fs-writeback.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/slab.h>
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/mm.h>
  22. #include <linux/kthread.h>
  23. #include <linux/freezer.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/buffer_head.h>
  28. #include "internal.h"
  29. #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
  30. /*
  31. * We don't actually have pdflush, but this one is exported though /proc...
  32. */
  33. int nr_pdflush_threads;
  34. /*
  35. * Passed into wb_writeback(), essentially a subset of writeback_control
  36. */
  37. struct wb_writeback_args {
  38. long nr_pages;
  39. struct super_block *sb;
  40. enum writeback_sync_modes sync_mode;
  41. int for_kupdate:1;
  42. int range_cyclic:1;
  43. int for_background:1;
  44. };
  45. /*
  46. * Work items for the bdi_writeback threads
  47. */
  48. struct bdi_work {
  49. struct list_head list; /* pending work list */
  50. struct rcu_head rcu_head; /* for RCU free/clear of work */
  51. unsigned long seen; /* threads that have seen this work */
  52. atomic_t pending; /* number of threads still to do work */
  53. struct wb_writeback_args args; /* writeback arguments */
  54. unsigned long state; /* flag bits, see WS_* */
  55. };
  56. enum {
  57. WS_USED_B = 0,
  58. WS_ONSTACK_B,
  59. };
  60. #define WS_USED (1 << WS_USED_B)
  61. #define WS_ONSTACK (1 << WS_ONSTACK_B)
  62. static inline bool bdi_work_on_stack(struct bdi_work *work)
  63. {
  64. return test_bit(WS_ONSTACK_B, &work->state);
  65. }
  66. static inline void bdi_work_init(struct bdi_work *work,
  67. struct wb_writeback_args *args)
  68. {
  69. INIT_RCU_HEAD(&work->rcu_head);
  70. work->args = *args;
  71. work->state = WS_USED;
  72. }
  73. /**
  74. * writeback_in_progress - determine whether there is writeback in progress
  75. * @bdi: the device's backing_dev_info structure.
  76. *
  77. * Determine whether there is writeback waiting to be handled against a
  78. * backing device.
  79. */
  80. int writeback_in_progress(struct backing_dev_info *bdi)
  81. {
  82. return !list_empty(&bdi->work_list);
  83. }
  84. static void bdi_work_clear(struct bdi_work *work)
  85. {
  86. clear_bit(WS_USED_B, &work->state);
  87. smp_mb__after_clear_bit();
  88. /*
  89. * work can have disappeared at this point. bit waitq functions
  90. * should be able to tolerate this, provided bdi_sched_wait does
  91. * not dereference it's pointer argument.
  92. */
  93. wake_up_bit(&work->state, WS_USED_B);
  94. }
  95. static void bdi_work_free(struct rcu_head *head)
  96. {
  97. struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
  98. if (!bdi_work_on_stack(work))
  99. kfree(work);
  100. else
  101. bdi_work_clear(work);
  102. }
  103. static void wb_work_complete(struct bdi_work *work)
  104. {
  105. const enum writeback_sync_modes sync_mode = work->args.sync_mode;
  106. int onstack = bdi_work_on_stack(work);
  107. /*
  108. * For allocated work, we can clear the done/seen bit right here.
  109. * For on-stack work, we need to postpone both the clear and free
  110. * to after the RCU grace period, since the stack could be invalidated
  111. * as soon as bdi_work_clear() has done the wakeup.
  112. */
  113. if (!onstack)
  114. bdi_work_clear(work);
  115. if (sync_mode == WB_SYNC_NONE || onstack)
  116. call_rcu(&work->rcu_head, bdi_work_free);
  117. }
  118. static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
  119. {
  120. /*
  121. * The caller has retrieved the work arguments from this work,
  122. * drop our reference. If this is the last ref, delete and free it
  123. */
  124. if (atomic_dec_and_test(&work->pending)) {
  125. struct backing_dev_info *bdi = wb->bdi;
  126. spin_lock(&bdi->wb_lock);
  127. list_del_rcu(&work->list);
  128. spin_unlock(&bdi->wb_lock);
  129. wb_work_complete(work);
  130. }
  131. }
  132. static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
  133. {
  134. work->seen = bdi->wb_mask;
  135. BUG_ON(!work->seen);
  136. atomic_set(&work->pending, bdi->wb_cnt);
  137. BUG_ON(!bdi->wb_cnt);
  138. /*
  139. * list_add_tail_rcu() contains the necessary barriers to
  140. * make sure the above stores are seen before the item is
  141. * noticed on the list
  142. */
  143. spin_lock(&bdi->wb_lock);
  144. list_add_tail_rcu(&work->list, &bdi->work_list);
  145. spin_unlock(&bdi->wb_lock);
  146. /*
  147. * If the default thread isn't there, make sure we add it. When
  148. * it gets created and wakes up, we'll run this work.
  149. */
  150. if (unlikely(list_empty_careful(&bdi->wb_list)))
  151. wake_up_process(default_backing_dev_info.wb.task);
  152. else {
  153. struct bdi_writeback *wb = &bdi->wb;
  154. if (wb->task)
  155. wake_up_process(wb->task);
  156. }
  157. }
  158. /*
  159. * Used for on-stack allocated work items. The caller needs to wait until
  160. * the wb threads have acked the work before it's safe to continue.
  161. */
  162. static void bdi_wait_on_work_clear(struct bdi_work *work)
  163. {
  164. wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
  165. TASK_UNINTERRUPTIBLE);
  166. }
  167. static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
  168. struct wb_writeback_args *args)
  169. {
  170. struct bdi_work *work;
  171. /*
  172. * This is WB_SYNC_NONE writeback, so if allocation fails just
  173. * wakeup the thread for old dirty data writeback
  174. */
  175. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  176. if (work) {
  177. bdi_work_init(work, args);
  178. bdi_queue_work(bdi, work);
  179. } else {
  180. struct bdi_writeback *wb = &bdi->wb;
  181. if (wb->task)
  182. wake_up_process(wb->task);
  183. }
  184. }
  185. /**
  186. * bdi_sync_writeback - start and wait for writeback
  187. * @bdi: the backing device to write from
  188. * @sb: write inodes from this super_block
  189. *
  190. * Description:
  191. * This does WB_SYNC_ALL data integrity writeback and waits for the
  192. * IO to complete. Callers must hold the sb s_umount semaphore for
  193. * reading, to avoid having the super disappear before we are done.
  194. */
  195. static void bdi_sync_writeback(struct backing_dev_info *bdi,
  196. struct super_block *sb)
  197. {
  198. struct wb_writeback_args args = {
  199. .sb = sb,
  200. .sync_mode = WB_SYNC_ALL,
  201. .nr_pages = LONG_MAX,
  202. .range_cyclic = 0,
  203. };
  204. struct bdi_work work;
  205. bdi_work_init(&work, &args);
  206. work.state |= WS_ONSTACK;
  207. bdi_queue_work(bdi, &work);
  208. bdi_wait_on_work_clear(&work);
  209. }
  210. /**
  211. * bdi_start_writeback - start writeback
  212. * @bdi: the backing device to write from
  213. * @sb: write inodes from this super_block
  214. * @nr_pages: the number of pages to write
  215. *
  216. * Description:
  217. * This does WB_SYNC_NONE opportunistic writeback. The IO is only
  218. * started when this function returns, we make no guarentees on
  219. * completion. Caller need not hold sb s_umount semaphore.
  220. *
  221. */
  222. void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
  223. long nr_pages)
  224. {
  225. struct wb_writeback_args args = {
  226. .sb = sb,
  227. .sync_mode = WB_SYNC_NONE,
  228. .nr_pages = nr_pages,
  229. .range_cyclic = 1,
  230. };
  231. /*
  232. * We treat @nr_pages=0 as the special case to do background writeback,
  233. * ie. to sync pages until the background dirty threshold is reached.
  234. */
  235. if (!nr_pages) {
  236. args.nr_pages = LONG_MAX;
  237. args.for_background = 1;
  238. }
  239. bdi_alloc_queue_work(bdi, &args);
  240. }
  241. /*
  242. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  243. * furthest end of its superblock's dirty-inode list.
  244. *
  245. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  246. * already the most-recently-dirtied inode on the b_dirty list. If that is
  247. * the case then the inode must have been redirtied while it was being written
  248. * out and we don't reset its dirtied_when.
  249. */
  250. static void redirty_tail(struct inode *inode)
  251. {
  252. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  253. if (!list_empty(&wb->b_dirty)) {
  254. struct inode *tail;
  255. tail = list_entry(wb->b_dirty.next, struct inode, i_list);
  256. if (time_before(inode->dirtied_when, tail->dirtied_when))
  257. inode->dirtied_when = jiffies;
  258. }
  259. list_move(&inode->i_list, &wb->b_dirty);
  260. }
  261. /*
  262. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  263. */
  264. static void requeue_io(struct inode *inode)
  265. {
  266. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  267. list_move(&inode->i_list, &wb->b_more_io);
  268. }
  269. static void inode_sync_complete(struct inode *inode)
  270. {
  271. /*
  272. * Prevent speculative execution through spin_unlock(&inode_lock);
  273. */
  274. smp_mb();
  275. wake_up_bit(&inode->i_state, __I_SYNC);
  276. }
  277. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  278. {
  279. bool ret = time_after(inode->dirtied_when, t);
  280. #ifndef CONFIG_64BIT
  281. /*
  282. * For inodes being constantly redirtied, dirtied_when can get stuck.
  283. * It _appears_ to be in the future, but is actually in distant past.
  284. * This test is necessary to prevent such wrapped-around relative times
  285. * from permanently stopping the whole bdi writeback.
  286. */
  287. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  288. #endif
  289. return ret;
  290. }
  291. /*
  292. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  293. */
  294. static void move_expired_inodes(struct list_head *delaying_queue,
  295. struct list_head *dispatch_queue,
  296. unsigned long *older_than_this)
  297. {
  298. LIST_HEAD(tmp);
  299. struct list_head *pos, *node;
  300. struct super_block *sb = NULL;
  301. struct inode *inode;
  302. int do_sb_sort = 0;
  303. while (!list_empty(delaying_queue)) {
  304. inode = list_entry(delaying_queue->prev, struct inode, i_list);
  305. if (older_than_this &&
  306. inode_dirtied_after(inode, *older_than_this))
  307. break;
  308. if (sb && sb != inode->i_sb)
  309. do_sb_sort = 1;
  310. sb = inode->i_sb;
  311. list_move(&inode->i_list, &tmp);
  312. }
  313. /* just one sb in list, splice to dispatch_queue and we're done */
  314. if (!do_sb_sort) {
  315. list_splice(&tmp, dispatch_queue);
  316. return;
  317. }
  318. /* Move inodes from one superblock together */
  319. while (!list_empty(&tmp)) {
  320. inode = list_entry(tmp.prev, struct inode, i_list);
  321. sb = inode->i_sb;
  322. list_for_each_prev_safe(pos, node, &tmp) {
  323. inode = list_entry(pos, struct inode, i_list);
  324. if (inode->i_sb == sb)
  325. list_move(&inode->i_list, dispatch_queue);
  326. }
  327. }
  328. }
  329. /*
  330. * Queue all expired dirty inodes for io, eldest first.
  331. */
  332. static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
  333. {
  334. list_splice_init(&wb->b_more_io, wb->b_io.prev);
  335. move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
  336. }
  337. static int write_inode(struct inode *inode, struct writeback_control *wbc)
  338. {
  339. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  340. return inode->i_sb->s_op->write_inode(inode, wbc);
  341. return 0;
  342. }
  343. /*
  344. * Wait for writeback on an inode to complete.
  345. */
  346. static void inode_wait_for_writeback(struct inode *inode)
  347. {
  348. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  349. wait_queue_head_t *wqh;
  350. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  351. do {
  352. spin_unlock(&inode_lock);
  353. __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
  354. spin_lock(&inode_lock);
  355. } while (inode->i_state & I_SYNC);
  356. }
  357. /*
  358. * Write out an inode's dirty pages. Called under inode_lock. Either the
  359. * caller has ref on the inode (either via __iget or via syscall against an fd)
  360. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  361. *
  362. * If `wait' is set, wait on the writeout.
  363. *
  364. * The whole writeout design is quite complex and fragile. We want to avoid
  365. * starvation of particular inodes when others are being redirtied, prevent
  366. * livelocks, etc.
  367. *
  368. * Called under inode_lock.
  369. */
  370. static int
  371. writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  372. {
  373. struct address_space *mapping = inode->i_mapping;
  374. unsigned dirty;
  375. int ret;
  376. if (!atomic_read(&inode->i_count))
  377. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  378. else
  379. WARN_ON(inode->i_state & I_WILL_FREE);
  380. if (inode->i_state & I_SYNC) {
  381. /*
  382. * If this inode is locked for writeback and we are not doing
  383. * writeback-for-data-integrity, move it to b_more_io so that
  384. * writeback can proceed with the other inodes on s_io.
  385. *
  386. * We'll have another go at writing back this inode when we
  387. * completed a full scan of b_io.
  388. */
  389. if (wbc->sync_mode != WB_SYNC_ALL) {
  390. requeue_io(inode);
  391. return 0;
  392. }
  393. /*
  394. * It's a data-integrity sync. We must wait.
  395. */
  396. inode_wait_for_writeback(inode);
  397. }
  398. BUG_ON(inode->i_state & I_SYNC);
  399. /* Set I_SYNC, reset I_DIRTY */
  400. dirty = inode->i_state & I_DIRTY;
  401. inode->i_state |= I_SYNC;
  402. inode->i_state &= ~I_DIRTY;
  403. spin_unlock(&inode_lock);
  404. ret = do_writepages(mapping, wbc);
  405. /*
  406. * Make sure to wait on the data before writing out the metadata.
  407. * This is important for filesystems that modify metadata on data
  408. * I/O completion.
  409. */
  410. if (wbc->sync_mode == WB_SYNC_ALL) {
  411. int err = filemap_fdatawait(mapping);
  412. if (ret == 0)
  413. ret = err;
  414. }
  415. /* Don't write the inode if only I_DIRTY_PAGES was set */
  416. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  417. int err = write_inode(inode, wbc);
  418. if (ret == 0)
  419. ret = err;
  420. }
  421. spin_lock(&inode_lock);
  422. inode->i_state &= ~I_SYNC;
  423. if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
  424. if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
  425. /*
  426. * More pages get dirtied by a fast dirtier.
  427. */
  428. goto select_queue;
  429. } else if (inode->i_state & I_DIRTY) {
  430. /*
  431. * At least XFS will redirty the inode during the
  432. * writeback (delalloc) and on io completion (isize).
  433. */
  434. redirty_tail(inode);
  435. } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  436. /*
  437. * We didn't write back all the pages. nfs_writepages()
  438. * sometimes bales out without doing anything. Redirty
  439. * the inode; Move it from b_io onto b_more_io/b_dirty.
  440. */
  441. /*
  442. * akpm: if the caller was the kupdate function we put
  443. * this inode at the head of b_dirty so it gets first
  444. * consideration. Otherwise, move it to the tail, for
  445. * the reasons described there. I'm not really sure
  446. * how much sense this makes. Presumably I had a good
  447. * reasons for doing it this way, and I'd rather not
  448. * muck with it at present.
  449. */
  450. if (wbc->for_kupdate) {
  451. /*
  452. * For the kupdate function we move the inode
  453. * to b_more_io so it will get more writeout as
  454. * soon as the queue becomes uncongested.
  455. */
  456. inode->i_state |= I_DIRTY_PAGES;
  457. select_queue:
  458. if (wbc->nr_to_write <= 0) {
  459. /*
  460. * slice used up: queue for next turn
  461. */
  462. requeue_io(inode);
  463. } else {
  464. /*
  465. * somehow blocked: retry later
  466. */
  467. redirty_tail(inode);
  468. }
  469. } else {
  470. /*
  471. * Otherwise fully redirty the inode so that
  472. * other inodes on this superblock will get some
  473. * writeout. Otherwise heavy writing to one
  474. * file would indefinitely suspend writeout of
  475. * all the other files.
  476. */
  477. inode->i_state |= I_DIRTY_PAGES;
  478. redirty_tail(inode);
  479. }
  480. } else if (atomic_read(&inode->i_count)) {
  481. /*
  482. * The inode is clean, inuse
  483. */
  484. list_move(&inode->i_list, &inode_in_use);
  485. } else {
  486. /*
  487. * The inode is clean, unused
  488. */
  489. list_move(&inode->i_list, &inode_unused);
  490. }
  491. }
  492. inode_sync_complete(inode);
  493. return ret;
  494. }
  495. static void unpin_sb_for_writeback(struct super_block *sb)
  496. {
  497. up_read(&sb->s_umount);
  498. put_super(sb);
  499. }
  500. enum sb_pin_state {
  501. SB_PINNED,
  502. SB_NOT_PINNED,
  503. SB_PIN_FAILED
  504. };
  505. /*
  506. * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
  507. * before calling writeback. So make sure that we do pin it, so it doesn't
  508. * go away while we are writing inodes from it.
  509. */
  510. static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
  511. struct super_block *sb)
  512. {
  513. /*
  514. * Caller must already hold the ref for this
  515. */
  516. if (wbc->sync_mode == WB_SYNC_ALL) {
  517. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  518. return SB_NOT_PINNED;
  519. }
  520. spin_lock(&sb_lock);
  521. sb->s_count++;
  522. if (down_read_trylock(&sb->s_umount)) {
  523. if (sb->s_root) {
  524. spin_unlock(&sb_lock);
  525. return SB_PINNED;
  526. }
  527. /*
  528. * umounted, drop rwsem again and fall through to failure
  529. */
  530. up_read(&sb->s_umount);
  531. }
  532. sb->s_count--;
  533. spin_unlock(&sb_lock);
  534. return SB_PIN_FAILED;
  535. }
  536. /*
  537. * Write a portion of b_io inodes which belong to @sb.
  538. * If @wbc->sb != NULL, then find and write all such
  539. * inodes. Otherwise write only ones which go sequentially
  540. * in reverse order.
  541. * Return 1, if the caller writeback routine should be
  542. * interrupted. Otherwise return 0.
  543. */
  544. static int writeback_sb_inodes(struct super_block *sb,
  545. struct bdi_writeback *wb,
  546. struct writeback_control *wbc)
  547. {
  548. while (!list_empty(&wb->b_io)) {
  549. long pages_skipped;
  550. struct inode *inode = list_entry(wb->b_io.prev,
  551. struct inode, i_list);
  552. if (wbc->sb && sb != inode->i_sb) {
  553. /* super block given and doesn't
  554. match, skip this inode */
  555. redirty_tail(inode);
  556. continue;
  557. }
  558. if (sb != inode->i_sb)
  559. /* finish with this superblock */
  560. return 0;
  561. if (inode->i_state & (I_NEW | I_WILL_FREE)) {
  562. requeue_io(inode);
  563. continue;
  564. }
  565. /*
  566. * Was this inode dirtied after sync_sb_inodes was called?
  567. * This keeps sync from extra jobs and livelock.
  568. */
  569. if (inode_dirtied_after(inode, wbc->wb_start))
  570. return 1;
  571. BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
  572. __iget(inode);
  573. pages_skipped = wbc->pages_skipped;
  574. writeback_single_inode(inode, wbc);
  575. if (wbc->pages_skipped != pages_skipped) {
  576. /*
  577. * writeback is not making progress due to locked
  578. * buffers. Skip this inode for now.
  579. */
  580. redirty_tail(inode);
  581. }
  582. spin_unlock(&inode_lock);
  583. iput(inode);
  584. cond_resched();
  585. spin_lock(&inode_lock);
  586. if (wbc->nr_to_write <= 0) {
  587. wbc->more_io = 1;
  588. return 1;
  589. }
  590. if (!list_empty(&wb->b_more_io))
  591. wbc->more_io = 1;
  592. }
  593. /* b_io is empty */
  594. return 1;
  595. }
  596. static void writeback_inodes_wb(struct bdi_writeback *wb,
  597. struct writeback_control *wbc)
  598. {
  599. int ret = 0;
  600. wbc->wb_start = jiffies; /* livelock avoidance */
  601. spin_lock(&inode_lock);
  602. if (!wbc->for_kupdate || list_empty(&wb->b_io))
  603. queue_io(wb, wbc->older_than_this);
  604. while (!list_empty(&wb->b_io)) {
  605. struct inode *inode = list_entry(wb->b_io.prev,
  606. struct inode, i_list);
  607. struct super_block *sb = inode->i_sb;
  608. enum sb_pin_state state;
  609. if (wbc->sb && sb != wbc->sb) {
  610. /* super block given and doesn't
  611. match, skip this inode */
  612. redirty_tail(inode);
  613. continue;
  614. }
  615. state = pin_sb_for_writeback(wbc, sb);
  616. if (state == SB_PIN_FAILED) {
  617. requeue_io(inode);
  618. continue;
  619. }
  620. ret = writeback_sb_inodes(sb, wb, wbc);
  621. if (state == SB_PINNED)
  622. unpin_sb_for_writeback(sb);
  623. if (ret)
  624. break;
  625. }
  626. spin_unlock(&inode_lock);
  627. /* Leave any unwritten inodes on b_io */
  628. }
  629. void writeback_inodes_wbc(struct writeback_control *wbc)
  630. {
  631. struct backing_dev_info *bdi = wbc->bdi;
  632. writeback_inodes_wb(&bdi->wb, wbc);
  633. }
  634. /*
  635. * The maximum number of pages to writeout in a single bdi flush/kupdate
  636. * operation. We do this so we don't hold I_SYNC against an inode for
  637. * enormous amounts of time, which would block a userspace task which has
  638. * been forced to throttle against that inode. Also, the code reevaluates
  639. * the dirty each time it has written this many pages.
  640. */
  641. #define MAX_WRITEBACK_PAGES 1024
  642. static inline bool over_bground_thresh(void)
  643. {
  644. unsigned long background_thresh, dirty_thresh;
  645. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  646. return (global_page_state(NR_FILE_DIRTY) +
  647. global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
  648. }
  649. /*
  650. * Explicit flushing or periodic writeback of "old" data.
  651. *
  652. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  653. * dirtying-time in the inode's address_space. So this periodic writeback code
  654. * just walks the superblock inode list, writing back any inodes which are
  655. * older than a specific point in time.
  656. *
  657. * Try to run once per dirty_writeback_interval. But if a writeback event
  658. * takes longer than a dirty_writeback_interval interval, then leave a
  659. * one-second gap.
  660. *
  661. * older_than_this takes precedence over nr_to_write. So we'll only write back
  662. * all dirty pages if they are all attached to "old" mappings.
  663. */
  664. static long wb_writeback(struct bdi_writeback *wb,
  665. struct wb_writeback_args *args)
  666. {
  667. struct writeback_control wbc = {
  668. .bdi = wb->bdi,
  669. .sb = args->sb,
  670. .sync_mode = args->sync_mode,
  671. .older_than_this = NULL,
  672. .for_kupdate = args->for_kupdate,
  673. .for_background = args->for_background,
  674. .range_cyclic = args->range_cyclic,
  675. };
  676. unsigned long oldest_jif;
  677. long wrote = 0;
  678. struct inode *inode;
  679. if (wbc.for_kupdate) {
  680. wbc.older_than_this = &oldest_jif;
  681. oldest_jif = jiffies -
  682. msecs_to_jiffies(dirty_expire_interval * 10);
  683. }
  684. if (!wbc.range_cyclic) {
  685. wbc.range_start = 0;
  686. wbc.range_end = LLONG_MAX;
  687. }
  688. for (;;) {
  689. /*
  690. * Stop writeback when nr_pages has been consumed
  691. */
  692. if (args->nr_pages <= 0)
  693. break;
  694. /*
  695. * For background writeout, stop when we are below the
  696. * background dirty threshold
  697. */
  698. if (args->for_background && !over_bground_thresh())
  699. break;
  700. wbc.more_io = 0;
  701. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  702. wbc.pages_skipped = 0;
  703. writeback_inodes_wb(wb, &wbc);
  704. args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  705. wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  706. /*
  707. * If we consumed everything, see if we have more
  708. */
  709. if (wbc.nr_to_write <= 0)
  710. continue;
  711. /*
  712. * Didn't write everything and we don't have more IO, bail
  713. */
  714. if (!wbc.more_io)
  715. break;
  716. /*
  717. * Did we write something? Try for more
  718. */
  719. if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
  720. continue;
  721. /*
  722. * Nothing written. Wait for some inode to
  723. * become available for writeback. Otherwise
  724. * we'll just busyloop.
  725. */
  726. spin_lock(&inode_lock);
  727. if (!list_empty(&wb->b_more_io)) {
  728. inode = list_entry(wb->b_more_io.prev,
  729. struct inode, i_list);
  730. inode_wait_for_writeback(inode);
  731. }
  732. spin_unlock(&inode_lock);
  733. }
  734. return wrote;
  735. }
  736. /*
  737. * Return the next bdi_work struct that hasn't been processed by this
  738. * wb thread yet. ->seen is initially set for each thread that exists
  739. * for this device, when a thread first notices a piece of work it
  740. * clears its bit. Depending on writeback type, the thread will notify
  741. * completion on either receiving the work (WB_SYNC_NONE) or after
  742. * it is done (WB_SYNC_ALL).
  743. */
  744. static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
  745. struct bdi_writeback *wb)
  746. {
  747. struct bdi_work *work, *ret = NULL;
  748. rcu_read_lock();
  749. list_for_each_entry_rcu(work, &bdi->work_list, list) {
  750. if (!test_bit(wb->nr, &work->seen))
  751. continue;
  752. clear_bit(wb->nr, &work->seen);
  753. ret = work;
  754. break;
  755. }
  756. rcu_read_unlock();
  757. return ret;
  758. }
  759. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  760. {
  761. unsigned long expired;
  762. long nr_pages;
  763. expired = wb->last_old_flush +
  764. msecs_to_jiffies(dirty_writeback_interval * 10);
  765. if (time_before(jiffies, expired))
  766. return 0;
  767. wb->last_old_flush = jiffies;
  768. nr_pages = global_page_state(NR_FILE_DIRTY) +
  769. global_page_state(NR_UNSTABLE_NFS) +
  770. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  771. if (nr_pages) {
  772. struct wb_writeback_args args = {
  773. .nr_pages = nr_pages,
  774. .sync_mode = WB_SYNC_NONE,
  775. .for_kupdate = 1,
  776. .range_cyclic = 1,
  777. };
  778. return wb_writeback(wb, &args);
  779. }
  780. return 0;
  781. }
  782. /*
  783. * Retrieve work items and do the writeback they describe
  784. */
  785. long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
  786. {
  787. struct backing_dev_info *bdi = wb->bdi;
  788. struct bdi_work *work;
  789. long wrote = 0;
  790. while ((work = get_next_work_item(bdi, wb)) != NULL) {
  791. struct wb_writeback_args args = work->args;
  792. /*
  793. * Override sync mode, in case we must wait for completion
  794. */
  795. if (force_wait)
  796. work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
  797. /*
  798. * If this isn't a data integrity operation, just notify
  799. * that we have seen this work and we are now starting it.
  800. */
  801. if (args.sync_mode == WB_SYNC_NONE)
  802. wb_clear_pending(wb, work);
  803. wrote += wb_writeback(wb, &args);
  804. /*
  805. * This is a data integrity writeback, so only do the
  806. * notification when we have completed the work.
  807. */
  808. if (args.sync_mode == WB_SYNC_ALL)
  809. wb_clear_pending(wb, work);
  810. }
  811. /*
  812. * Check for periodic writeback, kupdated() style
  813. */
  814. wrote += wb_check_old_data_flush(wb);
  815. return wrote;
  816. }
  817. /*
  818. * Handle writeback of dirty data for the device backed by this bdi. Also
  819. * wakes up periodically and does kupdated style flushing.
  820. */
  821. int bdi_writeback_task(struct bdi_writeback *wb)
  822. {
  823. unsigned long last_active = jiffies;
  824. unsigned long wait_jiffies = -1UL;
  825. long pages_written;
  826. while (!kthread_should_stop()) {
  827. pages_written = wb_do_writeback(wb, 0);
  828. if (pages_written)
  829. last_active = jiffies;
  830. else if (wait_jiffies != -1UL) {
  831. unsigned long max_idle;
  832. /*
  833. * Longest period of inactivity that we tolerate. If we
  834. * see dirty data again later, the task will get
  835. * recreated automatically.
  836. */
  837. max_idle = max(5UL * 60 * HZ, wait_jiffies);
  838. if (time_after(jiffies, max_idle + last_active))
  839. break;
  840. }
  841. wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
  842. schedule_timeout_interruptible(wait_jiffies);
  843. try_to_freeze();
  844. }
  845. return 0;
  846. }
  847. /*
  848. * Schedule writeback for all backing devices. This does WB_SYNC_NONE
  849. * writeback, for integrity writeback see bdi_sync_writeback().
  850. */
  851. static void bdi_writeback_all(struct super_block *sb, long nr_pages)
  852. {
  853. struct wb_writeback_args args = {
  854. .sb = sb,
  855. .nr_pages = nr_pages,
  856. .sync_mode = WB_SYNC_NONE,
  857. };
  858. struct backing_dev_info *bdi;
  859. rcu_read_lock();
  860. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  861. if (!bdi_has_dirty_io(bdi))
  862. continue;
  863. bdi_alloc_queue_work(bdi, &args);
  864. }
  865. rcu_read_unlock();
  866. }
  867. /*
  868. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  869. * the whole world.
  870. */
  871. void wakeup_flusher_threads(long nr_pages)
  872. {
  873. if (nr_pages == 0)
  874. nr_pages = global_page_state(NR_FILE_DIRTY) +
  875. global_page_state(NR_UNSTABLE_NFS);
  876. bdi_writeback_all(NULL, nr_pages);
  877. }
  878. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  879. {
  880. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  881. struct dentry *dentry;
  882. const char *name = "?";
  883. dentry = d_find_alias(inode);
  884. if (dentry) {
  885. spin_lock(&dentry->d_lock);
  886. name = (const char *) dentry->d_name.name;
  887. }
  888. printk(KERN_DEBUG
  889. "%s(%d): dirtied inode %lu (%s) on %s\n",
  890. current->comm, task_pid_nr(current), inode->i_ino,
  891. name, inode->i_sb->s_id);
  892. if (dentry) {
  893. spin_unlock(&dentry->d_lock);
  894. dput(dentry);
  895. }
  896. }
  897. }
  898. /**
  899. * __mark_inode_dirty - internal function
  900. * @inode: inode to mark
  901. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  902. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  903. * mark_inode_dirty_sync.
  904. *
  905. * Put the inode on the super block's dirty list.
  906. *
  907. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  908. * dirty list only if it is hashed or if it refers to a blockdev.
  909. * If it was not hashed, it will never be added to the dirty list
  910. * even if it is later hashed, as it will have been marked dirty already.
  911. *
  912. * In short, make sure you hash any inodes _before_ you start marking
  913. * them dirty.
  914. *
  915. * This function *must* be atomic for the I_DIRTY_PAGES case -
  916. * set_page_dirty() is called under spinlock in several places.
  917. *
  918. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  919. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  920. * the kernel-internal blockdev inode represents the dirtying time of the
  921. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  922. * page->mapping->host, so the page-dirtying time is recorded in the internal
  923. * blockdev inode.
  924. */
  925. void __mark_inode_dirty(struct inode *inode, int flags)
  926. {
  927. struct super_block *sb = inode->i_sb;
  928. /*
  929. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  930. * dirty the inode itself
  931. */
  932. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  933. if (sb->s_op->dirty_inode)
  934. sb->s_op->dirty_inode(inode);
  935. }
  936. /*
  937. * make sure that changes are seen by all cpus before we test i_state
  938. * -- mikulas
  939. */
  940. smp_mb();
  941. /* avoid the locking if we can */
  942. if ((inode->i_state & flags) == flags)
  943. return;
  944. if (unlikely(block_dump))
  945. block_dump___mark_inode_dirty(inode);
  946. spin_lock(&inode_lock);
  947. if ((inode->i_state & flags) != flags) {
  948. const int was_dirty = inode->i_state & I_DIRTY;
  949. inode->i_state |= flags;
  950. /*
  951. * If the inode is being synced, just update its dirty state.
  952. * The unlocker will place the inode on the appropriate
  953. * superblock list, based upon its state.
  954. */
  955. if (inode->i_state & I_SYNC)
  956. goto out;
  957. /*
  958. * Only add valid (hashed) inodes to the superblock's
  959. * dirty list. Add blockdev inodes as well.
  960. */
  961. if (!S_ISBLK(inode->i_mode)) {
  962. if (hlist_unhashed(&inode->i_hash))
  963. goto out;
  964. }
  965. if (inode->i_state & (I_FREEING|I_CLEAR))
  966. goto out;
  967. /*
  968. * If the inode was already on b_dirty/b_io/b_more_io, don't
  969. * reposition it (that would break b_dirty time-ordering).
  970. */
  971. if (!was_dirty) {
  972. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  973. struct backing_dev_info *bdi = wb->bdi;
  974. if (bdi_cap_writeback_dirty(bdi) &&
  975. !test_bit(BDI_registered, &bdi->state)) {
  976. WARN_ON(1);
  977. printk(KERN_ERR "bdi-%s not registered\n",
  978. bdi->name);
  979. }
  980. inode->dirtied_when = jiffies;
  981. list_move(&inode->i_list, &wb->b_dirty);
  982. }
  983. }
  984. out:
  985. spin_unlock(&inode_lock);
  986. }
  987. EXPORT_SYMBOL(__mark_inode_dirty);
  988. /*
  989. * Write out a superblock's list of dirty inodes. A wait will be performed
  990. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  991. *
  992. * If older_than_this is non-NULL, then only write out inodes which
  993. * had their first dirtying at a time earlier than *older_than_this.
  994. *
  995. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  996. * This function assumes that the blockdev superblock's inodes are backed by
  997. * a variety of queues, so all inodes are searched. For other superblocks,
  998. * assume that all inodes are backed by the same queue.
  999. *
  1000. * The inodes to be written are parked on bdi->b_io. They are moved back onto
  1001. * bdi->b_dirty as they are selected for writing. This way, none can be missed
  1002. * on the writer throttling path, and we get decent balancing between many
  1003. * throttled threads: we don't want them all piling up on inode_sync_wait.
  1004. */
  1005. static void wait_sb_inodes(struct super_block *sb)
  1006. {
  1007. struct inode *inode, *old_inode = NULL;
  1008. /*
  1009. * We need to be protected against the filesystem going from
  1010. * r/o to r/w or vice versa.
  1011. */
  1012. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  1013. spin_lock(&inode_lock);
  1014. /*
  1015. * Data integrity sync. Must wait for all pages under writeback,
  1016. * because there may have been pages dirtied before our sync
  1017. * call, but which had writeout started before we write it out.
  1018. * In which case, the inode may not be on the dirty list, but
  1019. * we still have to wait for that writeout.
  1020. */
  1021. list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
  1022. struct address_space *mapping;
  1023. if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
  1024. continue;
  1025. mapping = inode->i_mapping;
  1026. if (mapping->nrpages == 0)
  1027. continue;
  1028. __iget(inode);
  1029. spin_unlock(&inode_lock);
  1030. /*
  1031. * We hold a reference to 'inode' so it couldn't have
  1032. * been removed from s_inodes list while we dropped the
  1033. * inode_lock. We cannot iput the inode now as we can
  1034. * be holding the last reference and we cannot iput it
  1035. * under inode_lock. So we keep the reference and iput
  1036. * it later.
  1037. */
  1038. iput(old_inode);
  1039. old_inode = inode;
  1040. filemap_fdatawait(mapping);
  1041. cond_resched();
  1042. spin_lock(&inode_lock);
  1043. }
  1044. spin_unlock(&inode_lock);
  1045. iput(old_inode);
  1046. }
  1047. /**
  1048. * writeback_inodes_sb - writeback dirty inodes from given super_block
  1049. * @sb: the superblock
  1050. *
  1051. * Start writeback on some inodes on this super_block. No guarantees are made
  1052. * on how many (if any) will be written, and this function does not wait
  1053. * for IO completion of submitted IO. The number of pages submitted is
  1054. * returned.
  1055. */
  1056. void writeback_inodes_sb(struct super_block *sb)
  1057. {
  1058. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  1059. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  1060. long nr_to_write;
  1061. nr_to_write = nr_dirty + nr_unstable +
  1062. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  1063. bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
  1064. }
  1065. EXPORT_SYMBOL(writeback_inodes_sb);
  1066. /**
  1067. * writeback_inodes_sb_if_idle - start writeback if none underway
  1068. * @sb: the superblock
  1069. *
  1070. * Invoke writeback_inodes_sb if no writeback is currently underway.
  1071. * Returns 1 if writeback was started, 0 if not.
  1072. */
  1073. int writeback_inodes_sb_if_idle(struct super_block *sb)
  1074. {
  1075. if (!writeback_in_progress(sb->s_bdi)) {
  1076. writeback_inodes_sb(sb);
  1077. return 1;
  1078. } else
  1079. return 0;
  1080. }
  1081. EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
  1082. /**
  1083. * sync_inodes_sb - sync sb inode pages
  1084. * @sb: the superblock
  1085. *
  1086. * This function writes and waits on any dirty inode belonging to this
  1087. * super_block. The number of pages synced is returned.
  1088. */
  1089. void sync_inodes_sb(struct super_block *sb)
  1090. {
  1091. bdi_sync_writeback(sb->s_bdi, sb);
  1092. wait_sb_inodes(sb);
  1093. }
  1094. EXPORT_SYMBOL(sync_inodes_sb);
  1095. /**
  1096. * write_inode_now - write an inode to disk
  1097. * @inode: inode to write to disk
  1098. * @sync: whether the write should be synchronous or not
  1099. *
  1100. * This function commits an inode to disk immediately if it is dirty. This is
  1101. * primarily needed by knfsd.
  1102. *
  1103. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  1104. */
  1105. int write_inode_now(struct inode *inode, int sync)
  1106. {
  1107. int ret;
  1108. struct writeback_control wbc = {
  1109. .nr_to_write = LONG_MAX,
  1110. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  1111. .range_start = 0,
  1112. .range_end = LLONG_MAX,
  1113. };
  1114. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  1115. wbc.nr_to_write = 0;
  1116. might_sleep();
  1117. spin_lock(&inode_lock);
  1118. ret = writeback_single_inode(inode, &wbc);
  1119. spin_unlock(&inode_lock);
  1120. if (sync)
  1121. inode_sync_wait(inode);
  1122. return ret;
  1123. }
  1124. EXPORT_SYMBOL(write_inode_now);
  1125. /**
  1126. * sync_inode - write an inode and its pages to disk.
  1127. * @inode: the inode to sync
  1128. * @wbc: controls the writeback mode
  1129. *
  1130. * sync_inode() will write an inode and its pages to disk. It will also
  1131. * correctly update the inode on its superblock's dirty inode lists and will
  1132. * update inode->i_state.
  1133. *
  1134. * The caller must have a ref on the inode.
  1135. */
  1136. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  1137. {
  1138. int ret;
  1139. spin_lock(&inode_lock);
  1140. ret = writeback_single_inode(inode, wbc);
  1141. spin_unlock(&inode_lock);
  1142. return ret;
  1143. }
  1144. EXPORT_SYMBOL(sync_inode);