swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. /*
  47. * Enumeration for sync targets
  48. */
  49. enum dma_sync_target {
  50. SYNC_FOR_CPU = 0,
  51. SYNC_FOR_DEVICE = 1,
  52. };
  53. int swiotlb_force;
  54. /*
  55. * Used to do a quick range check in unmap_single and
  56. * sync_single_*, to see if the memory was in fact allocated by this
  57. * API.
  58. */
  59. static char *io_tlb_start, *io_tlb_end;
  60. /*
  61. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  62. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  63. */
  64. static unsigned long io_tlb_nslabs;
  65. /*
  66. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  67. */
  68. static unsigned long io_tlb_overflow = 32*1024;
  69. void *io_tlb_overflow_buffer;
  70. /*
  71. * This is a free list describing the number of free entries available from
  72. * each index
  73. */
  74. static unsigned int *io_tlb_list;
  75. static unsigned int io_tlb_index;
  76. /*
  77. * We need to save away the original address corresponding to a mapped entry
  78. * for the sync operations.
  79. */
  80. static phys_addr_t *io_tlb_orig_addr;
  81. /*
  82. * Protect the above data structures in the map and unmap calls
  83. */
  84. static DEFINE_SPINLOCK(io_tlb_lock);
  85. static int late_alloc;
  86. static int __init
  87. setup_io_tlb_npages(char *str)
  88. {
  89. if (isdigit(*str)) {
  90. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  91. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  92. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  93. }
  94. if (*str == ',')
  95. ++str;
  96. if (!strcmp(str, "force"))
  97. swiotlb_force = 1;
  98. return 1;
  99. }
  100. __setup("swiotlb=", setup_io_tlb_npages);
  101. /* make io_tlb_overflow tunable too? */
  102. /* Note that this doesn't work with highmem page */
  103. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  104. volatile void *address)
  105. {
  106. return phys_to_dma(hwdev, virt_to_phys(address));
  107. }
  108. void swiotlb_print_info(void)
  109. {
  110. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  111. phys_addr_t pstart, pend;
  112. pstart = virt_to_phys(io_tlb_start);
  113. pend = virt_to_phys(io_tlb_end);
  114. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  115. bytes >> 20, io_tlb_start, io_tlb_end);
  116. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  117. (unsigned long long)pstart,
  118. (unsigned long long)pend);
  119. }
  120. /*
  121. * Statically reserve bounce buffer space and initialize bounce buffer data
  122. * structures for the software IO TLB used to implement the DMA API.
  123. */
  124. void __init
  125. swiotlb_init_with_default_size(size_t default_size, int verbose)
  126. {
  127. unsigned long i, bytes;
  128. if (!io_tlb_nslabs) {
  129. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  130. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  131. }
  132. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  133. /*
  134. * Get IO TLB memory from the low pages
  135. */
  136. io_tlb_start = alloc_bootmem_low_pages(bytes);
  137. if (!io_tlb_start)
  138. panic("Cannot allocate SWIOTLB buffer");
  139. io_tlb_end = io_tlb_start + bytes;
  140. /*
  141. * Allocate and initialize the free list array. This array is used
  142. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  143. * between io_tlb_start and io_tlb_end.
  144. */
  145. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  146. for (i = 0; i < io_tlb_nslabs; i++)
  147. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  148. io_tlb_index = 0;
  149. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  150. /*
  151. * Get the overflow emergency buffer
  152. */
  153. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  154. if (!io_tlb_overflow_buffer)
  155. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  156. if (verbose)
  157. swiotlb_print_info();
  158. }
  159. void __init
  160. swiotlb_init(int verbose)
  161. {
  162. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  163. }
  164. /*
  165. * Systems with larger DMA zones (those that don't support ISA) can
  166. * initialize the swiotlb later using the slab allocator if needed.
  167. * This should be just like above, but with some error catching.
  168. */
  169. int
  170. swiotlb_late_init_with_default_size(size_t default_size)
  171. {
  172. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  173. unsigned int order;
  174. if (!io_tlb_nslabs) {
  175. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  176. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  177. }
  178. /*
  179. * Get IO TLB memory from the low pages
  180. */
  181. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  182. io_tlb_nslabs = SLABS_PER_PAGE << order;
  183. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  184. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  185. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  186. order);
  187. if (io_tlb_start)
  188. break;
  189. order--;
  190. }
  191. if (!io_tlb_start)
  192. goto cleanup1;
  193. if (order != get_order(bytes)) {
  194. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  195. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  196. io_tlb_nslabs = SLABS_PER_PAGE << order;
  197. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  198. }
  199. io_tlb_end = io_tlb_start + bytes;
  200. memset(io_tlb_start, 0, bytes);
  201. /*
  202. * Allocate and initialize the free list array. This array is used
  203. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  204. * between io_tlb_start and io_tlb_end.
  205. */
  206. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  207. get_order(io_tlb_nslabs * sizeof(int)));
  208. if (!io_tlb_list)
  209. goto cleanup2;
  210. for (i = 0; i < io_tlb_nslabs; i++)
  211. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  212. io_tlb_index = 0;
  213. io_tlb_orig_addr = (phys_addr_t *)
  214. __get_free_pages(GFP_KERNEL,
  215. get_order(io_tlb_nslabs *
  216. sizeof(phys_addr_t)));
  217. if (!io_tlb_orig_addr)
  218. goto cleanup3;
  219. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  220. /*
  221. * Get the overflow emergency buffer
  222. */
  223. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  224. get_order(io_tlb_overflow));
  225. if (!io_tlb_overflow_buffer)
  226. goto cleanup4;
  227. swiotlb_print_info();
  228. late_alloc = 1;
  229. return 0;
  230. cleanup4:
  231. free_pages((unsigned long)io_tlb_orig_addr,
  232. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  233. io_tlb_orig_addr = NULL;
  234. cleanup3:
  235. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  236. sizeof(int)));
  237. io_tlb_list = NULL;
  238. cleanup2:
  239. io_tlb_end = NULL;
  240. free_pages((unsigned long)io_tlb_start, order);
  241. io_tlb_start = NULL;
  242. cleanup1:
  243. io_tlb_nslabs = req_nslabs;
  244. return -ENOMEM;
  245. }
  246. void __init swiotlb_free(void)
  247. {
  248. if (!io_tlb_overflow_buffer)
  249. return;
  250. if (late_alloc) {
  251. free_pages((unsigned long)io_tlb_overflow_buffer,
  252. get_order(io_tlb_overflow));
  253. free_pages((unsigned long)io_tlb_orig_addr,
  254. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  255. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  256. sizeof(int)));
  257. free_pages((unsigned long)io_tlb_start,
  258. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  259. } else {
  260. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  261. io_tlb_overflow);
  262. free_bootmem_late(__pa(io_tlb_orig_addr),
  263. io_tlb_nslabs * sizeof(phys_addr_t));
  264. free_bootmem_late(__pa(io_tlb_list),
  265. io_tlb_nslabs * sizeof(int));
  266. free_bootmem_late(__pa(io_tlb_start),
  267. io_tlb_nslabs << IO_TLB_SHIFT);
  268. }
  269. }
  270. static int is_swiotlb_buffer(phys_addr_t paddr)
  271. {
  272. return paddr >= virt_to_phys(io_tlb_start) &&
  273. paddr < virt_to_phys(io_tlb_end);
  274. }
  275. /*
  276. * Bounce: copy the swiotlb buffer back to the original dma location
  277. */
  278. static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  279. enum dma_data_direction dir)
  280. {
  281. unsigned long pfn = PFN_DOWN(phys);
  282. if (PageHighMem(pfn_to_page(pfn))) {
  283. /* The buffer does not have a mapping. Map it in and copy */
  284. unsigned int offset = phys & ~PAGE_MASK;
  285. char *buffer;
  286. unsigned int sz = 0;
  287. unsigned long flags;
  288. while (size) {
  289. sz = min_t(size_t, PAGE_SIZE - offset, size);
  290. local_irq_save(flags);
  291. buffer = kmap_atomic(pfn_to_page(pfn),
  292. KM_BOUNCE_READ);
  293. if (dir == DMA_TO_DEVICE)
  294. memcpy(dma_addr, buffer + offset, sz);
  295. else
  296. memcpy(buffer + offset, dma_addr, sz);
  297. kunmap_atomic(buffer, KM_BOUNCE_READ);
  298. local_irq_restore(flags);
  299. size -= sz;
  300. pfn++;
  301. dma_addr += sz;
  302. offset = 0;
  303. }
  304. } else {
  305. if (dir == DMA_TO_DEVICE)
  306. memcpy(dma_addr, phys_to_virt(phys), size);
  307. else
  308. memcpy(phys_to_virt(phys), dma_addr, size);
  309. }
  310. }
  311. /*
  312. * Allocates bounce buffer and returns its kernel virtual address.
  313. */
  314. static void *
  315. map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
  316. {
  317. unsigned long flags;
  318. char *dma_addr;
  319. unsigned int nslots, stride, index, wrap;
  320. int i;
  321. unsigned long start_dma_addr;
  322. unsigned long mask;
  323. unsigned long offset_slots;
  324. unsigned long max_slots;
  325. mask = dma_get_seg_boundary(hwdev);
  326. start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
  327. offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  328. /*
  329. * Carefully handle integer overflow which can occur when mask == ~0UL.
  330. */
  331. max_slots = mask + 1
  332. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  333. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  334. /*
  335. * For mappings greater than a page, we limit the stride (and
  336. * hence alignment) to a page size.
  337. */
  338. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  339. if (size > PAGE_SIZE)
  340. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  341. else
  342. stride = 1;
  343. BUG_ON(!nslots);
  344. /*
  345. * Find suitable number of IO TLB entries size that will fit this
  346. * request and allocate a buffer from that IO TLB pool.
  347. */
  348. spin_lock_irqsave(&io_tlb_lock, flags);
  349. index = ALIGN(io_tlb_index, stride);
  350. if (index >= io_tlb_nslabs)
  351. index = 0;
  352. wrap = index;
  353. do {
  354. while (iommu_is_span_boundary(index, nslots, offset_slots,
  355. max_slots)) {
  356. index += stride;
  357. if (index >= io_tlb_nslabs)
  358. index = 0;
  359. if (index == wrap)
  360. goto not_found;
  361. }
  362. /*
  363. * If we find a slot that indicates we have 'nslots' number of
  364. * contiguous buffers, we allocate the buffers from that slot
  365. * and mark the entries as '0' indicating unavailable.
  366. */
  367. if (io_tlb_list[index] >= nslots) {
  368. int count = 0;
  369. for (i = index; i < (int) (index + nslots); i++)
  370. io_tlb_list[i] = 0;
  371. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  372. io_tlb_list[i] = ++count;
  373. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  374. /*
  375. * Update the indices to avoid searching in the next
  376. * round.
  377. */
  378. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  379. ? (index + nslots) : 0);
  380. goto found;
  381. }
  382. index += stride;
  383. if (index >= io_tlb_nslabs)
  384. index = 0;
  385. } while (index != wrap);
  386. not_found:
  387. spin_unlock_irqrestore(&io_tlb_lock, flags);
  388. return NULL;
  389. found:
  390. spin_unlock_irqrestore(&io_tlb_lock, flags);
  391. /*
  392. * Save away the mapping from the original address to the DMA address.
  393. * This is needed when we sync the memory. Then we sync the buffer if
  394. * needed.
  395. */
  396. for (i = 0; i < nslots; i++)
  397. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  398. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  399. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  400. return dma_addr;
  401. }
  402. /*
  403. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  404. */
  405. static void
  406. do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  407. {
  408. unsigned long flags;
  409. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  410. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  411. phys_addr_t phys = io_tlb_orig_addr[index];
  412. /*
  413. * First, sync the memory before unmapping the entry
  414. */
  415. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  416. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  417. /*
  418. * Return the buffer to the free list by setting the corresponding
  419. * entries to indicate the number of contiguous entries available.
  420. * While returning the entries to the free list, we merge the entries
  421. * with slots below and above the pool being returned.
  422. */
  423. spin_lock_irqsave(&io_tlb_lock, flags);
  424. {
  425. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  426. io_tlb_list[index + nslots] : 0);
  427. /*
  428. * Step 1: return the slots to the free list, merging the
  429. * slots with superceeding slots
  430. */
  431. for (i = index + nslots - 1; i >= index; i--)
  432. io_tlb_list[i] = ++count;
  433. /*
  434. * Step 2: merge the returned slots with the preceding slots,
  435. * if available (non zero)
  436. */
  437. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  438. io_tlb_list[i] = ++count;
  439. }
  440. spin_unlock_irqrestore(&io_tlb_lock, flags);
  441. }
  442. static void
  443. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  444. int dir, int target)
  445. {
  446. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  447. phys_addr_t phys = io_tlb_orig_addr[index];
  448. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  449. switch (target) {
  450. case SYNC_FOR_CPU:
  451. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  452. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  453. else
  454. BUG_ON(dir != DMA_TO_DEVICE);
  455. break;
  456. case SYNC_FOR_DEVICE:
  457. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  458. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  459. else
  460. BUG_ON(dir != DMA_FROM_DEVICE);
  461. break;
  462. default:
  463. BUG();
  464. }
  465. }
  466. void *
  467. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  468. dma_addr_t *dma_handle, gfp_t flags)
  469. {
  470. dma_addr_t dev_addr;
  471. void *ret;
  472. int order = get_order(size);
  473. u64 dma_mask = DMA_BIT_MASK(32);
  474. if (hwdev && hwdev->coherent_dma_mask)
  475. dma_mask = hwdev->coherent_dma_mask;
  476. ret = (void *)__get_free_pages(flags, order);
  477. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  478. /*
  479. * The allocated memory isn't reachable by the device.
  480. */
  481. free_pages((unsigned long) ret, order);
  482. ret = NULL;
  483. }
  484. if (!ret) {
  485. /*
  486. * We are either out of memory or the device can't DMA
  487. * to GFP_DMA memory; fall back on map_single(), which
  488. * will grab memory from the lowest available address range.
  489. */
  490. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  491. if (!ret)
  492. return NULL;
  493. }
  494. memset(ret, 0, size);
  495. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  496. /* Confirm address can be DMA'd by device */
  497. if (dev_addr + size - 1 > dma_mask) {
  498. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  499. (unsigned long long)dma_mask,
  500. (unsigned long long)dev_addr);
  501. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  502. do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  503. return NULL;
  504. }
  505. *dma_handle = dev_addr;
  506. return ret;
  507. }
  508. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  509. void
  510. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  511. dma_addr_t dev_addr)
  512. {
  513. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  514. WARN_ON(irqs_disabled());
  515. if (!is_swiotlb_buffer(paddr))
  516. free_pages((unsigned long)vaddr, get_order(size));
  517. else
  518. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  519. do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  520. }
  521. EXPORT_SYMBOL(swiotlb_free_coherent);
  522. static void
  523. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  524. {
  525. /*
  526. * Ran out of IOMMU space for this operation. This is very bad.
  527. * Unfortunately the drivers cannot handle this operation properly.
  528. * unless they check for dma_mapping_error (most don't)
  529. * When the mapping is small enough return a static buffer to limit
  530. * the damage, or panic when the transfer is too big.
  531. */
  532. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  533. "device %s\n", size, dev ? dev_name(dev) : "?");
  534. if (size <= io_tlb_overflow || !do_panic)
  535. return;
  536. if (dir == DMA_BIDIRECTIONAL)
  537. panic("DMA: Random memory could be DMA accessed\n");
  538. if (dir == DMA_FROM_DEVICE)
  539. panic("DMA: Random memory could be DMA written\n");
  540. if (dir == DMA_TO_DEVICE)
  541. panic("DMA: Random memory could be DMA read\n");
  542. }
  543. /*
  544. * Map a single buffer of the indicated size for DMA in streaming mode. The
  545. * physical address to use is returned.
  546. *
  547. * Once the device is given the dma address, the device owns this memory until
  548. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  549. */
  550. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  551. unsigned long offset, size_t size,
  552. enum dma_data_direction dir,
  553. struct dma_attrs *attrs)
  554. {
  555. phys_addr_t phys = page_to_phys(page) + offset;
  556. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  557. void *map;
  558. BUG_ON(dir == DMA_NONE);
  559. /*
  560. * If the address happens to be in the device's DMA window,
  561. * we can safely return the device addr and not worry about bounce
  562. * buffering it.
  563. */
  564. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  565. return dev_addr;
  566. /*
  567. * Oh well, have to allocate and map a bounce buffer.
  568. */
  569. map = map_single(dev, phys, size, dir);
  570. if (!map) {
  571. swiotlb_full(dev, size, dir, 1);
  572. map = io_tlb_overflow_buffer;
  573. }
  574. dev_addr = swiotlb_virt_to_bus(dev, map);
  575. /*
  576. * Ensure that the address returned is DMA'ble
  577. */
  578. if (!dma_capable(dev, dev_addr, size))
  579. panic("map_single: bounce buffer is not DMA'ble");
  580. return dev_addr;
  581. }
  582. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  583. /*
  584. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  585. * match what was provided for in a previous swiotlb_map_page call. All
  586. * other usages are undefined.
  587. *
  588. * After this call, reads by the cpu to the buffer are guaranteed to see
  589. * whatever the device wrote there.
  590. */
  591. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  592. size_t size, int dir)
  593. {
  594. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  595. BUG_ON(dir == DMA_NONE);
  596. if (is_swiotlb_buffer(paddr)) {
  597. do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  598. return;
  599. }
  600. if (dir != DMA_FROM_DEVICE)
  601. return;
  602. /*
  603. * phys_to_virt doesn't work with hihgmem page but we could
  604. * call dma_mark_clean() with hihgmem page here. However, we
  605. * are fine since dma_mark_clean() is null on POWERPC. We can
  606. * make dma_mark_clean() take a physical address if necessary.
  607. */
  608. dma_mark_clean(phys_to_virt(paddr), size);
  609. }
  610. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  611. size_t size, enum dma_data_direction dir,
  612. struct dma_attrs *attrs)
  613. {
  614. unmap_single(hwdev, dev_addr, size, dir);
  615. }
  616. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  617. /*
  618. * Make physical memory consistent for a single streaming mode DMA translation
  619. * after a transfer.
  620. *
  621. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  622. * using the cpu, yet do not wish to teardown the dma mapping, you must
  623. * call this function before doing so. At the next point you give the dma
  624. * address back to the card, you must first perform a
  625. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  626. */
  627. static void
  628. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  629. size_t size, int dir, int target)
  630. {
  631. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  632. BUG_ON(dir == DMA_NONE);
  633. if (is_swiotlb_buffer(paddr)) {
  634. sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
  635. return;
  636. }
  637. if (dir != DMA_FROM_DEVICE)
  638. return;
  639. dma_mark_clean(phys_to_virt(paddr), size);
  640. }
  641. void
  642. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  643. size_t size, enum dma_data_direction dir)
  644. {
  645. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  646. }
  647. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  648. void
  649. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  650. size_t size, enum dma_data_direction dir)
  651. {
  652. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  653. }
  654. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  655. /*
  656. * Same as above, but for a sub-range of the mapping.
  657. */
  658. static void
  659. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  660. unsigned long offset, size_t size,
  661. int dir, int target)
  662. {
  663. swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
  664. }
  665. void
  666. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  667. unsigned long offset, size_t size,
  668. enum dma_data_direction dir)
  669. {
  670. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  671. SYNC_FOR_CPU);
  672. }
  673. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  674. void
  675. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  676. unsigned long offset, size_t size,
  677. enum dma_data_direction dir)
  678. {
  679. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  680. SYNC_FOR_DEVICE);
  681. }
  682. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  683. /*
  684. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  685. * This is the scatter-gather version of the above swiotlb_map_page
  686. * interface. Here the scatter gather list elements are each tagged with the
  687. * appropriate dma address and length. They are obtained via
  688. * sg_dma_{address,length}(SG).
  689. *
  690. * NOTE: An implementation may be able to use a smaller number of
  691. * DMA address/length pairs than there are SG table elements.
  692. * (for example via virtual mapping capabilities)
  693. * The routine returns the number of addr/length pairs actually
  694. * used, at most nents.
  695. *
  696. * Device ownership issues as mentioned above for swiotlb_map_page are the
  697. * same here.
  698. */
  699. int
  700. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  701. enum dma_data_direction dir, struct dma_attrs *attrs)
  702. {
  703. struct scatterlist *sg;
  704. int i;
  705. BUG_ON(dir == DMA_NONE);
  706. for_each_sg(sgl, sg, nelems, i) {
  707. phys_addr_t paddr = sg_phys(sg);
  708. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  709. if (swiotlb_force ||
  710. !dma_capable(hwdev, dev_addr, sg->length)) {
  711. void *map = map_single(hwdev, sg_phys(sg),
  712. sg->length, dir);
  713. if (!map) {
  714. /* Don't panic here, we expect map_sg users
  715. to do proper error handling. */
  716. swiotlb_full(hwdev, sg->length, dir, 0);
  717. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  718. attrs);
  719. sgl[0].dma_length = 0;
  720. return 0;
  721. }
  722. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  723. } else
  724. sg->dma_address = dev_addr;
  725. sg->dma_length = sg->length;
  726. }
  727. return nelems;
  728. }
  729. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  730. int
  731. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  732. int dir)
  733. {
  734. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  735. }
  736. EXPORT_SYMBOL(swiotlb_map_sg);
  737. /*
  738. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  739. * concerning calls here are the same as for swiotlb_unmap_page() above.
  740. */
  741. void
  742. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  743. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  744. {
  745. struct scatterlist *sg;
  746. int i;
  747. BUG_ON(dir == DMA_NONE);
  748. for_each_sg(sgl, sg, nelems, i)
  749. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  750. }
  751. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  752. void
  753. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  754. int dir)
  755. {
  756. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  757. }
  758. EXPORT_SYMBOL(swiotlb_unmap_sg);
  759. /*
  760. * Make physical memory consistent for a set of streaming mode DMA translations
  761. * after a transfer.
  762. *
  763. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  764. * and usage.
  765. */
  766. static void
  767. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  768. int nelems, int dir, int target)
  769. {
  770. struct scatterlist *sg;
  771. int i;
  772. for_each_sg(sgl, sg, nelems, i)
  773. swiotlb_sync_single(hwdev, sg->dma_address,
  774. sg->dma_length, dir, target);
  775. }
  776. void
  777. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  778. int nelems, enum dma_data_direction dir)
  779. {
  780. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  781. }
  782. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  783. void
  784. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  785. int nelems, enum dma_data_direction dir)
  786. {
  787. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  788. }
  789. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  790. int
  791. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  792. {
  793. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  794. }
  795. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  796. /*
  797. * Return whether the given device DMA address mask can be supported
  798. * properly. For example, if your device can only drive the low 24-bits
  799. * during bus mastering, then you would pass 0x00ffffff as the mask to
  800. * this function.
  801. */
  802. int
  803. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  804. {
  805. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  806. }
  807. EXPORT_SYMBOL(swiotlb_dma_supported);