inode.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/slab.h>
  29. #include <linux/dnotify.h>
  30. #include <linux/statfs.h>
  31. #include <linux/security.h>
  32. #include <linux/magic.h>
  33. #include <asm/uaccess.h>
  34. static const struct super_operations hugetlbfs_ops;
  35. static const struct address_space_operations hugetlbfs_aops;
  36. const struct file_operations hugetlbfs_file_operations;
  37. static const struct inode_operations hugetlbfs_dir_inode_operations;
  38. static const struct inode_operations hugetlbfs_inode_operations;
  39. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  40. .name = "hugetlbfs",
  41. .ra_pages = 0, /* No readahead */
  42. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  43. };
  44. int sysctl_hugetlb_shm_group;
  45. enum {
  46. Opt_size, Opt_nr_inodes,
  47. Opt_mode, Opt_uid, Opt_gid,
  48. Opt_pagesize,
  49. Opt_err,
  50. };
  51. static const match_table_t tokens = {
  52. {Opt_size, "size=%s"},
  53. {Opt_nr_inodes, "nr_inodes=%s"},
  54. {Opt_mode, "mode=%o"},
  55. {Opt_uid, "uid=%u"},
  56. {Opt_gid, "gid=%u"},
  57. {Opt_pagesize, "pagesize=%s"},
  58. {Opt_err, NULL},
  59. };
  60. static void huge_pagevec_release(struct pagevec *pvec)
  61. {
  62. int i;
  63. for (i = 0; i < pagevec_count(pvec); ++i)
  64. put_page(pvec->pages[i]);
  65. pagevec_reinit(pvec);
  66. }
  67. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  68. {
  69. struct inode *inode = file->f_path.dentry->d_inode;
  70. loff_t len, vma_len;
  71. int ret;
  72. struct hstate *h = hstate_file(file);
  73. /*
  74. * vma address alignment (but not the pgoff alignment) has
  75. * already been checked by prepare_hugepage_range. If you add
  76. * any error returns here, do so after setting VM_HUGETLB, so
  77. * is_vm_hugetlb_page tests below unmap_region go the right
  78. * way when do_mmap_pgoff unwinds (may be important on powerpc
  79. * and ia64).
  80. */
  81. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  82. vma->vm_ops = &hugetlb_vm_ops;
  83. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  84. return -EINVAL;
  85. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  86. mutex_lock(&inode->i_mutex);
  87. file_accessed(file);
  88. ret = -ENOMEM;
  89. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  90. if (hugetlb_reserve_pages(inode,
  91. vma->vm_pgoff >> huge_page_order(h),
  92. len >> huge_page_shift(h), vma,
  93. vma->vm_flags))
  94. goto out;
  95. ret = 0;
  96. hugetlb_prefault_arch_hook(vma->vm_mm);
  97. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  98. inode->i_size = len;
  99. out:
  100. mutex_unlock(&inode->i_mutex);
  101. return ret;
  102. }
  103. /*
  104. * Called under down_write(mmap_sem).
  105. */
  106. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  107. static unsigned long
  108. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  109. unsigned long len, unsigned long pgoff, unsigned long flags)
  110. {
  111. struct mm_struct *mm = current->mm;
  112. struct vm_area_struct *vma;
  113. unsigned long start_addr;
  114. struct hstate *h = hstate_file(file);
  115. if (len & ~huge_page_mask(h))
  116. return -EINVAL;
  117. if (len > TASK_SIZE)
  118. return -ENOMEM;
  119. if (flags & MAP_FIXED) {
  120. if (prepare_hugepage_range(file, addr, len))
  121. return -EINVAL;
  122. return addr;
  123. }
  124. if (addr) {
  125. addr = ALIGN(addr, huge_page_size(h));
  126. vma = find_vma(mm, addr);
  127. if (TASK_SIZE - len >= addr &&
  128. (!vma || addr + len <= vma->vm_start))
  129. return addr;
  130. }
  131. start_addr = mm->free_area_cache;
  132. if (len <= mm->cached_hole_size)
  133. start_addr = TASK_UNMAPPED_BASE;
  134. full_search:
  135. addr = ALIGN(start_addr, huge_page_size(h));
  136. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  137. /* At this point: (!vma || addr < vma->vm_end). */
  138. if (TASK_SIZE - len < addr) {
  139. /*
  140. * Start a new search - just in case we missed
  141. * some holes.
  142. */
  143. if (start_addr != TASK_UNMAPPED_BASE) {
  144. start_addr = TASK_UNMAPPED_BASE;
  145. goto full_search;
  146. }
  147. return -ENOMEM;
  148. }
  149. if (!vma || addr + len <= vma->vm_start)
  150. return addr;
  151. addr = ALIGN(vma->vm_end, huge_page_size(h));
  152. }
  153. }
  154. #endif
  155. static int
  156. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  157. char __user *buf, unsigned long count,
  158. unsigned long size)
  159. {
  160. char *kaddr;
  161. unsigned long left, copied = 0;
  162. int i, chunksize;
  163. if (size > count)
  164. size = count;
  165. /* Find which 4k chunk and offset with in that chunk */
  166. i = offset >> PAGE_CACHE_SHIFT;
  167. offset = offset & ~PAGE_CACHE_MASK;
  168. while (size) {
  169. chunksize = PAGE_CACHE_SIZE;
  170. if (offset)
  171. chunksize -= offset;
  172. if (chunksize > size)
  173. chunksize = size;
  174. kaddr = kmap(&page[i]);
  175. left = __copy_to_user(buf, kaddr + offset, chunksize);
  176. kunmap(&page[i]);
  177. if (left) {
  178. copied += (chunksize - left);
  179. break;
  180. }
  181. offset = 0;
  182. size -= chunksize;
  183. buf += chunksize;
  184. copied += chunksize;
  185. i++;
  186. }
  187. return copied ? copied : -EFAULT;
  188. }
  189. /*
  190. * Support for read() - Find the page attached to f_mapping and copy out the
  191. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  192. * since it has PAGE_CACHE_SIZE assumptions.
  193. */
  194. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  195. size_t len, loff_t *ppos)
  196. {
  197. struct hstate *h = hstate_file(filp);
  198. struct address_space *mapping = filp->f_mapping;
  199. struct inode *inode = mapping->host;
  200. unsigned long index = *ppos >> huge_page_shift(h);
  201. unsigned long offset = *ppos & ~huge_page_mask(h);
  202. unsigned long end_index;
  203. loff_t isize;
  204. ssize_t retval = 0;
  205. mutex_lock(&inode->i_mutex);
  206. /* validate length */
  207. if (len == 0)
  208. goto out;
  209. isize = i_size_read(inode);
  210. if (!isize)
  211. goto out;
  212. end_index = (isize - 1) >> huge_page_shift(h);
  213. for (;;) {
  214. struct page *page;
  215. unsigned long nr, ret;
  216. int ra;
  217. /* nr is the maximum number of bytes to copy from this page */
  218. nr = huge_page_size(h);
  219. if (index >= end_index) {
  220. if (index > end_index)
  221. goto out;
  222. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  223. if (nr <= offset) {
  224. goto out;
  225. }
  226. }
  227. nr = nr - offset;
  228. /* Find the page */
  229. page = find_get_page(mapping, index);
  230. if (unlikely(page == NULL)) {
  231. /*
  232. * We have a HOLE, zero out the user-buffer for the
  233. * length of the hole or request.
  234. */
  235. ret = len < nr ? len : nr;
  236. if (clear_user(buf, ret))
  237. ra = -EFAULT;
  238. else
  239. ra = 0;
  240. } else {
  241. /*
  242. * We have the page, copy it to user space buffer.
  243. */
  244. ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
  245. ret = ra;
  246. }
  247. if (ra < 0) {
  248. if (retval == 0)
  249. retval = ra;
  250. if (page)
  251. page_cache_release(page);
  252. goto out;
  253. }
  254. offset += ret;
  255. retval += ret;
  256. len -= ret;
  257. index += offset >> huge_page_shift(h);
  258. offset &= ~huge_page_mask(h);
  259. if (page)
  260. page_cache_release(page);
  261. /* short read or no more work */
  262. if ((ret != nr) || (len == 0))
  263. break;
  264. }
  265. out:
  266. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  267. mutex_unlock(&inode->i_mutex);
  268. return retval;
  269. }
  270. static int hugetlbfs_write_begin(struct file *file,
  271. struct address_space *mapping,
  272. loff_t pos, unsigned len, unsigned flags,
  273. struct page **pagep, void **fsdata)
  274. {
  275. return -EINVAL;
  276. }
  277. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  278. loff_t pos, unsigned len, unsigned copied,
  279. struct page *page, void *fsdata)
  280. {
  281. BUG();
  282. return -EINVAL;
  283. }
  284. static void truncate_huge_page(struct page *page)
  285. {
  286. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  287. ClearPageUptodate(page);
  288. remove_from_page_cache(page);
  289. put_page(page);
  290. }
  291. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  292. {
  293. struct hstate *h = hstate_inode(inode);
  294. struct address_space *mapping = &inode->i_data;
  295. const pgoff_t start = lstart >> huge_page_shift(h);
  296. struct pagevec pvec;
  297. pgoff_t next;
  298. int i, freed = 0;
  299. pagevec_init(&pvec, 0);
  300. next = start;
  301. while (1) {
  302. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  303. if (next == start)
  304. break;
  305. next = start;
  306. continue;
  307. }
  308. for (i = 0; i < pagevec_count(&pvec); ++i) {
  309. struct page *page = pvec.pages[i];
  310. lock_page(page);
  311. if (page->index > next)
  312. next = page->index;
  313. ++next;
  314. truncate_huge_page(page);
  315. unlock_page(page);
  316. freed++;
  317. }
  318. huge_pagevec_release(&pvec);
  319. }
  320. BUG_ON(!lstart && mapping->nrpages);
  321. hugetlb_unreserve_pages(inode, start, freed);
  322. }
  323. static void hugetlbfs_delete_inode(struct inode *inode)
  324. {
  325. truncate_hugepages(inode, 0);
  326. clear_inode(inode);
  327. }
  328. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  329. {
  330. if (generic_detach_inode(inode)) {
  331. truncate_hugepages(inode, 0);
  332. clear_inode(inode);
  333. destroy_inode(inode);
  334. }
  335. }
  336. static void hugetlbfs_drop_inode(struct inode *inode)
  337. {
  338. if (!inode->i_nlink)
  339. generic_delete_inode(inode);
  340. else
  341. hugetlbfs_forget_inode(inode);
  342. }
  343. static inline void
  344. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  345. {
  346. struct vm_area_struct *vma;
  347. struct prio_tree_iter iter;
  348. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  349. unsigned long v_offset;
  350. /*
  351. * Can the expression below overflow on 32-bit arches?
  352. * No, because the prio_tree returns us only those vmas
  353. * which overlap the truncated area starting at pgoff,
  354. * and no vma on a 32-bit arch can span beyond the 4GB.
  355. */
  356. if (vma->vm_pgoff < pgoff)
  357. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  358. else
  359. v_offset = 0;
  360. __unmap_hugepage_range(vma,
  361. vma->vm_start + v_offset, vma->vm_end, NULL);
  362. }
  363. }
  364. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  365. {
  366. pgoff_t pgoff;
  367. struct address_space *mapping = inode->i_mapping;
  368. struct hstate *h = hstate_inode(inode);
  369. BUG_ON(offset & ~huge_page_mask(h));
  370. pgoff = offset >> PAGE_SHIFT;
  371. i_size_write(inode, offset);
  372. spin_lock(&mapping->i_mmap_lock);
  373. if (!prio_tree_empty(&mapping->i_mmap))
  374. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  375. spin_unlock(&mapping->i_mmap_lock);
  376. truncate_hugepages(inode, offset);
  377. return 0;
  378. }
  379. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  380. {
  381. struct inode *inode = dentry->d_inode;
  382. struct hstate *h = hstate_inode(inode);
  383. int error;
  384. unsigned int ia_valid = attr->ia_valid;
  385. BUG_ON(!inode);
  386. error = inode_change_ok(inode, attr);
  387. if (error)
  388. goto out;
  389. if (ia_valid & ATTR_SIZE) {
  390. error = -EINVAL;
  391. if (!(attr->ia_size & ~huge_page_mask(h)))
  392. error = hugetlb_vmtruncate(inode, attr->ia_size);
  393. if (error)
  394. goto out;
  395. attr->ia_valid &= ~ATTR_SIZE;
  396. }
  397. error = inode_setattr(inode, attr);
  398. out:
  399. return error;
  400. }
  401. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  402. gid_t gid, int mode, dev_t dev)
  403. {
  404. struct inode *inode;
  405. inode = new_inode(sb);
  406. if (inode) {
  407. struct hugetlbfs_inode_info *info;
  408. inode->i_mode = mode;
  409. inode->i_uid = uid;
  410. inode->i_gid = gid;
  411. inode->i_mapping->a_ops = &hugetlbfs_aops;
  412. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  413. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  414. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  415. info = HUGETLBFS_I(inode);
  416. /*
  417. * The policy is initialized here even if we are creating a
  418. * private inode because initialization simply creates an
  419. * an empty rb tree and calls spin_lock_init(), later when we
  420. * call mpol_free_shared_policy() it will just return because
  421. * the rb tree will still be empty.
  422. */
  423. mpol_shared_policy_init(&info->policy, NULL);
  424. switch (mode & S_IFMT) {
  425. default:
  426. init_special_inode(inode, mode, dev);
  427. break;
  428. case S_IFREG:
  429. inode->i_op = &hugetlbfs_inode_operations;
  430. inode->i_fop = &hugetlbfs_file_operations;
  431. break;
  432. case S_IFDIR:
  433. inode->i_op = &hugetlbfs_dir_inode_operations;
  434. inode->i_fop = &simple_dir_operations;
  435. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  436. inc_nlink(inode);
  437. break;
  438. case S_IFLNK:
  439. inode->i_op = &page_symlink_inode_operations;
  440. break;
  441. }
  442. }
  443. return inode;
  444. }
  445. /*
  446. * File creation. Allocate an inode, and we're done..
  447. */
  448. static int hugetlbfs_mknod(struct inode *dir,
  449. struct dentry *dentry, int mode, dev_t dev)
  450. {
  451. struct inode *inode;
  452. int error = -ENOSPC;
  453. gid_t gid;
  454. if (dir->i_mode & S_ISGID) {
  455. gid = dir->i_gid;
  456. if (S_ISDIR(mode))
  457. mode |= S_ISGID;
  458. } else {
  459. gid = current_fsgid();
  460. }
  461. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
  462. if (inode) {
  463. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  464. d_instantiate(dentry, inode);
  465. dget(dentry); /* Extra count - pin the dentry in core */
  466. error = 0;
  467. }
  468. return error;
  469. }
  470. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  471. {
  472. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  473. if (!retval)
  474. inc_nlink(dir);
  475. return retval;
  476. }
  477. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  478. {
  479. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  480. }
  481. static int hugetlbfs_symlink(struct inode *dir,
  482. struct dentry *dentry, const char *symname)
  483. {
  484. struct inode *inode;
  485. int error = -ENOSPC;
  486. gid_t gid;
  487. if (dir->i_mode & S_ISGID)
  488. gid = dir->i_gid;
  489. else
  490. gid = current_fsgid();
  491. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
  492. gid, S_IFLNK|S_IRWXUGO, 0);
  493. if (inode) {
  494. int l = strlen(symname)+1;
  495. error = page_symlink(inode, symname, l);
  496. if (!error) {
  497. d_instantiate(dentry, inode);
  498. dget(dentry);
  499. } else
  500. iput(inode);
  501. }
  502. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  503. return error;
  504. }
  505. /*
  506. * mark the head page dirty
  507. */
  508. static int hugetlbfs_set_page_dirty(struct page *page)
  509. {
  510. struct page *head = compound_head(page);
  511. SetPageDirty(head);
  512. return 0;
  513. }
  514. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  515. {
  516. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  517. struct hstate *h = hstate_inode(dentry->d_inode);
  518. buf->f_type = HUGETLBFS_MAGIC;
  519. buf->f_bsize = huge_page_size(h);
  520. if (sbinfo) {
  521. spin_lock(&sbinfo->stat_lock);
  522. /* If no limits set, just report 0 for max/free/used
  523. * blocks, like simple_statfs() */
  524. if (sbinfo->max_blocks >= 0) {
  525. buf->f_blocks = sbinfo->max_blocks;
  526. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  527. buf->f_files = sbinfo->max_inodes;
  528. buf->f_ffree = sbinfo->free_inodes;
  529. }
  530. spin_unlock(&sbinfo->stat_lock);
  531. }
  532. buf->f_namelen = NAME_MAX;
  533. return 0;
  534. }
  535. static void hugetlbfs_put_super(struct super_block *sb)
  536. {
  537. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  538. if (sbi) {
  539. sb->s_fs_info = NULL;
  540. kfree(sbi);
  541. }
  542. }
  543. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  544. {
  545. if (sbinfo->free_inodes >= 0) {
  546. spin_lock(&sbinfo->stat_lock);
  547. if (unlikely(!sbinfo->free_inodes)) {
  548. spin_unlock(&sbinfo->stat_lock);
  549. return 0;
  550. }
  551. sbinfo->free_inodes--;
  552. spin_unlock(&sbinfo->stat_lock);
  553. }
  554. return 1;
  555. }
  556. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  557. {
  558. if (sbinfo->free_inodes >= 0) {
  559. spin_lock(&sbinfo->stat_lock);
  560. sbinfo->free_inodes++;
  561. spin_unlock(&sbinfo->stat_lock);
  562. }
  563. }
  564. static struct kmem_cache *hugetlbfs_inode_cachep;
  565. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  566. {
  567. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  568. struct hugetlbfs_inode_info *p;
  569. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  570. return NULL;
  571. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  572. if (unlikely(!p)) {
  573. hugetlbfs_inc_free_inodes(sbinfo);
  574. return NULL;
  575. }
  576. return &p->vfs_inode;
  577. }
  578. static void hugetlbfs_destroy_inode(struct inode *inode)
  579. {
  580. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  581. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  582. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  583. }
  584. static const struct address_space_operations hugetlbfs_aops = {
  585. .write_begin = hugetlbfs_write_begin,
  586. .write_end = hugetlbfs_write_end,
  587. .set_page_dirty = hugetlbfs_set_page_dirty,
  588. };
  589. static void init_once(void *foo)
  590. {
  591. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  592. inode_init_once(&ei->vfs_inode);
  593. }
  594. const struct file_operations hugetlbfs_file_operations = {
  595. .read = hugetlbfs_read,
  596. .mmap = hugetlbfs_file_mmap,
  597. .fsync = simple_sync_file,
  598. .get_unmapped_area = hugetlb_get_unmapped_area,
  599. };
  600. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  601. .create = hugetlbfs_create,
  602. .lookup = simple_lookup,
  603. .link = simple_link,
  604. .unlink = simple_unlink,
  605. .symlink = hugetlbfs_symlink,
  606. .mkdir = hugetlbfs_mkdir,
  607. .rmdir = simple_rmdir,
  608. .mknod = hugetlbfs_mknod,
  609. .rename = simple_rename,
  610. .setattr = hugetlbfs_setattr,
  611. };
  612. static const struct inode_operations hugetlbfs_inode_operations = {
  613. .setattr = hugetlbfs_setattr,
  614. };
  615. static const struct super_operations hugetlbfs_ops = {
  616. .alloc_inode = hugetlbfs_alloc_inode,
  617. .destroy_inode = hugetlbfs_destroy_inode,
  618. .statfs = hugetlbfs_statfs,
  619. .delete_inode = hugetlbfs_delete_inode,
  620. .drop_inode = hugetlbfs_drop_inode,
  621. .put_super = hugetlbfs_put_super,
  622. .show_options = generic_show_options,
  623. };
  624. static int
  625. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  626. {
  627. char *p, *rest;
  628. substring_t args[MAX_OPT_ARGS];
  629. int option;
  630. unsigned long long size = 0;
  631. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
  632. if (!options)
  633. return 0;
  634. while ((p = strsep(&options, ",")) != NULL) {
  635. int token;
  636. if (!*p)
  637. continue;
  638. token = match_token(p, tokens, args);
  639. switch (token) {
  640. case Opt_uid:
  641. if (match_int(&args[0], &option))
  642. goto bad_val;
  643. pconfig->uid = option;
  644. break;
  645. case Opt_gid:
  646. if (match_int(&args[0], &option))
  647. goto bad_val;
  648. pconfig->gid = option;
  649. break;
  650. case Opt_mode:
  651. if (match_octal(&args[0], &option))
  652. goto bad_val;
  653. pconfig->mode = option & 01777U;
  654. break;
  655. case Opt_size: {
  656. /* memparse() will accept a K/M/G without a digit */
  657. if (!isdigit(*args[0].from))
  658. goto bad_val;
  659. size = memparse(args[0].from, &rest);
  660. setsize = SIZE_STD;
  661. if (*rest == '%')
  662. setsize = SIZE_PERCENT;
  663. break;
  664. }
  665. case Opt_nr_inodes:
  666. /* memparse() will accept a K/M/G without a digit */
  667. if (!isdigit(*args[0].from))
  668. goto bad_val;
  669. pconfig->nr_inodes = memparse(args[0].from, &rest);
  670. break;
  671. case Opt_pagesize: {
  672. unsigned long ps;
  673. ps = memparse(args[0].from, &rest);
  674. pconfig->hstate = size_to_hstate(ps);
  675. if (!pconfig->hstate) {
  676. printk(KERN_ERR
  677. "hugetlbfs: Unsupported page size %lu MB\n",
  678. ps >> 20);
  679. return -EINVAL;
  680. }
  681. break;
  682. }
  683. default:
  684. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  685. p);
  686. return -EINVAL;
  687. break;
  688. }
  689. }
  690. /* Do size after hstate is set up */
  691. if (setsize > NO_SIZE) {
  692. struct hstate *h = pconfig->hstate;
  693. if (setsize == SIZE_PERCENT) {
  694. size <<= huge_page_shift(h);
  695. size *= h->max_huge_pages;
  696. do_div(size, 100);
  697. }
  698. pconfig->nr_blocks = (size >> huge_page_shift(h));
  699. }
  700. return 0;
  701. bad_val:
  702. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  703. args[0].from, p);
  704. return -EINVAL;
  705. }
  706. static int
  707. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  708. {
  709. struct inode * inode;
  710. struct dentry * root;
  711. int ret;
  712. struct hugetlbfs_config config;
  713. struct hugetlbfs_sb_info *sbinfo;
  714. save_mount_options(sb, data);
  715. config.nr_blocks = -1; /* No limit on size by default */
  716. config.nr_inodes = -1; /* No limit on number of inodes by default */
  717. config.uid = current_fsuid();
  718. config.gid = current_fsgid();
  719. config.mode = 0755;
  720. config.hstate = &default_hstate;
  721. ret = hugetlbfs_parse_options(data, &config);
  722. if (ret)
  723. return ret;
  724. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  725. if (!sbinfo)
  726. return -ENOMEM;
  727. sb->s_fs_info = sbinfo;
  728. sbinfo->hstate = config.hstate;
  729. spin_lock_init(&sbinfo->stat_lock);
  730. sbinfo->max_blocks = config.nr_blocks;
  731. sbinfo->free_blocks = config.nr_blocks;
  732. sbinfo->max_inodes = config.nr_inodes;
  733. sbinfo->free_inodes = config.nr_inodes;
  734. sb->s_maxbytes = MAX_LFS_FILESIZE;
  735. sb->s_blocksize = huge_page_size(config.hstate);
  736. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  737. sb->s_magic = HUGETLBFS_MAGIC;
  738. sb->s_op = &hugetlbfs_ops;
  739. sb->s_time_gran = 1;
  740. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  741. S_IFDIR | config.mode, 0);
  742. if (!inode)
  743. goto out_free;
  744. root = d_alloc_root(inode);
  745. if (!root) {
  746. iput(inode);
  747. goto out_free;
  748. }
  749. sb->s_root = root;
  750. return 0;
  751. out_free:
  752. kfree(sbinfo);
  753. return -ENOMEM;
  754. }
  755. int hugetlb_get_quota(struct address_space *mapping, long delta)
  756. {
  757. int ret = 0;
  758. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  759. if (sbinfo->free_blocks > -1) {
  760. spin_lock(&sbinfo->stat_lock);
  761. if (sbinfo->free_blocks - delta >= 0)
  762. sbinfo->free_blocks -= delta;
  763. else
  764. ret = -ENOMEM;
  765. spin_unlock(&sbinfo->stat_lock);
  766. }
  767. return ret;
  768. }
  769. void hugetlb_put_quota(struct address_space *mapping, long delta)
  770. {
  771. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  772. if (sbinfo->free_blocks > -1) {
  773. spin_lock(&sbinfo->stat_lock);
  774. sbinfo->free_blocks += delta;
  775. spin_unlock(&sbinfo->stat_lock);
  776. }
  777. }
  778. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  779. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  780. {
  781. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  782. }
  783. static struct file_system_type hugetlbfs_fs_type = {
  784. .name = "hugetlbfs",
  785. .get_sb = hugetlbfs_get_sb,
  786. .kill_sb = kill_litter_super,
  787. };
  788. static struct vfsmount *hugetlbfs_vfsmount;
  789. static int can_do_hugetlb_shm(void)
  790. {
  791. return capable(CAP_IPC_LOCK) || in_group_p(sysctl_hugetlb_shm_group);
  792. }
  793. struct file *hugetlb_file_setup(const char *name, size_t size, int acctflag,
  794. struct user_struct **user, int creat_flags)
  795. {
  796. int error = -ENOMEM;
  797. struct file *file;
  798. struct inode *inode;
  799. struct path path;
  800. struct dentry *root;
  801. struct qstr quick_string;
  802. *user = NULL;
  803. if (!hugetlbfs_vfsmount)
  804. return ERR_PTR(-ENOENT);
  805. if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
  806. *user = current_user();
  807. if (user_shm_lock(size, *user)) {
  808. WARN_ONCE(1,
  809. "Using mlock ulimits for SHM_HUGETLB deprecated\n");
  810. } else {
  811. *user = NULL;
  812. return ERR_PTR(-EPERM);
  813. }
  814. }
  815. root = hugetlbfs_vfsmount->mnt_root;
  816. quick_string.name = name;
  817. quick_string.len = strlen(quick_string.name);
  818. quick_string.hash = 0;
  819. path.dentry = d_alloc(root, &quick_string);
  820. if (!path.dentry)
  821. goto out_shm_unlock;
  822. path.mnt = mntget(hugetlbfs_vfsmount);
  823. error = -ENOSPC;
  824. inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
  825. current_fsgid(), S_IFREG | S_IRWXUGO, 0);
  826. if (!inode)
  827. goto out_dentry;
  828. error = -ENOMEM;
  829. if (hugetlb_reserve_pages(inode, 0,
  830. size >> huge_page_shift(hstate_inode(inode)), NULL,
  831. acctflag))
  832. goto out_inode;
  833. d_instantiate(path.dentry, inode);
  834. inode->i_size = size;
  835. inode->i_nlink = 0;
  836. error = -ENFILE;
  837. file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
  838. &hugetlbfs_file_operations);
  839. if (!file)
  840. goto out_dentry; /* inode is already attached */
  841. return file;
  842. out_inode:
  843. iput(inode);
  844. out_dentry:
  845. path_put(&path);
  846. out_shm_unlock:
  847. if (*user) {
  848. user_shm_unlock(size, *user);
  849. *user = NULL;
  850. }
  851. return ERR_PTR(error);
  852. }
  853. static int __init init_hugetlbfs_fs(void)
  854. {
  855. int error;
  856. struct vfsmount *vfsmount;
  857. error = bdi_init(&hugetlbfs_backing_dev_info);
  858. if (error)
  859. return error;
  860. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  861. sizeof(struct hugetlbfs_inode_info),
  862. 0, 0, init_once);
  863. if (hugetlbfs_inode_cachep == NULL)
  864. goto out2;
  865. error = register_filesystem(&hugetlbfs_fs_type);
  866. if (error)
  867. goto out;
  868. vfsmount = kern_mount(&hugetlbfs_fs_type);
  869. if (!IS_ERR(vfsmount)) {
  870. hugetlbfs_vfsmount = vfsmount;
  871. return 0;
  872. }
  873. error = PTR_ERR(vfsmount);
  874. out:
  875. if (error)
  876. kmem_cache_destroy(hugetlbfs_inode_cachep);
  877. out2:
  878. bdi_destroy(&hugetlbfs_backing_dev_info);
  879. return error;
  880. }
  881. static void __exit exit_hugetlbfs_fs(void)
  882. {
  883. kmem_cache_destroy(hugetlbfs_inode_cachep);
  884. unregister_filesystem(&hugetlbfs_fs_type);
  885. bdi_destroy(&hugetlbfs_backing_dev_info);
  886. }
  887. module_init(init_hugetlbfs_fs)
  888. module_exit(exit_hugetlbfs_fs)
  889. MODULE_LICENSE("GPL");