disk-io.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include "compat.h"
  31. #include "ctree.h"
  32. #include "disk-io.h"
  33. #include "transaction.h"
  34. #include "btrfs_inode.h"
  35. #include "volumes.h"
  36. #include "print-tree.h"
  37. #include "async-thread.h"
  38. #include "locking.h"
  39. #include "tree-log.h"
  40. #include "free-space-cache.h"
  41. static struct extent_io_ops btree_extent_io_ops;
  42. static void end_workqueue_fn(struct btrfs_work *work);
  43. static void free_fs_root(struct btrfs_root *root);
  44. static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
  45. /*
  46. * end_io_wq structs are used to do processing in task context when an IO is
  47. * complete. This is used during reads to verify checksums, and it is used
  48. * by writes to insert metadata for new file extents after IO is complete.
  49. */
  50. struct end_io_wq {
  51. struct bio *bio;
  52. bio_end_io_t *end_io;
  53. void *private;
  54. struct btrfs_fs_info *info;
  55. int error;
  56. int metadata;
  57. struct list_head list;
  58. struct btrfs_work work;
  59. };
  60. /*
  61. * async submit bios are used to offload expensive checksumming
  62. * onto the worker threads. They checksum file and metadata bios
  63. * just before they are sent down the IO stack.
  64. */
  65. struct async_submit_bio {
  66. struct inode *inode;
  67. struct bio *bio;
  68. struct list_head list;
  69. extent_submit_bio_hook_t *submit_bio_start;
  70. extent_submit_bio_hook_t *submit_bio_done;
  71. int rw;
  72. int mirror_num;
  73. unsigned long bio_flags;
  74. struct btrfs_work work;
  75. };
  76. /* These are used to set the lockdep class on the extent buffer locks.
  77. * The class is set by the readpage_end_io_hook after the buffer has
  78. * passed csum validation but before the pages are unlocked.
  79. *
  80. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  81. * allocated blocks.
  82. *
  83. * The class is based on the level in the tree block, which allows lockdep
  84. * to know that lower nodes nest inside the locks of higher nodes.
  85. *
  86. * We also add a check to make sure the highest level of the tree is
  87. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  88. * code needs update as well.
  89. */
  90. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  91. # if BTRFS_MAX_LEVEL != 8
  92. # error
  93. # endif
  94. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  95. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  96. /* leaf */
  97. "btrfs-extent-00",
  98. "btrfs-extent-01",
  99. "btrfs-extent-02",
  100. "btrfs-extent-03",
  101. "btrfs-extent-04",
  102. "btrfs-extent-05",
  103. "btrfs-extent-06",
  104. "btrfs-extent-07",
  105. /* highest possible level */
  106. "btrfs-extent-08",
  107. };
  108. #endif
  109. /*
  110. * extents on the btree inode are pretty simple, there's one extent
  111. * that covers the entire device
  112. */
  113. static struct extent_map *btree_get_extent(struct inode *inode,
  114. struct page *page, size_t page_offset, u64 start, u64 len,
  115. int create)
  116. {
  117. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  118. struct extent_map *em;
  119. int ret;
  120. read_lock(&em_tree->lock);
  121. em = lookup_extent_mapping(em_tree, start, len);
  122. if (em) {
  123. em->bdev =
  124. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  125. read_unlock(&em_tree->lock);
  126. goto out;
  127. }
  128. read_unlock(&em_tree->lock);
  129. em = alloc_extent_map(GFP_NOFS);
  130. if (!em) {
  131. em = ERR_PTR(-ENOMEM);
  132. goto out;
  133. }
  134. em->start = 0;
  135. em->len = (u64)-1;
  136. em->block_len = (u64)-1;
  137. em->block_start = 0;
  138. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  139. write_lock(&em_tree->lock);
  140. ret = add_extent_mapping(em_tree, em);
  141. if (ret == -EEXIST) {
  142. u64 failed_start = em->start;
  143. u64 failed_len = em->len;
  144. free_extent_map(em);
  145. em = lookup_extent_mapping(em_tree, start, len);
  146. if (em) {
  147. ret = 0;
  148. } else {
  149. em = lookup_extent_mapping(em_tree, failed_start,
  150. failed_len);
  151. ret = -EIO;
  152. }
  153. } else if (ret) {
  154. free_extent_map(em);
  155. em = NULL;
  156. }
  157. write_unlock(&em_tree->lock);
  158. if (ret)
  159. em = ERR_PTR(ret);
  160. out:
  161. return em;
  162. }
  163. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  164. {
  165. return crc32c(seed, data, len);
  166. }
  167. void btrfs_csum_final(u32 crc, char *result)
  168. {
  169. *(__le32 *)result = ~cpu_to_le32(crc);
  170. }
  171. /*
  172. * compute the csum for a btree block, and either verify it or write it
  173. * into the csum field of the block.
  174. */
  175. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  176. int verify)
  177. {
  178. u16 csum_size =
  179. btrfs_super_csum_size(&root->fs_info->super_copy);
  180. char *result = NULL;
  181. unsigned long len;
  182. unsigned long cur_len;
  183. unsigned long offset = BTRFS_CSUM_SIZE;
  184. char *map_token = NULL;
  185. char *kaddr;
  186. unsigned long map_start;
  187. unsigned long map_len;
  188. int err;
  189. u32 crc = ~(u32)0;
  190. unsigned long inline_result;
  191. len = buf->len - offset;
  192. while (len > 0) {
  193. err = map_private_extent_buffer(buf, offset, 32,
  194. &map_token, &kaddr,
  195. &map_start, &map_len, KM_USER0);
  196. if (err)
  197. return 1;
  198. cur_len = min(len, map_len - (offset - map_start));
  199. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  200. crc, cur_len);
  201. len -= cur_len;
  202. offset += cur_len;
  203. unmap_extent_buffer(buf, map_token, KM_USER0);
  204. }
  205. if (csum_size > sizeof(inline_result)) {
  206. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  207. if (!result)
  208. return 1;
  209. } else {
  210. result = (char *)&inline_result;
  211. }
  212. btrfs_csum_final(crc, result);
  213. if (verify) {
  214. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  215. u32 val;
  216. u32 found = 0;
  217. memcpy(&found, result, csum_size);
  218. read_extent_buffer(buf, &val, 0, csum_size);
  219. if (printk_ratelimit()) {
  220. printk(KERN_INFO "btrfs: %s checksum verify "
  221. "failed on %llu wanted %X found %X "
  222. "level %d\n",
  223. root->fs_info->sb->s_id,
  224. (unsigned long long)buf->start, val, found,
  225. btrfs_header_level(buf));
  226. }
  227. if (result != (char *)&inline_result)
  228. kfree(result);
  229. return 1;
  230. }
  231. } else {
  232. write_extent_buffer(buf, result, 0, csum_size);
  233. }
  234. if (result != (char *)&inline_result)
  235. kfree(result);
  236. return 0;
  237. }
  238. /*
  239. * we can't consider a given block up to date unless the transid of the
  240. * block matches the transid in the parent node's pointer. This is how we
  241. * detect blocks that either didn't get written at all or got written
  242. * in the wrong place.
  243. */
  244. static int verify_parent_transid(struct extent_io_tree *io_tree,
  245. struct extent_buffer *eb, u64 parent_transid)
  246. {
  247. struct extent_state *cached_state = NULL;
  248. int ret;
  249. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  250. return 0;
  251. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  252. 0, &cached_state, GFP_NOFS);
  253. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  254. btrfs_header_generation(eb) == parent_transid) {
  255. ret = 0;
  256. goto out;
  257. }
  258. if (printk_ratelimit()) {
  259. printk("parent transid verify failed on %llu wanted %llu "
  260. "found %llu\n",
  261. (unsigned long long)eb->start,
  262. (unsigned long long)parent_transid,
  263. (unsigned long long)btrfs_header_generation(eb));
  264. }
  265. ret = 1;
  266. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  267. out:
  268. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  269. &cached_state, GFP_NOFS);
  270. return ret;
  271. }
  272. /*
  273. * helper to read a given tree block, doing retries as required when
  274. * the checksums don't match and we have alternate mirrors to try.
  275. */
  276. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  277. struct extent_buffer *eb,
  278. u64 start, u64 parent_transid)
  279. {
  280. struct extent_io_tree *io_tree;
  281. int ret;
  282. int num_copies = 0;
  283. int mirror_num = 0;
  284. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  285. while (1) {
  286. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  287. btree_get_extent, mirror_num);
  288. if (!ret &&
  289. !verify_parent_transid(io_tree, eb, parent_transid))
  290. return ret;
  291. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  292. eb->start, eb->len);
  293. if (num_copies == 1)
  294. return ret;
  295. mirror_num++;
  296. if (mirror_num > num_copies)
  297. return ret;
  298. }
  299. return -EIO;
  300. }
  301. /*
  302. * checksum a dirty tree block before IO. This has extra checks to make sure
  303. * we only fill in the checksum field in the first page of a multi-page block
  304. */
  305. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  306. {
  307. struct extent_io_tree *tree;
  308. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  309. u64 found_start;
  310. int found_level;
  311. unsigned long len;
  312. struct extent_buffer *eb;
  313. int ret;
  314. tree = &BTRFS_I(page->mapping->host)->io_tree;
  315. if (page->private == EXTENT_PAGE_PRIVATE)
  316. goto out;
  317. if (!page->private)
  318. goto out;
  319. len = page->private >> 2;
  320. WARN_ON(len == 0);
  321. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  322. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  323. btrfs_header_generation(eb));
  324. BUG_ON(ret);
  325. found_start = btrfs_header_bytenr(eb);
  326. if (found_start != start) {
  327. WARN_ON(1);
  328. goto err;
  329. }
  330. if (eb->first_page != page) {
  331. WARN_ON(1);
  332. goto err;
  333. }
  334. if (!PageUptodate(page)) {
  335. WARN_ON(1);
  336. goto err;
  337. }
  338. found_level = btrfs_header_level(eb);
  339. csum_tree_block(root, eb, 0);
  340. err:
  341. free_extent_buffer(eb);
  342. out:
  343. return 0;
  344. }
  345. static int check_tree_block_fsid(struct btrfs_root *root,
  346. struct extent_buffer *eb)
  347. {
  348. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  349. u8 fsid[BTRFS_UUID_SIZE];
  350. int ret = 1;
  351. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  352. BTRFS_FSID_SIZE);
  353. while (fs_devices) {
  354. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  355. ret = 0;
  356. break;
  357. }
  358. fs_devices = fs_devices->seed;
  359. }
  360. return ret;
  361. }
  362. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  363. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  364. {
  365. lockdep_set_class_and_name(&eb->lock,
  366. &btrfs_eb_class[level],
  367. btrfs_eb_name[level]);
  368. }
  369. #endif
  370. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  371. struct extent_state *state)
  372. {
  373. struct extent_io_tree *tree;
  374. u64 found_start;
  375. int found_level;
  376. unsigned long len;
  377. struct extent_buffer *eb;
  378. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  379. int ret = 0;
  380. tree = &BTRFS_I(page->mapping->host)->io_tree;
  381. if (page->private == EXTENT_PAGE_PRIVATE)
  382. goto out;
  383. if (!page->private)
  384. goto out;
  385. len = page->private >> 2;
  386. WARN_ON(len == 0);
  387. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  388. found_start = btrfs_header_bytenr(eb);
  389. if (found_start != start) {
  390. if (printk_ratelimit()) {
  391. printk(KERN_INFO "btrfs bad tree block start "
  392. "%llu %llu\n",
  393. (unsigned long long)found_start,
  394. (unsigned long long)eb->start);
  395. }
  396. ret = -EIO;
  397. goto err;
  398. }
  399. if (eb->first_page != page) {
  400. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  401. eb->first_page->index, page->index);
  402. WARN_ON(1);
  403. ret = -EIO;
  404. goto err;
  405. }
  406. if (check_tree_block_fsid(root, eb)) {
  407. if (printk_ratelimit()) {
  408. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  409. (unsigned long long)eb->start);
  410. }
  411. ret = -EIO;
  412. goto err;
  413. }
  414. found_level = btrfs_header_level(eb);
  415. btrfs_set_buffer_lockdep_class(eb, found_level);
  416. ret = csum_tree_block(root, eb, 1);
  417. if (ret)
  418. ret = -EIO;
  419. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  420. end = eb->start + end - 1;
  421. err:
  422. free_extent_buffer(eb);
  423. out:
  424. return ret;
  425. }
  426. static void end_workqueue_bio(struct bio *bio, int err)
  427. {
  428. struct end_io_wq *end_io_wq = bio->bi_private;
  429. struct btrfs_fs_info *fs_info;
  430. fs_info = end_io_wq->info;
  431. end_io_wq->error = err;
  432. end_io_wq->work.func = end_workqueue_fn;
  433. end_io_wq->work.flags = 0;
  434. if (bio->bi_rw & (1 << BIO_RW)) {
  435. if (end_io_wq->metadata)
  436. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  437. &end_io_wq->work);
  438. else
  439. btrfs_queue_worker(&fs_info->endio_write_workers,
  440. &end_io_wq->work);
  441. } else {
  442. if (end_io_wq->metadata)
  443. btrfs_queue_worker(&fs_info->endio_meta_workers,
  444. &end_io_wq->work);
  445. else
  446. btrfs_queue_worker(&fs_info->endio_workers,
  447. &end_io_wq->work);
  448. }
  449. }
  450. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  451. int metadata)
  452. {
  453. struct end_io_wq *end_io_wq;
  454. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  455. if (!end_io_wq)
  456. return -ENOMEM;
  457. end_io_wq->private = bio->bi_private;
  458. end_io_wq->end_io = bio->bi_end_io;
  459. end_io_wq->info = info;
  460. end_io_wq->error = 0;
  461. end_io_wq->bio = bio;
  462. end_io_wq->metadata = metadata;
  463. bio->bi_private = end_io_wq;
  464. bio->bi_end_io = end_workqueue_bio;
  465. return 0;
  466. }
  467. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  468. {
  469. unsigned long limit = min_t(unsigned long,
  470. info->workers.max_workers,
  471. info->fs_devices->open_devices);
  472. return 256 * limit;
  473. }
  474. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  475. {
  476. return atomic_read(&info->nr_async_bios) >
  477. btrfs_async_submit_limit(info);
  478. }
  479. static void run_one_async_start(struct btrfs_work *work)
  480. {
  481. struct btrfs_fs_info *fs_info;
  482. struct async_submit_bio *async;
  483. async = container_of(work, struct async_submit_bio, work);
  484. fs_info = BTRFS_I(async->inode)->root->fs_info;
  485. async->submit_bio_start(async->inode, async->rw, async->bio,
  486. async->mirror_num, async->bio_flags);
  487. }
  488. static void run_one_async_done(struct btrfs_work *work)
  489. {
  490. struct btrfs_fs_info *fs_info;
  491. struct async_submit_bio *async;
  492. int limit;
  493. async = container_of(work, struct async_submit_bio, work);
  494. fs_info = BTRFS_I(async->inode)->root->fs_info;
  495. limit = btrfs_async_submit_limit(fs_info);
  496. limit = limit * 2 / 3;
  497. atomic_dec(&fs_info->nr_async_submits);
  498. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  499. waitqueue_active(&fs_info->async_submit_wait))
  500. wake_up(&fs_info->async_submit_wait);
  501. async->submit_bio_done(async->inode, async->rw, async->bio,
  502. async->mirror_num, async->bio_flags);
  503. }
  504. static void run_one_async_free(struct btrfs_work *work)
  505. {
  506. struct async_submit_bio *async;
  507. async = container_of(work, struct async_submit_bio, work);
  508. kfree(async);
  509. }
  510. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  511. int rw, struct bio *bio, int mirror_num,
  512. unsigned long bio_flags,
  513. extent_submit_bio_hook_t *submit_bio_start,
  514. extent_submit_bio_hook_t *submit_bio_done)
  515. {
  516. struct async_submit_bio *async;
  517. async = kmalloc(sizeof(*async), GFP_NOFS);
  518. if (!async)
  519. return -ENOMEM;
  520. async->inode = inode;
  521. async->rw = rw;
  522. async->bio = bio;
  523. async->mirror_num = mirror_num;
  524. async->submit_bio_start = submit_bio_start;
  525. async->submit_bio_done = submit_bio_done;
  526. async->work.func = run_one_async_start;
  527. async->work.ordered_func = run_one_async_done;
  528. async->work.ordered_free = run_one_async_free;
  529. async->work.flags = 0;
  530. async->bio_flags = bio_flags;
  531. atomic_inc(&fs_info->nr_async_submits);
  532. if (rw & (1 << BIO_RW_SYNCIO))
  533. btrfs_set_work_high_prio(&async->work);
  534. btrfs_queue_worker(&fs_info->workers, &async->work);
  535. while (atomic_read(&fs_info->async_submit_draining) &&
  536. atomic_read(&fs_info->nr_async_submits)) {
  537. wait_event(fs_info->async_submit_wait,
  538. (atomic_read(&fs_info->nr_async_submits) == 0));
  539. }
  540. return 0;
  541. }
  542. static int btree_csum_one_bio(struct bio *bio)
  543. {
  544. struct bio_vec *bvec = bio->bi_io_vec;
  545. int bio_index = 0;
  546. struct btrfs_root *root;
  547. WARN_ON(bio->bi_vcnt <= 0);
  548. while (bio_index < bio->bi_vcnt) {
  549. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  550. csum_dirty_buffer(root, bvec->bv_page);
  551. bio_index++;
  552. bvec++;
  553. }
  554. return 0;
  555. }
  556. static int __btree_submit_bio_start(struct inode *inode, int rw,
  557. struct bio *bio, int mirror_num,
  558. unsigned long bio_flags)
  559. {
  560. /*
  561. * when we're called for a write, we're already in the async
  562. * submission context. Just jump into btrfs_map_bio
  563. */
  564. btree_csum_one_bio(bio);
  565. return 0;
  566. }
  567. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  568. int mirror_num, unsigned long bio_flags)
  569. {
  570. /*
  571. * when we're called for a write, we're already in the async
  572. * submission context. Just jump into btrfs_map_bio
  573. */
  574. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  575. }
  576. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  577. int mirror_num, unsigned long bio_flags)
  578. {
  579. int ret;
  580. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  581. bio, 1);
  582. BUG_ON(ret);
  583. if (!(rw & (1 << BIO_RW))) {
  584. /*
  585. * called for a read, do the setup so that checksum validation
  586. * can happen in the async kernel threads
  587. */
  588. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  589. mirror_num, 0);
  590. }
  591. /*
  592. * kthread helpers are used to submit writes so that checksumming
  593. * can happen in parallel across all CPUs
  594. */
  595. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  596. inode, rw, bio, mirror_num, 0,
  597. __btree_submit_bio_start,
  598. __btree_submit_bio_done);
  599. }
  600. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  601. {
  602. struct extent_io_tree *tree;
  603. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  604. struct extent_buffer *eb;
  605. int was_dirty;
  606. tree = &BTRFS_I(page->mapping->host)->io_tree;
  607. if (!(current->flags & PF_MEMALLOC)) {
  608. return extent_write_full_page(tree, page,
  609. btree_get_extent, wbc);
  610. }
  611. redirty_page_for_writepage(wbc, page);
  612. eb = btrfs_find_tree_block(root, page_offset(page),
  613. PAGE_CACHE_SIZE);
  614. WARN_ON(!eb);
  615. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  616. if (!was_dirty) {
  617. spin_lock(&root->fs_info->delalloc_lock);
  618. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  619. spin_unlock(&root->fs_info->delalloc_lock);
  620. }
  621. free_extent_buffer(eb);
  622. unlock_page(page);
  623. return 0;
  624. }
  625. static int btree_writepages(struct address_space *mapping,
  626. struct writeback_control *wbc)
  627. {
  628. struct extent_io_tree *tree;
  629. tree = &BTRFS_I(mapping->host)->io_tree;
  630. if (wbc->sync_mode == WB_SYNC_NONE) {
  631. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  632. u64 num_dirty;
  633. unsigned long thresh = 32 * 1024 * 1024;
  634. if (wbc->for_kupdate)
  635. return 0;
  636. /* this is a bit racy, but that's ok */
  637. num_dirty = root->fs_info->dirty_metadata_bytes;
  638. if (num_dirty < thresh)
  639. return 0;
  640. }
  641. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  642. }
  643. static int btree_readpage(struct file *file, struct page *page)
  644. {
  645. struct extent_io_tree *tree;
  646. tree = &BTRFS_I(page->mapping->host)->io_tree;
  647. return extent_read_full_page(tree, page, btree_get_extent);
  648. }
  649. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  650. {
  651. struct extent_io_tree *tree;
  652. struct extent_map_tree *map;
  653. int ret;
  654. if (PageWriteback(page) || PageDirty(page))
  655. return 0;
  656. tree = &BTRFS_I(page->mapping->host)->io_tree;
  657. map = &BTRFS_I(page->mapping->host)->extent_tree;
  658. ret = try_release_extent_state(map, tree, page, gfp_flags);
  659. if (!ret)
  660. return 0;
  661. ret = try_release_extent_buffer(tree, page);
  662. if (ret == 1) {
  663. ClearPagePrivate(page);
  664. set_page_private(page, 0);
  665. page_cache_release(page);
  666. }
  667. return ret;
  668. }
  669. static void btree_invalidatepage(struct page *page, unsigned long offset)
  670. {
  671. struct extent_io_tree *tree;
  672. tree = &BTRFS_I(page->mapping->host)->io_tree;
  673. extent_invalidatepage(tree, page, offset);
  674. btree_releasepage(page, GFP_NOFS);
  675. if (PagePrivate(page)) {
  676. printk(KERN_WARNING "btrfs warning page private not zero "
  677. "on page %llu\n", (unsigned long long)page_offset(page));
  678. ClearPagePrivate(page);
  679. set_page_private(page, 0);
  680. page_cache_release(page);
  681. }
  682. }
  683. static const struct address_space_operations btree_aops = {
  684. .readpage = btree_readpage,
  685. .writepage = btree_writepage,
  686. .writepages = btree_writepages,
  687. .releasepage = btree_releasepage,
  688. .invalidatepage = btree_invalidatepage,
  689. .sync_page = block_sync_page,
  690. };
  691. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  692. u64 parent_transid)
  693. {
  694. struct extent_buffer *buf = NULL;
  695. struct inode *btree_inode = root->fs_info->btree_inode;
  696. int ret = 0;
  697. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  698. if (!buf)
  699. return 0;
  700. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  701. buf, 0, 0, btree_get_extent, 0);
  702. free_extent_buffer(buf);
  703. return ret;
  704. }
  705. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  706. u64 bytenr, u32 blocksize)
  707. {
  708. struct inode *btree_inode = root->fs_info->btree_inode;
  709. struct extent_buffer *eb;
  710. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  711. bytenr, blocksize, GFP_NOFS);
  712. return eb;
  713. }
  714. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  715. u64 bytenr, u32 blocksize)
  716. {
  717. struct inode *btree_inode = root->fs_info->btree_inode;
  718. struct extent_buffer *eb;
  719. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  720. bytenr, blocksize, NULL, GFP_NOFS);
  721. return eb;
  722. }
  723. int btrfs_write_tree_block(struct extent_buffer *buf)
  724. {
  725. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  726. buf->start + buf->len - 1);
  727. }
  728. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  729. {
  730. return filemap_fdatawait_range(buf->first_page->mapping,
  731. buf->start, buf->start + buf->len - 1);
  732. }
  733. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  734. u32 blocksize, u64 parent_transid)
  735. {
  736. struct extent_buffer *buf = NULL;
  737. struct inode *btree_inode = root->fs_info->btree_inode;
  738. struct extent_io_tree *io_tree;
  739. int ret;
  740. io_tree = &BTRFS_I(btree_inode)->io_tree;
  741. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  742. if (!buf)
  743. return NULL;
  744. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  745. if (ret == 0)
  746. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  747. return buf;
  748. }
  749. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  750. struct extent_buffer *buf)
  751. {
  752. struct inode *btree_inode = root->fs_info->btree_inode;
  753. if (btrfs_header_generation(buf) ==
  754. root->fs_info->running_transaction->transid) {
  755. btrfs_assert_tree_locked(buf);
  756. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  757. spin_lock(&root->fs_info->delalloc_lock);
  758. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  759. root->fs_info->dirty_metadata_bytes -= buf->len;
  760. else
  761. WARN_ON(1);
  762. spin_unlock(&root->fs_info->delalloc_lock);
  763. }
  764. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  765. btrfs_set_lock_blocking(buf);
  766. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  767. buf);
  768. }
  769. return 0;
  770. }
  771. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  772. u32 stripesize, struct btrfs_root *root,
  773. struct btrfs_fs_info *fs_info,
  774. u64 objectid)
  775. {
  776. root->node = NULL;
  777. root->commit_root = NULL;
  778. root->sectorsize = sectorsize;
  779. root->nodesize = nodesize;
  780. root->leafsize = leafsize;
  781. root->stripesize = stripesize;
  782. root->ref_cows = 0;
  783. root->track_dirty = 0;
  784. root->in_radix = 0;
  785. root->clean_orphans = 0;
  786. root->fs_info = fs_info;
  787. root->objectid = objectid;
  788. root->last_trans = 0;
  789. root->highest_objectid = 0;
  790. root->name = NULL;
  791. root->in_sysfs = 0;
  792. root->inode_tree = RB_ROOT;
  793. INIT_LIST_HEAD(&root->dirty_list);
  794. INIT_LIST_HEAD(&root->orphan_list);
  795. INIT_LIST_HEAD(&root->root_list);
  796. spin_lock_init(&root->node_lock);
  797. spin_lock_init(&root->list_lock);
  798. spin_lock_init(&root->inode_lock);
  799. mutex_init(&root->objectid_mutex);
  800. mutex_init(&root->log_mutex);
  801. init_waitqueue_head(&root->log_writer_wait);
  802. init_waitqueue_head(&root->log_commit_wait[0]);
  803. init_waitqueue_head(&root->log_commit_wait[1]);
  804. atomic_set(&root->log_commit[0], 0);
  805. atomic_set(&root->log_commit[1], 0);
  806. atomic_set(&root->log_writers, 0);
  807. root->log_batch = 0;
  808. root->log_transid = 0;
  809. root->last_log_commit = 0;
  810. extent_io_tree_init(&root->dirty_log_pages,
  811. fs_info->btree_inode->i_mapping, GFP_NOFS);
  812. memset(&root->root_key, 0, sizeof(root->root_key));
  813. memset(&root->root_item, 0, sizeof(root->root_item));
  814. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  815. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  816. root->defrag_trans_start = fs_info->generation;
  817. init_completion(&root->kobj_unregister);
  818. root->defrag_running = 0;
  819. root->root_key.objectid = objectid;
  820. root->anon_super.s_root = NULL;
  821. root->anon_super.s_dev = 0;
  822. INIT_LIST_HEAD(&root->anon_super.s_list);
  823. INIT_LIST_HEAD(&root->anon_super.s_instances);
  824. init_rwsem(&root->anon_super.s_umount);
  825. return 0;
  826. }
  827. static int find_and_setup_root(struct btrfs_root *tree_root,
  828. struct btrfs_fs_info *fs_info,
  829. u64 objectid,
  830. struct btrfs_root *root)
  831. {
  832. int ret;
  833. u32 blocksize;
  834. u64 generation;
  835. __setup_root(tree_root->nodesize, tree_root->leafsize,
  836. tree_root->sectorsize, tree_root->stripesize,
  837. root, fs_info, objectid);
  838. ret = btrfs_find_last_root(tree_root, objectid,
  839. &root->root_item, &root->root_key);
  840. if (ret > 0)
  841. return -ENOENT;
  842. BUG_ON(ret);
  843. generation = btrfs_root_generation(&root->root_item);
  844. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  845. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  846. blocksize, generation);
  847. BUG_ON(!root->node);
  848. root->commit_root = btrfs_root_node(root);
  849. return 0;
  850. }
  851. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  852. struct btrfs_fs_info *fs_info)
  853. {
  854. struct extent_buffer *eb;
  855. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  856. u64 start = 0;
  857. u64 end = 0;
  858. int ret;
  859. if (!log_root_tree)
  860. return 0;
  861. while (1) {
  862. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  863. 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
  864. if (ret)
  865. break;
  866. clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
  867. EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
  868. }
  869. eb = fs_info->log_root_tree->node;
  870. WARN_ON(btrfs_header_level(eb) != 0);
  871. WARN_ON(btrfs_header_nritems(eb) != 0);
  872. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  873. eb->start, eb->len);
  874. BUG_ON(ret);
  875. free_extent_buffer(eb);
  876. kfree(fs_info->log_root_tree);
  877. fs_info->log_root_tree = NULL;
  878. return 0;
  879. }
  880. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  881. struct btrfs_fs_info *fs_info)
  882. {
  883. struct btrfs_root *root;
  884. struct btrfs_root *tree_root = fs_info->tree_root;
  885. struct extent_buffer *leaf;
  886. root = kzalloc(sizeof(*root), GFP_NOFS);
  887. if (!root)
  888. return ERR_PTR(-ENOMEM);
  889. __setup_root(tree_root->nodesize, tree_root->leafsize,
  890. tree_root->sectorsize, tree_root->stripesize,
  891. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  892. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  893. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  894. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  895. /*
  896. * log trees do not get reference counted because they go away
  897. * before a real commit is actually done. They do store pointers
  898. * to file data extents, and those reference counts still get
  899. * updated (along with back refs to the log tree).
  900. */
  901. root->ref_cows = 0;
  902. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  903. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  904. if (IS_ERR(leaf)) {
  905. kfree(root);
  906. return ERR_CAST(leaf);
  907. }
  908. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  909. btrfs_set_header_bytenr(leaf, leaf->start);
  910. btrfs_set_header_generation(leaf, trans->transid);
  911. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  912. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  913. root->node = leaf;
  914. write_extent_buffer(root->node, root->fs_info->fsid,
  915. (unsigned long)btrfs_header_fsid(root->node),
  916. BTRFS_FSID_SIZE);
  917. btrfs_mark_buffer_dirty(root->node);
  918. btrfs_tree_unlock(root->node);
  919. return root;
  920. }
  921. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  922. struct btrfs_fs_info *fs_info)
  923. {
  924. struct btrfs_root *log_root;
  925. log_root = alloc_log_tree(trans, fs_info);
  926. if (IS_ERR(log_root))
  927. return PTR_ERR(log_root);
  928. WARN_ON(fs_info->log_root_tree);
  929. fs_info->log_root_tree = log_root;
  930. return 0;
  931. }
  932. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  933. struct btrfs_root *root)
  934. {
  935. struct btrfs_root *log_root;
  936. struct btrfs_inode_item *inode_item;
  937. log_root = alloc_log_tree(trans, root->fs_info);
  938. if (IS_ERR(log_root))
  939. return PTR_ERR(log_root);
  940. log_root->last_trans = trans->transid;
  941. log_root->root_key.offset = root->root_key.objectid;
  942. inode_item = &log_root->root_item.inode;
  943. inode_item->generation = cpu_to_le64(1);
  944. inode_item->size = cpu_to_le64(3);
  945. inode_item->nlink = cpu_to_le32(1);
  946. inode_item->nbytes = cpu_to_le64(root->leafsize);
  947. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  948. btrfs_set_root_node(&log_root->root_item, log_root->node);
  949. WARN_ON(root->log_root);
  950. root->log_root = log_root;
  951. root->log_transid = 0;
  952. root->last_log_commit = 0;
  953. return 0;
  954. }
  955. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  956. struct btrfs_key *location)
  957. {
  958. struct btrfs_root *root;
  959. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  960. struct btrfs_path *path;
  961. struct extent_buffer *l;
  962. u64 generation;
  963. u32 blocksize;
  964. int ret = 0;
  965. root = kzalloc(sizeof(*root), GFP_NOFS);
  966. if (!root)
  967. return ERR_PTR(-ENOMEM);
  968. if (location->offset == (u64)-1) {
  969. ret = find_and_setup_root(tree_root, fs_info,
  970. location->objectid, root);
  971. if (ret) {
  972. kfree(root);
  973. return ERR_PTR(ret);
  974. }
  975. goto out;
  976. }
  977. __setup_root(tree_root->nodesize, tree_root->leafsize,
  978. tree_root->sectorsize, tree_root->stripesize,
  979. root, fs_info, location->objectid);
  980. path = btrfs_alloc_path();
  981. BUG_ON(!path);
  982. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  983. if (ret == 0) {
  984. l = path->nodes[0];
  985. read_extent_buffer(l, &root->root_item,
  986. btrfs_item_ptr_offset(l, path->slots[0]),
  987. sizeof(root->root_item));
  988. memcpy(&root->root_key, location, sizeof(*location));
  989. }
  990. btrfs_free_path(path);
  991. if (ret) {
  992. if (ret > 0)
  993. ret = -ENOENT;
  994. return ERR_PTR(ret);
  995. }
  996. generation = btrfs_root_generation(&root->root_item);
  997. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  998. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  999. blocksize, generation);
  1000. root->commit_root = btrfs_root_node(root);
  1001. BUG_ON(!root->node);
  1002. out:
  1003. if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
  1004. root->ref_cows = 1;
  1005. return root;
  1006. }
  1007. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1008. u64 root_objectid)
  1009. {
  1010. struct btrfs_root *root;
  1011. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1012. return fs_info->tree_root;
  1013. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1014. return fs_info->extent_root;
  1015. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1016. (unsigned long)root_objectid);
  1017. return root;
  1018. }
  1019. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1020. struct btrfs_key *location)
  1021. {
  1022. struct btrfs_root *root;
  1023. int ret;
  1024. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1025. return fs_info->tree_root;
  1026. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1027. return fs_info->extent_root;
  1028. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1029. return fs_info->chunk_root;
  1030. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1031. return fs_info->dev_root;
  1032. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1033. return fs_info->csum_root;
  1034. again:
  1035. spin_lock(&fs_info->fs_roots_radix_lock);
  1036. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1037. (unsigned long)location->objectid);
  1038. spin_unlock(&fs_info->fs_roots_radix_lock);
  1039. if (root)
  1040. return root;
  1041. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1042. if (ret == 0)
  1043. ret = -ENOENT;
  1044. if (ret < 0)
  1045. return ERR_PTR(ret);
  1046. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1047. if (IS_ERR(root))
  1048. return root;
  1049. WARN_ON(btrfs_root_refs(&root->root_item) == 0);
  1050. set_anon_super(&root->anon_super, NULL);
  1051. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1052. if (ret)
  1053. goto fail;
  1054. spin_lock(&fs_info->fs_roots_radix_lock);
  1055. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1056. (unsigned long)root->root_key.objectid,
  1057. root);
  1058. if (ret == 0) {
  1059. root->in_radix = 1;
  1060. root->clean_orphans = 1;
  1061. }
  1062. spin_unlock(&fs_info->fs_roots_radix_lock);
  1063. radix_tree_preload_end();
  1064. if (ret) {
  1065. if (ret == -EEXIST) {
  1066. free_fs_root(root);
  1067. goto again;
  1068. }
  1069. goto fail;
  1070. }
  1071. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1072. root->root_key.objectid);
  1073. WARN_ON(ret);
  1074. return root;
  1075. fail:
  1076. free_fs_root(root);
  1077. return ERR_PTR(ret);
  1078. }
  1079. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1080. struct btrfs_key *location,
  1081. const char *name, int namelen)
  1082. {
  1083. return btrfs_read_fs_root_no_name(fs_info, location);
  1084. #if 0
  1085. struct btrfs_root *root;
  1086. int ret;
  1087. root = btrfs_read_fs_root_no_name(fs_info, location);
  1088. if (!root)
  1089. return NULL;
  1090. if (root->in_sysfs)
  1091. return root;
  1092. ret = btrfs_set_root_name(root, name, namelen);
  1093. if (ret) {
  1094. free_extent_buffer(root->node);
  1095. kfree(root);
  1096. return ERR_PTR(ret);
  1097. }
  1098. ret = btrfs_sysfs_add_root(root);
  1099. if (ret) {
  1100. free_extent_buffer(root->node);
  1101. kfree(root->name);
  1102. kfree(root);
  1103. return ERR_PTR(ret);
  1104. }
  1105. root->in_sysfs = 1;
  1106. return root;
  1107. #endif
  1108. }
  1109. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1110. {
  1111. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1112. int ret = 0;
  1113. struct btrfs_device *device;
  1114. struct backing_dev_info *bdi;
  1115. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1116. if (!device->bdev)
  1117. continue;
  1118. bdi = blk_get_backing_dev_info(device->bdev);
  1119. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1120. ret = 1;
  1121. break;
  1122. }
  1123. }
  1124. return ret;
  1125. }
  1126. /*
  1127. * this unplugs every device on the box, and it is only used when page
  1128. * is null
  1129. */
  1130. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1131. {
  1132. struct btrfs_device *device;
  1133. struct btrfs_fs_info *info;
  1134. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1135. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1136. if (!device->bdev)
  1137. continue;
  1138. bdi = blk_get_backing_dev_info(device->bdev);
  1139. if (bdi->unplug_io_fn)
  1140. bdi->unplug_io_fn(bdi, page);
  1141. }
  1142. }
  1143. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1144. {
  1145. struct inode *inode;
  1146. struct extent_map_tree *em_tree;
  1147. struct extent_map *em;
  1148. struct address_space *mapping;
  1149. u64 offset;
  1150. /* the generic O_DIRECT read code does this */
  1151. if (1 || !page) {
  1152. __unplug_io_fn(bdi, page);
  1153. return;
  1154. }
  1155. /*
  1156. * page->mapping may change at any time. Get a consistent copy
  1157. * and use that for everything below
  1158. */
  1159. smp_mb();
  1160. mapping = page->mapping;
  1161. if (!mapping)
  1162. return;
  1163. inode = mapping->host;
  1164. /*
  1165. * don't do the expensive searching for a small number of
  1166. * devices
  1167. */
  1168. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1169. __unplug_io_fn(bdi, page);
  1170. return;
  1171. }
  1172. offset = page_offset(page);
  1173. em_tree = &BTRFS_I(inode)->extent_tree;
  1174. read_lock(&em_tree->lock);
  1175. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1176. read_unlock(&em_tree->lock);
  1177. if (!em) {
  1178. __unplug_io_fn(bdi, page);
  1179. return;
  1180. }
  1181. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1182. free_extent_map(em);
  1183. __unplug_io_fn(bdi, page);
  1184. return;
  1185. }
  1186. offset = offset - em->start;
  1187. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1188. em->block_start + offset, page);
  1189. free_extent_map(em);
  1190. }
  1191. /*
  1192. * If this fails, caller must call bdi_destroy() to get rid of the
  1193. * bdi again.
  1194. */
  1195. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1196. {
  1197. int err;
  1198. bdi->name = "btrfs";
  1199. bdi->capabilities = BDI_CAP_MAP_COPY;
  1200. err = bdi_init(bdi);
  1201. if (err)
  1202. return err;
  1203. err = bdi_register(bdi, NULL, "btrfs-%d",
  1204. atomic_inc_return(&btrfs_bdi_num));
  1205. if (err) {
  1206. bdi_destroy(bdi);
  1207. return err;
  1208. }
  1209. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1210. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1211. bdi->unplug_io_data = info;
  1212. bdi->congested_fn = btrfs_congested_fn;
  1213. bdi->congested_data = info;
  1214. return 0;
  1215. }
  1216. static int bio_ready_for_csum(struct bio *bio)
  1217. {
  1218. u64 length = 0;
  1219. u64 buf_len = 0;
  1220. u64 start = 0;
  1221. struct page *page;
  1222. struct extent_io_tree *io_tree = NULL;
  1223. struct btrfs_fs_info *info = NULL;
  1224. struct bio_vec *bvec;
  1225. int i;
  1226. int ret;
  1227. bio_for_each_segment(bvec, bio, i) {
  1228. page = bvec->bv_page;
  1229. if (page->private == EXTENT_PAGE_PRIVATE) {
  1230. length += bvec->bv_len;
  1231. continue;
  1232. }
  1233. if (!page->private) {
  1234. length += bvec->bv_len;
  1235. continue;
  1236. }
  1237. length = bvec->bv_len;
  1238. buf_len = page->private >> 2;
  1239. start = page_offset(page) + bvec->bv_offset;
  1240. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1241. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1242. }
  1243. /* are we fully contained in this bio? */
  1244. if (buf_len <= length)
  1245. return 1;
  1246. ret = extent_range_uptodate(io_tree, start + length,
  1247. start + buf_len - 1);
  1248. return ret;
  1249. }
  1250. /*
  1251. * called by the kthread helper functions to finally call the bio end_io
  1252. * functions. This is where read checksum verification actually happens
  1253. */
  1254. static void end_workqueue_fn(struct btrfs_work *work)
  1255. {
  1256. struct bio *bio;
  1257. struct end_io_wq *end_io_wq;
  1258. struct btrfs_fs_info *fs_info;
  1259. int error;
  1260. end_io_wq = container_of(work, struct end_io_wq, work);
  1261. bio = end_io_wq->bio;
  1262. fs_info = end_io_wq->info;
  1263. /* metadata bio reads are special because the whole tree block must
  1264. * be checksummed at once. This makes sure the entire block is in
  1265. * ram and up to date before trying to verify things. For
  1266. * blocksize <= pagesize, it is basically a noop
  1267. */
  1268. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1269. !bio_ready_for_csum(bio)) {
  1270. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1271. &end_io_wq->work);
  1272. return;
  1273. }
  1274. error = end_io_wq->error;
  1275. bio->bi_private = end_io_wq->private;
  1276. bio->bi_end_io = end_io_wq->end_io;
  1277. kfree(end_io_wq);
  1278. bio_endio(bio, error);
  1279. }
  1280. static int cleaner_kthread(void *arg)
  1281. {
  1282. struct btrfs_root *root = arg;
  1283. do {
  1284. smp_mb();
  1285. if (root->fs_info->closing)
  1286. break;
  1287. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1288. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1289. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1290. btrfs_run_delayed_iputs(root);
  1291. btrfs_clean_old_snapshots(root);
  1292. mutex_unlock(&root->fs_info->cleaner_mutex);
  1293. }
  1294. if (freezing(current)) {
  1295. refrigerator();
  1296. } else {
  1297. smp_mb();
  1298. if (root->fs_info->closing)
  1299. break;
  1300. set_current_state(TASK_INTERRUPTIBLE);
  1301. schedule();
  1302. __set_current_state(TASK_RUNNING);
  1303. }
  1304. } while (!kthread_should_stop());
  1305. return 0;
  1306. }
  1307. static int transaction_kthread(void *arg)
  1308. {
  1309. struct btrfs_root *root = arg;
  1310. struct btrfs_trans_handle *trans;
  1311. struct btrfs_transaction *cur;
  1312. unsigned long now;
  1313. unsigned long delay;
  1314. int ret;
  1315. do {
  1316. smp_mb();
  1317. if (root->fs_info->closing)
  1318. break;
  1319. delay = HZ * 30;
  1320. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1321. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1322. mutex_lock(&root->fs_info->trans_mutex);
  1323. cur = root->fs_info->running_transaction;
  1324. if (!cur) {
  1325. mutex_unlock(&root->fs_info->trans_mutex);
  1326. goto sleep;
  1327. }
  1328. now = get_seconds();
  1329. if (now < cur->start_time || now - cur->start_time < 30) {
  1330. mutex_unlock(&root->fs_info->trans_mutex);
  1331. delay = HZ * 5;
  1332. goto sleep;
  1333. }
  1334. mutex_unlock(&root->fs_info->trans_mutex);
  1335. trans = btrfs_start_transaction(root, 1);
  1336. ret = btrfs_commit_transaction(trans, root);
  1337. sleep:
  1338. wake_up_process(root->fs_info->cleaner_kthread);
  1339. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1340. if (freezing(current)) {
  1341. refrigerator();
  1342. } else {
  1343. if (root->fs_info->closing)
  1344. break;
  1345. set_current_state(TASK_INTERRUPTIBLE);
  1346. schedule_timeout(delay);
  1347. __set_current_state(TASK_RUNNING);
  1348. }
  1349. } while (!kthread_should_stop());
  1350. return 0;
  1351. }
  1352. struct btrfs_root *open_ctree(struct super_block *sb,
  1353. struct btrfs_fs_devices *fs_devices,
  1354. char *options)
  1355. {
  1356. u32 sectorsize;
  1357. u32 nodesize;
  1358. u32 leafsize;
  1359. u32 blocksize;
  1360. u32 stripesize;
  1361. u64 generation;
  1362. u64 features;
  1363. struct btrfs_key location;
  1364. struct buffer_head *bh;
  1365. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1366. GFP_NOFS);
  1367. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1368. GFP_NOFS);
  1369. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1370. GFP_NOFS);
  1371. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1372. GFP_NOFS);
  1373. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1374. GFP_NOFS);
  1375. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1376. GFP_NOFS);
  1377. struct btrfs_root *log_tree_root;
  1378. int ret;
  1379. int err = -EINVAL;
  1380. struct btrfs_super_block *disk_super;
  1381. if (!extent_root || !tree_root || !fs_info ||
  1382. !chunk_root || !dev_root || !csum_root) {
  1383. err = -ENOMEM;
  1384. goto fail;
  1385. }
  1386. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1387. if (ret) {
  1388. err = ret;
  1389. goto fail;
  1390. }
  1391. ret = setup_bdi(fs_info, &fs_info->bdi);
  1392. if (ret) {
  1393. err = ret;
  1394. goto fail_srcu;
  1395. }
  1396. fs_info->btree_inode = new_inode(sb);
  1397. if (!fs_info->btree_inode) {
  1398. err = -ENOMEM;
  1399. goto fail_bdi;
  1400. }
  1401. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1402. INIT_LIST_HEAD(&fs_info->trans_list);
  1403. INIT_LIST_HEAD(&fs_info->dead_roots);
  1404. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1405. INIT_LIST_HEAD(&fs_info->hashers);
  1406. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1407. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1408. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1409. spin_lock_init(&fs_info->delalloc_lock);
  1410. spin_lock_init(&fs_info->new_trans_lock);
  1411. spin_lock_init(&fs_info->ref_cache_lock);
  1412. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1413. spin_lock_init(&fs_info->delayed_iput_lock);
  1414. init_completion(&fs_info->kobj_unregister);
  1415. fs_info->tree_root = tree_root;
  1416. fs_info->extent_root = extent_root;
  1417. fs_info->csum_root = csum_root;
  1418. fs_info->chunk_root = chunk_root;
  1419. fs_info->dev_root = dev_root;
  1420. fs_info->fs_devices = fs_devices;
  1421. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1422. INIT_LIST_HEAD(&fs_info->space_info);
  1423. btrfs_mapping_init(&fs_info->mapping_tree);
  1424. atomic_set(&fs_info->nr_async_submits, 0);
  1425. atomic_set(&fs_info->async_delalloc_pages, 0);
  1426. atomic_set(&fs_info->async_submit_draining, 0);
  1427. atomic_set(&fs_info->nr_async_bios, 0);
  1428. fs_info->sb = sb;
  1429. fs_info->max_inline = 8192 * 1024;
  1430. fs_info->metadata_ratio = 0;
  1431. fs_info->thread_pool_size = min_t(unsigned long,
  1432. num_online_cpus() + 2, 8);
  1433. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1434. spin_lock_init(&fs_info->ordered_extent_lock);
  1435. sb->s_blocksize = 4096;
  1436. sb->s_blocksize_bits = blksize_bits(4096);
  1437. sb->s_bdi = &fs_info->bdi;
  1438. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1439. fs_info->btree_inode->i_nlink = 1;
  1440. /*
  1441. * we set the i_size on the btree inode to the max possible int.
  1442. * the real end of the address space is determined by all of
  1443. * the devices in the system
  1444. */
  1445. fs_info->btree_inode->i_size = OFFSET_MAX;
  1446. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1447. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1448. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1449. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1450. fs_info->btree_inode->i_mapping,
  1451. GFP_NOFS);
  1452. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1453. GFP_NOFS);
  1454. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1455. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1456. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1457. sizeof(struct btrfs_key));
  1458. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1459. insert_inode_hash(fs_info->btree_inode);
  1460. spin_lock_init(&fs_info->block_group_cache_lock);
  1461. fs_info->block_group_cache_tree = RB_ROOT;
  1462. extent_io_tree_init(&fs_info->freed_extents[0],
  1463. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1464. extent_io_tree_init(&fs_info->freed_extents[1],
  1465. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1466. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1467. fs_info->do_barriers = 1;
  1468. mutex_init(&fs_info->trans_mutex);
  1469. mutex_init(&fs_info->ordered_operations_mutex);
  1470. mutex_init(&fs_info->tree_log_mutex);
  1471. mutex_init(&fs_info->chunk_mutex);
  1472. mutex_init(&fs_info->transaction_kthread_mutex);
  1473. mutex_init(&fs_info->cleaner_mutex);
  1474. mutex_init(&fs_info->volume_mutex);
  1475. init_rwsem(&fs_info->extent_commit_sem);
  1476. init_rwsem(&fs_info->cleanup_work_sem);
  1477. init_rwsem(&fs_info->subvol_sem);
  1478. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1479. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1480. init_waitqueue_head(&fs_info->transaction_throttle);
  1481. init_waitqueue_head(&fs_info->transaction_wait);
  1482. init_waitqueue_head(&fs_info->async_submit_wait);
  1483. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1484. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1485. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1486. if (!bh)
  1487. goto fail_iput;
  1488. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1489. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1490. sizeof(fs_info->super_for_commit));
  1491. brelse(bh);
  1492. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1493. disk_super = &fs_info->super_copy;
  1494. if (!btrfs_super_root(disk_super))
  1495. goto fail_iput;
  1496. ret = btrfs_parse_options(tree_root, options);
  1497. if (ret) {
  1498. err = ret;
  1499. goto fail_iput;
  1500. }
  1501. features = btrfs_super_incompat_flags(disk_super) &
  1502. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1503. if (features) {
  1504. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1505. "unsupported optional features (%Lx).\n",
  1506. (unsigned long long)features);
  1507. err = -EINVAL;
  1508. goto fail_iput;
  1509. }
  1510. features = btrfs_super_incompat_flags(disk_super);
  1511. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1512. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1513. btrfs_set_super_incompat_flags(disk_super, features);
  1514. }
  1515. features = btrfs_super_compat_ro_flags(disk_super) &
  1516. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1517. if (!(sb->s_flags & MS_RDONLY) && features) {
  1518. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1519. "unsupported option features (%Lx).\n",
  1520. (unsigned long long)features);
  1521. err = -EINVAL;
  1522. goto fail_iput;
  1523. }
  1524. btrfs_init_workers(&fs_info->generic_worker,
  1525. "genwork", 1, NULL);
  1526. btrfs_init_workers(&fs_info->workers, "worker",
  1527. fs_info->thread_pool_size,
  1528. &fs_info->generic_worker);
  1529. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1530. fs_info->thread_pool_size,
  1531. &fs_info->generic_worker);
  1532. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1533. min_t(u64, fs_devices->num_devices,
  1534. fs_info->thread_pool_size),
  1535. &fs_info->generic_worker);
  1536. btrfs_init_workers(&fs_info->enospc_workers, "enospc",
  1537. fs_info->thread_pool_size,
  1538. &fs_info->generic_worker);
  1539. /* a higher idle thresh on the submit workers makes it much more
  1540. * likely that bios will be send down in a sane order to the
  1541. * devices
  1542. */
  1543. fs_info->submit_workers.idle_thresh = 64;
  1544. fs_info->workers.idle_thresh = 16;
  1545. fs_info->workers.ordered = 1;
  1546. fs_info->delalloc_workers.idle_thresh = 2;
  1547. fs_info->delalloc_workers.ordered = 1;
  1548. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1549. &fs_info->generic_worker);
  1550. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1551. fs_info->thread_pool_size,
  1552. &fs_info->generic_worker);
  1553. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1554. fs_info->thread_pool_size,
  1555. &fs_info->generic_worker);
  1556. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1557. "endio-meta-write", fs_info->thread_pool_size,
  1558. &fs_info->generic_worker);
  1559. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1560. fs_info->thread_pool_size,
  1561. &fs_info->generic_worker);
  1562. /*
  1563. * endios are largely parallel and should have a very
  1564. * low idle thresh
  1565. */
  1566. fs_info->endio_workers.idle_thresh = 4;
  1567. fs_info->endio_meta_workers.idle_thresh = 4;
  1568. fs_info->endio_write_workers.idle_thresh = 2;
  1569. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1570. btrfs_start_workers(&fs_info->workers, 1);
  1571. btrfs_start_workers(&fs_info->generic_worker, 1);
  1572. btrfs_start_workers(&fs_info->submit_workers, 1);
  1573. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1574. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1575. btrfs_start_workers(&fs_info->endio_workers, 1);
  1576. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1577. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1578. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1579. btrfs_start_workers(&fs_info->enospc_workers, 1);
  1580. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1581. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1582. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1583. nodesize = btrfs_super_nodesize(disk_super);
  1584. leafsize = btrfs_super_leafsize(disk_super);
  1585. sectorsize = btrfs_super_sectorsize(disk_super);
  1586. stripesize = btrfs_super_stripesize(disk_super);
  1587. tree_root->nodesize = nodesize;
  1588. tree_root->leafsize = leafsize;
  1589. tree_root->sectorsize = sectorsize;
  1590. tree_root->stripesize = stripesize;
  1591. sb->s_blocksize = sectorsize;
  1592. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1593. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1594. sizeof(disk_super->magic))) {
  1595. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1596. goto fail_sb_buffer;
  1597. }
  1598. mutex_lock(&fs_info->chunk_mutex);
  1599. ret = btrfs_read_sys_array(tree_root);
  1600. mutex_unlock(&fs_info->chunk_mutex);
  1601. if (ret) {
  1602. printk(KERN_WARNING "btrfs: failed to read the system "
  1603. "array on %s\n", sb->s_id);
  1604. goto fail_sb_buffer;
  1605. }
  1606. blocksize = btrfs_level_size(tree_root,
  1607. btrfs_super_chunk_root_level(disk_super));
  1608. generation = btrfs_super_chunk_root_generation(disk_super);
  1609. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1610. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1611. chunk_root->node = read_tree_block(chunk_root,
  1612. btrfs_super_chunk_root(disk_super),
  1613. blocksize, generation);
  1614. BUG_ON(!chunk_root->node);
  1615. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1616. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1617. sb->s_id);
  1618. goto fail_chunk_root;
  1619. }
  1620. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1621. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1622. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1623. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1624. BTRFS_UUID_SIZE);
  1625. mutex_lock(&fs_info->chunk_mutex);
  1626. ret = btrfs_read_chunk_tree(chunk_root);
  1627. mutex_unlock(&fs_info->chunk_mutex);
  1628. if (ret) {
  1629. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1630. sb->s_id);
  1631. goto fail_chunk_root;
  1632. }
  1633. btrfs_close_extra_devices(fs_devices);
  1634. blocksize = btrfs_level_size(tree_root,
  1635. btrfs_super_root_level(disk_super));
  1636. generation = btrfs_super_generation(disk_super);
  1637. tree_root->node = read_tree_block(tree_root,
  1638. btrfs_super_root(disk_super),
  1639. blocksize, generation);
  1640. if (!tree_root->node)
  1641. goto fail_chunk_root;
  1642. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1643. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1644. sb->s_id);
  1645. goto fail_tree_root;
  1646. }
  1647. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1648. tree_root->commit_root = btrfs_root_node(tree_root);
  1649. ret = find_and_setup_root(tree_root, fs_info,
  1650. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1651. if (ret)
  1652. goto fail_tree_root;
  1653. extent_root->track_dirty = 1;
  1654. ret = find_and_setup_root(tree_root, fs_info,
  1655. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1656. if (ret)
  1657. goto fail_extent_root;
  1658. dev_root->track_dirty = 1;
  1659. ret = find_and_setup_root(tree_root, fs_info,
  1660. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1661. if (ret)
  1662. goto fail_dev_root;
  1663. csum_root->track_dirty = 1;
  1664. ret = btrfs_read_block_groups(extent_root);
  1665. if (ret) {
  1666. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1667. goto fail_block_groups;
  1668. }
  1669. fs_info->generation = generation;
  1670. fs_info->last_trans_committed = generation;
  1671. fs_info->data_alloc_profile = (u64)-1;
  1672. fs_info->metadata_alloc_profile = (u64)-1;
  1673. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1674. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1675. "btrfs-cleaner");
  1676. if (IS_ERR(fs_info->cleaner_kthread))
  1677. goto fail_block_groups;
  1678. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1679. tree_root,
  1680. "btrfs-transaction");
  1681. if (IS_ERR(fs_info->transaction_kthread))
  1682. goto fail_cleaner;
  1683. if (!btrfs_test_opt(tree_root, SSD) &&
  1684. !btrfs_test_opt(tree_root, NOSSD) &&
  1685. !fs_info->fs_devices->rotating) {
  1686. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1687. "mode\n");
  1688. btrfs_set_opt(fs_info->mount_opt, SSD);
  1689. }
  1690. if (btrfs_super_log_root(disk_super) != 0) {
  1691. u64 bytenr = btrfs_super_log_root(disk_super);
  1692. if (fs_devices->rw_devices == 0) {
  1693. printk(KERN_WARNING "Btrfs log replay required "
  1694. "on RO media\n");
  1695. err = -EIO;
  1696. goto fail_trans_kthread;
  1697. }
  1698. blocksize =
  1699. btrfs_level_size(tree_root,
  1700. btrfs_super_log_root_level(disk_super));
  1701. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1702. GFP_NOFS);
  1703. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1704. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1705. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1706. blocksize,
  1707. generation + 1);
  1708. ret = btrfs_recover_log_trees(log_tree_root);
  1709. BUG_ON(ret);
  1710. if (sb->s_flags & MS_RDONLY) {
  1711. ret = btrfs_commit_super(tree_root);
  1712. BUG_ON(ret);
  1713. }
  1714. }
  1715. ret = btrfs_find_orphan_roots(tree_root);
  1716. BUG_ON(ret);
  1717. if (!(sb->s_flags & MS_RDONLY)) {
  1718. ret = btrfs_recover_relocation(tree_root);
  1719. if (ret < 0) {
  1720. printk(KERN_WARNING
  1721. "btrfs: failed to recover relocation\n");
  1722. err = -EINVAL;
  1723. goto fail_trans_kthread;
  1724. }
  1725. }
  1726. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1727. location.type = BTRFS_ROOT_ITEM_KEY;
  1728. location.offset = (u64)-1;
  1729. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1730. if (!fs_info->fs_root)
  1731. goto fail_trans_kthread;
  1732. if (!(sb->s_flags & MS_RDONLY)) {
  1733. down_read(&fs_info->cleanup_work_sem);
  1734. btrfs_orphan_cleanup(fs_info->fs_root);
  1735. up_read(&fs_info->cleanup_work_sem);
  1736. }
  1737. return tree_root;
  1738. fail_trans_kthread:
  1739. kthread_stop(fs_info->transaction_kthread);
  1740. fail_cleaner:
  1741. kthread_stop(fs_info->cleaner_kthread);
  1742. /*
  1743. * make sure we're done with the btree inode before we stop our
  1744. * kthreads
  1745. */
  1746. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1747. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1748. fail_block_groups:
  1749. btrfs_free_block_groups(fs_info);
  1750. free_extent_buffer(csum_root->node);
  1751. free_extent_buffer(csum_root->commit_root);
  1752. fail_dev_root:
  1753. free_extent_buffer(dev_root->node);
  1754. free_extent_buffer(dev_root->commit_root);
  1755. fail_extent_root:
  1756. free_extent_buffer(extent_root->node);
  1757. free_extent_buffer(extent_root->commit_root);
  1758. fail_tree_root:
  1759. free_extent_buffer(tree_root->node);
  1760. free_extent_buffer(tree_root->commit_root);
  1761. fail_chunk_root:
  1762. free_extent_buffer(chunk_root->node);
  1763. free_extent_buffer(chunk_root->commit_root);
  1764. fail_sb_buffer:
  1765. btrfs_stop_workers(&fs_info->generic_worker);
  1766. btrfs_stop_workers(&fs_info->fixup_workers);
  1767. btrfs_stop_workers(&fs_info->delalloc_workers);
  1768. btrfs_stop_workers(&fs_info->workers);
  1769. btrfs_stop_workers(&fs_info->endio_workers);
  1770. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1771. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1772. btrfs_stop_workers(&fs_info->endio_write_workers);
  1773. btrfs_stop_workers(&fs_info->submit_workers);
  1774. btrfs_stop_workers(&fs_info->enospc_workers);
  1775. fail_iput:
  1776. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1777. iput(fs_info->btree_inode);
  1778. btrfs_close_devices(fs_info->fs_devices);
  1779. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1780. fail_bdi:
  1781. bdi_destroy(&fs_info->bdi);
  1782. fail_srcu:
  1783. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1784. fail:
  1785. kfree(extent_root);
  1786. kfree(tree_root);
  1787. kfree(fs_info);
  1788. kfree(chunk_root);
  1789. kfree(dev_root);
  1790. kfree(csum_root);
  1791. return ERR_PTR(err);
  1792. }
  1793. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1794. {
  1795. char b[BDEVNAME_SIZE];
  1796. if (uptodate) {
  1797. set_buffer_uptodate(bh);
  1798. } else {
  1799. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1800. printk(KERN_WARNING "lost page write due to "
  1801. "I/O error on %s\n",
  1802. bdevname(bh->b_bdev, b));
  1803. }
  1804. /* note, we dont' set_buffer_write_io_error because we have
  1805. * our own ways of dealing with the IO errors
  1806. */
  1807. clear_buffer_uptodate(bh);
  1808. }
  1809. unlock_buffer(bh);
  1810. put_bh(bh);
  1811. }
  1812. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1813. {
  1814. struct buffer_head *bh;
  1815. struct buffer_head *latest = NULL;
  1816. struct btrfs_super_block *super;
  1817. int i;
  1818. u64 transid = 0;
  1819. u64 bytenr;
  1820. /* we would like to check all the supers, but that would make
  1821. * a btrfs mount succeed after a mkfs from a different FS.
  1822. * So, we need to add a special mount option to scan for
  1823. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1824. */
  1825. for (i = 0; i < 1; i++) {
  1826. bytenr = btrfs_sb_offset(i);
  1827. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1828. break;
  1829. bh = __bread(bdev, bytenr / 4096, 4096);
  1830. if (!bh)
  1831. continue;
  1832. super = (struct btrfs_super_block *)bh->b_data;
  1833. if (btrfs_super_bytenr(super) != bytenr ||
  1834. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1835. sizeof(super->magic))) {
  1836. brelse(bh);
  1837. continue;
  1838. }
  1839. if (!latest || btrfs_super_generation(super) > transid) {
  1840. brelse(latest);
  1841. latest = bh;
  1842. transid = btrfs_super_generation(super);
  1843. } else {
  1844. brelse(bh);
  1845. }
  1846. }
  1847. return latest;
  1848. }
  1849. /*
  1850. * this should be called twice, once with wait == 0 and
  1851. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1852. * we write are pinned.
  1853. *
  1854. * They are released when wait == 1 is done.
  1855. * max_mirrors must be the same for both runs, and it indicates how
  1856. * many supers on this one device should be written.
  1857. *
  1858. * max_mirrors == 0 means to write them all.
  1859. */
  1860. static int write_dev_supers(struct btrfs_device *device,
  1861. struct btrfs_super_block *sb,
  1862. int do_barriers, int wait, int max_mirrors)
  1863. {
  1864. struct buffer_head *bh;
  1865. int i;
  1866. int ret;
  1867. int errors = 0;
  1868. u32 crc;
  1869. u64 bytenr;
  1870. int last_barrier = 0;
  1871. if (max_mirrors == 0)
  1872. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1873. /* make sure only the last submit_bh does a barrier */
  1874. if (do_barriers) {
  1875. for (i = 0; i < max_mirrors; i++) {
  1876. bytenr = btrfs_sb_offset(i);
  1877. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1878. device->total_bytes)
  1879. break;
  1880. last_barrier = i;
  1881. }
  1882. }
  1883. for (i = 0; i < max_mirrors; i++) {
  1884. bytenr = btrfs_sb_offset(i);
  1885. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1886. break;
  1887. if (wait) {
  1888. bh = __find_get_block(device->bdev, bytenr / 4096,
  1889. BTRFS_SUPER_INFO_SIZE);
  1890. BUG_ON(!bh);
  1891. wait_on_buffer(bh);
  1892. if (!buffer_uptodate(bh))
  1893. errors++;
  1894. /* drop our reference */
  1895. brelse(bh);
  1896. /* drop the reference from the wait == 0 run */
  1897. brelse(bh);
  1898. continue;
  1899. } else {
  1900. btrfs_set_super_bytenr(sb, bytenr);
  1901. crc = ~(u32)0;
  1902. crc = btrfs_csum_data(NULL, (char *)sb +
  1903. BTRFS_CSUM_SIZE, crc,
  1904. BTRFS_SUPER_INFO_SIZE -
  1905. BTRFS_CSUM_SIZE);
  1906. btrfs_csum_final(crc, sb->csum);
  1907. /*
  1908. * one reference for us, and we leave it for the
  1909. * caller
  1910. */
  1911. bh = __getblk(device->bdev, bytenr / 4096,
  1912. BTRFS_SUPER_INFO_SIZE);
  1913. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1914. /* one reference for submit_bh */
  1915. get_bh(bh);
  1916. set_buffer_uptodate(bh);
  1917. lock_buffer(bh);
  1918. bh->b_end_io = btrfs_end_buffer_write_sync;
  1919. }
  1920. if (i == last_barrier && do_barriers && device->barriers) {
  1921. ret = submit_bh(WRITE_BARRIER, bh);
  1922. if (ret == -EOPNOTSUPP) {
  1923. printk("btrfs: disabling barriers on dev %s\n",
  1924. device->name);
  1925. set_buffer_uptodate(bh);
  1926. device->barriers = 0;
  1927. /* one reference for submit_bh */
  1928. get_bh(bh);
  1929. lock_buffer(bh);
  1930. ret = submit_bh(WRITE_SYNC, bh);
  1931. }
  1932. } else {
  1933. ret = submit_bh(WRITE_SYNC, bh);
  1934. }
  1935. if (ret)
  1936. errors++;
  1937. }
  1938. return errors < i ? 0 : -1;
  1939. }
  1940. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1941. {
  1942. struct list_head *head;
  1943. struct btrfs_device *dev;
  1944. struct btrfs_super_block *sb;
  1945. struct btrfs_dev_item *dev_item;
  1946. int ret;
  1947. int do_barriers;
  1948. int max_errors;
  1949. int total_errors = 0;
  1950. u64 flags;
  1951. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1952. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1953. sb = &root->fs_info->super_for_commit;
  1954. dev_item = &sb->dev_item;
  1955. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1956. head = &root->fs_info->fs_devices->devices;
  1957. list_for_each_entry(dev, head, dev_list) {
  1958. if (!dev->bdev) {
  1959. total_errors++;
  1960. continue;
  1961. }
  1962. if (!dev->in_fs_metadata || !dev->writeable)
  1963. continue;
  1964. btrfs_set_stack_device_generation(dev_item, 0);
  1965. btrfs_set_stack_device_type(dev_item, dev->type);
  1966. btrfs_set_stack_device_id(dev_item, dev->devid);
  1967. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1968. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1969. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1970. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1971. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1972. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1973. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1974. flags = btrfs_super_flags(sb);
  1975. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1976. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1977. if (ret)
  1978. total_errors++;
  1979. }
  1980. if (total_errors > max_errors) {
  1981. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1982. total_errors);
  1983. BUG();
  1984. }
  1985. total_errors = 0;
  1986. list_for_each_entry(dev, head, dev_list) {
  1987. if (!dev->bdev)
  1988. continue;
  1989. if (!dev->in_fs_metadata || !dev->writeable)
  1990. continue;
  1991. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1992. if (ret)
  1993. total_errors++;
  1994. }
  1995. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1996. if (total_errors > max_errors) {
  1997. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1998. total_errors);
  1999. BUG();
  2000. }
  2001. return 0;
  2002. }
  2003. int write_ctree_super(struct btrfs_trans_handle *trans,
  2004. struct btrfs_root *root, int max_mirrors)
  2005. {
  2006. int ret;
  2007. ret = write_all_supers(root, max_mirrors);
  2008. return ret;
  2009. }
  2010. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2011. {
  2012. spin_lock(&fs_info->fs_roots_radix_lock);
  2013. radix_tree_delete(&fs_info->fs_roots_radix,
  2014. (unsigned long)root->root_key.objectid);
  2015. spin_unlock(&fs_info->fs_roots_radix_lock);
  2016. if (btrfs_root_refs(&root->root_item) == 0)
  2017. synchronize_srcu(&fs_info->subvol_srcu);
  2018. free_fs_root(root);
  2019. return 0;
  2020. }
  2021. static void free_fs_root(struct btrfs_root *root)
  2022. {
  2023. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2024. if (root->anon_super.s_dev) {
  2025. down_write(&root->anon_super.s_umount);
  2026. kill_anon_super(&root->anon_super);
  2027. }
  2028. free_extent_buffer(root->node);
  2029. free_extent_buffer(root->commit_root);
  2030. kfree(root->name);
  2031. kfree(root);
  2032. }
  2033. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2034. {
  2035. int ret;
  2036. struct btrfs_root *gang[8];
  2037. int i;
  2038. while (!list_empty(&fs_info->dead_roots)) {
  2039. gang[0] = list_entry(fs_info->dead_roots.next,
  2040. struct btrfs_root, root_list);
  2041. list_del(&gang[0]->root_list);
  2042. if (gang[0]->in_radix) {
  2043. btrfs_free_fs_root(fs_info, gang[0]);
  2044. } else {
  2045. free_extent_buffer(gang[0]->node);
  2046. free_extent_buffer(gang[0]->commit_root);
  2047. kfree(gang[0]);
  2048. }
  2049. }
  2050. while (1) {
  2051. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2052. (void **)gang, 0,
  2053. ARRAY_SIZE(gang));
  2054. if (!ret)
  2055. break;
  2056. for (i = 0; i < ret; i++)
  2057. btrfs_free_fs_root(fs_info, gang[i]);
  2058. }
  2059. return 0;
  2060. }
  2061. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2062. {
  2063. u64 root_objectid = 0;
  2064. struct btrfs_root *gang[8];
  2065. int i;
  2066. int ret;
  2067. while (1) {
  2068. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2069. (void **)gang, root_objectid,
  2070. ARRAY_SIZE(gang));
  2071. if (!ret)
  2072. break;
  2073. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2074. for (i = 0; i < ret; i++) {
  2075. root_objectid = gang[i]->root_key.objectid;
  2076. btrfs_orphan_cleanup(gang[i]);
  2077. }
  2078. root_objectid++;
  2079. }
  2080. return 0;
  2081. }
  2082. int btrfs_commit_super(struct btrfs_root *root)
  2083. {
  2084. struct btrfs_trans_handle *trans;
  2085. int ret;
  2086. mutex_lock(&root->fs_info->cleaner_mutex);
  2087. btrfs_run_delayed_iputs(root);
  2088. btrfs_clean_old_snapshots(root);
  2089. mutex_unlock(&root->fs_info->cleaner_mutex);
  2090. /* wait until ongoing cleanup work done */
  2091. down_write(&root->fs_info->cleanup_work_sem);
  2092. up_write(&root->fs_info->cleanup_work_sem);
  2093. trans = btrfs_start_transaction(root, 1);
  2094. ret = btrfs_commit_transaction(trans, root);
  2095. BUG_ON(ret);
  2096. /* run commit again to drop the original snapshot */
  2097. trans = btrfs_start_transaction(root, 1);
  2098. btrfs_commit_transaction(trans, root);
  2099. ret = btrfs_write_and_wait_transaction(NULL, root);
  2100. BUG_ON(ret);
  2101. ret = write_ctree_super(NULL, root, 0);
  2102. return ret;
  2103. }
  2104. int close_ctree(struct btrfs_root *root)
  2105. {
  2106. struct btrfs_fs_info *fs_info = root->fs_info;
  2107. int ret;
  2108. fs_info->closing = 1;
  2109. smp_mb();
  2110. kthread_stop(root->fs_info->transaction_kthread);
  2111. kthread_stop(root->fs_info->cleaner_kthread);
  2112. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2113. ret = btrfs_commit_super(root);
  2114. if (ret)
  2115. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2116. }
  2117. fs_info->closing = 2;
  2118. smp_mb();
  2119. if (fs_info->delalloc_bytes) {
  2120. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2121. (unsigned long long)fs_info->delalloc_bytes);
  2122. }
  2123. if (fs_info->total_ref_cache_size) {
  2124. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2125. (unsigned long long)fs_info->total_ref_cache_size);
  2126. }
  2127. free_extent_buffer(fs_info->extent_root->node);
  2128. free_extent_buffer(fs_info->extent_root->commit_root);
  2129. free_extent_buffer(fs_info->tree_root->node);
  2130. free_extent_buffer(fs_info->tree_root->commit_root);
  2131. free_extent_buffer(root->fs_info->chunk_root->node);
  2132. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2133. free_extent_buffer(root->fs_info->dev_root->node);
  2134. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2135. free_extent_buffer(root->fs_info->csum_root->node);
  2136. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2137. btrfs_free_block_groups(root->fs_info);
  2138. del_fs_roots(fs_info);
  2139. iput(fs_info->btree_inode);
  2140. btrfs_stop_workers(&fs_info->generic_worker);
  2141. btrfs_stop_workers(&fs_info->fixup_workers);
  2142. btrfs_stop_workers(&fs_info->delalloc_workers);
  2143. btrfs_stop_workers(&fs_info->workers);
  2144. btrfs_stop_workers(&fs_info->endio_workers);
  2145. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2146. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2147. btrfs_stop_workers(&fs_info->endio_write_workers);
  2148. btrfs_stop_workers(&fs_info->submit_workers);
  2149. btrfs_stop_workers(&fs_info->enospc_workers);
  2150. btrfs_close_devices(fs_info->fs_devices);
  2151. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2152. bdi_destroy(&fs_info->bdi);
  2153. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2154. kfree(fs_info->extent_root);
  2155. kfree(fs_info->tree_root);
  2156. kfree(fs_info->chunk_root);
  2157. kfree(fs_info->dev_root);
  2158. kfree(fs_info->csum_root);
  2159. return 0;
  2160. }
  2161. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2162. {
  2163. int ret;
  2164. struct inode *btree_inode = buf->first_page->mapping->host;
  2165. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2166. NULL);
  2167. if (!ret)
  2168. return ret;
  2169. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2170. parent_transid);
  2171. return !ret;
  2172. }
  2173. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2174. {
  2175. struct inode *btree_inode = buf->first_page->mapping->host;
  2176. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2177. buf);
  2178. }
  2179. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2180. {
  2181. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2182. u64 transid = btrfs_header_generation(buf);
  2183. struct inode *btree_inode = root->fs_info->btree_inode;
  2184. int was_dirty;
  2185. btrfs_assert_tree_locked(buf);
  2186. if (transid != root->fs_info->generation) {
  2187. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2188. "found %llu running %llu\n",
  2189. (unsigned long long)buf->start,
  2190. (unsigned long long)transid,
  2191. (unsigned long long)root->fs_info->generation);
  2192. WARN_ON(1);
  2193. }
  2194. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2195. buf);
  2196. if (!was_dirty) {
  2197. spin_lock(&root->fs_info->delalloc_lock);
  2198. root->fs_info->dirty_metadata_bytes += buf->len;
  2199. spin_unlock(&root->fs_info->delalloc_lock);
  2200. }
  2201. }
  2202. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2203. {
  2204. /*
  2205. * looks as though older kernels can get into trouble with
  2206. * this code, they end up stuck in balance_dirty_pages forever
  2207. */
  2208. u64 num_dirty;
  2209. unsigned long thresh = 32 * 1024 * 1024;
  2210. if (current->flags & PF_MEMALLOC)
  2211. return;
  2212. num_dirty = root->fs_info->dirty_metadata_bytes;
  2213. if (num_dirty > thresh) {
  2214. balance_dirty_pages_ratelimited_nr(
  2215. root->fs_info->btree_inode->i_mapping, 1);
  2216. }
  2217. return;
  2218. }
  2219. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2220. {
  2221. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2222. int ret;
  2223. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2224. if (ret == 0)
  2225. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2226. return ret;
  2227. }
  2228. int btree_lock_page_hook(struct page *page)
  2229. {
  2230. struct inode *inode = page->mapping->host;
  2231. struct btrfs_root *root = BTRFS_I(inode)->root;
  2232. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2233. struct extent_buffer *eb;
  2234. unsigned long len;
  2235. u64 bytenr = page_offset(page);
  2236. if (page->private == EXTENT_PAGE_PRIVATE)
  2237. goto out;
  2238. len = page->private >> 2;
  2239. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2240. if (!eb)
  2241. goto out;
  2242. btrfs_tree_lock(eb);
  2243. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2244. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2245. spin_lock(&root->fs_info->delalloc_lock);
  2246. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2247. root->fs_info->dirty_metadata_bytes -= eb->len;
  2248. else
  2249. WARN_ON(1);
  2250. spin_unlock(&root->fs_info->delalloc_lock);
  2251. }
  2252. btrfs_tree_unlock(eb);
  2253. free_extent_buffer(eb);
  2254. out:
  2255. lock_page(page);
  2256. return 0;
  2257. }
  2258. static struct extent_io_ops btree_extent_io_ops = {
  2259. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2260. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2261. .submit_bio_hook = btree_submit_bio_hook,
  2262. /* note we're sharing with inode.c for the merge bio hook */
  2263. .merge_bio_hook = btrfs_merge_bio_hook,
  2264. };