memory.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. unsigned long start;
  269. /*
  270. * The next few lines have given us lots of grief...
  271. *
  272. * Why are we testing PMD* at this top level? Because often
  273. * there will be no work to do at all, and we'd prefer not to
  274. * go all the way down to the bottom just to discover that.
  275. *
  276. * Why all these "- 1"s? Because 0 represents both the bottom
  277. * of the address space and the top of it (using -1 for the
  278. * top wouldn't help much: the masks would do the wrong thing).
  279. * The rule is that addr 0 and floor 0 refer to the bottom of
  280. * the address space, but end 0 and ceiling 0 refer to the top
  281. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  282. * that end 0 case should be mythical).
  283. *
  284. * Wherever addr is brought up or ceiling brought down, we must
  285. * be careful to reject "the opposite 0" before it confuses the
  286. * subsequent tests. But what about where end is brought down
  287. * by PMD_SIZE below? no, end can't go down to 0 there.
  288. *
  289. * Whereas we round start (addr) and ceiling down, by different
  290. * masks at different levels, in order to test whether a table
  291. * now has no other vmas using it, so can be freed, we don't
  292. * bother to round floor or end up - the tests don't need that.
  293. */
  294. addr &= PMD_MASK;
  295. if (addr < floor) {
  296. addr += PMD_SIZE;
  297. if (!addr)
  298. return;
  299. }
  300. if (ceiling) {
  301. ceiling &= PMD_MASK;
  302. if (!ceiling)
  303. return;
  304. }
  305. if (end - 1 > ceiling - 1)
  306. end -= PMD_SIZE;
  307. if (addr > end - 1)
  308. return;
  309. start = addr;
  310. pgd = pgd_offset(tlb->mm, addr);
  311. do {
  312. next = pgd_addr_end(addr, end);
  313. if (pgd_none_or_clear_bad(pgd))
  314. continue;
  315. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  316. } while (pgd++, addr = next, addr != end);
  317. }
  318. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  319. unsigned long floor, unsigned long ceiling)
  320. {
  321. while (vma) {
  322. struct vm_area_struct *next = vma->vm_next;
  323. unsigned long addr = vma->vm_start;
  324. /*
  325. * Hide vma from rmap and truncate_pagecache before freeing
  326. * pgtables
  327. */
  328. unlink_anon_vmas(vma);
  329. unlink_file_vma(vma);
  330. if (is_vm_hugetlb_page(vma)) {
  331. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  332. floor, next? next->vm_start: ceiling);
  333. } else {
  334. /*
  335. * Optimization: gather nearby vmas into one call down
  336. */
  337. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  338. && !is_vm_hugetlb_page(next)) {
  339. vma = next;
  340. next = vma->vm_next;
  341. unlink_anon_vmas(vma);
  342. unlink_file_vma(vma);
  343. }
  344. free_pgd_range(tlb, addr, vma->vm_end,
  345. floor, next? next->vm_start: ceiling);
  346. }
  347. vma = next;
  348. }
  349. }
  350. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  351. {
  352. pgtable_t new = pte_alloc_one(mm, address);
  353. if (!new)
  354. return -ENOMEM;
  355. /*
  356. * Ensure all pte setup (eg. pte page lock and page clearing) are
  357. * visible before the pte is made visible to other CPUs by being
  358. * put into page tables.
  359. *
  360. * The other side of the story is the pointer chasing in the page
  361. * table walking code (when walking the page table without locking;
  362. * ie. most of the time). Fortunately, these data accesses consist
  363. * of a chain of data-dependent loads, meaning most CPUs (alpha
  364. * being the notable exception) will already guarantee loads are
  365. * seen in-order. See the alpha page table accessors for the
  366. * smp_read_barrier_depends() barriers in page table walking code.
  367. */
  368. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  369. spin_lock(&mm->page_table_lock);
  370. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  371. mm->nr_ptes++;
  372. pmd_populate(mm, pmd, new);
  373. new = NULL;
  374. }
  375. spin_unlock(&mm->page_table_lock);
  376. if (new)
  377. pte_free(mm, new);
  378. return 0;
  379. }
  380. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  381. {
  382. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  383. if (!new)
  384. return -ENOMEM;
  385. smp_wmb(); /* See comment in __pte_alloc */
  386. spin_lock(&init_mm.page_table_lock);
  387. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  388. pmd_populate_kernel(&init_mm, pmd, new);
  389. new = NULL;
  390. }
  391. spin_unlock(&init_mm.page_table_lock);
  392. if (new)
  393. pte_free_kernel(&init_mm, new);
  394. return 0;
  395. }
  396. static inline void init_rss_vec(int *rss)
  397. {
  398. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  399. }
  400. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  401. {
  402. int i;
  403. if (current->mm == mm)
  404. sync_mm_rss(current, mm);
  405. for (i = 0; i < NR_MM_COUNTERS; i++)
  406. if (rss[i])
  407. add_mm_counter(mm, i, rss[i]);
  408. }
  409. /*
  410. * This function is called to print an error when a bad pte
  411. * is found. For example, we might have a PFN-mapped pte in
  412. * a region that doesn't allow it.
  413. *
  414. * The calling function must still handle the error.
  415. */
  416. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  417. pte_t pte, struct page *page)
  418. {
  419. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  420. pud_t *pud = pud_offset(pgd, addr);
  421. pmd_t *pmd = pmd_offset(pud, addr);
  422. struct address_space *mapping;
  423. pgoff_t index;
  424. static unsigned long resume;
  425. static unsigned long nr_shown;
  426. static unsigned long nr_unshown;
  427. /*
  428. * Allow a burst of 60 reports, then keep quiet for that minute;
  429. * or allow a steady drip of one report per second.
  430. */
  431. if (nr_shown == 60) {
  432. if (time_before(jiffies, resume)) {
  433. nr_unshown++;
  434. return;
  435. }
  436. if (nr_unshown) {
  437. printk(KERN_ALERT
  438. "BUG: Bad page map: %lu messages suppressed\n",
  439. nr_unshown);
  440. nr_unshown = 0;
  441. }
  442. nr_shown = 0;
  443. }
  444. if (nr_shown++ == 0)
  445. resume = jiffies + 60 * HZ;
  446. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  447. index = linear_page_index(vma, addr);
  448. printk(KERN_ALERT
  449. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  450. current->comm,
  451. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  452. if (page)
  453. dump_page(page);
  454. printk(KERN_ALERT
  455. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  456. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  457. /*
  458. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  459. */
  460. if (vma->vm_ops)
  461. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  462. (unsigned long)vma->vm_ops->fault);
  463. if (vma->vm_file && vma->vm_file->f_op)
  464. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  465. (unsigned long)vma->vm_file->f_op->mmap);
  466. dump_stack();
  467. add_taint(TAINT_BAD_PAGE);
  468. }
  469. static inline int is_cow_mapping(unsigned int flags)
  470. {
  471. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  472. }
  473. #ifndef is_zero_pfn
  474. static inline int is_zero_pfn(unsigned long pfn)
  475. {
  476. return pfn == zero_pfn;
  477. }
  478. #endif
  479. #ifndef my_zero_pfn
  480. static inline unsigned long my_zero_pfn(unsigned long addr)
  481. {
  482. return zero_pfn;
  483. }
  484. #endif
  485. /*
  486. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  487. *
  488. * "Special" mappings do not wish to be associated with a "struct page" (either
  489. * it doesn't exist, or it exists but they don't want to touch it). In this
  490. * case, NULL is returned here. "Normal" mappings do have a struct page.
  491. *
  492. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  493. * pte bit, in which case this function is trivial. Secondly, an architecture
  494. * may not have a spare pte bit, which requires a more complicated scheme,
  495. * described below.
  496. *
  497. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  498. * special mapping (even if there are underlying and valid "struct pages").
  499. * COWed pages of a VM_PFNMAP are always normal.
  500. *
  501. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  502. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  503. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  504. * mapping will always honor the rule
  505. *
  506. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  507. *
  508. * And for normal mappings this is false.
  509. *
  510. * This restricts such mappings to be a linear translation from virtual address
  511. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  512. * as the vma is not a COW mapping; in that case, we know that all ptes are
  513. * special (because none can have been COWed).
  514. *
  515. *
  516. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  517. *
  518. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  519. * page" backing, however the difference is that _all_ pages with a struct
  520. * page (that is, those where pfn_valid is true) are refcounted and considered
  521. * normal pages by the VM. The disadvantage is that pages are refcounted
  522. * (which can be slower and simply not an option for some PFNMAP users). The
  523. * advantage is that we don't have to follow the strict linearity rule of
  524. * PFNMAP mappings in order to support COWable mappings.
  525. *
  526. */
  527. #ifdef __HAVE_ARCH_PTE_SPECIAL
  528. # define HAVE_PTE_SPECIAL 1
  529. #else
  530. # define HAVE_PTE_SPECIAL 0
  531. #endif
  532. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  533. pte_t pte)
  534. {
  535. unsigned long pfn = pte_pfn(pte);
  536. if (HAVE_PTE_SPECIAL) {
  537. if (likely(!pte_special(pte)))
  538. goto check_pfn;
  539. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  540. return NULL;
  541. if (!is_zero_pfn(pfn))
  542. print_bad_pte(vma, addr, pte, NULL);
  543. return NULL;
  544. }
  545. /* !HAVE_PTE_SPECIAL case follows: */
  546. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  547. if (vma->vm_flags & VM_MIXEDMAP) {
  548. if (!pfn_valid(pfn))
  549. return NULL;
  550. goto out;
  551. } else {
  552. unsigned long off;
  553. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  554. if (pfn == vma->vm_pgoff + off)
  555. return NULL;
  556. if (!is_cow_mapping(vma->vm_flags))
  557. return NULL;
  558. }
  559. }
  560. if (is_zero_pfn(pfn))
  561. return NULL;
  562. check_pfn:
  563. if (unlikely(pfn > highest_memmap_pfn)) {
  564. print_bad_pte(vma, addr, pte, NULL);
  565. return NULL;
  566. }
  567. /*
  568. * NOTE! We still have PageReserved() pages in the page tables.
  569. * eg. VDSO mappings can cause them to exist.
  570. */
  571. out:
  572. return pfn_to_page(pfn);
  573. }
  574. /*
  575. * copy one vm_area from one task to the other. Assumes the page tables
  576. * already present in the new task to be cleared in the whole range
  577. * covered by this vma.
  578. */
  579. static inline unsigned long
  580. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  581. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  582. unsigned long addr, int *rss)
  583. {
  584. unsigned long vm_flags = vma->vm_flags;
  585. pte_t pte = *src_pte;
  586. struct page *page;
  587. /* pte contains position in swap or file, so copy. */
  588. if (unlikely(!pte_present(pte))) {
  589. if (!pte_file(pte)) {
  590. swp_entry_t entry = pte_to_swp_entry(pte);
  591. if (swap_duplicate(entry) < 0)
  592. return entry.val;
  593. /* make sure dst_mm is on swapoff's mmlist. */
  594. if (unlikely(list_empty(&dst_mm->mmlist))) {
  595. spin_lock(&mmlist_lock);
  596. if (list_empty(&dst_mm->mmlist))
  597. list_add(&dst_mm->mmlist,
  598. &src_mm->mmlist);
  599. spin_unlock(&mmlist_lock);
  600. }
  601. if (likely(!non_swap_entry(entry)))
  602. rss[MM_SWAPENTS]++;
  603. else if (is_write_migration_entry(entry) &&
  604. is_cow_mapping(vm_flags)) {
  605. /*
  606. * COW mappings require pages in both parent
  607. * and child to be set to read.
  608. */
  609. make_migration_entry_read(&entry);
  610. pte = swp_entry_to_pte(entry);
  611. set_pte_at(src_mm, addr, src_pte, pte);
  612. }
  613. }
  614. goto out_set_pte;
  615. }
  616. /*
  617. * If it's a COW mapping, write protect it both
  618. * in the parent and the child
  619. */
  620. if (is_cow_mapping(vm_flags)) {
  621. ptep_set_wrprotect(src_mm, addr, src_pte);
  622. pte = pte_wrprotect(pte);
  623. }
  624. /*
  625. * If it's a shared mapping, mark it clean in
  626. * the child
  627. */
  628. if (vm_flags & VM_SHARED)
  629. pte = pte_mkclean(pte);
  630. pte = pte_mkold(pte);
  631. page = vm_normal_page(vma, addr, pte);
  632. if (page) {
  633. get_page(page);
  634. page_dup_rmap(page);
  635. if (PageAnon(page))
  636. rss[MM_ANONPAGES]++;
  637. else
  638. rss[MM_FILEPAGES]++;
  639. }
  640. out_set_pte:
  641. set_pte_at(dst_mm, addr, dst_pte, pte);
  642. return 0;
  643. }
  644. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  645. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  646. unsigned long addr, unsigned long end)
  647. {
  648. pte_t *orig_src_pte, *orig_dst_pte;
  649. pte_t *src_pte, *dst_pte;
  650. spinlock_t *src_ptl, *dst_ptl;
  651. int progress = 0;
  652. int rss[NR_MM_COUNTERS];
  653. swp_entry_t entry = (swp_entry_t){0};
  654. again:
  655. init_rss_vec(rss);
  656. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  657. if (!dst_pte)
  658. return -ENOMEM;
  659. src_pte = pte_offset_map_nested(src_pmd, addr);
  660. src_ptl = pte_lockptr(src_mm, src_pmd);
  661. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  662. orig_src_pte = src_pte;
  663. orig_dst_pte = dst_pte;
  664. arch_enter_lazy_mmu_mode();
  665. do {
  666. /*
  667. * We are holding two locks at this point - either of them
  668. * could generate latencies in another task on another CPU.
  669. */
  670. if (progress >= 32) {
  671. progress = 0;
  672. if (need_resched() ||
  673. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  674. break;
  675. }
  676. if (pte_none(*src_pte)) {
  677. progress++;
  678. continue;
  679. }
  680. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  681. vma, addr, rss);
  682. if (entry.val)
  683. break;
  684. progress += 8;
  685. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  686. arch_leave_lazy_mmu_mode();
  687. spin_unlock(src_ptl);
  688. pte_unmap_nested(orig_src_pte);
  689. add_mm_rss_vec(dst_mm, rss);
  690. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  691. cond_resched();
  692. if (entry.val) {
  693. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  694. return -ENOMEM;
  695. progress = 0;
  696. }
  697. if (addr != end)
  698. goto again;
  699. return 0;
  700. }
  701. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  702. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  703. unsigned long addr, unsigned long end)
  704. {
  705. pmd_t *src_pmd, *dst_pmd;
  706. unsigned long next;
  707. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  708. if (!dst_pmd)
  709. return -ENOMEM;
  710. src_pmd = pmd_offset(src_pud, addr);
  711. do {
  712. next = pmd_addr_end(addr, end);
  713. if (pmd_none_or_clear_bad(src_pmd))
  714. continue;
  715. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  716. vma, addr, next))
  717. return -ENOMEM;
  718. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  719. return 0;
  720. }
  721. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  722. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  723. unsigned long addr, unsigned long end)
  724. {
  725. pud_t *src_pud, *dst_pud;
  726. unsigned long next;
  727. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  728. if (!dst_pud)
  729. return -ENOMEM;
  730. src_pud = pud_offset(src_pgd, addr);
  731. do {
  732. next = pud_addr_end(addr, end);
  733. if (pud_none_or_clear_bad(src_pud))
  734. continue;
  735. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  736. vma, addr, next))
  737. return -ENOMEM;
  738. } while (dst_pud++, src_pud++, addr = next, addr != end);
  739. return 0;
  740. }
  741. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  742. struct vm_area_struct *vma)
  743. {
  744. pgd_t *src_pgd, *dst_pgd;
  745. unsigned long next;
  746. unsigned long addr = vma->vm_start;
  747. unsigned long end = vma->vm_end;
  748. int ret;
  749. /*
  750. * Don't copy ptes where a page fault will fill them correctly.
  751. * Fork becomes much lighter when there are big shared or private
  752. * readonly mappings. The tradeoff is that copy_page_range is more
  753. * efficient than faulting.
  754. */
  755. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  756. if (!vma->anon_vma)
  757. return 0;
  758. }
  759. if (is_vm_hugetlb_page(vma))
  760. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  761. if (unlikely(is_pfn_mapping(vma))) {
  762. /*
  763. * We do not free on error cases below as remove_vma
  764. * gets called on error from higher level routine
  765. */
  766. ret = track_pfn_vma_copy(vma);
  767. if (ret)
  768. return ret;
  769. }
  770. /*
  771. * We need to invalidate the secondary MMU mappings only when
  772. * there could be a permission downgrade on the ptes of the
  773. * parent mm. And a permission downgrade will only happen if
  774. * is_cow_mapping() returns true.
  775. */
  776. if (is_cow_mapping(vma->vm_flags))
  777. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  778. ret = 0;
  779. dst_pgd = pgd_offset(dst_mm, addr);
  780. src_pgd = pgd_offset(src_mm, addr);
  781. do {
  782. next = pgd_addr_end(addr, end);
  783. if (pgd_none_or_clear_bad(src_pgd))
  784. continue;
  785. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  786. vma, addr, next))) {
  787. ret = -ENOMEM;
  788. break;
  789. }
  790. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  791. if (is_cow_mapping(vma->vm_flags))
  792. mmu_notifier_invalidate_range_end(src_mm,
  793. vma->vm_start, end);
  794. return ret;
  795. }
  796. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  797. struct vm_area_struct *vma, pmd_t *pmd,
  798. unsigned long addr, unsigned long end,
  799. long *zap_work, struct zap_details *details)
  800. {
  801. struct mm_struct *mm = tlb->mm;
  802. pte_t *pte;
  803. spinlock_t *ptl;
  804. int rss[NR_MM_COUNTERS];
  805. init_rss_vec(rss);
  806. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  807. arch_enter_lazy_mmu_mode();
  808. do {
  809. pte_t ptent = *pte;
  810. if (pte_none(ptent)) {
  811. (*zap_work)--;
  812. continue;
  813. }
  814. (*zap_work) -= PAGE_SIZE;
  815. if (pte_present(ptent)) {
  816. struct page *page;
  817. page = vm_normal_page(vma, addr, ptent);
  818. if (unlikely(details) && page) {
  819. /*
  820. * unmap_shared_mapping_pages() wants to
  821. * invalidate cache without truncating:
  822. * unmap shared but keep private pages.
  823. */
  824. if (details->check_mapping &&
  825. details->check_mapping != page->mapping)
  826. continue;
  827. /*
  828. * Each page->index must be checked when
  829. * invalidating or truncating nonlinear.
  830. */
  831. if (details->nonlinear_vma &&
  832. (page->index < details->first_index ||
  833. page->index > details->last_index))
  834. continue;
  835. }
  836. ptent = ptep_get_and_clear_full(mm, addr, pte,
  837. tlb->fullmm);
  838. tlb_remove_tlb_entry(tlb, pte, addr);
  839. if (unlikely(!page))
  840. continue;
  841. if (unlikely(details) && details->nonlinear_vma
  842. && linear_page_index(details->nonlinear_vma,
  843. addr) != page->index)
  844. set_pte_at(mm, addr, pte,
  845. pgoff_to_pte(page->index));
  846. if (PageAnon(page))
  847. rss[MM_ANONPAGES]--;
  848. else {
  849. if (pte_dirty(ptent))
  850. set_page_dirty(page);
  851. if (pte_young(ptent) &&
  852. likely(!VM_SequentialReadHint(vma)))
  853. mark_page_accessed(page);
  854. rss[MM_FILEPAGES]--;
  855. }
  856. page_remove_rmap(page);
  857. if (unlikely(page_mapcount(page) < 0))
  858. print_bad_pte(vma, addr, ptent, page);
  859. tlb_remove_page(tlb, page);
  860. continue;
  861. }
  862. /*
  863. * If details->check_mapping, we leave swap entries;
  864. * if details->nonlinear_vma, we leave file entries.
  865. */
  866. if (unlikely(details))
  867. continue;
  868. if (pte_file(ptent)) {
  869. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  870. print_bad_pte(vma, addr, ptent, NULL);
  871. } else {
  872. swp_entry_t entry = pte_to_swp_entry(ptent);
  873. if (!non_swap_entry(entry))
  874. rss[MM_SWAPENTS]--;
  875. if (unlikely(!free_swap_and_cache(entry)))
  876. print_bad_pte(vma, addr, ptent, NULL);
  877. }
  878. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  879. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  880. add_mm_rss_vec(mm, rss);
  881. arch_leave_lazy_mmu_mode();
  882. pte_unmap_unlock(pte - 1, ptl);
  883. return addr;
  884. }
  885. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  886. struct vm_area_struct *vma, pud_t *pud,
  887. unsigned long addr, unsigned long end,
  888. long *zap_work, struct zap_details *details)
  889. {
  890. pmd_t *pmd;
  891. unsigned long next;
  892. pmd = pmd_offset(pud, addr);
  893. do {
  894. next = pmd_addr_end(addr, end);
  895. if (pmd_none_or_clear_bad(pmd)) {
  896. (*zap_work)--;
  897. continue;
  898. }
  899. next = zap_pte_range(tlb, vma, pmd, addr, next,
  900. zap_work, details);
  901. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  902. return addr;
  903. }
  904. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  905. struct vm_area_struct *vma, pgd_t *pgd,
  906. unsigned long addr, unsigned long end,
  907. long *zap_work, struct zap_details *details)
  908. {
  909. pud_t *pud;
  910. unsigned long next;
  911. pud = pud_offset(pgd, addr);
  912. do {
  913. next = pud_addr_end(addr, end);
  914. if (pud_none_or_clear_bad(pud)) {
  915. (*zap_work)--;
  916. continue;
  917. }
  918. next = zap_pmd_range(tlb, vma, pud, addr, next,
  919. zap_work, details);
  920. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  921. return addr;
  922. }
  923. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  924. struct vm_area_struct *vma,
  925. unsigned long addr, unsigned long end,
  926. long *zap_work, struct zap_details *details)
  927. {
  928. pgd_t *pgd;
  929. unsigned long next;
  930. if (details && !details->check_mapping && !details->nonlinear_vma)
  931. details = NULL;
  932. BUG_ON(addr >= end);
  933. mem_cgroup_uncharge_start();
  934. tlb_start_vma(tlb, vma);
  935. pgd = pgd_offset(vma->vm_mm, addr);
  936. do {
  937. next = pgd_addr_end(addr, end);
  938. if (pgd_none_or_clear_bad(pgd)) {
  939. (*zap_work)--;
  940. continue;
  941. }
  942. next = zap_pud_range(tlb, vma, pgd, addr, next,
  943. zap_work, details);
  944. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  945. tlb_end_vma(tlb, vma);
  946. mem_cgroup_uncharge_end();
  947. return addr;
  948. }
  949. #ifdef CONFIG_PREEMPT
  950. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  951. #else
  952. /* No preempt: go for improved straight-line efficiency */
  953. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  954. #endif
  955. /**
  956. * unmap_vmas - unmap a range of memory covered by a list of vma's
  957. * @tlbp: address of the caller's struct mmu_gather
  958. * @vma: the starting vma
  959. * @start_addr: virtual address at which to start unmapping
  960. * @end_addr: virtual address at which to end unmapping
  961. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  962. * @details: details of nonlinear truncation or shared cache invalidation
  963. *
  964. * Returns the end address of the unmapping (restart addr if interrupted).
  965. *
  966. * Unmap all pages in the vma list.
  967. *
  968. * We aim to not hold locks for too long (for scheduling latency reasons).
  969. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  970. * return the ending mmu_gather to the caller.
  971. *
  972. * Only addresses between `start' and `end' will be unmapped.
  973. *
  974. * The VMA list must be sorted in ascending virtual address order.
  975. *
  976. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  977. * range after unmap_vmas() returns. So the only responsibility here is to
  978. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  979. * drops the lock and schedules.
  980. */
  981. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  982. struct vm_area_struct *vma, unsigned long start_addr,
  983. unsigned long end_addr, unsigned long *nr_accounted,
  984. struct zap_details *details)
  985. {
  986. long zap_work = ZAP_BLOCK_SIZE;
  987. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  988. int tlb_start_valid = 0;
  989. unsigned long start = start_addr;
  990. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  991. int fullmm = (*tlbp)->fullmm;
  992. struct mm_struct *mm = vma->vm_mm;
  993. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  994. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  995. unsigned long end;
  996. start = max(vma->vm_start, start_addr);
  997. if (start >= vma->vm_end)
  998. continue;
  999. end = min(vma->vm_end, end_addr);
  1000. if (end <= vma->vm_start)
  1001. continue;
  1002. if (vma->vm_flags & VM_ACCOUNT)
  1003. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1004. if (unlikely(is_pfn_mapping(vma)))
  1005. untrack_pfn_vma(vma, 0, 0);
  1006. while (start != end) {
  1007. if (!tlb_start_valid) {
  1008. tlb_start = start;
  1009. tlb_start_valid = 1;
  1010. }
  1011. if (unlikely(is_vm_hugetlb_page(vma))) {
  1012. /*
  1013. * It is undesirable to test vma->vm_file as it
  1014. * should be non-null for valid hugetlb area.
  1015. * However, vm_file will be NULL in the error
  1016. * cleanup path of do_mmap_pgoff. When
  1017. * hugetlbfs ->mmap method fails,
  1018. * do_mmap_pgoff() nullifies vma->vm_file
  1019. * before calling this function to clean up.
  1020. * Since no pte has actually been setup, it is
  1021. * safe to do nothing in this case.
  1022. */
  1023. if (vma->vm_file) {
  1024. unmap_hugepage_range(vma, start, end, NULL);
  1025. zap_work -= (end - start) /
  1026. pages_per_huge_page(hstate_vma(vma));
  1027. }
  1028. start = end;
  1029. } else
  1030. start = unmap_page_range(*tlbp, vma,
  1031. start, end, &zap_work, details);
  1032. if (zap_work > 0) {
  1033. BUG_ON(start != end);
  1034. break;
  1035. }
  1036. tlb_finish_mmu(*tlbp, tlb_start, start);
  1037. if (need_resched() ||
  1038. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1039. if (i_mmap_lock) {
  1040. *tlbp = NULL;
  1041. goto out;
  1042. }
  1043. cond_resched();
  1044. }
  1045. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1046. tlb_start_valid = 0;
  1047. zap_work = ZAP_BLOCK_SIZE;
  1048. }
  1049. }
  1050. out:
  1051. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1052. return start; /* which is now the end (or restart) address */
  1053. }
  1054. /**
  1055. * zap_page_range - remove user pages in a given range
  1056. * @vma: vm_area_struct holding the applicable pages
  1057. * @address: starting address of pages to zap
  1058. * @size: number of bytes to zap
  1059. * @details: details of nonlinear truncation or shared cache invalidation
  1060. */
  1061. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1062. unsigned long size, struct zap_details *details)
  1063. {
  1064. struct mm_struct *mm = vma->vm_mm;
  1065. struct mmu_gather *tlb;
  1066. unsigned long end = address + size;
  1067. unsigned long nr_accounted = 0;
  1068. lru_add_drain();
  1069. tlb = tlb_gather_mmu(mm, 0);
  1070. update_hiwater_rss(mm);
  1071. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1072. if (tlb)
  1073. tlb_finish_mmu(tlb, address, end);
  1074. return end;
  1075. }
  1076. /**
  1077. * zap_vma_ptes - remove ptes mapping the vma
  1078. * @vma: vm_area_struct holding ptes to be zapped
  1079. * @address: starting address of pages to zap
  1080. * @size: number of bytes to zap
  1081. *
  1082. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1083. *
  1084. * The entire address range must be fully contained within the vma.
  1085. *
  1086. * Returns 0 if successful.
  1087. */
  1088. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1089. unsigned long size)
  1090. {
  1091. if (address < vma->vm_start || address + size > vma->vm_end ||
  1092. !(vma->vm_flags & VM_PFNMAP))
  1093. return -1;
  1094. zap_page_range(vma, address, size, NULL);
  1095. return 0;
  1096. }
  1097. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1098. /*
  1099. * Do a quick page-table lookup for a single page.
  1100. */
  1101. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1102. unsigned int flags)
  1103. {
  1104. pgd_t *pgd;
  1105. pud_t *pud;
  1106. pmd_t *pmd;
  1107. pte_t *ptep, pte;
  1108. spinlock_t *ptl;
  1109. struct page *page;
  1110. struct mm_struct *mm = vma->vm_mm;
  1111. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1112. if (!IS_ERR(page)) {
  1113. BUG_ON(flags & FOLL_GET);
  1114. goto out;
  1115. }
  1116. page = NULL;
  1117. pgd = pgd_offset(mm, address);
  1118. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1119. goto no_page_table;
  1120. pud = pud_offset(pgd, address);
  1121. if (pud_none(*pud))
  1122. goto no_page_table;
  1123. if (pud_huge(*pud)) {
  1124. BUG_ON(flags & FOLL_GET);
  1125. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1126. goto out;
  1127. }
  1128. if (unlikely(pud_bad(*pud)))
  1129. goto no_page_table;
  1130. pmd = pmd_offset(pud, address);
  1131. if (pmd_none(*pmd))
  1132. goto no_page_table;
  1133. if (pmd_huge(*pmd)) {
  1134. BUG_ON(flags & FOLL_GET);
  1135. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1136. goto out;
  1137. }
  1138. if (unlikely(pmd_bad(*pmd)))
  1139. goto no_page_table;
  1140. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1141. pte = *ptep;
  1142. if (!pte_present(pte))
  1143. goto no_page;
  1144. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1145. goto unlock;
  1146. page = vm_normal_page(vma, address, pte);
  1147. if (unlikely(!page)) {
  1148. if ((flags & FOLL_DUMP) ||
  1149. !is_zero_pfn(pte_pfn(pte)))
  1150. goto bad_page;
  1151. page = pte_page(pte);
  1152. }
  1153. if (flags & FOLL_GET)
  1154. get_page(page);
  1155. if (flags & FOLL_TOUCH) {
  1156. if ((flags & FOLL_WRITE) &&
  1157. !pte_dirty(pte) && !PageDirty(page))
  1158. set_page_dirty(page);
  1159. /*
  1160. * pte_mkyoung() would be more correct here, but atomic care
  1161. * is needed to avoid losing the dirty bit: it is easier to use
  1162. * mark_page_accessed().
  1163. */
  1164. mark_page_accessed(page);
  1165. }
  1166. unlock:
  1167. pte_unmap_unlock(ptep, ptl);
  1168. out:
  1169. return page;
  1170. bad_page:
  1171. pte_unmap_unlock(ptep, ptl);
  1172. return ERR_PTR(-EFAULT);
  1173. no_page:
  1174. pte_unmap_unlock(ptep, ptl);
  1175. if (!pte_none(pte))
  1176. return page;
  1177. no_page_table:
  1178. /*
  1179. * When core dumping an enormous anonymous area that nobody
  1180. * has touched so far, we don't want to allocate unnecessary pages or
  1181. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1182. * then get_dump_page() will return NULL to leave a hole in the dump.
  1183. * But we can only make this optimization where a hole would surely
  1184. * be zero-filled if handle_mm_fault() actually did handle it.
  1185. */
  1186. if ((flags & FOLL_DUMP) &&
  1187. (!vma->vm_ops || !vma->vm_ops->fault))
  1188. return ERR_PTR(-EFAULT);
  1189. return page;
  1190. }
  1191. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1192. unsigned long start, int nr_pages, unsigned int gup_flags,
  1193. struct page **pages, struct vm_area_struct **vmas)
  1194. {
  1195. int i;
  1196. unsigned long vm_flags;
  1197. if (nr_pages <= 0)
  1198. return 0;
  1199. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1200. /*
  1201. * Require read or write permissions.
  1202. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1203. */
  1204. vm_flags = (gup_flags & FOLL_WRITE) ?
  1205. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1206. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1207. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1208. i = 0;
  1209. do {
  1210. struct vm_area_struct *vma;
  1211. vma = find_extend_vma(mm, start);
  1212. if (!vma && in_gate_area(tsk, start)) {
  1213. unsigned long pg = start & PAGE_MASK;
  1214. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1215. pgd_t *pgd;
  1216. pud_t *pud;
  1217. pmd_t *pmd;
  1218. pte_t *pte;
  1219. /* user gate pages are read-only */
  1220. if (gup_flags & FOLL_WRITE)
  1221. return i ? : -EFAULT;
  1222. if (pg > TASK_SIZE)
  1223. pgd = pgd_offset_k(pg);
  1224. else
  1225. pgd = pgd_offset_gate(mm, pg);
  1226. BUG_ON(pgd_none(*pgd));
  1227. pud = pud_offset(pgd, pg);
  1228. BUG_ON(pud_none(*pud));
  1229. pmd = pmd_offset(pud, pg);
  1230. if (pmd_none(*pmd))
  1231. return i ? : -EFAULT;
  1232. pte = pte_offset_map(pmd, pg);
  1233. if (pte_none(*pte)) {
  1234. pte_unmap(pte);
  1235. return i ? : -EFAULT;
  1236. }
  1237. if (pages) {
  1238. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1239. pages[i] = page;
  1240. if (page)
  1241. get_page(page);
  1242. }
  1243. pte_unmap(pte);
  1244. if (vmas)
  1245. vmas[i] = gate_vma;
  1246. i++;
  1247. start += PAGE_SIZE;
  1248. nr_pages--;
  1249. continue;
  1250. }
  1251. if (!vma ||
  1252. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1253. !(vm_flags & vma->vm_flags))
  1254. return i ? : -EFAULT;
  1255. if (is_vm_hugetlb_page(vma)) {
  1256. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1257. &start, &nr_pages, i, gup_flags);
  1258. continue;
  1259. }
  1260. do {
  1261. struct page *page;
  1262. unsigned int foll_flags = gup_flags;
  1263. /*
  1264. * If we have a pending SIGKILL, don't keep faulting
  1265. * pages and potentially allocating memory.
  1266. */
  1267. if (unlikely(fatal_signal_pending(current)))
  1268. return i ? i : -ERESTARTSYS;
  1269. cond_resched();
  1270. while (!(page = follow_page(vma, start, foll_flags))) {
  1271. int ret;
  1272. ret = handle_mm_fault(mm, vma, start,
  1273. (foll_flags & FOLL_WRITE) ?
  1274. FAULT_FLAG_WRITE : 0);
  1275. if (ret & VM_FAULT_ERROR) {
  1276. if (ret & VM_FAULT_OOM)
  1277. return i ? i : -ENOMEM;
  1278. if (ret &
  1279. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1280. return i ? i : -EFAULT;
  1281. BUG();
  1282. }
  1283. if (ret & VM_FAULT_MAJOR)
  1284. tsk->maj_flt++;
  1285. else
  1286. tsk->min_flt++;
  1287. /*
  1288. * The VM_FAULT_WRITE bit tells us that
  1289. * do_wp_page has broken COW when necessary,
  1290. * even if maybe_mkwrite decided not to set
  1291. * pte_write. We can thus safely do subsequent
  1292. * page lookups as if they were reads. But only
  1293. * do so when looping for pte_write is futile:
  1294. * in some cases userspace may also be wanting
  1295. * to write to the gotten user page, which a
  1296. * read fault here might prevent (a readonly
  1297. * page might get reCOWed by userspace write).
  1298. */
  1299. if ((ret & VM_FAULT_WRITE) &&
  1300. !(vma->vm_flags & VM_WRITE))
  1301. foll_flags &= ~FOLL_WRITE;
  1302. cond_resched();
  1303. }
  1304. if (IS_ERR(page))
  1305. return i ? i : PTR_ERR(page);
  1306. if (pages) {
  1307. pages[i] = page;
  1308. flush_anon_page(vma, page, start);
  1309. flush_dcache_page(page);
  1310. }
  1311. if (vmas)
  1312. vmas[i] = vma;
  1313. i++;
  1314. start += PAGE_SIZE;
  1315. nr_pages--;
  1316. } while (nr_pages && start < vma->vm_end);
  1317. } while (nr_pages);
  1318. return i;
  1319. }
  1320. /**
  1321. * get_user_pages() - pin user pages in memory
  1322. * @tsk: task_struct of target task
  1323. * @mm: mm_struct of target mm
  1324. * @start: starting user address
  1325. * @nr_pages: number of pages from start to pin
  1326. * @write: whether pages will be written to by the caller
  1327. * @force: whether to force write access even if user mapping is
  1328. * readonly. This will result in the page being COWed even
  1329. * in MAP_SHARED mappings. You do not want this.
  1330. * @pages: array that receives pointers to the pages pinned.
  1331. * Should be at least nr_pages long. Or NULL, if caller
  1332. * only intends to ensure the pages are faulted in.
  1333. * @vmas: array of pointers to vmas corresponding to each page.
  1334. * Or NULL if the caller does not require them.
  1335. *
  1336. * Returns number of pages pinned. This may be fewer than the number
  1337. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1338. * were pinned, returns -errno. Each page returned must be released
  1339. * with a put_page() call when it is finished with. vmas will only
  1340. * remain valid while mmap_sem is held.
  1341. *
  1342. * Must be called with mmap_sem held for read or write.
  1343. *
  1344. * get_user_pages walks a process's page tables and takes a reference to
  1345. * each struct page that each user address corresponds to at a given
  1346. * instant. That is, it takes the page that would be accessed if a user
  1347. * thread accesses the given user virtual address at that instant.
  1348. *
  1349. * This does not guarantee that the page exists in the user mappings when
  1350. * get_user_pages returns, and there may even be a completely different
  1351. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1352. * and subsequently re faulted). However it does guarantee that the page
  1353. * won't be freed completely. And mostly callers simply care that the page
  1354. * contains data that was valid *at some point in time*. Typically, an IO
  1355. * or similar operation cannot guarantee anything stronger anyway because
  1356. * locks can't be held over the syscall boundary.
  1357. *
  1358. * If write=0, the page must not be written to. If the page is written to,
  1359. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1360. * after the page is finished with, and before put_page is called.
  1361. *
  1362. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1363. * handle on the memory by some means other than accesses via the user virtual
  1364. * addresses. The pages may be submitted for DMA to devices or accessed via
  1365. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1366. * use the correct cache flushing APIs.
  1367. *
  1368. * See also get_user_pages_fast, for performance critical applications.
  1369. */
  1370. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1371. unsigned long start, int nr_pages, int write, int force,
  1372. struct page **pages, struct vm_area_struct **vmas)
  1373. {
  1374. int flags = FOLL_TOUCH;
  1375. if (pages)
  1376. flags |= FOLL_GET;
  1377. if (write)
  1378. flags |= FOLL_WRITE;
  1379. if (force)
  1380. flags |= FOLL_FORCE;
  1381. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1382. }
  1383. EXPORT_SYMBOL(get_user_pages);
  1384. /**
  1385. * get_dump_page() - pin user page in memory while writing it to core dump
  1386. * @addr: user address
  1387. *
  1388. * Returns struct page pointer of user page pinned for dump,
  1389. * to be freed afterwards by page_cache_release() or put_page().
  1390. *
  1391. * Returns NULL on any kind of failure - a hole must then be inserted into
  1392. * the corefile, to preserve alignment with its headers; and also returns
  1393. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1394. * allowing a hole to be left in the corefile to save diskspace.
  1395. *
  1396. * Called without mmap_sem, but after all other threads have been killed.
  1397. */
  1398. #ifdef CONFIG_ELF_CORE
  1399. struct page *get_dump_page(unsigned long addr)
  1400. {
  1401. struct vm_area_struct *vma;
  1402. struct page *page;
  1403. if (__get_user_pages(current, current->mm, addr, 1,
  1404. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1405. return NULL;
  1406. flush_cache_page(vma, addr, page_to_pfn(page));
  1407. return page;
  1408. }
  1409. #endif /* CONFIG_ELF_CORE */
  1410. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1411. spinlock_t **ptl)
  1412. {
  1413. pgd_t * pgd = pgd_offset(mm, addr);
  1414. pud_t * pud = pud_alloc(mm, pgd, addr);
  1415. if (pud) {
  1416. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1417. if (pmd)
  1418. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1419. }
  1420. return NULL;
  1421. }
  1422. /*
  1423. * This is the old fallback for page remapping.
  1424. *
  1425. * For historical reasons, it only allows reserved pages. Only
  1426. * old drivers should use this, and they needed to mark their
  1427. * pages reserved for the old functions anyway.
  1428. */
  1429. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1430. struct page *page, pgprot_t prot)
  1431. {
  1432. struct mm_struct *mm = vma->vm_mm;
  1433. int retval;
  1434. pte_t *pte;
  1435. spinlock_t *ptl;
  1436. retval = -EINVAL;
  1437. if (PageAnon(page))
  1438. goto out;
  1439. retval = -ENOMEM;
  1440. flush_dcache_page(page);
  1441. pte = get_locked_pte(mm, addr, &ptl);
  1442. if (!pte)
  1443. goto out;
  1444. retval = -EBUSY;
  1445. if (!pte_none(*pte))
  1446. goto out_unlock;
  1447. /* Ok, finally just insert the thing.. */
  1448. get_page(page);
  1449. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1450. page_add_file_rmap(page);
  1451. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1452. retval = 0;
  1453. pte_unmap_unlock(pte, ptl);
  1454. return retval;
  1455. out_unlock:
  1456. pte_unmap_unlock(pte, ptl);
  1457. out:
  1458. return retval;
  1459. }
  1460. /**
  1461. * vm_insert_page - insert single page into user vma
  1462. * @vma: user vma to map to
  1463. * @addr: target user address of this page
  1464. * @page: source kernel page
  1465. *
  1466. * This allows drivers to insert individual pages they've allocated
  1467. * into a user vma.
  1468. *
  1469. * The page has to be a nice clean _individual_ kernel allocation.
  1470. * If you allocate a compound page, you need to have marked it as
  1471. * such (__GFP_COMP), or manually just split the page up yourself
  1472. * (see split_page()).
  1473. *
  1474. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1475. * took an arbitrary page protection parameter. This doesn't allow
  1476. * that. Your vma protection will have to be set up correctly, which
  1477. * means that if you want a shared writable mapping, you'd better
  1478. * ask for a shared writable mapping!
  1479. *
  1480. * The page does not need to be reserved.
  1481. */
  1482. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1483. struct page *page)
  1484. {
  1485. if (addr < vma->vm_start || addr >= vma->vm_end)
  1486. return -EFAULT;
  1487. if (!page_count(page))
  1488. return -EINVAL;
  1489. vma->vm_flags |= VM_INSERTPAGE;
  1490. return insert_page(vma, addr, page, vma->vm_page_prot);
  1491. }
  1492. EXPORT_SYMBOL(vm_insert_page);
  1493. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1494. unsigned long pfn, pgprot_t prot)
  1495. {
  1496. struct mm_struct *mm = vma->vm_mm;
  1497. int retval;
  1498. pte_t *pte, entry;
  1499. spinlock_t *ptl;
  1500. retval = -ENOMEM;
  1501. pte = get_locked_pte(mm, addr, &ptl);
  1502. if (!pte)
  1503. goto out;
  1504. retval = -EBUSY;
  1505. if (!pte_none(*pte))
  1506. goto out_unlock;
  1507. /* Ok, finally just insert the thing.. */
  1508. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1509. set_pte_at(mm, addr, pte, entry);
  1510. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1511. retval = 0;
  1512. out_unlock:
  1513. pte_unmap_unlock(pte, ptl);
  1514. out:
  1515. return retval;
  1516. }
  1517. /**
  1518. * vm_insert_pfn - insert single pfn into user vma
  1519. * @vma: user vma to map to
  1520. * @addr: target user address of this page
  1521. * @pfn: source kernel pfn
  1522. *
  1523. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1524. * they've allocated into a user vma. Same comments apply.
  1525. *
  1526. * This function should only be called from a vm_ops->fault handler, and
  1527. * in that case the handler should return NULL.
  1528. *
  1529. * vma cannot be a COW mapping.
  1530. *
  1531. * As this is called only for pages that do not currently exist, we
  1532. * do not need to flush old virtual caches or the TLB.
  1533. */
  1534. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1535. unsigned long pfn)
  1536. {
  1537. int ret;
  1538. pgprot_t pgprot = vma->vm_page_prot;
  1539. /*
  1540. * Technically, architectures with pte_special can avoid all these
  1541. * restrictions (same for remap_pfn_range). However we would like
  1542. * consistency in testing and feature parity among all, so we should
  1543. * try to keep these invariants in place for everybody.
  1544. */
  1545. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1546. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1547. (VM_PFNMAP|VM_MIXEDMAP));
  1548. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1549. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1550. if (addr < vma->vm_start || addr >= vma->vm_end)
  1551. return -EFAULT;
  1552. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1553. return -EINVAL;
  1554. ret = insert_pfn(vma, addr, pfn, pgprot);
  1555. if (ret)
  1556. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1557. return ret;
  1558. }
  1559. EXPORT_SYMBOL(vm_insert_pfn);
  1560. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1561. unsigned long pfn)
  1562. {
  1563. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1564. if (addr < vma->vm_start || addr >= vma->vm_end)
  1565. return -EFAULT;
  1566. /*
  1567. * If we don't have pte special, then we have to use the pfn_valid()
  1568. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1569. * refcount the page if pfn_valid is true (hence insert_page rather
  1570. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1571. * without pte special, it would there be refcounted as a normal page.
  1572. */
  1573. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1574. struct page *page;
  1575. page = pfn_to_page(pfn);
  1576. return insert_page(vma, addr, page, vma->vm_page_prot);
  1577. }
  1578. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1579. }
  1580. EXPORT_SYMBOL(vm_insert_mixed);
  1581. /*
  1582. * maps a range of physical memory into the requested pages. the old
  1583. * mappings are removed. any references to nonexistent pages results
  1584. * in null mappings (currently treated as "copy-on-access")
  1585. */
  1586. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1587. unsigned long addr, unsigned long end,
  1588. unsigned long pfn, pgprot_t prot)
  1589. {
  1590. pte_t *pte;
  1591. spinlock_t *ptl;
  1592. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1593. if (!pte)
  1594. return -ENOMEM;
  1595. arch_enter_lazy_mmu_mode();
  1596. do {
  1597. BUG_ON(!pte_none(*pte));
  1598. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1599. pfn++;
  1600. } while (pte++, addr += PAGE_SIZE, addr != end);
  1601. arch_leave_lazy_mmu_mode();
  1602. pte_unmap_unlock(pte - 1, ptl);
  1603. return 0;
  1604. }
  1605. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1606. unsigned long addr, unsigned long end,
  1607. unsigned long pfn, pgprot_t prot)
  1608. {
  1609. pmd_t *pmd;
  1610. unsigned long next;
  1611. pfn -= addr >> PAGE_SHIFT;
  1612. pmd = pmd_alloc(mm, pud, addr);
  1613. if (!pmd)
  1614. return -ENOMEM;
  1615. do {
  1616. next = pmd_addr_end(addr, end);
  1617. if (remap_pte_range(mm, pmd, addr, next,
  1618. pfn + (addr >> PAGE_SHIFT), prot))
  1619. return -ENOMEM;
  1620. } while (pmd++, addr = next, addr != end);
  1621. return 0;
  1622. }
  1623. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1624. unsigned long addr, unsigned long end,
  1625. unsigned long pfn, pgprot_t prot)
  1626. {
  1627. pud_t *pud;
  1628. unsigned long next;
  1629. pfn -= addr >> PAGE_SHIFT;
  1630. pud = pud_alloc(mm, pgd, addr);
  1631. if (!pud)
  1632. return -ENOMEM;
  1633. do {
  1634. next = pud_addr_end(addr, end);
  1635. if (remap_pmd_range(mm, pud, addr, next,
  1636. pfn + (addr >> PAGE_SHIFT), prot))
  1637. return -ENOMEM;
  1638. } while (pud++, addr = next, addr != end);
  1639. return 0;
  1640. }
  1641. /**
  1642. * remap_pfn_range - remap kernel memory to userspace
  1643. * @vma: user vma to map to
  1644. * @addr: target user address to start at
  1645. * @pfn: physical address of kernel memory
  1646. * @size: size of map area
  1647. * @prot: page protection flags for this mapping
  1648. *
  1649. * Note: this is only safe if the mm semaphore is held when called.
  1650. */
  1651. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1652. unsigned long pfn, unsigned long size, pgprot_t prot)
  1653. {
  1654. pgd_t *pgd;
  1655. unsigned long next;
  1656. unsigned long end = addr + PAGE_ALIGN(size);
  1657. struct mm_struct *mm = vma->vm_mm;
  1658. int err;
  1659. /*
  1660. * Physically remapped pages are special. Tell the
  1661. * rest of the world about it:
  1662. * VM_IO tells people not to look at these pages
  1663. * (accesses can have side effects).
  1664. * VM_RESERVED is specified all over the place, because
  1665. * in 2.4 it kept swapout's vma scan off this vma; but
  1666. * in 2.6 the LRU scan won't even find its pages, so this
  1667. * flag means no more than count its pages in reserved_vm,
  1668. * and omit it from core dump, even when VM_IO turned off.
  1669. * VM_PFNMAP tells the core MM that the base pages are just
  1670. * raw PFN mappings, and do not have a "struct page" associated
  1671. * with them.
  1672. *
  1673. * There's a horrible special case to handle copy-on-write
  1674. * behaviour that some programs depend on. We mark the "original"
  1675. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1676. */
  1677. if (addr == vma->vm_start && end == vma->vm_end) {
  1678. vma->vm_pgoff = pfn;
  1679. vma->vm_flags |= VM_PFN_AT_MMAP;
  1680. } else if (is_cow_mapping(vma->vm_flags))
  1681. return -EINVAL;
  1682. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1683. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1684. if (err) {
  1685. /*
  1686. * To indicate that track_pfn related cleanup is not
  1687. * needed from higher level routine calling unmap_vmas
  1688. */
  1689. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1690. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1691. return -EINVAL;
  1692. }
  1693. BUG_ON(addr >= end);
  1694. pfn -= addr >> PAGE_SHIFT;
  1695. pgd = pgd_offset(mm, addr);
  1696. flush_cache_range(vma, addr, end);
  1697. do {
  1698. next = pgd_addr_end(addr, end);
  1699. err = remap_pud_range(mm, pgd, addr, next,
  1700. pfn + (addr >> PAGE_SHIFT), prot);
  1701. if (err)
  1702. break;
  1703. } while (pgd++, addr = next, addr != end);
  1704. if (err)
  1705. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1706. return err;
  1707. }
  1708. EXPORT_SYMBOL(remap_pfn_range);
  1709. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1710. unsigned long addr, unsigned long end,
  1711. pte_fn_t fn, void *data)
  1712. {
  1713. pte_t *pte;
  1714. int err;
  1715. pgtable_t token;
  1716. spinlock_t *uninitialized_var(ptl);
  1717. pte = (mm == &init_mm) ?
  1718. pte_alloc_kernel(pmd, addr) :
  1719. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1720. if (!pte)
  1721. return -ENOMEM;
  1722. BUG_ON(pmd_huge(*pmd));
  1723. arch_enter_lazy_mmu_mode();
  1724. token = pmd_pgtable(*pmd);
  1725. do {
  1726. err = fn(pte++, token, addr, data);
  1727. if (err)
  1728. break;
  1729. } while (addr += PAGE_SIZE, addr != end);
  1730. arch_leave_lazy_mmu_mode();
  1731. if (mm != &init_mm)
  1732. pte_unmap_unlock(pte-1, ptl);
  1733. return err;
  1734. }
  1735. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1736. unsigned long addr, unsigned long end,
  1737. pte_fn_t fn, void *data)
  1738. {
  1739. pmd_t *pmd;
  1740. unsigned long next;
  1741. int err;
  1742. BUG_ON(pud_huge(*pud));
  1743. pmd = pmd_alloc(mm, pud, addr);
  1744. if (!pmd)
  1745. return -ENOMEM;
  1746. do {
  1747. next = pmd_addr_end(addr, end);
  1748. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1749. if (err)
  1750. break;
  1751. } while (pmd++, addr = next, addr != end);
  1752. return err;
  1753. }
  1754. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1755. unsigned long addr, unsigned long end,
  1756. pte_fn_t fn, void *data)
  1757. {
  1758. pud_t *pud;
  1759. unsigned long next;
  1760. int err;
  1761. pud = pud_alloc(mm, pgd, addr);
  1762. if (!pud)
  1763. return -ENOMEM;
  1764. do {
  1765. next = pud_addr_end(addr, end);
  1766. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1767. if (err)
  1768. break;
  1769. } while (pud++, addr = next, addr != end);
  1770. return err;
  1771. }
  1772. /*
  1773. * Scan a region of virtual memory, filling in page tables as necessary
  1774. * and calling a provided function on each leaf page table.
  1775. */
  1776. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1777. unsigned long size, pte_fn_t fn, void *data)
  1778. {
  1779. pgd_t *pgd;
  1780. unsigned long next;
  1781. unsigned long start = addr, end = addr + size;
  1782. int err;
  1783. BUG_ON(addr >= end);
  1784. mmu_notifier_invalidate_range_start(mm, start, end);
  1785. pgd = pgd_offset(mm, addr);
  1786. do {
  1787. next = pgd_addr_end(addr, end);
  1788. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1789. if (err)
  1790. break;
  1791. } while (pgd++, addr = next, addr != end);
  1792. mmu_notifier_invalidate_range_end(mm, start, end);
  1793. return err;
  1794. }
  1795. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1796. /*
  1797. * handle_pte_fault chooses page fault handler according to an entry
  1798. * which was read non-atomically. Before making any commitment, on
  1799. * those architectures or configurations (e.g. i386 with PAE) which
  1800. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1801. * must check under lock before unmapping the pte and proceeding
  1802. * (but do_wp_page is only called after already making such a check;
  1803. * and do_anonymous_page and do_no_page can safely check later on).
  1804. */
  1805. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1806. pte_t *page_table, pte_t orig_pte)
  1807. {
  1808. int same = 1;
  1809. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1810. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1811. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1812. spin_lock(ptl);
  1813. same = pte_same(*page_table, orig_pte);
  1814. spin_unlock(ptl);
  1815. }
  1816. #endif
  1817. pte_unmap(page_table);
  1818. return same;
  1819. }
  1820. /*
  1821. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1822. * servicing faults for write access. In the normal case, do always want
  1823. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1824. * that do not have writing enabled, when used by access_process_vm.
  1825. */
  1826. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1827. {
  1828. if (likely(vma->vm_flags & VM_WRITE))
  1829. pte = pte_mkwrite(pte);
  1830. return pte;
  1831. }
  1832. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1833. {
  1834. /*
  1835. * If the source page was a PFN mapping, we don't have
  1836. * a "struct page" for it. We do a best-effort copy by
  1837. * just copying from the original user address. If that
  1838. * fails, we just zero-fill it. Live with it.
  1839. */
  1840. if (unlikely(!src)) {
  1841. void *kaddr = kmap_atomic(dst, KM_USER0);
  1842. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1843. /*
  1844. * This really shouldn't fail, because the page is there
  1845. * in the page tables. But it might just be unreadable,
  1846. * in which case we just give up and fill the result with
  1847. * zeroes.
  1848. */
  1849. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1850. memset(kaddr, 0, PAGE_SIZE);
  1851. kunmap_atomic(kaddr, KM_USER0);
  1852. flush_dcache_page(dst);
  1853. } else
  1854. copy_user_highpage(dst, src, va, vma);
  1855. }
  1856. /*
  1857. * This routine handles present pages, when users try to write
  1858. * to a shared page. It is done by copying the page to a new address
  1859. * and decrementing the shared-page counter for the old page.
  1860. *
  1861. * Note that this routine assumes that the protection checks have been
  1862. * done by the caller (the low-level page fault routine in most cases).
  1863. * Thus we can safely just mark it writable once we've done any necessary
  1864. * COW.
  1865. *
  1866. * We also mark the page dirty at this point even though the page will
  1867. * change only once the write actually happens. This avoids a few races,
  1868. * and potentially makes it more efficient.
  1869. *
  1870. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1871. * but allow concurrent faults), with pte both mapped and locked.
  1872. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1873. */
  1874. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1875. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1876. spinlock_t *ptl, pte_t orig_pte)
  1877. {
  1878. struct page *old_page, *new_page;
  1879. pte_t entry;
  1880. int reuse = 0, ret = 0;
  1881. int page_mkwrite = 0;
  1882. struct page *dirty_page = NULL;
  1883. old_page = vm_normal_page(vma, address, orig_pte);
  1884. if (!old_page) {
  1885. /*
  1886. * VM_MIXEDMAP !pfn_valid() case
  1887. *
  1888. * We should not cow pages in a shared writeable mapping.
  1889. * Just mark the pages writable as we can't do any dirty
  1890. * accounting on raw pfn maps.
  1891. */
  1892. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1893. (VM_WRITE|VM_SHARED))
  1894. goto reuse;
  1895. goto gotten;
  1896. }
  1897. /*
  1898. * Take out anonymous pages first, anonymous shared vmas are
  1899. * not dirty accountable.
  1900. */
  1901. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1902. if (!trylock_page(old_page)) {
  1903. page_cache_get(old_page);
  1904. pte_unmap_unlock(page_table, ptl);
  1905. lock_page(old_page);
  1906. page_table = pte_offset_map_lock(mm, pmd, address,
  1907. &ptl);
  1908. if (!pte_same(*page_table, orig_pte)) {
  1909. unlock_page(old_page);
  1910. page_cache_release(old_page);
  1911. goto unlock;
  1912. }
  1913. page_cache_release(old_page);
  1914. }
  1915. reuse = reuse_swap_page(old_page);
  1916. if (reuse)
  1917. /*
  1918. * The page is all ours. Move it to our anon_vma so
  1919. * the rmap code will not search our parent or siblings.
  1920. * Protected against the rmap code by the page lock.
  1921. */
  1922. page_move_anon_rmap(old_page, vma, address);
  1923. unlock_page(old_page);
  1924. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1925. (VM_WRITE|VM_SHARED))) {
  1926. /*
  1927. * Only catch write-faults on shared writable pages,
  1928. * read-only shared pages can get COWed by
  1929. * get_user_pages(.write=1, .force=1).
  1930. */
  1931. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1932. struct vm_fault vmf;
  1933. int tmp;
  1934. vmf.virtual_address = (void __user *)(address &
  1935. PAGE_MASK);
  1936. vmf.pgoff = old_page->index;
  1937. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1938. vmf.page = old_page;
  1939. /*
  1940. * Notify the address space that the page is about to
  1941. * become writable so that it can prohibit this or wait
  1942. * for the page to get into an appropriate state.
  1943. *
  1944. * We do this without the lock held, so that it can
  1945. * sleep if it needs to.
  1946. */
  1947. page_cache_get(old_page);
  1948. pte_unmap_unlock(page_table, ptl);
  1949. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1950. if (unlikely(tmp &
  1951. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1952. ret = tmp;
  1953. goto unwritable_page;
  1954. }
  1955. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1956. lock_page(old_page);
  1957. if (!old_page->mapping) {
  1958. ret = 0; /* retry the fault */
  1959. unlock_page(old_page);
  1960. goto unwritable_page;
  1961. }
  1962. } else
  1963. VM_BUG_ON(!PageLocked(old_page));
  1964. /*
  1965. * Since we dropped the lock we need to revalidate
  1966. * the PTE as someone else may have changed it. If
  1967. * they did, we just return, as we can count on the
  1968. * MMU to tell us if they didn't also make it writable.
  1969. */
  1970. page_table = pte_offset_map_lock(mm, pmd, address,
  1971. &ptl);
  1972. if (!pte_same(*page_table, orig_pte)) {
  1973. unlock_page(old_page);
  1974. page_cache_release(old_page);
  1975. goto unlock;
  1976. }
  1977. page_mkwrite = 1;
  1978. }
  1979. dirty_page = old_page;
  1980. get_page(dirty_page);
  1981. reuse = 1;
  1982. }
  1983. if (reuse) {
  1984. reuse:
  1985. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1986. entry = pte_mkyoung(orig_pte);
  1987. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1988. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1989. update_mmu_cache(vma, address, page_table);
  1990. ret |= VM_FAULT_WRITE;
  1991. goto unlock;
  1992. }
  1993. /*
  1994. * Ok, we need to copy. Oh, well..
  1995. */
  1996. page_cache_get(old_page);
  1997. gotten:
  1998. pte_unmap_unlock(page_table, ptl);
  1999. if (unlikely(anon_vma_prepare(vma)))
  2000. goto oom;
  2001. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2002. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2003. if (!new_page)
  2004. goto oom;
  2005. } else {
  2006. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2007. if (!new_page)
  2008. goto oom;
  2009. cow_user_page(new_page, old_page, address, vma);
  2010. }
  2011. __SetPageUptodate(new_page);
  2012. /*
  2013. * Don't let another task, with possibly unlocked vma,
  2014. * keep the mlocked page.
  2015. */
  2016. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  2017. lock_page(old_page); /* for LRU manipulation */
  2018. clear_page_mlock(old_page);
  2019. unlock_page(old_page);
  2020. }
  2021. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2022. goto oom_free_new;
  2023. /*
  2024. * Re-check the pte - we dropped the lock
  2025. */
  2026. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2027. if (likely(pte_same(*page_table, orig_pte))) {
  2028. if (old_page) {
  2029. if (!PageAnon(old_page)) {
  2030. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2031. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2032. }
  2033. } else
  2034. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2035. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2036. entry = mk_pte(new_page, vma->vm_page_prot);
  2037. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2038. /*
  2039. * Clear the pte entry and flush it first, before updating the
  2040. * pte with the new entry. This will avoid a race condition
  2041. * seen in the presence of one thread doing SMC and another
  2042. * thread doing COW.
  2043. */
  2044. ptep_clear_flush(vma, address, page_table);
  2045. page_add_new_anon_rmap(new_page, vma, address);
  2046. /*
  2047. * We call the notify macro here because, when using secondary
  2048. * mmu page tables (such as kvm shadow page tables), we want the
  2049. * new page to be mapped directly into the secondary page table.
  2050. */
  2051. set_pte_at_notify(mm, address, page_table, entry);
  2052. update_mmu_cache(vma, address, page_table);
  2053. if (old_page) {
  2054. /*
  2055. * Only after switching the pte to the new page may
  2056. * we remove the mapcount here. Otherwise another
  2057. * process may come and find the rmap count decremented
  2058. * before the pte is switched to the new page, and
  2059. * "reuse" the old page writing into it while our pte
  2060. * here still points into it and can be read by other
  2061. * threads.
  2062. *
  2063. * The critical issue is to order this
  2064. * page_remove_rmap with the ptp_clear_flush above.
  2065. * Those stores are ordered by (if nothing else,)
  2066. * the barrier present in the atomic_add_negative
  2067. * in page_remove_rmap.
  2068. *
  2069. * Then the TLB flush in ptep_clear_flush ensures that
  2070. * no process can access the old page before the
  2071. * decremented mapcount is visible. And the old page
  2072. * cannot be reused until after the decremented
  2073. * mapcount is visible. So transitively, TLBs to
  2074. * old page will be flushed before it can be reused.
  2075. */
  2076. page_remove_rmap(old_page);
  2077. }
  2078. /* Free the old page.. */
  2079. new_page = old_page;
  2080. ret |= VM_FAULT_WRITE;
  2081. } else
  2082. mem_cgroup_uncharge_page(new_page);
  2083. if (new_page)
  2084. page_cache_release(new_page);
  2085. if (old_page)
  2086. page_cache_release(old_page);
  2087. unlock:
  2088. pte_unmap_unlock(page_table, ptl);
  2089. if (dirty_page) {
  2090. /*
  2091. * Yes, Virginia, this is actually required to prevent a race
  2092. * with clear_page_dirty_for_io() from clearing the page dirty
  2093. * bit after it clear all dirty ptes, but before a racing
  2094. * do_wp_page installs a dirty pte.
  2095. *
  2096. * do_no_page is protected similarly.
  2097. */
  2098. if (!page_mkwrite) {
  2099. wait_on_page_locked(dirty_page);
  2100. set_page_dirty_balance(dirty_page, page_mkwrite);
  2101. }
  2102. put_page(dirty_page);
  2103. if (page_mkwrite) {
  2104. struct address_space *mapping = dirty_page->mapping;
  2105. set_page_dirty(dirty_page);
  2106. unlock_page(dirty_page);
  2107. page_cache_release(dirty_page);
  2108. if (mapping) {
  2109. /*
  2110. * Some device drivers do not set page.mapping
  2111. * but still dirty their pages
  2112. */
  2113. balance_dirty_pages_ratelimited(mapping);
  2114. }
  2115. }
  2116. /* file_update_time outside page_lock */
  2117. if (vma->vm_file)
  2118. file_update_time(vma->vm_file);
  2119. }
  2120. return ret;
  2121. oom_free_new:
  2122. page_cache_release(new_page);
  2123. oom:
  2124. if (old_page) {
  2125. if (page_mkwrite) {
  2126. unlock_page(old_page);
  2127. page_cache_release(old_page);
  2128. }
  2129. page_cache_release(old_page);
  2130. }
  2131. return VM_FAULT_OOM;
  2132. unwritable_page:
  2133. page_cache_release(old_page);
  2134. return ret;
  2135. }
  2136. /*
  2137. * Helper functions for unmap_mapping_range().
  2138. *
  2139. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2140. *
  2141. * We have to restart searching the prio_tree whenever we drop the lock,
  2142. * since the iterator is only valid while the lock is held, and anyway
  2143. * a later vma might be split and reinserted earlier while lock dropped.
  2144. *
  2145. * The list of nonlinear vmas could be handled more efficiently, using
  2146. * a placeholder, but handle it in the same way until a need is shown.
  2147. * It is important to search the prio_tree before nonlinear list: a vma
  2148. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2149. * while the lock is dropped; but never shifted from list to prio_tree.
  2150. *
  2151. * In order to make forward progress despite restarting the search,
  2152. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2153. * quickly skip it next time around. Since the prio_tree search only
  2154. * shows us those vmas affected by unmapping the range in question, we
  2155. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2156. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2157. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2158. * i_mmap_lock.
  2159. *
  2160. * In order to make forward progress despite repeatedly restarting some
  2161. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2162. * and restart from that address when we reach that vma again. It might
  2163. * have been split or merged, shrunk or extended, but never shifted: so
  2164. * restart_addr remains valid so long as it remains in the vma's range.
  2165. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2166. * values so we can save vma's restart_addr in its truncate_count field.
  2167. */
  2168. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2169. static void reset_vma_truncate_counts(struct address_space *mapping)
  2170. {
  2171. struct vm_area_struct *vma;
  2172. struct prio_tree_iter iter;
  2173. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2174. vma->vm_truncate_count = 0;
  2175. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2176. vma->vm_truncate_count = 0;
  2177. }
  2178. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2179. unsigned long start_addr, unsigned long end_addr,
  2180. struct zap_details *details)
  2181. {
  2182. unsigned long restart_addr;
  2183. int need_break;
  2184. /*
  2185. * files that support invalidating or truncating portions of the
  2186. * file from under mmaped areas must have their ->fault function
  2187. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2188. * This provides synchronisation against concurrent unmapping here.
  2189. */
  2190. again:
  2191. restart_addr = vma->vm_truncate_count;
  2192. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2193. start_addr = restart_addr;
  2194. if (start_addr >= end_addr) {
  2195. /* Top of vma has been split off since last time */
  2196. vma->vm_truncate_count = details->truncate_count;
  2197. return 0;
  2198. }
  2199. }
  2200. restart_addr = zap_page_range(vma, start_addr,
  2201. end_addr - start_addr, details);
  2202. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2203. if (restart_addr >= end_addr) {
  2204. /* We have now completed this vma: mark it so */
  2205. vma->vm_truncate_count = details->truncate_count;
  2206. if (!need_break)
  2207. return 0;
  2208. } else {
  2209. /* Note restart_addr in vma's truncate_count field */
  2210. vma->vm_truncate_count = restart_addr;
  2211. if (!need_break)
  2212. goto again;
  2213. }
  2214. spin_unlock(details->i_mmap_lock);
  2215. cond_resched();
  2216. spin_lock(details->i_mmap_lock);
  2217. return -EINTR;
  2218. }
  2219. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2220. struct zap_details *details)
  2221. {
  2222. struct vm_area_struct *vma;
  2223. struct prio_tree_iter iter;
  2224. pgoff_t vba, vea, zba, zea;
  2225. restart:
  2226. vma_prio_tree_foreach(vma, &iter, root,
  2227. details->first_index, details->last_index) {
  2228. /* Skip quickly over those we have already dealt with */
  2229. if (vma->vm_truncate_count == details->truncate_count)
  2230. continue;
  2231. vba = vma->vm_pgoff;
  2232. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2233. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2234. zba = details->first_index;
  2235. if (zba < vba)
  2236. zba = vba;
  2237. zea = details->last_index;
  2238. if (zea > vea)
  2239. zea = vea;
  2240. if (unmap_mapping_range_vma(vma,
  2241. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2242. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2243. details) < 0)
  2244. goto restart;
  2245. }
  2246. }
  2247. static inline void unmap_mapping_range_list(struct list_head *head,
  2248. struct zap_details *details)
  2249. {
  2250. struct vm_area_struct *vma;
  2251. /*
  2252. * In nonlinear VMAs there is no correspondence between virtual address
  2253. * offset and file offset. So we must perform an exhaustive search
  2254. * across *all* the pages in each nonlinear VMA, not just the pages
  2255. * whose virtual address lies outside the file truncation point.
  2256. */
  2257. restart:
  2258. list_for_each_entry(vma, head, shared.vm_set.list) {
  2259. /* Skip quickly over those we have already dealt with */
  2260. if (vma->vm_truncate_count == details->truncate_count)
  2261. continue;
  2262. details->nonlinear_vma = vma;
  2263. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2264. vma->vm_end, details) < 0)
  2265. goto restart;
  2266. }
  2267. }
  2268. /**
  2269. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2270. * @mapping: the address space containing mmaps to be unmapped.
  2271. * @holebegin: byte in first page to unmap, relative to the start of
  2272. * the underlying file. This will be rounded down to a PAGE_SIZE
  2273. * boundary. Note that this is different from truncate_pagecache(), which
  2274. * must keep the partial page. In contrast, we must get rid of
  2275. * partial pages.
  2276. * @holelen: size of prospective hole in bytes. This will be rounded
  2277. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2278. * end of the file.
  2279. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2280. * but 0 when invalidating pagecache, don't throw away private data.
  2281. */
  2282. void unmap_mapping_range(struct address_space *mapping,
  2283. loff_t const holebegin, loff_t const holelen, int even_cows)
  2284. {
  2285. struct zap_details details;
  2286. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2287. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2288. /* Check for overflow. */
  2289. if (sizeof(holelen) > sizeof(hlen)) {
  2290. long long holeend =
  2291. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2292. if (holeend & ~(long long)ULONG_MAX)
  2293. hlen = ULONG_MAX - hba + 1;
  2294. }
  2295. details.check_mapping = even_cows? NULL: mapping;
  2296. details.nonlinear_vma = NULL;
  2297. details.first_index = hba;
  2298. details.last_index = hba + hlen - 1;
  2299. if (details.last_index < details.first_index)
  2300. details.last_index = ULONG_MAX;
  2301. details.i_mmap_lock = &mapping->i_mmap_lock;
  2302. spin_lock(&mapping->i_mmap_lock);
  2303. /* Protect against endless unmapping loops */
  2304. mapping->truncate_count++;
  2305. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2306. if (mapping->truncate_count == 0)
  2307. reset_vma_truncate_counts(mapping);
  2308. mapping->truncate_count++;
  2309. }
  2310. details.truncate_count = mapping->truncate_count;
  2311. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2312. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2313. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2314. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2315. spin_unlock(&mapping->i_mmap_lock);
  2316. }
  2317. EXPORT_SYMBOL(unmap_mapping_range);
  2318. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2319. {
  2320. struct address_space *mapping = inode->i_mapping;
  2321. /*
  2322. * If the underlying filesystem is not going to provide
  2323. * a way to truncate a range of blocks (punch a hole) -
  2324. * we should return failure right now.
  2325. */
  2326. if (!inode->i_op->truncate_range)
  2327. return -ENOSYS;
  2328. mutex_lock(&inode->i_mutex);
  2329. down_write(&inode->i_alloc_sem);
  2330. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2331. truncate_inode_pages_range(mapping, offset, end);
  2332. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2333. inode->i_op->truncate_range(inode, offset, end);
  2334. up_write(&inode->i_alloc_sem);
  2335. mutex_unlock(&inode->i_mutex);
  2336. return 0;
  2337. }
  2338. /*
  2339. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2340. * but allow concurrent faults), and pte mapped but not yet locked.
  2341. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2342. */
  2343. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2344. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2345. unsigned int flags, pte_t orig_pte)
  2346. {
  2347. spinlock_t *ptl;
  2348. struct page *page;
  2349. swp_entry_t entry;
  2350. pte_t pte;
  2351. struct mem_cgroup *ptr = NULL;
  2352. int ret = 0;
  2353. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2354. goto out;
  2355. entry = pte_to_swp_entry(orig_pte);
  2356. if (unlikely(non_swap_entry(entry))) {
  2357. if (is_migration_entry(entry)) {
  2358. migration_entry_wait(mm, pmd, address);
  2359. } else if (is_hwpoison_entry(entry)) {
  2360. ret = VM_FAULT_HWPOISON;
  2361. } else {
  2362. print_bad_pte(vma, address, orig_pte, NULL);
  2363. ret = VM_FAULT_SIGBUS;
  2364. }
  2365. goto out;
  2366. }
  2367. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2368. page = lookup_swap_cache(entry);
  2369. if (!page) {
  2370. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2371. page = swapin_readahead(entry,
  2372. GFP_HIGHUSER_MOVABLE, vma, address);
  2373. if (!page) {
  2374. /*
  2375. * Back out if somebody else faulted in this pte
  2376. * while we released the pte lock.
  2377. */
  2378. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2379. if (likely(pte_same(*page_table, orig_pte)))
  2380. ret = VM_FAULT_OOM;
  2381. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2382. goto unlock;
  2383. }
  2384. /* Had to read the page from swap area: Major fault */
  2385. ret = VM_FAULT_MAJOR;
  2386. count_vm_event(PGMAJFAULT);
  2387. } else if (PageHWPoison(page)) {
  2388. /*
  2389. * hwpoisoned dirty swapcache pages are kept for killing
  2390. * owner processes (which may be unknown at hwpoison time)
  2391. */
  2392. ret = VM_FAULT_HWPOISON;
  2393. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2394. goto out_release;
  2395. }
  2396. lock_page(page);
  2397. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2398. page = ksm_might_need_to_copy(page, vma, address);
  2399. if (!page) {
  2400. ret = VM_FAULT_OOM;
  2401. goto out;
  2402. }
  2403. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2404. ret = VM_FAULT_OOM;
  2405. goto out_page;
  2406. }
  2407. /*
  2408. * Back out if somebody else already faulted in this pte.
  2409. */
  2410. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2411. if (unlikely(!pte_same(*page_table, orig_pte)))
  2412. goto out_nomap;
  2413. if (unlikely(!PageUptodate(page))) {
  2414. ret = VM_FAULT_SIGBUS;
  2415. goto out_nomap;
  2416. }
  2417. /*
  2418. * The page isn't present yet, go ahead with the fault.
  2419. *
  2420. * Be careful about the sequence of operations here.
  2421. * To get its accounting right, reuse_swap_page() must be called
  2422. * while the page is counted on swap but not yet in mapcount i.e.
  2423. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2424. * must be called after the swap_free(), or it will never succeed.
  2425. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2426. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2427. * in page->private. In this case, a record in swap_cgroup is silently
  2428. * discarded at swap_free().
  2429. */
  2430. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2431. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2432. pte = mk_pte(page, vma->vm_page_prot);
  2433. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2434. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2435. flags &= ~FAULT_FLAG_WRITE;
  2436. }
  2437. flush_icache_page(vma, page);
  2438. set_pte_at(mm, address, page_table, pte);
  2439. page_add_anon_rmap(page, vma, address);
  2440. /* It's better to call commit-charge after rmap is established */
  2441. mem_cgroup_commit_charge_swapin(page, ptr);
  2442. swap_free(entry);
  2443. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2444. try_to_free_swap(page);
  2445. unlock_page(page);
  2446. if (flags & FAULT_FLAG_WRITE) {
  2447. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2448. if (ret & VM_FAULT_ERROR)
  2449. ret &= VM_FAULT_ERROR;
  2450. goto out;
  2451. }
  2452. /* No need to invalidate - it was non-present before */
  2453. update_mmu_cache(vma, address, page_table);
  2454. unlock:
  2455. pte_unmap_unlock(page_table, ptl);
  2456. out:
  2457. return ret;
  2458. out_nomap:
  2459. mem_cgroup_cancel_charge_swapin(ptr);
  2460. pte_unmap_unlock(page_table, ptl);
  2461. out_page:
  2462. unlock_page(page);
  2463. out_release:
  2464. page_cache_release(page);
  2465. return ret;
  2466. }
  2467. /*
  2468. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2469. * but allow concurrent faults), and pte mapped but not yet locked.
  2470. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2471. */
  2472. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2473. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2474. unsigned int flags)
  2475. {
  2476. struct page *page;
  2477. spinlock_t *ptl;
  2478. pte_t entry;
  2479. if (!(flags & FAULT_FLAG_WRITE)) {
  2480. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2481. vma->vm_page_prot));
  2482. ptl = pte_lockptr(mm, pmd);
  2483. spin_lock(ptl);
  2484. if (!pte_none(*page_table))
  2485. goto unlock;
  2486. goto setpte;
  2487. }
  2488. /* Allocate our own private page. */
  2489. pte_unmap(page_table);
  2490. if (unlikely(anon_vma_prepare(vma)))
  2491. goto oom;
  2492. page = alloc_zeroed_user_highpage_movable(vma, address);
  2493. if (!page)
  2494. goto oom;
  2495. __SetPageUptodate(page);
  2496. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2497. goto oom_free_page;
  2498. entry = mk_pte(page, vma->vm_page_prot);
  2499. if (vma->vm_flags & VM_WRITE)
  2500. entry = pte_mkwrite(pte_mkdirty(entry));
  2501. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2502. if (!pte_none(*page_table))
  2503. goto release;
  2504. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2505. page_add_new_anon_rmap(page, vma, address);
  2506. setpte:
  2507. set_pte_at(mm, address, page_table, entry);
  2508. /* No need to invalidate - it was non-present before */
  2509. update_mmu_cache(vma, address, page_table);
  2510. unlock:
  2511. pte_unmap_unlock(page_table, ptl);
  2512. return 0;
  2513. release:
  2514. mem_cgroup_uncharge_page(page);
  2515. page_cache_release(page);
  2516. goto unlock;
  2517. oom_free_page:
  2518. page_cache_release(page);
  2519. oom:
  2520. return VM_FAULT_OOM;
  2521. }
  2522. /*
  2523. * __do_fault() tries to create a new page mapping. It aggressively
  2524. * tries to share with existing pages, but makes a separate copy if
  2525. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2526. * the next page fault.
  2527. *
  2528. * As this is called only for pages that do not currently exist, we
  2529. * do not need to flush old virtual caches or the TLB.
  2530. *
  2531. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2532. * but allow concurrent faults), and pte neither mapped nor locked.
  2533. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2534. */
  2535. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2536. unsigned long address, pmd_t *pmd,
  2537. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2538. {
  2539. pte_t *page_table;
  2540. spinlock_t *ptl;
  2541. struct page *page;
  2542. pte_t entry;
  2543. int anon = 0;
  2544. int charged = 0;
  2545. struct page *dirty_page = NULL;
  2546. struct vm_fault vmf;
  2547. int ret;
  2548. int page_mkwrite = 0;
  2549. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2550. vmf.pgoff = pgoff;
  2551. vmf.flags = flags;
  2552. vmf.page = NULL;
  2553. ret = vma->vm_ops->fault(vma, &vmf);
  2554. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2555. return ret;
  2556. if (unlikely(PageHWPoison(vmf.page))) {
  2557. if (ret & VM_FAULT_LOCKED)
  2558. unlock_page(vmf.page);
  2559. return VM_FAULT_HWPOISON;
  2560. }
  2561. /*
  2562. * For consistency in subsequent calls, make the faulted page always
  2563. * locked.
  2564. */
  2565. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2566. lock_page(vmf.page);
  2567. else
  2568. VM_BUG_ON(!PageLocked(vmf.page));
  2569. /*
  2570. * Should we do an early C-O-W break?
  2571. */
  2572. page = vmf.page;
  2573. if (flags & FAULT_FLAG_WRITE) {
  2574. if (!(vma->vm_flags & VM_SHARED)) {
  2575. anon = 1;
  2576. if (unlikely(anon_vma_prepare(vma))) {
  2577. ret = VM_FAULT_OOM;
  2578. goto out;
  2579. }
  2580. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2581. vma, address);
  2582. if (!page) {
  2583. ret = VM_FAULT_OOM;
  2584. goto out;
  2585. }
  2586. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2587. ret = VM_FAULT_OOM;
  2588. page_cache_release(page);
  2589. goto out;
  2590. }
  2591. charged = 1;
  2592. /*
  2593. * Don't let another task, with possibly unlocked vma,
  2594. * keep the mlocked page.
  2595. */
  2596. if (vma->vm_flags & VM_LOCKED)
  2597. clear_page_mlock(vmf.page);
  2598. copy_user_highpage(page, vmf.page, address, vma);
  2599. __SetPageUptodate(page);
  2600. } else {
  2601. /*
  2602. * If the page will be shareable, see if the backing
  2603. * address space wants to know that the page is about
  2604. * to become writable
  2605. */
  2606. if (vma->vm_ops->page_mkwrite) {
  2607. int tmp;
  2608. unlock_page(page);
  2609. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2610. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2611. if (unlikely(tmp &
  2612. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2613. ret = tmp;
  2614. goto unwritable_page;
  2615. }
  2616. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2617. lock_page(page);
  2618. if (!page->mapping) {
  2619. ret = 0; /* retry the fault */
  2620. unlock_page(page);
  2621. goto unwritable_page;
  2622. }
  2623. } else
  2624. VM_BUG_ON(!PageLocked(page));
  2625. page_mkwrite = 1;
  2626. }
  2627. }
  2628. }
  2629. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2630. /*
  2631. * This silly early PAGE_DIRTY setting removes a race
  2632. * due to the bad i386 page protection. But it's valid
  2633. * for other architectures too.
  2634. *
  2635. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2636. * an exclusive copy of the page, or this is a shared mapping,
  2637. * so we can make it writable and dirty to avoid having to
  2638. * handle that later.
  2639. */
  2640. /* Only go through if we didn't race with anybody else... */
  2641. if (likely(pte_same(*page_table, orig_pte))) {
  2642. flush_icache_page(vma, page);
  2643. entry = mk_pte(page, vma->vm_page_prot);
  2644. if (flags & FAULT_FLAG_WRITE)
  2645. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2646. if (anon) {
  2647. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2648. page_add_new_anon_rmap(page, vma, address);
  2649. } else {
  2650. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2651. page_add_file_rmap(page);
  2652. if (flags & FAULT_FLAG_WRITE) {
  2653. dirty_page = page;
  2654. get_page(dirty_page);
  2655. }
  2656. }
  2657. set_pte_at(mm, address, page_table, entry);
  2658. /* no need to invalidate: a not-present page won't be cached */
  2659. update_mmu_cache(vma, address, page_table);
  2660. } else {
  2661. if (charged)
  2662. mem_cgroup_uncharge_page(page);
  2663. if (anon)
  2664. page_cache_release(page);
  2665. else
  2666. anon = 1; /* no anon but release faulted_page */
  2667. }
  2668. pte_unmap_unlock(page_table, ptl);
  2669. out:
  2670. if (dirty_page) {
  2671. struct address_space *mapping = page->mapping;
  2672. if (set_page_dirty(dirty_page))
  2673. page_mkwrite = 1;
  2674. unlock_page(dirty_page);
  2675. put_page(dirty_page);
  2676. if (page_mkwrite && mapping) {
  2677. /*
  2678. * Some device drivers do not set page.mapping but still
  2679. * dirty their pages
  2680. */
  2681. balance_dirty_pages_ratelimited(mapping);
  2682. }
  2683. /* file_update_time outside page_lock */
  2684. if (vma->vm_file)
  2685. file_update_time(vma->vm_file);
  2686. } else {
  2687. unlock_page(vmf.page);
  2688. if (anon)
  2689. page_cache_release(vmf.page);
  2690. }
  2691. return ret;
  2692. unwritable_page:
  2693. page_cache_release(page);
  2694. return ret;
  2695. }
  2696. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2697. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2698. unsigned int flags, pte_t orig_pte)
  2699. {
  2700. pgoff_t pgoff = (((address & PAGE_MASK)
  2701. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2702. pte_unmap(page_table);
  2703. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2704. }
  2705. /*
  2706. * Fault of a previously existing named mapping. Repopulate the pte
  2707. * from the encoded file_pte if possible. This enables swappable
  2708. * nonlinear vmas.
  2709. *
  2710. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2711. * but allow concurrent faults), and pte mapped but not yet locked.
  2712. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2713. */
  2714. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2715. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2716. unsigned int flags, pte_t orig_pte)
  2717. {
  2718. pgoff_t pgoff;
  2719. flags |= FAULT_FLAG_NONLINEAR;
  2720. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2721. return 0;
  2722. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2723. /*
  2724. * Page table corrupted: show pte and kill process.
  2725. */
  2726. print_bad_pte(vma, address, orig_pte, NULL);
  2727. return VM_FAULT_SIGBUS;
  2728. }
  2729. pgoff = pte_to_pgoff(orig_pte);
  2730. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2731. }
  2732. /*
  2733. * These routines also need to handle stuff like marking pages dirty
  2734. * and/or accessed for architectures that don't do it in hardware (most
  2735. * RISC architectures). The early dirtying is also good on the i386.
  2736. *
  2737. * There is also a hook called "update_mmu_cache()" that architectures
  2738. * with external mmu caches can use to update those (ie the Sparc or
  2739. * PowerPC hashed page tables that act as extended TLBs).
  2740. *
  2741. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2742. * but allow concurrent faults), and pte mapped but not yet locked.
  2743. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2744. */
  2745. static inline int handle_pte_fault(struct mm_struct *mm,
  2746. struct vm_area_struct *vma, unsigned long address,
  2747. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2748. {
  2749. pte_t entry;
  2750. spinlock_t *ptl;
  2751. entry = *pte;
  2752. if (!pte_present(entry)) {
  2753. if (pte_none(entry)) {
  2754. if (vma->vm_ops) {
  2755. if (likely(vma->vm_ops->fault))
  2756. return do_linear_fault(mm, vma, address,
  2757. pte, pmd, flags, entry);
  2758. }
  2759. return do_anonymous_page(mm, vma, address,
  2760. pte, pmd, flags);
  2761. }
  2762. if (pte_file(entry))
  2763. return do_nonlinear_fault(mm, vma, address,
  2764. pte, pmd, flags, entry);
  2765. return do_swap_page(mm, vma, address,
  2766. pte, pmd, flags, entry);
  2767. }
  2768. ptl = pte_lockptr(mm, pmd);
  2769. spin_lock(ptl);
  2770. if (unlikely(!pte_same(*pte, entry)))
  2771. goto unlock;
  2772. if (flags & FAULT_FLAG_WRITE) {
  2773. if (!pte_write(entry))
  2774. return do_wp_page(mm, vma, address,
  2775. pte, pmd, ptl, entry);
  2776. entry = pte_mkdirty(entry);
  2777. }
  2778. entry = pte_mkyoung(entry);
  2779. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2780. update_mmu_cache(vma, address, pte);
  2781. } else {
  2782. /*
  2783. * This is needed only for protection faults but the arch code
  2784. * is not yet telling us if this is a protection fault or not.
  2785. * This still avoids useless tlb flushes for .text page faults
  2786. * with threads.
  2787. */
  2788. if (flags & FAULT_FLAG_WRITE)
  2789. flush_tlb_page(vma, address);
  2790. }
  2791. unlock:
  2792. pte_unmap_unlock(pte, ptl);
  2793. return 0;
  2794. }
  2795. /*
  2796. * By the time we get here, we already hold the mm semaphore
  2797. */
  2798. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2799. unsigned long address, unsigned int flags)
  2800. {
  2801. pgd_t *pgd;
  2802. pud_t *pud;
  2803. pmd_t *pmd;
  2804. pte_t *pte;
  2805. __set_current_state(TASK_RUNNING);
  2806. count_vm_event(PGFAULT);
  2807. /* do counter updates before entering really critical section. */
  2808. check_sync_rss_stat(current);
  2809. if (unlikely(is_vm_hugetlb_page(vma)))
  2810. return hugetlb_fault(mm, vma, address, flags);
  2811. pgd = pgd_offset(mm, address);
  2812. pud = pud_alloc(mm, pgd, address);
  2813. if (!pud)
  2814. return VM_FAULT_OOM;
  2815. pmd = pmd_alloc(mm, pud, address);
  2816. if (!pmd)
  2817. return VM_FAULT_OOM;
  2818. pte = pte_alloc_map(mm, pmd, address);
  2819. if (!pte)
  2820. return VM_FAULT_OOM;
  2821. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2822. }
  2823. #ifndef __PAGETABLE_PUD_FOLDED
  2824. /*
  2825. * Allocate page upper directory.
  2826. * We've already handled the fast-path in-line.
  2827. */
  2828. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2829. {
  2830. pud_t *new = pud_alloc_one(mm, address);
  2831. if (!new)
  2832. return -ENOMEM;
  2833. smp_wmb(); /* See comment in __pte_alloc */
  2834. spin_lock(&mm->page_table_lock);
  2835. if (pgd_present(*pgd)) /* Another has populated it */
  2836. pud_free(mm, new);
  2837. else
  2838. pgd_populate(mm, pgd, new);
  2839. spin_unlock(&mm->page_table_lock);
  2840. return 0;
  2841. }
  2842. #endif /* __PAGETABLE_PUD_FOLDED */
  2843. #ifndef __PAGETABLE_PMD_FOLDED
  2844. /*
  2845. * Allocate page middle directory.
  2846. * We've already handled the fast-path in-line.
  2847. */
  2848. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2849. {
  2850. pmd_t *new = pmd_alloc_one(mm, address);
  2851. if (!new)
  2852. return -ENOMEM;
  2853. smp_wmb(); /* See comment in __pte_alloc */
  2854. spin_lock(&mm->page_table_lock);
  2855. #ifndef __ARCH_HAS_4LEVEL_HACK
  2856. if (pud_present(*pud)) /* Another has populated it */
  2857. pmd_free(mm, new);
  2858. else
  2859. pud_populate(mm, pud, new);
  2860. #else
  2861. if (pgd_present(*pud)) /* Another has populated it */
  2862. pmd_free(mm, new);
  2863. else
  2864. pgd_populate(mm, pud, new);
  2865. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2866. spin_unlock(&mm->page_table_lock);
  2867. return 0;
  2868. }
  2869. #endif /* __PAGETABLE_PMD_FOLDED */
  2870. int make_pages_present(unsigned long addr, unsigned long end)
  2871. {
  2872. int ret, len, write;
  2873. struct vm_area_struct * vma;
  2874. vma = find_vma(current->mm, addr);
  2875. if (!vma)
  2876. return -ENOMEM;
  2877. write = (vma->vm_flags & VM_WRITE) != 0;
  2878. BUG_ON(addr >= end);
  2879. BUG_ON(end > vma->vm_end);
  2880. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2881. ret = get_user_pages(current, current->mm, addr,
  2882. len, write, 0, NULL, NULL);
  2883. if (ret < 0)
  2884. return ret;
  2885. return ret == len ? 0 : -EFAULT;
  2886. }
  2887. #if !defined(__HAVE_ARCH_GATE_AREA)
  2888. #if defined(AT_SYSINFO_EHDR)
  2889. static struct vm_area_struct gate_vma;
  2890. static int __init gate_vma_init(void)
  2891. {
  2892. gate_vma.vm_mm = NULL;
  2893. gate_vma.vm_start = FIXADDR_USER_START;
  2894. gate_vma.vm_end = FIXADDR_USER_END;
  2895. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2896. gate_vma.vm_page_prot = __P101;
  2897. /*
  2898. * Make sure the vDSO gets into every core dump.
  2899. * Dumping its contents makes post-mortem fully interpretable later
  2900. * without matching up the same kernel and hardware config to see
  2901. * what PC values meant.
  2902. */
  2903. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2904. return 0;
  2905. }
  2906. __initcall(gate_vma_init);
  2907. #endif
  2908. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2909. {
  2910. #ifdef AT_SYSINFO_EHDR
  2911. return &gate_vma;
  2912. #else
  2913. return NULL;
  2914. #endif
  2915. }
  2916. int in_gate_area_no_task(unsigned long addr)
  2917. {
  2918. #ifdef AT_SYSINFO_EHDR
  2919. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2920. return 1;
  2921. #endif
  2922. return 0;
  2923. }
  2924. #endif /* __HAVE_ARCH_GATE_AREA */
  2925. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2926. pte_t **ptepp, spinlock_t **ptlp)
  2927. {
  2928. pgd_t *pgd;
  2929. pud_t *pud;
  2930. pmd_t *pmd;
  2931. pte_t *ptep;
  2932. pgd = pgd_offset(mm, address);
  2933. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2934. goto out;
  2935. pud = pud_offset(pgd, address);
  2936. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2937. goto out;
  2938. pmd = pmd_offset(pud, address);
  2939. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2940. goto out;
  2941. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2942. if (pmd_huge(*pmd))
  2943. goto out;
  2944. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2945. if (!ptep)
  2946. goto out;
  2947. if (!pte_present(*ptep))
  2948. goto unlock;
  2949. *ptepp = ptep;
  2950. return 0;
  2951. unlock:
  2952. pte_unmap_unlock(ptep, *ptlp);
  2953. out:
  2954. return -EINVAL;
  2955. }
  2956. /**
  2957. * follow_pfn - look up PFN at a user virtual address
  2958. * @vma: memory mapping
  2959. * @address: user virtual address
  2960. * @pfn: location to store found PFN
  2961. *
  2962. * Only IO mappings and raw PFN mappings are allowed.
  2963. *
  2964. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2965. */
  2966. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2967. unsigned long *pfn)
  2968. {
  2969. int ret = -EINVAL;
  2970. spinlock_t *ptl;
  2971. pte_t *ptep;
  2972. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2973. return ret;
  2974. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2975. if (ret)
  2976. return ret;
  2977. *pfn = pte_pfn(*ptep);
  2978. pte_unmap_unlock(ptep, ptl);
  2979. return 0;
  2980. }
  2981. EXPORT_SYMBOL(follow_pfn);
  2982. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2983. int follow_phys(struct vm_area_struct *vma,
  2984. unsigned long address, unsigned int flags,
  2985. unsigned long *prot, resource_size_t *phys)
  2986. {
  2987. int ret = -EINVAL;
  2988. pte_t *ptep, pte;
  2989. spinlock_t *ptl;
  2990. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2991. goto out;
  2992. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2993. goto out;
  2994. pte = *ptep;
  2995. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2996. goto unlock;
  2997. *prot = pgprot_val(pte_pgprot(pte));
  2998. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2999. ret = 0;
  3000. unlock:
  3001. pte_unmap_unlock(ptep, ptl);
  3002. out:
  3003. return ret;
  3004. }
  3005. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3006. void *buf, int len, int write)
  3007. {
  3008. resource_size_t phys_addr;
  3009. unsigned long prot = 0;
  3010. void __iomem *maddr;
  3011. int offset = addr & (PAGE_SIZE-1);
  3012. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3013. return -EINVAL;
  3014. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3015. if (write)
  3016. memcpy_toio(maddr + offset, buf, len);
  3017. else
  3018. memcpy_fromio(buf, maddr + offset, len);
  3019. iounmap(maddr);
  3020. return len;
  3021. }
  3022. #endif
  3023. /*
  3024. * Access another process' address space.
  3025. * Source/target buffer must be kernel space,
  3026. * Do not walk the page table directly, use get_user_pages
  3027. */
  3028. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3029. {
  3030. struct mm_struct *mm;
  3031. struct vm_area_struct *vma;
  3032. void *old_buf = buf;
  3033. mm = get_task_mm(tsk);
  3034. if (!mm)
  3035. return 0;
  3036. down_read(&mm->mmap_sem);
  3037. /* ignore errors, just check how much was successfully transferred */
  3038. while (len) {
  3039. int bytes, ret, offset;
  3040. void *maddr;
  3041. struct page *page = NULL;
  3042. ret = get_user_pages(tsk, mm, addr, 1,
  3043. write, 1, &page, &vma);
  3044. if (ret <= 0) {
  3045. /*
  3046. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3047. * we can access using slightly different code.
  3048. */
  3049. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3050. vma = find_vma(mm, addr);
  3051. if (!vma)
  3052. break;
  3053. if (vma->vm_ops && vma->vm_ops->access)
  3054. ret = vma->vm_ops->access(vma, addr, buf,
  3055. len, write);
  3056. if (ret <= 0)
  3057. #endif
  3058. break;
  3059. bytes = ret;
  3060. } else {
  3061. bytes = len;
  3062. offset = addr & (PAGE_SIZE-1);
  3063. if (bytes > PAGE_SIZE-offset)
  3064. bytes = PAGE_SIZE-offset;
  3065. maddr = kmap(page);
  3066. if (write) {
  3067. copy_to_user_page(vma, page, addr,
  3068. maddr + offset, buf, bytes);
  3069. set_page_dirty_lock(page);
  3070. } else {
  3071. copy_from_user_page(vma, page, addr,
  3072. buf, maddr + offset, bytes);
  3073. }
  3074. kunmap(page);
  3075. page_cache_release(page);
  3076. }
  3077. len -= bytes;
  3078. buf += bytes;
  3079. addr += bytes;
  3080. }
  3081. up_read(&mm->mmap_sem);
  3082. mmput(mm);
  3083. return buf - old_buf;
  3084. }
  3085. /*
  3086. * Print the name of a VMA.
  3087. */
  3088. void print_vma_addr(char *prefix, unsigned long ip)
  3089. {
  3090. struct mm_struct *mm = current->mm;
  3091. struct vm_area_struct *vma;
  3092. /*
  3093. * Do not print if we are in atomic
  3094. * contexts (in exception stacks, etc.):
  3095. */
  3096. if (preempt_count())
  3097. return;
  3098. down_read(&mm->mmap_sem);
  3099. vma = find_vma(mm, ip);
  3100. if (vma && vma->vm_file) {
  3101. struct file *f = vma->vm_file;
  3102. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3103. if (buf) {
  3104. char *p, *s;
  3105. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3106. if (IS_ERR(p))
  3107. p = "?";
  3108. s = strrchr(p, '/');
  3109. if (s)
  3110. p = s+1;
  3111. printk("%s%s[%lx+%lx]", prefix, p,
  3112. vma->vm_start,
  3113. vma->vm_end - vma->vm_start);
  3114. free_page((unsigned long)buf);
  3115. }
  3116. }
  3117. up_read(&current->mm->mmap_sem);
  3118. }
  3119. #ifdef CONFIG_PROVE_LOCKING
  3120. void might_fault(void)
  3121. {
  3122. /*
  3123. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3124. * holding the mmap_sem, this is safe because kernel memory doesn't
  3125. * get paged out, therefore we'll never actually fault, and the
  3126. * below annotations will generate false positives.
  3127. */
  3128. if (segment_eq(get_fs(), KERNEL_DS))
  3129. return;
  3130. might_sleep();
  3131. /*
  3132. * it would be nicer only to annotate paths which are not under
  3133. * pagefault_disable, however that requires a larger audit and
  3134. * providing helpers like get_user_atomic.
  3135. */
  3136. if (!in_atomic() && current->mm)
  3137. might_lock_read(&current->mm->mmap_sem);
  3138. }
  3139. EXPORT_SYMBOL(might_fault);
  3140. #endif