sched_fair.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 5000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 5000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 1000000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 5;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  416. curr->sum_exec_runtime += delta_exec;
  417. schedstat_add(cfs_rq, exec_clock, delta_exec);
  418. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  419. curr->vruntime += delta_exec_weighted;
  420. update_min_vruntime(cfs_rq);
  421. }
  422. static void update_curr(struct cfs_rq *cfs_rq)
  423. {
  424. struct sched_entity *curr = cfs_rq->curr;
  425. u64 now = rq_of(cfs_rq)->clock;
  426. unsigned long delta_exec;
  427. if (unlikely(!curr))
  428. return;
  429. /*
  430. * Get the amount of time the current task was running
  431. * since the last time we changed load (this cannot
  432. * overflow on 32 bits):
  433. */
  434. delta_exec = (unsigned long)(now - curr->exec_start);
  435. if (!delta_exec)
  436. return;
  437. __update_curr(cfs_rq, curr, delta_exec);
  438. curr->exec_start = now;
  439. if (entity_is_task(curr)) {
  440. struct task_struct *curtask = task_of(curr);
  441. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  442. cpuacct_charge(curtask, delta_exec);
  443. account_group_exec_runtime(curtask, delta_exec);
  444. }
  445. }
  446. static inline void
  447. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  448. {
  449. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  450. }
  451. /*
  452. * Task is being enqueued - update stats:
  453. */
  454. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  455. {
  456. /*
  457. * Are we enqueueing a waiting task? (for current tasks
  458. * a dequeue/enqueue event is a NOP)
  459. */
  460. if (se != cfs_rq->curr)
  461. update_stats_wait_start(cfs_rq, se);
  462. }
  463. static void
  464. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  465. {
  466. schedstat_set(se->wait_max, max(se->wait_max,
  467. rq_of(cfs_rq)->clock - se->wait_start));
  468. schedstat_set(se->wait_count, se->wait_count + 1);
  469. schedstat_set(se->wait_sum, se->wait_sum +
  470. rq_of(cfs_rq)->clock - se->wait_start);
  471. #ifdef CONFIG_SCHEDSTATS
  472. if (entity_is_task(se)) {
  473. trace_sched_stat_wait(task_of(se),
  474. rq_of(cfs_rq)->clock - se->wait_start);
  475. }
  476. #endif
  477. schedstat_set(se->wait_start, 0);
  478. }
  479. static inline void
  480. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  481. {
  482. /*
  483. * Mark the end of the wait period if dequeueing a
  484. * waiting task:
  485. */
  486. if (se != cfs_rq->curr)
  487. update_stats_wait_end(cfs_rq, se);
  488. }
  489. /*
  490. * We are picking a new current task - update its stats:
  491. */
  492. static inline void
  493. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  494. {
  495. /*
  496. * We are starting a new run period:
  497. */
  498. se->exec_start = rq_of(cfs_rq)->clock;
  499. }
  500. /**************************************************
  501. * Scheduling class queueing methods:
  502. */
  503. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  504. static void
  505. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  506. {
  507. cfs_rq->task_weight += weight;
  508. }
  509. #else
  510. static inline void
  511. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  512. {
  513. }
  514. #endif
  515. static void
  516. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  517. {
  518. update_load_add(&cfs_rq->load, se->load.weight);
  519. if (!parent_entity(se))
  520. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  521. if (entity_is_task(se)) {
  522. add_cfs_task_weight(cfs_rq, se->load.weight);
  523. list_add(&se->group_node, &cfs_rq->tasks);
  524. }
  525. cfs_rq->nr_running++;
  526. se->on_rq = 1;
  527. }
  528. static void
  529. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. update_load_sub(&cfs_rq->load, se->load.weight);
  532. if (!parent_entity(se))
  533. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  534. if (entity_is_task(se)) {
  535. add_cfs_task_weight(cfs_rq, -se->load.weight);
  536. list_del_init(&se->group_node);
  537. }
  538. cfs_rq->nr_running--;
  539. se->on_rq = 0;
  540. }
  541. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  542. {
  543. #ifdef CONFIG_SCHEDSTATS
  544. struct task_struct *tsk = NULL;
  545. if (entity_is_task(se))
  546. tsk = task_of(se);
  547. if (se->sleep_start) {
  548. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  549. if ((s64)delta < 0)
  550. delta = 0;
  551. if (unlikely(delta > se->sleep_max))
  552. se->sleep_max = delta;
  553. se->sleep_start = 0;
  554. se->sum_sleep_runtime += delta;
  555. if (tsk) {
  556. account_scheduler_latency(tsk, delta >> 10, 1);
  557. trace_sched_stat_sleep(tsk, delta);
  558. }
  559. }
  560. if (se->block_start) {
  561. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  562. if ((s64)delta < 0)
  563. delta = 0;
  564. if (unlikely(delta > se->block_max))
  565. se->block_max = delta;
  566. se->block_start = 0;
  567. se->sum_sleep_runtime += delta;
  568. if (tsk) {
  569. if (tsk->in_iowait) {
  570. se->iowait_sum += delta;
  571. se->iowait_count++;
  572. trace_sched_stat_iowait(tsk, delta);
  573. }
  574. /*
  575. * Blocking time is in units of nanosecs, so shift by
  576. * 20 to get a milliseconds-range estimation of the
  577. * amount of time that the task spent sleeping:
  578. */
  579. if (unlikely(prof_on == SLEEP_PROFILING)) {
  580. profile_hits(SLEEP_PROFILING,
  581. (void *)get_wchan(tsk),
  582. delta >> 20);
  583. }
  584. account_scheduler_latency(tsk, delta >> 10, 0);
  585. }
  586. }
  587. #endif
  588. }
  589. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  590. {
  591. #ifdef CONFIG_SCHED_DEBUG
  592. s64 d = se->vruntime - cfs_rq->min_vruntime;
  593. if (d < 0)
  594. d = -d;
  595. if (d > 3*sysctl_sched_latency)
  596. schedstat_inc(cfs_rq, nr_spread_over);
  597. #endif
  598. }
  599. static void
  600. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  601. {
  602. u64 vruntime = cfs_rq->min_vruntime;
  603. /*
  604. * The 'current' period is already promised to the current tasks,
  605. * however the extra weight of the new task will slow them down a
  606. * little, place the new task so that it fits in the slot that
  607. * stays open at the end.
  608. */
  609. if (initial && sched_feat(START_DEBIT))
  610. vruntime += sched_vslice(cfs_rq, se);
  611. /* sleeps up to a single latency don't count. */
  612. if (!initial && sched_feat(FAIR_SLEEPERS)) {
  613. unsigned long thresh = sysctl_sched_latency;
  614. /*
  615. * Convert the sleeper threshold into virtual time.
  616. * SCHED_IDLE is a special sub-class. We care about
  617. * fairness only relative to other SCHED_IDLE tasks,
  618. * all of which have the same weight.
  619. */
  620. if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
  621. task_of(se)->policy != SCHED_IDLE))
  622. thresh = calc_delta_fair(thresh, se);
  623. /*
  624. * Halve their sleep time's effect, to allow
  625. * for a gentler effect of sleepers:
  626. */
  627. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  628. thresh >>= 1;
  629. vruntime -= thresh;
  630. }
  631. /* ensure we never gain time by being placed backwards. */
  632. vruntime = max_vruntime(se->vruntime, vruntime);
  633. se->vruntime = vruntime;
  634. }
  635. #define ENQUEUE_WAKEUP 1
  636. #define ENQUEUE_MIGRATE 2
  637. static void
  638. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  639. {
  640. /*
  641. * Update the normalized vruntime before updating min_vruntime
  642. * through callig update_curr().
  643. */
  644. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
  645. se->vruntime += cfs_rq->min_vruntime;
  646. /*
  647. * Update run-time statistics of the 'current'.
  648. */
  649. update_curr(cfs_rq);
  650. account_entity_enqueue(cfs_rq, se);
  651. if (flags & ENQUEUE_WAKEUP) {
  652. place_entity(cfs_rq, se, 0);
  653. enqueue_sleeper(cfs_rq, se);
  654. }
  655. update_stats_enqueue(cfs_rq, se);
  656. check_spread(cfs_rq, se);
  657. if (se != cfs_rq->curr)
  658. __enqueue_entity(cfs_rq, se);
  659. }
  660. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  661. {
  662. if (!se || cfs_rq->last == se)
  663. cfs_rq->last = NULL;
  664. if (!se || cfs_rq->next == se)
  665. cfs_rq->next = NULL;
  666. }
  667. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  668. {
  669. for_each_sched_entity(se)
  670. __clear_buddies(cfs_rq_of(se), se);
  671. }
  672. static void
  673. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  674. {
  675. /*
  676. * Update run-time statistics of the 'current'.
  677. */
  678. update_curr(cfs_rq);
  679. update_stats_dequeue(cfs_rq, se);
  680. if (sleep) {
  681. #ifdef CONFIG_SCHEDSTATS
  682. if (entity_is_task(se)) {
  683. struct task_struct *tsk = task_of(se);
  684. if (tsk->state & TASK_INTERRUPTIBLE)
  685. se->sleep_start = rq_of(cfs_rq)->clock;
  686. if (tsk->state & TASK_UNINTERRUPTIBLE)
  687. se->block_start = rq_of(cfs_rq)->clock;
  688. }
  689. #endif
  690. }
  691. clear_buddies(cfs_rq, se);
  692. if (se != cfs_rq->curr)
  693. __dequeue_entity(cfs_rq, se);
  694. account_entity_dequeue(cfs_rq, se);
  695. update_min_vruntime(cfs_rq);
  696. /*
  697. * Normalize the entity after updating the min_vruntime because the
  698. * update can refer to the ->curr item and we need to reflect this
  699. * movement in our normalized position.
  700. */
  701. if (!sleep)
  702. se->vruntime -= cfs_rq->min_vruntime;
  703. }
  704. /*
  705. * Preempt the current task with a newly woken task if needed:
  706. */
  707. static void
  708. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  709. {
  710. unsigned long ideal_runtime, delta_exec;
  711. ideal_runtime = sched_slice(cfs_rq, curr);
  712. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  713. if (delta_exec > ideal_runtime) {
  714. resched_task(rq_of(cfs_rq)->curr);
  715. /*
  716. * The current task ran long enough, ensure it doesn't get
  717. * re-elected due to buddy favours.
  718. */
  719. clear_buddies(cfs_rq, curr);
  720. return;
  721. }
  722. /*
  723. * Ensure that a task that missed wakeup preemption by a
  724. * narrow margin doesn't have to wait for a full slice.
  725. * This also mitigates buddy induced latencies under load.
  726. */
  727. if (!sched_feat(WAKEUP_PREEMPT))
  728. return;
  729. if (delta_exec < sysctl_sched_min_granularity)
  730. return;
  731. if (cfs_rq->nr_running > 1) {
  732. struct sched_entity *se = __pick_next_entity(cfs_rq);
  733. s64 delta = curr->vruntime - se->vruntime;
  734. if (delta > ideal_runtime)
  735. resched_task(rq_of(cfs_rq)->curr);
  736. }
  737. }
  738. static void
  739. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  740. {
  741. /* 'current' is not kept within the tree. */
  742. if (se->on_rq) {
  743. /*
  744. * Any task has to be enqueued before it get to execute on
  745. * a CPU. So account for the time it spent waiting on the
  746. * runqueue.
  747. */
  748. update_stats_wait_end(cfs_rq, se);
  749. __dequeue_entity(cfs_rq, se);
  750. }
  751. update_stats_curr_start(cfs_rq, se);
  752. cfs_rq->curr = se;
  753. #ifdef CONFIG_SCHEDSTATS
  754. /*
  755. * Track our maximum slice length, if the CPU's load is at
  756. * least twice that of our own weight (i.e. dont track it
  757. * when there are only lesser-weight tasks around):
  758. */
  759. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  760. se->slice_max = max(se->slice_max,
  761. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  762. }
  763. #endif
  764. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  765. }
  766. static int
  767. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  768. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  769. {
  770. struct sched_entity *se = __pick_next_entity(cfs_rq);
  771. struct sched_entity *left = se;
  772. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  773. se = cfs_rq->next;
  774. /*
  775. * Prefer last buddy, try to return the CPU to a preempted task.
  776. */
  777. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  778. se = cfs_rq->last;
  779. clear_buddies(cfs_rq, se);
  780. return se;
  781. }
  782. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  783. {
  784. /*
  785. * If still on the runqueue then deactivate_task()
  786. * was not called and update_curr() has to be done:
  787. */
  788. if (prev->on_rq)
  789. update_curr(cfs_rq);
  790. check_spread(cfs_rq, prev);
  791. if (prev->on_rq) {
  792. update_stats_wait_start(cfs_rq, prev);
  793. /* Put 'current' back into the tree. */
  794. __enqueue_entity(cfs_rq, prev);
  795. }
  796. cfs_rq->curr = NULL;
  797. }
  798. static void
  799. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  800. {
  801. /*
  802. * Update run-time statistics of the 'current'.
  803. */
  804. update_curr(cfs_rq);
  805. #ifdef CONFIG_SCHED_HRTICK
  806. /*
  807. * queued ticks are scheduled to match the slice, so don't bother
  808. * validating it and just reschedule.
  809. */
  810. if (queued) {
  811. resched_task(rq_of(cfs_rq)->curr);
  812. return;
  813. }
  814. /*
  815. * don't let the period tick interfere with the hrtick preemption
  816. */
  817. if (!sched_feat(DOUBLE_TICK) &&
  818. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  819. return;
  820. #endif
  821. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  822. check_preempt_tick(cfs_rq, curr);
  823. }
  824. /**************************************************
  825. * CFS operations on tasks:
  826. */
  827. #ifdef CONFIG_SCHED_HRTICK
  828. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  829. {
  830. struct sched_entity *se = &p->se;
  831. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  832. WARN_ON(task_rq(p) != rq);
  833. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  834. u64 slice = sched_slice(cfs_rq, se);
  835. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  836. s64 delta = slice - ran;
  837. if (delta < 0) {
  838. if (rq->curr == p)
  839. resched_task(p);
  840. return;
  841. }
  842. /*
  843. * Don't schedule slices shorter than 10000ns, that just
  844. * doesn't make sense. Rely on vruntime for fairness.
  845. */
  846. if (rq->curr != p)
  847. delta = max_t(s64, 10000LL, delta);
  848. hrtick_start(rq, delta);
  849. }
  850. }
  851. /*
  852. * called from enqueue/dequeue and updates the hrtick when the
  853. * current task is from our class and nr_running is low enough
  854. * to matter.
  855. */
  856. static void hrtick_update(struct rq *rq)
  857. {
  858. struct task_struct *curr = rq->curr;
  859. if (curr->sched_class != &fair_sched_class)
  860. return;
  861. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  862. hrtick_start_fair(rq, curr);
  863. }
  864. #else /* !CONFIG_SCHED_HRTICK */
  865. static inline void
  866. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  867. {
  868. }
  869. static inline void hrtick_update(struct rq *rq)
  870. {
  871. }
  872. #endif
  873. /*
  874. * The enqueue_task method is called before nr_running is
  875. * increased. Here we update the fair scheduling stats and
  876. * then put the task into the rbtree:
  877. */
  878. static void
  879. enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  880. {
  881. struct cfs_rq *cfs_rq;
  882. struct sched_entity *se = &p->se;
  883. int flags = 0;
  884. if (wakeup)
  885. flags |= ENQUEUE_WAKEUP;
  886. if (p->state == TASK_WAKING)
  887. flags |= ENQUEUE_MIGRATE;
  888. for_each_sched_entity(se) {
  889. if (se->on_rq)
  890. break;
  891. cfs_rq = cfs_rq_of(se);
  892. enqueue_entity(cfs_rq, se, flags);
  893. flags = ENQUEUE_WAKEUP;
  894. }
  895. hrtick_update(rq);
  896. }
  897. /*
  898. * The dequeue_task method is called before nr_running is
  899. * decreased. We remove the task from the rbtree and
  900. * update the fair scheduling stats:
  901. */
  902. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  903. {
  904. struct cfs_rq *cfs_rq;
  905. struct sched_entity *se = &p->se;
  906. for_each_sched_entity(se) {
  907. cfs_rq = cfs_rq_of(se);
  908. dequeue_entity(cfs_rq, se, sleep);
  909. /* Don't dequeue parent if it has other entities besides us */
  910. if (cfs_rq->load.weight)
  911. break;
  912. sleep = 1;
  913. }
  914. hrtick_update(rq);
  915. }
  916. /*
  917. * sched_yield() support is very simple - we dequeue and enqueue.
  918. *
  919. * If compat_yield is turned on then we requeue to the end of the tree.
  920. */
  921. static void yield_task_fair(struct rq *rq)
  922. {
  923. struct task_struct *curr = rq->curr;
  924. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  925. struct sched_entity *rightmost, *se = &curr->se;
  926. /*
  927. * Are we the only task in the tree?
  928. */
  929. if (unlikely(cfs_rq->nr_running == 1))
  930. return;
  931. clear_buddies(cfs_rq, se);
  932. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  933. update_rq_clock(rq);
  934. /*
  935. * Update run-time statistics of the 'current'.
  936. */
  937. update_curr(cfs_rq);
  938. return;
  939. }
  940. /*
  941. * Find the rightmost entry in the rbtree:
  942. */
  943. rightmost = __pick_last_entity(cfs_rq);
  944. /*
  945. * Already in the rightmost position?
  946. */
  947. if (unlikely(!rightmost || entity_before(rightmost, se)))
  948. return;
  949. /*
  950. * Minimally necessary key value to be last in the tree:
  951. * Upon rescheduling, sched_class::put_prev_task() will place
  952. * 'current' within the tree based on its new key value.
  953. */
  954. se->vruntime = rightmost->vruntime + 1;
  955. }
  956. #ifdef CONFIG_SMP
  957. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  958. {
  959. struct sched_entity *se = &p->se;
  960. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  961. se->vruntime -= cfs_rq->min_vruntime;
  962. }
  963. #ifdef CONFIG_FAIR_GROUP_SCHED
  964. /*
  965. * effective_load() calculates the load change as seen from the root_task_group
  966. *
  967. * Adding load to a group doesn't make a group heavier, but can cause movement
  968. * of group shares between cpus. Assuming the shares were perfectly aligned one
  969. * can calculate the shift in shares.
  970. *
  971. * The problem is that perfectly aligning the shares is rather expensive, hence
  972. * we try to avoid doing that too often - see update_shares(), which ratelimits
  973. * this change.
  974. *
  975. * We compensate this by not only taking the current delta into account, but
  976. * also considering the delta between when the shares were last adjusted and
  977. * now.
  978. *
  979. * We still saw a performance dip, some tracing learned us that between
  980. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  981. * significantly. Therefore try to bias the error in direction of failing
  982. * the affine wakeup.
  983. *
  984. */
  985. static long effective_load(struct task_group *tg, int cpu,
  986. long wl, long wg)
  987. {
  988. struct sched_entity *se = tg->se[cpu];
  989. if (!tg->parent)
  990. return wl;
  991. /*
  992. * By not taking the decrease of shares on the other cpu into
  993. * account our error leans towards reducing the affine wakeups.
  994. */
  995. if (!wl && sched_feat(ASYM_EFF_LOAD))
  996. return wl;
  997. for_each_sched_entity(se) {
  998. long S, rw, s, a, b;
  999. long more_w;
  1000. /*
  1001. * Instead of using this increment, also add the difference
  1002. * between when the shares were last updated and now.
  1003. */
  1004. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  1005. wl += more_w;
  1006. wg += more_w;
  1007. S = se->my_q->tg->shares;
  1008. s = se->my_q->shares;
  1009. rw = se->my_q->rq_weight;
  1010. a = S*(rw + wl);
  1011. b = S*rw + s*wg;
  1012. wl = s*(a-b);
  1013. if (likely(b))
  1014. wl /= b;
  1015. /*
  1016. * Assume the group is already running and will
  1017. * thus already be accounted for in the weight.
  1018. *
  1019. * That is, moving shares between CPUs, does not
  1020. * alter the group weight.
  1021. */
  1022. wg = 0;
  1023. }
  1024. return wl;
  1025. }
  1026. #else
  1027. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1028. unsigned long wl, unsigned long wg)
  1029. {
  1030. return wl;
  1031. }
  1032. #endif
  1033. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1034. {
  1035. struct task_struct *curr = current;
  1036. unsigned long this_load, load;
  1037. int idx, this_cpu, prev_cpu;
  1038. unsigned long tl_per_task;
  1039. unsigned int imbalance;
  1040. struct task_group *tg;
  1041. unsigned long weight;
  1042. int balanced;
  1043. idx = sd->wake_idx;
  1044. this_cpu = smp_processor_id();
  1045. prev_cpu = task_cpu(p);
  1046. load = source_load(prev_cpu, idx);
  1047. this_load = target_load(this_cpu, idx);
  1048. if (sync) {
  1049. if (sched_feat(SYNC_LESS) &&
  1050. (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1051. p->se.avg_overlap > sysctl_sched_migration_cost))
  1052. sync = 0;
  1053. } else {
  1054. if (sched_feat(SYNC_MORE) &&
  1055. (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  1056. p->se.avg_overlap < sysctl_sched_migration_cost))
  1057. sync = 1;
  1058. }
  1059. /*
  1060. * If sync wakeup then subtract the (maximum possible)
  1061. * effect of the currently running task from the load
  1062. * of the current CPU:
  1063. */
  1064. if (sync) {
  1065. tg = task_group(current);
  1066. weight = current->se.load.weight;
  1067. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1068. load += effective_load(tg, prev_cpu, 0, -weight);
  1069. }
  1070. tg = task_group(p);
  1071. weight = p->se.load.weight;
  1072. imbalance = 100 + (sd->imbalance_pct - 100) / 2;
  1073. /*
  1074. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1075. * due to the sync cause above having dropped this_load to 0, we'll
  1076. * always have an imbalance, but there's really nothing you can do
  1077. * about that, so that's good too.
  1078. *
  1079. * Otherwise check if either cpus are near enough in load to allow this
  1080. * task to be woken on this_cpu.
  1081. */
  1082. balanced = !this_load ||
  1083. 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
  1084. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1085. /*
  1086. * If the currently running task will sleep within
  1087. * a reasonable amount of time then attract this newly
  1088. * woken task:
  1089. */
  1090. if (sync && balanced)
  1091. return 1;
  1092. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1093. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1094. if (balanced ||
  1095. (this_load <= load &&
  1096. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1097. /*
  1098. * This domain has SD_WAKE_AFFINE and
  1099. * p is cache cold in this domain, and
  1100. * there is no bad imbalance.
  1101. */
  1102. schedstat_inc(sd, ttwu_move_affine);
  1103. schedstat_inc(p, se.nr_wakeups_affine);
  1104. return 1;
  1105. }
  1106. return 0;
  1107. }
  1108. /*
  1109. * find_idlest_group finds and returns the least busy CPU group within the
  1110. * domain.
  1111. */
  1112. static struct sched_group *
  1113. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1114. int this_cpu, int load_idx)
  1115. {
  1116. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1117. unsigned long min_load = ULONG_MAX, this_load = 0;
  1118. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1119. do {
  1120. unsigned long load, avg_load;
  1121. int local_group;
  1122. int i;
  1123. /* Skip over this group if it has no CPUs allowed */
  1124. if (!cpumask_intersects(sched_group_cpus(group),
  1125. &p->cpus_allowed))
  1126. continue;
  1127. local_group = cpumask_test_cpu(this_cpu,
  1128. sched_group_cpus(group));
  1129. /* Tally up the load of all CPUs in the group */
  1130. avg_load = 0;
  1131. for_each_cpu(i, sched_group_cpus(group)) {
  1132. /* Bias balancing toward cpus of our domain */
  1133. if (local_group)
  1134. load = source_load(i, load_idx);
  1135. else
  1136. load = target_load(i, load_idx);
  1137. avg_load += load;
  1138. }
  1139. /* Adjust by relative CPU power of the group */
  1140. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1141. if (local_group) {
  1142. this_load = avg_load;
  1143. this = group;
  1144. } else if (avg_load < min_load) {
  1145. min_load = avg_load;
  1146. idlest = group;
  1147. }
  1148. } while (group = group->next, group != sd->groups);
  1149. if (!idlest || 100*this_load < imbalance*min_load)
  1150. return NULL;
  1151. return idlest;
  1152. }
  1153. /*
  1154. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1155. */
  1156. static int
  1157. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1158. {
  1159. unsigned long load, min_load = ULONG_MAX;
  1160. int idlest = -1;
  1161. int i;
  1162. /* Traverse only the allowed CPUs */
  1163. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1164. load = weighted_cpuload(i);
  1165. if (load < min_load || (load == min_load && i == this_cpu)) {
  1166. min_load = load;
  1167. idlest = i;
  1168. }
  1169. }
  1170. return idlest;
  1171. }
  1172. /*
  1173. * Try and locate an idle CPU in the sched_domain.
  1174. */
  1175. static int
  1176. select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
  1177. {
  1178. int cpu = smp_processor_id();
  1179. int prev_cpu = task_cpu(p);
  1180. int i;
  1181. /*
  1182. * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
  1183. * test in select_task_rq_fair) and the prev_cpu is idle then that's
  1184. * always a better target than the current cpu.
  1185. */
  1186. if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
  1187. return prev_cpu;
  1188. /*
  1189. * Otherwise, iterate the domain and find an elegible idle cpu.
  1190. */
  1191. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1192. if (!cpu_rq(i)->cfs.nr_running) {
  1193. target = i;
  1194. break;
  1195. }
  1196. }
  1197. return target;
  1198. }
  1199. /*
  1200. * sched_balance_self: balance the current task (running on cpu) in domains
  1201. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1202. * SD_BALANCE_EXEC.
  1203. *
  1204. * Balance, ie. select the least loaded group.
  1205. *
  1206. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1207. *
  1208. * preempt must be disabled.
  1209. */
  1210. static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1211. {
  1212. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1213. int cpu = smp_processor_id();
  1214. int prev_cpu = task_cpu(p);
  1215. int new_cpu = cpu;
  1216. int want_affine = 0;
  1217. int want_sd = 1;
  1218. int sync = wake_flags & WF_SYNC;
  1219. if (sd_flag & SD_BALANCE_WAKE) {
  1220. if (sched_feat(AFFINE_WAKEUPS) &&
  1221. cpumask_test_cpu(cpu, &p->cpus_allowed))
  1222. want_affine = 1;
  1223. new_cpu = prev_cpu;
  1224. }
  1225. for_each_domain(cpu, tmp) {
  1226. if (!(tmp->flags & SD_LOAD_BALANCE))
  1227. continue;
  1228. /*
  1229. * If power savings logic is enabled for a domain, see if we
  1230. * are not overloaded, if so, don't balance wider.
  1231. */
  1232. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1233. unsigned long power = 0;
  1234. unsigned long nr_running = 0;
  1235. unsigned long capacity;
  1236. int i;
  1237. for_each_cpu(i, sched_domain_span(tmp)) {
  1238. power += power_of(i);
  1239. nr_running += cpu_rq(i)->cfs.nr_running;
  1240. }
  1241. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1242. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1243. nr_running /= 2;
  1244. if (nr_running < capacity)
  1245. want_sd = 0;
  1246. }
  1247. /*
  1248. * While iterating the domains looking for a spanning
  1249. * WAKE_AFFINE domain, adjust the affine target to any idle cpu
  1250. * in cache sharing domains along the way.
  1251. */
  1252. if (want_affine) {
  1253. int target = -1;
  1254. /*
  1255. * If both cpu and prev_cpu are part of this domain,
  1256. * cpu is a valid SD_WAKE_AFFINE target.
  1257. */
  1258. if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
  1259. target = cpu;
  1260. /*
  1261. * If there's an idle sibling in this domain, make that
  1262. * the wake_affine target instead of the current cpu.
  1263. */
  1264. if (tmp->flags & SD_SHARE_PKG_RESOURCES)
  1265. target = select_idle_sibling(p, tmp, target);
  1266. if (target >= 0) {
  1267. if (tmp->flags & SD_WAKE_AFFINE) {
  1268. affine_sd = tmp;
  1269. want_affine = 0;
  1270. }
  1271. cpu = target;
  1272. }
  1273. }
  1274. if (!want_sd && !want_affine)
  1275. break;
  1276. if (!(tmp->flags & sd_flag))
  1277. continue;
  1278. if (want_sd)
  1279. sd = tmp;
  1280. }
  1281. if (sched_feat(LB_SHARES_UPDATE)) {
  1282. /*
  1283. * Pick the largest domain to update shares over
  1284. */
  1285. tmp = sd;
  1286. if (affine_sd && (!tmp ||
  1287. cpumask_weight(sched_domain_span(affine_sd)) >
  1288. cpumask_weight(sched_domain_span(sd))))
  1289. tmp = affine_sd;
  1290. if (tmp)
  1291. update_shares(tmp);
  1292. }
  1293. if (affine_sd && wake_affine(affine_sd, p, sync))
  1294. return cpu;
  1295. while (sd) {
  1296. int load_idx = sd->forkexec_idx;
  1297. struct sched_group *group;
  1298. int weight;
  1299. if (!(sd->flags & sd_flag)) {
  1300. sd = sd->child;
  1301. continue;
  1302. }
  1303. if (sd_flag & SD_BALANCE_WAKE)
  1304. load_idx = sd->wake_idx;
  1305. group = find_idlest_group(sd, p, cpu, load_idx);
  1306. if (!group) {
  1307. sd = sd->child;
  1308. continue;
  1309. }
  1310. new_cpu = find_idlest_cpu(group, p, cpu);
  1311. if (new_cpu == -1 || new_cpu == cpu) {
  1312. /* Now try balancing at a lower domain level of cpu */
  1313. sd = sd->child;
  1314. continue;
  1315. }
  1316. /* Now try balancing at a lower domain level of new_cpu */
  1317. cpu = new_cpu;
  1318. weight = cpumask_weight(sched_domain_span(sd));
  1319. sd = NULL;
  1320. for_each_domain(cpu, tmp) {
  1321. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1322. break;
  1323. if (tmp->flags & sd_flag)
  1324. sd = tmp;
  1325. }
  1326. /* while loop will break here if sd == NULL */
  1327. }
  1328. return new_cpu;
  1329. }
  1330. #endif /* CONFIG_SMP */
  1331. /*
  1332. * Adaptive granularity
  1333. *
  1334. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1335. * with the limit of wakeup_gran -- when it never does a wakeup.
  1336. *
  1337. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1338. * but we don't want to treat the preemptee unfairly and therefore allow it
  1339. * to run for at least the amount of time we'd like to run.
  1340. *
  1341. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1342. *
  1343. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1344. * degrading latency on load.
  1345. */
  1346. static unsigned long
  1347. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1348. {
  1349. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1350. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1351. u64 gran = 0;
  1352. if (this_run < expected_wakeup)
  1353. gran = expected_wakeup - this_run;
  1354. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1355. }
  1356. static unsigned long
  1357. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1358. {
  1359. unsigned long gran = sysctl_sched_wakeup_granularity;
  1360. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1361. gran = adaptive_gran(curr, se);
  1362. /*
  1363. * Since its curr running now, convert the gran from real-time
  1364. * to virtual-time in his units.
  1365. */
  1366. if (sched_feat(ASYM_GRAN)) {
  1367. /*
  1368. * By using 'se' instead of 'curr' we penalize light tasks, so
  1369. * they get preempted easier. That is, if 'se' < 'curr' then
  1370. * the resulting gran will be larger, therefore penalizing the
  1371. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1372. * be smaller, again penalizing the lighter task.
  1373. *
  1374. * This is especially important for buddies when the leftmost
  1375. * task is higher priority than the buddy.
  1376. */
  1377. if (unlikely(se->load.weight != NICE_0_LOAD))
  1378. gran = calc_delta_fair(gran, se);
  1379. } else {
  1380. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1381. gran = calc_delta_fair(gran, curr);
  1382. }
  1383. return gran;
  1384. }
  1385. /*
  1386. * Should 'se' preempt 'curr'.
  1387. *
  1388. * |s1
  1389. * |s2
  1390. * |s3
  1391. * g
  1392. * |<--->|c
  1393. *
  1394. * w(c, s1) = -1
  1395. * w(c, s2) = 0
  1396. * w(c, s3) = 1
  1397. *
  1398. */
  1399. static int
  1400. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1401. {
  1402. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1403. if (vdiff <= 0)
  1404. return -1;
  1405. gran = wakeup_gran(curr, se);
  1406. if (vdiff > gran)
  1407. return 1;
  1408. return 0;
  1409. }
  1410. static void set_last_buddy(struct sched_entity *se)
  1411. {
  1412. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1413. for_each_sched_entity(se)
  1414. cfs_rq_of(se)->last = se;
  1415. }
  1416. }
  1417. static void set_next_buddy(struct sched_entity *se)
  1418. {
  1419. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1420. for_each_sched_entity(se)
  1421. cfs_rq_of(se)->next = se;
  1422. }
  1423. }
  1424. /*
  1425. * Preempt the current task with a newly woken task if needed:
  1426. */
  1427. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1428. {
  1429. struct task_struct *curr = rq->curr;
  1430. struct sched_entity *se = &curr->se, *pse = &p->se;
  1431. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1432. int sync = wake_flags & WF_SYNC;
  1433. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1434. if (unlikely(rt_prio(p->prio)))
  1435. goto preempt;
  1436. if (unlikely(p->sched_class != &fair_sched_class))
  1437. return;
  1438. if (unlikely(se == pse))
  1439. return;
  1440. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1441. set_next_buddy(pse);
  1442. /*
  1443. * We can come here with TIF_NEED_RESCHED already set from new task
  1444. * wake up path.
  1445. */
  1446. if (test_tsk_need_resched(curr))
  1447. return;
  1448. /*
  1449. * Batch and idle tasks do not preempt (their preemption is driven by
  1450. * the tick):
  1451. */
  1452. if (unlikely(p->policy != SCHED_NORMAL))
  1453. return;
  1454. /* Idle tasks are by definition preempted by everybody. */
  1455. if (unlikely(curr->policy == SCHED_IDLE))
  1456. goto preempt;
  1457. if (sched_feat(WAKEUP_SYNC) && sync)
  1458. goto preempt;
  1459. if (sched_feat(WAKEUP_OVERLAP) &&
  1460. se->avg_overlap < sysctl_sched_migration_cost &&
  1461. pse->avg_overlap < sysctl_sched_migration_cost)
  1462. goto preempt;
  1463. if (!sched_feat(WAKEUP_PREEMPT))
  1464. return;
  1465. update_curr(cfs_rq);
  1466. find_matching_se(&se, &pse);
  1467. BUG_ON(!pse);
  1468. if (wakeup_preempt_entity(se, pse) == 1)
  1469. goto preempt;
  1470. return;
  1471. preempt:
  1472. resched_task(curr);
  1473. /*
  1474. * Only set the backward buddy when the current task is still
  1475. * on the rq. This can happen when a wakeup gets interleaved
  1476. * with schedule on the ->pre_schedule() or idle_balance()
  1477. * point, either of which can * drop the rq lock.
  1478. *
  1479. * Also, during early boot the idle thread is in the fair class,
  1480. * for obvious reasons its a bad idea to schedule back to it.
  1481. */
  1482. if (unlikely(!se->on_rq || curr == rq->idle))
  1483. return;
  1484. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1485. set_last_buddy(se);
  1486. }
  1487. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1488. {
  1489. struct task_struct *p;
  1490. struct cfs_rq *cfs_rq = &rq->cfs;
  1491. struct sched_entity *se;
  1492. if (!cfs_rq->nr_running)
  1493. return NULL;
  1494. do {
  1495. se = pick_next_entity(cfs_rq);
  1496. set_next_entity(cfs_rq, se);
  1497. cfs_rq = group_cfs_rq(se);
  1498. } while (cfs_rq);
  1499. p = task_of(se);
  1500. hrtick_start_fair(rq, p);
  1501. return p;
  1502. }
  1503. /*
  1504. * Account for a descheduled task:
  1505. */
  1506. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1507. {
  1508. struct sched_entity *se = &prev->se;
  1509. struct cfs_rq *cfs_rq;
  1510. for_each_sched_entity(se) {
  1511. cfs_rq = cfs_rq_of(se);
  1512. put_prev_entity(cfs_rq, se);
  1513. }
  1514. }
  1515. #ifdef CONFIG_SMP
  1516. /**************************************************
  1517. * Fair scheduling class load-balancing methods:
  1518. */
  1519. /*
  1520. * pull_task - move a task from a remote runqueue to the local runqueue.
  1521. * Both runqueues must be locked.
  1522. */
  1523. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1524. struct rq *this_rq, int this_cpu)
  1525. {
  1526. deactivate_task(src_rq, p, 0);
  1527. set_task_cpu(p, this_cpu);
  1528. activate_task(this_rq, p, 0);
  1529. check_preempt_curr(this_rq, p, 0);
  1530. }
  1531. /*
  1532. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1533. */
  1534. static
  1535. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1536. struct sched_domain *sd, enum cpu_idle_type idle,
  1537. int *all_pinned)
  1538. {
  1539. int tsk_cache_hot = 0;
  1540. /*
  1541. * We do not migrate tasks that are:
  1542. * 1) running (obviously), or
  1543. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1544. * 3) are cache-hot on their current CPU.
  1545. */
  1546. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1547. schedstat_inc(p, se.nr_failed_migrations_affine);
  1548. return 0;
  1549. }
  1550. *all_pinned = 0;
  1551. if (task_running(rq, p)) {
  1552. schedstat_inc(p, se.nr_failed_migrations_running);
  1553. return 0;
  1554. }
  1555. /*
  1556. * Aggressive migration if:
  1557. * 1) task is cache cold, or
  1558. * 2) too many balance attempts have failed.
  1559. */
  1560. tsk_cache_hot = task_hot(p, rq->clock, sd);
  1561. if (!tsk_cache_hot ||
  1562. sd->nr_balance_failed > sd->cache_nice_tries) {
  1563. #ifdef CONFIG_SCHEDSTATS
  1564. if (tsk_cache_hot) {
  1565. schedstat_inc(sd, lb_hot_gained[idle]);
  1566. schedstat_inc(p, se.nr_forced_migrations);
  1567. }
  1568. #endif
  1569. return 1;
  1570. }
  1571. if (tsk_cache_hot) {
  1572. schedstat_inc(p, se.nr_failed_migrations_hot);
  1573. return 0;
  1574. }
  1575. return 1;
  1576. }
  1577. /*
  1578. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1579. * part of active balancing operations within "domain".
  1580. * Returns 1 if successful and 0 otherwise.
  1581. *
  1582. * Called with both runqueues locked.
  1583. */
  1584. static int
  1585. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1586. struct sched_domain *sd, enum cpu_idle_type idle)
  1587. {
  1588. struct task_struct *p, *n;
  1589. struct cfs_rq *cfs_rq;
  1590. int pinned = 0;
  1591. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1592. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1593. if (!can_migrate_task(p, busiest, this_cpu,
  1594. sd, idle, &pinned))
  1595. continue;
  1596. pull_task(busiest, p, this_rq, this_cpu);
  1597. /*
  1598. * Right now, this is only the second place pull_task()
  1599. * is called, so we can safely collect pull_task()
  1600. * stats here rather than inside pull_task().
  1601. */
  1602. schedstat_inc(sd, lb_gained[idle]);
  1603. return 1;
  1604. }
  1605. }
  1606. return 0;
  1607. }
  1608. static unsigned long
  1609. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1610. unsigned long max_load_move, struct sched_domain *sd,
  1611. enum cpu_idle_type idle, int *all_pinned,
  1612. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1613. {
  1614. int loops = 0, pulled = 0, pinned = 0;
  1615. long rem_load_move = max_load_move;
  1616. struct task_struct *p, *n;
  1617. if (max_load_move == 0)
  1618. goto out;
  1619. pinned = 1;
  1620. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1621. if (loops++ > sysctl_sched_nr_migrate)
  1622. break;
  1623. if ((p->se.load.weight >> 1) > rem_load_move ||
  1624. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1625. continue;
  1626. pull_task(busiest, p, this_rq, this_cpu);
  1627. pulled++;
  1628. rem_load_move -= p->se.load.weight;
  1629. #ifdef CONFIG_PREEMPT
  1630. /*
  1631. * NEWIDLE balancing is a source of latency, so preemptible
  1632. * kernels will stop after the first task is pulled to minimize
  1633. * the critical section.
  1634. */
  1635. if (idle == CPU_NEWLY_IDLE)
  1636. break;
  1637. #endif
  1638. /*
  1639. * We only want to steal up to the prescribed amount of
  1640. * weighted load.
  1641. */
  1642. if (rem_load_move <= 0)
  1643. break;
  1644. if (p->prio < *this_best_prio)
  1645. *this_best_prio = p->prio;
  1646. }
  1647. out:
  1648. /*
  1649. * Right now, this is one of only two places pull_task() is called,
  1650. * so we can safely collect pull_task() stats here rather than
  1651. * inside pull_task().
  1652. */
  1653. schedstat_add(sd, lb_gained[idle], pulled);
  1654. if (all_pinned)
  1655. *all_pinned = pinned;
  1656. return max_load_move - rem_load_move;
  1657. }
  1658. #ifdef CONFIG_FAIR_GROUP_SCHED
  1659. static unsigned long
  1660. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1661. unsigned long max_load_move,
  1662. struct sched_domain *sd, enum cpu_idle_type idle,
  1663. int *all_pinned, int *this_best_prio)
  1664. {
  1665. long rem_load_move = max_load_move;
  1666. int busiest_cpu = cpu_of(busiest);
  1667. struct task_group *tg;
  1668. rcu_read_lock();
  1669. update_h_load(busiest_cpu);
  1670. list_for_each_entry_rcu(tg, &task_groups, list) {
  1671. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1672. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1673. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1674. u64 rem_load, moved_load;
  1675. /*
  1676. * empty group
  1677. */
  1678. if (!busiest_cfs_rq->task_weight)
  1679. continue;
  1680. rem_load = (u64)rem_load_move * busiest_weight;
  1681. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1682. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1683. rem_load, sd, idle, all_pinned, this_best_prio,
  1684. busiest_cfs_rq);
  1685. if (!moved_load)
  1686. continue;
  1687. moved_load *= busiest_h_load;
  1688. moved_load = div_u64(moved_load, busiest_weight + 1);
  1689. rem_load_move -= moved_load;
  1690. if (rem_load_move < 0)
  1691. break;
  1692. }
  1693. rcu_read_unlock();
  1694. return max_load_move - rem_load_move;
  1695. }
  1696. #else
  1697. static unsigned long
  1698. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1699. unsigned long max_load_move,
  1700. struct sched_domain *sd, enum cpu_idle_type idle,
  1701. int *all_pinned, int *this_best_prio)
  1702. {
  1703. return balance_tasks(this_rq, this_cpu, busiest,
  1704. max_load_move, sd, idle, all_pinned,
  1705. this_best_prio, &busiest->cfs);
  1706. }
  1707. #endif
  1708. /*
  1709. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1710. * this_rq, as part of a balancing operation within domain "sd".
  1711. * Returns 1 if successful and 0 otherwise.
  1712. *
  1713. * Called with both runqueues locked.
  1714. */
  1715. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1716. unsigned long max_load_move,
  1717. struct sched_domain *sd, enum cpu_idle_type idle,
  1718. int *all_pinned)
  1719. {
  1720. unsigned long total_load_moved = 0, load_moved;
  1721. int this_best_prio = this_rq->curr->prio;
  1722. do {
  1723. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1724. max_load_move - total_load_moved,
  1725. sd, idle, all_pinned, &this_best_prio);
  1726. total_load_moved += load_moved;
  1727. #ifdef CONFIG_PREEMPT
  1728. /*
  1729. * NEWIDLE balancing is a source of latency, so preemptible
  1730. * kernels will stop after the first task is pulled to minimize
  1731. * the critical section.
  1732. */
  1733. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1734. break;
  1735. if (raw_spin_is_contended(&this_rq->lock) ||
  1736. raw_spin_is_contended(&busiest->lock))
  1737. break;
  1738. #endif
  1739. } while (load_moved && max_load_move > total_load_moved);
  1740. return total_load_moved > 0;
  1741. }
  1742. /********** Helpers for find_busiest_group ************************/
  1743. /*
  1744. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1745. * during load balancing.
  1746. */
  1747. struct sd_lb_stats {
  1748. struct sched_group *busiest; /* Busiest group in this sd */
  1749. struct sched_group *this; /* Local group in this sd */
  1750. unsigned long total_load; /* Total load of all groups in sd */
  1751. unsigned long total_pwr; /* Total power of all groups in sd */
  1752. unsigned long avg_load; /* Average load across all groups in sd */
  1753. /** Statistics of this group */
  1754. unsigned long this_load;
  1755. unsigned long this_load_per_task;
  1756. unsigned long this_nr_running;
  1757. /* Statistics of the busiest group */
  1758. unsigned long max_load;
  1759. unsigned long busiest_load_per_task;
  1760. unsigned long busiest_nr_running;
  1761. unsigned long busiest_group_capacity;
  1762. int group_imb; /* Is there imbalance in this sd */
  1763. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1764. int power_savings_balance; /* Is powersave balance needed for this sd */
  1765. struct sched_group *group_min; /* Least loaded group in sd */
  1766. struct sched_group *group_leader; /* Group which relieves group_min */
  1767. unsigned long min_load_per_task; /* load_per_task in group_min */
  1768. unsigned long leader_nr_running; /* Nr running of group_leader */
  1769. unsigned long min_nr_running; /* Nr running of group_min */
  1770. #endif
  1771. };
  1772. /*
  1773. * sg_lb_stats - stats of a sched_group required for load_balancing
  1774. */
  1775. struct sg_lb_stats {
  1776. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1777. unsigned long group_load; /* Total load over the CPUs of the group */
  1778. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1779. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1780. unsigned long group_capacity;
  1781. int group_imb; /* Is there an imbalance in the group ? */
  1782. };
  1783. /**
  1784. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1785. * @group: The group whose first cpu is to be returned.
  1786. */
  1787. static inline unsigned int group_first_cpu(struct sched_group *group)
  1788. {
  1789. return cpumask_first(sched_group_cpus(group));
  1790. }
  1791. /**
  1792. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1793. * @sd: The sched_domain whose load_idx is to be obtained.
  1794. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1795. */
  1796. static inline int get_sd_load_idx(struct sched_domain *sd,
  1797. enum cpu_idle_type idle)
  1798. {
  1799. int load_idx;
  1800. switch (idle) {
  1801. case CPU_NOT_IDLE:
  1802. load_idx = sd->busy_idx;
  1803. break;
  1804. case CPU_NEWLY_IDLE:
  1805. load_idx = sd->newidle_idx;
  1806. break;
  1807. default:
  1808. load_idx = sd->idle_idx;
  1809. break;
  1810. }
  1811. return load_idx;
  1812. }
  1813. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1814. /**
  1815. * init_sd_power_savings_stats - Initialize power savings statistics for
  1816. * the given sched_domain, during load balancing.
  1817. *
  1818. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1819. * @sds: Variable containing the statistics for sd.
  1820. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1821. */
  1822. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1823. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1824. {
  1825. /*
  1826. * Busy processors will not participate in power savings
  1827. * balance.
  1828. */
  1829. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1830. sds->power_savings_balance = 0;
  1831. else {
  1832. sds->power_savings_balance = 1;
  1833. sds->min_nr_running = ULONG_MAX;
  1834. sds->leader_nr_running = 0;
  1835. }
  1836. }
  1837. /**
  1838. * update_sd_power_savings_stats - Update the power saving stats for a
  1839. * sched_domain while performing load balancing.
  1840. *
  1841. * @group: sched_group belonging to the sched_domain under consideration.
  1842. * @sds: Variable containing the statistics of the sched_domain
  1843. * @local_group: Does group contain the CPU for which we're performing
  1844. * load balancing ?
  1845. * @sgs: Variable containing the statistics of the group.
  1846. */
  1847. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1848. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1849. {
  1850. if (!sds->power_savings_balance)
  1851. return;
  1852. /*
  1853. * If the local group is idle or completely loaded
  1854. * no need to do power savings balance at this domain
  1855. */
  1856. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1857. !sds->this_nr_running))
  1858. sds->power_savings_balance = 0;
  1859. /*
  1860. * If a group is already running at full capacity or idle,
  1861. * don't include that group in power savings calculations
  1862. */
  1863. if (!sds->power_savings_balance ||
  1864. sgs->sum_nr_running >= sgs->group_capacity ||
  1865. !sgs->sum_nr_running)
  1866. return;
  1867. /*
  1868. * Calculate the group which has the least non-idle load.
  1869. * This is the group from where we need to pick up the load
  1870. * for saving power
  1871. */
  1872. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1873. (sgs->sum_nr_running == sds->min_nr_running &&
  1874. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1875. sds->group_min = group;
  1876. sds->min_nr_running = sgs->sum_nr_running;
  1877. sds->min_load_per_task = sgs->sum_weighted_load /
  1878. sgs->sum_nr_running;
  1879. }
  1880. /*
  1881. * Calculate the group which is almost near its
  1882. * capacity but still has some space to pick up some load
  1883. * from other group and save more power
  1884. */
  1885. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1886. return;
  1887. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1888. (sgs->sum_nr_running == sds->leader_nr_running &&
  1889. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1890. sds->group_leader = group;
  1891. sds->leader_nr_running = sgs->sum_nr_running;
  1892. }
  1893. }
  1894. /**
  1895. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1896. * @sds: Variable containing the statistics of the sched_domain
  1897. * under consideration.
  1898. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1899. * @imbalance: Variable to store the imbalance.
  1900. *
  1901. * Description:
  1902. * Check if we have potential to perform some power-savings balance.
  1903. * If yes, set the busiest group to be the least loaded group in the
  1904. * sched_domain, so that it's CPUs can be put to idle.
  1905. *
  1906. * Returns 1 if there is potential to perform power-savings balance.
  1907. * Else returns 0.
  1908. */
  1909. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1910. int this_cpu, unsigned long *imbalance)
  1911. {
  1912. if (!sds->power_savings_balance)
  1913. return 0;
  1914. if (sds->this != sds->group_leader ||
  1915. sds->group_leader == sds->group_min)
  1916. return 0;
  1917. *imbalance = sds->min_load_per_task;
  1918. sds->busiest = sds->group_min;
  1919. return 1;
  1920. }
  1921. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1922. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1923. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1924. {
  1925. return;
  1926. }
  1927. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1928. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1929. {
  1930. return;
  1931. }
  1932. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1933. int this_cpu, unsigned long *imbalance)
  1934. {
  1935. return 0;
  1936. }
  1937. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1938. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1939. {
  1940. return SCHED_LOAD_SCALE;
  1941. }
  1942. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1943. {
  1944. return default_scale_freq_power(sd, cpu);
  1945. }
  1946. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1947. {
  1948. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  1949. unsigned long smt_gain = sd->smt_gain;
  1950. smt_gain /= weight;
  1951. return smt_gain;
  1952. }
  1953. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1954. {
  1955. return default_scale_smt_power(sd, cpu);
  1956. }
  1957. unsigned long scale_rt_power(int cpu)
  1958. {
  1959. struct rq *rq = cpu_rq(cpu);
  1960. u64 total, available;
  1961. sched_avg_update(rq);
  1962. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1963. available = total - rq->rt_avg;
  1964. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1965. total = SCHED_LOAD_SCALE;
  1966. total >>= SCHED_LOAD_SHIFT;
  1967. return div_u64(available, total);
  1968. }
  1969. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1970. {
  1971. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  1972. unsigned long power = SCHED_LOAD_SCALE;
  1973. struct sched_group *sdg = sd->groups;
  1974. if (sched_feat(ARCH_POWER))
  1975. power *= arch_scale_freq_power(sd, cpu);
  1976. else
  1977. power *= default_scale_freq_power(sd, cpu);
  1978. power >>= SCHED_LOAD_SHIFT;
  1979. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1980. if (sched_feat(ARCH_POWER))
  1981. power *= arch_scale_smt_power(sd, cpu);
  1982. else
  1983. power *= default_scale_smt_power(sd, cpu);
  1984. power >>= SCHED_LOAD_SHIFT;
  1985. }
  1986. power *= scale_rt_power(cpu);
  1987. power >>= SCHED_LOAD_SHIFT;
  1988. if (!power)
  1989. power = 1;
  1990. sdg->cpu_power = power;
  1991. }
  1992. static void update_group_power(struct sched_domain *sd, int cpu)
  1993. {
  1994. struct sched_domain *child = sd->child;
  1995. struct sched_group *group, *sdg = sd->groups;
  1996. unsigned long power;
  1997. if (!child) {
  1998. update_cpu_power(sd, cpu);
  1999. return;
  2000. }
  2001. power = 0;
  2002. group = child->groups;
  2003. do {
  2004. power += group->cpu_power;
  2005. group = group->next;
  2006. } while (group != child->groups);
  2007. sdg->cpu_power = power;
  2008. }
  2009. /**
  2010. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2011. * @sd: The sched_domain whose statistics are to be updated.
  2012. * @group: sched_group whose statistics are to be updated.
  2013. * @this_cpu: Cpu for which load balance is currently performed.
  2014. * @idle: Idle status of this_cpu
  2015. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2016. * @sd_idle: Idle status of the sched_domain containing group.
  2017. * @local_group: Does group contain this_cpu.
  2018. * @cpus: Set of cpus considered for load balancing.
  2019. * @balance: Should we balance.
  2020. * @sgs: variable to hold the statistics for this group.
  2021. */
  2022. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2023. struct sched_group *group, int this_cpu,
  2024. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2025. int local_group, const struct cpumask *cpus,
  2026. int *balance, struct sg_lb_stats *sgs)
  2027. {
  2028. unsigned long load, max_cpu_load, min_cpu_load;
  2029. int i;
  2030. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2031. unsigned long avg_load_per_task = 0;
  2032. if (local_group)
  2033. balance_cpu = group_first_cpu(group);
  2034. /* Tally up the load of all CPUs in the group */
  2035. max_cpu_load = 0;
  2036. min_cpu_load = ~0UL;
  2037. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2038. struct rq *rq = cpu_rq(i);
  2039. if (*sd_idle && rq->nr_running)
  2040. *sd_idle = 0;
  2041. /* Bias balancing toward cpus of our domain */
  2042. if (local_group) {
  2043. if (idle_cpu(i) && !first_idle_cpu) {
  2044. first_idle_cpu = 1;
  2045. balance_cpu = i;
  2046. }
  2047. load = target_load(i, load_idx);
  2048. } else {
  2049. load = source_load(i, load_idx);
  2050. if (load > max_cpu_load)
  2051. max_cpu_load = load;
  2052. if (min_cpu_load > load)
  2053. min_cpu_load = load;
  2054. }
  2055. sgs->group_load += load;
  2056. sgs->sum_nr_running += rq->nr_running;
  2057. sgs->sum_weighted_load += weighted_cpuload(i);
  2058. }
  2059. /*
  2060. * First idle cpu or the first cpu(busiest) in this sched group
  2061. * is eligible for doing load balancing at this and above
  2062. * domains. In the newly idle case, we will allow all the cpu's
  2063. * to do the newly idle load balance.
  2064. */
  2065. if (idle != CPU_NEWLY_IDLE && local_group &&
  2066. balance_cpu != this_cpu) {
  2067. *balance = 0;
  2068. return;
  2069. }
  2070. update_group_power(sd, this_cpu);
  2071. /* Adjust by relative CPU power of the group */
  2072. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2073. /*
  2074. * Consider the group unbalanced when the imbalance is larger
  2075. * than the average weight of two tasks.
  2076. *
  2077. * APZ: with cgroup the avg task weight can vary wildly and
  2078. * might not be a suitable number - should we keep a
  2079. * normalized nr_running number somewhere that negates
  2080. * the hierarchy?
  2081. */
  2082. if (sgs->sum_nr_running)
  2083. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2084. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2085. sgs->group_imb = 1;
  2086. sgs->group_capacity =
  2087. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2088. }
  2089. /**
  2090. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2091. * @sd: sched_domain whose statistics are to be updated.
  2092. * @this_cpu: Cpu for which load balance is currently performed.
  2093. * @idle: Idle status of this_cpu
  2094. * @sd_idle: Idle status of the sched_domain containing group.
  2095. * @cpus: Set of cpus considered for load balancing.
  2096. * @balance: Should we balance.
  2097. * @sds: variable to hold the statistics for this sched_domain.
  2098. */
  2099. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2100. enum cpu_idle_type idle, int *sd_idle,
  2101. const struct cpumask *cpus, int *balance,
  2102. struct sd_lb_stats *sds)
  2103. {
  2104. struct sched_domain *child = sd->child;
  2105. struct sched_group *group = sd->groups;
  2106. struct sg_lb_stats sgs;
  2107. int load_idx, prefer_sibling = 0;
  2108. if (child && child->flags & SD_PREFER_SIBLING)
  2109. prefer_sibling = 1;
  2110. init_sd_power_savings_stats(sd, sds, idle);
  2111. load_idx = get_sd_load_idx(sd, idle);
  2112. do {
  2113. int local_group;
  2114. local_group = cpumask_test_cpu(this_cpu,
  2115. sched_group_cpus(group));
  2116. memset(&sgs, 0, sizeof(sgs));
  2117. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  2118. local_group, cpus, balance, &sgs);
  2119. if (local_group && !(*balance))
  2120. return;
  2121. sds->total_load += sgs.group_load;
  2122. sds->total_pwr += group->cpu_power;
  2123. /*
  2124. * In case the child domain prefers tasks go to siblings
  2125. * first, lower the group capacity to one so that we'll try
  2126. * and move all the excess tasks away.
  2127. */
  2128. if (prefer_sibling)
  2129. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2130. if (local_group) {
  2131. sds->this_load = sgs.avg_load;
  2132. sds->this = group;
  2133. sds->this_nr_running = sgs.sum_nr_running;
  2134. sds->this_load_per_task = sgs.sum_weighted_load;
  2135. } else if (sgs.avg_load > sds->max_load &&
  2136. (sgs.sum_nr_running > sgs.group_capacity ||
  2137. sgs.group_imb)) {
  2138. sds->max_load = sgs.avg_load;
  2139. sds->busiest = group;
  2140. sds->busiest_nr_running = sgs.sum_nr_running;
  2141. sds->busiest_group_capacity = sgs.group_capacity;
  2142. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2143. sds->group_imb = sgs.group_imb;
  2144. }
  2145. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  2146. group = group->next;
  2147. } while (group != sd->groups);
  2148. }
  2149. /**
  2150. * fix_small_imbalance - Calculate the minor imbalance that exists
  2151. * amongst the groups of a sched_domain, during
  2152. * load balancing.
  2153. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2154. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2155. * @imbalance: Variable to store the imbalance.
  2156. */
  2157. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2158. int this_cpu, unsigned long *imbalance)
  2159. {
  2160. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2161. unsigned int imbn = 2;
  2162. unsigned long scaled_busy_load_per_task;
  2163. if (sds->this_nr_running) {
  2164. sds->this_load_per_task /= sds->this_nr_running;
  2165. if (sds->busiest_load_per_task >
  2166. sds->this_load_per_task)
  2167. imbn = 1;
  2168. } else
  2169. sds->this_load_per_task =
  2170. cpu_avg_load_per_task(this_cpu);
  2171. scaled_busy_load_per_task = sds->busiest_load_per_task
  2172. * SCHED_LOAD_SCALE;
  2173. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2174. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2175. (scaled_busy_load_per_task * imbn)) {
  2176. *imbalance = sds->busiest_load_per_task;
  2177. return;
  2178. }
  2179. /*
  2180. * OK, we don't have enough imbalance to justify moving tasks,
  2181. * however we may be able to increase total CPU power used by
  2182. * moving them.
  2183. */
  2184. pwr_now += sds->busiest->cpu_power *
  2185. min(sds->busiest_load_per_task, sds->max_load);
  2186. pwr_now += sds->this->cpu_power *
  2187. min(sds->this_load_per_task, sds->this_load);
  2188. pwr_now /= SCHED_LOAD_SCALE;
  2189. /* Amount of load we'd subtract */
  2190. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2191. sds->busiest->cpu_power;
  2192. if (sds->max_load > tmp)
  2193. pwr_move += sds->busiest->cpu_power *
  2194. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2195. /* Amount of load we'd add */
  2196. if (sds->max_load * sds->busiest->cpu_power <
  2197. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2198. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2199. sds->this->cpu_power;
  2200. else
  2201. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2202. sds->this->cpu_power;
  2203. pwr_move += sds->this->cpu_power *
  2204. min(sds->this_load_per_task, sds->this_load + tmp);
  2205. pwr_move /= SCHED_LOAD_SCALE;
  2206. /* Move if we gain throughput */
  2207. if (pwr_move > pwr_now)
  2208. *imbalance = sds->busiest_load_per_task;
  2209. }
  2210. /**
  2211. * calculate_imbalance - Calculate the amount of imbalance present within the
  2212. * groups of a given sched_domain during load balance.
  2213. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2214. * @this_cpu: Cpu for which currently load balance is being performed.
  2215. * @imbalance: The variable to store the imbalance.
  2216. */
  2217. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2218. unsigned long *imbalance)
  2219. {
  2220. unsigned long max_pull, load_above_capacity = ~0UL;
  2221. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2222. if (sds->group_imb) {
  2223. sds->busiest_load_per_task =
  2224. min(sds->busiest_load_per_task, sds->avg_load);
  2225. }
  2226. /*
  2227. * In the presence of smp nice balancing, certain scenarios can have
  2228. * max load less than avg load(as we skip the groups at or below
  2229. * its cpu_power, while calculating max_load..)
  2230. */
  2231. if (sds->max_load < sds->avg_load) {
  2232. *imbalance = 0;
  2233. return fix_small_imbalance(sds, this_cpu, imbalance);
  2234. }
  2235. if (!sds->group_imb) {
  2236. /*
  2237. * Don't want to pull so many tasks that a group would go idle.
  2238. */
  2239. load_above_capacity = (sds->busiest_nr_running -
  2240. sds->busiest_group_capacity);
  2241. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2242. load_above_capacity /= sds->busiest->cpu_power;
  2243. }
  2244. /*
  2245. * We're trying to get all the cpus to the average_load, so we don't
  2246. * want to push ourselves above the average load, nor do we wish to
  2247. * reduce the max loaded cpu below the average load. At the same time,
  2248. * we also don't want to reduce the group load below the group capacity
  2249. * (so that we can implement power-savings policies etc). Thus we look
  2250. * for the minimum possible imbalance.
  2251. * Be careful of negative numbers as they'll appear as very large values
  2252. * with unsigned longs.
  2253. */
  2254. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2255. /* How much load to actually move to equalise the imbalance */
  2256. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2257. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2258. / SCHED_LOAD_SCALE;
  2259. /*
  2260. * if *imbalance is less than the average load per runnable task
  2261. * there is no gaurantee that any tasks will be moved so we'll have
  2262. * a think about bumping its value to force at least one task to be
  2263. * moved
  2264. */
  2265. if (*imbalance < sds->busiest_load_per_task)
  2266. return fix_small_imbalance(sds, this_cpu, imbalance);
  2267. }
  2268. /******* find_busiest_group() helpers end here *********************/
  2269. /**
  2270. * find_busiest_group - Returns the busiest group within the sched_domain
  2271. * if there is an imbalance. If there isn't an imbalance, and
  2272. * the user has opted for power-savings, it returns a group whose
  2273. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2274. * such a group exists.
  2275. *
  2276. * Also calculates the amount of weighted load which should be moved
  2277. * to restore balance.
  2278. *
  2279. * @sd: The sched_domain whose busiest group is to be returned.
  2280. * @this_cpu: The cpu for which load balancing is currently being performed.
  2281. * @imbalance: Variable which stores amount of weighted load which should
  2282. * be moved to restore balance/put a group to idle.
  2283. * @idle: The idle status of this_cpu.
  2284. * @sd_idle: The idleness of sd
  2285. * @cpus: The set of CPUs under consideration for load-balancing.
  2286. * @balance: Pointer to a variable indicating if this_cpu
  2287. * is the appropriate cpu to perform load balancing at this_level.
  2288. *
  2289. * Returns: - the busiest group if imbalance exists.
  2290. * - If no imbalance and user has opted for power-savings balance,
  2291. * return the least loaded group whose CPUs can be
  2292. * put to idle by rebalancing its tasks onto our group.
  2293. */
  2294. static struct sched_group *
  2295. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2296. unsigned long *imbalance, enum cpu_idle_type idle,
  2297. int *sd_idle, const struct cpumask *cpus, int *balance)
  2298. {
  2299. struct sd_lb_stats sds;
  2300. memset(&sds, 0, sizeof(sds));
  2301. /*
  2302. * Compute the various statistics relavent for load balancing at
  2303. * this level.
  2304. */
  2305. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2306. balance, &sds);
  2307. /* Cases where imbalance does not exist from POV of this_cpu */
  2308. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2309. * at this level.
  2310. * 2) There is no busy sibling group to pull from.
  2311. * 3) This group is the busiest group.
  2312. * 4) This group is more busy than the avg busieness at this
  2313. * sched_domain.
  2314. * 5) The imbalance is within the specified limit.
  2315. */
  2316. if (!(*balance))
  2317. goto ret;
  2318. if (!sds.busiest || sds.busiest_nr_running == 0)
  2319. goto out_balanced;
  2320. if (sds.this_load >= sds.max_load)
  2321. goto out_balanced;
  2322. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2323. if (sds.this_load >= sds.avg_load)
  2324. goto out_balanced;
  2325. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2326. goto out_balanced;
  2327. /* Looks like there is an imbalance. Compute it */
  2328. calculate_imbalance(&sds, this_cpu, imbalance);
  2329. return sds.busiest;
  2330. out_balanced:
  2331. /*
  2332. * There is no obvious imbalance. But check if we can do some balancing
  2333. * to save power.
  2334. */
  2335. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2336. return sds.busiest;
  2337. ret:
  2338. *imbalance = 0;
  2339. return NULL;
  2340. }
  2341. /*
  2342. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2343. */
  2344. static struct rq *
  2345. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2346. unsigned long imbalance, const struct cpumask *cpus)
  2347. {
  2348. struct rq *busiest = NULL, *rq;
  2349. unsigned long max_load = 0;
  2350. int i;
  2351. for_each_cpu(i, sched_group_cpus(group)) {
  2352. unsigned long power = power_of(i);
  2353. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2354. unsigned long wl;
  2355. if (!cpumask_test_cpu(i, cpus))
  2356. continue;
  2357. rq = cpu_rq(i);
  2358. wl = weighted_cpuload(i);
  2359. /*
  2360. * When comparing with imbalance, use weighted_cpuload()
  2361. * which is not scaled with the cpu power.
  2362. */
  2363. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2364. continue;
  2365. /*
  2366. * For the load comparisons with the other cpu's, consider
  2367. * the weighted_cpuload() scaled with the cpu power, so that
  2368. * the load can be moved away from the cpu that is potentially
  2369. * running at a lower capacity.
  2370. */
  2371. wl = (wl * SCHED_LOAD_SCALE) / power;
  2372. if (wl > max_load) {
  2373. max_load = wl;
  2374. busiest = rq;
  2375. }
  2376. }
  2377. return busiest;
  2378. }
  2379. /*
  2380. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2381. * so long as it is large enough.
  2382. */
  2383. #define MAX_PINNED_INTERVAL 512
  2384. /* Working cpumask for load_balance and load_balance_newidle. */
  2385. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2386. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
  2387. {
  2388. if (idle == CPU_NEWLY_IDLE) {
  2389. /*
  2390. * The only task running in a non-idle cpu can be moved to this
  2391. * cpu in an attempt to completely freeup the other CPU
  2392. * package.
  2393. *
  2394. * The package power saving logic comes from
  2395. * find_busiest_group(). If there are no imbalance, then
  2396. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2397. * f_b_g() will select a group from which a running task may be
  2398. * pulled to this cpu in order to make the other package idle.
  2399. * If there is no opportunity to make a package idle and if
  2400. * there are no imbalance, then f_b_g() will return NULL and no
  2401. * action will be taken in load_balance_newidle().
  2402. *
  2403. * Under normal task pull operation due to imbalance, there
  2404. * will be more than one task in the source run queue and
  2405. * move_tasks() will succeed. ld_moved will be true and this
  2406. * active balance code will not be triggered.
  2407. */
  2408. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2409. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2410. return 0;
  2411. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2412. return 0;
  2413. }
  2414. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2415. }
  2416. /*
  2417. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2418. * tasks if there is an imbalance.
  2419. */
  2420. static int load_balance(int this_cpu, struct rq *this_rq,
  2421. struct sched_domain *sd, enum cpu_idle_type idle,
  2422. int *balance)
  2423. {
  2424. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2425. struct sched_group *group;
  2426. unsigned long imbalance;
  2427. struct rq *busiest;
  2428. unsigned long flags;
  2429. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2430. cpumask_copy(cpus, cpu_active_mask);
  2431. /*
  2432. * When power savings policy is enabled for the parent domain, idle
  2433. * sibling can pick up load irrespective of busy siblings. In this case,
  2434. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2435. * portraying it as CPU_NOT_IDLE.
  2436. */
  2437. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2438. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2439. sd_idle = 1;
  2440. schedstat_inc(sd, lb_count[idle]);
  2441. redo:
  2442. update_shares(sd);
  2443. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2444. cpus, balance);
  2445. if (*balance == 0)
  2446. goto out_balanced;
  2447. if (!group) {
  2448. schedstat_inc(sd, lb_nobusyg[idle]);
  2449. goto out_balanced;
  2450. }
  2451. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2452. if (!busiest) {
  2453. schedstat_inc(sd, lb_nobusyq[idle]);
  2454. goto out_balanced;
  2455. }
  2456. BUG_ON(busiest == this_rq);
  2457. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2458. ld_moved = 0;
  2459. if (busiest->nr_running > 1) {
  2460. /*
  2461. * Attempt to move tasks. If find_busiest_group has found
  2462. * an imbalance but busiest->nr_running <= 1, the group is
  2463. * still unbalanced. ld_moved simply stays zero, so it is
  2464. * correctly treated as an imbalance.
  2465. */
  2466. local_irq_save(flags);
  2467. double_rq_lock(this_rq, busiest);
  2468. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2469. imbalance, sd, idle, &all_pinned);
  2470. double_rq_unlock(this_rq, busiest);
  2471. local_irq_restore(flags);
  2472. /*
  2473. * some other cpu did the load balance for us.
  2474. */
  2475. if (ld_moved && this_cpu != smp_processor_id())
  2476. resched_cpu(this_cpu);
  2477. /* All tasks on this runqueue were pinned by CPU affinity */
  2478. if (unlikely(all_pinned)) {
  2479. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2480. if (!cpumask_empty(cpus))
  2481. goto redo;
  2482. goto out_balanced;
  2483. }
  2484. }
  2485. if (!ld_moved) {
  2486. schedstat_inc(sd, lb_failed[idle]);
  2487. sd->nr_balance_failed++;
  2488. if (need_active_balance(sd, sd_idle, idle)) {
  2489. raw_spin_lock_irqsave(&busiest->lock, flags);
  2490. /* don't kick the migration_thread, if the curr
  2491. * task on busiest cpu can't be moved to this_cpu
  2492. */
  2493. if (!cpumask_test_cpu(this_cpu,
  2494. &busiest->curr->cpus_allowed)) {
  2495. raw_spin_unlock_irqrestore(&busiest->lock,
  2496. flags);
  2497. all_pinned = 1;
  2498. goto out_one_pinned;
  2499. }
  2500. if (!busiest->active_balance) {
  2501. busiest->active_balance = 1;
  2502. busiest->push_cpu = this_cpu;
  2503. active_balance = 1;
  2504. }
  2505. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2506. if (active_balance)
  2507. wake_up_process(busiest->migration_thread);
  2508. /*
  2509. * We've kicked active balancing, reset the failure
  2510. * counter.
  2511. */
  2512. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2513. }
  2514. } else
  2515. sd->nr_balance_failed = 0;
  2516. if (likely(!active_balance)) {
  2517. /* We were unbalanced, so reset the balancing interval */
  2518. sd->balance_interval = sd->min_interval;
  2519. } else {
  2520. /*
  2521. * If we've begun active balancing, start to back off. This
  2522. * case may not be covered by the all_pinned logic if there
  2523. * is only 1 task on the busy runqueue (because we don't call
  2524. * move_tasks).
  2525. */
  2526. if (sd->balance_interval < sd->max_interval)
  2527. sd->balance_interval *= 2;
  2528. }
  2529. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2530. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2531. ld_moved = -1;
  2532. goto out;
  2533. out_balanced:
  2534. schedstat_inc(sd, lb_balanced[idle]);
  2535. sd->nr_balance_failed = 0;
  2536. out_one_pinned:
  2537. /* tune up the balancing interval */
  2538. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2539. (sd->balance_interval < sd->max_interval))
  2540. sd->balance_interval *= 2;
  2541. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2542. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2543. ld_moved = -1;
  2544. else
  2545. ld_moved = 0;
  2546. out:
  2547. if (ld_moved)
  2548. update_shares(sd);
  2549. return ld_moved;
  2550. }
  2551. /*
  2552. * idle_balance is called by schedule() if this_cpu is about to become
  2553. * idle. Attempts to pull tasks from other CPUs.
  2554. */
  2555. static void idle_balance(int this_cpu, struct rq *this_rq)
  2556. {
  2557. struct sched_domain *sd;
  2558. int pulled_task = 0;
  2559. unsigned long next_balance = jiffies + HZ;
  2560. this_rq->idle_stamp = this_rq->clock;
  2561. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2562. return;
  2563. /*
  2564. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2565. */
  2566. raw_spin_unlock(&this_rq->lock);
  2567. for_each_domain(this_cpu, sd) {
  2568. unsigned long interval;
  2569. int balance = 1;
  2570. if (!(sd->flags & SD_LOAD_BALANCE))
  2571. continue;
  2572. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2573. /* If we've pulled tasks over stop searching: */
  2574. pulled_task = load_balance(this_cpu, this_rq,
  2575. sd, CPU_NEWLY_IDLE, &balance);
  2576. }
  2577. interval = msecs_to_jiffies(sd->balance_interval);
  2578. if (time_after(next_balance, sd->last_balance + interval))
  2579. next_balance = sd->last_balance + interval;
  2580. if (pulled_task) {
  2581. this_rq->idle_stamp = 0;
  2582. break;
  2583. }
  2584. }
  2585. raw_spin_lock(&this_rq->lock);
  2586. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2587. /*
  2588. * We are going idle. next_balance may be set based on
  2589. * a busy processor. So reset next_balance.
  2590. */
  2591. this_rq->next_balance = next_balance;
  2592. }
  2593. }
  2594. /*
  2595. * active_load_balance is run by migration threads. It pushes running tasks
  2596. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2597. * running on each physical CPU where possible, and avoids physical /
  2598. * logical imbalances.
  2599. *
  2600. * Called with busiest_rq locked.
  2601. */
  2602. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2603. {
  2604. int target_cpu = busiest_rq->push_cpu;
  2605. struct sched_domain *sd;
  2606. struct rq *target_rq;
  2607. /* Is there any task to move? */
  2608. if (busiest_rq->nr_running <= 1)
  2609. return;
  2610. target_rq = cpu_rq(target_cpu);
  2611. /*
  2612. * This condition is "impossible", if it occurs
  2613. * we need to fix it. Originally reported by
  2614. * Bjorn Helgaas on a 128-cpu setup.
  2615. */
  2616. BUG_ON(busiest_rq == target_rq);
  2617. /* move a task from busiest_rq to target_rq */
  2618. double_lock_balance(busiest_rq, target_rq);
  2619. update_rq_clock(busiest_rq);
  2620. update_rq_clock(target_rq);
  2621. /* Search for an sd spanning us and the target CPU. */
  2622. for_each_domain(target_cpu, sd) {
  2623. if ((sd->flags & SD_LOAD_BALANCE) &&
  2624. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2625. break;
  2626. }
  2627. if (likely(sd)) {
  2628. schedstat_inc(sd, alb_count);
  2629. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2630. sd, CPU_IDLE))
  2631. schedstat_inc(sd, alb_pushed);
  2632. else
  2633. schedstat_inc(sd, alb_failed);
  2634. }
  2635. double_unlock_balance(busiest_rq, target_rq);
  2636. }
  2637. #ifdef CONFIG_NO_HZ
  2638. static struct {
  2639. atomic_t load_balancer;
  2640. cpumask_var_t cpu_mask;
  2641. cpumask_var_t ilb_grp_nohz_mask;
  2642. } nohz ____cacheline_aligned = {
  2643. .load_balancer = ATOMIC_INIT(-1),
  2644. };
  2645. int get_nohz_load_balancer(void)
  2646. {
  2647. return atomic_read(&nohz.load_balancer);
  2648. }
  2649. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2650. /**
  2651. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2652. * @cpu: The cpu whose lowest level of sched domain is to
  2653. * be returned.
  2654. * @flag: The flag to check for the lowest sched_domain
  2655. * for the given cpu.
  2656. *
  2657. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2658. */
  2659. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2660. {
  2661. struct sched_domain *sd;
  2662. for_each_domain(cpu, sd)
  2663. if (sd && (sd->flags & flag))
  2664. break;
  2665. return sd;
  2666. }
  2667. /**
  2668. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2669. * @cpu: The cpu whose domains we're iterating over.
  2670. * @sd: variable holding the value of the power_savings_sd
  2671. * for cpu.
  2672. * @flag: The flag to filter the sched_domains to be iterated.
  2673. *
  2674. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2675. * set, starting from the lowest sched_domain to the highest.
  2676. */
  2677. #define for_each_flag_domain(cpu, sd, flag) \
  2678. for (sd = lowest_flag_domain(cpu, flag); \
  2679. (sd && (sd->flags & flag)); sd = sd->parent)
  2680. /**
  2681. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2682. * @ilb_group: group to be checked for semi-idleness
  2683. *
  2684. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2685. *
  2686. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2687. * and atleast one non-idle CPU. This helper function checks if the given
  2688. * sched_group is semi-idle or not.
  2689. */
  2690. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2691. {
  2692. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  2693. sched_group_cpus(ilb_group));
  2694. /*
  2695. * A sched_group is semi-idle when it has atleast one busy cpu
  2696. * and atleast one idle cpu.
  2697. */
  2698. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  2699. return 0;
  2700. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  2701. return 0;
  2702. return 1;
  2703. }
  2704. /**
  2705. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2706. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2707. *
  2708. * Returns: Returns the id of the idle load balancer if it exists,
  2709. * Else, returns >= nr_cpu_ids.
  2710. *
  2711. * This algorithm picks the idle load balancer such that it belongs to a
  2712. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2713. * completely idle packages/cores just for the purpose of idle load balancing
  2714. * when there are other idle cpu's which are better suited for that job.
  2715. */
  2716. static int find_new_ilb(int cpu)
  2717. {
  2718. struct sched_domain *sd;
  2719. struct sched_group *ilb_group;
  2720. /*
  2721. * Have idle load balancer selection from semi-idle packages only
  2722. * when power-aware load balancing is enabled
  2723. */
  2724. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2725. goto out_done;
  2726. /*
  2727. * Optimize for the case when we have no idle CPUs or only one
  2728. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2729. */
  2730. if (cpumask_weight(nohz.cpu_mask) < 2)
  2731. goto out_done;
  2732. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2733. ilb_group = sd->groups;
  2734. do {
  2735. if (is_semi_idle_group(ilb_group))
  2736. return cpumask_first(nohz.ilb_grp_nohz_mask);
  2737. ilb_group = ilb_group->next;
  2738. } while (ilb_group != sd->groups);
  2739. }
  2740. out_done:
  2741. return cpumask_first(nohz.cpu_mask);
  2742. }
  2743. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2744. static inline int find_new_ilb(int call_cpu)
  2745. {
  2746. return cpumask_first(nohz.cpu_mask);
  2747. }
  2748. #endif
  2749. /*
  2750. * This routine will try to nominate the ilb (idle load balancing)
  2751. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2752. * load balancing on behalf of all those cpus. If all the cpus in the system
  2753. * go into this tickless mode, then there will be no ilb owner (as there is
  2754. * no need for one) and all the cpus will sleep till the next wakeup event
  2755. * arrives...
  2756. *
  2757. * For the ilb owner, tick is not stopped. And this tick will be used
  2758. * for idle load balancing. ilb owner will still be part of
  2759. * nohz.cpu_mask..
  2760. *
  2761. * While stopping the tick, this cpu will become the ilb owner if there
  2762. * is no other owner. And will be the owner till that cpu becomes busy
  2763. * or if all cpus in the system stop their ticks at which point
  2764. * there is no need for ilb owner.
  2765. *
  2766. * When the ilb owner becomes busy, it nominates another owner, during the
  2767. * next busy scheduler_tick()
  2768. */
  2769. int select_nohz_load_balancer(int stop_tick)
  2770. {
  2771. int cpu = smp_processor_id();
  2772. if (stop_tick) {
  2773. cpu_rq(cpu)->in_nohz_recently = 1;
  2774. if (!cpu_active(cpu)) {
  2775. if (atomic_read(&nohz.load_balancer) != cpu)
  2776. return 0;
  2777. /*
  2778. * If we are going offline and still the leader,
  2779. * give up!
  2780. */
  2781. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2782. BUG();
  2783. return 0;
  2784. }
  2785. cpumask_set_cpu(cpu, nohz.cpu_mask);
  2786. /* time for ilb owner also to sleep */
  2787. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  2788. if (atomic_read(&nohz.load_balancer) == cpu)
  2789. atomic_set(&nohz.load_balancer, -1);
  2790. return 0;
  2791. }
  2792. if (atomic_read(&nohz.load_balancer) == -1) {
  2793. /* make me the ilb owner */
  2794. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2795. return 1;
  2796. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  2797. int new_ilb;
  2798. if (!(sched_smt_power_savings ||
  2799. sched_mc_power_savings))
  2800. return 1;
  2801. /*
  2802. * Check to see if there is a more power-efficient
  2803. * ilb.
  2804. */
  2805. new_ilb = find_new_ilb(cpu);
  2806. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2807. atomic_set(&nohz.load_balancer, -1);
  2808. resched_cpu(new_ilb);
  2809. return 0;
  2810. }
  2811. return 1;
  2812. }
  2813. } else {
  2814. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  2815. return 0;
  2816. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2817. if (atomic_read(&nohz.load_balancer) == cpu)
  2818. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2819. BUG();
  2820. }
  2821. return 0;
  2822. }
  2823. #endif
  2824. static DEFINE_SPINLOCK(balancing);
  2825. /*
  2826. * It checks each scheduling domain to see if it is due to be balanced,
  2827. * and initiates a balancing operation if so.
  2828. *
  2829. * Balancing parameters are set up in arch_init_sched_domains.
  2830. */
  2831. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2832. {
  2833. int balance = 1;
  2834. struct rq *rq = cpu_rq(cpu);
  2835. unsigned long interval;
  2836. struct sched_domain *sd;
  2837. /* Earliest time when we have to do rebalance again */
  2838. unsigned long next_balance = jiffies + 60*HZ;
  2839. int update_next_balance = 0;
  2840. int need_serialize;
  2841. for_each_domain(cpu, sd) {
  2842. if (!(sd->flags & SD_LOAD_BALANCE))
  2843. continue;
  2844. interval = sd->balance_interval;
  2845. if (idle != CPU_IDLE)
  2846. interval *= sd->busy_factor;
  2847. /* scale ms to jiffies */
  2848. interval = msecs_to_jiffies(interval);
  2849. if (unlikely(!interval))
  2850. interval = 1;
  2851. if (interval > HZ*NR_CPUS/10)
  2852. interval = HZ*NR_CPUS/10;
  2853. need_serialize = sd->flags & SD_SERIALIZE;
  2854. if (need_serialize) {
  2855. if (!spin_trylock(&balancing))
  2856. goto out;
  2857. }
  2858. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2859. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2860. /*
  2861. * We've pulled tasks over so either we're no
  2862. * longer idle, or one of our SMT siblings is
  2863. * not idle.
  2864. */
  2865. idle = CPU_NOT_IDLE;
  2866. }
  2867. sd->last_balance = jiffies;
  2868. }
  2869. if (need_serialize)
  2870. spin_unlock(&balancing);
  2871. out:
  2872. if (time_after(next_balance, sd->last_balance + interval)) {
  2873. next_balance = sd->last_balance + interval;
  2874. update_next_balance = 1;
  2875. }
  2876. /*
  2877. * Stop the load balance at this level. There is another
  2878. * CPU in our sched group which is doing load balancing more
  2879. * actively.
  2880. */
  2881. if (!balance)
  2882. break;
  2883. }
  2884. /*
  2885. * next_balance will be updated only when there is a need.
  2886. * When the cpu is attached to null domain for ex, it will not be
  2887. * updated.
  2888. */
  2889. if (likely(update_next_balance))
  2890. rq->next_balance = next_balance;
  2891. }
  2892. /*
  2893. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2894. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2895. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2896. */
  2897. static void run_rebalance_domains(struct softirq_action *h)
  2898. {
  2899. int this_cpu = smp_processor_id();
  2900. struct rq *this_rq = cpu_rq(this_cpu);
  2901. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2902. CPU_IDLE : CPU_NOT_IDLE;
  2903. rebalance_domains(this_cpu, idle);
  2904. #ifdef CONFIG_NO_HZ
  2905. /*
  2906. * If this cpu is the owner for idle load balancing, then do the
  2907. * balancing on behalf of the other idle cpus whose ticks are
  2908. * stopped.
  2909. */
  2910. if (this_rq->idle_at_tick &&
  2911. atomic_read(&nohz.load_balancer) == this_cpu) {
  2912. struct rq *rq;
  2913. int balance_cpu;
  2914. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  2915. if (balance_cpu == this_cpu)
  2916. continue;
  2917. /*
  2918. * If this cpu gets work to do, stop the load balancing
  2919. * work being done for other cpus. Next load
  2920. * balancing owner will pick it up.
  2921. */
  2922. if (need_resched())
  2923. break;
  2924. rebalance_domains(balance_cpu, CPU_IDLE);
  2925. rq = cpu_rq(balance_cpu);
  2926. if (time_after(this_rq->next_balance, rq->next_balance))
  2927. this_rq->next_balance = rq->next_balance;
  2928. }
  2929. }
  2930. #endif
  2931. }
  2932. static inline int on_null_domain(int cpu)
  2933. {
  2934. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  2935. }
  2936. /*
  2937. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2938. *
  2939. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2940. * idle load balancing owner or decide to stop the periodic load balancing,
  2941. * if the whole system is idle.
  2942. */
  2943. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2944. {
  2945. #ifdef CONFIG_NO_HZ
  2946. /*
  2947. * If we were in the nohz mode recently and busy at the current
  2948. * scheduler tick, then check if we need to nominate new idle
  2949. * load balancer.
  2950. */
  2951. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2952. rq->in_nohz_recently = 0;
  2953. if (atomic_read(&nohz.load_balancer) == cpu) {
  2954. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2955. atomic_set(&nohz.load_balancer, -1);
  2956. }
  2957. if (atomic_read(&nohz.load_balancer) == -1) {
  2958. int ilb = find_new_ilb(cpu);
  2959. if (ilb < nr_cpu_ids)
  2960. resched_cpu(ilb);
  2961. }
  2962. }
  2963. /*
  2964. * If this cpu is idle and doing idle load balancing for all the
  2965. * cpus with ticks stopped, is it time for that to stop?
  2966. */
  2967. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2968. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  2969. resched_cpu(cpu);
  2970. return;
  2971. }
  2972. /*
  2973. * If this cpu is idle and the idle load balancing is done by
  2974. * someone else, then no need raise the SCHED_SOFTIRQ
  2975. */
  2976. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2977. cpumask_test_cpu(cpu, nohz.cpu_mask))
  2978. return;
  2979. #endif
  2980. /* Don't need to rebalance while attached to NULL domain */
  2981. if (time_after_eq(jiffies, rq->next_balance) &&
  2982. likely(!on_null_domain(cpu)))
  2983. raise_softirq(SCHED_SOFTIRQ);
  2984. }
  2985. static void rq_online_fair(struct rq *rq)
  2986. {
  2987. update_sysctl();
  2988. }
  2989. static void rq_offline_fair(struct rq *rq)
  2990. {
  2991. update_sysctl();
  2992. }
  2993. #else /* CONFIG_SMP */
  2994. /*
  2995. * on UP we do not need to balance between CPUs:
  2996. */
  2997. static inline void idle_balance(int cpu, struct rq *rq)
  2998. {
  2999. }
  3000. #endif /* CONFIG_SMP */
  3001. /*
  3002. * scheduler tick hitting a task of our scheduling class:
  3003. */
  3004. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3005. {
  3006. struct cfs_rq *cfs_rq;
  3007. struct sched_entity *se = &curr->se;
  3008. for_each_sched_entity(se) {
  3009. cfs_rq = cfs_rq_of(se);
  3010. entity_tick(cfs_rq, se, queued);
  3011. }
  3012. }
  3013. /*
  3014. * called on fork with the child task as argument from the parent's context
  3015. * - child not yet on the tasklist
  3016. * - preemption disabled
  3017. */
  3018. static void task_fork_fair(struct task_struct *p)
  3019. {
  3020. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3021. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3022. int this_cpu = smp_processor_id();
  3023. struct rq *rq = this_rq();
  3024. unsigned long flags;
  3025. raw_spin_lock_irqsave(&rq->lock, flags);
  3026. if (unlikely(task_cpu(p) != this_cpu))
  3027. __set_task_cpu(p, this_cpu);
  3028. update_curr(cfs_rq);
  3029. if (curr)
  3030. se->vruntime = curr->vruntime;
  3031. place_entity(cfs_rq, se, 1);
  3032. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3033. /*
  3034. * Upon rescheduling, sched_class::put_prev_task() will place
  3035. * 'current' within the tree based on its new key value.
  3036. */
  3037. swap(curr->vruntime, se->vruntime);
  3038. resched_task(rq->curr);
  3039. }
  3040. se->vruntime -= cfs_rq->min_vruntime;
  3041. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3042. }
  3043. /*
  3044. * Priority of the task has changed. Check to see if we preempt
  3045. * the current task.
  3046. */
  3047. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3048. int oldprio, int running)
  3049. {
  3050. /*
  3051. * Reschedule if we are currently running on this runqueue and
  3052. * our priority decreased, or if we are not currently running on
  3053. * this runqueue and our priority is higher than the current's
  3054. */
  3055. if (running) {
  3056. if (p->prio > oldprio)
  3057. resched_task(rq->curr);
  3058. } else
  3059. check_preempt_curr(rq, p, 0);
  3060. }
  3061. /*
  3062. * We switched to the sched_fair class.
  3063. */
  3064. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3065. int running)
  3066. {
  3067. /*
  3068. * We were most likely switched from sched_rt, so
  3069. * kick off the schedule if running, otherwise just see
  3070. * if we can still preempt the current task.
  3071. */
  3072. if (running)
  3073. resched_task(rq->curr);
  3074. else
  3075. check_preempt_curr(rq, p, 0);
  3076. }
  3077. /* Account for a task changing its policy or group.
  3078. *
  3079. * This routine is mostly called to set cfs_rq->curr field when a task
  3080. * migrates between groups/classes.
  3081. */
  3082. static void set_curr_task_fair(struct rq *rq)
  3083. {
  3084. struct sched_entity *se = &rq->curr->se;
  3085. for_each_sched_entity(se)
  3086. set_next_entity(cfs_rq_of(se), se);
  3087. }
  3088. #ifdef CONFIG_FAIR_GROUP_SCHED
  3089. static void moved_group_fair(struct task_struct *p, int on_rq)
  3090. {
  3091. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3092. update_curr(cfs_rq);
  3093. if (!on_rq)
  3094. place_entity(cfs_rq, &p->se, 1);
  3095. }
  3096. #endif
  3097. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3098. {
  3099. struct sched_entity *se = &task->se;
  3100. unsigned int rr_interval = 0;
  3101. /*
  3102. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3103. * idle runqueue:
  3104. */
  3105. if (rq->cfs.load.weight)
  3106. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3107. return rr_interval;
  3108. }
  3109. /*
  3110. * All the scheduling class methods:
  3111. */
  3112. static const struct sched_class fair_sched_class = {
  3113. .next = &idle_sched_class,
  3114. .enqueue_task = enqueue_task_fair,
  3115. .dequeue_task = dequeue_task_fair,
  3116. .yield_task = yield_task_fair,
  3117. .check_preempt_curr = check_preempt_wakeup,
  3118. .pick_next_task = pick_next_task_fair,
  3119. .put_prev_task = put_prev_task_fair,
  3120. #ifdef CONFIG_SMP
  3121. .select_task_rq = select_task_rq_fair,
  3122. .rq_online = rq_online_fair,
  3123. .rq_offline = rq_offline_fair,
  3124. .task_waking = task_waking_fair,
  3125. #endif
  3126. .set_curr_task = set_curr_task_fair,
  3127. .task_tick = task_tick_fair,
  3128. .task_fork = task_fork_fair,
  3129. .prio_changed = prio_changed_fair,
  3130. .switched_to = switched_to_fair,
  3131. .get_rr_interval = get_rr_interval_fair,
  3132. #ifdef CONFIG_FAIR_GROUP_SCHED
  3133. .moved_group = moved_group_fair,
  3134. #endif
  3135. };
  3136. #ifdef CONFIG_SCHED_DEBUG
  3137. static void print_cfs_stats(struct seq_file *m, int cpu)
  3138. {
  3139. struct cfs_rq *cfs_rq;
  3140. rcu_read_lock();
  3141. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3142. print_cfs_rq(m, cpu, cfs_rq);
  3143. rcu_read_unlock();
  3144. }
  3145. #endif