page_alloc.c 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/kmemcheck.h>
  26. #include <linux/module.h>
  27. #include <linux/suspend.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/slab.h>
  31. #include <linux/oom.h>
  32. #include <linux/notifier.h>
  33. #include <linux/topology.h>
  34. #include <linux/sysctl.h>
  35. #include <linux/cpu.h>
  36. #include <linux/cpuset.h>
  37. #include <linux/memory_hotplug.h>
  38. #include <linux/nodemask.h>
  39. #include <linux/vmalloc.h>
  40. #include <linux/mempolicy.h>
  41. #include <linux/stop_machine.h>
  42. #include <linux/sort.h>
  43. #include <linux/pfn.h>
  44. #include <linux/backing-dev.h>
  45. #include <linux/fault-inject.h>
  46. #include <linux/page-isolation.h>
  47. #include <linux/page_cgroup.h>
  48. #include <linux/debugobjects.h>
  49. #include <linux/kmemleak.h>
  50. #include <linux/memory.h>
  51. #include <trace/events/kmem.h>
  52. #include <linux/ftrace_event.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/div64.h>
  55. #include "internal.h"
  56. /*
  57. * Array of node states.
  58. */
  59. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  60. [N_POSSIBLE] = NODE_MASK_ALL,
  61. [N_ONLINE] = { { [0] = 1UL } },
  62. #ifndef CONFIG_NUMA
  63. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  64. #ifdef CONFIG_HIGHMEM
  65. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  66. #endif
  67. [N_CPU] = { { [0] = 1UL } },
  68. #endif /* NUMA */
  69. };
  70. EXPORT_SYMBOL(node_states);
  71. unsigned long totalram_pages __read_mostly;
  72. unsigned long totalreserve_pages __read_mostly;
  73. int percpu_pagelist_fraction;
  74. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  75. #ifdef CONFIG_PM_SLEEP
  76. /*
  77. * The following functions are used by the suspend/hibernate code to temporarily
  78. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  79. * while devices are suspended. To avoid races with the suspend/hibernate code,
  80. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  81. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  82. * guaranteed not to run in parallel with that modification).
  83. */
  84. void set_gfp_allowed_mask(gfp_t mask)
  85. {
  86. WARN_ON(!mutex_is_locked(&pm_mutex));
  87. gfp_allowed_mask = mask;
  88. }
  89. gfp_t clear_gfp_allowed_mask(gfp_t mask)
  90. {
  91. gfp_t ret = gfp_allowed_mask;
  92. WARN_ON(!mutex_is_locked(&pm_mutex));
  93. gfp_allowed_mask &= ~mask;
  94. return ret;
  95. }
  96. #endif /* CONFIG_PM_SLEEP */
  97. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  98. int pageblock_order __read_mostly;
  99. #endif
  100. static void __free_pages_ok(struct page *page, unsigned int order);
  101. /*
  102. * results with 256, 32 in the lowmem_reserve sysctl:
  103. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  104. * 1G machine -> (16M dma, 784M normal, 224M high)
  105. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  106. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  107. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  108. *
  109. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  110. * don't need any ZONE_NORMAL reservation
  111. */
  112. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  113. #ifdef CONFIG_ZONE_DMA
  114. 256,
  115. #endif
  116. #ifdef CONFIG_ZONE_DMA32
  117. 256,
  118. #endif
  119. #ifdef CONFIG_HIGHMEM
  120. 32,
  121. #endif
  122. 32,
  123. };
  124. EXPORT_SYMBOL(totalram_pages);
  125. static char * const zone_names[MAX_NR_ZONES] = {
  126. #ifdef CONFIG_ZONE_DMA
  127. "DMA",
  128. #endif
  129. #ifdef CONFIG_ZONE_DMA32
  130. "DMA32",
  131. #endif
  132. "Normal",
  133. #ifdef CONFIG_HIGHMEM
  134. "HighMem",
  135. #endif
  136. "Movable",
  137. };
  138. int min_free_kbytes = 1024;
  139. static unsigned long __meminitdata nr_kernel_pages;
  140. static unsigned long __meminitdata nr_all_pages;
  141. static unsigned long __meminitdata dma_reserve;
  142. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  143. /*
  144. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  145. * ranges of memory (RAM) that may be registered with add_active_range().
  146. * Ranges passed to add_active_range() will be merged if possible
  147. * so the number of times add_active_range() can be called is
  148. * related to the number of nodes and the number of holes
  149. */
  150. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  151. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  152. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  153. #else
  154. #if MAX_NUMNODES >= 32
  155. /* If there can be many nodes, allow up to 50 holes per node */
  156. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  157. #else
  158. /* By default, allow up to 256 distinct regions */
  159. #define MAX_ACTIVE_REGIONS 256
  160. #endif
  161. #endif
  162. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  163. static int __meminitdata nr_nodemap_entries;
  164. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  165. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  166. static unsigned long __initdata required_kernelcore;
  167. static unsigned long __initdata required_movablecore;
  168. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  169. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  170. int movable_zone;
  171. EXPORT_SYMBOL(movable_zone);
  172. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  173. #if MAX_NUMNODES > 1
  174. int nr_node_ids __read_mostly = MAX_NUMNODES;
  175. int nr_online_nodes __read_mostly = 1;
  176. EXPORT_SYMBOL(nr_node_ids);
  177. EXPORT_SYMBOL(nr_online_nodes);
  178. #endif
  179. int page_group_by_mobility_disabled __read_mostly;
  180. static void set_pageblock_migratetype(struct page *page, int migratetype)
  181. {
  182. if (unlikely(page_group_by_mobility_disabled))
  183. migratetype = MIGRATE_UNMOVABLE;
  184. set_pageblock_flags_group(page, (unsigned long)migratetype,
  185. PB_migrate, PB_migrate_end);
  186. }
  187. bool oom_killer_disabled __read_mostly;
  188. #ifdef CONFIG_DEBUG_VM
  189. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  190. {
  191. int ret = 0;
  192. unsigned seq;
  193. unsigned long pfn = page_to_pfn(page);
  194. do {
  195. seq = zone_span_seqbegin(zone);
  196. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  197. ret = 1;
  198. else if (pfn < zone->zone_start_pfn)
  199. ret = 1;
  200. } while (zone_span_seqretry(zone, seq));
  201. return ret;
  202. }
  203. static int page_is_consistent(struct zone *zone, struct page *page)
  204. {
  205. if (!pfn_valid_within(page_to_pfn(page)))
  206. return 0;
  207. if (zone != page_zone(page))
  208. return 0;
  209. return 1;
  210. }
  211. /*
  212. * Temporary debugging check for pages not lying within a given zone.
  213. */
  214. static int bad_range(struct zone *zone, struct page *page)
  215. {
  216. if (page_outside_zone_boundaries(zone, page))
  217. return 1;
  218. if (!page_is_consistent(zone, page))
  219. return 1;
  220. return 0;
  221. }
  222. #else
  223. static inline int bad_range(struct zone *zone, struct page *page)
  224. {
  225. return 0;
  226. }
  227. #endif
  228. static void bad_page(struct page *page)
  229. {
  230. static unsigned long resume;
  231. static unsigned long nr_shown;
  232. static unsigned long nr_unshown;
  233. /* Don't complain about poisoned pages */
  234. if (PageHWPoison(page)) {
  235. __ClearPageBuddy(page);
  236. return;
  237. }
  238. /*
  239. * Allow a burst of 60 reports, then keep quiet for that minute;
  240. * or allow a steady drip of one report per second.
  241. */
  242. if (nr_shown == 60) {
  243. if (time_before(jiffies, resume)) {
  244. nr_unshown++;
  245. goto out;
  246. }
  247. if (nr_unshown) {
  248. printk(KERN_ALERT
  249. "BUG: Bad page state: %lu messages suppressed\n",
  250. nr_unshown);
  251. nr_unshown = 0;
  252. }
  253. nr_shown = 0;
  254. }
  255. if (nr_shown++ == 0)
  256. resume = jiffies + 60 * HZ;
  257. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  258. current->comm, page_to_pfn(page));
  259. dump_page(page);
  260. dump_stack();
  261. out:
  262. /* Leave bad fields for debug, except PageBuddy could make trouble */
  263. __ClearPageBuddy(page);
  264. add_taint(TAINT_BAD_PAGE);
  265. }
  266. /*
  267. * Higher-order pages are called "compound pages". They are structured thusly:
  268. *
  269. * The first PAGE_SIZE page is called the "head page".
  270. *
  271. * The remaining PAGE_SIZE pages are called "tail pages".
  272. *
  273. * All pages have PG_compound set. All pages have their ->private pointing at
  274. * the head page (even the head page has this).
  275. *
  276. * The first tail page's ->lru.next holds the address of the compound page's
  277. * put_page() function. Its ->lru.prev holds the order of allocation.
  278. * This usage means that zero-order pages may not be compound.
  279. */
  280. static void free_compound_page(struct page *page)
  281. {
  282. __free_pages_ok(page, compound_order(page));
  283. }
  284. void prep_compound_page(struct page *page, unsigned long order)
  285. {
  286. int i;
  287. int nr_pages = 1 << order;
  288. set_compound_page_dtor(page, free_compound_page);
  289. set_compound_order(page, order);
  290. __SetPageHead(page);
  291. for (i = 1; i < nr_pages; i++) {
  292. struct page *p = page + i;
  293. __SetPageTail(p);
  294. p->first_page = page;
  295. }
  296. }
  297. static int destroy_compound_page(struct page *page, unsigned long order)
  298. {
  299. int i;
  300. int nr_pages = 1 << order;
  301. int bad = 0;
  302. if (unlikely(compound_order(page) != order) ||
  303. unlikely(!PageHead(page))) {
  304. bad_page(page);
  305. bad++;
  306. }
  307. __ClearPageHead(page);
  308. for (i = 1; i < nr_pages; i++) {
  309. struct page *p = page + i;
  310. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  311. bad_page(page);
  312. bad++;
  313. }
  314. __ClearPageTail(p);
  315. }
  316. return bad;
  317. }
  318. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  319. {
  320. int i;
  321. /*
  322. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  323. * and __GFP_HIGHMEM from hard or soft interrupt context.
  324. */
  325. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  326. for (i = 0; i < (1 << order); i++)
  327. clear_highpage(page + i);
  328. }
  329. static inline void set_page_order(struct page *page, int order)
  330. {
  331. set_page_private(page, order);
  332. __SetPageBuddy(page);
  333. }
  334. static inline void rmv_page_order(struct page *page)
  335. {
  336. __ClearPageBuddy(page);
  337. set_page_private(page, 0);
  338. }
  339. /*
  340. * Locate the struct page for both the matching buddy in our
  341. * pair (buddy1) and the combined O(n+1) page they form (page).
  342. *
  343. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  344. * the following equation:
  345. * B2 = B1 ^ (1 << O)
  346. * For example, if the starting buddy (buddy2) is #8 its order
  347. * 1 buddy is #10:
  348. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  349. *
  350. * 2) Any buddy B will have an order O+1 parent P which
  351. * satisfies the following equation:
  352. * P = B & ~(1 << O)
  353. *
  354. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  355. */
  356. static inline struct page *
  357. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  358. {
  359. unsigned long buddy_idx = page_idx ^ (1 << order);
  360. return page + (buddy_idx - page_idx);
  361. }
  362. static inline unsigned long
  363. __find_combined_index(unsigned long page_idx, unsigned int order)
  364. {
  365. return (page_idx & ~(1 << order));
  366. }
  367. /*
  368. * This function checks whether a page is free && is the buddy
  369. * we can do coalesce a page and its buddy if
  370. * (a) the buddy is not in a hole &&
  371. * (b) the buddy is in the buddy system &&
  372. * (c) a page and its buddy have the same order &&
  373. * (d) a page and its buddy are in the same zone.
  374. *
  375. * For recording whether a page is in the buddy system, we use PG_buddy.
  376. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  377. *
  378. * For recording page's order, we use page_private(page).
  379. */
  380. static inline int page_is_buddy(struct page *page, struct page *buddy,
  381. int order)
  382. {
  383. if (!pfn_valid_within(page_to_pfn(buddy)))
  384. return 0;
  385. if (page_zone_id(page) != page_zone_id(buddy))
  386. return 0;
  387. if (PageBuddy(buddy) && page_order(buddy) == order) {
  388. VM_BUG_ON(page_count(buddy) != 0);
  389. return 1;
  390. }
  391. return 0;
  392. }
  393. /*
  394. * Freeing function for a buddy system allocator.
  395. *
  396. * The concept of a buddy system is to maintain direct-mapped table
  397. * (containing bit values) for memory blocks of various "orders".
  398. * The bottom level table contains the map for the smallest allocatable
  399. * units of memory (here, pages), and each level above it describes
  400. * pairs of units from the levels below, hence, "buddies".
  401. * At a high level, all that happens here is marking the table entry
  402. * at the bottom level available, and propagating the changes upward
  403. * as necessary, plus some accounting needed to play nicely with other
  404. * parts of the VM system.
  405. * At each level, we keep a list of pages, which are heads of continuous
  406. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  407. * order is recorded in page_private(page) field.
  408. * So when we are allocating or freeing one, we can derive the state of the
  409. * other. That is, if we allocate a small block, and both were
  410. * free, the remainder of the region must be split into blocks.
  411. * If a block is freed, and its buddy is also free, then this
  412. * triggers coalescing into a block of larger size.
  413. *
  414. * -- wli
  415. */
  416. static inline void __free_one_page(struct page *page,
  417. struct zone *zone, unsigned int order,
  418. int migratetype)
  419. {
  420. unsigned long page_idx;
  421. if (unlikely(PageCompound(page)))
  422. if (unlikely(destroy_compound_page(page, order)))
  423. return;
  424. VM_BUG_ON(migratetype == -1);
  425. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  426. VM_BUG_ON(page_idx & ((1 << order) - 1));
  427. VM_BUG_ON(bad_range(zone, page));
  428. while (order < MAX_ORDER-1) {
  429. unsigned long combined_idx;
  430. struct page *buddy;
  431. buddy = __page_find_buddy(page, page_idx, order);
  432. if (!page_is_buddy(page, buddy, order))
  433. break;
  434. /* Our buddy is free, merge with it and move up one order. */
  435. list_del(&buddy->lru);
  436. zone->free_area[order].nr_free--;
  437. rmv_page_order(buddy);
  438. combined_idx = __find_combined_index(page_idx, order);
  439. page = page + (combined_idx - page_idx);
  440. page_idx = combined_idx;
  441. order++;
  442. }
  443. set_page_order(page, order);
  444. list_add(&page->lru,
  445. &zone->free_area[order].free_list[migratetype]);
  446. zone->free_area[order].nr_free++;
  447. }
  448. /*
  449. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  450. * Page should not be on lru, so no need to fix that up.
  451. * free_pages_check() will verify...
  452. */
  453. static inline void free_page_mlock(struct page *page)
  454. {
  455. __dec_zone_page_state(page, NR_MLOCK);
  456. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  457. }
  458. static inline int free_pages_check(struct page *page)
  459. {
  460. if (unlikely(page_mapcount(page) |
  461. (page->mapping != NULL) |
  462. (atomic_read(&page->_count) != 0) |
  463. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  464. bad_page(page);
  465. return 1;
  466. }
  467. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  468. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  469. return 0;
  470. }
  471. /*
  472. * Frees a number of pages from the PCP lists
  473. * Assumes all pages on list are in same zone, and of same order.
  474. * count is the number of pages to free.
  475. *
  476. * If the zone was previously in an "all pages pinned" state then look to
  477. * see if this freeing clears that state.
  478. *
  479. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  480. * pinned" detection logic.
  481. */
  482. static void free_pcppages_bulk(struct zone *zone, int count,
  483. struct per_cpu_pages *pcp)
  484. {
  485. int migratetype = 0;
  486. int batch_free = 0;
  487. spin_lock(&zone->lock);
  488. zone->all_unreclaimable = 0;
  489. zone->pages_scanned = 0;
  490. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  491. while (count) {
  492. struct page *page;
  493. struct list_head *list;
  494. /*
  495. * Remove pages from lists in a round-robin fashion. A
  496. * batch_free count is maintained that is incremented when an
  497. * empty list is encountered. This is so more pages are freed
  498. * off fuller lists instead of spinning excessively around empty
  499. * lists
  500. */
  501. do {
  502. batch_free++;
  503. if (++migratetype == MIGRATE_PCPTYPES)
  504. migratetype = 0;
  505. list = &pcp->lists[migratetype];
  506. } while (list_empty(list));
  507. do {
  508. page = list_entry(list->prev, struct page, lru);
  509. /* must delete as __free_one_page list manipulates */
  510. list_del(&page->lru);
  511. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  512. __free_one_page(page, zone, 0, page_private(page));
  513. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  514. } while (--count && --batch_free && !list_empty(list));
  515. }
  516. spin_unlock(&zone->lock);
  517. }
  518. static void free_one_page(struct zone *zone, struct page *page, int order,
  519. int migratetype)
  520. {
  521. spin_lock(&zone->lock);
  522. zone->all_unreclaimable = 0;
  523. zone->pages_scanned = 0;
  524. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  525. __free_one_page(page, zone, order, migratetype);
  526. spin_unlock(&zone->lock);
  527. }
  528. static void __free_pages_ok(struct page *page, unsigned int order)
  529. {
  530. unsigned long flags;
  531. int i;
  532. int bad = 0;
  533. int wasMlocked = __TestClearPageMlocked(page);
  534. trace_mm_page_free_direct(page, order);
  535. kmemcheck_free_shadow(page, order);
  536. for (i = 0 ; i < (1 << order) ; ++i)
  537. bad += free_pages_check(page + i);
  538. if (bad)
  539. return;
  540. if (!PageHighMem(page)) {
  541. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  542. debug_check_no_obj_freed(page_address(page),
  543. PAGE_SIZE << order);
  544. }
  545. arch_free_page(page, order);
  546. kernel_map_pages(page, 1 << order, 0);
  547. local_irq_save(flags);
  548. if (unlikely(wasMlocked))
  549. free_page_mlock(page);
  550. __count_vm_events(PGFREE, 1 << order);
  551. free_one_page(page_zone(page), page, order,
  552. get_pageblock_migratetype(page));
  553. local_irq_restore(flags);
  554. }
  555. /*
  556. * permit the bootmem allocator to evade page validation on high-order frees
  557. */
  558. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  559. {
  560. if (order == 0) {
  561. __ClearPageReserved(page);
  562. set_page_count(page, 0);
  563. set_page_refcounted(page);
  564. __free_page(page);
  565. } else {
  566. int loop;
  567. prefetchw(page);
  568. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  569. struct page *p = &page[loop];
  570. if (loop + 1 < BITS_PER_LONG)
  571. prefetchw(p + 1);
  572. __ClearPageReserved(p);
  573. set_page_count(p, 0);
  574. }
  575. set_page_refcounted(page);
  576. __free_pages(page, order);
  577. }
  578. }
  579. /*
  580. * The order of subdivision here is critical for the IO subsystem.
  581. * Please do not alter this order without good reasons and regression
  582. * testing. Specifically, as large blocks of memory are subdivided,
  583. * the order in which smaller blocks are delivered depends on the order
  584. * they're subdivided in this function. This is the primary factor
  585. * influencing the order in which pages are delivered to the IO
  586. * subsystem according to empirical testing, and this is also justified
  587. * by considering the behavior of a buddy system containing a single
  588. * large block of memory acted on by a series of small allocations.
  589. * This behavior is a critical factor in sglist merging's success.
  590. *
  591. * -- wli
  592. */
  593. static inline void expand(struct zone *zone, struct page *page,
  594. int low, int high, struct free_area *area,
  595. int migratetype)
  596. {
  597. unsigned long size = 1 << high;
  598. while (high > low) {
  599. area--;
  600. high--;
  601. size >>= 1;
  602. VM_BUG_ON(bad_range(zone, &page[size]));
  603. list_add(&page[size].lru, &area->free_list[migratetype]);
  604. area->nr_free++;
  605. set_page_order(&page[size], high);
  606. }
  607. }
  608. /*
  609. * This page is about to be returned from the page allocator
  610. */
  611. static inline int check_new_page(struct page *page)
  612. {
  613. if (unlikely(page_mapcount(page) |
  614. (page->mapping != NULL) |
  615. (atomic_read(&page->_count) != 0) |
  616. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  617. bad_page(page);
  618. return 1;
  619. }
  620. return 0;
  621. }
  622. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  623. {
  624. int i;
  625. for (i = 0; i < (1 << order); i++) {
  626. struct page *p = page + i;
  627. if (unlikely(check_new_page(p)))
  628. return 1;
  629. }
  630. set_page_private(page, 0);
  631. set_page_refcounted(page);
  632. arch_alloc_page(page, order);
  633. kernel_map_pages(page, 1 << order, 1);
  634. if (gfp_flags & __GFP_ZERO)
  635. prep_zero_page(page, order, gfp_flags);
  636. if (order && (gfp_flags & __GFP_COMP))
  637. prep_compound_page(page, order);
  638. return 0;
  639. }
  640. /*
  641. * Go through the free lists for the given migratetype and remove
  642. * the smallest available page from the freelists
  643. */
  644. static inline
  645. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  646. int migratetype)
  647. {
  648. unsigned int current_order;
  649. struct free_area * area;
  650. struct page *page;
  651. /* Find a page of the appropriate size in the preferred list */
  652. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  653. area = &(zone->free_area[current_order]);
  654. if (list_empty(&area->free_list[migratetype]))
  655. continue;
  656. page = list_entry(area->free_list[migratetype].next,
  657. struct page, lru);
  658. list_del(&page->lru);
  659. rmv_page_order(page);
  660. area->nr_free--;
  661. expand(zone, page, order, current_order, area, migratetype);
  662. return page;
  663. }
  664. return NULL;
  665. }
  666. /*
  667. * This array describes the order lists are fallen back to when
  668. * the free lists for the desirable migrate type are depleted
  669. */
  670. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  671. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  672. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  673. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  674. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  675. };
  676. /*
  677. * Move the free pages in a range to the free lists of the requested type.
  678. * Note that start_page and end_pages are not aligned on a pageblock
  679. * boundary. If alignment is required, use move_freepages_block()
  680. */
  681. static int move_freepages(struct zone *zone,
  682. struct page *start_page, struct page *end_page,
  683. int migratetype)
  684. {
  685. struct page *page;
  686. unsigned long order;
  687. int pages_moved = 0;
  688. #ifndef CONFIG_HOLES_IN_ZONE
  689. /*
  690. * page_zone is not safe to call in this context when
  691. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  692. * anyway as we check zone boundaries in move_freepages_block().
  693. * Remove at a later date when no bug reports exist related to
  694. * grouping pages by mobility
  695. */
  696. BUG_ON(page_zone(start_page) != page_zone(end_page));
  697. #endif
  698. for (page = start_page; page <= end_page;) {
  699. /* Make sure we are not inadvertently changing nodes */
  700. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  701. if (!pfn_valid_within(page_to_pfn(page))) {
  702. page++;
  703. continue;
  704. }
  705. if (!PageBuddy(page)) {
  706. page++;
  707. continue;
  708. }
  709. order = page_order(page);
  710. list_del(&page->lru);
  711. list_add(&page->lru,
  712. &zone->free_area[order].free_list[migratetype]);
  713. page += 1 << order;
  714. pages_moved += 1 << order;
  715. }
  716. return pages_moved;
  717. }
  718. static int move_freepages_block(struct zone *zone, struct page *page,
  719. int migratetype)
  720. {
  721. unsigned long start_pfn, end_pfn;
  722. struct page *start_page, *end_page;
  723. start_pfn = page_to_pfn(page);
  724. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  725. start_page = pfn_to_page(start_pfn);
  726. end_page = start_page + pageblock_nr_pages - 1;
  727. end_pfn = start_pfn + pageblock_nr_pages - 1;
  728. /* Do not cross zone boundaries */
  729. if (start_pfn < zone->zone_start_pfn)
  730. start_page = page;
  731. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  732. return 0;
  733. return move_freepages(zone, start_page, end_page, migratetype);
  734. }
  735. static void change_pageblock_range(struct page *pageblock_page,
  736. int start_order, int migratetype)
  737. {
  738. int nr_pageblocks = 1 << (start_order - pageblock_order);
  739. while (nr_pageblocks--) {
  740. set_pageblock_migratetype(pageblock_page, migratetype);
  741. pageblock_page += pageblock_nr_pages;
  742. }
  743. }
  744. /* Remove an element from the buddy allocator from the fallback list */
  745. static inline struct page *
  746. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  747. {
  748. struct free_area * area;
  749. int current_order;
  750. struct page *page;
  751. int migratetype, i;
  752. /* Find the largest possible block of pages in the other list */
  753. for (current_order = MAX_ORDER-1; current_order >= order;
  754. --current_order) {
  755. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  756. migratetype = fallbacks[start_migratetype][i];
  757. /* MIGRATE_RESERVE handled later if necessary */
  758. if (migratetype == MIGRATE_RESERVE)
  759. continue;
  760. area = &(zone->free_area[current_order]);
  761. if (list_empty(&area->free_list[migratetype]))
  762. continue;
  763. page = list_entry(area->free_list[migratetype].next,
  764. struct page, lru);
  765. area->nr_free--;
  766. /*
  767. * If breaking a large block of pages, move all free
  768. * pages to the preferred allocation list. If falling
  769. * back for a reclaimable kernel allocation, be more
  770. * agressive about taking ownership of free pages
  771. */
  772. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  773. start_migratetype == MIGRATE_RECLAIMABLE ||
  774. page_group_by_mobility_disabled) {
  775. unsigned long pages;
  776. pages = move_freepages_block(zone, page,
  777. start_migratetype);
  778. /* Claim the whole block if over half of it is free */
  779. if (pages >= (1 << (pageblock_order-1)) ||
  780. page_group_by_mobility_disabled)
  781. set_pageblock_migratetype(page,
  782. start_migratetype);
  783. migratetype = start_migratetype;
  784. }
  785. /* Remove the page from the freelists */
  786. list_del(&page->lru);
  787. rmv_page_order(page);
  788. /* Take ownership for orders >= pageblock_order */
  789. if (current_order >= pageblock_order)
  790. change_pageblock_range(page, current_order,
  791. start_migratetype);
  792. expand(zone, page, order, current_order, area, migratetype);
  793. trace_mm_page_alloc_extfrag(page, order, current_order,
  794. start_migratetype, migratetype);
  795. return page;
  796. }
  797. }
  798. return NULL;
  799. }
  800. /*
  801. * Do the hard work of removing an element from the buddy allocator.
  802. * Call me with the zone->lock already held.
  803. */
  804. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  805. int migratetype)
  806. {
  807. struct page *page;
  808. retry_reserve:
  809. page = __rmqueue_smallest(zone, order, migratetype);
  810. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  811. page = __rmqueue_fallback(zone, order, migratetype);
  812. /*
  813. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  814. * is used because __rmqueue_smallest is an inline function
  815. * and we want just one call site
  816. */
  817. if (!page) {
  818. migratetype = MIGRATE_RESERVE;
  819. goto retry_reserve;
  820. }
  821. }
  822. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  823. return page;
  824. }
  825. /*
  826. * Obtain a specified number of elements from the buddy allocator, all under
  827. * a single hold of the lock, for efficiency. Add them to the supplied list.
  828. * Returns the number of new pages which were placed at *list.
  829. */
  830. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  831. unsigned long count, struct list_head *list,
  832. int migratetype, int cold)
  833. {
  834. int i;
  835. spin_lock(&zone->lock);
  836. for (i = 0; i < count; ++i) {
  837. struct page *page = __rmqueue(zone, order, migratetype);
  838. if (unlikely(page == NULL))
  839. break;
  840. /*
  841. * Split buddy pages returned by expand() are received here
  842. * in physical page order. The page is added to the callers and
  843. * list and the list head then moves forward. From the callers
  844. * perspective, the linked list is ordered by page number in
  845. * some conditions. This is useful for IO devices that can
  846. * merge IO requests if the physical pages are ordered
  847. * properly.
  848. */
  849. if (likely(cold == 0))
  850. list_add(&page->lru, list);
  851. else
  852. list_add_tail(&page->lru, list);
  853. set_page_private(page, migratetype);
  854. list = &page->lru;
  855. }
  856. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  857. spin_unlock(&zone->lock);
  858. return i;
  859. }
  860. #ifdef CONFIG_NUMA
  861. /*
  862. * Called from the vmstat counter updater to drain pagesets of this
  863. * currently executing processor on remote nodes after they have
  864. * expired.
  865. *
  866. * Note that this function must be called with the thread pinned to
  867. * a single processor.
  868. */
  869. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  870. {
  871. unsigned long flags;
  872. int to_drain;
  873. local_irq_save(flags);
  874. if (pcp->count >= pcp->batch)
  875. to_drain = pcp->batch;
  876. else
  877. to_drain = pcp->count;
  878. free_pcppages_bulk(zone, to_drain, pcp);
  879. pcp->count -= to_drain;
  880. local_irq_restore(flags);
  881. }
  882. #endif
  883. /*
  884. * Drain pages of the indicated processor.
  885. *
  886. * The processor must either be the current processor and the
  887. * thread pinned to the current processor or a processor that
  888. * is not online.
  889. */
  890. static void drain_pages(unsigned int cpu)
  891. {
  892. unsigned long flags;
  893. struct zone *zone;
  894. for_each_populated_zone(zone) {
  895. struct per_cpu_pageset *pset;
  896. struct per_cpu_pages *pcp;
  897. local_irq_save(flags);
  898. pset = per_cpu_ptr(zone->pageset, cpu);
  899. pcp = &pset->pcp;
  900. free_pcppages_bulk(zone, pcp->count, pcp);
  901. pcp->count = 0;
  902. local_irq_restore(flags);
  903. }
  904. }
  905. /*
  906. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  907. */
  908. void drain_local_pages(void *arg)
  909. {
  910. drain_pages(smp_processor_id());
  911. }
  912. /*
  913. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  914. */
  915. void drain_all_pages(void)
  916. {
  917. on_each_cpu(drain_local_pages, NULL, 1);
  918. }
  919. #ifdef CONFIG_HIBERNATION
  920. void mark_free_pages(struct zone *zone)
  921. {
  922. unsigned long pfn, max_zone_pfn;
  923. unsigned long flags;
  924. int order, t;
  925. struct list_head *curr;
  926. if (!zone->spanned_pages)
  927. return;
  928. spin_lock_irqsave(&zone->lock, flags);
  929. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  930. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  931. if (pfn_valid(pfn)) {
  932. struct page *page = pfn_to_page(pfn);
  933. if (!swsusp_page_is_forbidden(page))
  934. swsusp_unset_page_free(page);
  935. }
  936. for_each_migratetype_order(order, t) {
  937. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  938. unsigned long i;
  939. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  940. for (i = 0; i < (1UL << order); i++)
  941. swsusp_set_page_free(pfn_to_page(pfn + i));
  942. }
  943. }
  944. spin_unlock_irqrestore(&zone->lock, flags);
  945. }
  946. #endif /* CONFIG_PM */
  947. /*
  948. * Free a 0-order page
  949. * cold == 1 ? free a cold page : free a hot page
  950. */
  951. void free_hot_cold_page(struct page *page, int cold)
  952. {
  953. struct zone *zone = page_zone(page);
  954. struct per_cpu_pages *pcp;
  955. unsigned long flags;
  956. int migratetype;
  957. int wasMlocked = __TestClearPageMlocked(page);
  958. trace_mm_page_free_direct(page, 0);
  959. kmemcheck_free_shadow(page, 0);
  960. if (PageAnon(page))
  961. page->mapping = NULL;
  962. if (free_pages_check(page))
  963. return;
  964. if (!PageHighMem(page)) {
  965. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  966. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  967. }
  968. arch_free_page(page, 0);
  969. kernel_map_pages(page, 1, 0);
  970. migratetype = get_pageblock_migratetype(page);
  971. set_page_private(page, migratetype);
  972. local_irq_save(flags);
  973. if (unlikely(wasMlocked))
  974. free_page_mlock(page);
  975. __count_vm_event(PGFREE);
  976. /*
  977. * We only track unmovable, reclaimable and movable on pcp lists.
  978. * Free ISOLATE pages back to the allocator because they are being
  979. * offlined but treat RESERVE as movable pages so we can get those
  980. * areas back if necessary. Otherwise, we may have to free
  981. * excessively into the page allocator
  982. */
  983. if (migratetype >= MIGRATE_PCPTYPES) {
  984. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  985. free_one_page(zone, page, 0, migratetype);
  986. goto out;
  987. }
  988. migratetype = MIGRATE_MOVABLE;
  989. }
  990. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  991. if (cold)
  992. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  993. else
  994. list_add(&page->lru, &pcp->lists[migratetype]);
  995. pcp->count++;
  996. if (pcp->count >= pcp->high) {
  997. free_pcppages_bulk(zone, pcp->batch, pcp);
  998. pcp->count -= pcp->batch;
  999. }
  1000. out:
  1001. local_irq_restore(flags);
  1002. }
  1003. /*
  1004. * split_page takes a non-compound higher-order page, and splits it into
  1005. * n (1<<order) sub-pages: page[0..n]
  1006. * Each sub-page must be freed individually.
  1007. *
  1008. * Note: this is probably too low level an operation for use in drivers.
  1009. * Please consult with lkml before using this in your driver.
  1010. */
  1011. void split_page(struct page *page, unsigned int order)
  1012. {
  1013. int i;
  1014. VM_BUG_ON(PageCompound(page));
  1015. VM_BUG_ON(!page_count(page));
  1016. #ifdef CONFIG_KMEMCHECK
  1017. /*
  1018. * Split shadow pages too, because free(page[0]) would
  1019. * otherwise free the whole shadow.
  1020. */
  1021. if (kmemcheck_page_is_tracked(page))
  1022. split_page(virt_to_page(page[0].shadow), order);
  1023. #endif
  1024. for (i = 1; i < (1 << order); i++)
  1025. set_page_refcounted(page + i);
  1026. }
  1027. /*
  1028. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1029. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1030. * or two.
  1031. */
  1032. static inline
  1033. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1034. struct zone *zone, int order, gfp_t gfp_flags,
  1035. int migratetype)
  1036. {
  1037. unsigned long flags;
  1038. struct page *page;
  1039. int cold = !!(gfp_flags & __GFP_COLD);
  1040. again:
  1041. if (likely(order == 0)) {
  1042. struct per_cpu_pages *pcp;
  1043. struct list_head *list;
  1044. local_irq_save(flags);
  1045. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1046. list = &pcp->lists[migratetype];
  1047. if (list_empty(list)) {
  1048. pcp->count += rmqueue_bulk(zone, 0,
  1049. pcp->batch, list,
  1050. migratetype, cold);
  1051. if (unlikely(list_empty(list)))
  1052. goto failed;
  1053. }
  1054. if (cold)
  1055. page = list_entry(list->prev, struct page, lru);
  1056. else
  1057. page = list_entry(list->next, struct page, lru);
  1058. list_del(&page->lru);
  1059. pcp->count--;
  1060. } else {
  1061. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1062. /*
  1063. * __GFP_NOFAIL is not to be used in new code.
  1064. *
  1065. * All __GFP_NOFAIL callers should be fixed so that they
  1066. * properly detect and handle allocation failures.
  1067. *
  1068. * We most definitely don't want callers attempting to
  1069. * allocate greater than order-1 page units with
  1070. * __GFP_NOFAIL.
  1071. */
  1072. WARN_ON_ONCE(order > 1);
  1073. }
  1074. spin_lock_irqsave(&zone->lock, flags);
  1075. page = __rmqueue(zone, order, migratetype);
  1076. spin_unlock(&zone->lock);
  1077. if (!page)
  1078. goto failed;
  1079. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1080. }
  1081. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1082. zone_statistics(preferred_zone, zone);
  1083. local_irq_restore(flags);
  1084. VM_BUG_ON(bad_range(zone, page));
  1085. if (prep_new_page(page, order, gfp_flags))
  1086. goto again;
  1087. return page;
  1088. failed:
  1089. local_irq_restore(flags);
  1090. return NULL;
  1091. }
  1092. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1093. #define ALLOC_WMARK_MIN WMARK_MIN
  1094. #define ALLOC_WMARK_LOW WMARK_LOW
  1095. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1096. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1097. /* Mask to get the watermark bits */
  1098. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1099. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1100. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1101. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1102. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1103. static struct fail_page_alloc_attr {
  1104. struct fault_attr attr;
  1105. u32 ignore_gfp_highmem;
  1106. u32 ignore_gfp_wait;
  1107. u32 min_order;
  1108. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1109. struct dentry *ignore_gfp_highmem_file;
  1110. struct dentry *ignore_gfp_wait_file;
  1111. struct dentry *min_order_file;
  1112. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1113. } fail_page_alloc = {
  1114. .attr = FAULT_ATTR_INITIALIZER,
  1115. .ignore_gfp_wait = 1,
  1116. .ignore_gfp_highmem = 1,
  1117. .min_order = 1,
  1118. };
  1119. static int __init setup_fail_page_alloc(char *str)
  1120. {
  1121. return setup_fault_attr(&fail_page_alloc.attr, str);
  1122. }
  1123. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1124. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1125. {
  1126. if (order < fail_page_alloc.min_order)
  1127. return 0;
  1128. if (gfp_mask & __GFP_NOFAIL)
  1129. return 0;
  1130. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1131. return 0;
  1132. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1133. return 0;
  1134. return should_fail(&fail_page_alloc.attr, 1 << order);
  1135. }
  1136. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1137. static int __init fail_page_alloc_debugfs(void)
  1138. {
  1139. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1140. struct dentry *dir;
  1141. int err;
  1142. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1143. "fail_page_alloc");
  1144. if (err)
  1145. return err;
  1146. dir = fail_page_alloc.attr.dentries.dir;
  1147. fail_page_alloc.ignore_gfp_wait_file =
  1148. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1149. &fail_page_alloc.ignore_gfp_wait);
  1150. fail_page_alloc.ignore_gfp_highmem_file =
  1151. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1152. &fail_page_alloc.ignore_gfp_highmem);
  1153. fail_page_alloc.min_order_file =
  1154. debugfs_create_u32("min-order", mode, dir,
  1155. &fail_page_alloc.min_order);
  1156. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1157. !fail_page_alloc.ignore_gfp_highmem_file ||
  1158. !fail_page_alloc.min_order_file) {
  1159. err = -ENOMEM;
  1160. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1161. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1162. debugfs_remove(fail_page_alloc.min_order_file);
  1163. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1164. }
  1165. return err;
  1166. }
  1167. late_initcall(fail_page_alloc_debugfs);
  1168. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1169. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1170. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1171. {
  1172. return 0;
  1173. }
  1174. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1175. /*
  1176. * Return 1 if free pages are above 'mark'. This takes into account the order
  1177. * of the allocation.
  1178. */
  1179. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1180. int classzone_idx, int alloc_flags)
  1181. {
  1182. /* free_pages my go negative - that's OK */
  1183. long min = mark;
  1184. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1185. int o;
  1186. if (alloc_flags & ALLOC_HIGH)
  1187. min -= min / 2;
  1188. if (alloc_flags & ALLOC_HARDER)
  1189. min -= min / 4;
  1190. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1191. return 0;
  1192. for (o = 0; o < order; o++) {
  1193. /* At the next order, this order's pages become unavailable */
  1194. free_pages -= z->free_area[o].nr_free << o;
  1195. /* Require fewer higher order pages to be free */
  1196. min >>= 1;
  1197. if (free_pages <= min)
  1198. return 0;
  1199. }
  1200. return 1;
  1201. }
  1202. #ifdef CONFIG_NUMA
  1203. /*
  1204. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1205. * skip over zones that are not allowed by the cpuset, or that have
  1206. * been recently (in last second) found to be nearly full. See further
  1207. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1208. * that have to skip over a lot of full or unallowed zones.
  1209. *
  1210. * If the zonelist cache is present in the passed in zonelist, then
  1211. * returns a pointer to the allowed node mask (either the current
  1212. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1213. *
  1214. * If the zonelist cache is not available for this zonelist, does
  1215. * nothing and returns NULL.
  1216. *
  1217. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1218. * a second since last zap'd) then we zap it out (clear its bits.)
  1219. *
  1220. * We hold off even calling zlc_setup, until after we've checked the
  1221. * first zone in the zonelist, on the theory that most allocations will
  1222. * be satisfied from that first zone, so best to examine that zone as
  1223. * quickly as we can.
  1224. */
  1225. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1226. {
  1227. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1228. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1229. zlc = zonelist->zlcache_ptr;
  1230. if (!zlc)
  1231. return NULL;
  1232. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1233. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1234. zlc->last_full_zap = jiffies;
  1235. }
  1236. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1237. &cpuset_current_mems_allowed :
  1238. &node_states[N_HIGH_MEMORY];
  1239. return allowednodes;
  1240. }
  1241. /*
  1242. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1243. * if it is worth looking at further for free memory:
  1244. * 1) Check that the zone isn't thought to be full (doesn't have its
  1245. * bit set in the zonelist_cache fullzones BITMAP).
  1246. * 2) Check that the zones node (obtained from the zonelist_cache
  1247. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1248. * Return true (non-zero) if zone is worth looking at further, or
  1249. * else return false (zero) if it is not.
  1250. *
  1251. * This check -ignores- the distinction between various watermarks,
  1252. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1253. * found to be full for any variation of these watermarks, it will
  1254. * be considered full for up to one second by all requests, unless
  1255. * we are so low on memory on all allowed nodes that we are forced
  1256. * into the second scan of the zonelist.
  1257. *
  1258. * In the second scan we ignore this zonelist cache and exactly
  1259. * apply the watermarks to all zones, even it is slower to do so.
  1260. * We are low on memory in the second scan, and should leave no stone
  1261. * unturned looking for a free page.
  1262. */
  1263. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1264. nodemask_t *allowednodes)
  1265. {
  1266. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1267. int i; /* index of *z in zonelist zones */
  1268. int n; /* node that zone *z is on */
  1269. zlc = zonelist->zlcache_ptr;
  1270. if (!zlc)
  1271. return 1;
  1272. i = z - zonelist->_zonerefs;
  1273. n = zlc->z_to_n[i];
  1274. /* This zone is worth trying if it is allowed but not full */
  1275. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1276. }
  1277. /*
  1278. * Given 'z' scanning a zonelist, set the corresponding bit in
  1279. * zlc->fullzones, so that subsequent attempts to allocate a page
  1280. * from that zone don't waste time re-examining it.
  1281. */
  1282. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1283. {
  1284. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1285. int i; /* index of *z in zonelist zones */
  1286. zlc = zonelist->zlcache_ptr;
  1287. if (!zlc)
  1288. return;
  1289. i = z - zonelist->_zonerefs;
  1290. set_bit(i, zlc->fullzones);
  1291. }
  1292. #else /* CONFIG_NUMA */
  1293. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1294. {
  1295. return NULL;
  1296. }
  1297. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1298. nodemask_t *allowednodes)
  1299. {
  1300. return 1;
  1301. }
  1302. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1303. {
  1304. }
  1305. #endif /* CONFIG_NUMA */
  1306. /*
  1307. * get_page_from_freelist goes through the zonelist trying to allocate
  1308. * a page.
  1309. */
  1310. static struct page *
  1311. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1312. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1313. struct zone *preferred_zone, int migratetype)
  1314. {
  1315. struct zoneref *z;
  1316. struct page *page = NULL;
  1317. int classzone_idx;
  1318. struct zone *zone;
  1319. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1320. int zlc_active = 0; /* set if using zonelist_cache */
  1321. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1322. classzone_idx = zone_idx(preferred_zone);
  1323. zonelist_scan:
  1324. /*
  1325. * Scan zonelist, looking for a zone with enough free.
  1326. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1327. */
  1328. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1329. high_zoneidx, nodemask) {
  1330. if (NUMA_BUILD && zlc_active &&
  1331. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1332. continue;
  1333. if ((alloc_flags & ALLOC_CPUSET) &&
  1334. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1335. goto try_next_zone;
  1336. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1337. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1338. unsigned long mark;
  1339. int ret;
  1340. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1341. if (zone_watermark_ok(zone, order, mark,
  1342. classzone_idx, alloc_flags))
  1343. goto try_this_zone;
  1344. if (zone_reclaim_mode == 0)
  1345. goto this_zone_full;
  1346. ret = zone_reclaim(zone, gfp_mask, order);
  1347. switch (ret) {
  1348. case ZONE_RECLAIM_NOSCAN:
  1349. /* did not scan */
  1350. goto try_next_zone;
  1351. case ZONE_RECLAIM_FULL:
  1352. /* scanned but unreclaimable */
  1353. goto this_zone_full;
  1354. default:
  1355. /* did we reclaim enough */
  1356. if (!zone_watermark_ok(zone, order, mark,
  1357. classzone_idx, alloc_flags))
  1358. goto this_zone_full;
  1359. }
  1360. }
  1361. try_this_zone:
  1362. page = buffered_rmqueue(preferred_zone, zone, order,
  1363. gfp_mask, migratetype);
  1364. if (page)
  1365. break;
  1366. this_zone_full:
  1367. if (NUMA_BUILD)
  1368. zlc_mark_zone_full(zonelist, z);
  1369. try_next_zone:
  1370. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1371. /*
  1372. * we do zlc_setup after the first zone is tried but only
  1373. * if there are multiple nodes make it worthwhile
  1374. */
  1375. allowednodes = zlc_setup(zonelist, alloc_flags);
  1376. zlc_active = 1;
  1377. did_zlc_setup = 1;
  1378. }
  1379. }
  1380. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1381. /* Disable zlc cache for second zonelist scan */
  1382. zlc_active = 0;
  1383. goto zonelist_scan;
  1384. }
  1385. return page;
  1386. }
  1387. static inline int
  1388. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1389. unsigned long pages_reclaimed)
  1390. {
  1391. /* Do not loop if specifically requested */
  1392. if (gfp_mask & __GFP_NORETRY)
  1393. return 0;
  1394. /*
  1395. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1396. * means __GFP_NOFAIL, but that may not be true in other
  1397. * implementations.
  1398. */
  1399. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1400. return 1;
  1401. /*
  1402. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1403. * specified, then we retry until we no longer reclaim any pages
  1404. * (above), or we've reclaimed an order of pages at least as
  1405. * large as the allocation's order. In both cases, if the
  1406. * allocation still fails, we stop retrying.
  1407. */
  1408. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1409. return 1;
  1410. /*
  1411. * Don't let big-order allocations loop unless the caller
  1412. * explicitly requests that.
  1413. */
  1414. if (gfp_mask & __GFP_NOFAIL)
  1415. return 1;
  1416. return 0;
  1417. }
  1418. static inline struct page *
  1419. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1420. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1421. nodemask_t *nodemask, struct zone *preferred_zone,
  1422. int migratetype)
  1423. {
  1424. struct page *page;
  1425. /* Acquire the OOM killer lock for the zones in zonelist */
  1426. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1427. schedule_timeout_uninterruptible(1);
  1428. return NULL;
  1429. }
  1430. /*
  1431. * Go through the zonelist yet one more time, keep very high watermark
  1432. * here, this is only to catch a parallel oom killing, we must fail if
  1433. * we're still under heavy pressure.
  1434. */
  1435. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1436. order, zonelist, high_zoneidx,
  1437. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1438. preferred_zone, migratetype);
  1439. if (page)
  1440. goto out;
  1441. if (!(gfp_mask & __GFP_NOFAIL)) {
  1442. /* The OOM killer will not help higher order allocs */
  1443. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1444. goto out;
  1445. /*
  1446. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1447. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1448. * The caller should handle page allocation failure by itself if
  1449. * it specifies __GFP_THISNODE.
  1450. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1451. */
  1452. if (gfp_mask & __GFP_THISNODE)
  1453. goto out;
  1454. }
  1455. /* Exhausted what can be done so it's blamo time */
  1456. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1457. out:
  1458. clear_zonelist_oom(zonelist, gfp_mask);
  1459. return page;
  1460. }
  1461. /* The really slow allocator path where we enter direct reclaim */
  1462. static inline struct page *
  1463. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1464. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1465. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1466. int migratetype, unsigned long *did_some_progress)
  1467. {
  1468. struct page *page = NULL;
  1469. struct reclaim_state reclaim_state;
  1470. struct task_struct *p = current;
  1471. cond_resched();
  1472. /* We now go into synchronous reclaim */
  1473. cpuset_memory_pressure_bump();
  1474. p->flags |= PF_MEMALLOC;
  1475. lockdep_set_current_reclaim_state(gfp_mask);
  1476. reclaim_state.reclaimed_slab = 0;
  1477. p->reclaim_state = &reclaim_state;
  1478. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1479. p->reclaim_state = NULL;
  1480. lockdep_clear_current_reclaim_state();
  1481. p->flags &= ~PF_MEMALLOC;
  1482. cond_resched();
  1483. if (order != 0)
  1484. drain_all_pages();
  1485. if (likely(*did_some_progress))
  1486. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1487. zonelist, high_zoneidx,
  1488. alloc_flags, preferred_zone,
  1489. migratetype);
  1490. return page;
  1491. }
  1492. /*
  1493. * This is called in the allocator slow-path if the allocation request is of
  1494. * sufficient urgency to ignore watermarks and take other desperate measures
  1495. */
  1496. static inline struct page *
  1497. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1498. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1499. nodemask_t *nodemask, struct zone *preferred_zone,
  1500. int migratetype)
  1501. {
  1502. struct page *page;
  1503. do {
  1504. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1505. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1506. preferred_zone, migratetype);
  1507. if (!page && gfp_mask & __GFP_NOFAIL)
  1508. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1509. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1510. return page;
  1511. }
  1512. static inline
  1513. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1514. enum zone_type high_zoneidx)
  1515. {
  1516. struct zoneref *z;
  1517. struct zone *zone;
  1518. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1519. wakeup_kswapd(zone, order);
  1520. }
  1521. static inline int
  1522. gfp_to_alloc_flags(gfp_t gfp_mask)
  1523. {
  1524. struct task_struct *p = current;
  1525. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1526. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1527. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1528. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1529. /*
  1530. * The caller may dip into page reserves a bit more if the caller
  1531. * cannot run direct reclaim, or if the caller has realtime scheduling
  1532. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1533. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1534. */
  1535. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1536. if (!wait) {
  1537. alloc_flags |= ALLOC_HARDER;
  1538. /*
  1539. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1540. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1541. */
  1542. alloc_flags &= ~ALLOC_CPUSET;
  1543. } else if (unlikely(rt_task(p)) && !in_interrupt())
  1544. alloc_flags |= ALLOC_HARDER;
  1545. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1546. if (!in_interrupt() &&
  1547. ((p->flags & PF_MEMALLOC) ||
  1548. unlikely(test_thread_flag(TIF_MEMDIE))))
  1549. alloc_flags |= ALLOC_NO_WATERMARKS;
  1550. }
  1551. return alloc_flags;
  1552. }
  1553. static inline struct page *
  1554. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1555. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1556. nodemask_t *nodemask, struct zone *preferred_zone,
  1557. int migratetype)
  1558. {
  1559. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1560. struct page *page = NULL;
  1561. int alloc_flags;
  1562. unsigned long pages_reclaimed = 0;
  1563. unsigned long did_some_progress;
  1564. struct task_struct *p = current;
  1565. /*
  1566. * In the slowpath, we sanity check order to avoid ever trying to
  1567. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1568. * be using allocators in order of preference for an area that is
  1569. * too large.
  1570. */
  1571. if (order >= MAX_ORDER) {
  1572. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1573. return NULL;
  1574. }
  1575. /*
  1576. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1577. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1578. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1579. * using a larger set of nodes after it has established that the
  1580. * allowed per node queues are empty and that nodes are
  1581. * over allocated.
  1582. */
  1583. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1584. goto nopage;
  1585. restart:
  1586. wake_all_kswapd(order, zonelist, high_zoneidx);
  1587. /*
  1588. * OK, we're below the kswapd watermark and have kicked background
  1589. * reclaim. Now things get more complex, so set up alloc_flags according
  1590. * to how we want to proceed.
  1591. */
  1592. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1593. /* This is the last chance, in general, before the goto nopage. */
  1594. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1595. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1596. preferred_zone, migratetype);
  1597. if (page)
  1598. goto got_pg;
  1599. rebalance:
  1600. /* Allocate without watermarks if the context allows */
  1601. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1602. page = __alloc_pages_high_priority(gfp_mask, order,
  1603. zonelist, high_zoneidx, nodemask,
  1604. preferred_zone, migratetype);
  1605. if (page)
  1606. goto got_pg;
  1607. }
  1608. /* Atomic allocations - we can't balance anything */
  1609. if (!wait)
  1610. goto nopage;
  1611. /* Avoid recursion of direct reclaim */
  1612. if (p->flags & PF_MEMALLOC)
  1613. goto nopage;
  1614. /* Avoid allocations with no watermarks from looping endlessly */
  1615. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1616. goto nopage;
  1617. /* Try direct reclaim and then allocating */
  1618. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1619. zonelist, high_zoneidx,
  1620. nodemask,
  1621. alloc_flags, preferred_zone,
  1622. migratetype, &did_some_progress);
  1623. if (page)
  1624. goto got_pg;
  1625. /*
  1626. * If we failed to make any progress reclaiming, then we are
  1627. * running out of options and have to consider going OOM
  1628. */
  1629. if (!did_some_progress) {
  1630. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1631. if (oom_killer_disabled)
  1632. goto nopage;
  1633. page = __alloc_pages_may_oom(gfp_mask, order,
  1634. zonelist, high_zoneidx,
  1635. nodemask, preferred_zone,
  1636. migratetype);
  1637. if (page)
  1638. goto got_pg;
  1639. /*
  1640. * The OOM killer does not trigger for high-order
  1641. * ~__GFP_NOFAIL allocations so if no progress is being
  1642. * made, there are no other options and retrying is
  1643. * unlikely to help.
  1644. */
  1645. if (order > PAGE_ALLOC_COSTLY_ORDER &&
  1646. !(gfp_mask & __GFP_NOFAIL))
  1647. goto nopage;
  1648. goto restart;
  1649. }
  1650. }
  1651. /* Check if we should retry the allocation */
  1652. pages_reclaimed += did_some_progress;
  1653. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1654. /* Wait for some write requests to complete then retry */
  1655. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1656. goto rebalance;
  1657. }
  1658. nopage:
  1659. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1660. printk(KERN_WARNING "%s: page allocation failure."
  1661. " order:%d, mode:0x%x\n",
  1662. p->comm, order, gfp_mask);
  1663. dump_stack();
  1664. show_mem();
  1665. }
  1666. return page;
  1667. got_pg:
  1668. if (kmemcheck_enabled)
  1669. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1670. return page;
  1671. }
  1672. /*
  1673. * This is the 'heart' of the zoned buddy allocator.
  1674. */
  1675. struct page *
  1676. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1677. struct zonelist *zonelist, nodemask_t *nodemask)
  1678. {
  1679. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1680. struct zone *preferred_zone;
  1681. struct page *page;
  1682. int migratetype = allocflags_to_migratetype(gfp_mask);
  1683. gfp_mask &= gfp_allowed_mask;
  1684. lockdep_trace_alloc(gfp_mask);
  1685. might_sleep_if(gfp_mask & __GFP_WAIT);
  1686. if (should_fail_alloc_page(gfp_mask, order))
  1687. return NULL;
  1688. /*
  1689. * Check the zones suitable for the gfp_mask contain at least one
  1690. * valid zone. It's possible to have an empty zonelist as a result
  1691. * of GFP_THISNODE and a memoryless node
  1692. */
  1693. if (unlikely(!zonelist->_zonerefs->zone))
  1694. return NULL;
  1695. /* The preferred zone is used for statistics later */
  1696. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1697. if (!preferred_zone)
  1698. return NULL;
  1699. /* First allocation attempt */
  1700. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1701. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1702. preferred_zone, migratetype);
  1703. if (unlikely(!page))
  1704. page = __alloc_pages_slowpath(gfp_mask, order,
  1705. zonelist, high_zoneidx, nodemask,
  1706. preferred_zone, migratetype);
  1707. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1708. return page;
  1709. }
  1710. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1711. /*
  1712. * Common helper functions.
  1713. */
  1714. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1715. {
  1716. struct page *page;
  1717. /*
  1718. * __get_free_pages() returns a 32-bit address, which cannot represent
  1719. * a highmem page
  1720. */
  1721. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1722. page = alloc_pages(gfp_mask, order);
  1723. if (!page)
  1724. return 0;
  1725. return (unsigned long) page_address(page);
  1726. }
  1727. EXPORT_SYMBOL(__get_free_pages);
  1728. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1729. {
  1730. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1731. }
  1732. EXPORT_SYMBOL(get_zeroed_page);
  1733. void __pagevec_free(struct pagevec *pvec)
  1734. {
  1735. int i = pagevec_count(pvec);
  1736. while (--i >= 0) {
  1737. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1738. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1739. }
  1740. }
  1741. void __free_pages(struct page *page, unsigned int order)
  1742. {
  1743. if (put_page_testzero(page)) {
  1744. if (order == 0)
  1745. free_hot_cold_page(page, 0);
  1746. else
  1747. __free_pages_ok(page, order);
  1748. }
  1749. }
  1750. EXPORT_SYMBOL(__free_pages);
  1751. void free_pages(unsigned long addr, unsigned int order)
  1752. {
  1753. if (addr != 0) {
  1754. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1755. __free_pages(virt_to_page((void *)addr), order);
  1756. }
  1757. }
  1758. EXPORT_SYMBOL(free_pages);
  1759. /**
  1760. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1761. * @size: the number of bytes to allocate
  1762. * @gfp_mask: GFP flags for the allocation
  1763. *
  1764. * This function is similar to alloc_pages(), except that it allocates the
  1765. * minimum number of pages to satisfy the request. alloc_pages() can only
  1766. * allocate memory in power-of-two pages.
  1767. *
  1768. * This function is also limited by MAX_ORDER.
  1769. *
  1770. * Memory allocated by this function must be released by free_pages_exact().
  1771. */
  1772. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1773. {
  1774. unsigned int order = get_order(size);
  1775. unsigned long addr;
  1776. addr = __get_free_pages(gfp_mask, order);
  1777. if (addr) {
  1778. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1779. unsigned long used = addr + PAGE_ALIGN(size);
  1780. split_page(virt_to_page((void *)addr), order);
  1781. while (used < alloc_end) {
  1782. free_page(used);
  1783. used += PAGE_SIZE;
  1784. }
  1785. }
  1786. return (void *)addr;
  1787. }
  1788. EXPORT_SYMBOL(alloc_pages_exact);
  1789. /**
  1790. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1791. * @virt: the value returned by alloc_pages_exact.
  1792. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1793. *
  1794. * Release the memory allocated by a previous call to alloc_pages_exact.
  1795. */
  1796. void free_pages_exact(void *virt, size_t size)
  1797. {
  1798. unsigned long addr = (unsigned long)virt;
  1799. unsigned long end = addr + PAGE_ALIGN(size);
  1800. while (addr < end) {
  1801. free_page(addr);
  1802. addr += PAGE_SIZE;
  1803. }
  1804. }
  1805. EXPORT_SYMBOL(free_pages_exact);
  1806. static unsigned int nr_free_zone_pages(int offset)
  1807. {
  1808. struct zoneref *z;
  1809. struct zone *zone;
  1810. /* Just pick one node, since fallback list is circular */
  1811. unsigned int sum = 0;
  1812. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1813. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1814. unsigned long size = zone->present_pages;
  1815. unsigned long high = high_wmark_pages(zone);
  1816. if (size > high)
  1817. sum += size - high;
  1818. }
  1819. return sum;
  1820. }
  1821. /*
  1822. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1823. */
  1824. unsigned int nr_free_buffer_pages(void)
  1825. {
  1826. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1827. }
  1828. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1829. /*
  1830. * Amount of free RAM allocatable within all zones
  1831. */
  1832. unsigned int nr_free_pagecache_pages(void)
  1833. {
  1834. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1835. }
  1836. static inline void show_node(struct zone *zone)
  1837. {
  1838. if (NUMA_BUILD)
  1839. printk("Node %d ", zone_to_nid(zone));
  1840. }
  1841. void si_meminfo(struct sysinfo *val)
  1842. {
  1843. val->totalram = totalram_pages;
  1844. val->sharedram = 0;
  1845. val->freeram = global_page_state(NR_FREE_PAGES);
  1846. val->bufferram = nr_blockdev_pages();
  1847. val->totalhigh = totalhigh_pages;
  1848. val->freehigh = nr_free_highpages();
  1849. val->mem_unit = PAGE_SIZE;
  1850. }
  1851. EXPORT_SYMBOL(si_meminfo);
  1852. #ifdef CONFIG_NUMA
  1853. void si_meminfo_node(struct sysinfo *val, int nid)
  1854. {
  1855. pg_data_t *pgdat = NODE_DATA(nid);
  1856. val->totalram = pgdat->node_present_pages;
  1857. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1858. #ifdef CONFIG_HIGHMEM
  1859. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1860. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1861. NR_FREE_PAGES);
  1862. #else
  1863. val->totalhigh = 0;
  1864. val->freehigh = 0;
  1865. #endif
  1866. val->mem_unit = PAGE_SIZE;
  1867. }
  1868. #endif
  1869. #define K(x) ((x) << (PAGE_SHIFT-10))
  1870. /*
  1871. * Show free area list (used inside shift_scroll-lock stuff)
  1872. * We also calculate the percentage fragmentation. We do this by counting the
  1873. * memory on each free list with the exception of the first item on the list.
  1874. */
  1875. void show_free_areas(void)
  1876. {
  1877. int cpu;
  1878. struct zone *zone;
  1879. for_each_populated_zone(zone) {
  1880. show_node(zone);
  1881. printk("%s per-cpu:\n", zone->name);
  1882. for_each_online_cpu(cpu) {
  1883. struct per_cpu_pageset *pageset;
  1884. pageset = per_cpu_ptr(zone->pageset, cpu);
  1885. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1886. cpu, pageset->pcp.high,
  1887. pageset->pcp.batch, pageset->pcp.count);
  1888. }
  1889. }
  1890. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  1891. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  1892. " unevictable:%lu"
  1893. " dirty:%lu writeback:%lu unstable:%lu\n"
  1894. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  1895. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  1896. global_page_state(NR_ACTIVE_ANON),
  1897. global_page_state(NR_INACTIVE_ANON),
  1898. global_page_state(NR_ISOLATED_ANON),
  1899. global_page_state(NR_ACTIVE_FILE),
  1900. global_page_state(NR_INACTIVE_FILE),
  1901. global_page_state(NR_ISOLATED_FILE),
  1902. global_page_state(NR_UNEVICTABLE),
  1903. global_page_state(NR_FILE_DIRTY),
  1904. global_page_state(NR_WRITEBACK),
  1905. global_page_state(NR_UNSTABLE_NFS),
  1906. global_page_state(NR_FREE_PAGES),
  1907. global_page_state(NR_SLAB_RECLAIMABLE),
  1908. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1909. global_page_state(NR_FILE_MAPPED),
  1910. global_page_state(NR_SHMEM),
  1911. global_page_state(NR_PAGETABLE),
  1912. global_page_state(NR_BOUNCE));
  1913. for_each_populated_zone(zone) {
  1914. int i;
  1915. show_node(zone);
  1916. printk("%s"
  1917. " free:%lukB"
  1918. " min:%lukB"
  1919. " low:%lukB"
  1920. " high:%lukB"
  1921. " active_anon:%lukB"
  1922. " inactive_anon:%lukB"
  1923. " active_file:%lukB"
  1924. " inactive_file:%lukB"
  1925. " unevictable:%lukB"
  1926. " isolated(anon):%lukB"
  1927. " isolated(file):%lukB"
  1928. " present:%lukB"
  1929. " mlocked:%lukB"
  1930. " dirty:%lukB"
  1931. " writeback:%lukB"
  1932. " mapped:%lukB"
  1933. " shmem:%lukB"
  1934. " slab_reclaimable:%lukB"
  1935. " slab_unreclaimable:%lukB"
  1936. " kernel_stack:%lukB"
  1937. " pagetables:%lukB"
  1938. " unstable:%lukB"
  1939. " bounce:%lukB"
  1940. " writeback_tmp:%lukB"
  1941. " pages_scanned:%lu"
  1942. " all_unreclaimable? %s"
  1943. "\n",
  1944. zone->name,
  1945. K(zone_page_state(zone, NR_FREE_PAGES)),
  1946. K(min_wmark_pages(zone)),
  1947. K(low_wmark_pages(zone)),
  1948. K(high_wmark_pages(zone)),
  1949. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1950. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1951. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1952. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1953. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1954. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  1955. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  1956. K(zone->present_pages),
  1957. K(zone_page_state(zone, NR_MLOCK)),
  1958. K(zone_page_state(zone, NR_FILE_DIRTY)),
  1959. K(zone_page_state(zone, NR_WRITEBACK)),
  1960. K(zone_page_state(zone, NR_FILE_MAPPED)),
  1961. K(zone_page_state(zone, NR_SHMEM)),
  1962. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  1963. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  1964. zone_page_state(zone, NR_KERNEL_STACK) *
  1965. THREAD_SIZE / 1024,
  1966. K(zone_page_state(zone, NR_PAGETABLE)),
  1967. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  1968. K(zone_page_state(zone, NR_BOUNCE)),
  1969. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  1970. zone->pages_scanned,
  1971. (zone->all_unreclaimable ? "yes" : "no")
  1972. );
  1973. printk("lowmem_reserve[]:");
  1974. for (i = 0; i < MAX_NR_ZONES; i++)
  1975. printk(" %lu", zone->lowmem_reserve[i]);
  1976. printk("\n");
  1977. }
  1978. for_each_populated_zone(zone) {
  1979. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1980. show_node(zone);
  1981. printk("%s: ", zone->name);
  1982. spin_lock_irqsave(&zone->lock, flags);
  1983. for (order = 0; order < MAX_ORDER; order++) {
  1984. nr[order] = zone->free_area[order].nr_free;
  1985. total += nr[order] << order;
  1986. }
  1987. spin_unlock_irqrestore(&zone->lock, flags);
  1988. for (order = 0; order < MAX_ORDER; order++)
  1989. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1990. printk("= %lukB\n", K(total));
  1991. }
  1992. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1993. show_swap_cache_info();
  1994. }
  1995. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1996. {
  1997. zoneref->zone = zone;
  1998. zoneref->zone_idx = zone_idx(zone);
  1999. }
  2000. /*
  2001. * Builds allocation fallback zone lists.
  2002. *
  2003. * Add all populated zones of a node to the zonelist.
  2004. */
  2005. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2006. int nr_zones, enum zone_type zone_type)
  2007. {
  2008. struct zone *zone;
  2009. BUG_ON(zone_type >= MAX_NR_ZONES);
  2010. zone_type++;
  2011. do {
  2012. zone_type--;
  2013. zone = pgdat->node_zones + zone_type;
  2014. if (populated_zone(zone)) {
  2015. zoneref_set_zone(zone,
  2016. &zonelist->_zonerefs[nr_zones++]);
  2017. check_highest_zone(zone_type);
  2018. }
  2019. } while (zone_type);
  2020. return nr_zones;
  2021. }
  2022. /*
  2023. * zonelist_order:
  2024. * 0 = automatic detection of better ordering.
  2025. * 1 = order by ([node] distance, -zonetype)
  2026. * 2 = order by (-zonetype, [node] distance)
  2027. *
  2028. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2029. * the same zonelist. So only NUMA can configure this param.
  2030. */
  2031. #define ZONELIST_ORDER_DEFAULT 0
  2032. #define ZONELIST_ORDER_NODE 1
  2033. #define ZONELIST_ORDER_ZONE 2
  2034. /* zonelist order in the kernel.
  2035. * set_zonelist_order() will set this to NODE or ZONE.
  2036. */
  2037. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2038. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2039. #ifdef CONFIG_NUMA
  2040. /* The value user specified ....changed by config */
  2041. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2042. /* string for sysctl */
  2043. #define NUMA_ZONELIST_ORDER_LEN 16
  2044. char numa_zonelist_order[16] = "default";
  2045. /*
  2046. * interface for configure zonelist ordering.
  2047. * command line option "numa_zonelist_order"
  2048. * = "[dD]efault - default, automatic configuration.
  2049. * = "[nN]ode - order by node locality, then by zone within node
  2050. * = "[zZ]one - order by zone, then by locality within zone
  2051. */
  2052. static int __parse_numa_zonelist_order(char *s)
  2053. {
  2054. if (*s == 'd' || *s == 'D') {
  2055. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2056. } else if (*s == 'n' || *s == 'N') {
  2057. user_zonelist_order = ZONELIST_ORDER_NODE;
  2058. } else if (*s == 'z' || *s == 'Z') {
  2059. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2060. } else {
  2061. printk(KERN_WARNING
  2062. "Ignoring invalid numa_zonelist_order value: "
  2063. "%s\n", s);
  2064. return -EINVAL;
  2065. }
  2066. return 0;
  2067. }
  2068. static __init int setup_numa_zonelist_order(char *s)
  2069. {
  2070. if (s)
  2071. return __parse_numa_zonelist_order(s);
  2072. return 0;
  2073. }
  2074. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2075. /*
  2076. * sysctl handler for numa_zonelist_order
  2077. */
  2078. int numa_zonelist_order_handler(ctl_table *table, int write,
  2079. void __user *buffer, size_t *length,
  2080. loff_t *ppos)
  2081. {
  2082. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2083. int ret;
  2084. static DEFINE_MUTEX(zl_order_mutex);
  2085. mutex_lock(&zl_order_mutex);
  2086. if (write)
  2087. strcpy(saved_string, (char*)table->data);
  2088. ret = proc_dostring(table, write, buffer, length, ppos);
  2089. if (ret)
  2090. goto out;
  2091. if (write) {
  2092. int oldval = user_zonelist_order;
  2093. if (__parse_numa_zonelist_order((char*)table->data)) {
  2094. /*
  2095. * bogus value. restore saved string
  2096. */
  2097. strncpy((char*)table->data, saved_string,
  2098. NUMA_ZONELIST_ORDER_LEN);
  2099. user_zonelist_order = oldval;
  2100. } else if (oldval != user_zonelist_order)
  2101. build_all_zonelists();
  2102. }
  2103. out:
  2104. mutex_unlock(&zl_order_mutex);
  2105. return ret;
  2106. }
  2107. #define MAX_NODE_LOAD (nr_online_nodes)
  2108. static int node_load[MAX_NUMNODES];
  2109. /**
  2110. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2111. * @node: node whose fallback list we're appending
  2112. * @used_node_mask: nodemask_t of already used nodes
  2113. *
  2114. * We use a number of factors to determine which is the next node that should
  2115. * appear on a given node's fallback list. The node should not have appeared
  2116. * already in @node's fallback list, and it should be the next closest node
  2117. * according to the distance array (which contains arbitrary distance values
  2118. * from each node to each node in the system), and should also prefer nodes
  2119. * with no CPUs, since presumably they'll have very little allocation pressure
  2120. * on them otherwise.
  2121. * It returns -1 if no node is found.
  2122. */
  2123. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2124. {
  2125. int n, val;
  2126. int min_val = INT_MAX;
  2127. int best_node = -1;
  2128. const struct cpumask *tmp = cpumask_of_node(0);
  2129. /* Use the local node if we haven't already */
  2130. if (!node_isset(node, *used_node_mask)) {
  2131. node_set(node, *used_node_mask);
  2132. return node;
  2133. }
  2134. for_each_node_state(n, N_HIGH_MEMORY) {
  2135. /* Don't want a node to appear more than once */
  2136. if (node_isset(n, *used_node_mask))
  2137. continue;
  2138. /* Use the distance array to find the distance */
  2139. val = node_distance(node, n);
  2140. /* Penalize nodes under us ("prefer the next node") */
  2141. val += (n < node);
  2142. /* Give preference to headless and unused nodes */
  2143. tmp = cpumask_of_node(n);
  2144. if (!cpumask_empty(tmp))
  2145. val += PENALTY_FOR_NODE_WITH_CPUS;
  2146. /* Slight preference for less loaded node */
  2147. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2148. val += node_load[n];
  2149. if (val < min_val) {
  2150. min_val = val;
  2151. best_node = n;
  2152. }
  2153. }
  2154. if (best_node >= 0)
  2155. node_set(best_node, *used_node_mask);
  2156. return best_node;
  2157. }
  2158. /*
  2159. * Build zonelists ordered by node and zones within node.
  2160. * This results in maximum locality--normal zone overflows into local
  2161. * DMA zone, if any--but risks exhausting DMA zone.
  2162. */
  2163. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2164. {
  2165. int j;
  2166. struct zonelist *zonelist;
  2167. zonelist = &pgdat->node_zonelists[0];
  2168. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2169. ;
  2170. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2171. MAX_NR_ZONES - 1);
  2172. zonelist->_zonerefs[j].zone = NULL;
  2173. zonelist->_zonerefs[j].zone_idx = 0;
  2174. }
  2175. /*
  2176. * Build gfp_thisnode zonelists
  2177. */
  2178. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2179. {
  2180. int j;
  2181. struct zonelist *zonelist;
  2182. zonelist = &pgdat->node_zonelists[1];
  2183. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2184. zonelist->_zonerefs[j].zone = NULL;
  2185. zonelist->_zonerefs[j].zone_idx = 0;
  2186. }
  2187. /*
  2188. * Build zonelists ordered by zone and nodes within zones.
  2189. * This results in conserving DMA zone[s] until all Normal memory is
  2190. * exhausted, but results in overflowing to remote node while memory
  2191. * may still exist in local DMA zone.
  2192. */
  2193. static int node_order[MAX_NUMNODES];
  2194. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2195. {
  2196. int pos, j, node;
  2197. int zone_type; /* needs to be signed */
  2198. struct zone *z;
  2199. struct zonelist *zonelist;
  2200. zonelist = &pgdat->node_zonelists[0];
  2201. pos = 0;
  2202. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2203. for (j = 0; j < nr_nodes; j++) {
  2204. node = node_order[j];
  2205. z = &NODE_DATA(node)->node_zones[zone_type];
  2206. if (populated_zone(z)) {
  2207. zoneref_set_zone(z,
  2208. &zonelist->_zonerefs[pos++]);
  2209. check_highest_zone(zone_type);
  2210. }
  2211. }
  2212. }
  2213. zonelist->_zonerefs[pos].zone = NULL;
  2214. zonelist->_zonerefs[pos].zone_idx = 0;
  2215. }
  2216. static int default_zonelist_order(void)
  2217. {
  2218. int nid, zone_type;
  2219. unsigned long low_kmem_size,total_size;
  2220. struct zone *z;
  2221. int average_size;
  2222. /*
  2223. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2224. * If they are really small and used heavily, the system can fall
  2225. * into OOM very easily.
  2226. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2227. */
  2228. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2229. low_kmem_size = 0;
  2230. total_size = 0;
  2231. for_each_online_node(nid) {
  2232. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2233. z = &NODE_DATA(nid)->node_zones[zone_type];
  2234. if (populated_zone(z)) {
  2235. if (zone_type < ZONE_NORMAL)
  2236. low_kmem_size += z->present_pages;
  2237. total_size += z->present_pages;
  2238. }
  2239. }
  2240. }
  2241. if (!low_kmem_size || /* there are no DMA area. */
  2242. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2243. return ZONELIST_ORDER_NODE;
  2244. /*
  2245. * look into each node's config.
  2246. * If there is a node whose DMA/DMA32 memory is very big area on
  2247. * local memory, NODE_ORDER may be suitable.
  2248. */
  2249. average_size = total_size /
  2250. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2251. for_each_online_node(nid) {
  2252. low_kmem_size = 0;
  2253. total_size = 0;
  2254. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2255. z = &NODE_DATA(nid)->node_zones[zone_type];
  2256. if (populated_zone(z)) {
  2257. if (zone_type < ZONE_NORMAL)
  2258. low_kmem_size += z->present_pages;
  2259. total_size += z->present_pages;
  2260. }
  2261. }
  2262. if (low_kmem_size &&
  2263. total_size > average_size && /* ignore small node */
  2264. low_kmem_size > total_size * 70/100)
  2265. return ZONELIST_ORDER_NODE;
  2266. }
  2267. return ZONELIST_ORDER_ZONE;
  2268. }
  2269. static void set_zonelist_order(void)
  2270. {
  2271. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2272. current_zonelist_order = default_zonelist_order();
  2273. else
  2274. current_zonelist_order = user_zonelist_order;
  2275. }
  2276. static void build_zonelists(pg_data_t *pgdat)
  2277. {
  2278. int j, node, load;
  2279. enum zone_type i;
  2280. nodemask_t used_mask;
  2281. int local_node, prev_node;
  2282. struct zonelist *zonelist;
  2283. int order = current_zonelist_order;
  2284. /* initialize zonelists */
  2285. for (i = 0; i < MAX_ZONELISTS; i++) {
  2286. zonelist = pgdat->node_zonelists + i;
  2287. zonelist->_zonerefs[0].zone = NULL;
  2288. zonelist->_zonerefs[0].zone_idx = 0;
  2289. }
  2290. /* NUMA-aware ordering of nodes */
  2291. local_node = pgdat->node_id;
  2292. load = nr_online_nodes;
  2293. prev_node = local_node;
  2294. nodes_clear(used_mask);
  2295. memset(node_order, 0, sizeof(node_order));
  2296. j = 0;
  2297. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2298. int distance = node_distance(local_node, node);
  2299. /*
  2300. * If another node is sufficiently far away then it is better
  2301. * to reclaim pages in a zone before going off node.
  2302. */
  2303. if (distance > RECLAIM_DISTANCE)
  2304. zone_reclaim_mode = 1;
  2305. /*
  2306. * We don't want to pressure a particular node.
  2307. * So adding penalty to the first node in same
  2308. * distance group to make it round-robin.
  2309. */
  2310. if (distance != node_distance(local_node, prev_node))
  2311. node_load[node] = load;
  2312. prev_node = node;
  2313. load--;
  2314. if (order == ZONELIST_ORDER_NODE)
  2315. build_zonelists_in_node_order(pgdat, node);
  2316. else
  2317. node_order[j++] = node; /* remember order */
  2318. }
  2319. if (order == ZONELIST_ORDER_ZONE) {
  2320. /* calculate node order -- i.e., DMA last! */
  2321. build_zonelists_in_zone_order(pgdat, j);
  2322. }
  2323. build_thisnode_zonelists(pgdat);
  2324. }
  2325. /* Construct the zonelist performance cache - see further mmzone.h */
  2326. static void build_zonelist_cache(pg_data_t *pgdat)
  2327. {
  2328. struct zonelist *zonelist;
  2329. struct zonelist_cache *zlc;
  2330. struct zoneref *z;
  2331. zonelist = &pgdat->node_zonelists[0];
  2332. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2333. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2334. for (z = zonelist->_zonerefs; z->zone; z++)
  2335. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2336. }
  2337. #else /* CONFIG_NUMA */
  2338. static void set_zonelist_order(void)
  2339. {
  2340. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2341. }
  2342. static void build_zonelists(pg_data_t *pgdat)
  2343. {
  2344. int node, local_node;
  2345. enum zone_type j;
  2346. struct zonelist *zonelist;
  2347. local_node = pgdat->node_id;
  2348. zonelist = &pgdat->node_zonelists[0];
  2349. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2350. /*
  2351. * Now we build the zonelist so that it contains the zones
  2352. * of all the other nodes.
  2353. * We don't want to pressure a particular node, so when
  2354. * building the zones for node N, we make sure that the
  2355. * zones coming right after the local ones are those from
  2356. * node N+1 (modulo N)
  2357. */
  2358. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2359. if (!node_online(node))
  2360. continue;
  2361. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2362. MAX_NR_ZONES - 1);
  2363. }
  2364. for (node = 0; node < local_node; node++) {
  2365. if (!node_online(node))
  2366. continue;
  2367. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2368. MAX_NR_ZONES - 1);
  2369. }
  2370. zonelist->_zonerefs[j].zone = NULL;
  2371. zonelist->_zonerefs[j].zone_idx = 0;
  2372. }
  2373. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2374. static void build_zonelist_cache(pg_data_t *pgdat)
  2375. {
  2376. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2377. }
  2378. #endif /* CONFIG_NUMA */
  2379. /*
  2380. * Boot pageset table. One per cpu which is going to be used for all
  2381. * zones and all nodes. The parameters will be set in such a way
  2382. * that an item put on a list will immediately be handed over to
  2383. * the buddy list. This is safe since pageset manipulation is done
  2384. * with interrupts disabled.
  2385. *
  2386. * The boot_pagesets must be kept even after bootup is complete for
  2387. * unused processors and/or zones. They do play a role for bootstrapping
  2388. * hotplugged processors.
  2389. *
  2390. * zoneinfo_show() and maybe other functions do
  2391. * not check if the processor is online before following the pageset pointer.
  2392. * Other parts of the kernel may not check if the zone is available.
  2393. */
  2394. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2395. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2396. /* return values int ....just for stop_machine() */
  2397. static int __build_all_zonelists(void *dummy)
  2398. {
  2399. int nid;
  2400. int cpu;
  2401. #ifdef CONFIG_NUMA
  2402. memset(node_load, 0, sizeof(node_load));
  2403. #endif
  2404. for_each_online_node(nid) {
  2405. pg_data_t *pgdat = NODE_DATA(nid);
  2406. build_zonelists(pgdat);
  2407. build_zonelist_cache(pgdat);
  2408. }
  2409. /*
  2410. * Initialize the boot_pagesets that are going to be used
  2411. * for bootstrapping processors. The real pagesets for
  2412. * each zone will be allocated later when the per cpu
  2413. * allocator is available.
  2414. *
  2415. * boot_pagesets are used also for bootstrapping offline
  2416. * cpus if the system is already booted because the pagesets
  2417. * are needed to initialize allocators on a specific cpu too.
  2418. * F.e. the percpu allocator needs the page allocator which
  2419. * needs the percpu allocator in order to allocate its pagesets
  2420. * (a chicken-egg dilemma).
  2421. */
  2422. for_each_possible_cpu(cpu)
  2423. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2424. return 0;
  2425. }
  2426. void build_all_zonelists(void)
  2427. {
  2428. set_zonelist_order();
  2429. if (system_state == SYSTEM_BOOTING) {
  2430. __build_all_zonelists(NULL);
  2431. mminit_verify_zonelist();
  2432. cpuset_init_current_mems_allowed();
  2433. } else {
  2434. /* we have to stop all cpus to guarantee there is no user
  2435. of zonelist */
  2436. stop_machine(__build_all_zonelists, NULL, NULL);
  2437. /* cpuset refresh routine should be here */
  2438. }
  2439. vm_total_pages = nr_free_pagecache_pages();
  2440. /*
  2441. * Disable grouping by mobility if the number of pages in the
  2442. * system is too low to allow the mechanism to work. It would be
  2443. * more accurate, but expensive to check per-zone. This check is
  2444. * made on memory-hotadd so a system can start with mobility
  2445. * disabled and enable it later
  2446. */
  2447. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2448. page_group_by_mobility_disabled = 1;
  2449. else
  2450. page_group_by_mobility_disabled = 0;
  2451. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2452. "Total pages: %ld\n",
  2453. nr_online_nodes,
  2454. zonelist_order_name[current_zonelist_order],
  2455. page_group_by_mobility_disabled ? "off" : "on",
  2456. vm_total_pages);
  2457. #ifdef CONFIG_NUMA
  2458. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2459. #endif
  2460. }
  2461. /*
  2462. * Helper functions to size the waitqueue hash table.
  2463. * Essentially these want to choose hash table sizes sufficiently
  2464. * large so that collisions trying to wait on pages are rare.
  2465. * But in fact, the number of active page waitqueues on typical
  2466. * systems is ridiculously low, less than 200. So this is even
  2467. * conservative, even though it seems large.
  2468. *
  2469. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2470. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2471. */
  2472. #define PAGES_PER_WAITQUEUE 256
  2473. #ifndef CONFIG_MEMORY_HOTPLUG
  2474. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2475. {
  2476. unsigned long size = 1;
  2477. pages /= PAGES_PER_WAITQUEUE;
  2478. while (size < pages)
  2479. size <<= 1;
  2480. /*
  2481. * Once we have dozens or even hundreds of threads sleeping
  2482. * on IO we've got bigger problems than wait queue collision.
  2483. * Limit the size of the wait table to a reasonable size.
  2484. */
  2485. size = min(size, 4096UL);
  2486. return max(size, 4UL);
  2487. }
  2488. #else
  2489. /*
  2490. * A zone's size might be changed by hot-add, so it is not possible to determine
  2491. * a suitable size for its wait_table. So we use the maximum size now.
  2492. *
  2493. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2494. *
  2495. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2496. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2497. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2498. *
  2499. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2500. * or more by the traditional way. (See above). It equals:
  2501. *
  2502. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2503. * ia64(16K page size) : = ( 8G + 4M)byte.
  2504. * powerpc (64K page size) : = (32G +16M)byte.
  2505. */
  2506. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2507. {
  2508. return 4096UL;
  2509. }
  2510. #endif
  2511. /*
  2512. * This is an integer logarithm so that shifts can be used later
  2513. * to extract the more random high bits from the multiplicative
  2514. * hash function before the remainder is taken.
  2515. */
  2516. static inline unsigned long wait_table_bits(unsigned long size)
  2517. {
  2518. return ffz(~size);
  2519. }
  2520. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2521. /*
  2522. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2523. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2524. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2525. * higher will lead to a bigger reserve which will get freed as contiguous
  2526. * blocks as reclaim kicks in
  2527. */
  2528. static void setup_zone_migrate_reserve(struct zone *zone)
  2529. {
  2530. unsigned long start_pfn, pfn, end_pfn;
  2531. struct page *page;
  2532. unsigned long block_migratetype;
  2533. int reserve;
  2534. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2535. start_pfn = zone->zone_start_pfn;
  2536. end_pfn = start_pfn + zone->spanned_pages;
  2537. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2538. pageblock_order;
  2539. /*
  2540. * Reserve blocks are generally in place to help high-order atomic
  2541. * allocations that are short-lived. A min_free_kbytes value that
  2542. * would result in more than 2 reserve blocks for atomic allocations
  2543. * is assumed to be in place to help anti-fragmentation for the
  2544. * future allocation of hugepages at runtime.
  2545. */
  2546. reserve = min(2, reserve);
  2547. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2548. if (!pfn_valid(pfn))
  2549. continue;
  2550. page = pfn_to_page(pfn);
  2551. /* Watch out for overlapping nodes */
  2552. if (page_to_nid(page) != zone_to_nid(zone))
  2553. continue;
  2554. /* Blocks with reserved pages will never free, skip them. */
  2555. if (PageReserved(page))
  2556. continue;
  2557. block_migratetype = get_pageblock_migratetype(page);
  2558. /* If this block is reserved, account for it */
  2559. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2560. reserve--;
  2561. continue;
  2562. }
  2563. /* Suitable for reserving if this block is movable */
  2564. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2565. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2566. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2567. reserve--;
  2568. continue;
  2569. }
  2570. /*
  2571. * If the reserve is met and this is a previous reserved block,
  2572. * take it back
  2573. */
  2574. if (block_migratetype == MIGRATE_RESERVE) {
  2575. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2576. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2577. }
  2578. }
  2579. }
  2580. /*
  2581. * Initially all pages are reserved - free ones are freed
  2582. * up by free_all_bootmem() once the early boot process is
  2583. * done. Non-atomic initialization, single-pass.
  2584. */
  2585. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2586. unsigned long start_pfn, enum memmap_context context)
  2587. {
  2588. struct page *page;
  2589. unsigned long end_pfn = start_pfn + size;
  2590. unsigned long pfn;
  2591. struct zone *z;
  2592. if (highest_memmap_pfn < end_pfn - 1)
  2593. highest_memmap_pfn = end_pfn - 1;
  2594. z = &NODE_DATA(nid)->node_zones[zone];
  2595. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2596. /*
  2597. * There can be holes in boot-time mem_map[]s
  2598. * handed to this function. They do not
  2599. * exist on hotplugged memory.
  2600. */
  2601. if (context == MEMMAP_EARLY) {
  2602. if (!early_pfn_valid(pfn))
  2603. continue;
  2604. if (!early_pfn_in_nid(pfn, nid))
  2605. continue;
  2606. }
  2607. page = pfn_to_page(pfn);
  2608. set_page_links(page, zone, nid, pfn);
  2609. mminit_verify_page_links(page, zone, nid, pfn);
  2610. init_page_count(page);
  2611. reset_page_mapcount(page);
  2612. SetPageReserved(page);
  2613. /*
  2614. * Mark the block movable so that blocks are reserved for
  2615. * movable at startup. This will force kernel allocations
  2616. * to reserve their blocks rather than leaking throughout
  2617. * the address space during boot when many long-lived
  2618. * kernel allocations are made. Later some blocks near
  2619. * the start are marked MIGRATE_RESERVE by
  2620. * setup_zone_migrate_reserve()
  2621. *
  2622. * bitmap is created for zone's valid pfn range. but memmap
  2623. * can be created for invalid pages (for alignment)
  2624. * check here not to call set_pageblock_migratetype() against
  2625. * pfn out of zone.
  2626. */
  2627. if ((z->zone_start_pfn <= pfn)
  2628. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2629. && !(pfn & (pageblock_nr_pages - 1)))
  2630. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2631. INIT_LIST_HEAD(&page->lru);
  2632. #ifdef WANT_PAGE_VIRTUAL
  2633. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2634. if (!is_highmem_idx(zone))
  2635. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2636. #endif
  2637. }
  2638. }
  2639. static void __meminit zone_init_free_lists(struct zone *zone)
  2640. {
  2641. int order, t;
  2642. for_each_migratetype_order(order, t) {
  2643. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2644. zone->free_area[order].nr_free = 0;
  2645. }
  2646. }
  2647. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2648. #define memmap_init(size, nid, zone, start_pfn) \
  2649. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2650. #endif
  2651. static int zone_batchsize(struct zone *zone)
  2652. {
  2653. #ifdef CONFIG_MMU
  2654. int batch;
  2655. /*
  2656. * The per-cpu-pages pools are set to around 1000th of the
  2657. * size of the zone. But no more than 1/2 of a meg.
  2658. *
  2659. * OK, so we don't know how big the cache is. So guess.
  2660. */
  2661. batch = zone->present_pages / 1024;
  2662. if (batch * PAGE_SIZE > 512 * 1024)
  2663. batch = (512 * 1024) / PAGE_SIZE;
  2664. batch /= 4; /* We effectively *= 4 below */
  2665. if (batch < 1)
  2666. batch = 1;
  2667. /*
  2668. * Clamp the batch to a 2^n - 1 value. Having a power
  2669. * of 2 value was found to be more likely to have
  2670. * suboptimal cache aliasing properties in some cases.
  2671. *
  2672. * For example if 2 tasks are alternately allocating
  2673. * batches of pages, one task can end up with a lot
  2674. * of pages of one half of the possible page colors
  2675. * and the other with pages of the other colors.
  2676. */
  2677. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2678. return batch;
  2679. #else
  2680. /* The deferral and batching of frees should be suppressed under NOMMU
  2681. * conditions.
  2682. *
  2683. * The problem is that NOMMU needs to be able to allocate large chunks
  2684. * of contiguous memory as there's no hardware page translation to
  2685. * assemble apparent contiguous memory from discontiguous pages.
  2686. *
  2687. * Queueing large contiguous runs of pages for batching, however,
  2688. * causes the pages to actually be freed in smaller chunks. As there
  2689. * can be a significant delay between the individual batches being
  2690. * recycled, this leads to the once large chunks of space being
  2691. * fragmented and becoming unavailable for high-order allocations.
  2692. */
  2693. return 0;
  2694. #endif
  2695. }
  2696. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2697. {
  2698. struct per_cpu_pages *pcp;
  2699. int migratetype;
  2700. memset(p, 0, sizeof(*p));
  2701. pcp = &p->pcp;
  2702. pcp->count = 0;
  2703. pcp->high = 6 * batch;
  2704. pcp->batch = max(1UL, 1 * batch);
  2705. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2706. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2707. }
  2708. /*
  2709. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2710. * to the value high for the pageset p.
  2711. */
  2712. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2713. unsigned long high)
  2714. {
  2715. struct per_cpu_pages *pcp;
  2716. pcp = &p->pcp;
  2717. pcp->high = high;
  2718. pcp->batch = max(1UL, high/4);
  2719. if ((high/4) > (PAGE_SHIFT * 8))
  2720. pcp->batch = PAGE_SHIFT * 8;
  2721. }
  2722. /*
  2723. * Allocate per cpu pagesets and initialize them.
  2724. * Before this call only boot pagesets were available.
  2725. * Boot pagesets will no longer be used by this processorr
  2726. * after setup_per_cpu_pageset().
  2727. */
  2728. void __init setup_per_cpu_pageset(void)
  2729. {
  2730. struct zone *zone;
  2731. int cpu;
  2732. for_each_populated_zone(zone) {
  2733. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2734. for_each_possible_cpu(cpu) {
  2735. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2736. setup_pageset(pcp, zone_batchsize(zone));
  2737. if (percpu_pagelist_fraction)
  2738. setup_pagelist_highmark(pcp,
  2739. (zone->present_pages /
  2740. percpu_pagelist_fraction));
  2741. }
  2742. }
  2743. }
  2744. static noinline __init_refok
  2745. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2746. {
  2747. int i;
  2748. struct pglist_data *pgdat = zone->zone_pgdat;
  2749. size_t alloc_size;
  2750. /*
  2751. * The per-page waitqueue mechanism uses hashed waitqueues
  2752. * per zone.
  2753. */
  2754. zone->wait_table_hash_nr_entries =
  2755. wait_table_hash_nr_entries(zone_size_pages);
  2756. zone->wait_table_bits =
  2757. wait_table_bits(zone->wait_table_hash_nr_entries);
  2758. alloc_size = zone->wait_table_hash_nr_entries
  2759. * sizeof(wait_queue_head_t);
  2760. if (!slab_is_available()) {
  2761. zone->wait_table = (wait_queue_head_t *)
  2762. alloc_bootmem_node(pgdat, alloc_size);
  2763. } else {
  2764. /*
  2765. * This case means that a zone whose size was 0 gets new memory
  2766. * via memory hot-add.
  2767. * But it may be the case that a new node was hot-added. In
  2768. * this case vmalloc() will not be able to use this new node's
  2769. * memory - this wait_table must be initialized to use this new
  2770. * node itself as well.
  2771. * To use this new node's memory, further consideration will be
  2772. * necessary.
  2773. */
  2774. zone->wait_table = vmalloc(alloc_size);
  2775. }
  2776. if (!zone->wait_table)
  2777. return -ENOMEM;
  2778. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2779. init_waitqueue_head(zone->wait_table + i);
  2780. return 0;
  2781. }
  2782. static int __zone_pcp_update(void *data)
  2783. {
  2784. struct zone *zone = data;
  2785. int cpu;
  2786. unsigned long batch = zone_batchsize(zone), flags;
  2787. for_each_possible_cpu(cpu) {
  2788. struct per_cpu_pageset *pset;
  2789. struct per_cpu_pages *pcp;
  2790. pset = per_cpu_ptr(zone->pageset, cpu);
  2791. pcp = &pset->pcp;
  2792. local_irq_save(flags);
  2793. free_pcppages_bulk(zone, pcp->count, pcp);
  2794. setup_pageset(pset, batch);
  2795. local_irq_restore(flags);
  2796. }
  2797. return 0;
  2798. }
  2799. void zone_pcp_update(struct zone *zone)
  2800. {
  2801. stop_machine(__zone_pcp_update, zone, NULL);
  2802. }
  2803. static __meminit void zone_pcp_init(struct zone *zone)
  2804. {
  2805. /*
  2806. * per cpu subsystem is not up at this point. The following code
  2807. * relies on the ability of the linker to provide the
  2808. * offset of a (static) per cpu variable into the per cpu area.
  2809. */
  2810. zone->pageset = &boot_pageset;
  2811. if (zone->present_pages)
  2812. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  2813. zone->name, zone->present_pages,
  2814. zone_batchsize(zone));
  2815. }
  2816. __meminit int init_currently_empty_zone(struct zone *zone,
  2817. unsigned long zone_start_pfn,
  2818. unsigned long size,
  2819. enum memmap_context context)
  2820. {
  2821. struct pglist_data *pgdat = zone->zone_pgdat;
  2822. int ret;
  2823. ret = zone_wait_table_init(zone, size);
  2824. if (ret)
  2825. return ret;
  2826. pgdat->nr_zones = zone_idx(zone) + 1;
  2827. zone->zone_start_pfn = zone_start_pfn;
  2828. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2829. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2830. pgdat->node_id,
  2831. (unsigned long)zone_idx(zone),
  2832. zone_start_pfn, (zone_start_pfn + size));
  2833. zone_init_free_lists(zone);
  2834. return 0;
  2835. }
  2836. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2837. /*
  2838. * Basic iterator support. Return the first range of PFNs for a node
  2839. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2840. */
  2841. static int __meminit first_active_region_index_in_nid(int nid)
  2842. {
  2843. int i;
  2844. for (i = 0; i < nr_nodemap_entries; i++)
  2845. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2846. return i;
  2847. return -1;
  2848. }
  2849. /*
  2850. * Basic iterator support. Return the next active range of PFNs for a node
  2851. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2852. */
  2853. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2854. {
  2855. for (index = index + 1; index < nr_nodemap_entries; index++)
  2856. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2857. return index;
  2858. return -1;
  2859. }
  2860. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2861. /*
  2862. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2863. * Architectures may implement their own version but if add_active_range()
  2864. * was used and there are no special requirements, this is a convenient
  2865. * alternative
  2866. */
  2867. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2868. {
  2869. int i;
  2870. for (i = 0; i < nr_nodemap_entries; i++) {
  2871. unsigned long start_pfn = early_node_map[i].start_pfn;
  2872. unsigned long end_pfn = early_node_map[i].end_pfn;
  2873. if (start_pfn <= pfn && pfn < end_pfn)
  2874. return early_node_map[i].nid;
  2875. }
  2876. /* This is a memory hole */
  2877. return -1;
  2878. }
  2879. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2880. int __meminit early_pfn_to_nid(unsigned long pfn)
  2881. {
  2882. int nid;
  2883. nid = __early_pfn_to_nid(pfn);
  2884. if (nid >= 0)
  2885. return nid;
  2886. /* just returns 0 */
  2887. return 0;
  2888. }
  2889. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2890. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2891. {
  2892. int nid;
  2893. nid = __early_pfn_to_nid(pfn);
  2894. if (nid >= 0 && nid != node)
  2895. return false;
  2896. return true;
  2897. }
  2898. #endif
  2899. /* Basic iterator support to walk early_node_map[] */
  2900. #define for_each_active_range_index_in_nid(i, nid) \
  2901. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2902. i = next_active_region_index_in_nid(i, nid))
  2903. /**
  2904. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2905. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2906. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2907. *
  2908. * If an architecture guarantees that all ranges registered with
  2909. * add_active_ranges() contain no holes and may be freed, this
  2910. * this function may be used instead of calling free_bootmem() manually.
  2911. */
  2912. void __init free_bootmem_with_active_regions(int nid,
  2913. unsigned long max_low_pfn)
  2914. {
  2915. int i;
  2916. for_each_active_range_index_in_nid(i, nid) {
  2917. unsigned long size_pages = 0;
  2918. unsigned long end_pfn = early_node_map[i].end_pfn;
  2919. if (early_node_map[i].start_pfn >= max_low_pfn)
  2920. continue;
  2921. if (end_pfn > max_low_pfn)
  2922. end_pfn = max_low_pfn;
  2923. size_pages = end_pfn - early_node_map[i].start_pfn;
  2924. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2925. PFN_PHYS(early_node_map[i].start_pfn),
  2926. size_pages << PAGE_SHIFT);
  2927. }
  2928. }
  2929. int __init add_from_early_node_map(struct range *range, int az,
  2930. int nr_range, int nid)
  2931. {
  2932. int i;
  2933. u64 start, end;
  2934. /* need to go over early_node_map to find out good range for node */
  2935. for_each_active_range_index_in_nid(i, nid) {
  2936. start = early_node_map[i].start_pfn;
  2937. end = early_node_map[i].end_pfn;
  2938. nr_range = add_range(range, az, nr_range, start, end);
  2939. }
  2940. return nr_range;
  2941. }
  2942. #ifdef CONFIG_NO_BOOTMEM
  2943. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  2944. u64 goal, u64 limit)
  2945. {
  2946. int i;
  2947. void *ptr;
  2948. /* need to go over early_node_map to find out good range for node */
  2949. for_each_active_range_index_in_nid(i, nid) {
  2950. u64 addr;
  2951. u64 ei_start, ei_last;
  2952. ei_last = early_node_map[i].end_pfn;
  2953. ei_last <<= PAGE_SHIFT;
  2954. ei_start = early_node_map[i].start_pfn;
  2955. ei_start <<= PAGE_SHIFT;
  2956. addr = find_early_area(ei_start, ei_last,
  2957. goal, limit, size, align);
  2958. if (addr == -1ULL)
  2959. continue;
  2960. #if 0
  2961. printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
  2962. nid,
  2963. ei_start, ei_last, goal, limit, size,
  2964. align, addr);
  2965. #endif
  2966. ptr = phys_to_virt(addr);
  2967. memset(ptr, 0, size);
  2968. reserve_early_without_check(addr, addr + size, "BOOTMEM");
  2969. return ptr;
  2970. }
  2971. return NULL;
  2972. }
  2973. #endif
  2974. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2975. {
  2976. int i;
  2977. int ret;
  2978. for_each_active_range_index_in_nid(i, nid) {
  2979. ret = work_fn(early_node_map[i].start_pfn,
  2980. early_node_map[i].end_pfn, data);
  2981. if (ret)
  2982. break;
  2983. }
  2984. }
  2985. /**
  2986. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2987. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2988. *
  2989. * If an architecture guarantees that all ranges registered with
  2990. * add_active_ranges() contain no holes and may be freed, this
  2991. * function may be used instead of calling memory_present() manually.
  2992. */
  2993. void __init sparse_memory_present_with_active_regions(int nid)
  2994. {
  2995. int i;
  2996. for_each_active_range_index_in_nid(i, nid)
  2997. memory_present(early_node_map[i].nid,
  2998. early_node_map[i].start_pfn,
  2999. early_node_map[i].end_pfn);
  3000. }
  3001. /**
  3002. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3003. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3004. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3005. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3006. *
  3007. * It returns the start and end page frame of a node based on information
  3008. * provided by an arch calling add_active_range(). If called for a node
  3009. * with no available memory, a warning is printed and the start and end
  3010. * PFNs will be 0.
  3011. */
  3012. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3013. unsigned long *start_pfn, unsigned long *end_pfn)
  3014. {
  3015. int i;
  3016. *start_pfn = -1UL;
  3017. *end_pfn = 0;
  3018. for_each_active_range_index_in_nid(i, nid) {
  3019. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3020. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3021. }
  3022. if (*start_pfn == -1UL)
  3023. *start_pfn = 0;
  3024. }
  3025. /*
  3026. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3027. * assumption is made that zones within a node are ordered in monotonic
  3028. * increasing memory addresses so that the "highest" populated zone is used
  3029. */
  3030. static void __init find_usable_zone_for_movable(void)
  3031. {
  3032. int zone_index;
  3033. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3034. if (zone_index == ZONE_MOVABLE)
  3035. continue;
  3036. if (arch_zone_highest_possible_pfn[zone_index] >
  3037. arch_zone_lowest_possible_pfn[zone_index])
  3038. break;
  3039. }
  3040. VM_BUG_ON(zone_index == -1);
  3041. movable_zone = zone_index;
  3042. }
  3043. /*
  3044. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3045. * because it is sized independant of architecture. Unlike the other zones,
  3046. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3047. * in each node depending on the size of each node and how evenly kernelcore
  3048. * is distributed. This helper function adjusts the zone ranges
  3049. * provided by the architecture for a given node by using the end of the
  3050. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3051. * zones within a node are in order of monotonic increases memory addresses
  3052. */
  3053. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3054. unsigned long zone_type,
  3055. unsigned long node_start_pfn,
  3056. unsigned long node_end_pfn,
  3057. unsigned long *zone_start_pfn,
  3058. unsigned long *zone_end_pfn)
  3059. {
  3060. /* Only adjust if ZONE_MOVABLE is on this node */
  3061. if (zone_movable_pfn[nid]) {
  3062. /* Size ZONE_MOVABLE */
  3063. if (zone_type == ZONE_MOVABLE) {
  3064. *zone_start_pfn = zone_movable_pfn[nid];
  3065. *zone_end_pfn = min(node_end_pfn,
  3066. arch_zone_highest_possible_pfn[movable_zone]);
  3067. /* Adjust for ZONE_MOVABLE starting within this range */
  3068. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3069. *zone_end_pfn > zone_movable_pfn[nid]) {
  3070. *zone_end_pfn = zone_movable_pfn[nid];
  3071. /* Check if this whole range is within ZONE_MOVABLE */
  3072. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3073. *zone_start_pfn = *zone_end_pfn;
  3074. }
  3075. }
  3076. /*
  3077. * Return the number of pages a zone spans in a node, including holes
  3078. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3079. */
  3080. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3081. unsigned long zone_type,
  3082. unsigned long *ignored)
  3083. {
  3084. unsigned long node_start_pfn, node_end_pfn;
  3085. unsigned long zone_start_pfn, zone_end_pfn;
  3086. /* Get the start and end of the node and zone */
  3087. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3088. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3089. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3090. adjust_zone_range_for_zone_movable(nid, zone_type,
  3091. node_start_pfn, node_end_pfn,
  3092. &zone_start_pfn, &zone_end_pfn);
  3093. /* Check that this node has pages within the zone's required range */
  3094. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3095. return 0;
  3096. /* Move the zone boundaries inside the node if necessary */
  3097. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3098. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3099. /* Return the spanned pages */
  3100. return zone_end_pfn - zone_start_pfn;
  3101. }
  3102. /*
  3103. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3104. * then all holes in the requested range will be accounted for.
  3105. */
  3106. unsigned long __meminit __absent_pages_in_range(int nid,
  3107. unsigned long range_start_pfn,
  3108. unsigned long range_end_pfn)
  3109. {
  3110. int i = 0;
  3111. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3112. unsigned long start_pfn;
  3113. /* Find the end_pfn of the first active range of pfns in the node */
  3114. i = first_active_region_index_in_nid(nid);
  3115. if (i == -1)
  3116. return 0;
  3117. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3118. /* Account for ranges before physical memory on this node */
  3119. if (early_node_map[i].start_pfn > range_start_pfn)
  3120. hole_pages = prev_end_pfn - range_start_pfn;
  3121. /* Find all holes for the zone within the node */
  3122. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3123. /* No need to continue if prev_end_pfn is outside the zone */
  3124. if (prev_end_pfn >= range_end_pfn)
  3125. break;
  3126. /* Make sure the end of the zone is not within the hole */
  3127. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3128. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3129. /* Update the hole size cound and move on */
  3130. if (start_pfn > range_start_pfn) {
  3131. BUG_ON(prev_end_pfn > start_pfn);
  3132. hole_pages += start_pfn - prev_end_pfn;
  3133. }
  3134. prev_end_pfn = early_node_map[i].end_pfn;
  3135. }
  3136. /* Account for ranges past physical memory on this node */
  3137. if (range_end_pfn > prev_end_pfn)
  3138. hole_pages += range_end_pfn -
  3139. max(range_start_pfn, prev_end_pfn);
  3140. return hole_pages;
  3141. }
  3142. /**
  3143. * absent_pages_in_range - Return number of page frames in holes within a range
  3144. * @start_pfn: The start PFN to start searching for holes
  3145. * @end_pfn: The end PFN to stop searching for holes
  3146. *
  3147. * It returns the number of pages frames in memory holes within a range.
  3148. */
  3149. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3150. unsigned long end_pfn)
  3151. {
  3152. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3153. }
  3154. /* Return the number of page frames in holes in a zone on a node */
  3155. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3156. unsigned long zone_type,
  3157. unsigned long *ignored)
  3158. {
  3159. unsigned long node_start_pfn, node_end_pfn;
  3160. unsigned long zone_start_pfn, zone_end_pfn;
  3161. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3162. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3163. node_start_pfn);
  3164. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3165. node_end_pfn);
  3166. adjust_zone_range_for_zone_movable(nid, zone_type,
  3167. node_start_pfn, node_end_pfn,
  3168. &zone_start_pfn, &zone_end_pfn);
  3169. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3170. }
  3171. #else
  3172. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3173. unsigned long zone_type,
  3174. unsigned long *zones_size)
  3175. {
  3176. return zones_size[zone_type];
  3177. }
  3178. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3179. unsigned long zone_type,
  3180. unsigned long *zholes_size)
  3181. {
  3182. if (!zholes_size)
  3183. return 0;
  3184. return zholes_size[zone_type];
  3185. }
  3186. #endif
  3187. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3188. unsigned long *zones_size, unsigned long *zholes_size)
  3189. {
  3190. unsigned long realtotalpages, totalpages = 0;
  3191. enum zone_type i;
  3192. for (i = 0; i < MAX_NR_ZONES; i++)
  3193. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3194. zones_size);
  3195. pgdat->node_spanned_pages = totalpages;
  3196. realtotalpages = totalpages;
  3197. for (i = 0; i < MAX_NR_ZONES; i++)
  3198. realtotalpages -=
  3199. zone_absent_pages_in_node(pgdat->node_id, i,
  3200. zholes_size);
  3201. pgdat->node_present_pages = realtotalpages;
  3202. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3203. realtotalpages);
  3204. }
  3205. #ifndef CONFIG_SPARSEMEM
  3206. /*
  3207. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3208. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3209. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3210. * round what is now in bits to nearest long in bits, then return it in
  3211. * bytes.
  3212. */
  3213. static unsigned long __init usemap_size(unsigned long zonesize)
  3214. {
  3215. unsigned long usemapsize;
  3216. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3217. usemapsize = usemapsize >> pageblock_order;
  3218. usemapsize *= NR_PAGEBLOCK_BITS;
  3219. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3220. return usemapsize / 8;
  3221. }
  3222. static void __init setup_usemap(struct pglist_data *pgdat,
  3223. struct zone *zone, unsigned long zonesize)
  3224. {
  3225. unsigned long usemapsize = usemap_size(zonesize);
  3226. zone->pageblock_flags = NULL;
  3227. if (usemapsize)
  3228. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3229. }
  3230. #else
  3231. static void inline setup_usemap(struct pglist_data *pgdat,
  3232. struct zone *zone, unsigned long zonesize) {}
  3233. #endif /* CONFIG_SPARSEMEM */
  3234. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3235. /* Return a sensible default order for the pageblock size. */
  3236. static inline int pageblock_default_order(void)
  3237. {
  3238. if (HPAGE_SHIFT > PAGE_SHIFT)
  3239. return HUGETLB_PAGE_ORDER;
  3240. return MAX_ORDER-1;
  3241. }
  3242. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3243. static inline void __init set_pageblock_order(unsigned int order)
  3244. {
  3245. /* Check that pageblock_nr_pages has not already been setup */
  3246. if (pageblock_order)
  3247. return;
  3248. /*
  3249. * Assume the largest contiguous order of interest is a huge page.
  3250. * This value may be variable depending on boot parameters on IA64
  3251. */
  3252. pageblock_order = order;
  3253. }
  3254. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3255. /*
  3256. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3257. * and pageblock_default_order() are unused as pageblock_order is set
  3258. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3259. * pageblock_order based on the kernel config
  3260. */
  3261. static inline int pageblock_default_order(unsigned int order)
  3262. {
  3263. return MAX_ORDER-1;
  3264. }
  3265. #define set_pageblock_order(x) do {} while (0)
  3266. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3267. /*
  3268. * Set up the zone data structures:
  3269. * - mark all pages reserved
  3270. * - mark all memory queues empty
  3271. * - clear the memory bitmaps
  3272. */
  3273. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3274. unsigned long *zones_size, unsigned long *zholes_size)
  3275. {
  3276. enum zone_type j;
  3277. int nid = pgdat->node_id;
  3278. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3279. int ret;
  3280. pgdat_resize_init(pgdat);
  3281. pgdat->nr_zones = 0;
  3282. init_waitqueue_head(&pgdat->kswapd_wait);
  3283. pgdat->kswapd_max_order = 0;
  3284. pgdat_page_cgroup_init(pgdat);
  3285. for (j = 0; j < MAX_NR_ZONES; j++) {
  3286. struct zone *zone = pgdat->node_zones + j;
  3287. unsigned long size, realsize, memmap_pages;
  3288. enum lru_list l;
  3289. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3290. realsize = size - zone_absent_pages_in_node(nid, j,
  3291. zholes_size);
  3292. /*
  3293. * Adjust realsize so that it accounts for how much memory
  3294. * is used by this zone for memmap. This affects the watermark
  3295. * and per-cpu initialisations
  3296. */
  3297. memmap_pages =
  3298. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3299. if (realsize >= memmap_pages) {
  3300. realsize -= memmap_pages;
  3301. if (memmap_pages)
  3302. printk(KERN_DEBUG
  3303. " %s zone: %lu pages used for memmap\n",
  3304. zone_names[j], memmap_pages);
  3305. } else
  3306. printk(KERN_WARNING
  3307. " %s zone: %lu pages exceeds realsize %lu\n",
  3308. zone_names[j], memmap_pages, realsize);
  3309. /* Account for reserved pages */
  3310. if (j == 0 && realsize > dma_reserve) {
  3311. realsize -= dma_reserve;
  3312. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3313. zone_names[0], dma_reserve);
  3314. }
  3315. if (!is_highmem_idx(j))
  3316. nr_kernel_pages += realsize;
  3317. nr_all_pages += realsize;
  3318. zone->spanned_pages = size;
  3319. zone->present_pages = realsize;
  3320. #ifdef CONFIG_NUMA
  3321. zone->node = nid;
  3322. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3323. / 100;
  3324. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3325. #endif
  3326. zone->name = zone_names[j];
  3327. spin_lock_init(&zone->lock);
  3328. spin_lock_init(&zone->lru_lock);
  3329. zone_seqlock_init(zone);
  3330. zone->zone_pgdat = pgdat;
  3331. zone->prev_priority = DEF_PRIORITY;
  3332. zone_pcp_init(zone);
  3333. for_each_lru(l) {
  3334. INIT_LIST_HEAD(&zone->lru[l].list);
  3335. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3336. }
  3337. zone->reclaim_stat.recent_rotated[0] = 0;
  3338. zone->reclaim_stat.recent_rotated[1] = 0;
  3339. zone->reclaim_stat.recent_scanned[0] = 0;
  3340. zone->reclaim_stat.recent_scanned[1] = 0;
  3341. zap_zone_vm_stats(zone);
  3342. zone->flags = 0;
  3343. if (!size)
  3344. continue;
  3345. set_pageblock_order(pageblock_default_order());
  3346. setup_usemap(pgdat, zone, size);
  3347. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3348. size, MEMMAP_EARLY);
  3349. BUG_ON(ret);
  3350. memmap_init(size, nid, j, zone_start_pfn);
  3351. zone_start_pfn += size;
  3352. }
  3353. }
  3354. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3355. {
  3356. /* Skip empty nodes */
  3357. if (!pgdat->node_spanned_pages)
  3358. return;
  3359. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3360. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3361. if (!pgdat->node_mem_map) {
  3362. unsigned long size, start, end;
  3363. struct page *map;
  3364. /*
  3365. * The zone's endpoints aren't required to be MAX_ORDER
  3366. * aligned but the node_mem_map endpoints must be in order
  3367. * for the buddy allocator to function correctly.
  3368. */
  3369. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3370. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3371. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3372. size = (end - start) * sizeof(struct page);
  3373. map = alloc_remap(pgdat->node_id, size);
  3374. if (!map)
  3375. map = alloc_bootmem_node(pgdat, size);
  3376. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3377. }
  3378. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3379. /*
  3380. * With no DISCONTIG, the global mem_map is just set as node 0's
  3381. */
  3382. if (pgdat == NODE_DATA(0)) {
  3383. mem_map = NODE_DATA(0)->node_mem_map;
  3384. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3385. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3386. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3387. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3388. }
  3389. #endif
  3390. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3391. }
  3392. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3393. unsigned long node_start_pfn, unsigned long *zholes_size)
  3394. {
  3395. pg_data_t *pgdat = NODE_DATA(nid);
  3396. pgdat->node_id = nid;
  3397. pgdat->node_start_pfn = node_start_pfn;
  3398. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3399. alloc_node_mem_map(pgdat);
  3400. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3401. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3402. nid, (unsigned long)pgdat,
  3403. (unsigned long)pgdat->node_mem_map);
  3404. #endif
  3405. free_area_init_core(pgdat, zones_size, zholes_size);
  3406. }
  3407. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3408. #if MAX_NUMNODES > 1
  3409. /*
  3410. * Figure out the number of possible node ids.
  3411. */
  3412. static void __init setup_nr_node_ids(void)
  3413. {
  3414. unsigned int node;
  3415. unsigned int highest = 0;
  3416. for_each_node_mask(node, node_possible_map)
  3417. highest = node;
  3418. nr_node_ids = highest + 1;
  3419. }
  3420. #else
  3421. static inline void setup_nr_node_ids(void)
  3422. {
  3423. }
  3424. #endif
  3425. /**
  3426. * add_active_range - Register a range of PFNs backed by physical memory
  3427. * @nid: The node ID the range resides on
  3428. * @start_pfn: The start PFN of the available physical memory
  3429. * @end_pfn: The end PFN of the available physical memory
  3430. *
  3431. * These ranges are stored in an early_node_map[] and later used by
  3432. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3433. * range spans a memory hole, it is up to the architecture to ensure
  3434. * the memory is not freed by the bootmem allocator. If possible
  3435. * the range being registered will be merged with existing ranges.
  3436. */
  3437. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3438. unsigned long end_pfn)
  3439. {
  3440. int i;
  3441. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3442. "Entering add_active_range(%d, %#lx, %#lx) "
  3443. "%d entries of %d used\n",
  3444. nid, start_pfn, end_pfn,
  3445. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3446. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3447. /* Merge with existing active regions if possible */
  3448. for (i = 0; i < nr_nodemap_entries; i++) {
  3449. if (early_node_map[i].nid != nid)
  3450. continue;
  3451. /* Skip if an existing region covers this new one */
  3452. if (start_pfn >= early_node_map[i].start_pfn &&
  3453. end_pfn <= early_node_map[i].end_pfn)
  3454. return;
  3455. /* Merge forward if suitable */
  3456. if (start_pfn <= early_node_map[i].end_pfn &&
  3457. end_pfn > early_node_map[i].end_pfn) {
  3458. early_node_map[i].end_pfn = end_pfn;
  3459. return;
  3460. }
  3461. /* Merge backward if suitable */
  3462. if (start_pfn < early_node_map[i].start_pfn &&
  3463. end_pfn >= early_node_map[i].start_pfn) {
  3464. early_node_map[i].start_pfn = start_pfn;
  3465. return;
  3466. }
  3467. }
  3468. /* Check that early_node_map is large enough */
  3469. if (i >= MAX_ACTIVE_REGIONS) {
  3470. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3471. MAX_ACTIVE_REGIONS);
  3472. return;
  3473. }
  3474. early_node_map[i].nid = nid;
  3475. early_node_map[i].start_pfn = start_pfn;
  3476. early_node_map[i].end_pfn = end_pfn;
  3477. nr_nodemap_entries = i + 1;
  3478. }
  3479. /**
  3480. * remove_active_range - Shrink an existing registered range of PFNs
  3481. * @nid: The node id the range is on that should be shrunk
  3482. * @start_pfn: The new PFN of the range
  3483. * @end_pfn: The new PFN of the range
  3484. *
  3485. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3486. * The map is kept near the end physical page range that has already been
  3487. * registered. This function allows an arch to shrink an existing registered
  3488. * range.
  3489. */
  3490. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3491. unsigned long end_pfn)
  3492. {
  3493. int i, j;
  3494. int removed = 0;
  3495. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3496. nid, start_pfn, end_pfn);
  3497. /* Find the old active region end and shrink */
  3498. for_each_active_range_index_in_nid(i, nid) {
  3499. if (early_node_map[i].start_pfn >= start_pfn &&
  3500. early_node_map[i].end_pfn <= end_pfn) {
  3501. /* clear it */
  3502. early_node_map[i].start_pfn = 0;
  3503. early_node_map[i].end_pfn = 0;
  3504. removed = 1;
  3505. continue;
  3506. }
  3507. if (early_node_map[i].start_pfn < start_pfn &&
  3508. early_node_map[i].end_pfn > start_pfn) {
  3509. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3510. early_node_map[i].end_pfn = start_pfn;
  3511. if (temp_end_pfn > end_pfn)
  3512. add_active_range(nid, end_pfn, temp_end_pfn);
  3513. continue;
  3514. }
  3515. if (early_node_map[i].start_pfn >= start_pfn &&
  3516. early_node_map[i].end_pfn > end_pfn &&
  3517. early_node_map[i].start_pfn < end_pfn) {
  3518. early_node_map[i].start_pfn = end_pfn;
  3519. continue;
  3520. }
  3521. }
  3522. if (!removed)
  3523. return;
  3524. /* remove the blank ones */
  3525. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3526. if (early_node_map[i].nid != nid)
  3527. continue;
  3528. if (early_node_map[i].end_pfn)
  3529. continue;
  3530. /* we found it, get rid of it */
  3531. for (j = i; j < nr_nodemap_entries - 1; j++)
  3532. memcpy(&early_node_map[j], &early_node_map[j+1],
  3533. sizeof(early_node_map[j]));
  3534. j = nr_nodemap_entries - 1;
  3535. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3536. nr_nodemap_entries--;
  3537. }
  3538. }
  3539. /**
  3540. * remove_all_active_ranges - Remove all currently registered regions
  3541. *
  3542. * During discovery, it may be found that a table like SRAT is invalid
  3543. * and an alternative discovery method must be used. This function removes
  3544. * all currently registered regions.
  3545. */
  3546. void __init remove_all_active_ranges(void)
  3547. {
  3548. memset(early_node_map, 0, sizeof(early_node_map));
  3549. nr_nodemap_entries = 0;
  3550. }
  3551. /* Compare two active node_active_regions */
  3552. static int __init cmp_node_active_region(const void *a, const void *b)
  3553. {
  3554. struct node_active_region *arange = (struct node_active_region *)a;
  3555. struct node_active_region *brange = (struct node_active_region *)b;
  3556. /* Done this way to avoid overflows */
  3557. if (arange->start_pfn > brange->start_pfn)
  3558. return 1;
  3559. if (arange->start_pfn < brange->start_pfn)
  3560. return -1;
  3561. return 0;
  3562. }
  3563. /* sort the node_map by start_pfn */
  3564. void __init sort_node_map(void)
  3565. {
  3566. sort(early_node_map, (size_t)nr_nodemap_entries,
  3567. sizeof(struct node_active_region),
  3568. cmp_node_active_region, NULL);
  3569. }
  3570. /* Find the lowest pfn for a node */
  3571. static unsigned long __init find_min_pfn_for_node(int nid)
  3572. {
  3573. int i;
  3574. unsigned long min_pfn = ULONG_MAX;
  3575. /* Assuming a sorted map, the first range found has the starting pfn */
  3576. for_each_active_range_index_in_nid(i, nid)
  3577. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3578. if (min_pfn == ULONG_MAX) {
  3579. printk(KERN_WARNING
  3580. "Could not find start_pfn for node %d\n", nid);
  3581. return 0;
  3582. }
  3583. return min_pfn;
  3584. }
  3585. /**
  3586. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3587. *
  3588. * It returns the minimum PFN based on information provided via
  3589. * add_active_range().
  3590. */
  3591. unsigned long __init find_min_pfn_with_active_regions(void)
  3592. {
  3593. return find_min_pfn_for_node(MAX_NUMNODES);
  3594. }
  3595. /*
  3596. * early_calculate_totalpages()
  3597. * Sum pages in active regions for movable zone.
  3598. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3599. */
  3600. static unsigned long __init early_calculate_totalpages(void)
  3601. {
  3602. int i;
  3603. unsigned long totalpages = 0;
  3604. for (i = 0; i < nr_nodemap_entries; i++) {
  3605. unsigned long pages = early_node_map[i].end_pfn -
  3606. early_node_map[i].start_pfn;
  3607. totalpages += pages;
  3608. if (pages)
  3609. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3610. }
  3611. return totalpages;
  3612. }
  3613. /*
  3614. * Find the PFN the Movable zone begins in each node. Kernel memory
  3615. * is spread evenly between nodes as long as the nodes have enough
  3616. * memory. When they don't, some nodes will have more kernelcore than
  3617. * others
  3618. */
  3619. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3620. {
  3621. int i, nid;
  3622. unsigned long usable_startpfn;
  3623. unsigned long kernelcore_node, kernelcore_remaining;
  3624. /* save the state before borrow the nodemask */
  3625. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3626. unsigned long totalpages = early_calculate_totalpages();
  3627. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3628. /*
  3629. * If movablecore was specified, calculate what size of
  3630. * kernelcore that corresponds so that memory usable for
  3631. * any allocation type is evenly spread. If both kernelcore
  3632. * and movablecore are specified, then the value of kernelcore
  3633. * will be used for required_kernelcore if it's greater than
  3634. * what movablecore would have allowed.
  3635. */
  3636. if (required_movablecore) {
  3637. unsigned long corepages;
  3638. /*
  3639. * Round-up so that ZONE_MOVABLE is at least as large as what
  3640. * was requested by the user
  3641. */
  3642. required_movablecore =
  3643. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3644. corepages = totalpages - required_movablecore;
  3645. required_kernelcore = max(required_kernelcore, corepages);
  3646. }
  3647. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3648. if (!required_kernelcore)
  3649. goto out;
  3650. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3651. find_usable_zone_for_movable();
  3652. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3653. restart:
  3654. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3655. kernelcore_node = required_kernelcore / usable_nodes;
  3656. for_each_node_state(nid, N_HIGH_MEMORY) {
  3657. /*
  3658. * Recalculate kernelcore_node if the division per node
  3659. * now exceeds what is necessary to satisfy the requested
  3660. * amount of memory for the kernel
  3661. */
  3662. if (required_kernelcore < kernelcore_node)
  3663. kernelcore_node = required_kernelcore / usable_nodes;
  3664. /*
  3665. * As the map is walked, we track how much memory is usable
  3666. * by the kernel using kernelcore_remaining. When it is
  3667. * 0, the rest of the node is usable by ZONE_MOVABLE
  3668. */
  3669. kernelcore_remaining = kernelcore_node;
  3670. /* Go through each range of PFNs within this node */
  3671. for_each_active_range_index_in_nid(i, nid) {
  3672. unsigned long start_pfn, end_pfn;
  3673. unsigned long size_pages;
  3674. start_pfn = max(early_node_map[i].start_pfn,
  3675. zone_movable_pfn[nid]);
  3676. end_pfn = early_node_map[i].end_pfn;
  3677. if (start_pfn >= end_pfn)
  3678. continue;
  3679. /* Account for what is only usable for kernelcore */
  3680. if (start_pfn < usable_startpfn) {
  3681. unsigned long kernel_pages;
  3682. kernel_pages = min(end_pfn, usable_startpfn)
  3683. - start_pfn;
  3684. kernelcore_remaining -= min(kernel_pages,
  3685. kernelcore_remaining);
  3686. required_kernelcore -= min(kernel_pages,
  3687. required_kernelcore);
  3688. /* Continue if range is now fully accounted */
  3689. if (end_pfn <= usable_startpfn) {
  3690. /*
  3691. * Push zone_movable_pfn to the end so
  3692. * that if we have to rebalance
  3693. * kernelcore across nodes, we will
  3694. * not double account here
  3695. */
  3696. zone_movable_pfn[nid] = end_pfn;
  3697. continue;
  3698. }
  3699. start_pfn = usable_startpfn;
  3700. }
  3701. /*
  3702. * The usable PFN range for ZONE_MOVABLE is from
  3703. * start_pfn->end_pfn. Calculate size_pages as the
  3704. * number of pages used as kernelcore
  3705. */
  3706. size_pages = end_pfn - start_pfn;
  3707. if (size_pages > kernelcore_remaining)
  3708. size_pages = kernelcore_remaining;
  3709. zone_movable_pfn[nid] = start_pfn + size_pages;
  3710. /*
  3711. * Some kernelcore has been met, update counts and
  3712. * break if the kernelcore for this node has been
  3713. * satisified
  3714. */
  3715. required_kernelcore -= min(required_kernelcore,
  3716. size_pages);
  3717. kernelcore_remaining -= size_pages;
  3718. if (!kernelcore_remaining)
  3719. break;
  3720. }
  3721. }
  3722. /*
  3723. * If there is still required_kernelcore, we do another pass with one
  3724. * less node in the count. This will push zone_movable_pfn[nid] further
  3725. * along on the nodes that still have memory until kernelcore is
  3726. * satisified
  3727. */
  3728. usable_nodes--;
  3729. if (usable_nodes && required_kernelcore > usable_nodes)
  3730. goto restart;
  3731. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3732. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3733. zone_movable_pfn[nid] =
  3734. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3735. out:
  3736. /* restore the node_state */
  3737. node_states[N_HIGH_MEMORY] = saved_node_state;
  3738. }
  3739. /* Any regular memory on that node ? */
  3740. static void check_for_regular_memory(pg_data_t *pgdat)
  3741. {
  3742. #ifdef CONFIG_HIGHMEM
  3743. enum zone_type zone_type;
  3744. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3745. struct zone *zone = &pgdat->node_zones[zone_type];
  3746. if (zone->present_pages)
  3747. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3748. }
  3749. #endif
  3750. }
  3751. /**
  3752. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3753. * @max_zone_pfn: an array of max PFNs for each zone
  3754. *
  3755. * This will call free_area_init_node() for each active node in the system.
  3756. * Using the page ranges provided by add_active_range(), the size of each
  3757. * zone in each node and their holes is calculated. If the maximum PFN
  3758. * between two adjacent zones match, it is assumed that the zone is empty.
  3759. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3760. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3761. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3762. * at arch_max_dma_pfn.
  3763. */
  3764. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3765. {
  3766. unsigned long nid;
  3767. int i;
  3768. /* Sort early_node_map as initialisation assumes it is sorted */
  3769. sort_node_map();
  3770. /* Record where the zone boundaries are */
  3771. memset(arch_zone_lowest_possible_pfn, 0,
  3772. sizeof(arch_zone_lowest_possible_pfn));
  3773. memset(arch_zone_highest_possible_pfn, 0,
  3774. sizeof(arch_zone_highest_possible_pfn));
  3775. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3776. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3777. for (i = 1; i < MAX_NR_ZONES; i++) {
  3778. if (i == ZONE_MOVABLE)
  3779. continue;
  3780. arch_zone_lowest_possible_pfn[i] =
  3781. arch_zone_highest_possible_pfn[i-1];
  3782. arch_zone_highest_possible_pfn[i] =
  3783. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3784. }
  3785. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3786. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3787. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3788. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3789. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3790. /* Print out the zone ranges */
  3791. printk("Zone PFN ranges:\n");
  3792. for (i = 0; i < MAX_NR_ZONES; i++) {
  3793. if (i == ZONE_MOVABLE)
  3794. continue;
  3795. printk(" %-8s ", zone_names[i]);
  3796. if (arch_zone_lowest_possible_pfn[i] ==
  3797. arch_zone_highest_possible_pfn[i])
  3798. printk("empty\n");
  3799. else
  3800. printk("%0#10lx -> %0#10lx\n",
  3801. arch_zone_lowest_possible_pfn[i],
  3802. arch_zone_highest_possible_pfn[i]);
  3803. }
  3804. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3805. printk("Movable zone start PFN for each node\n");
  3806. for (i = 0; i < MAX_NUMNODES; i++) {
  3807. if (zone_movable_pfn[i])
  3808. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3809. }
  3810. /* Print out the early_node_map[] */
  3811. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3812. for (i = 0; i < nr_nodemap_entries; i++)
  3813. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3814. early_node_map[i].start_pfn,
  3815. early_node_map[i].end_pfn);
  3816. /* Initialise every node */
  3817. mminit_verify_pageflags_layout();
  3818. setup_nr_node_ids();
  3819. for_each_online_node(nid) {
  3820. pg_data_t *pgdat = NODE_DATA(nid);
  3821. free_area_init_node(nid, NULL,
  3822. find_min_pfn_for_node(nid), NULL);
  3823. /* Any memory on that node */
  3824. if (pgdat->node_present_pages)
  3825. node_set_state(nid, N_HIGH_MEMORY);
  3826. check_for_regular_memory(pgdat);
  3827. }
  3828. }
  3829. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3830. {
  3831. unsigned long long coremem;
  3832. if (!p)
  3833. return -EINVAL;
  3834. coremem = memparse(p, &p);
  3835. *core = coremem >> PAGE_SHIFT;
  3836. /* Paranoid check that UL is enough for the coremem value */
  3837. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3838. return 0;
  3839. }
  3840. /*
  3841. * kernelcore=size sets the amount of memory for use for allocations that
  3842. * cannot be reclaimed or migrated.
  3843. */
  3844. static int __init cmdline_parse_kernelcore(char *p)
  3845. {
  3846. return cmdline_parse_core(p, &required_kernelcore);
  3847. }
  3848. /*
  3849. * movablecore=size sets the amount of memory for use for allocations that
  3850. * can be reclaimed or migrated.
  3851. */
  3852. static int __init cmdline_parse_movablecore(char *p)
  3853. {
  3854. return cmdline_parse_core(p, &required_movablecore);
  3855. }
  3856. early_param("kernelcore", cmdline_parse_kernelcore);
  3857. early_param("movablecore", cmdline_parse_movablecore);
  3858. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3859. /**
  3860. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3861. * @new_dma_reserve: The number of pages to mark reserved
  3862. *
  3863. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3864. * In the DMA zone, a significant percentage may be consumed by kernel image
  3865. * and other unfreeable allocations which can skew the watermarks badly. This
  3866. * function may optionally be used to account for unfreeable pages in the
  3867. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3868. * smaller per-cpu batchsize.
  3869. */
  3870. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3871. {
  3872. dma_reserve = new_dma_reserve;
  3873. }
  3874. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3875. struct pglist_data __refdata contig_page_data = {
  3876. #ifndef CONFIG_NO_BOOTMEM
  3877. .bdata = &bootmem_node_data[0]
  3878. #endif
  3879. };
  3880. EXPORT_SYMBOL(contig_page_data);
  3881. #endif
  3882. void __init free_area_init(unsigned long *zones_size)
  3883. {
  3884. free_area_init_node(0, zones_size,
  3885. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3886. }
  3887. static int page_alloc_cpu_notify(struct notifier_block *self,
  3888. unsigned long action, void *hcpu)
  3889. {
  3890. int cpu = (unsigned long)hcpu;
  3891. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3892. drain_pages(cpu);
  3893. /*
  3894. * Spill the event counters of the dead processor
  3895. * into the current processors event counters.
  3896. * This artificially elevates the count of the current
  3897. * processor.
  3898. */
  3899. vm_events_fold_cpu(cpu);
  3900. /*
  3901. * Zero the differential counters of the dead processor
  3902. * so that the vm statistics are consistent.
  3903. *
  3904. * This is only okay since the processor is dead and cannot
  3905. * race with what we are doing.
  3906. */
  3907. refresh_cpu_vm_stats(cpu);
  3908. }
  3909. return NOTIFY_OK;
  3910. }
  3911. void __init page_alloc_init(void)
  3912. {
  3913. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3914. }
  3915. /*
  3916. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3917. * or min_free_kbytes changes.
  3918. */
  3919. static void calculate_totalreserve_pages(void)
  3920. {
  3921. struct pglist_data *pgdat;
  3922. unsigned long reserve_pages = 0;
  3923. enum zone_type i, j;
  3924. for_each_online_pgdat(pgdat) {
  3925. for (i = 0; i < MAX_NR_ZONES; i++) {
  3926. struct zone *zone = pgdat->node_zones + i;
  3927. unsigned long max = 0;
  3928. /* Find valid and maximum lowmem_reserve in the zone */
  3929. for (j = i; j < MAX_NR_ZONES; j++) {
  3930. if (zone->lowmem_reserve[j] > max)
  3931. max = zone->lowmem_reserve[j];
  3932. }
  3933. /* we treat the high watermark as reserved pages. */
  3934. max += high_wmark_pages(zone);
  3935. if (max > zone->present_pages)
  3936. max = zone->present_pages;
  3937. reserve_pages += max;
  3938. }
  3939. }
  3940. totalreserve_pages = reserve_pages;
  3941. }
  3942. /*
  3943. * setup_per_zone_lowmem_reserve - called whenever
  3944. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3945. * has a correct pages reserved value, so an adequate number of
  3946. * pages are left in the zone after a successful __alloc_pages().
  3947. */
  3948. static void setup_per_zone_lowmem_reserve(void)
  3949. {
  3950. struct pglist_data *pgdat;
  3951. enum zone_type j, idx;
  3952. for_each_online_pgdat(pgdat) {
  3953. for (j = 0; j < MAX_NR_ZONES; j++) {
  3954. struct zone *zone = pgdat->node_zones + j;
  3955. unsigned long present_pages = zone->present_pages;
  3956. zone->lowmem_reserve[j] = 0;
  3957. idx = j;
  3958. while (idx) {
  3959. struct zone *lower_zone;
  3960. idx--;
  3961. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3962. sysctl_lowmem_reserve_ratio[idx] = 1;
  3963. lower_zone = pgdat->node_zones + idx;
  3964. lower_zone->lowmem_reserve[j] = present_pages /
  3965. sysctl_lowmem_reserve_ratio[idx];
  3966. present_pages += lower_zone->present_pages;
  3967. }
  3968. }
  3969. }
  3970. /* update totalreserve_pages */
  3971. calculate_totalreserve_pages();
  3972. }
  3973. /**
  3974. * setup_per_zone_wmarks - called when min_free_kbytes changes
  3975. * or when memory is hot-{added|removed}
  3976. *
  3977. * Ensures that the watermark[min,low,high] values for each zone are set
  3978. * correctly with respect to min_free_kbytes.
  3979. */
  3980. void setup_per_zone_wmarks(void)
  3981. {
  3982. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3983. unsigned long lowmem_pages = 0;
  3984. struct zone *zone;
  3985. unsigned long flags;
  3986. /* Calculate total number of !ZONE_HIGHMEM pages */
  3987. for_each_zone(zone) {
  3988. if (!is_highmem(zone))
  3989. lowmem_pages += zone->present_pages;
  3990. }
  3991. for_each_zone(zone) {
  3992. u64 tmp;
  3993. spin_lock_irqsave(&zone->lock, flags);
  3994. tmp = (u64)pages_min * zone->present_pages;
  3995. do_div(tmp, lowmem_pages);
  3996. if (is_highmem(zone)) {
  3997. /*
  3998. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3999. * need highmem pages, so cap pages_min to a small
  4000. * value here.
  4001. *
  4002. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4003. * deltas controls asynch page reclaim, and so should
  4004. * not be capped for highmem.
  4005. */
  4006. int min_pages;
  4007. min_pages = zone->present_pages / 1024;
  4008. if (min_pages < SWAP_CLUSTER_MAX)
  4009. min_pages = SWAP_CLUSTER_MAX;
  4010. if (min_pages > 128)
  4011. min_pages = 128;
  4012. zone->watermark[WMARK_MIN] = min_pages;
  4013. } else {
  4014. /*
  4015. * If it's a lowmem zone, reserve a number of pages
  4016. * proportionate to the zone's size.
  4017. */
  4018. zone->watermark[WMARK_MIN] = tmp;
  4019. }
  4020. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4021. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4022. setup_zone_migrate_reserve(zone);
  4023. spin_unlock_irqrestore(&zone->lock, flags);
  4024. }
  4025. /* update totalreserve_pages */
  4026. calculate_totalreserve_pages();
  4027. }
  4028. /*
  4029. * The inactive anon list should be small enough that the VM never has to
  4030. * do too much work, but large enough that each inactive page has a chance
  4031. * to be referenced again before it is swapped out.
  4032. *
  4033. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4034. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4035. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4036. * the anonymous pages are kept on the inactive list.
  4037. *
  4038. * total target max
  4039. * memory ratio inactive anon
  4040. * -------------------------------------
  4041. * 10MB 1 5MB
  4042. * 100MB 1 50MB
  4043. * 1GB 3 250MB
  4044. * 10GB 10 0.9GB
  4045. * 100GB 31 3GB
  4046. * 1TB 101 10GB
  4047. * 10TB 320 32GB
  4048. */
  4049. void calculate_zone_inactive_ratio(struct zone *zone)
  4050. {
  4051. unsigned int gb, ratio;
  4052. /* Zone size in gigabytes */
  4053. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4054. if (gb)
  4055. ratio = int_sqrt(10 * gb);
  4056. else
  4057. ratio = 1;
  4058. zone->inactive_ratio = ratio;
  4059. }
  4060. static void __init setup_per_zone_inactive_ratio(void)
  4061. {
  4062. struct zone *zone;
  4063. for_each_zone(zone)
  4064. calculate_zone_inactive_ratio(zone);
  4065. }
  4066. /*
  4067. * Initialise min_free_kbytes.
  4068. *
  4069. * For small machines we want it small (128k min). For large machines
  4070. * we want it large (64MB max). But it is not linear, because network
  4071. * bandwidth does not increase linearly with machine size. We use
  4072. *
  4073. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4074. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4075. *
  4076. * which yields
  4077. *
  4078. * 16MB: 512k
  4079. * 32MB: 724k
  4080. * 64MB: 1024k
  4081. * 128MB: 1448k
  4082. * 256MB: 2048k
  4083. * 512MB: 2896k
  4084. * 1024MB: 4096k
  4085. * 2048MB: 5792k
  4086. * 4096MB: 8192k
  4087. * 8192MB: 11584k
  4088. * 16384MB: 16384k
  4089. */
  4090. static int __init init_per_zone_wmark_min(void)
  4091. {
  4092. unsigned long lowmem_kbytes;
  4093. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4094. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4095. if (min_free_kbytes < 128)
  4096. min_free_kbytes = 128;
  4097. if (min_free_kbytes > 65536)
  4098. min_free_kbytes = 65536;
  4099. setup_per_zone_wmarks();
  4100. setup_per_zone_lowmem_reserve();
  4101. setup_per_zone_inactive_ratio();
  4102. return 0;
  4103. }
  4104. module_init(init_per_zone_wmark_min)
  4105. /*
  4106. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4107. * that we can call two helper functions whenever min_free_kbytes
  4108. * changes.
  4109. */
  4110. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4111. void __user *buffer, size_t *length, loff_t *ppos)
  4112. {
  4113. proc_dointvec(table, write, buffer, length, ppos);
  4114. if (write)
  4115. setup_per_zone_wmarks();
  4116. return 0;
  4117. }
  4118. #ifdef CONFIG_NUMA
  4119. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4120. void __user *buffer, size_t *length, loff_t *ppos)
  4121. {
  4122. struct zone *zone;
  4123. int rc;
  4124. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4125. if (rc)
  4126. return rc;
  4127. for_each_zone(zone)
  4128. zone->min_unmapped_pages = (zone->present_pages *
  4129. sysctl_min_unmapped_ratio) / 100;
  4130. return 0;
  4131. }
  4132. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4133. void __user *buffer, size_t *length, loff_t *ppos)
  4134. {
  4135. struct zone *zone;
  4136. int rc;
  4137. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4138. if (rc)
  4139. return rc;
  4140. for_each_zone(zone)
  4141. zone->min_slab_pages = (zone->present_pages *
  4142. sysctl_min_slab_ratio) / 100;
  4143. return 0;
  4144. }
  4145. #endif
  4146. /*
  4147. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4148. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4149. * whenever sysctl_lowmem_reserve_ratio changes.
  4150. *
  4151. * The reserve ratio obviously has absolutely no relation with the
  4152. * minimum watermarks. The lowmem reserve ratio can only make sense
  4153. * if in function of the boot time zone sizes.
  4154. */
  4155. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4156. void __user *buffer, size_t *length, loff_t *ppos)
  4157. {
  4158. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4159. setup_per_zone_lowmem_reserve();
  4160. return 0;
  4161. }
  4162. /*
  4163. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4164. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4165. * can have before it gets flushed back to buddy allocator.
  4166. */
  4167. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4168. void __user *buffer, size_t *length, loff_t *ppos)
  4169. {
  4170. struct zone *zone;
  4171. unsigned int cpu;
  4172. int ret;
  4173. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4174. if (!write || (ret == -EINVAL))
  4175. return ret;
  4176. for_each_populated_zone(zone) {
  4177. for_each_possible_cpu(cpu) {
  4178. unsigned long high;
  4179. high = zone->present_pages / percpu_pagelist_fraction;
  4180. setup_pagelist_highmark(
  4181. per_cpu_ptr(zone->pageset, cpu), high);
  4182. }
  4183. }
  4184. return 0;
  4185. }
  4186. int hashdist = HASHDIST_DEFAULT;
  4187. #ifdef CONFIG_NUMA
  4188. static int __init set_hashdist(char *str)
  4189. {
  4190. if (!str)
  4191. return 0;
  4192. hashdist = simple_strtoul(str, &str, 0);
  4193. return 1;
  4194. }
  4195. __setup("hashdist=", set_hashdist);
  4196. #endif
  4197. /*
  4198. * allocate a large system hash table from bootmem
  4199. * - it is assumed that the hash table must contain an exact power-of-2
  4200. * quantity of entries
  4201. * - limit is the number of hash buckets, not the total allocation size
  4202. */
  4203. void *__init alloc_large_system_hash(const char *tablename,
  4204. unsigned long bucketsize,
  4205. unsigned long numentries,
  4206. int scale,
  4207. int flags,
  4208. unsigned int *_hash_shift,
  4209. unsigned int *_hash_mask,
  4210. unsigned long limit)
  4211. {
  4212. unsigned long long max = limit;
  4213. unsigned long log2qty, size;
  4214. void *table = NULL;
  4215. /* allow the kernel cmdline to have a say */
  4216. if (!numentries) {
  4217. /* round applicable memory size up to nearest megabyte */
  4218. numentries = nr_kernel_pages;
  4219. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4220. numentries >>= 20 - PAGE_SHIFT;
  4221. numentries <<= 20 - PAGE_SHIFT;
  4222. /* limit to 1 bucket per 2^scale bytes of low memory */
  4223. if (scale > PAGE_SHIFT)
  4224. numentries >>= (scale - PAGE_SHIFT);
  4225. else
  4226. numentries <<= (PAGE_SHIFT - scale);
  4227. /* Make sure we've got at least a 0-order allocation.. */
  4228. if (unlikely(flags & HASH_SMALL)) {
  4229. /* Makes no sense without HASH_EARLY */
  4230. WARN_ON(!(flags & HASH_EARLY));
  4231. if (!(numentries >> *_hash_shift)) {
  4232. numentries = 1UL << *_hash_shift;
  4233. BUG_ON(!numentries);
  4234. }
  4235. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4236. numentries = PAGE_SIZE / bucketsize;
  4237. }
  4238. numentries = roundup_pow_of_two(numentries);
  4239. /* limit allocation size to 1/16 total memory by default */
  4240. if (max == 0) {
  4241. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4242. do_div(max, bucketsize);
  4243. }
  4244. if (numentries > max)
  4245. numentries = max;
  4246. log2qty = ilog2(numentries);
  4247. do {
  4248. size = bucketsize << log2qty;
  4249. if (flags & HASH_EARLY)
  4250. table = alloc_bootmem_nopanic(size);
  4251. else if (hashdist)
  4252. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4253. else {
  4254. /*
  4255. * If bucketsize is not a power-of-two, we may free
  4256. * some pages at the end of hash table which
  4257. * alloc_pages_exact() automatically does
  4258. */
  4259. if (get_order(size) < MAX_ORDER) {
  4260. table = alloc_pages_exact(size, GFP_ATOMIC);
  4261. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4262. }
  4263. }
  4264. } while (!table && size > PAGE_SIZE && --log2qty);
  4265. if (!table)
  4266. panic("Failed to allocate %s hash table\n", tablename);
  4267. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4268. tablename,
  4269. (1U << log2qty),
  4270. ilog2(size) - PAGE_SHIFT,
  4271. size);
  4272. if (_hash_shift)
  4273. *_hash_shift = log2qty;
  4274. if (_hash_mask)
  4275. *_hash_mask = (1 << log2qty) - 1;
  4276. return table;
  4277. }
  4278. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4279. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4280. unsigned long pfn)
  4281. {
  4282. #ifdef CONFIG_SPARSEMEM
  4283. return __pfn_to_section(pfn)->pageblock_flags;
  4284. #else
  4285. return zone->pageblock_flags;
  4286. #endif /* CONFIG_SPARSEMEM */
  4287. }
  4288. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4289. {
  4290. #ifdef CONFIG_SPARSEMEM
  4291. pfn &= (PAGES_PER_SECTION-1);
  4292. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4293. #else
  4294. pfn = pfn - zone->zone_start_pfn;
  4295. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4296. #endif /* CONFIG_SPARSEMEM */
  4297. }
  4298. /**
  4299. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4300. * @page: The page within the block of interest
  4301. * @start_bitidx: The first bit of interest to retrieve
  4302. * @end_bitidx: The last bit of interest
  4303. * returns pageblock_bits flags
  4304. */
  4305. unsigned long get_pageblock_flags_group(struct page *page,
  4306. int start_bitidx, int end_bitidx)
  4307. {
  4308. struct zone *zone;
  4309. unsigned long *bitmap;
  4310. unsigned long pfn, bitidx;
  4311. unsigned long flags = 0;
  4312. unsigned long value = 1;
  4313. zone = page_zone(page);
  4314. pfn = page_to_pfn(page);
  4315. bitmap = get_pageblock_bitmap(zone, pfn);
  4316. bitidx = pfn_to_bitidx(zone, pfn);
  4317. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4318. if (test_bit(bitidx + start_bitidx, bitmap))
  4319. flags |= value;
  4320. return flags;
  4321. }
  4322. /**
  4323. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4324. * @page: The page within the block of interest
  4325. * @start_bitidx: The first bit of interest
  4326. * @end_bitidx: The last bit of interest
  4327. * @flags: The flags to set
  4328. */
  4329. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4330. int start_bitidx, int end_bitidx)
  4331. {
  4332. struct zone *zone;
  4333. unsigned long *bitmap;
  4334. unsigned long pfn, bitidx;
  4335. unsigned long value = 1;
  4336. zone = page_zone(page);
  4337. pfn = page_to_pfn(page);
  4338. bitmap = get_pageblock_bitmap(zone, pfn);
  4339. bitidx = pfn_to_bitidx(zone, pfn);
  4340. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4341. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4342. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4343. if (flags & value)
  4344. __set_bit(bitidx + start_bitidx, bitmap);
  4345. else
  4346. __clear_bit(bitidx + start_bitidx, bitmap);
  4347. }
  4348. /*
  4349. * This is designed as sub function...plz see page_isolation.c also.
  4350. * set/clear page block's type to be ISOLATE.
  4351. * page allocater never alloc memory from ISOLATE block.
  4352. */
  4353. int set_migratetype_isolate(struct page *page)
  4354. {
  4355. struct zone *zone;
  4356. struct page *curr_page;
  4357. unsigned long flags, pfn, iter;
  4358. unsigned long immobile = 0;
  4359. struct memory_isolate_notify arg;
  4360. int notifier_ret;
  4361. int ret = -EBUSY;
  4362. int zone_idx;
  4363. zone = page_zone(page);
  4364. zone_idx = zone_idx(zone);
  4365. spin_lock_irqsave(&zone->lock, flags);
  4366. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
  4367. zone_idx == ZONE_MOVABLE) {
  4368. ret = 0;
  4369. goto out;
  4370. }
  4371. pfn = page_to_pfn(page);
  4372. arg.start_pfn = pfn;
  4373. arg.nr_pages = pageblock_nr_pages;
  4374. arg.pages_found = 0;
  4375. /*
  4376. * It may be possible to isolate a pageblock even if the
  4377. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4378. * notifier chain is used by balloon drivers to return the
  4379. * number of pages in a range that are held by the balloon
  4380. * driver to shrink memory. If all the pages are accounted for
  4381. * by balloons, are free, or on the LRU, isolation can continue.
  4382. * Later, for example, when memory hotplug notifier runs, these
  4383. * pages reported as "can be isolated" should be isolated(freed)
  4384. * by the balloon driver through the memory notifier chain.
  4385. */
  4386. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4387. notifier_ret = notifier_to_errno(notifier_ret);
  4388. if (notifier_ret || !arg.pages_found)
  4389. goto out;
  4390. for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
  4391. if (!pfn_valid_within(pfn))
  4392. continue;
  4393. curr_page = pfn_to_page(iter);
  4394. if (!page_count(curr_page) || PageLRU(curr_page))
  4395. continue;
  4396. immobile++;
  4397. }
  4398. if (arg.pages_found == immobile)
  4399. ret = 0;
  4400. out:
  4401. if (!ret) {
  4402. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4403. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4404. }
  4405. spin_unlock_irqrestore(&zone->lock, flags);
  4406. if (!ret)
  4407. drain_all_pages();
  4408. return ret;
  4409. }
  4410. void unset_migratetype_isolate(struct page *page)
  4411. {
  4412. struct zone *zone;
  4413. unsigned long flags;
  4414. zone = page_zone(page);
  4415. spin_lock_irqsave(&zone->lock, flags);
  4416. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4417. goto out;
  4418. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4419. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4420. out:
  4421. spin_unlock_irqrestore(&zone->lock, flags);
  4422. }
  4423. #ifdef CONFIG_MEMORY_HOTREMOVE
  4424. /*
  4425. * All pages in the range must be isolated before calling this.
  4426. */
  4427. void
  4428. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4429. {
  4430. struct page *page;
  4431. struct zone *zone;
  4432. int order, i;
  4433. unsigned long pfn;
  4434. unsigned long flags;
  4435. /* find the first valid pfn */
  4436. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4437. if (pfn_valid(pfn))
  4438. break;
  4439. if (pfn == end_pfn)
  4440. return;
  4441. zone = page_zone(pfn_to_page(pfn));
  4442. spin_lock_irqsave(&zone->lock, flags);
  4443. pfn = start_pfn;
  4444. while (pfn < end_pfn) {
  4445. if (!pfn_valid(pfn)) {
  4446. pfn++;
  4447. continue;
  4448. }
  4449. page = pfn_to_page(pfn);
  4450. BUG_ON(page_count(page));
  4451. BUG_ON(!PageBuddy(page));
  4452. order = page_order(page);
  4453. #ifdef CONFIG_DEBUG_VM
  4454. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4455. pfn, 1 << order, end_pfn);
  4456. #endif
  4457. list_del(&page->lru);
  4458. rmv_page_order(page);
  4459. zone->free_area[order].nr_free--;
  4460. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4461. - (1UL << order));
  4462. for (i = 0; i < (1 << order); i++)
  4463. SetPageReserved((page+i));
  4464. pfn += (1 << order);
  4465. }
  4466. spin_unlock_irqrestore(&zone->lock, flags);
  4467. }
  4468. #endif
  4469. #ifdef CONFIG_MEMORY_FAILURE
  4470. bool is_free_buddy_page(struct page *page)
  4471. {
  4472. struct zone *zone = page_zone(page);
  4473. unsigned long pfn = page_to_pfn(page);
  4474. unsigned long flags;
  4475. int order;
  4476. spin_lock_irqsave(&zone->lock, flags);
  4477. for (order = 0; order < MAX_ORDER; order++) {
  4478. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4479. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4480. break;
  4481. }
  4482. spin_unlock_irqrestore(&zone->lock, flags);
  4483. return order < MAX_ORDER;
  4484. }
  4485. #endif
  4486. static struct trace_print_flags pageflag_names[] = {
  4487. {1UL << PG_locked, "locked" },
  4488. {1UL << PG_error, "error" },
  4489. {1UL << PG_referenced, "referenced" },
  4490. {1UL << PG_uptodate, "uptodate" },
  4491. {1UL << PG_dirty, "dirty" },
  4492. {1UL << PG_lru, "lru" },
  4493. {1UL << PG_active, "active" },
  4494. {1UL << PG_slab, "slab" },
  4495. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4496. {1UL << PG_arch_1, "arch_1" },
  4497. {1UL << PG_reserved, "reserved" },
  4498. {1UL << PG_private, "private" },
  4499. {1UL << PG_private_2, "private_2" },
  4500. {1UL << PG_writeback, "writeback" },
  4501. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4502. {1UL << PG_head, "head" },
  4503. {1UL << PG_tail, "tail" },
  4504. #else
  4505. {1UL << PG_compound, "compound" },
  4506. #endif
  4507. {1UL << PG_swapcache, "swapcache" },
  4508. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4509. {1UL << PG_reclaim, "reclaim" },
  4510. {1UL << PG_buddy, "buddy" },
  4511. {1UL << PG_swapbacked, "swapbacked" },
  4512. {1UL << PG_unevictable, "unevictable" },
  4513. #ifdef CONFIG_MMU
  4514. {1UL << PG_mlocked, "mlocked" },
  4515. #endif
  4516. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4517. {1UL << PG_uncached, "uncached" },
  4518. #endif
  4519. #ifdef CONFIG_MEMORY_FAILURE
  4520. {1UL << PG_hwpoison, "hwpoison" },
  4521. #endif
  4522. {-1UL, NULL },
  4523. };
  4524. static void dump_page_flags(unsigned long flags)
  4525. {
  4526. const char *delim = "";
  4527. unsigned long mask;
  4528. int i;
  4529. printk(KERN_ALERT "page flags: %#lx(", flags);
  4530. /* remove zone id */
  4531. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4532. for (i = 0; pageflag_names[i].name && flags; i++) {
  4533. mask = pageflag_names[i].mask;
  4534. if ((flags & mask) != mask)
  4535. continue;
  4536. flags &= ~mask;
  4537. printk("%s%s", delim, pageflag_names[i].name);
  4538. delim = "|";
  4539. }
  4540. /* check for left over flags */
  4541. if (flags)
  4542. printk("%s%#lx", delim, flags);
  4543. printk(")\n");
  4544. }
  4545. void dump_page(struct page *page)
  4546. {
  4547. printk(KERN_ALERT
  4548. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4549. page, page_count(page), page_mapcount(page),
  4550. page->mapping, page->index);
  4551. dump_page_flags(page->flags);
  4552. }