direct.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/nfs_fs.h>
  48. #include <linux/nfs_page.h>
  49. #include <linux/sunrpc/clnt.h>
  50. #include <asm/system.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/atomic.h>
  53. #include "internal.h"
  54. #include "iostat.h"
  55. #define NFSDBG_FACILITY NFSDBG_VFS
  56. static struct kmem_cache *nfs_direct_cachep;
  57. /*
  58. * This represents a set of asynchronous requests that we're waiting on
  59. */
  60. struct nfs_direct_req {
  61. struct kref kref; /* release manager */
  62. /* I/O parameters */
  63. struct nfs_open_context *ctx; /* file open context info */
  64. struct kiocb * iocb; /* controlling i/o request */
  65. struct inode * inode; /* target file of i/o */
  66. /* completion state */
  67. atomic_t io_count; /* i/os we're waiting for */
  68. spinlock_t lock; /* protect completion state */
  69. ssize_t count, /* bytes actually processed */
  70. error; /* any reported error */
  71. struct completion completion; /* wait for i/o completion */
  72. /* commit state */
  73. struct list_head rewrite_list; /* saved nfs_write_data structs */
  74. struct nfs_write_data * commit_data; /* special write_data for commits */
  75. int flags;
  76. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  77. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  78. struct nfs_writeverf verf; /* unstable write verifier */
  79. };
  80. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  81. static const struct rpc_call_ops nfs_write_direct_ops;
  82. static inline void get_dreq(struct nfs_direct_req *dreq)
  83. {
  84. atomic_inc(&dreq->io_count);
  85. }
  86. static inline int put_dreq(struct nfs_direct_req *dreq)
  87. {
  88. return atomic_dec_and_test(&dreq->io_count);
  89. }
  90. /**
  91. * nfs_direct_IO - NFS address space operation for direct I/O
  92. * @rw: direction (read or write)
  93. * @iocb: target I/O control block
  94. * @iov: array of vectors that define I/O buffer
  95. * @pos: offset in file to begin the operation
  96. * @nr_segs: size of iovec array
  97. *
  98. * The presence of this routine in the address space ops vector means
  99. * the NFS client supports direct I/O. However, we shunt off direct
  100. * read and write requests before the VFS gets them, so this method
  101. * should never be called.
  102. */
  103. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  104. {
  105. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  106. iocb->ki_filp->f_path.dentry->d_name.name,
  107. (long long) pos, nr_segs);
  108. return -EINVAL;
  109. }
  110. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  111. {
  112. unsigned int npages;
  113. unsigned int i;
  114. if (count == 0)
  115. return;
  116. pages += (pgbase >> PAGE_SHIFT);
  117. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  118. for (i = 0; i < npages; i++) {
  119. struct page *page = pages[i];
  120. if (!PageCompound(page))
  121. set_page_dirty(page);
  122. }
  123. }
  124. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  125. {
  126. unsigned int i;
  127. for (i = 0; i < npages; i++)
  128. page_cache_release(pages[i]);
  129. }
  130. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  131. {
  132. struct nfs_direct_req *dreq;
  133. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  134. if (!dreq)
  135. return NULL;
  136. kref_init(&dreq->kref);
  137. kref_get(&dreq->kref);
  138. init_completion(&dreq->completion);
  139. INIT_LIST_HEAD(&dreq->rewrite_list);
  140. dreq->iocb = NULL;
  141. dreq->ctx = NULL;
  142. spin_lock_init(&dreq->lock);
  143. atomic_set(&dreq->io_count, 0);
  144. dreq->count = 0;
  145. dreq->error = 0;
  146. dreq->flags = 0;
  147. return dreq;
  148. }
  149. static void nfs_direct_req_free(struct kref *kref)
  150. {
  151. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  152. if (dreq->ctx != NULL)
  153. put_nfs_open_context(dreq->ctx);
  154. kmem_cache_free(nfs_direct_cachep, dreq);
  155. }
  156. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  157. {
  158. kref_put(&dreq->kref, nfs_direct_req_free);
  159. }
  160. /*
  161. * Collects and returns the final error value/byte-count.
  162. */
  163. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  164. {
  165. ssize_t result = -EIOCBQUEUED;
  166. /* Async requests don't wait here */
  167. if (dreq->iocb)
  168. goto out;
  169. result = wait_for_completion_killable(&dreq->completion);
  170. if (!result)
  171. result = dreq->error;
  172. if (!result)
  173. result = dreq->count;
  174. out:
  175. return (ssize_t) result;
  176. }
  177. /*
  178. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  179. * the iocb is still valid here if this is a synchronous request.
  180. */
  181. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  182. {
  183. if (dreq->iocb) {
  184. long res = (long) dreq->error;
  185. if (!res)
  186. res = (long) dreq->count;
  187. aio_complete(dreq->iocb, res, 0);
  188. }
  189. complete_all(&dreq->completion);
  190. nfs_direct_req_release(dreq);
  191. }
  192. /*
  193. * We must hold a reference to all the pages in this direct read request
  194. * until the RPCs complete. This could be long *after* we are woken up in
  195. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  196. */
  197. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  198. {
  199. struct nfs_read_data *data = calldata;
  200. nfs_readpage_result(task, data);
  201. }
  202. static void nfs_direct_read_release(void *calldata)
  203. {
  204. struct nfs_read_data *data = calldata;
  205. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  206. int status = data->task.tk_status;
  207. spin_lock(&dreq->lock);
  208. if (unlikely(status < 0)) {
  209. dreq->error = status;
  210. spin_unlock(&dreq->lock);
  211. } else {
  212. dreq->count += data->res.count;
  213. spin_unlock(&dreq->lock);
  214. nfs_direct_dirty_pages(data->pagevec,
  215. data->args.pgbase,
  216. data->res.count);
  217. }
  218. nfs_direct_release_pages(data->pagevec, data->npages);
  219. if (put_dreq(dreq))
  220. nfs_direct_complete(dreq);
  221. nfs_readdata_free(data);
  222. }
  223. static const struct rpc_call_ops nfs_read_direct_ops = {
  224. #if defined(CONFIG_NFS_V4_1)
  225. .rpc_call_prepare = nfs_read_prepare,
  226. #endif /* CONFIG_NFS_V4_1 */
  227. .rpc_call_done = nfs_direct_read_result,
  228. .rpc_release = nfs_direct_read_release,
  229. };
  230. /*
  231. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  232. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  233. * bail and stop sending more reads. Read length accounting is
  234. * handled automatically by nfs_direct_read_result(). Otherwise, if
  235. * no requests have been sent, just return an error.
  236. */
  237. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  238. const struct iovec *iov,
  239. loff_t pos)
  240. {
  241. struct nfs_open_context *ctx = dreq->ctx;
  242. struct inode *inode = ctx->path.dentry->d_inode;
  243. unsigned long user_addr = (unsigned long)iov->iov_base;
  244. size_t count = iov->iov_len;
  245. size_t rsize = NFS_SERVER(inode)->rsize;
  246. struct rpc_task *task;
  247. struct rpc_message msg = {
  248. .rpc_cred = ctx->cred,
  249. };
  250. struct rpc_task_setup task_setup_data = {
  251. .rpc_client = NFS_CLIENT(inode),
  252. .rpc_message = &msg,
  253. .callback_ops = &nfs_read_direct_ops,
  254. .workqueue = nfsiod_workqueue,
  255. .flags = RPC_TASK_ASYNC,
  256. };
  257. unsigned int pgbase;
  258. int result;
  259. ssize_t started = 0;
  260. do {
  261. struct nfs_read_data *data;
  262. size_t bytes;
  263. pgbase = user_addr & ~PAGE_MASK;
  264. bytes = min(rsize,count);
  265. result = -ENOMEM;
  266. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  267. if (unlikely(!data))
  268. break;
  269. down_read(&current->mm->mmap_sem);
  270. result = get_user_pages(current, current->mm, user_addr,
  271. data->npages, 1, 0, data->pagevec, NULL);
  272. up_read(&current->mm->mmap_sem);
  273. if (result < 0) {
  274. nfs_readdata_free(data);
  275. break;
  276. }
  277. if ((unsigned)result < data->npages) {
  278. bytes = result * PAGE_SIZE;
  279. if (bytes <= pgbase) {
  280. nfs_direct_release_pages(data->pagevec, result);
  281. nfs_readdata_free(data);
  282. break;
  283. }
  284. bytes -= pgbase;
  285. data->npages = result;
  286. }
  287. get_dreq(dreq);
  288. data->req = (struct nfs_page *) dreq;
  289. data->inode = inode;
  290. data->cred = msg.rpc_cred;
  291. data->args.fh = NFS_FH(inode);
  292. data->args.context = ctx;
  293. data->args.offset = pos;
  294. data->args.pgbase = pgbase;
  295. data->args.pages = data->pagevec;
  296. data->args.count = bytes;
  297. data->res.fattr = &data->fattr;
  298. data->res.eof = 0;
  299. data->res.count = bytes;
  300. nfs_fattr_init(&data->fattr);
  301. msg.rpc_argp = &data->args;
  302. msg.rpc_resp = &data->res;
  303. task_setup_data.task = &data->task;
  304. task_setup_data.callback_data = data;
  305. NFS_PROTO(inode)->read_setup(data, &msg);
  306. task = rpc_run_task(&task_setup_data);
  307. if (IS_ERR(task))
  308. break;
  309. rpc_put_task(task);
  310. dprintk("NFS: %5u initiated direct read call "
  311. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  312. data->task.tk_pid,
  313. inode->i_sb->s_id,
  314. (long long)NFS_FILEID(inode),
  315. bytes,
  316. (unsigned long long)data->args.offset);
  317. started += bytes;
  318. user_addr += bytes;
  319. pos += bytes;
  320. /* FIXME: Remove this unnecessary math from final patch */
  321. pgbase += bytes;
  322. pgbase &= ~PAGE_MASK;
  323. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  324. count -= bytes;
  325. } while (count != 0);
  326. if (started)
  327. return started;
  328. return result < 0 ? (ssize_t) result : -EFAULT;
  329. }
  330. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  331. const struct iovec *iov,
  332. unsigned long nr_segs,
  333. loff_t pos)
  334. {
  335. ssize_t result = -EINVAL;
  336. size_t requested_bytes = 0;
  337. unsigned long seg;
  338. get_dreq(dreq);
  339. for (seg = 0; seg < nr_segs; seg++) {
  340. const struct iovec *vec = &iov[seg];
  341. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  342. if (result < 0)
  343. break;
  344. requested_bytes += result;
  345. if ((size_t)result < vec->iov_len)
  346. break;
  347. pos += vec->iov_len;
  348. }
  349. if (put_dreq(dreq))
  350. nfs_direct_complete(dreq);
  351. if (requested_bytes != 0)
  352. return 0;
  353. if (result < 0)
  354. return result;
  355. return -EIO;
  356. }
  357. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  358. unsigned long nr_segs, loff_t pos)
  359. {
  360. ssize_t result = 0;
  361. struct inode *inode = iocb->ki_filp->f_mapping->host;
  362. struct nfs_direct_req *dreq;
  363. dreq = nfs_direct_req_alloc();
  364. if (!dreq)
  365. return -ENOMEM;
  366. dreq->inode = inode;
  367. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  368. if (!is_sync_kiocb(iocb))
  369. dreq->iocb = iocb;
  370. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  371. if (!result)
  372. result = nfs_direct_wait(dreq);
  373. nfs_direct_req_release(dreq);
  374. return result;
  375. }
  376. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  377. {
  378. while (!list_empty(&dreq->rewrite_list)) {
  379. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  380. list_del(&data->pages);
  381. nfs_direct_release_pages(data->pagevec, data->npages);
  382. nfs_writedata_free(data);
  383. }
  384. }
  385. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  386. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  387. {
  388. struct inode *inode = dreq->inode;
  389. struct list_head *p;
  390. struct nfs_write_data *data;
  391. struct rpc_task *task;
  392. struct rpc_message msg = {
  393. .rpc_cred = dreq->ctx->cred,
  394. };
  395. struct rpc_task_setup task_setup_data = {
  396. .rpc_client = NFS_CLIENT(inode),
  397. .rpc_message = &msg,
  398. .callback_ops = &nfs_write_direct_ops,
  399. .workqueue = nfsiod_workqueue,
  400. .flags = RPC_TASK_ASYNC,
  401. };
  402. dreq->count = 0;
  403. get_dreq(dreq);
  404. list_for_each(p, &dreq->rewrite_list) {
  405. data = list_entry(p, struct nfs_write_data, pages);
  406. get_dreq(dreq);
  407. /* Use stable writes */
  408. data->args.stable = NFS_FILE_SYNC;
  409. /*
  410. * Reset data->res.
  411. */
  412. nfs_fattr_init(&data->fattr);
  413. data->res.count = data->args.count;
  414. memset(&data->verf, 0, sizeof(data->verf));
  415. /*
  416. * Reuse data->task; data->args should not have changed
  417. * since the original request was sent.
  418. */
  419. task_setup_data.task = &data->task;
  420. task_setup_data.callback_data = data;
  421. msg.rpc_argp = &data->args;
  422. msg.rpc_resp = &data->res;
  423. NFS_PROTO(inode)->write_setup(data, &msg);
  424. /*
  425. * We're called via an RPC callback, so BKL is already held.
  426. */
  427. task = rpc_run_task(&task_setup_data);
  428. if (!IS_ERR(task))
  429. rpc_put_task(task);
  430. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  431. data->task.tk_pid,
  432. inode->i_sb->s_id,
  433. (long long)NFS_FILEID(inode),
  434. data->args.count,
  435. (unsigned long long)data->args.offset);
  436. }
  437. if (put_dreq(dreq))
  438. nfs_direct_write_complete(dreq, inode);
  439. }
  440. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  441. {
  442. struct nfs_write_data *data = calldata;
  443. /* Call the NFS version-specific code */
  444. NFS_PROTO(data->inode)->commit_done(task, data);
  445. }
  446. static void nfs_direct_commit_release(void *calldata)
  447. {
  448. struct nfs_write_data *data = calldata;
  449. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  450. int status = data->task.tk_status;
  451. if (status < 0) {
  452. dprintk("NFS: %5u commit failed with error %d.\n",
  453. data->task.tk_pid, status);
  454. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  455. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  456. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  457. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  458. }
  459. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  460. nfs_direct_write_complete(dreq, data->inode);
  461. nfs_commit_free(data);
  462. }
  463. static const struct rpc_call_ops nfs_commit_direct_ops = {
  464. #if defined(CONFIG_NFS_V4_1)
  465. .rpc_call_prepare = nfs_write_prepare,
  466. #endif /* CONFIG_NFS_V4_1 */
  467. .rpc_call_done = nfs_direct_commit_result,
  468. .rpc_release = nfs_direct_commit_release,
  469. };
  470. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  471. {
  472. struct nfs_write_data *data = dreq->commit_data;
  473. struct rpc_task *task;
  474. struct rpc_message msg = {
  475. .rpc_argp = &data->args,
  476. .rpc_resp = &data->res,
  477. .rpc_cred = dreq->ctx->cred,
  478. };
  479. struct rpc_task_setup task_setup_data = {
  480. .task = &data->task,
  481. .rpc_client = NFS_CLIENT(dreq->inode),
  482. .rpc_message = &msg,
  483. .callback_ops = &nfs_commit_direct_ops,
  484. .callback_data = data,
  485. .workqueue = nfsiod_workqueue,
  486. .flags = RPC_TASK_ASYNC,
  487. };
  488. data->inode = dreq->inode;
  489. data->cred = msg.rpc_cred;
  490. data->args.fh = NFS_FH(data->inode);
  491. data->args.offset = 0;
  492. data->args.count = 0;
  493. data->args.context = dreq->ctx;
  494. data->res.count = 0;
  495. data->res.fattr = &data->fattr;
  496. data->res.verf = &data->verf;
  497. nfs_fattr_init(&data->fattr);
  498. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  499. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  500. dreq->commit_data = NULL;
  501. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  502. task = rpc_run_task(&task_setup_data);
  503. if (!IS_ERR(task))
  504. rpc_put_task(task);
  505. }
  506. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  507. {
  508. int flags = dreq->flags;
  509. dreq->flags = 0;
  510. switch (flags) {
  511. case NFS_ODIRECT_DO_COMMIT:
  512. nfs_direct_commit_schedule(dreq);
  513. break;
  514. case NFS_ODIRECT_RESCHED_WRITES:
  515. nfs_direct_write_reschedule(dreq);
  516. break;
  517. default:
  518. if (dreq->commit_data != NULL)
  519. nfs_commit_free(dreq->commit_data);
  520. nfs_direct_free_writedata(dreq);
  521. nfs_zap_mapping(inode, inode->i_mapping);
  522. nfs_direct_complete(dreq);
  523. }
  524. }
  525. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  526. {
  527. dreq->commit_data = nfs_commitdata_alloc();
  528. if (dreq->commit_data != NULL)
  529. dreq->commit_data->req = (struct nfs_page *) dreq;
  530. }
  531. #else
  532. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  533. {
  534. dreq->commit_data = NULL;
  535. }
  536. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  537. {
  538. nfs_direct_free_writedata(dreq);
  539. nfs_zap_mapping(inode, inode->i_mapping);
  540. nfs_direct_complete(dreq);
  541. }
  542. #endif
  543. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  544. {
  545. struct nfs_write_data *data = calldata;
  546. if (nfs_writeback_done(task, data) != 0)
  547. return;
  548. }
  549. /*
  550. * NB: Return the value of the first error return code. Subsequent
  551. * errors after the first one are ignored.
  552. */
  553. static void nfs_direct_write_release(void *calldata)
  554. {
  555. struct nfs_write_data *data = calldata;
  556. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  557. int status = data->task.tk_status;
  558. spin_lock(&dreq->lock);
  559. if (unlikely(status < 0)) {
  560. /* An error has occurred, so we should not commit */
  561. dreq->flags = 0;
  562. dreq->error = status;
  563. }
  564. if (unlikely(dreq->error != 0))
  565. goto out_unlock;
  566. dreq->count += data->res.count;
  567. if (data->res.verf->committed != NFS_FILE_SYNC) {
  568. switch (dreq->flags) {
  569. case 0:
  570. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  571. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  572. break;
  573. case NFS_ODIRECT_DO_COMMIT:
  574. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  575. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  576. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  577. }
  578. }
  579. }
  580. out_unlock:
  581. spin_unlock(&dreq->lock);
  582. if (put_dreq(dreq))
  583. nfs_direct_write_complete(dreq, data->inode);
  584. }
  585. static const struct rpc_call_ops nfs_write_direct_ops = {
  586. #if defined(CONFIG_NFS_V4_1)
  587. .rpc_call_prepare = nfs_write_prepare,
  588. #endif /* CONFIG_NFS_V4_1 */
  589. .rpc_call_done = nfs_direct_write_result,
  590. .rpc_release = nfs_direct_write_release,
  591. };
  592. /*
  593. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  594. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  595. * bail and stop sending more writes. Write length accounting is
  596. * handled automatically by nfs_direct_write_result(). Otherwise, if
  597. * no requests have been sent, just return an error.
  598. */
  599. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  600. const struct iovec *iov,
  601. loff_t pos, int sync)
  602. {
  603. struct nfs_open_context *ctx = dreq->ctx;
  604. struct inode *inode = ctx->path.dentry->d_inode;
  605. unsigned long user_addr = (unsigned long)iov->iov_base;
  606. size_t count = iov->iov_len;
  607. struct rpc_task *task;
  608. struct rpc_message msg = {
  609. .rpc_cred = ctx->cred,
  610. };
  611. struct rpc_task_setup task_setup_data = {
  612. .rpc_client = NFS_CLIENT(inode),
  613. .rpc_message = &msg,
  614. .callback_ops = &nfs_write_direct_ops,
  615. .workqueue = nfsiod_workqueue,
  616. .flags = RPC_TASK_ASYNC,
  617. };
  618. size_t wsize = NFS_SERVER(inode)->wsize;
  619. unsigned int pgbase;
  620. int result;
  621. ssize_t started = 0;
  622. do {
  623. struct nfs_write_data *data;
  624. size_t bytes;
  625. pgbase = user_addr & ~PAGE_MASK;
  626. bytes = min(wsize,count);
  627. result = -ENOMEM;
  628. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  629. if (unlikely(!data))
  630. break;
  631. down_read(&current->mm->mmap_sem);
  632. result = get_user_pages(current, current->mm, user_addr,
  633. data->npages, 0, 0, data->pagevec, NULL);
  634. up_read(&current->mm->mmap_sem);
  635. if (result < 0) {
  636. nfs_writedata_free(data);
  637. break;
  638. }
  639. if ((unsigned)result < data->npages) {
  640. bytes = result * PAGE_SIZE;
  641. if (bytes <= pgbase) {
  642. nfs_direct_release_pages(data->pagevec, result);
  643. nfs_writedata_free(data);
  644. break;
  645. }
  646. bytes -= pgbase;
  647. data->npages = result;
  648. }
  649. get_dreq(dreq);
  650. list_move_tail(&data->pages, &dreq->rewrite_list);
  651. data->req = (struct nfs_page *) dreq;
  652. data->inode = inode;
  653. data->cred = msg.rpc_cred;
  654. data->args.fh = NFS_FH(inode);
  655. data->args.context = ctx;
  656. data->args.offset = pos;
  657. data->args.pgbase = pgbase;
  658. data->args.pages = data->pagevec;
  659. data->args.count = bytes;
  660. data->args.stable = sync;
  661. data->res.fattr = &data->fattr;
  662. data->res.count = bytes;
  663. data->res.verf = &data->verf;
  664. nfs_fattr_init(&data->fattr);
  665. task_setup_data.task = &data->task;
  666. task_setup_data.callback_data = data;
  667. msg.rpc_argp = &data->args;
  668. msg.rpc_resp = &data->res;
  669. NFS_PROTO(inode)->write_setup(data, &msg);
  670. task = rpc_run_task(&task_setup_data);
  671. if (IS_ERR(task))
  672. break;
  673. rpc_put_task(task);
  674. dprintk("NFS: %5u initiated direct write call "
  675. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  676. data->task.tk_pid,
  677. inode->i_sb->s_id,
  678. (long long)NFS_FILEID(inode),
  679. bytes,
  680. (unsigned long long)data->args.offset);
  681. started += bytes;
  682. user_addr += bytes;
  683. pos += bytes;
  684. /* FIXME: Remove this useless math from the final patch */
  685. pgbase += bytes;
  686. pgbase &= ~PAGE_MASK;
  687. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  688. count -= bytes;
  689. } while (count != 0);
  690. if (started)
  691. return started;
  692. return result < 0 ? (ssize_t) result : -EFAULT;
  693. }
  694. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  695. const struct iovec *iov,
  696. unsigned long nr_segs,
  697. loff_t pos, int sync)
  698. {
  699. ssize_t result = 0;
  700. size_t requested_bytes = 0;
  701. unsigned long seg;
  702. get_dreq(dreq);
  703. for (seg = 0; seg < nr_segs; seg++) {
  704. const struct iovec *vec = &iov[seg];
  705. result = nfs_direct_write_schedule_segment(dreq, vec,
  706. pos, sync);
  707. if (result < 0)
  708. break;
  709. requested_bytes += result;
  710. if ((size_t)result < vec->iov_len)
  711. break;
  712. pos += vec->iov_len;
  713. }
  714. if (put_dreq(dreq))
  715. nfs_direct_write_complete(dreq, dreq->inode);
  716. if (requested_bytes != 0)
  717. return 0;
  718. if (result < 0)
  719. return result;
  720. return -EIO;
  721. }
  722. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  723. unsigned long nr_segs, loff_t pos,
  724. size_t count)
  725. {
  726. ssize_t result = 0;
  727. struct inode *inode = iocb->ki_filp->f_mapping->host;
  728. struct nfs_direct_req *dreq;
  729. size_t wsize = NFS_SERVER(inode)->wsize;
  730. int sync = NFS_UNSTABLE;
  731. dreq = nfs_direct_req_alloc();
  732. if (!dreq)
  733. return -ENOMEM;
  734. nfs_alloc_commit_data(dreq);
  735. if (dreq->commit_data == NULL || count < wsize)
  736. sync = NFS_FILE_SYNC;
  737. dreq->inode = inode;
  738. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  739. if (!is_sync_kiocb(iocb))
  740. dreq->iocb = iocb;
  741. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  742. if (!result)
  743. result = nfs_direct_wait(dreq);
  744. nfs_direct_req_release(dreq);
  745. return result;
  746. }
  747. /**
  748. * nfs_file_direct_read - file direct read operation for NFS files
  749. * @iocb: target I/O control block
  750. * @iov: vector of user buffers into which to read data
  751. * @nr_segs: size of iov vector
  752. * @pos: byte offset in file where reading starts
  753. *
  754. * We use this function for direct reads instead of calling
  755. * generic_file_aio_read() in order to avoid gfar's check to see if
  756. * the request starts before the end of the file. For that check
  757. * to work, we must generate a GETATTR before each direct read, and
  758. * even then there is a window between the GETATTR and the subsequent
  759. * READ where the file size could change. Our preference is simply
  760. * to do all reads the application wants, and the server will take
  761. * care of managing the end of file boundary.
  762. *
  763. * This function also eliminates unnecessarily updating the file's
  764. * atime locally, as the NFS server sets the file's atime, and this
  765. * client must read the updated atime from the server back into its
  766. * cache.
  767. */
  768. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  769. unsigned long nr_segs, loff_t pos)
  770. {
  771. ssize_t retval = -EINVAL;
  772. struct file *file = iocb->ki_filp;
  773. struct address_space *mapping = file->f_mapping;
  774. size_t count;
  775. count = iov_length(iov, nr_segs);
  776. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  777. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  778. file->f_path.dentry->d_parent->d_name.name,
  779. file->f_path.dentry->d_name.name,
  780. count, (long long) pos);
  781. retval = 0;
  782. if (!count)
  783. goto out;
  784. retval = nfs_sync_mapping(mapping);
  785. if (retval)
  786. goto out;
  787. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  788. if (retval > 0)
  789. iocb->ki_pos = pos + retval;
  790. out:
  791. return retval;
  792. }
  793. /**
  794. * nfs_file_direct_write - file direct write operation for NFS files
  795. * @iocb: target I/O control block
  796. * @iov: vector of user buffers from which to write data
  797. * @nr_segs: size of iov vector
  798. * @pos: byte offset in file where writing starts
  799. *
  800. * We use this function for direct writes instead of calling
  801. * generic_file_aio_write() in order to avoid taking the inode
  802. * semaphore and updating the i_size. The NFS server will set
  803. * the new i_size and this client must read the updated size
  804. * back into its cache. We let the server do generic write
  805. * parameter checking and report problems.
  806. *
  807. * We eliminate local atime updates, see direct read above.
  808. *
  809. * We avoid unnecessary page cache invalidations for normal cached
  810. * readers of this file.
  811. *
  812. * Note that O_APPEND is not supported for NFS direct writes, as there
  813. * is no atomic O_APPEND write facility in the NFS protocol.
  814. */
  815. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  816. unsigned long nr_segs, loff_t pos)
  817. {
  818. ssize_t retval = -EINVAL;
  819. struct file *file = iocb->ki_filp;
  820. struct address_space *mapping = file->f_mapping;
  821. size_t count;
  822. count = iov_length(iov, nr_segs);
  823. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  824. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  825. file->f_path.dentry->d_parent->d_name.name,
  826. file->f_path.dentry->d_name.name,
  827. count, (long long) pos);
  828. retval = generic_write_checks(file, &pos, &count, 0);
  829. if (retval)
  830. goto out;
  831. retval = -EINVAL;
  832. if ((ssize_t) count < 0)
  833. goto out;
  834. retval = 0;
  835. if (!count)
  836. goto out;
  837. retval = nfs_sync_mapping(mapping);
  838. if (retval)
  839. goto out;
  840. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  841. if (retval > 0)
  842. iocb->ki_pos = pos + retval;
  843. out:
  844. return retval;
  845. }
  846. /**
  847. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  848. *
  849. */
  850. int __init nfs_init_directcache(void)
  851. {
  852. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  853. sizeof(struct nfs_direct_req),
  854. 0, (SLAB_RECLAIM_ACCOUNT|
  855. SLAB_MEM_SPREAD),
  856. NULL);
  857. if (nfs_direct_cachep == NULL)
  858. return -ENOMEM;
  859. return 0;
  860. }
  861. /**
  862. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  863. *
  864. */
  865. void nfs_destroy_directcache(void)
  866. {
  867. kmem_cache_destroy(nfs_direct_cachep);
  868. }