }
  275. /*
  276. * At what user virtual address is page expected in @vma?
  277. * Returns virtual address or -EFAULT if page's index/offset is not
  278. * within the range mapped the @vma.
  279. */
  280. static inline unsigned long
  281. vma_address(struct page *page, struct vm_area_struct *vma)
  282. {
  283. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  284. unsigned long address;
  285. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  286. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  287. /* page should be within @vma mapping range */
  288. return -EFAULT;
  289. }
  290. return address;
  291. }
  292. /*
  293. * At what user virtual address is page expected in vma?
  294. * checking that the page matches the vma.
  295. */
  296. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  297. {
  298. if (PageAnon(page)) {
  299. if (vma->anon_vma != page_anon_vma(page))
  300. return -EFAULT;
  301. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  302. if (!vma->vm_file ||
  303. vma->vm_file->f_mapping != page->mapping)
  304. return -EFAULT;
  305. } else
  306. return -EFAULT;
  307. return vma_address(page, vma);
  308. }
  309. /*
  310. * Check that @page is mapped at @address into @mm.
  311. *
  312. * If @sync is false, page_check_address may perform a racy check to avoid
  313. * the page table lock when the pte is not present (helpful when reclaiming
  314. * highly shared pages).
  315. *
  316. * On success returns with pte mapped and locked.
  317. */
  318. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  319. unsigned long address, spinlock_t **ptlp, int sync)
  320. {
  321. pgd_t *pgd;
  322. pud_t *pud;
  323. pmd_t *pmd;
  324. pte_t *pte;
  325. spinlock_t *ptl;
  326. pgd = pgd_offset(mm, address);
  327. if (!pgd_present(*pgd))
  328. return NULL;
  329. pud = pud_offset(pgd, address);
  330. if (!pud_present(*pud))
  331. return NULL;
  332. pmd = pmd_offset(pud, address);
  333. if (!pmd_present(*pmd))
  334. return NULL;
  335. pte = pte_offset_map(pmd, address);
  336. /* Make a quick check before getting the lock */
  337. if (!sync && !pte_present(*pte)) {
  338. pte_unmap(pte);
  339. return NULL;
  340. }
  341. ptl = pte_lockptr(mm, pmd);
  342. spin_lock(ptl);
  343. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  344. *ptlp = ptl;
  345. return pte;
  346. }
  347. pte_unmap_unlock(pte, ptl);
  348. return NULL;
  349. }
  350. /**
  351. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  352. * @page: the page to test
  353. * @vma: the VMA to test
  354. *
  355. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  356. * if the page is not mapped into the page tables of this VMA. Only
  357. * valid for normal file or anonymous VMAs.
  358. */
  359. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  360. {
  361. unsigned long address;
  362. pte_t *pte;
  363. spinlock_t *ptl;
  364. address = vma_address(page, vma);
  365. if (address == -EFAULT) /* out of vma range */
  366. return 0;
  367. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  368. if (!pte) /* the page is not in this mm */
  369. return 0;
  370. pte_unmap_unlock(pte, ptl);
  371. return 1;
  372. }
  373. /*
  374. * Subfunctions of page_referenced: page_referenced_one called
  375. * repeatedly from either page_referenced_anon or page_referenced_file.
  376. */
  377. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  378. unsigned long address, unsigned int *mapcount,
  379. unsigned long *vm_flags)
  380. {
  381. struct mm_struct *mm = vma->vm_mm;
  382. pte_t *pte;
  383. spinlock_t *ptl;
  384. int referenced = 0;
  385. pte = page_check_address(page, mm, address, &ptl, 0);
  386. if (!pte)
  387. goto out;
  388. /*
  389. * Don't want to elevate referenced for mlocked page that gets this far,
  390. * in order that it progresses to try_to_unmap and is moved to the
  391. * unevictable list.
  392. */
  393. if (vma->vm_flags & VM_LOCKED) {
  394. *mapcount = 1; /* break early from loop */
  395. *vm_flags |= VM_LOCKED;
  396. goto out_unmap;
  397. }
  398. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  399. /*
  400. * Don't treat a reference through a sequentially read
  401. * mapping as such. If the page has been used in
  402. * another mapping, we will catch it; if this other
  403. * mapping is already gone, the unmap path will have
  404. * set PG_referenced or activated the page.
  405. */
  406. if (likely(!VM_SequentialReadHint(vma)))
  407. referenced++;
  408. }
  409. /* Pretend the page is referenced if the task has the
  410. swap token and is in the middle of a page fault. */
  411. if (mm != current->mm && has_swap_token(mm) &&
  412. rwsem_is_locked(&mm->mmap_sem))
  413. referenced++;
  414. out_unmap:
  415. (*mapcount)--;
  416. pte_unmap_unlock(pte, ptl);
  417. if (referenced)
  418. *vm_flags |= vma->vm_flags;
  419. out:
  420. return referenced;
  421. }
  422. static int page_referenced_anon(struct page *page,
  423. struct mem_cgroup *mem_cont,
  424. unsigned long *vm_flags)
  425. {
  426. unsigned int mapcount;
  427. struct anon_vma *anon_vma;
  428. struct anon_vma_chain *avc;
  429. int referenced = 0;
  430. anon_vma = page_lock_anon_vma(page);
  431. if (!anon_vma)
  432. return referenced;
  433. mapcount = page_mapcount(page);
  434. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  435. struct vm_area_struct *vma = avc->vma;
  436. unsigned long address = vma_address(page, vma);
  437. if (address == -EFAULT)
  438. continue;
  439. /*
  440. * If we are reclaiming on behalf of a cgroup, skip
  441. * counting on behalf of references from different
  442. * cgroups
  443. */
  444. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  445. continue;
  446. referenced += page_referenced_one(page, vma, address,
  447. &mapcount, vm_flags);
  448. if (!mapcount)
  449. break;
  450. }
  451. page_unlock_anon_vma(anon_vma);
  452. return referenced;
  453. }
  454. /**
  455. * page_referenced_file - referenced check for object-based rmap
  456. * @page: the page we're checking references on.
  457. * @mem_cont: target memory controller
  458. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  459. *
  460. * For an object-based mapped page, find all the places it is mapped and
  461. * check/clear the referenced flag. This is done by following the page->mapping
  462. * pointer, then walking the chain of vmas it holds. It returns the number
  463. * of references it found.
  464. *
  465. * This function is only called from page_referenced for object-based pages.
  466. */
  467. static int page_referenced_file(struct page *page,
  468. struct mem_cgroup *mem_cont,
  469. unsigned long *vm_flags)
  470. {
  471. unsigned int mapcount;
  472. struct address_space *mapping = page->mapping;
  473. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  474. struct vm_area_struct *vma;
  475. struct prio_tree_iter iter;
  476. int referenced = 0;
  477. /*
  478. * The caller's checks on page->mapping and !PageAnon have made
  479. * sure that this is a file page: the check for page->mapping
  480. * excludes the case just before it gets set on an anon page.
  481. */
  482. BUG_ON(PageAnon(page));
  483. /*
  484. * The page lock not only makes sure that page->mapping cannot
  485. * suddenly be NULLified by truncation, it makes sure that the
  486. * structure at mapping cannot be freed and reused yet,
  487. * so we can safely take mapping->i_mmap_lock.
  488. */
  489. BUG_ON(!PageLocked(page));
  490. spin_lock(&mapping->i_mmap_lock);
  491. /*
  492. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  493. * is more likely to be accurate if we note it after spinning.
  494. */
  495. mapcount = page_mapcount(page);
  496. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  497. unsigned long address = vma_address(page, vma);
  498. if (address == -EFAULT)
  499. continue;
  500. /*
  501. * If we are reclaiming on behalf of a cgroup, skip
  502. * counting on behalf of references from different
  503. * cgroups
  504. */
  505. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  506. continue;
  507. referenced += page_referenced_one(page, vma, address,
  508. &mapcount, vm_flags);
  509. if (!mapcount)
  510. break;
  511. }
  512. spin_unlock(&mapping->i_mmap_lock);
  513. return referenced;
  514. }
  515. /**
  516. * page_referenced - test if the page was referenced
  517. * @page: the page to test
  518. * @is_locked: caller holds lock on the page
  519. * @mem_cont: target memory controller
  520. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  521. *
  522. * Quick test_and_clear_referenced for all mappings to a page,
  523. * returns the number of ptes which referenced the page.
  524. */
  525. int page_referenced(struct page *page,
  526. int is_locked,
  527. struct mem_cgroup *mem_cont,
  528. unsigned long *vm_flags)
  529. {
  530. int referenced = 0;
  531. int we_locked = 0;
  532. *vm_flags = 0;
  533. if (page_mapped(page) && page_rmapping(page)) {
  534. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  535. we_locked = trylock_page(page);
  536. if (!we_locked) {
  537. referenced++;
  538. goto out;
  539. }
  540. }
  541. if (unlikely(PageKsm(page)))
  542. referenced += page_referenced_ksm(page, mem_cont,
  543. vm_flags);
  544. else if (PageAnon(page))
  545. referenced += page_referenced_anon(page, mem_cont,
  546. vm_flags);
  547. else if (page->mapping)
  548. referenced += page_referenced_file(page, mem_cont,
  549. vm_flags);
  550. if (we_locked)
  551. unlock_page(page);
  552. }
  553. out:
  554. if (page_test_and_clear_young(page))
  555. referenced++;
  556. return referenced;
  557. }
  558. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  559. unsigned long address)
  560. {
  561. struct mm_struct *mm = vma->vm_mm;
  562. pte_t *pte;
  563. spinlock_t *ptl;
  564. int ret = 0;
  565. pte = page_check_address(page, mm, address, &ptl, 1);
  566. if (!pte)
  567. goto out;
  568. if (pte_dirty(*pte) || pte_write(*pte)) {
  569. pte_t entry;
  570. flush_cache_page(vma, address, pte_pfn(*pte));
  571. entry = ptep_clear_flush_notify(vma, address, pte);
  572. entry = pte_wrprotect(entry);
  573. entry = pte_mkclean(entry);
  574. set_pte_at(mm, address, pte, entry);
  575. ret = 1;
  576. }
  577. pte_unmap_unlock(pte, ptl);
  578. out:
  579. return ret;
  580. }
  581. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  582. {
  583. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  584. struct vm_area_struct *vma;
  585. struct prio_tree_iter iter;
  586. int ret = 0;
  587. BUG_ON(PageAnon(page));
  588. spin_lock(&mapping->i_mmap_lock);
  589. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  590. if (vma->vm_flags & VM_SHARED) {
  591. unsigned long address = vma_address(page, vma);
  592. if (address == -EFAULT)
  593. continue;
  594. ret += page_mkclean_one(page, vma, address);
  595. }
  596. }
  597. spin_unlock(&mapping->i_mmap_lock);
  598. return ret;
  599. }
  600. int page_mkclean(struct page *page)
  601. {
  602. int ret = 0;
  603. BUG_ON(!PageLocked(page));
  604. if (page_mapped(page)) {
  605. struct address_space *mapping = page_mapping(page);
  606. if (mapping) {
  607. ret = page_mkclean_file(mapping, page);
  608. if (page_test_dirty(page)) {
  609. page_clear_dirty(page);
  610. ret = 1;
  611. }
  612. }
  613. }
  614. return ret;
  615. }
  616. EXPORT_SYMBOL_GPL(page_mkclean);
  617. /**
  618. * page_move_anon_rmap - move a page to our anon_vma
  619. * @page: the page to move to our anon_vma
  620. * @vma: the vma the page belongs to
  621. * @address: the user virtual address mapped
  622. *
  623. * When a page belongs exclusively to one process after a COW event,
  624. * that page can be moved into the anon_vma that belongs to just that
  625. * process, so the rmap code will not search the parent or sibling
  626. * processes.
  627. */
  628. void page_move_anon_rmap(struct page *page,
  629. struct vm_area_struct *vma, unsigned long address)
  630. {
  631. struct anon_vma *anon_vma = vma->anon_vma;
  632. VM_BUG_ON(!PageLocked(page));
  633. VM_BUG_ON(!anon_vma);
  634. VM_BUG_ON(page->index != linear_page_index(vma, address));
  635. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  636. page->mapping = (struct address_space *) anon_vma;
  637. }
  638. /**
  639. * __page_set_anon_rmap - setup new anonymous rmap
  640. * @page: the page to add the mapping to
  641. * @vma: the vm area in which the mapping is added
  642. * @address: the user virtual address mapped
  643. * @exclusive: the page is exclusively owned by the current process
  644. */
  645. static void __page_set_anon_rmap(struct page *page,
  646. struct vm_area_struct *vma, unsigned long address, int exclusive)
  647. {
  648. struct anon_vma *anon_vma = vma->anon_vma;
  649. BUG_ON(!anon_vma);
  650. /*
  651. * If the page isn't exclusively mapped into this vma,
  652. * we must use the _oldest_ possible anon_vma for the
  653. * page mapping!
  654. *
  655. * So take the last AVC chain entry in the vma, which is
  656. * the deepest ancestor, and use the anon_vma from that.
  657. */
  658. if (!exclusive) {
  659. struct anon_vma_chain *avc;
  660. avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
  661. anon_vma = avc->anon_vma;
  662. }
  663. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  664. page->mapping = (struct address_space *) anon_vma;
  665. page->index = linear_page_index(vma, address);
  666. }
  667. /**
  668. * __page_check_anon_rmap - sanity check anonymous rmap addition
  669. * @page: the page to add the mapping to
  670. * @vma: the vm area in which the mapping is added
  671. * @address: the user virtual address mapped
  672. */
  673. static void __page_check_anon_rmap(struct page *page,
  674. struct vm_area_struct *vma, unsigned long address)
  675. {
  676. #ifdef CONFIG_DEBUG_VM
  677. /*
  678. * The page's anon-rmap details (mapping and index) are guaranteed to
  679. * be set up correctly at this point.
  680. *
  681. * We have exclusion against page_add_anon_rmap because the caller
  682. * always holds the page locked, except if called from page_dup_rmap,
  683. * in which case the page is already known to be setup.
  684. *
  685. * We have exclusion against page_add_new_anon_rmap because those pages
  686. * are initially only visible via the pagetables, and the pte is locked
  687. * over the call to page_add_new_anon_rmap.
  688. */
  689. BUG_ON(page->index != linear_page_index(vma, address));
  690. #endif
  691. }
  692. /**
  693. * page_add_anon_rmap - add pte mapping to an anonymous page
  694. * @page: the page to add the mapping to
  695. * @vma: the vm area in which the mapping is added
  696. * @address: the user virtual address mapped
  697. *
  698. * The caller needs to hold the pte lock, and the page must be locked in
  699. * the anon_vma case: to serialize mapping,index checking after setting,
  700. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  701. * (but PageKsm is never downgraded to PageAnon).
  702. */
  703. void page_add_anon_rmap(struct page *page,
  704. struct vm_area_struct *vma, unsigned long address)
  705. {
  706. int first = atomic_inc_and_test(&page->_mapcount);
  707. if (first)
  708. __inc_zone_page_state(page, NR_ANON_PAGES);
  709. if (unlikely(PageKsm(page)))
  710. return;
  711. VM_BUG_ON(!PageLocked(page));
  712. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  713. if (first)
  714. __page_set_anon_rmap(page, vma, address, 0);
  715. else
  716. __page_check_anon_rmap(page, vma, address);
  717. }
  718. /**
  719. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  720. * @page: the page to add the mapping to
  721. * @vma: the vm area in which the mapping is added
  722. * @address: the user virtual address mapped
  723. *
  724. * Same as page_add_anon_rmap but must only be called on *new* pages.
  725. * This means the inc-and-test can be bypassed.
  726. * Page does not have to be locked.
  727. */
  728. void page_add_new_anon_rmap(struct page *page,
  729. struct vm_area_struct *vma, unsigned long address)
  730. {
  731. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  732. SetPageSwapBacked(page);
  733. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  734. __inc_zone_page_state(page, NR_ANON_PAGES);
  735. __page_set_anon_rmap(page, vma, address, 1);
  736. if (page_evictable(page, vma))
  737. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  738. else
  739. add_page_to_unevictable_list(page);
  740. }
  741. /**
  742. * page_add_file_rmap - add pte mapping to a file page
  743. * @page: the page to add the mapping to
  744. *
  745. * The caller needs to hold the pte lock.
  746. */
  747. void page_add_file_rmap(struct page *page)
  748. {
  749. if (atomic_inc_and_test(&page->_mapcount)) {
  750. __inc_zone_page_state(page, NR_FILE_MAPPED);
  751. mem_cgroup_update_file_mapped(page, 1);
  752. }
  753. }
  754. /**
  755. * page_remove_rmap - take down pte mapping from a page
  756. * @page: page to remove mapping from
  757. *
  758. * The caller needs to hold the pte lock.
  759. */
  760. void page_remove_rmap(struct page *page)
  761. {
  762. /* page still mapped by someone else? */
  763. if (!atomic_add_negative(-1, &page->_mapcount))
  764. return;
  765. /*
  766. * Now that the last pte has gone, s390 must transfer dirty
  767. * flag from storage key to struct page. We can usually skip
  768. * this if the page is anon, so about to be freed; but perhaps
  769. * not if it's in swapcache - there might be another pte slot
  770. * containing the swap entry, but page not yet written to swap.
  771. */
  772. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  773. page_clear_dirty(page);
  774. set_page_dirty(page);
  775. }
  776. if (PageAnon(page)) {
  777. mem_cgroup_uncharge_page(page);
  778. __dec_zone_page_state(page, NR_ANON_PAGES);
  779. } else {
  780. __dec_zone_page_state(page, NR_FILE_MAPPED);
  781. mem_cgroup_update_file_mapped(page, -1);
  782. }
  783. /*
  784. * It would be tidy to reset the PageAnon mapping here,
  785. * but that might overwrite a racing page_add_anon_rmap
  786. * which increments mapcount after us but sets mapping
  787. * before us: so leave the reset to free_hot_cold_page,
  788. * and remember that it's only reliable while mapped.
  789. * Leaving it set also helps swapoff to reinstate ptes
  790. * faster for those pages still in swapcache.
  791. */
  792. }
  793. /*
  794. * Subfunctions of try_to_unmap: try_to_unmap_one called
  795. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  796. */
  797. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  798. unsigned long address, enum ttu_flags flags)
  799. {
  800. struct mm_struct *mm = vma->vm_mm;
  801. pte_t *pte;
  802. pte_t pteval;
  803. spinlock_t *ptl;
  804. int ret = SWAP_AGAIN;
  805. pte = page_check_address(page, mm, address, &ptl, 0);
  806. if (!pte)
  807. goto out;
  808. /*
  809. * If the page is mlock()d, we cannot swap it out.
  810. * If it's recently referenced (perhaps page_referenced
  811. * skipped over this mm) then we should reactivate it.
  812. */
  813. if (!(flags & TTU_IGNORE_MLOCK)) {
  814. if (vma->vm_flags & VM_LOCKED)
  815. goto out_mlock;
  816. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  817. goto out_unmap;
  818. }
  819. if (!(flags & TTU_IGNORE_ACCESS)) {
  820. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  821. ret = SWAP_FAIL;
  822. goto out_unmap;
  823. }
  824. }
  825. /* Nuke the page table entry. */
  826. flush_cache_page(vma, address, page_to_pfn(page));
  827. pteval = ptep_clear_flush_notify(vma, address, pte);
  828. /* Move the dirty bit to the physical page now the pte is gone. */
  829. if (pte_dirty(pteval))
  830. set_page_dirty(page);
  831. /* Update high watermark before we lower rss */
  832. update_hiwater_rss(mm);
  833. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  834. if (PageAnon(page))
  835. dec_mm_counter(mm, MM_ANONPAGES);
  836. else
  837. dec_mm_counter(mm, MM_FILEPAGES);
  838. set_pte_at(mm, address, pte,
  839. swp_entry_to_pte(make_hwpoison_entry(page)));
  840. } else if (PageAnon(page)) {
  841. swp_entry_t entry = { .val = page_private(page) };
  842. if (PageSwapCache(page)) {
  843. /*
  844. * Store the swap location in the pte.
  845. * See handle_pte_fault() ...
  846. */
  847. if (swap_duplicate(entry) < 0) {
  848. set_pte_at(mm, address, pte, pteval);
  849. ret = SWAP_FAIL;
  850. goto out_unmap;
  851. }
  852. if (list_empty(&mm->mmlist)) {
  853. spin_lock(&mmlist_lock);
  854. if (list_empty(&mm->mmlist))
  855. list_add(&mm->mmlist, &init_mm.mmlist);
  856. spin_unlock(&mmlist_lock);
  857. }
  858. dec_mm_counter(mm, MM_ANONPAGES);
  859. inc_mm_counter(mm, MM_SWAPENTS);
  860. } else if (PAGE_MIGRATION) {
  861. /*
  862. * Store the pfn of the page in a special migration
  863. * pte. do_swap_page() will wait until the migration
  864. * pte is removed and then restart fault handling.
  865. */
  866. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  867. entry = make_migration_entry(page, pte_write(pteval));
  868. }
  869. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  870. BUG_ON(pte_file(*pte));
  871. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  872. /* Establish migration entry for a file page */
  873. swp_entry_t entry;
  874. entry = make_migration_entry(page, pte_write(pteval));
  875. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  876. } else
  877. dec_mm_counter(mm, MM_FILEPAGES);
  878. page_remove_rmap(page);
  879. page_cache_release(page);
  880. out_unmap:
  881. pte_unmap_unlock(pte, ptl);
  882. out:
  883. return ret;
  884. out_mlock:
  885. pte_unmap_unlock(pte, ptl);
  886. /*
  887. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  888. * unstable result and race. Plus, We can't wait here because
  889. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  890. * if trylock failed, the page remain in evictable lru and later
  891. * vmscan could retry to move the page to unevictable lru if the
  892. * page is actually mlocked.
  893. */
  894. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  895. if (vma->vm_flags & VM_LOCKED) {
  896. mlock_vma_page(page);
  897. ret = SWAP_MLOCK;
  898. }
  899. up_read(&vma->vm_mm->mmap_sem);
  900. }
  901. return ret;
  902. }
  903. /*
  904. * objrmap doesn't work for nonlinear VMAs because the assumption that
  905. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  906. * Consequently, given a particular page and its ->index, we cannot locate the
  907. * ptes which are mapping that page without an exhaustive linear search.
  908. *
  909. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  910. * maps the file to which the target page belongs. The ->vm_private_data field
  911. * holds the current cursor into that scan. Successive searches will circulate
  912. * around the vma's virtual address space.
  913. *
  914. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  915. * more scanning pressure is placed against them as well. Eventually pages
  916. * will become fully unmapped and are eligible for eviction.
  917. *
  918. * For very sparsely populated VMAs this is a little inefficient - chances are
  919. * there there won't be many ptes located within the scan cluster. In this case
  920. * maybe we could scan further - to the end of the pte page, perhaps.
  921. *
  922. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  923. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  924. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  925. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  926. */
  927. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  928. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  929. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  930. struct vm_area_struct *vma, struct page *check_page)
  931. {
  932. struct mm_struct *mm = vma->vm_mm;
  933. pgd_t *pgd;
  934. pud_t *pud;
  935. pmd_t *pmd;
  936. pte_t *pte;
  937. pte_t pteval;
  938. spinlock_t *ptl;
  939. struct page *page;
  940. unsigned long address;
  941. unsigned long end;
  942. int ret = SWAP_AGAIN;
  943. int locked_vma = 0;
  944. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  945. end = address + CLUSTER_SIZE;
  946. if (address < vma->vm_start)
  947. address = vma->vm_start;
  948. if (end > vma->vm_end)
  949. end = vma->vm_end;
  950. pgd = pgd_offset(mm, address);
  951. if (!pgd_present(*pgd))
  952. return ret;
  953. pud = pud_offset(pgd, address);
  954. if (!pud_present(*pud))
  955. return ret;
  956. pmd = pmd_offset(pud, address);
  957. if (!pmd_present(*pmd))
  958. return ret;
  959. /*
  960. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  961. * keep the sem while scanning the cluster for mlocking pages.
  962. */
  963. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  964. locked_vma = (vma->vm_flags & VM_LOCKED);
  965. if (!locked_vma)
  966. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  967. }
  968. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  969. /* Update high watermark before we lower rss */
  970. update_hiwater_rss(mm);
  971. for (; address < end; pte++, address += PAGE_SIZE) {
  972. if (!pte_present(*pte))
  973. continue;
  974. page = vm_normal_page(vma, address, *pte);
  975. BUG_ON(!page || PageAnon(page));
  976. if (locked_vma) {
  977. mlock_vma_page(page); /* no-op if already mlocked */
  978. if (page == check_page)
  979. ret = SWAP_MLOCK;
  980. continue; /* don't unmap */
  981. }
  982. if (ptep_clear_flush_young_notify(vma, address, pte))
  983. continue;
  984. /* Nuke the page table entry. */
  985. flush_cache_page(vma, address, pte_pfn(*pte));
  986. pteval = ptep_clear_flush_notify(vma, address, pte);
  987. /* If nonlinear, store the file page offset in the pte. */
  988. if (page->index != linear_page_index(vma, address))
  989. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  990. /* Move the dirty bit to the physical page now the pte is gone. */
  991. if (pte_dirty(pteval))
  992. set_page_dirty(page);
  993. page_remove_rmap(page);
  994. page_cache_release(page);
  995. dec_mm_counter(mm, MM_FILEPAGES);
  996. (*mapcount)--;
  997. }
  998. pte_unmap_unlock(pte - 1, ptl);
  999. if (locked_vma)
  1000. up_read(&vma->vm_mm->mmap_sem);
  1001. return ret;
  1002. }
  1003. /**
  1004. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1005. * rmap method
  1006. * @page: the page to unmap/unlock
  1007. * @flags: action and flags
  1008. *
  1009. * Find all the mappings of a page using the mapping pointer and the vma chains
  1010. * contained in the anon_vma struct it points to.
  1011. *
  1012. * This function is only called from try_to_unmap/try_to_munlock for
  1013. * anonymous pages.
  1014. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1015. * where the page was found will be held for write. So, we won't recheck
  1016. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1017. * 'LOCKED.
  1018. */
  1019. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1020. {
  1021. struct anon_vma *anon_vma;
  1022. struct anon_vma_chain *avc;
  1023. int ret = SWAP_AGAIN;
  1024. anon_vma = page_lock_anon_vma(page);
  1025. if (!anon_vma)
  1026. return ret;
  1027. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1028. struct vm_area_struct *vma = avc->vma;
  1029. unsigned long address = vma_address(page, vma);
  1030. if (address == -EFAULT)
  1031. continue;
  1032. ret = try_to_unmap_one(page, vma, address, flags);
  1033. if (ret != SWAP_AGAIN || !page_mapped(page))
  1034. break;
  1035. }
  1036. page_unlock_anon_vma(anon_vma);
  1037. return ret;
  1038. }
  1039. /**
  1040. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1041. * @page: the page to unmap/unlock
  1042. * @flags: action and flags
  1043. *
  1044. * Find all the mappings of a page using the mapping pointer and the vma chains
  1045. * contained in the address_space struct it points to.
  1046. *
  1047. * This function is only called from try_to_unmap/try_to_munlock for
  1048. * object-based pages.
  1049. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1050. * where the page was found will be held for write. So, we won't recheck
  1051. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1052. * 'LOCKED.
  1053. */
  1054. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1055. {
  1056. struct address_space *mapping = page->mapping;
  1057. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1058. struct vm_area_struct *vma;
  1059. struct prio_tree_iter iter;
  1060. int ret = SWAP_AGAIN;
  1061. unsigned long cursor;
  1062. unsigned long max_nl_cursor = 0;
  1063. unsigned long max_nl_size = 0;
  1064. unsigned int mapcount;
  1065. spin_lock(&mapping->i_mmap_lock);
  1066. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1067. unsigned long address = vma_address(page, vma);
  1068. if (address == -EFAULT)
  1069. continue;
  1070. ret = try_to_unmap_one(page, vma, address, flags);
  1071. if (ret != SWAP_AGAIN || !page_mapped(page))
  1072. goto out;
  1073. }
  1074. if (list_empty(&mapping->i_mmap_nonlinear))
  1075. goto out;
  1076. /*
  1077. * We don't bother to try to find the munlocked page in nonlinears.
  1078. * It's costly. Instead, later, page reclaim logic may call
  1079. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1080. */
  1081. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1082. goto out;
  1083. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1084. shared.vm_set.list) {
  1085. cursor = (unsigned long) vma->vm_private_data;
  1086. if (cursor > max_nl_cursor)
  1087. max_nl_cursor = cursor;
  1088. cursor = vma->vm_end - vma->vm_start;
  1089. if (cursor > max_nl_size)
  1090. max_nl_size = cursor;
  1091. }
  1092. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1093. ret = SWAP_FAIL;
  1094. goto out;
  1095. }
  1096. /*
  1097. * We don't try to search for this page in the nonlinear vmas,
  1098. * and page_referenced wouldn't have found it anyway. Instead
  1099. * just walk the nonlinear vmas trying to age and unmap some.
  1100. * The mapcount of the page we came in with is irrelevant,
  1101. * but even so use it as a guide to how hard we should try?
  1102. */
  1103. mapcount = page_mapcount(page);
  1104. if (!mapcount)
  1105. goto out;
  1106. cond_resched_lock(&mapping->i_mmap_lock);
  1107. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1108. if (max_nl_cursor == 0)
  1109. max_nl_cursor = CLUSTER_SIZE;
  1110. do {
  1111. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1112. shared.vm_set.list) {
  1113. cursor = (unsigned long) vma->vm_private_data;
  1114. while ( cursor < max_nl_cursor &&
  1115. cursor < vma->vm_end - vma->vm_start) {
  1116. if (try_to_unmap_cluster(cursor, &mapcount,
  1117. vma, page) == SWAP_MLOCK)
  1118. ret = SWAP_MLOCK;
  1119. cursor += CLUSTER_SIZE;
  1120. vma->vm_private_data = (void *) cursor;
  1121. if ((int)mapcount <= 0)
  1122. goto out;
  1123. }
  1124. vma->vm_private_data = (void *) max_nl_cursor;
  1125. }
  1126. cond_resched_lock(&mapping->i_mmap_lock);
  1127. max_nl_cursor += CLUSTER_SIZE;
  1128. } while (max_nl_cursor <= max_nl_size);
  1129. /*
  1130. * Don't loop forever (perhaps all the remaining pages are
  1131. * in locked vmas). Reset cursor on all unreserved nonlinear
  1132. * vmas, now forgetting on which ones it had fallen behind.
  1133. */
  1134. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1135. vma->vm_private_data = NULL;
  1136. out:
  1137. spin_unlock(&mapping->i_mmap_lock);
  1138. return ret;
  1139. }
  1140. /**
  1141. * try_to_unmap - try to remove all page table mappings to a page
  1142. * @page: the page to get unmapped
  1143. * @flags: action and flags
  1144. *
  1145. * Tries to remove all the page table entries which are mapping this
  1146. * page, used in the pageout path. Caller must hold the page lock.
  1147. * Return values are:
  1148. *
  1149. * SWAP_SUCCESS - we succeeded in removing all mappings
  1150. * SWAP_AGAIN - we missed a mapping, try again later
  1151. * SWAP_FAIL - the page is unswappable
  1152. * SWAP_MLOCK - page is mlocked.
  1153. */
  1154. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1155. {
  1156. int ret;
  1157. BUG_ON(!PageLocked(page));
  1158. if (unlikely(PageKsm(page)))
  1159. ret = try_to_unmap_ksm(page, flags);
  1160. else if (PageAnon(page))
  1161. ret = try_to_unmap_anon(page, flags);
  1162. else
  1163. ret = try_to_unmap_file(page, flags);
  1164. if (ret != SWAP_MLOCK && !page_mapped(page))
  1165. ret = SWAP_SUCCESS;
  1166. return ret;
  1167. }
  1168. /**
  1169. * try_to_munlock - try to munlock a page
  1170. * @page: the page to be munlocked
  1171. *
  1172. * Called from munlock code. Checks all of the VMAs mapping the page
  1173. * to make sure nobody else has this page mlocked. The page will be
  1174. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1175. *
  1176. * Return values are:
  1177. *
  1178. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1179. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1180. * SWAP_FAIL - page cannot be located at present
  1181. * SWAP_MLOCK - page is now mlocked.
  1182. */
  1183. int try_to_munlock(struct page *page)
  1184. {
  1185. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1186. if (unlikely(PageKsm(page)))
  1187. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1188. else if (PageAnon(page))
  1189. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1190. else
  1191. return try_to_unmap_file(page, TTU_MUNLOCK);
  1192. }
  1193. #ifdef CONFIG_MIGRATION
  1194. /*
  1195. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1196. * Called by migrate.c to remove migration ptes, but might be used more later.
  1197. */
  1198. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1199. struct vm_area_struct *, unsigned long, void *), void *arg)
  1200. {
  1201. struct anon_vma *anon_vma;
  1202. struct anon_vma_chain *avc;
  1203. int ret = SWAP_AGAIN;
  1204. /*
  1205. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1206. * because that depends on page_mapped(); but not all its usages
  1207. * are holding mmap_sem, which also gave the necessary guarantee
  1208. * (that this anon_vma's slab has not already been destroyed).
  1209. * This needs to be reviewed later: avoiding page_lock_anon_vma()
  1210. * is risky, and currently limits the usefulness of rmap_walk().
  1211. */
  1212. anon_vma = page_anon_vma(page);
  1213. if (!anon_vma)
  1214. return ret;
  1215. spin_lock(&anon_vma->lock);
  1216. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1217. struct vm_area_struct *vma = avc->vma;
  1218. unsigned long address = vma_address(page, vma);
  1219. if (address == -EFAULT)
  1220. continue;
  1221. ret = rmap_one(page, vma, address, arg);
  1222. if (ret != SWAP_AGAIN)
  1223. break;
  1224. }
  1225. spin_unlock(&anon_vma->lock);
  1226. return ret;
  1227. }
  1228. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1229. struct vm_area_struct *, unsigned long, void *), void *arg)
  1230. {
  1231. struct address_space *mapping = page->mapping;
  1232. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1233. struct vm_area_struct *vma;
  1234. struct prio_tree_iter iter;
  1235. int ret = SWAP_AGAIN;
  1236. if (!mapping)
  1237. return ret;
  1238. spin_lock(&mapping->i_mmap_lock);
  1239. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1240. unsigned long address = vma_address(page, vma);
  1241. if (address == -EFAULT)
  1242. continue;
  1243. ret = rmap_one(page, vma, address, arg);
  1244. if (ret != SWAP_AGAIN)
  1245. break;
  1246. }
  1247. /*
  1248. * No nonlinear handling: being always shared, nonlinear vmas
  1249. * never contain migration ptes. Decide what to do about this
  1250. * limitation to linear when we need rmap_walk() on nonlinear.
  1251. */
  1252. spin_unlock(&mapping->i_mmap_lock);
  1253. return ret;
  1254. }
  1255. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1256. struct vm_area_struct *, unsigned long, void *), void *arg)
  1257. {
  1258. VM_BUG_ON(!PageLocked(page));
  1259. if (unlikely(PageKsm(page)))
  1260. return rmap_walk_ksm(page, rmap_one, arg);
  1261. else if (PageAnon(page))
  1262. return rmap_walk_anon(page, rmap_one, arg);
  1263. else
  1264. return rmap_walk_file(page, rmap_one, arg);
  1265. }
  1266. #endif /* CONFIG_MIGRATION */