xfs_log_recover.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log_priv.h"
  42. #include "xfs_buf_item.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_rw.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_trace.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. #if defined(DEBUG)
  53. STATIC void xlog_recover_check_summary(xlog_t *);
  54. #else
  55. #define xlog_recover_check_summary(log)
  56. #endif
  57. /*
  58. * Sector aligned buffer routines for buffer create/read/write/access
  59. */
  60. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  61. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  62. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  63. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  64. STATIC xfs_buf_t *
  65. xlog_get_bp(
  66. xlog_t *log,
  67. int nbblks)
  68. {
  69. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  70. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  71. XFS_ERROR_REPORT("xlog_get_bp(1)",
  72. XFS_ERRLEVEL_HIGH, log->l_mp);
  73. return NULL;
  74. }
  75. if (log->l_sectbb_log) {
  76. if (nbblks > 1)
  77. nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  78. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  79. }
  80. return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
  81. }
  82. STATIC void
  83. xlog_put_bp(
  84. xfs_buf_t *bp)
  85. {
  86. xfs_buf_free(bp);
  87. }
  88. STATIC xfs_caddr_t
  89. xlog_align(
  90. xlog_t *log,
  91. xfs_daddr_t blk_no,
  92. int nbblks,
  93. xfs_buf_t *bp)
  94. {
  95. xfs_caddr_t ptr;
  96. if (!log->l_sectbb_log)
  97. return XFS_BUF_PTR(bp);
  98. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  99. ASSERT(XFS_BUF_SIZE(bp) >=
  100. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  101. return ptr;
  102. }
  103. /*
  104. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  105. */
  106. STATIC int
  107. xlog_bread_noalign(
  108. xlog_t *log,
  109. xfs_daddr_t blk_no,
  110. int nbblks,
  111. xfs_buf_t *bp)
  112. {
  113. int error;
  114. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  115. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  116. XFS_ERROR_REPORT("xlog_bread(1)",
  117. XFS_ERRLEVEL_HIGH, log->l_mp);
  118. return EFSCORRUPTED;
  119. }
  120. if (log->l_sectbb_log) {
  121. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  122. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  123. }
  124. ASSERT(nbblks > 0);
  125. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  126. ASSERT(bp);
  127. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  128. XFS_BUF_READ(bp);
  129. XFS_BUF_BUSY(bp);
  130. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  131. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  132. xfsbdstrat(log->l_mp, bp);
  133. error = xfs_iowait(bp);
  134. if (error)
  135. xfs_ioerror_alert("xlog_bread", log->l_mp,
  136. bp, XFS_BUF_ADDR(bp));
  137. return error;
  138. }
  139. STATIC int
  140. xlog_bread(
  141. xlog_t *log,
  142. xfs_daddr_t blk_no,
  143. int nbblks,
  144. xfs_buf_t *bp,
  145. xfs_caddr_t *offset)
  146. {
  147. int error;
  148. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  149. if (error)
  150. return error;
  151. *offset = xlog_align(log, blk_no, nbblks, bp);
  152. return 0;
  153. }
  154. /*
  155. * Write out the buffer at the given block for the given number of blocks.
  156. * The buffer is kept locked across the write and is returned locked.
  157. * This can only be used for synchronous log writes.
  158. */
  159. STATIC int
  160. xlog_bwrite(
  161. xlog_t *log,
  162. xfs_daddr_t blk_no,
  163. int nbblks,
  164. xfs_buf_t *bp)
  165. {
  166. int error;
  167. if (nbblks <= 0 || nbblks > log->l_logBBsize) {
  168. xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
  169. XFS_ERROR_REPORT("xlog_bwrite(1)",
  170. XFS_ERRLEVEL_HIGH, log->l_mp);
  171. return EFSCORRUPTED;
  172. }
  173. if (log->l_sectbb_log) {
  174. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  175. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  176. }
  177. ASSERT(nbblks > 0);
  178. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  179. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  180. XFS_BUF_ZEROFLAGS(bp);
  181. XFS_BUF_BUSY(bp);
  182. XFS_BUF_HOLD(bp);
  183. XFS_BUF_PSEMA(bp, PRIBIO);
  184. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  185. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  186. if ((error = xfs_bwrite(log->l_mp, bp)))
  187. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  188. bp, XFS_BUF_ADDR(bp));
  189. return error;
  190. }
  191. #ifdef DEBUG
  192. /*
  193. * dump debug superblock and log record information
  194. */
  195. STATIC void
  196. xlog_header_check_dump(
  197. xfs_mount_t *mp,
  198. xlog_rec_header_t *head)
  199. {
  200. cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
  201. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  202. cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
  203. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  204. }
  205. #else
  206. #define xlog_header_check_dump(mp, head)
  207. #endif
  208. /*
  209. * check log record header for recovery
  210. */
  211. STATIC int
  212. xlog_header_check_recover(
  213. xfs_mount_t *mp,
  214. xlog_rec_header_t *head)
  215. {
  216. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  217. /*
  218. * IRIX doesn't write the h_fmt field and leaves it zeroed
  219. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  220. * a dirty log created in IRIX.
  221. */
  222. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  223. xlog_warn(
  224. "XFS: dirty log written in incompatible format - can't recover");
  225. xlog_header_check_dump(mp, head);
  226. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  227. XFS_ERRLEVEL_HIGH, mp);
  228. return XFS_ERROR(EFSCORRUPTED);
  229. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  230. xlog_warn(
  231. "XFS: dirty log entry has mismatched uuid - can't recover");
  232. xlog_header_check_dump(mp, head);
  233. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  234. XFS_ERRLEVEL_HIGH, mp);
  235. return XFS_ERROR(EFSCORRUPTED);
  236. }
  237. return 0;
  238. }
  239. /*
  240. * read the head block of the log and check the header
  241. */
  242. STATIC int
  243. xlog_header_check_mount(
  244. xfs_mount_t *mp,
  245. xlog_rec_header_t *head)
  246. {
  247. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  248. if (uuid_is_nil(&head->h_fs_uuid)) {
  249. /*
  250. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  251. * h_fs_uuid is nil, we assume this log was last mounted
  252. * by IRIX and continue.
  253. */
  254. xlog_warn("XFS: nil uuid in log - IRIX style log");
  255. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  256. xlog_warn("XFS: log has mismatched uuid - can't recover");
  257. xlog_header_check_dump(mp, head);
  258. XFS_ERROR_REPORT("xlog_header_check_mount",
  259. XFS_ERRLEVEL_HIGH, mp);
  260. return XFS_ERROR(EFSCORRUPTED);
  261. }
  262. return 0;
  263. }
  264. STATIC void
  265. xlog_recover_iodone(
  266. struct xfs_buf *bp)
  267. {
  268. if (XFS_BUF_GETERROR(bp)) {
  269. /*
  270. * We're not going to bother about retrying
  271. * this during recovery. One strike!
  272. */
  273. xfs_ioerror_alert("xlog_recover_iodone",
  274. bp->b_mount, bp, XFS_BUF_ADDR(bp));
  275. xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
  276. }
  277. bp->b_mount = NULL;
  278. XFS_BUF_CLR_IODONE_FUNC(bp);
  279. xfs_biodone(bp);
  280. }
  281. /*
  282. * This routine finds (to an approximation) the first block in the physical
  283. * log which contains the given cycle. It uses a binary search algorithm.
  284. * Note that the algorithm can not be perfect because the disk will not
  285. * necessarily be perfect.
  286. */
  287. STATIC int
  288. xlog_find_cycle_start(
  289. xlog_t *log,
  290. xfs_buf_t *bp,
  291. xfs_daddr_t first_blk,
  292. xfs_daddr_t *last_blk,
  293. uint cycle)
  294. {
  295. xfs_caddr_t offset;
  296. xfs_daddr_t mid_blk;
  297. uint mid_cycle;
  298. int error;
  299. mid_blk = BLK_AVG(first_blk, *last_blk);
  300. while (mid_blk != first_blk && mid_blk != *last_blk) {
  301. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  302. if (error)
  303. return error;
  304. mid_cycle = xlog_get_cycle(offset);
  305. if (mid_cycle == cycle) {
  306. *last_blk = mid_blk;
  307. /* last_half_cycle == mid_cycle */
  308. } else {
  309. first_blk = mid_blk;
  310. /* first_half_cycle == mid_cycle */
  311. }
  312. mid_blk = BLK_AVG(first_blk, *last_blk);
  313. }
  314. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  315. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  316. return 0;
  317. }
  318. /*
  319. * Check that the range of blocks does not contain the cycle number
  320. * given. The scan needs to occur from front to back and the ptr into the
  321. * region must be updated since a later routine will need to perform another
  322. * test. If the region is completely good, we end up returning the same
  323. * last block number.
  324. *
  325. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  326. * since we don't ever expect logs to get this large.
  327. */
  328. STATIC int
  329. xlog_find_verify_cycle(
  330. xlog_t *log,
  331. xfs_daddr_t start_blk,
  332. int nbblks,
  333. uint stop_on_cycle_no,
  334. xfs_daddr_t *new_blk)
  335. {
  336. xfs_daddr_t i, j;
  337. uint cycle;
  338. xfs_buf_t *bp;
  339. xfs_daddr_t bufblks;
  340. xfs_caddr_t buf = NULL;
  341. int error = 0;
  342. bufblks = 1 << ffs(nbblks);
  343. while (!(bp = xlog_get_bp(log, bufblks))) {
  344. /* can't get enough memory to do everything in one big buffer */
  345. bufblks >>= 1;
  346. if (bufblks <= log->l_sectbb_log)
  347. return ENOMEM;
  348. }
  349. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  350. int bcount;
  351. bcount = min(bufblks, (start_blk + nbblks - i));
  352. error = xlog_bread(log, i, bcount, bp, &buf);
  353. if (error)
  354. goto out;
  355. for (j = 0; j < bcount; j++) {
  356. cycle = xlog_get_cycle(buf);
  357. if (cycle == stop_on_cycle_no) {
  358. *new_blk = i+j;
  359. goto out;
  360. }
  361. buf += BBSIZE;
  362. }
  363. }
  364. *new_blk = -1;
  365. out:
  366. xlog_put_bp(bp);
  367. return error;
  368. }
  369. /*
  370. * Potentially backup over partial log record write.
  371. *
  372. * In the typical case, last_blk is the number of the block directly after
  373. * a good log record. Therefore, we subtract one to get the block number
  374. * of the last block in the given buffer. extra_bblks contains the number
  375. * of blocks we would have read on a previous read. This happens when the
  376. * last log record is split over the end of the physical log.
  377. *
  378. * extra_bblks is the number of blocks potentially verified on a previous
  379. * call to this routine.
  380. */
  381. STATIC int
  382. xlog_find_verify_log_record(
  383. xlog_t *log,
  384. xfs_daddr_t start_blk,
  385. xfs_daddr_t *last_blk,
  386. int extra_bblks)
  387. {
  388. xfs_daddr_t i;
  389. xfs_buf_t *bp;
  390. xfs_caddr_t offset = NULL;
  391. xlog_rec_header_t *head = NULL;
  392. int error = 0;
  393. int smallmem = 0;
  394. int num_blks = *last_blk - start_blk;
  395. int xhdrs;
  396. ASSERT(start_blk != 0 || *last_blk != start_blk);
  397. if (!(bp = xlog_get_bp(log, num_blks))) {
  398. if (!(bp = xlog_get_bp(log, 1)))
  399. return ENOMEM;
  400. smallmem = 1;
  401. } else {
  402. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  403. if (error)
  404. goto out;
  405. offset += ((num_blks - 1) << BBSHIFT);
  406. }
  407. for (i = (*last_blk) - 1; i >= 0; i--) {
  408. if (i < start_blk) {
  409. /* valid log record not found */
  410. xlog_warn(
  411. "XFS: Log inconsistent (didn't find previous header)");
  412. ASSERT(0);
  413. error = XFS_ERROR(EIO);
  414. goto out;
  415. }
  416. if (smallmem) {
  417. error = xlog_bread(log, i, 1, bp, &offset);
  418. if (error)
  419. goto out;
  420. }
  421. head = (xlog_rec_header_t *)offset;
  422. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  423. break;
  424. if (!smallmem)
  425. offset -= BBSIZE;
  426. }
  427. /*
  428. * We hit the beginning of the physical log & still no header. Return
  429. * to caller. If caller can handle a return of -1, then this routine
  430. * will be called again for the end of the physical log.
  431. */
  432. if (i == -1) {
  433. error = -1;
  434. goto out;
  435. }
  436. /*
  437. * We have the final block of the good log (the first block
  438. * of the log record _before_ the head. So we check the uuid.
  439. */
  440. if ((error = xlog_header_check_mount(log->l_mp, head)))
  441. goto out;
  442. /*
  443. * We may have found a log record header before we expected one.
  444. * last_blk will be the 1st block # with a given cycle #. We may end
  445. * up reading an entire log record. In this case, we don't want to
  446. * reset last_blk. Only when last_blk points in the middle of a log
  447. * record do we update last_blk.
  448. */
  449. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  450. uint h_size = be32_to_cpu(head->h_size);
  451. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  452. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  453. xhdrs++;
  454. } else {
  455. xhdrs = 1;
  456. }
  457. if (*last_blk - i + extra_bblks !=
  458. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  459. *last_blk = i;
  460. out:
  461. xlog_put_bp(bp);
  462. return error;
  463. }
  464. /*
  465. * Head is defined to be the point of the log where the next log write
  466. * write could go. This means that incomplete LR writes at the end are
  467. * eliminated when calculating the head. We aren't guaranteed that previous
  468. * LR have complete transactions. We only know that a cycle number of
  469. * current cycle number -1 won't be present in the log if we start writing
  470. * from our current block number.
  471. *
  472. * last_blk contains the block number of the first block with a given
  473. * cycle number.
  474. *
  475. * Return: zero if normal, non-zero if error.
  476. */
  477. STATIC int
  478. xlog_find_head(
  479. xlog_t *log,
  480. xfs_daddr_t *return_head_blk)
  481. {
  482. xfs_buf_t *bp;
  483. xfs_caddr_t offset;
  484. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  485. int num_scan_bblks;
  486. uint first_half_cycle, last_half_cycle;
  487. uint stop_on_cycle;
  488. int error, log_bbnum = log->l_logBBsize;
  489. /* Is the end of the log device zeroed? */
  490. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  491. *return_head_blk = first_blk;
  492. /* Is the whole lot zeroed? */
  493. if (!first_blk) {
  494. /* Linux XFS shouldn't generate totally zeroed logs -
  495. * mkfs etc write a dummy unmount record to a fresh
  496. * log so we can store the uuid in there
  497. */
  498. xlog_warn("XFS: totally zeroed log");
  499. }
  500. return 0;
  501. } else if (error) {
  502. xlog_warn("XFS: empty log check failed");
  503. return error;
  504. }
  505. first_blk = 0; /* get cycle # of 1st block */
  506. bp = xlog_get_bp(log, 1);
  507. if (!bp)
  508. return ENOMEM;
  509. error = xlog_bread(log, 0, 1, bp, &offset);
  510. if (error)
  511. goto bp_err;
  512. first_half_cycle = xlog_get_cycle(offset);
  513. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  514. error = xlog_bread(log, last_blk, 1, bp, &offset);
  515. if (error)
  516. goto bp_err;
  517. last_half_cycle = xlog_get_cycle(offset);
  518. ASSERT(last_half_cycle != 0);
  519. /*
  520. * If the 1st half cycle number is equal to the last half cycle number,
  521. * then the entire log is stamped with the same cycle number. In this
  522. * case, head_blk can't be set to zero (which makes sense). The below
  523. * math doesn't work out properly with head_blk equal to zero. Instead,
  524. * we set it to log_bbnum which is an invalid block number, but this
  525. * value makes the math correct. If head_blk doesn't changed through
  526. * all the tests below, *head_blk is set to zero at the very end rather
  527. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  528. * in a circular file.
  529. */
  530. if (first_half_cycle == last_half_cycle) {
  531. /*
  532. * In this case we believe that the entire log should have
  533. * cycle number last_half_cycle. We need to scan backwards
  534. * from the end verifying that there are no holes still
  535. * containing last_half_cycle - 1. If we find such a hole,
  536. * then the start of that hole will be the new head. The
  537. * simple case looks like
  538. * x | x ... | x - 1 | x
  539. * Another case that fits this picture would be
  540. * x | x + 1 | x ... | x
  541. * In this case the head really is somewhere at the end of the
  542. * log, as one of the latest writes at the beginning was
  543. * incomplete.
  544. * One more case is
  545. * x | x + 1 | x ... | x - 1 | x
  546. * This is really the combination of the above two cases, and
  547. * the head has to end up at the start of the x-1 hole at the
  548. * end of the log.
  549. *
  550. * In the 256k log case, we will read from the beginning to the
  551. * end of the log and search for cycle numbers equal to x-1.
  552. * We don't worry about the x+1 blocks that we encounter,
  553. * because we know that they cannot be the head since the log
  554. * started with x.
  555. */
  556. head_blk = log_bbnum;
  557. stop_on_cycle = last_half_cycle - 1;
  558. } else {
  559. /*
  560. * In this case we want to find the first block with cycle
  561. * number matching last_half_cycle. We expect the log to be
  562. * some variation on
  563. * x + 1 ... | x ...
  564. * The first block with cycle number x (last_half_cycle) will
  565. * be where the new head belongs. First we do a binary search
  566. * for the first occurrence of last_half_cycle. The binary
  567. * search may not be totally accurate, so then we scan back
  568. * from there looking for occurrences of last_half_cycle before
  569. * us. If that backwards scan wraps around the beginning of
  570. * the log, then we look for occurrences of last_half_cycle - 1
  571. * at the end of the log. The cases we're looking for look
  572. * like
  573. * x + 1 ... | x | x + 1 | x ...
  574. * ^ binary search stopped here
  575. * or
  576. * x + 1 ... | x ... | x - 1 | x
  577. * <---------> less than scan distance
  578. */
  579. stop_on_cycle = last_half_cycle;
  580. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  581. &head_blk, last_half_cycle)))
  582. goto bp_err;
  583. }
  584. /*
  585. * Now validate the answer. Scan back some number of maximum possible
  586. * blocks and make sure each one has the expected cycle number. The
  587. * maximum is determined by the total possible amount of buffering
  588. * in the in-core log. The following number can be made tighter if
  589. * we actually look at the block size of the filesystem.
  590. */
  591. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  592. if (head_blk >= num_scan_bblks) {
  593. /*
  594. * We are guaranteed that the entire check can be performed
  595. * in one buffer.
  596. */
  597. start_blk = head_blk - num_scan_bblks;
  598. if ((error = xlog_find_verify_cycle(log,
  599. start_blk, num_scan_bblks,
  600. stop_on_cycle, &new_blk)))
  601. goto bp_err;
  602. if (new_blk != -1)
  603. head_blk = new_blk;
  604. } else { /* need to read 2 parts of log */
  605. /*
  606. * We are going to scan backwards in the log in two parts.
  607. * First we scan the physical end of the log. In this part
  608. * of the log, we are looking for blocks with cycle number
  609. * last_half_cycle - 1.
  610. * If we find one, then we know that the log starts there, as
  611. * we've found a hole that didn't get written in going around
  612. * the end of the physical log. The simple case for this is
  613. * x + 1 ... | x ... | x - 1 | x
  614. * <---------> less than scan distance
  615. * If all of the blocks at the end of the log have cycle number
  616. * last_half_cycle, then we check the blocks at the start of
  617. * the log looking for occurrences of last_half_cycle. If we
  618. * find one, then our current estimate for the location of the
  619. * first occurrence of last_half_cycle is wrong and we move
  620. * back to the hole we've found. This case looks like
  621. * x + 1 ... | x | x + 1 | x ...
  622. * ^ binary search stopped here
  623. * Another case we need to handle that only occurs in 256k
  624. * logs is
  625. * x + 1 ... | x ... | x+1 | x ...
  626. * ^ binary search stops here
  627. * In a 256k log, the scan at the end of the log will see the
  628. * x + 1 blocks. We need to skip past those since that is
  629. * certainly not the head of the log. By searching for
  630. * last_half_cycle-1 we accomplish that.
  631. */
  632. start_blk = log_bbnum - num_scan_bblks + head_blk;
  633. ASSERT(head_blk <= INT_MAX &&
  634. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  635. if ((error = xlog_find_verify_cycle(log, start_blk,
  636. num_scan_bblks - (int)head_blk,
  637. (stop_on_cycle - 1), &new_blk)))
  638. goto bp_err;
  639. if (new_blk != -1) {
  640. head_blk = new_blk;
  641. goto bad_blk;
  642. }
  643. /*
  644. * Scan beginning of log now. The last part of the physical
  645. * log is good. This scan needs to verify that it doesn't find
  646. * the last_half_cycle.
  647. */
  648. start_blk = 0;
  649. ASSERT(head_blk <= INT_MAX);
  650. if ((error = xlog_find_verify_cycle(log,
  651. start_blk, (int)head_blk,
  652. stop_on_cycle, &new_blk)))
  653. goto bp_err;
  654. if (new_blk != -1)
  655. head_blk = new_blk;
  656. }
  657. bad_blk:
  658. /*
  659. * Now we need to make sure head_blk is not pointing to a block in
  660. * the middle of a log record.
  661. */
  662. num_scan_bblks = XLOG_REC_SHIFT(log);
  663. if (head_blk >= num_scan_bblks) {
  664. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  665. /* start ptr at last block ptr before head_blk */
  666. if ((error = xlog_find_verify_log_record(log, start_blk,
  667. &head_blk, 0)) == -1) {
  668. error = XFS_ERROR(EIO);
  669. goto bp_err;
  670. } else if (error)
  671. goto bp_err;
  672. } else {
  673. start_blk = 0;
  674. ASSERT(head_blk <= INT_MAX);
  675. if ((error = xlog_find_verify_log_record(log, start_blk,
  676. &head_blk, 0)) == -1) {
  677. /* We hit the beginning of the log during our search */
  678. start_blk = log_bbnum - num_scan_bblks + head_blk;
  679. new_blk = log_bbnum;
  680. ASSERT(start_blk <= INT_MAX &&
  681. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  682. ASSERT(head_blk <= INT_MAX);
  683. if ((error = xlog_find_verify_log_record(log,
  684. start_blk, &new_blk,
  685. (int)head_blk)) == -1) {
  686. error = XFS_ERROR(EIO);
  687. goto bp_err;
  688. } else if (error)
  689. goto bp_err;
  690. if (new_blk != log_bbnum)
  691. head_blk = new_blk;
  692. } else if (error)
  693. goto bp_err;
  694. }
  695. xlog_put_bp(bp);
  696. if (head_blk == log_bbnum)
  697. *return_head_blk = 0;
  698. else
  699. *return_head_blk = head_blk;
  700. /*
  701. * When returning here, we have a good block number. Bad block
  702. * means that during a previous crash, we didn't have a clean break
  703. * from cycle number N to cycle number N-1. In this case, we need
  704. * to find the first block with cycle number N-1.
  705. */
  706. return 0;
  707. bp_err:
  708. xlog_put_bp(bp);
  709. if (error)
  710. xlog_warn("XFS: failed to find log head");
  711. return error;
  712. }
  713. /*
  714. * Find the sync block number or the tail of the log.
  715. *
  716. * This will be the block number of the last record to have its
  717. * associated buffers synced to disk. Every log record header has
  718. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  719. * to get a sync block number. The only concern is to figure out which
  720. * log record header to believe.
  721. *
  722. * The following algorithm uses the log record header with the largest
  723. * lsn. The entire log record does not need to be valid. We only care
  724. * that the header is valid.
  725. *
  726. * We could speed up search by using current head_blk buffer, but it is not
  727. * available.
  728. */
  729. STATIC int
  730. xlog_find_tail(
  731. xlog_t *log,
  732. xfs_daddr_t *head_blk,
  733. xfs_daddr_t *tail_blk)
  734. {
  735. xlog_rec_header_t *rhead;
  736. xlog_op_header_t *op_head;
  737. xfs_caddr_t offset = NULL;
  738. xfs_buf_t *bp;
  739. int error, i, found;
  740. xfs_daddr_t umount_data_blk;
  741. xfs_daddr_t after_umount_blk;
  742. xfs_lsn_t tail_lsn;
  743. int hblks;
  744. found = 0;
  745. /*
  746. * Find previous log record
  747. */
  748. if ((error = xlog_find_head(log, head_blk)))
  749. return error;
  750. bp = xlog_get_bp(log, 1);
  751. if (!bp)
  752. return ENOMEM;
  753. if (*head_blk == 0) { /* special case */
  754. error = xlog_bread(log, 0, 1, bp, &offset);
  755. if (error)
  756. goto bread_err;
  757. if (xlog_get_cycle(offset) == 0) {
  758. *tail_blk = 0;
  759. /* leave all other log inited values alone */
  760. goto exit;
  761. }
  762. }
  763. /*
  764. * Search backwards looking for log record header block
  765. */
  766. ASSERT(*head_blk < INT_MAX);
  767. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  768. error = xlog_bread(log, i, 1, bp, &offset);
  769. if (error)
  770. goto bread_err;
  771. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  772. found = 1;
  773. break;
  774. }
  775. }
  776. /*
  777. * If we haven't found the log record header block, start looking
  778. * again from the end of the physical log. XXXmiken: There should be
  779. * a check here to make sure we didn't search more than N blocks in
  780. * the previous code.
  781. */
  782. if (!found) {
  783. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  784. error = xlog_bread(log, i, 1, bp, &offset);
  785. if (error)
  786. goto bread_err;
  787. if (XLOG_HEADER_MAGIC_NUM ==
  788. be32_to_cpu(*(__be32 *)offset)) {
  789. found = 2;
  790. break;
  791. }
  792. }
  793. }
  794. if (!found) {
  795. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  796. ASSERT(0);
  797. return XFS_ERROR(EIO);
  798. }
  799. /* find blk_no of tail of log */
  800. rhead = (xlog_rec_header_t *)offset;
  801. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  802. /*
  803. * Reset log values according to the state of the log when we
  804. * crashed. In the case where head_blk == 0, we bump curr_cycle
  805. * one because the next write starts a new cycle rather than
  806. * continuing the cycle of the last good log record. At this
  807. * point we have guaranteed that all partial log records have been
  808. * accounted for. Therefore, we know that the last good log record
  809. * written was complete and ended exactly on the end boundary
  810. * of the physical log.
  811. */
  812. log->l_prev_block = i;
  813. log->l_curr_block = (int)*head_blk;
  814. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  815. if (found == 2)
  816. log->l_curr_cycle++;
  817. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  818. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  819. log->l_grant_reserve_cycle = log->l_curr_cycle;
  820. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  821. log->l_grant_write_cycle = log->l_curr_cycle;
  822. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  823. /*
  824. * Look for unmount record. If we find it, then we know there
  825. * was a clean unmount. Since 'i' could be the last block in
  826. * the physical log, we convert to a log block before comparing
  827. * to the head_blk.
  828. *
  829. * Save the current tail lsn to use to pass to
  830. * xlog_clear_stale_blocks() below. We won't want to clear the
  831. * unmount record if there is one, so we pass the lsn of the
  832. * unmount record rather than the block after it.
  833. */
  834. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  835. int h_size = be32_to_cpu(rhead->h_size);
  836. int h_version = be32_to_cpu(rhead->h_version);
  837. if ((h_version & XLOG_VERSION_2) &&
  838. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  839. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  840. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  841. hblks++;
  842. } else {
  843. hblks = 1;
  844. }
  845. } else {
  846. hblks = 1;
  847. }
  848. after_umount_blk = (i + hblks + (int)
  849. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  850. tail_lsn = log->l_tail_lsn;
  851. if (*head_blk == after_umount_blk &&
  852. be32_to_cpu(rhead->h_num_logops) == 1) {
  853. umount_data_blk = (i + hblks) % log->l_logBBsize;
  854. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  855. if (error)
  856. goto bread_err;
  857. op_head = (xlog_op_header_t *)offset;
  858. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  859. /*
  860. * Set tail and last sync so that newly written
  861. * log records will point recovery to after the
  862. * current unmount record.
  863. */
  864. log->l_tail_lsn =
  865. xlog_assign_lsn(log->l_curr_cycle,
  866. after_umount_blk);
  867. log->l_last_sync_lsn =
  868. xlog_assign_lsn(log->l_curr_cycle,
  869. after_umount_blk);
  870. *tail_blk = after_umount_blk;
  871. /*
  872. * Note that the unmount was clean. If the unmount
  873. * was not clean, we need to know this to rebuild the
  874. * superblock counters from the perag headers if we
  875. * have a filesystem using non-persistent counters.
  876. */
  877. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  878. }
  879. }
  880. /*
  881. * Make sure that there are no blocks in front of the head
  882. * with the same cycle number as the head. This can happen
  883. * because we allow multiple outstanding log writes concurrently,
  884. * and the later writes might make it out before earlier ones.
  885. *
  886. * We use the lsn from before modifying it so that we'll never
  887. * overwrite the unmount record after a clean unmount.
  888. *
  889. * Do this only if we are going to recover the filesystem
  890. *
  891. * NOTE: This used to say "if (!readonly)"
  892. * However on Linux, we can & do recover a read-only filesystem.
  893. * We only skip recovery if NORECOVERY is specified on mount,
  894. * in which case we would not be here.
  895. *
  896. * But... if the -device- itself is readonly, just skip this.
  897. * We can't recover this device anyway, so it won't matter.
  898. */
  899. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  900. error = xlog_clear_stale_blocks(log, tail_lsn);
  901. }
  902. bread_err:
  903. exit:
  904. xlog_put_bp(bp);
  905. if (error)
  906. xlog_warn("XFS: failed to locate log tail");
  907. return error;
  908. }
  909. /*
  910. * Is the log zeroed at all?
  911. *
  912. * The last binary search should be changed to perform an X block read
  913. * once X becomes small enough. You can then search linearly through
  914. * the X blocks. This will cut down on the number of reads we need to do.
  915. *
  916. * If the log is partially zeroed, this routine will pass back the blkno
  917. * of the first block with cycle number 0. It won't have a complete LR
  918. * preceding it.
  919. *
  920. * Return:
  921. * 0 => the log is completely written to
  922. * -1 => use *blk_no as the first block of the log
  923. * >0 => error has occurred
  924. */
  925. STATIC int
  926. xlog_find_zeroed(
  927. xlog_t *log,
  928. xfs_daddr_t *blk_no)
  929. {
  930. xfs_buf_t *bp;
  931. xfs_caddr_t offset;
  932. uint first_cycle, last_cycle;
  933. xfs_daddr_t new_blk, last_blk, start_blk;
  934. xfs_daddr_t num_scan_bblks;
  935. int error, log_bbnum = log->l_logBBsize;
  936. *blk_no = 0;
  937. /* check totally zeroed log */
  938. bp = xlog_get_bp(log, 1);
  939. if (!bp)
  940. return ENOMEM;
  941. error = xlog_bread(log, 0, 1, bp, &offset);
  942. if (error)
  943. goto bp_err;
  944. first_cycle = xlog_get_cycle(offset);
  945. if (first_cycle == 0) { /* completely zeroed log */
  946. *blk_no = 0;
  947. xlog_put_bp(bp);
  948. return -1;
  949. }
  950. /* check partially zeroed log */
  951. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  952. if (error)
  953. goto bp_err;
  954. last_cycle = xlog_get_cycle(offset);
  955. if (last_cycle != 0) { /* log completely written to */
  956. xlog_put_bp(bp);
  957. return 0;
  958. } else if (first_cycle != 1) {
  959. /*
  960. * If the cycle of the last block is zero, the cycle of
  961. * the first block must be 1. If it's not, maybe we're
  962. * not looking at a log... Bail out.
  963. */
  964. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  965. return XFS_ERROR(EINVAL);
  966. }
  967. /* we have a partially zeroed log */
  968. last_blk = log_bbnum-1;
  969. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  970. goto bp_err;
  971. /*
  972. * Validate the answer. Because there is no way to guarantee that
  973. * the entire log is made up of log records which are the same size,
  974. * we scan over the defined maximum blocks. At this point, the maximum
  975. * is not chosen to mean anything special. XXXmiken
  976. */
  977. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  978. ASSERT(num_scan_bblks <= INT_MAX);
  979. if (last_blk < num_scan_bblks)
  980. num_scan_bblks = last_blk;
  981. start_blk = last_blk - num_scan_bblks;
  982. /*
  983. * We search for any instances of cycle number 0 that occur before
  984. * our current estimate of the head. What we're trying to detect is
  985. * 1 ... | 0 | 1 | 0...
  986. * ^ binary search ends here
  987. */
  988. if ((error = xlog_find_verify_cycle(log, start_blk,
  989. (int)num_scan_bblks, 0, &new_blk)))
  990. goto bp_err;
  991. if (new_blk != -1)
  992. last_blk = new_blk;
  993. /*
  994. * Potentially backup over partial log record write. We don't need
  995. * to search the end of the log because we know it is zero.
  996. */
  997. if ((error = xlog_find_verify_log_record(log, start_blk,
  998. &last_blk, 0)) == -1) {
  999. error = XFS_ERROR(EIO);
  1000. goto bp_err;
  1001. } else if (error)
  1002. goto bp_err;
  1003. *blk_no = last_blk;
  1004. bp_err:
  1005. xlog_put_bp(bp);
  1006. if (error)
  1007. return error;
  1008. return -1;
  1009. }
  1010. /*
  1011. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1012. * to initialize a buffer full of empty log record headers and write
  1013. * them into the log.
  1014. */
  1015. STATIC void
  1016. xlog_add_record(
  1017. xlog_t *log,
  1018. xfs_caddr_t buf,
  1019. int cycle,
  1020. int block,
  1021. int tail_cycle,
  1022. int tail_block)
  1023. {
  1024. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1025. memset(buf, 0, BBSIZE);
  1026. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1027. recp->h_cycle = cpu_to_be32(cycle);
  1028. recp->h_version = cpu_to_be32(
  1029. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1030. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1031. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1032. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1033. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1034. }
  1035. STATIC int
  1036. xlog_write_log_records(
  1037. xlog_t *log,
  1038. int cycle,
  1039. int start_block,
  1040. int blocks,
  1041. int tail_cycle,
  1042. int tail_block)
  1043. {
  1044. xfs_caddr_t offset;
  1045. xfs_buf_t *bp;
  1046. int balign, ealign;
  1047. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1048. int end_block = start_block + blocks;
  1049. int bufblks;
  1050. int error = 0;
  1051. int i, j = 0;
  1052. bufblks = 1 << ffs(blocks);
  1053. while (!(bp = xlog_get_bp(log, bufblks))) {
  1054. bufblks >>= 1;
  1055. if (bufblks <= log->l_sectbb_log)
  1056. return ENOMEM;
  1057. }
  1058. /* We may need to do a read at the start to fill in part of
  1059. * the buffer in the starting sector not covered by the first
  1060. * write below.
  1061. */
  1062. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1063. if (balign != start_block) {
  1064. error = xlog_bread_noalign(log, start_block, 1, bp);
  1065. if (error)
  1066. goto out_put_bp;
  1067. j = start_block - balign;
  1068. }
  1069. for (i = start_block; i < end_block; i += bufblks) {
  1070. int bcount, endcount;
  1071. bcount = min(bufblks, end_block - start_block);
  1072. endcount = bcount - j;
  1073. /* We may need to do a read at the end to fill in part of
  1074. * the buffer in the final sector not covered by the write.
  1075. * If this is the same sector as the above read, skip it.
  1076. */
  1077. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1078. if (j == 0 && (start_block + endcount > ealign)) {
  1079. offset = XFS_BUF_PTR(bp);
  1080. balign = BBTOB(ealign - start_block);
  1081. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1082. BBTOB(sectbb));
  1083. if (error)
  1084. break;
  1085. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1086. if (error)
  1087. break;
  1088. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1089. if (error)
  1090. break;
  1091. }
  1092. offset = xlog_align(log, start_block, endcount, bp);
  1093. for (; j < endcount; j++) {
  1094. xlog_add_record(log, offset, cycle, i+j,
  1095. tail_cycle, tail_block);
  1096. offset += BBSIZE;
  1097. }
  1098. error = xlog_bwrite(log, start_block, endcount, bp);
  1099. if (error)
  1100. break;
  1101. start_block += endcount;
  1102. j = 0;
  1103. }
  1104. out_put_bp:
  1105. xlog_put_bp(bp);
  1106. return error;
  1107. }
  1108. /*
  1109. * This routine is called to blow away any incomplete log writes out
  1110. * in front of the log head. We do this so that we won't become confused
  1111. * if we come up, write only a little bit more, and then crash again.
  1112. * If we leave the partial log records out there, this situation could
  1113. * cause us to think those partial writes are valid blocks since they
  1114. * have the current cycle number. We get rid of them by overwriting them
  1115. * with empty log records with the old cycle number rather than the
  1116. * current one.
  1117. *
  1118. * The tail lsn is passed in rather than taken from
  1119. * the log so that we will not write over the unmount record after a
  1120. * clean unmount in a 512 block log. Doing so would leave the log without
  1121. * any valid log records in it until a new one was written. If we crashed
  1122. * during that time we would not be able to recover.
  1123. */
  1124. STATIC int
  1125. xlog_clear_stale_blocks(
  1126. xlog_t *log,
  1127. xfs_lsn_t tail_lsn)
  1128. {
  1129. int tail_cycle, head_cycle;
  1130. int tail_block, head_block;
  1131. int tail_distance, max_distance;
  1132. int distance;
  1133. int error;
  1134. tail_cycle = CYCLE_LSN(tail_lsn);
  1135. tail_block = BLOCK_LSN(tail_lsn);
  1136. head_cycle = log->l_curr_cycle;
  1137. head_block = log->l_curr_block;
  1138. /*
  1139. * Figure out the distance between the new head of the log
  1140. * and the tail. We want to write over any blocks beyond the
  1141. * head that we may have written just before the crash, but
  1142. * we don't want to overwrite the tail of the log.
  1143. */
  1144. if (head_cycle == tail_cycle) {
  1145. /*
  1146. * The tail is behind the head in the physical log,
  1147. * so the distance from the head to the tail is the
  1148. * distance from the head to the end of the log plus
  1149. * the distance from the beginning of the log to the
  1150. * tail.
  1151. */
  1152. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1153. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1154. XFS_ERRLEVEL_LOW, log->l_mp);
  1155. return XFS_ERROR(EFSCORRUPTED);
  1156. }
  1157. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1158. } else {
  1159. /*
  1160. * The head is behind the tail in the physical log,
  1161. * so the distance from the head to the tail is just
  1162. * the tail block minus the head block.
  1163. */
  1164. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1165. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1166. XFS_ERRLEVEL_LOW, log->l_mp);
  1167. return XFS_ERROR(EFSCORRUPTED);
  1168. }
  1169. tail_distance = tail_block - head_block;
  1170. }
  1171. /*
  1172. * If the head is right up against the tail, we can't clear
  1173. * anything.
  1174. */
  1175. if (tail_distance <= 0) {
  1176. ASSERT(tail_distance == 0);
  1177. return 0;
  1178. }
  1179. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1180. /*
  1181. * Take the smaller of the maximum amount of outstanding I/O
  1182. * we could have and the distance to the tail to clear out.
  1183. * We take the smaller so that we don't overwrite the tail and
  1184. * we don't waste all day writing from the head to the tail
  1185. * for no reason.
  1186. */
  1187. max_distance = MIN(max_distance, tail_distance);
  1188. if ((head_block + max_distance) <= log->l_logBBsize) {
  1189. /*
  1190. * We can stomp all the blocks we need to without
  1191. * wrapping around the end of the log. Just do it
  1192. * in a single write. Use the cycle number of the
  1193. * current cycle minus one so that the log will look like:
  1194. * n ... | n - 1 ...
  1195. */
  1196. error = xlog_write_log_records(log, (head_cycle - 1),
  1197. head_block, max_distance, tail_cycle,
  1198. tail_block);
  1199. if (error)
  1200. return error;
  1201. } else {
  1202. /*
  1203. * We need to wrap around the end of the physical log in
  1204. * order to clear all the blocks. Do it in two separate
  1205. * I/Os. The first write should be from the head to the
  1206. * end of the physical log, and it should use the current
  1207. * cycle number minus one just like above.
  1208. */
  1209. distance = log->l_logBBsize - head_block;
  1210. error = xlog_write_log_records(log, (head_cycle - 1),
  1211. head_block, distance, tail_cycle,
  1212. tail_block);
  1213. if (error)
  1214. return error;
  1215. /*
  1216. * Now write the blocks at the start of the physical log.
  1217. * This writes the remainder of the blocks we want to clear.
  1218. * It uses the current cycle number since we're now on the
  1219. * same cycle as the head so that we get:
  1220. * n ... n ... | n - 1 ...
  1221. * ^^^^^ blocks we're writing
  1222. */
  1223. distance = max_distance - (log->l_logBBsize - head_block);
  1224. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1225. tail_cycle, tail_block);
  1226. if (error)
  1227. return error;
  1228. }
  1229. return 0;
  1230. }
  1231. /******************************************************************************
  1232. *
  1233. * Log recover routines
  1234. *
  1235. ******************************************************************************
  1236. */
  1237. STATIC xlog_recover_t *
  1238. xlog_recover_find_tid(
  1239. struct hlist_head *head,
  1240. xlog_tid_t tid)
  1241. {
  1242. xlog_recover_t *trans;
  1243. struct hlist_node *n;
  1244. hlist_for_each_entry(trans, n, head, r_list) {
  1245. if (trans->r_log_tid == tid)
  1246. return trans;
  1247. }
  1248. return NULL;
  1249. }
  1250. STATIC void
  1251. xlog_recover_new_tid(
  1252. struct hlist_head *head,
  1253. xlog_tid_t tid,
  1254. xfs_lsn_t lsn)
  1255. {
  1256. xlog_recover_t *trans;
  1257. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1258. trans->r_log_tid = tid;
  1259. trans->r_lsn = lsn;
  1260. INIT_LIST_HEAD(&trans->r_itemq);
  1261. INIT_HLIST_NODE(&trans->r_list);
  1262. hlist_add_head(&trans->r_list, head);
  1263. }
  1264. STATIC void
  1265. xlog_recover_add_item(
  1266. struct list_head *head)
  1267. {
  1268. xlog_recover_item_t *item;
  1269. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1270. INIT_LIST_HEAD(&item->ri_list);
  1271. list_add_tail(&item->ri_list, head);
  1272. }
  1273. STATIC int
  1274. xlog_recover_add_to_cont_trans(
  1275. xlog_recover_t *trans,
  1276. xfs_caddr_t dp,
  1277. int len)
  1278. {
  1279. xlog_recover_item_t *item;
  1280. xfs_caddr_t ptr, old_ptr;
  1281. int old_len;
  1282. if (list_empty(&trans->r_itemq)) {
  1283. /* finish copying rest of trans header */
  1284. xlog_recover_add_item(&trans->r_itemq);
  1285. ptr = (xfs_caddr_t) &trans->r_theader +
  1286. sizeof(xfs_trans_header_t) - len;
  1287. memcpy(ptr, dp, len); /* d, s, l */
  1288. return 0;
  1289. }
  1290. /* take the tail entry */
  1291. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1292. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1293. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1294. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1295. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1296. item->ri_buf[item->ri_cnt-1].i_len += len;
  1297. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1298. return 0;
  1299. }
  1300. /*
  1301. * The next region to add is the start of a new region. It could be
  1302. * a whole region or it could be the first part of a new region. Because
  1303. * of this, the assumption here is that the type and size fields of all
  1304. * format structures fit into the first 32 bits of the structure.
  1305. *
  1306. * This works because all regions must be 32 bit aligned. Therefore, we
  1307. * either have both fields or we have neither field. In the case we have
  1308. * neither field, the data part of the region is zero length. We only have
  1309. * a log_op_header and can throw away the header since a new one will appear
  1310. * later. If we have at least 4 bytes, then we can determine how many regions
  1311. * will appear in the current log item.
  1312. */
  1313. STATIC int
  1314. xlog_recover_add_to_trans(
  1315. xlog_recover_t *trans,
  1316. xfs_caddr_t dp,
  1317. int len)
  1318. {
  1319. xfs_inode_log_format_t *in_f; /* any will do */
  1320. xlog_recover_item_t *item;
  1321. xfs_caddr_t ptr;
  1322. if (!len)
  1323. return 0;
  1324. if (list_empty(&trans->r_itemq)) {
  1325. /* we need to catch log corruptions here */
  1326. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1327. xlog_warn("XFS: xlog_recover_add_to_trans: "
  1328. "bad header magic number");
  1329. ASSERT(0);
  1330. return XFS_ERROR(EIO);
  1331. }
  1332. if (len == sizeof(xfs_trans_header_t))
  1333. xlog_recover_add_item(&trans->r_itemq);
  1334. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1335. return 0;
  1336. }
  1337. ptr = kmem_alloc(len, KM_SLEEP);
  1338. memcpy(ptr, dp, len);
  1339. in_f = (xfs_inode_log_format_t *)ptr;
  1340. /* take the tail entry */
  1341. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1342. if (item->ri_total != 0 &&
  1343. item->ri_total == item->ri_cnt) {
  1344. /* tail item is in use, get a new one */
  1345. xlog_recover_add_item(&trans->r_itemq);
  1346. item = list_entry(trans->r_itemq.prev,
  1347. xlog_recover_item_t, ri_list);
  1348. }
  1349. if (item->ri_total == 0) { /* first region to be added */
  1350. if (in_f->ilf_size == 0 ||
  1351. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1352. xlog_warn(
  1353. "XFS: bad number of regions (%d) in inode log format",
  1354. in_f->ilf_size);
  1355. ASSERT(0);
  1356. return XFS_ERROR(EIO);
  1357. }
  1358. item->ri_total = in_f->ilf_size;
  1359. item->ri_buf =
  1360. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1361. KM_SLEEP);
  1362. }
  1363. ASSERT(item->ri_total > item->ri_cnt);
  1364. /* Description region is ri_buf[0] */
  1365. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1366. item->ri_buf[item->ri_cnt].i_len = len;
  1367. item->ri_cnt++;
  1368. return 0;
  1369. }
  1370. /*
  1371. * Sort the log items in the transaction. Cancelled buffers need
  1372. * to be put first so they are processed before any items that might
  1373. * modify the buffers. If they are cancelled, then the modifications
  1374. * don't need to be replayed.
  1375. */
  1376. STATIC int
  1377. xlog_recover_reorder_trans(
  1378. xlog_recover_t *trans)
  1379. {
  1380. xlog_recover_item_t *item, *n;
  1381. LIST_HEAD(sort_list);
  1382. list_splice_init(&trans->r_itemq, &sort_list);
  1383. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1384. xfs_buf_log_format_t *buf_f;
  1385. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1386. switch (ITEM_TYPE(item)) {
  1387. case XFS_LI_BUF:
  1388. if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
  1389. list_move(&item->ri_list, &trans->r_itemq);
  1390. break;
  1391. }
  1392. case XFS_LI_INODE:
  1393. case XFS_LI_DQUOT:
  1394. case XFS_LI_QUOTAOFF:
  1395. case XFS_LI_EFD:
  1396. case XFS_LI_EFI:
  1397. list_move_tail(&item->ri_list, &trans->r_itemq);
  1398. break;
  1399. default:
  1400. xlog_warn(
  1401. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1402. ASSERT(0);
  1403. return XFS_ERROR(EIO);
  1404. }
  1405. }
  1406. ASSERT(list_empty(&sort_list));
  1407. return 0;
  1408. }
  1409. /*
  1410. * Build up the table of buf cancel records so that we don't replay
  1411. * cancelled data in the second pass. For buffer records that are
  1412. * not cancel records, there is nothing to do here so we just return.
  1413. *
  1414. * If we get a cancel record which is already in the table, this indicates
  1415. * that the buffer was cancelled multiple times. In order to ensure
  1416. * that during pass 2 we keep the record in the table until we reach its
  1417. * last occurrence in the log, we keep a reference count in the cancel
  1418. * record in the table to tell us how many times we expect to see this
  1419. * record during the second pass.
  1420. */
  1421. STATIC void
  1422. xlog_recover_do_buffer_pass1(
  1423. xlog_t *log,
  1424. xfs_buf_log_format_t *buf_f)
  1425. {
  1426. xfs_buf_cancel_t *bcp;
  1427. xfs_buf_cancel_t *nextp;
  1428. xfs_buf_cancel_t *prevp;
  1429. xfs_buf_cancel_t **bucket;
  1430. xfs_daddr_t blkno = 0;
  1431. uint len = 0;
  1432. ushort flags = 0;
  1433. switch (buf_f->blf_type) {
  1434. case XFS_LI_BUF:
  1435. blkno = buf_f->blf_blkno;
  1436. len = buf_f->blf_len;
  1437. flags = buf_f->blf_flags;
  1438. break;
  1439. }
  1440. /*
  1441. * If this isn't a cancel buffer item, then just return.
  1442. */
  1443. if (!(flags & XFS_BLI_CANCEL))
  1444. return;
  1445. /*
  1446. * Insert an xfs_buf_cancel record into the hash table of
  1447. * them. If there is already an identical record, bump
  1448. * its reference count.
  1449. */
  1450. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1451. XLOG_BC_TABLE_SIZE];
  1452. /*
  1453. * If the hash bucket is empty then just insert a new record into
  1454. * the bucket.
  1455. */
  1456. if (*bucket == NULL) {
  1457. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1458. KM_SLEEP);
  1459. bcp->bc_blkno = blkno;
  1460. bcp->bc_len = len;
  1461. bcp->bc_refcount = 1;
  1462. bcp->bc_next = NULL;
  1463. *bucket = bcp;
  1464. return;
  1465. }
  1466. /*
  1467. * The hash bucket is not empty, so search for duplicates of our
  1468. * record. If we find one them just bump its refcount. If not
  1469. * then add us at the end of the list.
  1470. */
  1471. prevp = NULL;
  1472. nextp = *bucket;
  1473. while (nextp != NULL) {
  1474. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1475. nextp->bc_refcount++;
  1476. return;
  1477. }
  1478. prevp = nextp;
  1479. nextp = nextp->bc_next;
  1480. }
  1481. ASSERT(prevp != NULL);
  1482. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1483. KM_SLEEP);
  1484. bcp->bc_blkno = blkno;
  1485. bcp->bc_len = len;
  1486. bcp->bc_refcount = 1;
  1487. bcp->bc_next = NULL;
  1488. prevp->bc_next = bcp;
  1489. }
  1490. /*
  1491. * Check to see whether the buffer being recovered has a corresponding
  1492. * entry in the buffer cancel record table. If it does then return 1
  1493. * so that it will be cancelled, otherwise return 0. If the buffer is
  1494. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1495. * the refcount on the entry in the table and remove it from the table
  1496. * if this is the last reference.
  1497. *
  1498. * We remove the cancel record from the table when we encounter its
  1499. * last occurrence in the log so that if the same buffer is re-used
  1500. * again after its last cancellation we actually replay the changes
  1501. * made at that point.
  1502. */
  1503. STATIC int
  1504. xlog_check_buffer_cancelled(
  1505. xlog_t *log,
  1506. xfs_daddr_t blkno,
  1507. uint len,
  1508. ushort flags)
  1509. {
  1510. xfs_buf_cancel_t *bcp;
  1511. xfs_buf_cancel_t *prevp;
  1512. xfs_buf_cancel_t **bucket;
  1513. if (log->l_buf_cancel_table == NULL) {
  1514. /*
  1515. * There is nothing in the table built in pass one,
  1516. * so this buffer must not be cancelled.
  1517. */
  1518. ASSERT(!(flags & XFS_BLI_CANCEL));
  1519. return 0;
  1520. }
  1521. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1522. XLOG_BC_TABLE_SIZE];
  1523. bcp = *bucket;
  1524. if (bcp == NULL) {
  1525. /*
  1526. * There is no corresponding entry in the table built
  1527. * in pass one, so this buffer has not been cancelled.
  1528. */
  1529. ASSERT(!(flags & XFS_BLI_CANCEL));
  1530. return 0;
  1531. }
  1532. /*
  1533. * Search for an entry in the buffer cancel table that
  1534. * matches our buffer.
  1535. */
  1536. prevp = NULL;
  1537. while (bcp != NULL) {
  1538. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1539. /*
  1540. * We've go a match, so return 1 so that the
  1541. * recovery of this buffer is cancelled.
  1542. * If this buffer is actually a buffer cancel
  1543. * log item, then decrement the refcount on the
  1544. * one in the table and remove it if this is the
  1545. * last reference.
  1546. */
  1547. if (flags & XFS_BLI_CANCEL) {
  1548. bcp->bc_refcount--;
  1549. if (bcp->bc_refcount == 0) {
  1550. if (prevp == NULL) {
  1551. *bucket = bcp->bc_next;
  1552. } else {
  1553. prevp->bc_next = bcp->bc_next;
  1554. }
  1555. kmem_free(bcp);
  1556. }
  1557. }
  1558. return 1;
  1559. }
  1560. prevp = bcp;
  1561. bcp = bcp->bc_next;
  1562. }
  1563. /*
  1564. * We didn't find a corresponding entry in the table, so
  1565. * return 0 so that the buffer is NOT cancelled.
  1566. */
  1567. ASSERT(!(flags & XFS_BLI_CANCEL));
  1568. return 0;
  1569. }
  1570. STATIC int
  1571. xlog_recover_do_buffer_pass2(
  1572. xlog_t *log,
  1573. xfs_buf_log_format_t *buf_f)
  1574. {
  1575. xfs_daddr_t blkno = 0;
  1576. ushort flags = 0;
  1577. uint len = 0;
  1578. switch (buf_f->blf_type) {
  1579. case XFS_LI_BUF:
  1580. blkno = buf_f->blf_blkno;
  1581. flags = buf_f->blf_flags;
  1582. len = buf_f->blf_len;
  1583. break;
  1584. }
  1585. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1586. }
  1587. /*
  1588. * Perform recovery for a buffer full of inodes. In these buffers,
  1589. * the only data which should be recovered is that which corresponds
  1590. * to the di_next_unlinked pointers in the on disk inode structures.
  1591. * The rest of the data for the inodes is always logged through the
  1592. * inodes themselves rather than the inode buffer and is recovered
  1593. * in xlog_recover_do_inode_trans().
  1594. *
  1595. * The only time when buffers full of inodes are fully recovered is
  1596. * when the buffer is full of newly allocated inodes. In this case
  1597. * the buffer will not be marked as an inode buffer and so will be
  1598. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1599. */
  1600. STATIC int
  1601. xlog_recover_do_inode_buffer(
  1602. xfs_mount_t *mp,
  1603. xlog_recover_item_t *item,
  1604. xfs_buf_t *bp,
  1605. xfs_buf_log_format_t *buf_f)
  1606. {
  1607. int i;
  1608. int item_index;
  1609. int bit;
  1610. int nbits;
  1611. int reg_buf_offset;
  1612. int reg_buf_bytes;
  1613. int next_unlinked_offset;
  1614. int inodes_per_buf;
  1615. xfs_agino_t *logged_nextp;
  1616. xfs_agino_t *buffer_nextp;
  1617. unsigned int *data_map = NULL;
  1618. unsigned int map_size = 0;
  1619. switch (buf_f->blf_type) {
  1620. case XFS_LI_BUF:
  1621. data_map = buf_f->blf_data_map;
  1622. map_size = buf_f->blf_map_size;
  1623. break;
  1624. }
  1625. /*
  1626. * Set the variables corresponding to the current region to
  1627. * 0 so that we'll initialize them on the first pass through
  1628. * the loop.
  1629. */
  1630. reg_buf_offset = 0;
  1631. reg_buf_bytes = 0;
  1632. bit = 0;
  1633. nbits = 0;
  1634. item_index = 0;
  1635. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1636. for (i = 0; i < inodes_per_buf; i++) {
  1637. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1638. offsetof(xfs_dinode_t, di_next_unlinked);
  1639. while (next_unlinked_offset >=
  1640. (reg_buf_offset + reg_buf_bytes)) {
  1641. /*
  1642. * The next di_next_unlinked field is beyond
  1643. * the current logged region. Find the next
  1644. * logged region that contains or is beyond
  1645. * the current di_next_unlinked field.
  1646. */
  1647. bit += nbits;
  1648. bit = xfs_next_bit(data_map, map_size, bit);
  1649. /*
  1650. * If there are no more logged regions in the
  1651. * buffer, then we're done.
  1652. */
  1653. if (bit == -1) {
  1654. return 0;
  1655. }
  1656. nbits = xfs_contig_bits(data_map, map_size,
  1657. bit);
  1658. ASSERT(nbits > 0);
  1659. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1660. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1661. item_index++;
  1662. }
  1663. /*
  1664. * If the current logged region starts after the current
  1665. * di_next_unlinked field, then move on to the next
  1666. * di_next_unlinked field.
  1667. */
  1668. if (next_unlinked_offset < reg_buf_offset) {
  1669. continue;
  1670. }
  1671. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1672. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1673. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1674. /*
  1675. * The current logged region contains a copy of the
  1676. * current di_next_unlinked field. Extract its value
  1677. * and copy it to the buffer copy.
  1678. */
  1679. logged_nextp = (xfs_agino_t *)
  1680. ((char *)(item->ri_buf[item_index].i_addr) +
  1681. (next_unlinked_offset - reg_buf_offset));
  1682. if (unlikely(*logged_nextp == 0)) {
  1683. xfs_fs_cmn_err(CE_ALERT, mp,
  1684. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1685. item, bp);
  1686. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1687. XFS_ERRLEVEL_LOW, mp);
  1688. return XFS_ERROR(EFSCORRUPTED);
  1689. }
  1690. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1691. next_unlinked_offset);
  1692. *buffer_nextp = *logged_nextp;
  1693. }
  1694. return 0;
  1695. }
  1696. /*
  1697. * Perform a 'normal' buffer recovery. Each logged region of the
  1698. * buffer should be copied over the corresponding region in the
  1699. * given buffer. The bitmap in the buf log format structure indicates
  1700. * where to place the logged data.
  1701. */
  1702. /*ARGSUSED*/
  1703. STATIC void
  1704. xlog_recover_do_reg_buffer(
  1705. xlog_recover_item_t *item,
  1706. xfs_buf_t *bp,
  1707. xfs_buf_log_format_t *buf_f)
  1708. {
  1709. int i;
  1710. int bit;
  1711. int nbits;
  1712. unsigned int *data_map = NULL;
  1713. unsigned int map_size = 0;
  1714. int error;
  1715. switch (buf_f->blf_type) {
  1716. case XFS_LI_BUF:
  1717. data_map = buf_f->blf_data_map;
  1718. map_size = buf_f->blf_map_size;
  1719. break;
  1720. }
  1721. bit = 0;
  1722. i = 1; /* 0 is the buf format structure */
  1723. while (1) {
  1724. bit = xfs_next_bit(data_map, map_size, bit);
  1725. if (bit == -1)
  1726. break;
  1727. nbits = xfs_contig_bits(data_map, map_size, bit);
  1728. ASSERT(nbits > 0);
  1729. ASSERT(item->ri_buf[i].i_addr != NULL);
  1730. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1731. ASSERT(XFS_BUF_COUNT(bp) >=
  1732. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1733. /*
  1734. * Do a sanity check if this is a dquot buffer. Just checking
  1735. * the first dquot in the buffer should do. XXXThis is
  1736. * probably a good thing to do for other buf types also.
  1737. */
  1738. error = 0;
  1739. if (buf_f->blf_flags &
  1740. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1741. if (item->ri_buf[i].i_addr == NULL) {
  1742. cmn_err(CE_ALERT,
  1743. "XFS: NULL dquot in %s.", __func__);
  1744. goto next;
  1745. }
  1746. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1747. cmn_err(CE_ALERT,
  1748. "XFS: dquot too small (%d) in %s.",
  1749. item->ri_buf[i].i_len, __func__);
  1750. goto next;
  1751. }
  1752. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1753. item->ri_buf[i].i_addr,
  1754. -1, 0, XFS_QMOPT_DOWARN,
  1755. "dquot_buf_recover");
  1756. if (error)
  1757. goto next;
  1758. }
  1759. memcpy(xfs_buf_offset(bp,
  1760. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1761. item->ri_buf[i].i_addr, /* source */
  1762. nbits<<XFS_BLI_SHIFT); /* length */
  1763. next:
  1764. i++;
  1765. bit += nbits;
  1766. }
  1767. /* Shouldn't be any more regions */
  1768. ASSERT(i == item->ri_total);
  1769. }
  1770. /*
  1771. * Do some primitive error checking on ondisk dquot data structures.
  1772. */
  1773. int
  1774. xfs_qm_dqcheck(
  1775. xfs_disk_dquot_t *ddq,
  1776. xfs_dqid_t id,
  1777. uint type, /* used only when IO_dorepair is true */
  1778. uint flags,
  1779. char *str)
  1780. {
  1781. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1782. int errs = 0;
  1783. /*
  1784. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1785. * 1. If we crash while deleting the quotainode(s), and those blks got
  1786. * used for user data. This is because we take the path of regular
  1787. * file deletion; however, the size field of quotainodes is never
  1788. * updated, so all the tricks that we play in itruncate_finish
  1789. * don't quite matter.
  1790. *
  1791. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1792. * But the allocation will be replayed so we'll end up with an
  1793. * uninitialized quota block.
  1794. *
  1795. * This is all fine; things are still consistent, and we haven't lost
  1796. * any quota information. Just don't complain about bad dquot blks.
  1797. */
  1798. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1799. if (flags & XFS_QMOPT_DOWARN)
  1800. cmn_err(CE_ALERT,
  1801. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1802. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1803. errs++;
  1804. }
  1805. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1806. if (flags & XFS_QMOPT_DOWARN)
  1807. cmn_err(CE_ALERT,
  1808. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1809. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1810. errs++;
  1811. }
  1812. if (ddq->d_flags != XFS_DQ_USER &&
  1813. ddq->d_flags != XFS_DQ_PROJ &&
  1814. ddq->d_flags != XFS_DQ_GROUP) {
  1815. if (flags & XFS_QMOPT_DOWARN)
  1816. cmn_err(CE_ALERT,
  1817. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1818. str, id, ddq->d_flags);
  1819. errs++;
  1820. }
  1821. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1822. if (flags & XFS_QMOPT_DOWARN)
  1823. cmn_err(CE_ALERT,
  1824. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1825. "0x%x expected, found id 0x%x",
  1826. str, ddq, id, be32_to_cpu(ddq->d_id));
  1827. errs++;
  1828. }
  1829. if (!errs && ddq->d_id) {
  1830. if (ddq->d_blk_softlimit &&
  1831. be64_to_cpu(ddq->d_bcount) >=
  1832. be64_to_cpu(ddq->d_blk_softlimit)) {
  1833. if (!ddq->d_btimer) {
  1834. if (flags & XFS_QMOPT_DOWARN)
  1835. cmn_err(CE_ALERT,
  1836. "%s : Dquot ID 0x%x (0x%p) "
  1837. "BLK TIMER NOT STARTED",
  1838. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1839. errs++;
  1840. }
  1841. }
  1842. if (ddq->d_ino_softlimit &&
  1843. be64_to_cpu(ddq->d_icount) >=
  1844. be64_to_cpu(ddq->d_ino_softlimit)) {
  1845. if (!ddq->d_itimer) {
  1846. if (flags & XFS_QMOPT_DOWARN)
  1847. cmn_err(CE_ALERT,
  1848. "%s : Dquot ID 0x%x (0x%p) "
  1849. "INODE TIMER NOT STARTED",
  1850. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1851. errs++;
  1852. }
  1853. }
  1854. if (ddq->d_rtb_softlimit &&
  1855. be64_to_cpu(ddq->d_rtbcount) >=
  1856. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1857. if (!ddq->d_rtbtimer) {
  1858. if (flags & XFS_QMOPT_DOWARN)
  1859. cmn_err(CE_ALERT,
  1860. "%s : Dquot ID 0x%x (0x%p) "
  1861. "RTBLK TIMER NOT STARTED",
  1862. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1863. errs++;
  1864. }
  1865. }
  1866. }
  1867. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1868. return errs;
  1869. if (flags & XFS_QMOPT_DOWARN)
  1870. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1871. /*
  1872. * Typically, a repair is only requested by quotacheck.
  1873. */
  1874. ASSERT(id != -1);
  1875. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1876. memset(d, 0, sizeof(xfs_dqblk_t));
  1877. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1878. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1879. d->dd_diskdq.d_flags = type;
  1880. d->dd_diskdq.d_id = cpu_to_be32(id);
  1881. return errs;
  1882. }
  1883. /*
  1884. * Perform a dquot buffer recovery.
  1885. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1886. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1887. * Else, treat it as a regular buffer and do recovery.
  1888. */
  1889. STATIC void
  1890. xlog_recover_do_dquot_buffer(
  1891. xfs_mount_t *mp,
  1892. xlog_t *log,
  1893. xlog_recover_item_t *item,
  1894. xfs_buf_t *bp,
  1895. xfs_buf_log_format_t *buf_f)
  1896. {
  1897. uint type;
  1898. /*
  1899. * Filesystems are required to send in quota flags at mount time.
  1900. */
  1901. if (mp->m_qflags == 0) {
  1902. return;
  1903. }
  1904. type = 0;
  1905. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1906. type |= XFS_DQ_USER;
  1907. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1908. type |= XFS_DQ_PROJ;
  1909. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1910. type |= XFS_DQ_GROUP;
  1911. /*
  1912. * This type of quotas was turned off, so ignore this buffer
  1913. */
  1914. if (log->l_quotaoffs_flag & type)
  1915. return;
  1916. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1917. }
  1918. /*
  1919. * This routine replays a modification made to a buffer at runtime.
  1920. * There are actually two types of buffer, regular and inode, which
  1921. * are handled differently. Inode buffers are handled differently
  1922. * in that we only recover a specific set of data from them, namely
  1923. * the inode di_next_unlinked fields. This is because all other inode
  1924. * data is actually logged via inode records and any data we replay
  1925. * here which overlaps that may be stale.
  1926. *
  1927. * When meta-data buffers are freed at run time we log a buffer item
  1928. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1929. * of the buffer in the log should not be replayed at recovery time.
  1930. * This is so that if the blocks covered by the buffer are reused for
  1931. * file data before we crash we don't end up replaying old, freed
  1932. * meta-data into a user's file.
  1933. *
  1934. * To handle the cancellation of buffer log items, we make two passes
  1935. * over the log during recovery. During the first we build a table of
  1936. * those buffers which have been cancelled, and during the second we
  1937. * only replay those buffers which do not have corresponding cancel
  1938. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1939. * for more details on the implementation of the table of cancel records.
  1940. */
  1941. STATIC int
  1942. xlog_recover_do_buffer_trans(
  1943. xlog_t *log,
  1944. xlog_recover_item_t *item,
  1945. int pass)
  1946. {
  1947. xfs_buf_log_format_t *buf_f;
  1948. xfs_mount_t *mp;
  1949. xfs_buf_t *bp;
  1950. int error;
  1951. int cancel;
  1952. xfs_daddr_t blkno;
  1953. int len;
  1954. ushort flags;
  1955. uint buf_flags;
  1956. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1957. if (pass == XLOG_RECOVER_PASS1) {
  1958. /*
  1959. * In this pass we're only looking for buf items
  1960. * with the XFS_BLI_CANCEL bit set.
  1961. */
  1962. xlog_recover_do_buffer_pass1(log, buf_f);
  1963. return 0;
  1964. } else {
  1965. /*
  1966. * In this pass we want to recover all the buffers
  1967. * which have not been cancelled and are not
  1968. * cancellation buffers themselves. The routine
  1969. * we call here will tell us whether or not to
  1970. * continue with the replay of this buffer.
  1971. */
  1972. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1973. if (cancel) {
  1974. return 0;
  1975. }
  1976. }
  1977. switch (buf_f->blf_type) {
  1978. case XFS_LI_BUF:
  1979. blkno = buf_f->blf_blkno;
  1980. len = buf_f->blf_len;
  1981. flags = buf_f->blf_flags;
  1982. break;
  1983. default:
  1984. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1985. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1986. buf_f->blf_type, log->l_mp->m_logname ?
  1987. log->l_mp->m_logname : "internal");
  1988. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1989. XFS_ERRLEVEL_LOW, log->l_mp);
  1990. return XFS_ERROR(EFSCORRUPTED);
  1991. }
  1992. mp = log->l_mp;
  1993. buf_flags = XBF_LOCK;
  1994. if (!(flags & XFS_BLI_INODE_BUF))
  1995. buf_flags |= XBF_MAPPED;
  1996. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
  1997. if (XFS_BUF_ISERROR(bp)) {
  1998. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  1999. bp, blkno);
  2000. error = XFS_BUF_GETERROR(bp);
  2001. xfs_buf_relse(bp);
  2002. return error;
  2003. }
  2004. error = 0;
  2005. if (flags & XFS_BLI_INODE_BUF) {
  2006. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2007. } else if (flags &
  2008. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2009. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2010. } else {
  2011. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2012. }
  2013. if (error)
  2014. return XFS_ERROR(error);
  2015. /*
  2016. * Perform delayed write on the buffer. Asynchronous writes will be
  2017. * slower when taking into account all the buffers to be flushed.
  2018. *
  2019. * Also make sure that only inode buffers with good sizes stay in
  2020. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2021. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2022. * buffers in the log can be a different size if the log was generated
  2023. * by an older kernel using unclustered inode buffers or a newer kernel
  2024. * running with a different inode cluster size. Regardless, if the
  2025. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2026. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2027. * the buffer out of the buffer cache so that the buffer won't
  2028. * overlap with future reads of those inodes.
  2029. */
  2030. if (XFS_DINODE_MAGIC ==
  2031. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2032. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2033. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2034. XFS_BUF_STALE(bp);
  2035. error = xfs_bwrite(mp, bp);
  2036. } else {
  2037. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2038. bp->b_mount = mp;
  2039. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2040. xfs_bdwrite(mp, bp);
  2041. }
  2042. return (error);
  2043. }
  2044. STATIC int
  2045. xlog_recover_do_inode_trans(
  2046. xlog_t *log,
  2047. xlog_recover_item_t *item,
  2048. int pass)
  2049. {
  2050. xfs_inode_log_format_t *in_f;
  2051. xfs_mount_t *mp;
  2052. xfs_buf_t *bp;
  2053. xfs_dinode_t *dip;
  2054. xfs_ino_t ino;
  2055. int len;
  2056. xfs_caddr_t src;
  2057. xfs_caddr_t dest;
  2058. int error;
  2059. int attr_index;
  2060. uint fields;
  2061. xfs_icdinode_t *dicp;
  2062. int need_free = 0;
  2063. if (pass == XLOG_RECOVER_PASS1) {
  2064. return 0;
  2065. }
  2066. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2067. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2068. } else {
  2069. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2070. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2071. need_free = 1;
  2072. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2073. if (error)
  2074. goto error;
  2075. }
  2076. ino = in_f->ilf_ino;
  2077. mp = log->l_mp;
  2078. /*
  2079. * Inode buffers can be freed, look out for it,
  2080. * and do not replay the inode.
  2081. */
  2082. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2083. in_f->ilf_len, 0)) {
  2084. error = 0;
  2085. goto error;
  2086. }
  2087. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2088. XBF_LOCK);
  2089. if (XFS_BUF_ISERROR(bp)) {
  2090. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2091. bp, in_f->ilf_blkno);
  2092. error = XFS_BUF_GETERROR(bp);
  2093. xfs_buf_relse(bp);
  2094. goto error;
  2095. }
  2096. error = 0;
  2097. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2098. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2099. /*
  2100. * Make sure the place we're flushing out to really looks
  2101. * like an inode!
  2102. */
  2103. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2104. xfs_buf_relse(bp);
  2105. xfs_fs_cmn_err(CE_ALERT, mp,
  2106. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2107. dip, bp, ino);
  2108. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2109. XFS_ERRLEVEL_LOW, mp);
  2110. error = EFSCORRUPTED;
  2111. goto error;
  2112. }
  2113. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2114. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2115. xfs_buf_relse(bp);
  2116. xfs_fs_cmn_err(CE_ALERT, mp,
  2117. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2118. item, ino);
  2119. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2120. XFS_ERRLEVEL_LOW, mp);
  2121. error = EFSCORRUPTED;
  2122. goto error;
  2123. }
  2124. /* Skip replay when the on disk inode is newer than the log one */
  2125. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2126. /*
  2127. * Deal with the wrap case, DI_MAX_FLUSH is less
  2128. * than smaller numbers
  2129. */
  2130. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2131. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2132. /* do nothing */
  2133. } else {
  2134. xfs_buf_relse(bp);
  2135. error = 0;
  2136. goto error;
  2137. }
  2138. }
  2139. /* Take the opportunity to reset the flush iteration count */
  2140. dicp->di_flushiter = 0;
  2141. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2142. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2143. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2144. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2145. XFS_ERRLEVEL_LOW, mp, dicp);
  2146. xfs_buf_relse(bp);
  2147. xfs_fs_cmn_err(CE_ALERT, mp,
  2148. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2149. item, dip, bp, ino);
  2150. error = EFSCORRUPTED;
  2151. goto error;
  2152. }
  2153. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2154. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2155. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2156. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2157. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2158. XFS_ERRLEVEL_LOW, mp, dicp);
  2159. xfs_buf_relse(bp);
  2160. xfs_fs_cmn_err(CE_ALERT, mp,
  2161. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2162. item, dip, bp, ino);
  2163. error = EFSCORRUPTED;
  2164. goto error;
  2165. }
  2166. }
  2167. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2168. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2169. XFS_ERRLEVEL_LOW, mp, dicp);
  2170. xfs_buf_relse(bp);
  2171. xfs_fs_cmn_err(CE_ALERT, mp,
  2172. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2173. item, dip, bp, ino,
  2174. dicp->di_nextents + dicp->di_anextents,
  2175. dicp->di_nblocks);
  2176. error = EFSCORRUPTED;
  2177. goto error;
  2178. }
  2179. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2180. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2181. XFS_ERRLEVEL_LOW, mp, dicp);
  2182. xfs_buf_relse(bp);
  2183. xfs_fs_cmn_err(CE_ALERT, mp,
  2184. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2185. item, dip, bp, ino, dicp->di_forkoff);
  2186. error = EFSCORRUPTED;
  2187. goto error;
  2188. }
  2189. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2190. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2191. XFS_ERRLEVEL_LOW, mp, dicp);
  2192. xfs_buf_relse(bp);
  2193. xfs_fs_cmn_err(CE_ALERT, mp,
  2194. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2195. item->ri_buf[1].i_len, item);
  2196. error = EFSCORRUPTED;
  2197. goto error;
  2198. }
  2199. /* The core is in in-core format */
  2200. xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2201. /* the rest is in on-disk format */
  2202. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2203. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2204. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2205. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2206. }
  2207. fields = in_f->ilf_fields;
  2208. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2209. case XFS_ILOG_DEV:
  2210. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2211. break;
  2212. case XFS_ILOG_UUID:
  2213. memcpy(XFS_DFORK_DPTR(dip),
  2214. &in_f->ilf_u.ilfu_uuid,
  2215. sizeof(uuid_t));
  2216. break;
  2217. }
  2218. if (in_f->ilf_size == 2)
  2219. goto write_inode_buffer;
  2220. len = item->ri_buf[2].i_len;
  2221. src = item->ri_buf[2].i_addr;
  2222. ASSERT(in_f->ilf_size <= 4);
  2223. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2224. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2225. (len == in_f->ilf_dsize));
  2226. switch (fields & XFS_ILOG_DFORK) {
  2227. case XFS_ILOG_DDATA:
  2228. case XFS_ILOG_DEXT:
  2229. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2230. break;
  2231. case XFS_ILOG_DBROOT:
  2232. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2233. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2234. XFS_DFORK_DSIZE(dip, mp));
  2235. break;
  2236. default:
  2237. /*
  2238. * There are no data fork flags set.
  2239. */
  2240. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2241. break;
  2242. }
  2243. /*
  2244. * If we logged any attribute data, recover it. There may or
  2245. * may not have been any other non-core data logged in this
  2246. * transaction.
  2247. */
  2248. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2249. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2250. attr_index = 3;
  2251. } else {
  2252. attr_index = 2;
  2253. }
  2254. len = item->ri_buf[attr_index].i_len;
  2255. src = item->ri_buf[attr_index].i_addr;
  2256. ASSERT(len == in_f->ilf_asize);
  2257. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2258. case XFS_ILOG_ADATA:
  2259. case XFS_ILOG_AEXT:
  2260. dest = XFS_DFORK_APTR(dip);
  2261. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2262. memcpy(dest, src, len);
  2263. break;
  2264. case XFS_ILOG_ABROOT:
  2265. dest = XFS_DFORK_APTR(dip);
  2266. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2267. len, (xfs_bmdr_block_t*)dest,
  2268. XFS_DFORK_ASIZE(dip, mp));
  2269. break;
  2270. default:
  2271. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2272. ASSERT(0);
  2273. xfs_buf_relse(bp);
  2274. error = EIO;
  2275. goto error;
  2276. }
  2277. }
  2278. write_inode_buffer:
  2279. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2280. bp->b_mount = mp;
  2281. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2282. xfs_bdwrite(mp, bp);
  2283. error:
  2284. if (need_free)
  2285. kmem_free(in_f);
  2286. return XFS_ERROR(error);
  2287. }
  2288. /*
  2289. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2290. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2291. * of that type.
  2292. */
  2293. STATIC int
  2294. xlog_recover_do_quotaoff_trans(
  2295. xlog_t *log,
  2296. xlog_recover_item_t *item,
  2297. int pass)
  2298. {
  2299. xfs_qoff_logformat_t *qoff_f;
  2300. if (pass == XLOG_RECOVER_PASS2) {
  2301. return (0);
  2302. }
  2303. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2304. ASSERT(qoff_f);
  2305. /*
  2306. * The logitem format's flag tells us if this was user quotaoff,
  2307. * group/project quotaoff or both.
  2308. */
  2309. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2310. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2311. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2312. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2313. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2314. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2315. return (0);
  2316. }
  2317. /*
  2318. * Recover a dquot record
  2319. */
  2320. STATIC int
  2321. xlog_recover_do_dquot_trans(
  2322. xlog_t *log,
  2323. xlog_recover_item_t *item,
  2324. int pass)
  2325. {
  2326. xfs_mount_t *mp;
  2327. xfs_buf_t *bp;
  2328. struct xfs_disk_dquot *ddq, *recddq;
  2329. int error;
  2330. xfs_dq_logformat_t *dq_f;
  2331. uint type;
  2332. if (pass == XLOG_RECOVER_PASS1) {
  2333. return 0;
  2334. }
  2335. mp = log->l_mp;
  2336. /*
  2337. * Filesystems are required to send in quota flags at mount time.
  2338. */
  2339. if (mp->m_qflags == 0)
  2340. return (0);
  2341. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2342. if (item->ri_buf[1].i_addr == NULL) {
  2343. cmn_err(CE_ALERT,
  2344. "XFS: NULL dquot in %s.", __func__);
  2345. return XFS_ERROR(EIO);
  2346. }
  2347. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2348. cmn_err(CE_ALERT,
  2349. "XFS: dquot too small (%d) in %s.",
  2350. item->ri_buf[1].i_len, __func__);
  2351. return XFS_ERROR(EIO);
  2352. }
  2353. /*
  2354. * This type of quotas was turned off, so ignore this record.
  2355. */
  2356. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2357. ASSERT(type);
  2358. if (log->l_quotaoffs_flag & type)
  2359. return (0);
  2360. /*
  2361. * At this point we know that quota was _not_ turned off.
  2362. * Since the mount flags are not indicating to us otherwise, this
  2363. * must mean that quota is on, and the dquot needs to be replayed.
  2364. * Remember that we may not have fully recovered the superblock yet,
  2365. * so we can't do the usual trick of looking at the SB quota bits.
  2366. *
  2367. * The other possibility, of course, is that the quota subsystem was
  2368. * removed since the last mount - ENOSYS.
  2369. */
  2370. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2371. ASSERT(dq_f);
  2372. if ((error = xfs_qm_dqcheck(recddq,
  2373. dq_f->qlf_id,
  2374. 0, XFS_QMOPT_DOWARN,
  2375. "xlog_recover_do_dquot_trans (log copy)"))) {
  2376. return XFS_ERROR(EIO);
  2377. }
  2378. ASSERT(dq_f->qlf_len == 1);
  2379. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2380. dq_f->qlf_blkno,
  2381. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2382. 0, &bp);
  2383. if (error) {
  2384. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2385. bp, dq_f->qlf_blkno);
  2386. return error;
  2387. }
  2388. ASSERT(bp);
  2389. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2390. /*
  2391. * At least the magic num portion should be on disk because this
  2392. * was among a chunk of dquots created earlier, and we did some
  2393. * minimal initialization then.
  2394. */
  2395. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2396. "xlog_recover_do_dquot_trans")) {
  2397. xfs_buf_relse(bp);
  2398. return XFS_ERROR(EIO);
  2399. }
  2400. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2401. ASSERT(dq_f->qlf_size == 2);
  2402. ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
  2403. bp->b_mount = mp;
  2404. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2405. xfs_bdwrite(mp, bp);
  2406. return (0);
  2407. }
  2408. /*
  2409. * This routine is called to create an in-core extent free intent
  2410. * item from the efi format structure which was logged on disk.
  2411. * It allocates an in-core efi, copies the extents from the format
  2412. * structure into it, and adds the efi to the AIL with the given
  2413. * LSN.
  2414. */
  2415. STATIC int
  2416. xlog_recover_do_efi_trans(
  2417. xlog_t *log,
  2418. xlog_recover_item_t *item,
  2419. xfs_lsn_t lsn,
  2420. int pass)
  2421. {
  2422. int error;
  2423. xfs_mount_t *mp;
  2424. xfs_efi_log_item_t *efip;
  2425. xfs_efi_log_format_t *efi_formatp;
  2426. if (pass == XLOG_RECOVER_PASS1) {
  2427. return 0;
  2428. }
  2429. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2430. mp = log->l_mp;
  2431. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2432. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2433. &(efip->efi_format)))) {
  2434. xfs_efi_item_free(efip);
  2435. return error;
  2436. }
  2437. efip->efi_next_extent = efi_formatp->efi_nextents;
  2438. efip->efi_flags |= XFS_EFI_COMMITTED;
  2439. spin_lock(&log->l_ailp->xa_lock);
  2440. /*
  2441. * xfs_trans_ail_update() drops the AIL lock.
  2442. */
  2443. xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
  2444. return 0;
  2445. }
  2446. /*
  2447. * This routine is called when an efd format structure is found in
  2448. * a committed transaction in the log. It's purpose is to cancel
  2449. * the corresponding efi if it was still in the log. To do this
  2450. * it searches the AIL for the efi with an id equal to that in the
  2451. * efd format structure. If we find it, we remove the efi from the
  2452. * AIL and free it.
  2453. */
  2454. STATIC void
  2455. xlog_recover_do_efd_trans(
  2456. xlog_t *log,
  2457. xlog_recover_item_t *item,
  2458. int pass)
  2459. {
  2460. xfs_efd_log_format_t *efd_formatp;
  2461. xfs_efi_log_item_t *efip = NULL;
  2462. xfs_log_item_t *lip;
  2463. __uint64_t efi_id;
  2464. struct xfs_ail_cursor cur;
  2465. struct xfs_ail *ailp = log->l_ailp;
  2466. if (pass == XLOG_RECOVER_PASS1) {
  2467. return;
  2468. }
  2469. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2470. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2471. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2472. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2473. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2474. efi_id = efd_formatp->efd_efi_id;
  2475. /*
  2476. * Search for the efi with the id in the efd format structure
  2477. * in the AIL.
  2478. */
  2479. spin_lock(&ailp->xa_lock);
  2480. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2481. while (lip != NULL) {
  2482. if (lip->li_type == XFS_LI_EFI) {
  2483. efip = (xfs_efi_log_item_t *)lip;
  2484. if (efip->efi_format.efi_id == efi_id) {
  2485. /*
  2486. * xfs_trans_ail_delete() drops the
  2487. * AIL lock.
  2488. */
  2489. xfs_trans_ail_delete(ailp, lip);
  2490. xfs_efi_item_free(efip);
  2491. spin_lock(&ailp->xa_lock);
  2492. break;
  2493. }
  2494. }
  2495. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2496. }
  2497. xfs_trans_ail_cursor_done(ailp, &cur);
  2498. spin_unlock(&ailp->xa_lock);
  2499. }
  2500. /*
  2501. * Perform the transaction
  2502. *
  2503. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2504. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2505. */
  2506. STATIC int
  2507. xlog_recover_do_trans(
  2508. xlog_t *log,
  2509. xlog_recover_t *trans,
  2510. int pass)
  2511. {
  2512. int error = 0;
  2513. xlog_recover_item_t *item;
  2514. error = xlog_recover_reorder_trans(trans);
  2515. if (error)
  2516. return error;
  2517. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2518. switch (ITEM_TYPE(item)) {
  2519. case XFS_LI_BUF:
  2520. error = xlog_recover_do_buffer_trans(log, item, pass);
  2521. break;
  2522. case XFS_LI_INODE:
  2523. error = xlog_recover_do_inode_trans(log, item, pass);
  2524. break;
  2525. case XFS_LI_EFI:
  2526. error = xlog_recover_do_efi_trans(log, item,
  2527. trans->r_lsn, pass);
  2528. break;
  2529. case XFS_LI_EFD:
  2530. xlog_recover_do_efd_trans(log, item, pass);
  2531. error = 0;
  2532. break;
  2533. case XFS_LI_DQUOT:
  2534. error = xlog_recover_do_dquot_trans(log, item, pass);
  2535. break;
  2536. case XFS_LI_QUOTAOFF:
  2537. error = xlog_recover_do_quotaoff_trans(log, item,
  2538. pass);
  2539. break;
  2540. default:
  2541. xlog_warn(
  2542. "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
  2543. ASSERT(0);
  2544. error = XFS_ERROR(EIO);
  2545. break;
  2546. }
  2547. if (error)
  2548. return error;
  2549. }
  2550. return 0;
  2551. }
  2552. /*
  2553. * Free up any resources allocated by the transaction
  2554. *
  2555. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2556. */
  2557. STATIC void
  2558. xlog_recover_free_trans(
  2559. xlog_recover_t *trans)
  2560. {
  2561. xlog_recover_item_t *item, *n;
  2562. int i;
  2563. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2564. /* Free the regions in the item. */
  2565. list_del(&item->ri_list);
  2566. for (i = 0; i < item->ri_cnt; i++)
  2567. kmem_free(item->ri_buf[i].i_addr);
  2568. /* Free the item itself */
  2569. kmem_free(item->ri_buf);
  2570. kmem_free(item);
  2571. }
  2572. /* Free the transaction recover structure */
  2573. kmem_free(trans);
  2574. }
  2575. STATIC int
  2576. xlog_recover_commit_trans(
  2577. xlog_t *log,
  2578. xlog_recover_t *trans,
  2579. int pass)
  2580. {
  2581. int error;
  2582. hlist_del(&trans->r_list);
  2583. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2584. return error;
  2585. xlog_recover_free_trans(trans); /* no error */
  2586. return 0;
  2587. }
  2588. STATIC int
  2589. xlog_recover_unmount_trans(
  2590. xlog_recover_t *trans)
  2591. {
  2592. /* Do nothing now */
  2593. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2594. return 0;
  2595. }
  2596. /*
  2597. * There are two valid states of the r_state field. 0 indicates that the
  2598. * transaction structure is in a normal state. We have either seen the
  2599. * start of the transaction or the last operation we added was not a partial
  2600. * operation. If the last operation we added to the transaction was a
  2601. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2602. *
  2603. * NOTE: skip LRs with 0 data length.
  2604. */
  2605. STATIC int
  2606. xlog_recover_process_data(
  2607. xlog_t *log,
  2608. struct hlist_head rhash[],
  2609. xlog_rec_header_t *rhead,
  2610. xfs_caddr_t dp,
  2611. int pass)
  2612. {
  2613. xfs_caddr_t lp;
  2614. int num_logops;
  2615. xlog_op_header_t *ohead;
  2616. xlog_recover_t *trans;
  2617. xlog_tid_t tid;
  2618. int error;
  2619. unsigned long hash;
  2620. uint flags;
  2621. lp = dp + be32_to_cpu(rhead->h_len);
  2622. num_logops = be32_to_cpu(rhead->h_num_logops);
  2623. /* check the log format matches our own - else we can't recover */
  2624. if (xlog_header_check_recover(log->l_mp, rhead))
  2625. return (XFS_ERROR(EIO));
  2626. while ((dp < lp) && num_logops) {
  2627. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2628. ohead = (xlog_op_header_t *)dp;
  2629. dp += sizeof(xlog_op_header_t);
  2630. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2631. ohead->oh_clientid != XFS_LOG) {
  2632. xlog_warn(
  2633. "XFS: xlog_recover_process_data: bad clientid");
  2634. ASSERT(0);
  2635. return (XFS_ERROR(EIO));
  2636. }
  2637. tid = be32_to_cpu(ohead->oh_tid);
  2638. hash = XLOG_RHASH(tid);
  2639. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2640. if (trans == NULL) { /* not found; add new tid */
  2641. if (ohead->oh_flags & XLOG_START_TRANS)
  2642. xlog_recover_new_tid(&rhash[hash], tid,
  2643. be64_to_cpu(rhead->h_lsn));
  2644. } else {
  2645. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2646. xlog_warn(
  2647. "XFS: xlog_recover_process_data: bad length");
  2648. WARN_ON(1);
  2649. return (XFS_ERROR(EIO));
  2650. }
  2651. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2652. if (flags & XLOG_WAS_CONT_TRANS)
  2653. flags &= ~XLOG_CONTINUE_TRANS;
  2654. switch (flags) {
  2655. case XLOG_COMMIT_TRANS:
  2656. error = xlog_recover_commit_trans(log,
  2657. trans, pass);
  2658. break;
  2659. case XLOG_UNMOUNT_TRANS:
  2660. error = xlog_recover_unmount_trans(trans);
  2661. break;
  2662. case XLOG_WAS_CONT_TRANS:
  2663. error = xlog_recover_add_to_cont_trans(trans,
  2664. dp, be32_to_cpu(ohead->oh_len));
  2665. break;
  2666. case XLOG_START_TRANS:
  2667. xlog_warn(
  2668. "XFS: xlog_recover_process_data: bad transaction");
  2669. ASSERT(0);
  2670. error = XFS_ERROR(EIO);
  2671. break;
  2672. case 0:
  2673. case XLOG_CONTINUE_TRANS:
  2674. error = xlog_recover_add_to_trans(trans,
  2675. dp, be32_to_cpu(ohead->oh_len));
  2676. break;
  2677. default:
  2678. xlog_warn(
  2679. "XFS: xlog_recover_process_data: bad flag");
  2680. ASSERT(0);
  2681. error = XFS_ERROR(EIO);
  2682. break;
  2683. }
  2684. if (error)
  2685. return error;
  2686. }
  2687. dp += be32_to_cpu(ohead->oh_len);
  2688. num_logops--;
  2689. }
  2690. return 0;
  2691. }
  2692. /*
  2693. * Process an extent free intent item that was recovered from
  2694. * the log. We need to free the extents that it describes.
  2695. */
  2696. STATIC int
  2697. xlog_recover_process_efi(
  2698. xfs_mount_t *mp,
  2699. xfs_efi_log_item_t *efip)
  2700. {
  2701. xfs_efd_log_item_t *efdp;
  2702. xfs_trans_t *tp;
  2703. int i;
  2704. int error = 0;
  2705. xfs_extent_t *extp;
  2706. xfs_fsblock_t startblock_fsb;
  2707. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2708. /*
  2709. * First check the validity of the extents described by the
  2710. * EFI. If any are bad, then assume that all are bad and
  2711. * just toss the EFI.
  2712. */
  2713. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2714. extp = &(efip->efi_format.efi_extents[i]);
  2715. startblock_fsb = XFS_BB_TO_FSB(mp,
  2716. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2717. if ((startblock_fsb == 0) ||
  2718. (extp->ext_len == 0) ||
  2719. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2720. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2721. /*
  2722. * This will pull the EFI from the AIL and
  2723. * free the memory associated with it.
  2724. */
  2725. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2726. return XFS_ERROR(EIO);
  2727. }
  2728. }
  2729. tp = xfs_trans_alloc(mp, 0);
  2730. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2731. if (error)
  2732. goto abort_error;
  2733. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2734. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2735. extp = &(efip->efi_format.efi_extents[i]);
  2736. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2737. if (error)
  2738. goto abort_error;
  2739. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2740. extp->ext_len);
  2741. }
  2742. efip->efi_flags |= XFS_EFI_RECOVERED;
  2743. error = xfs_trans_commit(tp, 0);
  2744. return error;
  2745. abort_error:
  2746. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2747. return error;
  2748. }
  2749. /*
  2750. * When this is called, all of the EFIs which did not have
  2751. * corresponding EFDs should be in the AIL. What we do now
  2752. * is free the extents associated with each one.
  2753. *
  2754. * Since we process the EFIs in normal transactions, they
  2755. * will be removed at some point after the commit. This prevents
  2756. * us from just walking down the list processing each one.
  2757. * We'll use a flag in the EFI to skip those that we've already
  2758. * processed and use the AIL iteration mechanism's generation
  2759. * count to try to speed this up at least a bit.
  2760. *
  2761. * When we start, we know that the EFIs are the only things in
  2762. * the AIL. As we process them, however, other items are added
  2763. * to the AIL. Since everything added to the AIL must come after
  2764. * everything already in the AIL, we stop processing as soon as
  2765. * we see something other than an EFI in the AIL.
  2766. */
  2767. STATIC int
  2768. xlog_recover_process_efis(
  2769. xlog_t *log)
  2770. {
  2771. xfs_log_item_t *lip;
  2772. xfs_efi_log_item_t *efip;
  2773. int error = 0;
  2774. struct xfs_ail_cursor cur;
  2775. struct xfs_ail *ailp;
  2776. ailp = log->l_ailp;
  2777. spin_lock(&ailp->xa_lock);
  2778. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2779. while (lip != NULL) {
  2780. /*
  2781. * We're done when we see something other than an EFI.
  2782. * There should be no EFIs left in the AIL now.
  2783. */
  2784. if (lip->li_type != XFS_LI_EFI) {
  2785. #ifdef DEBUG
  2786. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2787. ASSERT(lip->li_type != XFS_LI_EFI);
  2788. #endif
  2789. break;
  2790. }
  2791. /*
  2792. * Skip EFIs that we've already processed.
  2793. */
  2794. efip = (xfs_efi_log_item_t *)lip;
  2795. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2796. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2797. continue;
  2798. }
  2799. spin_unlock(&ailp->xa_lock);
  2800. error = xlog_recover_process_efi(log->l_mp, efip);
  2801. spin_lock(&ailp->xa_lock);
  2802. if (error)
  2803. goto out;
  2804. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2805. }
  2806. out:
  2807. xfs_trans_ail_cursor_done(ailp, &cur);
  2808. spin_unlock(&ailp->xa_lock);
  2809. return error;
  2810. }
  2811. /*
  2812. * This routine performs a transaction to null out a bad inode pointer
  2813. * in an agi unlinked inode hash bucket.
  2814. */
  2815. STATIC void
  2816. xlog_recover_clear_agi_bucket(
  2817. xfs_mount_t *mp,
  2818. xfs_agnumber_t agno,
  2819. int bucket)
  2820. {
  2821. xfs_trans_t *tp;
  2822. xfs_agi_t *agi;
  2823. xfs_buf_t *agibp;
  2824. int offset;
  2825. int error;
  2826. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2827. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2828. 0, 0, 0);
  2829. if (error)
  2830. goto out_abort;
  2831. error = xfs_read_agi(mp, tp, agno, &agibp);
  2832. if (error)
  2833. goto out_abort;
  2834. agi = XFS_BUF_TO_AGI(agibp);
  2835. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2836. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2837. (sizeof(xfs_agino_t) * bucket);
  2838. xfs_trans_log_buf(tp, agibp, offset,
  2839. (offset + sizeof(xfs_agino_t) - 1));
  2840. error = xfs_trans_commit(tp, 0);
  2841. if (error)
  2842. goto out_error;
  2843. return;
  2844. out_abort:
  2845. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2846. out_error:
  2847. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2848. "failed to clear agi %d. Continuing.", agno);
  2849. return;
  2850. }
  2851. STATIC xfs_agino_t
  2852. xlog_recover_process_one_iunlink(
  2853. struct xfs_mount *mp,
  2854. xfs_agnumber_t agno,
  2855. xfs_agino_t agino,
  2856. int bucket)
  2857. {
  2858. struct xfs_buf *ibp;
  2859. struct xfs_dinode *dip;
  2860. struct xfs_inode *ip;
  2861. xfs_ino_t ino;
  2862. int error;
  2863. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2864. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2865. if (error)
  2866. goto fail;
  2867. /*
  2868. * Get the on disk inode to find the next inode in the bucket.
  2869. */
  2870. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2871. if (error)
  2872. goto fail_iput;
  2873. ASSERT(ip->i_d.di_nlink == 0);
  2874. ASSERT(ip->i_d.di_mode != 0);
  2875. /* setup for the next pass */
  2876. agino = be32_to_cpu(dip->di_next_unlinked);
  2877. xfs_buf_relse(ibp);
  2878. /*
  2879. * Prevent any DMAPI event from being sent when the reference on
  2880. * the inode is dropped.
  2881. */
  2882. ip->i_d.di_dmevmask = 0;
  2883. IRELE(ip);
  2884. return agino;
  2885. fail_iput:
  2886. IRELE(ip);
  2887. fail:
  2888. /*
  2889. * We can't read in the inode this bucket points to, or this inode
  2890. * is messed up. Just ditch this bucket of inodes. We will lose
  2891. * some inodes and space, but at least we won't hang.
  2892. *
  2893. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2894. * clear the inode pointer in the bucket.
  2895. */
  2896. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2897. return NULLAGINO;
  2898. }
  2899. /*
  2900. * xlog_iunlink_recover
  2901. *
  2902. * This is called during recovery to process any inodes which
  2903. * we unlinked but not freed when the system crashed. These
  2904. * inodes will be on the lists in the AGI blocks. What we do
  2905. * here is scan all the AGIs and fully truncate and free any
  2906. * inodes found on the lists. Each inode is removed from the
  2907. * lists when it has been fully truncated and is freed. The
  2908. * freeing of the inode and its removal from the list must be
  2909. * atomic.
  2910. */
  2911. STATIC void
  2912. xlog_recover_process_iunlinks(
  2913. xlog_t *log)
  2914. {
  2915. xfs_mount_t *mp;
  2916. xfs_agnumber_t agno;
  2917. xfs_agi_t *agi;
  2918. xfs_buf_t *agibp;
  2919. xfs_agino_t agino;
  2920. int bucket;
  2921. int error;
  2922. uint mp_dmevmask;
  2923. mp = log->l_mp;
  2924. /*
  2925. * Prevent any DMAPI event from being sent while in this function.
  2926. */
  2927. mp_dmevmask = mp->m_dmevmask;
  2928. mp->m_dmevmask = 0;
  2929. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2930. /*
  2931. * Find the agi for this ag.
  2932. */
  2933. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2934. if (error) {
  2935. /*
  2936. * AGI is b0rked. Don't process it.
  2937. *
  2938. * We should probably mark the filesystem as corrupt
  2939. * after we've recovered all the ag's we can....
  2940. */
  2941. continue;
  2942. }
  2943. agi = XFS_BUF_TO_AGI(agibp);
  2944. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2945. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2946. while (agino != NULLAGINO) {
  2947. /*
  2948. * Release the agi buffer so that it can
  2949. * be acquired in the normal course of the
  2950. * transaction to truncate and free the inode.
  2951. */
  2952. xfs_buf_relse(agibp);
  2953. agino = xlog_recover_process_one_iunlink(mp,
  2954. agno, agino, bucket);
  2955. /*
  2956. * Reacquire the agibuffer and continue around
  2957. * the loop. This should never fail as we know
  2958. * the buffer was good earlier on.
  2959. */
  2960. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2961. ASSERT(error == 0);
  2962. agi = XFS_BUF_TO_AGI(agibp);
  2963. }
  2964. }
  2965. /*
  2966. * Release the buffer for the current agi so we can
  2967. * go on to the next one.
  2968. */
  2969. xfs_buf_relse(agibp);
  2970. }
  2971. mp->m_dmevmask = mp_dmevmask;
  2972. }
  2973. #ifdef DEBUG
  2974. STATIC void
  2975. xlog_pack_data_checksum(
  2976. xlog_t *log,
  2977. xlog_in_core_t *iclog,
  2978. int size)
  2979. {
  2980. int i;
  2981. __be32 *up;
  2982. uint chksum = 0;
  2983. up = (__be32 *)iclog->ic_datap;
  2984. /* divide length by 4 to get # words */
  2985. for (i = 0; i < (size >> 2); i++) {
  2986. chksum ^= be32_to_cpu(*up);
  2987. up++;
  2988. }
  2989. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2990. }
  2991. #else
  2992. #define xlog_pack_data_checksum(log, iclog, size)
  2993. #endif
  2994. /*
  2995. * Stamp cycle number in every block
  2996. */
  2997. void
  2998. xlog_pack_data(
  2999. xlog_t *log,
  3000. xlog_in_core_t *iclog,
  3001. int roundoff)
  3002. {
  3003. int i, j, k;
  3004. int size = iclog->ic_offset + roundoff;
  3005. __be32 cycle_lsn;
  3006. xfs_caddr_t dp;
  3007. xlog_pack_data_checksum(log, iclog, size);
  3008. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3009. dp = iclog->ic_datap;
  3010. for (i = 0; i < BTOBB(size) &&
  3011. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3012. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3013. *(__be32 *)dp = cycle_lsn;
  3014. dp += BBSIZE;
  3015. }
  3016. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3017. xlog_in_core_2_t *xhdr = iclog->ic_data;
  3018. for ( ; i < BTOBB(size); i++) {
  3019. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3020. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3021. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3022. *(__be32 *)dp = cycle_lsn;
  3023. dp += BBSIZE;
  3024. }
  3025. for (i = 1; i < log->l_iclog_heads; i++) {
  3026. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3027. }
  3028. }
  3029. }
  3030. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3031. STATIC void
  3032. xlog_unpack_data_checksum(
  3033. xlog_rec_header_t *rhead,
  3034. xfs_caddr_t dp,
  3035. xlog_t *log)
  3036. {
  3037. __be32 *up = (__be32 *)dp;
  3038. uint chksum = 0;
  3039. int i;
  3040. /* divide length by 4 to get # words */
  3041. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3042. chksum ^= be32_to_cpu(*up);
  3043. up++;
  3044. }
  3045. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3046. if (rhead->h_chksum ||
  3047. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3048. cmn_err(CE_DEBUG,
  3049. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3050. be32_to_cpu(rhead->h_chksum), chksum);
  3051. cmn_err(CE_DEBUG,
  3052. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3053. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3054. cmn_err(CE_DEBUG,
  3055. "XFS: LogR this is a LogV2 filesystem\n");
  3056. }
  3057. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3058. }
  3059. }
  3060. }
  3061. #else
  3062. #define xlog_unpack_data_checksum(rhead, dp, log)
  3063. #endif
  3064. STATIC void
  3065. xlog_unpack_data(
  3066. xlog_rec_header_t *rhead,
  3067. xfs_caddr_t dp,
  3068. xlog_t *log)
  3069. {
  3070. int i, j, k;
  3071. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3072. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3073. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3074. dp += BBSIZE;
  3075. }
  3076. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3077. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3078. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3079. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3080. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3081. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3082. dp += BBSIZE;
  3083. }
  3084. }
  3085. xlog_unpack_data_checksum(rhead, dp, log);
  3086. }
  3087. STATIC int
  3088. xlog_valid_rec_header(
  3089. xlog_t *log,
  3090. xlog_rec_header_t *rhead,
  3091. xfs_daddr_t blkno)
  3092. {
  3093. int hlen;
  3094. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3095. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3096. XFS_ERRLEVEL_LOW, log->l_mp);
  3097. return XFS_ERROR(EFSCORRUPTED);
  3098. }
  3099. if (unlikely(
  3100. (!rhead->h_version ||
  3101. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3102. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3103. __func__, be32_to_cpu(rhead->h_version));
  3104. return XFS_ERROR(EIO);
  3105. }
  3106. /* LR body must have data or it wouldn't have been written */
  3107. hlen = be32_to_cpu(rhead->h_len);
  3108. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3109. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3110. XFS_ERRLEVEL_LOW, log->l_mp);
  3111. return XFS_ERROR(EFSCORRUPTED);
  3112. }
  3113. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3114. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3115. XFS_ERRLEVEL_LOW, log->l_mp);
  3116. return XFS_ERROR(EFSCORRUPTED);
  3117. }
  3118. return 0;
  3119. }
  3120. /*
  3121. * Read the log from tail to head and process the log records found.
  3122. * Handle the two cases where the tail and head are in the same cycle
  3123. * and where the active portion of the log wraps around the end of
  3124. * the physical log separately. The pass parameter is passed through
  3125. * to the routines called to process the data and is not looked at
  3126. * here.
  3127. */
  3128. STATIC int
  3129. xlog_do_recovery_pass(
  3130. xlog_t *log,
  3131. xfs_daddr_t head_blk,
  3132. xfs_daddr_t tail_blk,
  3133. int pass)
  3134. {
  3135. xlog_rec_header_t *rhead;
  3136. xfs_daddr_t blk_no;
  3137. xfs_caddr_t offset;
  3138. xfs_buf_t *hbp, *dbp;
  3139. int error = 0, h_size;
  3140. int bblks, split_bblks;
  3141. int hblks, split_hblks, wrapped_hblks;
  3142. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3143. ASSERT(head_blk != tail_blk);
  3144. /*
  3145. * Read the header of the tail block and get the iclog buffer size from
  3146. * h_size. Use this to tell how many sectors make up the log header.
  3147. */
  3148. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3149. /*
  3150. * When using variable length iclogs, read first sector of
  3151. * iclog header and extract the header size from it. Get a
  3152. * new hbp that is the correct size.
  3153. */
  3154. hbp = xlog_get_bp(log, 1);
  3155. if (!hbp)
  3156. return ENOMEM;
  3157. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3158. if (error)
  3159. goto bread_err1;
  3160. rhead = (xlog_rec_header_t *)offset;
  3161. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3162. if (error)
  3163. goto bread_err1;
  3164. h_size = be32_to_cpu(rhead->h_size);
  3165. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3166. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3167. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3168. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3169. hblks++;
  3170. xlog_put_bp(hbp);
  3171. hbp = xlog_get_bp(log, hblks);
  3172. } else {
  3173. hblks = 1;
  3174. }
  3175. } else {
  3176. ASSERT(log->l_sectbb_log == 0);
  3177. hblks = 1;
  3178. hbp = xlog_get_bp(log, 1);
  3179. h_size = XLOG_BIG_RECORD_BSIZE;
  3180. }
  3181. if (!hbp)
  3182. return ENOMEM;
  3183. dbp = xlog_get_bp(log, BTOBB(h_size));
  3184. if (!dbp) {
  3185. xlog_put_bp(hbp);
  3186. return ENOMEM;
  3187. }
  3188. memset(rhash, 0, sizeof(rhash));
  3189. if (tail_blk <= head_blk) {
  3190. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3191. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3192. if (error)
  3193. goto bread_err2;
  3194. rhead = (xlog_rec_header_t *)offset;
  3195. error = xlog_valid_rec_header(log, rhead, blk_no);
  3196. if (error)
  3197. goto bread_err2;
  3198. /* blocks in data section */
  3199. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3200. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3201. &offset);
  3202. if (error)
  3203. goto bread_err2;
  3204. xlog_unpack_data(rhead, offset, log);
  3205. if ((error = xlog_recover_process_data(log,
  3206. rhash, rhead, offset, pass)))
  3207. goto bread_err2;
  3208. blk_no += bblks + hblks;
  3209. }
  3210. } else {
  3211. /*
  3212. * Perform recovery around the end of the physical log.
  3213. * When the head is not on the same cycle number as the tail,
  3214. * we can't do a sequential recovery as above.
  3215. */
  3216. blk_no = tail_blk;
  3217. while (blk_no < log->l_logBBsize) {
  3218. /*
  3219. * Check for header wrapping around physical end-of-log
  3220. */
  3221. offset = XFS_BUF_PTR(hbp);
  3222. split_hblks = 0;
  3223. wrapped_hblks = 0;
  3224. if (blk_no + hblks <= log->l_logBBsize) {
  3225. /* Read header in one read */
  3226. error = xlog_bread(log, blk_no, hblks, hbp,
  3227. &offset);
  3228. if (error)
  3229. goto bread_err2;
  3230. } else {
  3231. /* This LR is split across physical log end */
  3232. if (blk_no != log->l_logBBsize) {
  3233. /* some data before physical log end */
  3234. ASSERT(blk_no <= INT_MAX);
  3235. split_hblks = log->l_logBBsize - (int)blk_no;
  3236. ASSERT(split_hblks > 0);
  3237. error = xlog_bread(log, blk_no,
  3238. split_hblks, hbp,
  3239. &offset);
  3240. if (error)
  3241. goto bread_err2;
  3242. }
  3243. /*
  3244. * Note: this black magic still works with
  3245. * large sector sizes (non-512) only because:
  3246. * - we increased the buffer size originally
  3247. * by 1 sector giving us enough extra space
  3248. * for the second read;
  3249. * - the log start is guaranteed to be sector
  3250. * aligned;
  3251. * - we read the log end (LR header start)
  3252. * _first_, then the log start (LR header end)
  3253. * - order is important.
  3254. */
  3255. wrapped_hblks = hblks - split_hblks;
  3256. error = XFS_BUF_SET_PTR(hbp,
  3257. offset + BBTOB(split_hblks),
  3258. BBTOB(hblks - split_hblks));
  3259. if (error)
  3260. goto bread_err2;
  3261. error = xlog_bread_noalign(log, 0,
  3262. wrapped_hblks, hbp);
  3263. if (error)
  3264. goto bread_err2;
  3265. error = XFS_BUF_SET_PTR(hbp, offset,
  3266. BBTOB(hblks));
  3267. if (error)
  3268. goto bread_err2;
  3269. }
  3270. rhead = (xlog_rec_header_t *)offset;
  3271. error = xlog_valid_rec_header(log, rhead,
  3272. split_hblks ? blk_no : 0);
  3273. if (error)
  3274. goto bread_err2;
  3275. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3276. blk_no += hblks;
  3277. /* Read in data for log record */
  3278. if (blk_no + bblks <= log->l_logBBsize) {
  3279. error = xlog_bread(log, blk_no, bblks, dbp,
  3280. &offset);
  3281. if (error)
  3282. goto bread_err2;
  3283. } else {
  3284. /* This log record is split across the
  3285. * physical end of log */
  3286. offset = XFS_BUF_PTR(dbp);
  3287. split_bblks = 0;
  3288. if (blk_no != log->l_logBBsize) {
  3289. /* some data is before the physical
  3290. * end of log */
  3291. ASSERT(!wrapped_hblks);
  3292. ASSERT(blk_no <= INT_MAX);
  3293. split_bblks =
  3294. log->l_logBBsize - (int)blk_no;
  3295. ASSERT(split_bblks > 0);
  3296. error = xlog_bread(log, blk_no,
  3297. split_bblks, dbp,
  3298. &offset);
  3299. if (error)
  3300. goto bread_err2;
  3301. }
  3302. /*
  3303. * Note: this black magic still works with
  3304. * large sector sizes (non-512) only because:
  3305. * - we increased the buffer size originally
  3306. * by 1 sector giving us enough extra space
  3307. * for the second read;
  3308. * - the log start is guaranteed to be sector
  3309. * aligned;
  3310. * - we read the log end (LR header start)
  3311. * _first_, then the log start (LR header end)
  3312. * - order is important.
  3313. */
  3314. error = XFS_BUF_SET_PTR(dbp,
  3315. offset + BBTOB(split_bblks),
  3316. BBTOB(bblks - split_bblks));
  3317. if (error)
  3318. goto bread_err2;
  3319. error = xlog_bread_noalign(log, wrapped_hblks,
  3320. bblks - split_bblks,
  3321. dbp);
  3322. if (error)
  3323. goto bread_err2;
  3324. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3325. if (error)
  3326. goto bread_err2;
  3327. }
  3328. xlog_unpack_data(rhead, offset, log);
  3329. if ((error = xlog_recover_process_data(log, rhash,
  3330. rhead, offset, pass)))
  3331. goto bread_err2;
  3332. blk_no += bblks;
  3333. }
  3334. ASSERT(blk_no >= log->l_logBBsize);
  3335. blk_no -= log->l_logBBsize;
  3336. /* read first part of physical log */
  3337. while (blk_no < head_blk) {
  3338. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3339. if (error)
  3340. goto bread_err2;
  3341. rhead = (xlog_rec_header_t *)offset;
  3342. error = xlog_valid_rec_header(log, rhead, blk_no);
  3343. if (error)
  3344. goto bread_err2;
  3345. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3346. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3347. &offset);
  3348. if (error)
  3349. goto bread_err2;
  3350. xlog_unpack_data(rhead, offset, log);
  3351. if ((error = xlog_recover_process_data(log, rhash,
  3352. rhead, offset, pass)))
  3353. goto bread_err2;
  3354. blk_no += bblks + hblks;
  3355. }
  3356. }
  3357. bread_err2:
  3358. xlog_put_bp(dbp);
  3359. bread_err1:
  3360. xlog_put_bp(hbp);
  3361. return error;
  3362. }
  3363. /*
  3364. * Do the recovery of the log. We actually do this in two phases.
  3365. * The two passes are necessary in order to implement the function
  3366. * of cancelling a record written into the log. The first pass
  3367. * determines those things which have been cancelled, and the
  3368. * second pass replays log items normally except for those which
  3369. * have been cancelled. The handling of the replay and cancellations
  3370. * takes place in the log item type specific routines.
  3371. *
  3372. * The table of items which have cancel records in the log is allocated
  3373. * and freed at this level, since only here do we know when all of
  3374. * the log recovery has been completed.
  3375. */
  3376. STATIC int
  3377. xlog_do_log_recovery(
  3378. xlog_t *log,
  3379. xfs_daddr_t head_blk,
  3380. xfs_daddr_t tail_blk)
  3381. {
  3382. int error;
  3383. ASSERT(head_blk != tail_blk);
  3384. /*
  3385. * First do a pass to find all of the cancelled buf log items.
  3386. * Store them in the buf_cancel_table for use in the second pass.
  3387. */
  3388. log->l_buf_cancel_table =
  3389. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3390. sizeof(xfs_buf_cancel_t*),
  3391. KM_SLEEP);
  3392. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3393. XLOG_RECOVER_PASS1);
  3394. if (error != 0) {
  3395. kmem_free(log->l_buf_cancel_table);
  3396. log->l_buf_cancel_table = NULL;
  3397. return error;
  3398. }
  3399. /*
  3400. * Then do a second pass to actually recover the items in the log.
  3401. * When it is complete free the table of buf cancel items.
  3402. */
  3403. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3404. XLOG_RECOVER_PASS2);
  3405. #ifdef DEBUG
  3406. if (!error) {
  3407. int i;
  3408. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3409. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3410. }
  3411. #endif /* DEBUG */
  3412. kmem_free(log->l_buf_cancel_table);
  3413. log->l_buf_cancel_table = NULL;
  3414. return error;
  3415. }
  3416. /*
  3417. * Do the actual recovery
  3418. */
  3419. STATIC int
  3420. xlog_do_recover(
  3421. xlog_t *log,
  3422. xfs_daddr_t head_blk,
  3423. xfs_daddr_t tail_blk)
  3424. {
  3425. int error;
  3426. xfs_buf_t *bp;
  3427. xfs_sb_t *sbp;
  3428. /*
  3429. * First replay the images in the log.
  3430. */
  3431. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3432. if (error) {
  3433. return error;
  3434. }
  3435. XFS_bflush(log->l_mp->m_ddev_targp);
  3436. /*
  3437. * If IO errors happened during recovery, bail out.
  3438. */
  3439. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3440. return (EIO);
  3441. }
  3442. /*
  3443. * We now update the tail_lsn since much of the recovery has completed
  3444. * and there may be space available to use. If there were no extent
  3445. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3446. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3447. * lsn of the last known good LR on disk. If there are extent frees
  3448. * or iunlinks they will have some entries in the AIL; so we look at
  3449. * the AIL to determine how to set the tail_lsn.
  3450. */
  3451. xlog_assign_tail_lsn(log->l_mp);
  3452. /*
  3453. * Now that we've finished replaying all buffer and inode
  3454. * updates, re-read in the superblock.
  3455. */
  3456. bp = xfs_getsb(log->l_mp, 0);
  3457. XFS_BUF_UNDONE(bp);
  3458. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3459. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3460. XFS_BUF_READ(bp);
  3461. XFS_BUF_UNASYNC(bp);
  3462. xfsbdstrat(log->l_mp, bp);
  3463. error = xfs_iowait(bp);
  3464. if (error) {
  3465. xfs_ioerror_alert("xlog_do_recover",
  3466. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3467. ASSERT(0);
  3468. xfs_buf_relse(bp);
  3469. return error;
  3470. }
  3471. /* Convert superblock from on-disk format */
  3472. sbp = &log->l_mp->m_sb;
  3473. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3474. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3475. ASSERT(xfs_sb_good_version(sbp));
  3476. xfs_buf_relse(bp);
  3477. /* We've re-read the superblock so re-initialize per-cpu counters */
  3478. xfs_icsb_reinit_counters(log->l_mp);
  3479. xlog_recover_check_summary(log);
  3480. /* Normal transactions can now occur */
  3481. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3482. return 0;
  3483. }
  3484. /*
  3485. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3486. *
  3487. * Return error or zero.
  3488. */
  3489. int
  3490. xlog_recover(
  3491. xlog_t *log)
  3492. {
  3493. xfs_daddr_t head_blk, tail_blk;
  3494. int error;
  3495. /* find the tail of the log */
  3496. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3497. return error;
  3498. if (tail_blk != head_blk) {
  3499. /* There used to be a comment here:
  3500. *
  3501. * disallow recovery on read-only mounts. note -- mount
  3502. * checks for ENOSPC and turns it into an intelligent
  3503. * error message.
  3504. * ...but this is no longer true. Now, unless you specify
  3505. * NORECOVERY (in which case this function would never be
  3506. * called), we just go ahead and recover. We do this all
  3507. * under the vfs layer, so we can get away with it unless
  3508. * the device itself is read-only, in which case we fail.
  3509. */
  3510. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3511. return error;
  3512. }
  3513. cmn_err(CE_NOTE,
  3514. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3515. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3516. log->l_mp->m_logname : "internal");
  3517. error = xlog_do_recover(log, head_blk, tail_blk);
  3518. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3519. }
  3520. return error;
  3521. }
  3522. /*
  3523. * In the first part of recovery we replay inodes and buffers and build
  3524. * up the list of extent free items which need to be processed. Here
  3525. * we process the extent free items and clean up the on disk unlinked
  3526. * inode lists. This is separated from the first part of recovery so
  3527. * that the root and real-time bitmap inodes can be read in from disk in
  3528. * between the two stages. This is necessary so that we can free space
  3529. * in the real-time portion of the file system.
  3530. */
  3531. int
  3532. xlog_recover_finish(
  3533. xlog_t *log)
  3534. {
  3535. /*
  3536. * Now we're ready to do the transactions needed for the
  3537. * rest of recovery. Start with completing all the extent
  3538. * free intent records and then process the unlinked inode
  3539. * lists. At this point, we essentially run in normal mode
  3540. * except that we're still performing recovery actions
  3541. * rather than accepting new requests.
  3542. */
  3543. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3544. int error;
  3545. error = xlog_recover_process_efis(log);
  3546. if (error) {
  3547. cmn_err(CE_ALERT,
  3548. "Failed to recover EFIs on filesystem: %s",
  3549. log->l_mp->m_fsname);
  3550. return error;
  3551. }
  3552. /*
  3553. * Sync the log to get all the EFIs out of the AIL.
  3554. * This isn't absolutely necessary, but it helps in
  3555. * case the unlink transactions would have problems
  3556. * pushing the EFIs out of the way.
  3557. */
  3558. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3559. xlog_recover_process_iunlinks(log);
  3560. xlog_recover_check_summary(log);
  3561. cmn_err(CE_NOTE,
  3562. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3563. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3564. log->l_mp->m_logname : "internal");
  3565. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3566. } else {
  3567. cmn_err(CE_DEBUG,
  3568. "!Ending clean XFS mount for filesystem: %s\n",
  3569. log->l_mp->m_fsname);
  3570. }
  3571. return 0;
  3572. }
  3573. #if defined(DEBUG)
  3574. /*
  3575. * Read all of the agf and agi counters and check that they
  3576. * are consistent with the superblock counters.
  3577. */
  3578. void
  3579. xlog_recover_check_summary(
  3580. xlog_t *log)
  3581. {
  3582. xfs_mount_t *mp;
  3583. xfs_agf_t *agfp;
  3584. xfs_buf_t *agfbp;
  3585. xfs_buf_t *agibp;
  3586. xfs_buf_t *sbbp;
  3587. #ifdef XFS_LOUD_RECOVERY
  3588. xfs_sb_t *sbp;
  3589. #endif
  3590. xfs_agnumber_t agno;
  3591. __uint64_t freeblks;
  3592. __uint64_t itotal;
  3593. __uint64_t ifree;
  3594. int error;
  3595. mp = log->l_mp;
  3596. freeblks = 0LL;
  3597. itotal = 0LL;
  3598. ifree = 0LL;
  3599. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3600. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3601. if (error) {
  3602. xfs_fs_cmn_err(CE_ALERT, mp,
  3603. "xlog_recover_check_summary(agf)"
  3604. "agf read failed agno %d error %d",
  3605. agno, error);
  3606. } else {
  3607. agfp = XFS_BUF_TO_AGF(agfbp);
  3608. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3609. be32_to_cpu(agfp->agf_flcount);
  3610. xfs_buf_relse(agfbp);
  3611. }
  3612. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3613. if (!error) {
  3614. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3615. itotal += be32_to_cpu(agi->agi_count);
  3616. ifree += be32_to_cpu(agi->agi_freecount);
  3617. xfs_buf_relse(agibp);
  3618. }
  3619. }
  3620. sbbp = xfs_getsb(mp, 0);
  3621. #ifdef XFS_LOUD_RECOVERY
  3622. sbp = &mp->m_sb;
  3623. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3624. cmn_err(CE_NOTE,
  3625. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3626. sbp->sb_icount, itotal);
  3627. cmn_err(CE_NOTE,
  3628. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3629. sbp->sb_ifree, ifree);
  3630. cmn_err(CE_NOTE,
  3631. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3632. sbp->sb_fdblocks, freeblks);
  3633. #if 0
  3634. /*
  3635. * This is turned off until I account for the allocation
  3636. * btree blocks which live in free space.
  3637. */
  3638. ASSERT(sbp->sb_icount == itotal);
  3639. ASSERT(sbp->sb_ifree == ifree);
  3640. ASSERT(sbp->sb_fdblocks == freeblks);
  3641. #endif
  3642. #endif
  3643. xfs_buf_relse(sbbp);
  3644. }
  3645. #endif /* DEBUG */