ctree.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. static int setup_items_for_insert(struct btrfs_trans_handle *trans,
  40. struct btrfs_root *root, struct btrfs_path *path,
  41. struct btrfs_key *cpu_key, u32 *data_size,
  42. u32 total_data, u32 total_size, int nr);
  43. struct btrfs_path *btrfs_alloc_path(void)
  44. {
  45. struct btrfs_path *path;
  46. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  47. if (path)
  48. path->reada = 1;
  49. return path;
  50. }
  51. /*
  52. * set all locked nodes in the path to blocking locks. This should
  53. * be done before scheduling
  54. */
  55. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  56. {
  57. int i;
  58. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  59. if (p->nodes[i] && p->locks[i])
  60. btrfs_set_lock_blocking(p->nodes[i]);
  61. }
  62. }
  63. /*
  64. * reset all the locked nodes in the patch to spinning locks.
  65. *
  66. * held is used to keep lockdep happy, when lockdep is enabled
  67. * we set held to a blocking lock before we go around and
  68. * retake all the spinlocks in the path. You can safely use NULL
  69. * for held
  70. */
  71. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  72. struct extent_buffer *held)
  73. {
  74. int i;
  75. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  76. /* lockdep really cares that we take all of these spinlocks
  77. * in the right order. If any of the locks in the path are not
  78. * currently blocking, it is going to complain. So, make really
  79. * really sure by forcing the path to blocking before we clear
  80. * the path blocking.
  81. */
  82. if (held)
  83. btrfs_set_lock_blocking(held);
  84. btrfs_set_path_blocking(p);
  85. #endif
  86. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  87. if (p->nodes[i] && p->locks[i])
  88. btrfs_clear_lock_blocking(p->nodes[i]);
  89. }
  90. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  91. if (held)
  92. btrfs_clear_lock_blocking(held);
  93. #endif
  94. }
  95. /* this also releases the path */
  96. void btrfs_free_path(struct btrfs_path *p)
  97. {
  98. btrfs_release_path(NULL, p);
  99. kmem_cache_free(btrfs_path_cachep, p);
  100. }
  101. /*
  102. * path release drops references on the extent buffers in the path
  103. * and it drops any locks held by this path
  104. *
  105. * It is safe to call this on paths that no locks or extent buffers held.
  106. */
  107. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  108. {
  109. int i;
  110. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  111. p->slots[i] = 0;
  112. if (!p->nodes[i])
  113. continue;
  114. if (p->locks[i]) {
  115. btrfs_tree_unlock(p->nodes[i]);
  116. p->locks[i] = 0;
  117. }
  118. free_extent_buffer(p->nodes[i]);
  119. p->nodes[i] = NULL;
  120. }
  121. }
  122. /*
  123. * safely gets a reference on the root node of a tree. A lock
  124. * is not taken, so a concurrent writer may put a different node
  125. * at the root of the tree. See btrfs_lock_root_node for the
  126. * looping required.
  127. *
  128. * The extent buffer returned by this has a reference taken, so
  129. * it won't disappear. It may stop being the root of the tree
  130. * at any time because there are no locks held.
  131. */
  132. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  133. {
  134. struct extent_buffer *eb;
  135. spin_lock(&root->node_lock);
  136. eb = root->node;
  137. extent_buffer_get(eb);
  138. spin_unlock(&root->node_lock);
  139. return eb;
  140. }
  141. /* loop around taking references on and locking the root node of the
  142. * tree until you end up with a lock on the root. A locked buffer
  143. * is returned, with a reference held.
  144. */
  145. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  146. {
  147. struct extent_buffer *eb;
  148. while (1) {
  149. eb = btrfs_root_node(root);
  150. btrfs_tree_lock(eb);
  151. spin_lock(&root->node_lock);
  152. if (eb == root->node) {
  153. spin_unlock(&root->node_lock);
  154. break;
  155. }
  156. spin_unlock(&root->node_lock);
  157. btrfs_tree_unlock(eb);
  158. free_extent_buffer(eb);
  159. }
  160. return eb;
  161. }
  162. /* cowonly root (everything not a reference counted cow subvolume), just get
  163. * put onto a simple dirty list. transaction.c walks this to make sure they
  164. * get properly updated on disk.
  165. */
  166. static void add_root_to_dirty_list(struct btrfs_root *root)
  167. {
  168. if (root->track_dirty && list_empty(&root->dirty_list)) {
  169. list_add(&root->dirty_list,
  170. &root->fs_info->dirty_cowonly_roots);
  171. }
  172. }
  173. /*
  174. * used by snapshot creation to make a copy of a root for a tree with
  175. * a given objectid. The buffer with the new root node is returned in
  176. * cow_ret, and this func returns zero on success or a negative error code.
  177. */
  178. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  179. struct btrfs_root *root,
  180. struct extent_buffer *buf,
  181. struct extent_buffer **cow_ret, u64 new_root_objectid)
  182. {
  183. struct extent_buffer *cow;
  184. u32 nritems;
  185. int ret = 0;
  186. int level;
  187. struct btrfs_disk_key disk_key;
  188. WARN_ON(root->ref_cows && trans->transid !=
  189. root->fs_info->running_transaction->transid);
  190. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  191. level = btrfs_header_level(buf);
  192. nritems = btrfs_header_nritems(buf);
  193. if (level == 0)
  194. btrfs_item_key(buf, &disk_key, 0);
  195. else
  196. btrfs_node_key(buf, &disk_key, 0);
  197. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  198. new_root_objectid, &disk_key, level,
  199. buf->start, 0);
  200. if (IS_ERR(cow))
  201. return PTR_ERR(cow);
  202. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  203. btrfs_set_header_bytenr(cow, cow->start);
  204. btrfs_set_header_generation(cow, trans->transid);
  205. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  206. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  207. BTRFS_HEADER_FLAG_RELOC);
  208. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  209. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  210. else
  211. btrfs_set_header_owner(cow, new_root_objectid);
  212. write_extent_buffer(cow, root->fs_info->fsid,
  213. (unsigned long)btrfs_header_fsid(cow),
  214. BTRFS_FSID_SIZE);
  215. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  216. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  217. ret = btrfs_inc_ref(trans, root, cow, 1);
  218. else
  219. ret = btrfs_inc_ref(trans, root, cow, 0);
  220. if (ret)
  221. return ret;
  222. btrfs_mark_buffer_dirty(cow);
  223. *cow_ret = cow;
  224. return 0;
  225. }
  226. /*
  227. * check if the tree block can be shared by multiple trees
  228. */
  229. int btrfs_block_can_be_shared(struct btrfs_root *root,
  230. struct extent_buffer *buf)
  231. {
  232. /*
  233. * Tree blocks not in refernece counted trees and tree roots
  234. * are never shared. If a block was allocated after the last
  235. * snapshot and the block was not allocated by tree relocation,
  236. * we know the block is not shared.
  237. */
  238. if (root->ref_cows &&
  239. buf != root->node && buf != root->commit_root &&
  240. (btrfs_header_generation(buf) <=
  241. btrfs_root_last_snapshot(&root->root_item) ||
  242. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  243. return 1;
  244. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  245. if (root->ref_cows &&
  246. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  247. return 1;
  248. #endif
  249. return 0;
  250. }
  251. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  252. struct btrfs_root *root,
  253. struct extent_buffer *buf,
  254. struct extent_buffer *cow)
  255. {
  256. u64 refs;
  257. u64 owner;
  258. u64 flags;
  259. u64 new_flags = 0;
  260. int ret;
  261. /*
  262. * Backrefs update rules:
  263. *
  264. * Always use full backrefs for extent pointers in tree block
  265. * allocated by tree relocation.
  266. *
  267. * If a shared tree block is no longer referenced by its owner
  268. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  269. * use full backrefs for extent pointers in tree block.
  270. *
  271. * If a tree block is been relocating
  272. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  273. * use full backrefs for extent pointers in tree block.
  274. * The reason for this is some operations (such as drop tree)
  275. * are only allowed for blocks use full backrefs.
  276. */
  277. if (btrfs_block_can_be_shared(root, buf)) {
  278. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  279. buf->len, &refs, &flags);
  280. BUG_ON(ret);
  281. BUG_ON(refs == 0);
  282. } else {
  283. refs = 1;
  284. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  285. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  286. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  287. else
  288. flags = 0;
  289. }
  290. owner = btrfs_header_owner(buf);
  291. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  292. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  293. if (refs > 1) {
  294. if ((owner == root->root_key.objectid ||
  295. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  296. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  297. ret = btrfs_inc_ref(trans, root, buf, 1);
  298. BUG_ON(ret);
  299. if (root->root_key.objectid ==
  300. BTRFS_TREE_RELOC_OBJECTID) {
  301. ret = btrfs_dec_ref(trans, root, buf, 0);
  302. BUG_ON(ret);
  303. ret = btrfs_inc_ref(trans, root, cow, 1);
  304. BUG_ON(ret);
  305. }
  306. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  307. } else {
  308. if (root->root_key.objectid ==
  309. BTRFS_TREE_RELOC_OBJECTID)
  310. ret = btrfs_inc_ref(trans, root, cow, 1);
  311. else
  312. ret = btrfs_inc_ref(trans, root, cow, 0);
  313. BUG_ON(ret);
  314. }
  315. if (new_flags != 0) {
  316. ret = btrfs_set_disk_extent_flags(trans, root,
  317. buf->start,
  318. buf->len,
  319. new_flags, 0);
  320. BUG_ON(ret);
  321. }
  322. } else {
  323. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  324. if (root->root_key.objectid ==
  325. BTRFS_TREE_RELOC_OBJECTID)
  326. ret = btrfs_inc_ref(trans, root, cow, 1);
  327. else
  328. ret = btrfs_inc_ref(trans, root, cow, 0);
  329. BUG_ON(ret);
  330. ret = btrfs_dec_ref(trans, root, buf, 1);
  331. BUG_ON(ret);
  332. }
  333. clean_tree_block(trans, root, buf);
  334. }
  335. return 0;
  336. }
  337. /*
  338. * does the dirty work in cow of a single block. The parent block (if
  339. * supplied) is updated to point to the new cow copy. The new buffer is marked
  340. * dirty and returned locked. If you modify the block it needs to be marked
  341. * dirty again.
  342. *
  343. * search_start -- an allocation hint for the new block
  344. *
  345. * empty_size -- a hint that you plan on doing more cow. This is the size in
  346. * bytes the allocator should try to find free next to the block it returns.
  347. * This is just a hint and may be ignored by the allocator.
  348. */
  349. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  350. struct btrfs_root *root,
  351. struct extent_buffer *buf,
  352. struct extent_buffer *parent, int parent_slot,
  353. struct extent_buffer **cow_ret,
  354. u64 search_start, u64 empty_size)
  355. {
  356. struct btrfs_disk_key disk_key;
  357. struct extent_buffer *cow;
  358. int level;
  359. int unlock_orig = 0;
  360. u64 parent_start;
  361. if (*cow_ret == buf)
  362. unlock_orig = 1;
  363. btrfs_assert_tree_locked(buf);
  364. WARN_ON(root->ref_cows && trans->transid !=
  365. root->fs_info->running_transaction->transid);
  366. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  367. level = btrfs_header_level(buf);
  368. if (level == 0)
  369. btrfs_item_key(buf, &disk_key, 0);
  370. else
  371. btrfs_node_key(buf, &disk_key, 0);
  372. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  373. if (parent)
  374. parent_start = parent->start;
  375. else
  376. parent_start = 0;
  377. } else
  378. parent_start = 0;
  379. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  380. root->root_key.objectid, &disk_key,
  381. level, search_start, empty_size);
  382. if (IS_ERR(cow))
  383. return PTR_ERR(cow);
  384. /* cow is set to blocking by btrfs_init_new_buffer */
  385. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  386. btrfs_set_header_bytenr(cow, cow->start);
  387. btrfs_set_header_generation(cow, trans->transid);
  388. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  389. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  390. BTRFS_HEADER_FLAG_RELOC);
  391. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  392. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  393. else
  394. btrfs_set_header_owner(cow, root->root_key.objectid);
  395. write_extent_buffer(cow, root->fs_info->fsid,
  396. (unsigned long)btrfs_header_fsid(cow),
  397. BTRFS_FSID_SIZE);
  398. update_ref_for_cow(trans, root, buf, cow);
  399. if (buf == root->node) {
  400. WARN_ON(parent && parent != buf);
  401. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  402. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  403. parent_start = buf->start;
  404. else
  405. parent_start = 0;
  406. spin_lock(&root->node_lock);
  407. root->node = cow;
  408. extent_buffer_get(cow);
  409. spin_unlock(&root->node_lock);
  410. btrfs_free_tree_block(trans, root, buf->start, buf->len,
  411. parent_start, root->root_key.objectid, level);
  412. free_extent_buffer(buf);
  413. add_root_to_dirty_list(root);
  414. } else {
  415. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  416. parent_start = parent->start;
  417. else
  418. parent_start = 0;
  419. WARN_ON(trans->transid != btrfs_header_generation(parent));
  420. btrfs_set_node_blockptr(parent, parent_slot,
  421. cow->start);
  422. btrfs_set_node_ptr_generation(parent, parent_slot,
  423. trans->transid);
  424. btrfs_mark_buffer_dirty(parent);
  425. btrfs_free_tree_block(trans, root, buf->start, buf->len,
  426. parent_start, root->root_key.objectid, level);
  427. }
  428. if (unlock_orig)
  429. btrfs_tree_unlock(buf);
  430. free_extent_buffer(buf);
  431. btrfs_mark_buffer_dirty(cow);
  432. *cow_ret = cow;
  433. return 0;
  434. }
  435. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  436. struct btrfs_root *root,
  437. struct extent_buffer *buf)
  438. {
  439. if (btrfs_header_generation(buf) == trans->transid &&
  440. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  441. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  442. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  443. return 0;
  444. return 1;
  445. }
  446. /*
  447. * cows a single block, see __btrfs_cow_block for the real work.
  448. * This version of it has extra checks so that a block isn't cow'd more than
  449. * once per transaction, as long as it hasn't been written yet
  450. */
  451. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  452. struct btrfs_root *root, struct extent_buffer *buf,
  453. struct extent_buffer *parent, int parent_slot,
  454. struct extent_buffer **cow_ret)
  455. {
  456. u64 search_start;
  457. int ret;
  458. if (trans->transaction != root->fs_info->running_transaction) {
  459. printk(KERN_CRIT "trans %llu running %llu\n",
  460. (unsigned long long)trans->transid,
  461. (unsigned long long)
  462. root->fs_info->running_transaction->transid);
  463. WARN_ON(1);
  464. }
  465. if (trans->transid != root->fs_info->generation) {
  466. printk(KERN_CRIT "trans %llu running %llu\n",
  467. (unsigned long long)trans->transid,
  468. (unsigned long long)root->fs_info->generation);
  469. WARN_ON(1);
  470. }
  471. if (!should_cow_block(trans, root, buf)) {
  472. *cow_ret = buf;
  473. return 0;
  474. }
  475. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  476. if (parent)
  477. btrfs_set_lock_blocking(parent);
  478. btrfs_set_lock_blocking(buf);
  479. ret = __btrfs_cow_block(trans, root, buf, parent,
  480. parent_slot, cow_ret, search_start, 0);
  481. return ret;
  482. }
  483. /*
  484. * helper function for defrag to decide if two blocks pointed to by a
  485. * node are actually close by
  486. */
  487. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  488. {
  489. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  490. return 1;
  491. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  492. return 1;
  493. return 0;
  494. }
  495. /*
  496. * compare two keys in a memcmp fashion
  497. */
  498. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  499. {
  500. struct btrfs_key k1;
  501. btrfs_disk_key_to_cpu(&k1, disk);
  502. return btrfs_comp_cpu_keys(&k1, k2);
  503. }
  504. /*
  505. * same as comp_keys only with two btrfs_key's
  506. */
  507. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  508. {
  509. if (k1->objectid > k2->objectid)
  510. return 1;
  511. if (k1->objectid < k2->objectid)
  512. return -1;
  513. if (k1->type > k2->type)
  514. return 1;
  515. if (k1->type < k2->type)
  516. return -1;
  517. if (k1->offset > k2->offset)
  518. return 1;
  519. if (k1->offset < k2->offset)
  520. return -1;
  521. return 0;
  522. }
  523. /*
  524. * this is used by the defrag code to go through all the
  525. * leaves pointed to by a node and reallocate them so that
  526. * disk order is close to key order
  527. */
  528. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  529. struct btrfs_root *root, struct extent_buffer *parent,
  530. int start_slot, int cache_only, u64 *last_ret,
  531. struct btrfs_key *progress)
  532. {
  533. struct extent_buffer *cur;
  534. u64 blocknr;
  535. u64 gen;
  536. u64 search_start = *last_ret;
  537. u64 last_block = 0;
  538. u64 other;
  539. u32 parent_nritems;
  540. int end_slot;
  541. int i;
  542. int err = 0;
  543. int parent_level;
  544. int uptodate;
  545. u32 blocksize;
  546. int progress_passed = 0;
  547. struct btrfs_disk_key disk_key;
  548. parent_level = btrfs_header_level(parent);
  549. if (cache_only && parent_level != 1)
  550. return 0;
  551. if (trans->transaction != root->fs_info->running_transaction)
  552. WARN_ON(1);
  553. if (trans->transid != root->fs_info->generation)
  554. WARN_ON(1);
  555. parent_nritems = btrfs_header_nritems(parent);
  556. blocksize = btrfs_level_size(root, parent_level - 1);
  557. end_slot = parent_nritems;
  558. if (parent_nritems == 1)
  559. return 0;
  560. btrfs_set_lock_blocking(parent);
  561. for (i = start_slot; i < end_slot; i++) {
  562. int close = 1;
  563. if (!parent->map_token) {
  564. map_extent_buffer(parent,
  565. btrfs_node_key_ptr_offset(i),
  566. sizeof(struct btrfs_key_ptr),
  567. &parent->map_token, &parent->kaddr,
  568. &parent->map_start, &parent->map_len,
  569. KM_USER1);
  570. }
  571. btrfs_node_key(parent, &disk_key, i);
  572. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  573. continue;
  574. progress_passed = 1;
  575. blocknr = btrfs_node_blockptr(parent, i);
  576. gen = btrfs_node_ptr_generation(parent, i);
  577. if (last_block == 0)
  578. last_block = blocknr;
  579. if (i > 0) {
  580. other = btrfs_node_blockptr(parent, i - 1);
  581. close = close_blocks(blocknr, other, blocksize);
  582. }
  583. if (!close && i < end_slot - 2) {
  584. other = btrfs_node_blockptr(parent, i + 1);
  585. close = close_blocks(blocknr, other, blocksize);
  586. }
  587. if (close) {
  588. last_block = blocknr;
  589. continue;
  590. }
  591. if (parent->map_token) {
  592. unmap_extent_buffer(parent, parent->map_token,
  593. KM_USER1);
  594. parent->map_token = NULL;
  595. }
  596. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  597. if (cur)
  598. uptodate = btrfs_buffer_uptodate(cur, gen);
  599. else
  600. uptodate = 0;
  601. if (!cur || !uptodate) {
  602. if (cache_only) {
  603. free_extent_buffer(cur);
  604. continue;
  605. }
  606. if (!cur) {
  607. cur = read_tree_block(root, blocknr,
  608. blocksize, gen);
  609. } else if (!uptodate) {
  610. btrfs_read_buffer(cur, gen);
  611. }
  612. }
  613. if (search_start == 0)
  614. search_start = last_block;
  615. btrfs_tree_lock(cur);
  616. btrfs_set_lock_blocking(cur);
  617. err = __btrfs_cow_block(trans, root, cur, parent, i,
  618. &cur, search_start,
  619. min(16 * blocksize,
  620. (end_slot - i) * blocksize));
  621. if (err) {
  622. btrfs_tree_unlock(cur);
  623. free_extent_buffer(cur);
  624. break;
  625. }
  626. search_start = cur->start;
  627. last_block = cur->start;
  628. *last_ret = search_start;
  629. btrfs_tree_unlock(cur);
  630. free_extent_buffer(cur);
  631. }
  632. if (parent->map_token) {
  633. unmap_extent_buffer(parent, parent->map_token,
  634. KM_USER1);
  635. parent->map_token = NULL;
  636. }
  637. return err;
  638. }
  639. /*
  640. * The leaf data grows from end-to-front in the node.
  641. * this returns the address of the start of the last item,
  642. * which is the stop of the leaf data stack
  643. */
  644. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  645. struct extent_buffer *leaf)
  646. {
  647. u32 nr = btrfs_header_nritems(leaf);
  648. if (nr == 0)
  649. return BTRFS_LEAF_DATA_SIZE(root);
  650. return btrfs_item_offset_nr(leaf, nr - 1);
  651. }
  652. /*
  653. * extra debugging checks to make sure all the items in a key are
  654. * well formed and in the proper order
  655. */
  656. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  657. int level)
  658. {
  659. struct extent_buffer *parent = NULL;
  660. struct extent_buffer *node = path->nodes[level];
  661. struct btrfs_disk_key parent_key;
  662. struct btrfs_disk_key node_key;
  663. int parent_slot;
  664. int slot;
  665. struct btrfs_key cpukey;
  666. u32 nritems = btrfs_header_nritems(node);
  667. if (path->nodes[level + 1])
  668. parent = path->nodes[level + 1];
  669. slot = path->slots[level];
  670. BUG_ON(nritems == 0);
  671. if (parent) {
  672. parent_slot = path->slots[level + 1];
  673. btrfs_node_key(parent, &parent_key, parent_slot);
  674. btrfs_node_key(node, &node_key, 0);
  675. BUG_ON(memcmp(&parent_key, &node_key,
  676. sizeof(struct btrfs_disk_key)));
  677. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  678. btrfs_header_bytenr(node));
  679. }
  680. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  681. if (slot != 0) {
  682. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  683. btrfs_node_key(node, &node_key, slot);
  684. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  685. }
  686. if (slot < nritems - 1) {
  687. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  688. btrfs_node_key(node, &node_key, slot);
  689. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  690. }
  691. return 0;
  692. }
  693. /*
  694. * extra checking to make sure all the items in a leaf are
  695. * well formed and in the proper order
  696. */
  697. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  698. int level)
  699. {
  700. struct extent_buffer *leaf = path->nodes[level];
  701. struct extent_buffer *parent = NULL;
  702. int parent_slot;
  703. struct btrfs_key cpukey;
  704. struct btrfs_disk_key parent_key;
  705. struct btrfs_disk_key leaf_key;
  706. int slot = path->slots[0];
  707. u32 nritems = btrfs_header_nritems(leaf);
  708. if (path->nodes[level + 1])
  709. parent = path->nodes[level + 1];
  710. if (nritems == 0)
  711. return 0;
  712. if (parent) {
  713. parent_slot = path->slots[level + 1];
  714. btrfs_node_key(parent, &parent_key, parent_slot);
  715. btrfs_item_key(leaf, &leaf_key, 0);
  716. BUG_ON(memcmp(&parent_key, &leaf_key,
  717. sizeof(struct btrfs_disk_key)));
  718. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  719. btrfs_header_bytenr(leaf));
  720. }
  721. if (slot != 0 && slot < nritems - 1) {
  722. btrfs_item_key(leaf, &leaf_key, slot);
  723. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  724. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  725. btrfs_print_leaf(root, leaf);
  726. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  727. BUG_ON(1);
  728. }
  729. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  730. btrfs_item_end_nr(leaf, slot)) {
  731. btrfs_print_leaf(root, leaf);
  732. printk(KERN_CRIT "slot %d offset bad\n", slot);
  733. BUG_ON(1);
  734. }
  735. }
  736. if (slot < nritems - 1) {
  737. btrfs_item_key(leaf, &leaf_key, slot);
  738. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  739. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  740. if (btrfs_item_offset_nr(leaf, slot) !=
  741. btrfs_item_end_nr(leaf, slot + 1)) {
  742. btrfs_print_leaf(root, leaf);
  743. printk(KERN_CRIT "slot %d offset bad\n", slot);
  744. BUG_ON(1);
  745. }
  746. }
  747. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  748. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  749. return 0;
  750. }
  751. static noinline int check_block(struct btrfs_root *root,
  752. struct btrfs_path *path, int level)
  753. {
  754. return 0;
  755. if (level == 0)
  756. return check_leaf(root, path, level);
  757. return check_node(root, path, level);
  758. }
  759. /*
  760. * search for key in the extent_buffer. The items start at offset p,
  761. * and they are item_size apart. There are 'max' items in p.
  762. *
  763. * the slot in the array is returned via slot, and it points to
  764. * the place where you would insert key if it is not found in
  765. * the array.
  766. *
  767. * slot may point to max if the key is bigger than all of the keys
  768. */
  769. static noinline int generic_bin_search(struct extent_buffer *eb,
  770. unsigned long p,
  771. int item_size, struct btrfs_key *key,
  772. int max, int *slot)
  773. {
  774. int low = 0;
  775. int high = max;
  776. int mid;
  777. int ret;
  778. struct btrfs_disk_key *tmp = NULL;
  779. struct btrfs_disk_key unaligned;
  780. unsigned long offset;
  781. char *map_token = NULL;
  782. char *kaddr = NULL;
  783. unsigned long map_start = 0;
  784. unsigned long map_len = 0;
  785. int err;
  786. while (low < high) {
  787. mid = (low + high) / 2;
  788. offset = p + mid * item_size;
  789. if (!map_token || offset < map_start ||
  790. (offset + sizeof(struct btrfs_disk_key)) >
  791. map_start + map_len) {
  792. if (map_token) {
  793. unmap_extent_buffer(eb, map_token, KM_USER0);
  794. map_token = NULL;
  795. }
  796. err = map_private_extent_buffer(eb, offset,
  797. sizeof(struct btrfs_disk_key),
  798. &map_token, &kaddr,
  799. &map_start, &map_len, KM_USER0);
  800. if (!err) {
  801. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  802. map_start);
  803. } else {
  804. read_extent_buffer(eb, &unaligned,
  805. offset, sizeof(unaligned));
  806. tmp = &unaligned;
  807. }
  808. } else {
  809. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  810. map_start);
  811. }
  812. ret = comp_keys(tmp, key);
  813. if (ret < 0)
  814. low = mid + 1;
  815. else if (ret > 0)
  816. high = mid;
  817. else {
  818. *slot = mid;
  819. if (map_token)
  820. unmap_extent_buffer(eb, map_token, KM_USER0);
  821. return 0;
  822. }
  823. }
  824. *slot = low;
  825. if (map_token)
  826. unmap_extent_buffer(eb, map_token, KM_USER0);
  827. return 1;
  828. }
  829. /*
  830. * simple bin_search frontend that does the right thing for
  831. * leaves vs nodes
  832. */
  833. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  834. int level, int *slot)
  835. {
  836. if (level == 0) {
  837. return generic_bin_search(eb,
  838. offsetof(struct btrfs_leaf, items),
  839. sizeof(struct btrfs_item),
  840. key, btrfs_header_nritems(eb),
  841. slot);
  842. } else {
  843. return generic_bin_search(eb,
  844. offsetof(struct btrfs_node, ptrs),
  845. sizeof(struct btrfs_key_ptr),
  846. key, btrfs_header_nritems(eb),
  847. slot);
  848. }
  849. return -1;
  850. }
  851. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  852. int level, int *slot)
  853. {
  854. return bin_search(eb, key, level, slot);
  855. }
  856. /* given a node and slot number, this reads the blocks it points to. The
  857. * extent buffer is returned with a reference taken (but unlocked).
  858. * NULL is returned on error.
  859. */
  860. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  861. struct extent_buffer *parent, int slot)
  862. {
  863. int level = btrfs_header_level(parent);
  864. if (slot < 0)
  865. return NULL;
  866. if (slot >= btrfs_header_nritems(parent))
  867. return NULL;
  868. BUG_ON(level == 0);
  869. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  870. btrfs_level_size(root, level - 1),
  871. btrfs_node_ptr_generation(parent, slot));
  872. }
  873. /*
  874. * node level balancing, used to make sure nodes are in proper order for
  875. * item deletion. We balance from the top down, so we have to make sure
  876. * that a deletion won't leave an node completely empty later on.
  877. */
  878. static noinline int balance_level(struct btrfs_trans_handle *trans,
  879. struct btrfs_root *root,
  880. struct btrfs_path *path, int level)
  881. {
  882. struct extent_buffer *right = NULL;
  883. struct extent_buffer *mid;
  884. struct extent_buffer *left = NULL;
  885. struct extent_buffer *parent = NULL;
  886. int ret = 0;
  887. int wret;
  888. int pslot;
  889. int orig_slot = path->slots[level];
  890. int err_on_enospc = 0;
  891. u64 orig_ptr;
  892. if (level == 0)
  893. return 0;
  894. mid = path->nodes[level];
  895. WARN_ON(!path->locks[level]);
  896. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  897. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  898. if (level < BTRFS_MAX_LEVEL - 1)
  899. parent = path->nodes[level + 1];
  900. pslot = path->slots[level + 1];
  901. /*
  902. * deal with the case where there is only one pointer in the root
  903. * by promoting the node below to a root
  904. */
  905. if (!parent) {
  906. struct extent_buffer *child;
  907. if (btrfs_header_nritems(mid) != 1)
  908. return 0;
  909. /* promote the child to a root */
  910. child = read_node_slot(root, mid, 0);
  911. BUG_ON(!child);
  912. btrfs_tree_lock(child);
  913. btrfs_set_lock_blocking(child);
  914. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  915. BUG_ON(ret);
  916. spin_lock(&root->node_lock);
  917. root->node = child;
  918. spin_unlock(&root->node_lock);
  919. add_root_to_dirty_list(root);
  920. btrfs_tree_unlock(child);
  921. path->locks[level] = 0;
  922. path->nodes[level] = NULL;
  923. clean_tree_block(trans, root, mid);
  924. btrfs_tree_unlock(mid);
  925. /* once for the path */
  926. free_extent_buffer(mid);
  927. ret = btrfs_free_tree_block(trans, root, mid->start, mid->len,
  928. 0, root->root_key.objectid, level);
  929. /* once for the root ptr */
  930. free_extent_buffer(mid);
  931. return ret;
  932. }
  933. if (btrfs_header_nritems(mid) >
  934. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  935. return 0;
  936. if (btrfs_header_nritems(mid) < 2)
  937. err_on_enospc = 1;
  938. left = read_node_slot(root, parent, pslot - 1);
  939. if (left) {
  940. btrfs_tree_lock(left);
  941. btrfs_set_lock_blocking(left);
  942. wret = btrfs_cow_block(trans, root, left,
  943. parent, pslot - 1, &left);
  944. if (wret) {
  945. ret = wret;
  946. goto enospc;
  947. }
  948. }
  949. right = read_node_slot(root, parent, pslot + 1);
  950. if (right) {
  951. btrfs_tree_lock(right);
  952. btrfs_set_lock_blocking(right);
  953. wret = btrfs_cow_block(trans, root, right,
  954. parent, pslot + 1, &right);
  955. if (wret) {
  956. ret = wret;
  957. goto enospc;
  958. }
  959. }
  960. /* first, try to make some room in the middle buffer */
  961. if (left) {
  962. orig_slot += btrfs_header_nritems(left);
  963. wret = push_node_left(trans, root, left, mid, 1);
  964. if (wret < 0)
  965. ret = wret;
  966. if (btrfs_header_nritems(mid) < 2)
  967. err_on_enospc = 1;
  968. }
  969. /*
  970. * then try to empty the right most buffer into the middle
  971. */
  972. if (right) {
  973. wret = push_node_left(trans, root, mid, right, 1);
  974. if (wret < 0 && wret != -ENOSPC)
  975. ret = wret;
  976. if (btrfs_header_nritems(right) == 0) {
  977. u64 bytenr = right->start;
  978. u32 blocksize = right->len;
  979. clean_tree_block(trans, root, right);
  980. btrfs_tree_unlock(right);
  981. free_extent_buffer(right);
  982. right = NULL;
  983. wret = del_ptr(trans, root, path, level + 1, pslot +
  984. 1);
  985. if (wret)
  986. ret = wret;
  987. wret = btrfs_free_tree_block(trans, root,
  988. bytenr, blocksize, 0,
  989. root->root_key.objectid,
  990. level);
  991. if (wret)
  992. ret = wret;
  993. } else {
  994. struct btrfs_disk_key right_key;
  995. btrfs_node_key(right, &right_key, 0);
  996. btrfs_set_node_key(parent, &right_key, pslot + 1);
  997. btrfs_mark_buffer_dirty(parent);
  998. }
  999. }
  1000. if (btrfs_header_nritems(mid) == 1) {
  1001. /*
  1002. * we're not allowed to leave a node with one item in the
  1003. * tree during a delete. A deletion from lower in the tree
  1004. * could try to delete the only pointer in this node.
  1005. * So, pull some keys from the left.
  1006. * There has to be a left pointer at this point because
  1007. * otherwise we would have pulled some pointers from the
  1008. * right
  1009. */
  1010. BUG_ON(!left);
  1011. wret = balance_node_right(trans, root, mid, left);
  1012. if (wret < 0) {
  1013. ret = wret;
  1014. goto enospc;
  1015. }
  1016. if (wret == 1) {
  1017. wret = push_node_left(trans, root, left, mid, 1);
  1018. if (wret < 0)
  1019. ret = wret;
  1020. }
  1021. BUG_ON(wret == 1);
  1022. }
  1023. if (btrfs_header_nritems(mid) == 0) {
  1024. /* we've managed to empty the middle node, drop it */
  1025. u64 bytenr = mid->start;
  1026. u32 blocksize = mid->len;
  1027. clean_tree_block(trans, root, mid);
  1028. btrfs_tree_unlock(mid);
  1029. free_extent_buffer(mid);
  1030. mid = NULL;
  1031. wret = del_ptr(trans, root, path, level + 1, pslot);
  1032. if (wret)
  1033. ret = wret;
  1034. wret = btrfs_free_tree_block(trans, root, bytenr, blocksize,
  1035. 0, root->root_key.objectid, level);
  1036. if (wret)
  1037. ret = wret;
  1038. } else {
  1039. /* update the parent key to reflect our changes */
  1040. struct btrfs_disk_key mid_key;
  1041. btrfs_node_key(mid, &mid_key, 0);
  1042. btrfs_set_node_key(parent, &mid_key, pslot);
  1043. btrfs_mark_buffer_dirty(parent);
  1044. }
  1045. /* update the path */
  1046. if (left) {
  1047. if (btrfs_header_nritems(left) > orig_slot) {
  1048. extent_buffer_get(left);
  1049. /* left was locked after cow */
  1050. path->nodes[level] = left;
  1051. path->slots[level + 1] -= 1;
  1052. path->slots[level] = orig_slot;
  1053. if (mid) {
  1054. btrfs_tree_unlock(mid);
  1055. free_extent_buffer(mid);
  1056. }
  1057. } else {
  1058. orig_slot -= btrfs_header_nritems(left);
  1059. path->slots[level] = orig_slot;
  1060. }
  1061. }
  1062. /* double check we haven't messed things up */
  1063. check_block(root, path, level);
  1064. if (orig_ptr !=
  1065. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1066. BUG();
  1067. enospc:
  1068. if (right) {
  1069. btrfs_tree_unlock(right);
  1070. free_extent_buffer(right);
  1071. }
  1072. if (left) {
  1073. if (path->nodes[level] != left)
  1074. btrfs_tree_unlock(left);
  1075. free_extent_buffer(left);
  1076. }
  1077. return ret;
  1078. }
  1079. /* Node balancing for insertion. Here we only split or push nodes around
  1080. * when they are completely full. This is also done top down, so we
  1081. * have to be pessimistic.
  1082. */
  1083. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1084. struct btrfs_root *root,
  1085. struct btrfs_path *path, int level)
  1086. {
  1087. struct extent_buffer *right = NULL;
  1088. struct extent_buffer *mid;
  1089. struct extent_buffer *left = NULL;
  1090. struct extent_buffer *parent = NULL;
  1091. int ret = 0;
  1092. int wret;
  1093. int pslot;
  1094. int orig_slot = path->slots[level];
  1095. u64 orig_ptr;
  1096. if (level == 0)
  1097. return 1;
  1098. mid = path->nodes[level];
  1099. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1100. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1101. if (level < BTRFS_MAX_LEVEL - 1)
  1102. parent = path->nodes[level + 1];
  1103. pslot = path->slots[level + 1];
  1104. if (!parent)
  1105. return 1;
  1106. left = read_node_slot(root, parent, pslot - 1);
  1107. /* first, try to make some room in the middle buffer */
  1108. if (left) {
  1109. u32 left_nr;
  1110. btrfs_tree_lock(left);
  1111. btrfs_set_lock_blocking(left);
  1112. left_nr = btrfs_header_nritems(left);
  1113. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1114. wret = 1;
  1115. } else {
  1116. ret = btrfs_cow_block(trans, root, left, parent,
  1117. pslot - 1, &left);
  1118. if (ret)
  1119. wret = 1;
  1120. else {
  1121. wret = push_node_left(trans, root,
  1122. left, mid, 0);
  1123. }
  1124. }
  1125. if (wret < 0)
  1126. ret = wret;
  1127. if (wret == 0) {
  1128. struct btrfs_disk_key disk_key;
  1129. orig_slot += left_nr;
  1130. btrfs_node_key(mid, &disk_key, 0);
  1131. btrfs_set_node_key(parent, &disk_key, pslot);
  1132. btrfs_mark_buffer_dirty(parent);
  1133. if (btrfs_header_nritems(left) > orig_slot) {
  1134. path->nodes[level] = left;
  1135. path->slots[level + 1] -= 1;
  1136. path->slots[level] = orig_slot;
  1137. btrfs_tree_unlock(mid);
  1138. free_extent_buffer(mid);
  1139. } else {
  1140. orig_slot -=
  1141. btrfs_header_nritems(left);
  1142. path->slots[level] = orig_slot;
  1143. btrfs_tree_unlock(left);
  1144. free_extent_buffer(left);
  1145. }
  1146. return 0;
  1147. }
  1148. btrfs_tree_unlock(left);
  1149. free_extent_buffer(left);
  1150. }
  1151. right = read_node_slot(root, parent, pslot + 1);
  1152. /*
  1153. * then try to empty the right most buffer into the middle
  1154. */
  1155. if (right) {
  1156. u32 right_nr;
  1157. btrfs_tree_lock(right);
  1158. btrfs_set_lock_blocking(right);
  1159. right_nr = btrfs_header_nritems(right);
  1160. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1161. wret = 1;
  1162. } else {
  1163. ret = btrfs_cow_block(trans, root, right,
  1164. parent, pslot + 1,
  1165. &right);
  1166. if (ret)
  1167. wret = 1;
  1168. else {
  1169. wret = balance_node_right(trans, root,
  1170. right, mid);
  1171. }
  1172. }
  1173. if (wret < 0)
  1174. ret = wret;
  1175. if (wret == 0) {
  1176. struct btrfs_disk_key disk_key;
  1177. btrfs_node_key(right, &disk_key, 0);
  1178. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1179. btrfs_mark_buffer_dirty(parent);
  1180. if (btrfs_header_nritems(mid) <= orig_slot) {
  1181. path->nodes[level] = right;
  1182. path->slots[level + 1] += 1;
  1183. path->slots[level] = orig_slot -
  1184. btrfs_header_nritems(mid);
  1185. btrfs_tree_unlock(mid);
  1186. free_extent_buffer(mid);
  1187. } else {
  1188. btrfs_tree_unlock(right);
  1189. free_extent_buffer(right);
  1190. }
  1191. return 0;
  1192. }
  1193. btrfs_tree_unlock(right);
  1194. free_extent_buffer(right);
  1195. }
  1196. return 1;
  1197. }
  1198. /*
  1199. * readahead one full node of leaves, finding things that are close
  1200. * to the block in 'slot', and triggering ra on them.
  1201. */
  1202. static void reada_for_search(struct btrfs_root *root,
  1203. struct btrfs_path *path,
  1204. int level, int slot, u64 objectid)
  1205. {
  1206. struct extent_buffer *node;
  1207. struct btrfs_disk_key disk_key;
  1208. u32 nritems;
  1209. u64 search;
  1210. u64 target;
  1211. u64 nread = 0;
  1212. int direction = path->reada;
  1213. struct extent_buffer *eb;
  1214. u32 nr;
  1215. u32 blocksize;
  1216. u32 nscan = 0;
  1217. if (level != 1)
  1218. return;
  1219. if (!path->nodes[level])
  1220. return;
  1221. node = path->nodes[level];
  1222. search = btrfs_node_blockptr(node, slot);
  1223. blocksize = btrfs_level_size(root, level - 1);
  1224. eb = btrfs_find_tree_block(root, search, blocksize);
  1225. if (eb) {
  1226. free_extent_buffer(eb);
  1227. return;
  1228. }
  1229. target = search;
  1230. nritems = btrfs_header_nritems(node);
  1231. nr = slot;
  1232. while (1) {
  1233. if (direction < 0) {
  1234. if (nr == 0)
  1235. break;
  1236. nr--;
  1237. } else if (direction > 0) {
  1238. nr++;
  1239. if (nr >= nritems)
  1240. break;
  1241. }
  1242. if (path->reada < 0 && objectid) {
  1243. btrfs_node_key(node, &disk_key, nr);
  1244. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1245. break;
  1246. }
  1247. search = btrfs_node_blockptr(node, nr);
  1248. if ((search <= target && target - search <= 65536) ||
  1249. (search > target && search - target <= 65536)) {
  1250. readahead_tree_block(root, search, blocksize,
  1251. btrfs_node_ptr_generation(node, nr));
  1252. nread += blocksize;
  1253. }
  1254. nscan++;
  1255. if ((nread > 65536 || nscan > 32))
  1256. break;
  1257. }
  1258. }
  1259. /*
  1260. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1261. * cache
  1262. */
  1263. static noinline int reada_for_balance(struct btrfs_root *root,
  1264. struct btrfs_path *path, int level)
  1265. {
  1266. int slot;
  1267. int nritems;
  1268. struct extent_buffer *parent;
  1269. struct extent_buffer *eb;
  1270. u64 gen;
  1271. u64 block1 = 0;
  1272. u64 block2 = 0;
  1273. int ret = 0;
  1274. int blocksize;
  1275. parent = path->nodes[level + 1];
  1276. if (!parent)
  1277. return 0;
  1278. nritems = btrfs_header_nritems(parent);
  1279. slot = path->slots[level + 1];
  1280. blocksize = btrfs_level_size(root, level);
  1281. if (slot > 0) {
  1282. block1 = btrfs_node_blockptr(parent, slot - 1);
  1283. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1284. eb = btrfs_find_tree_block(root, block1, blocksize);
  1285. if (eb && btrfs_buffer_uptodate(eb, gen))
  1286. block1 = 0;
  1287. free_extent_buffer(eb);
  1288. }
  1289. if (slot + 1 < nritems) {
  1290. block2 = btrfs_node_blockptr(parent, slot + 1);
  1291. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1292. eb = btrfs_find_tree_block(root, block2, blocksize);
  1293. if (eb && btrfs_buffer_uptodate(eb, gen))
  1294. block2 = 0;
  1295. free_extent_buffer(eb);
  1296. }
  1297. if (block1 || block2) {
  1298. ret = -EAGAIN;
  1299. /* release the whole path */
  1300. btrfs_release_path(root, path);
  1301. /* read the blocks */
  1302. if (block1)
  1303. readahead_tree_block(root, block1, blocksize, 0);
  1304. if (block2)
  1305. readahead_tree_block(root, block2, blocksize, 0);
  1306. if (block1) {
  1307. eb = read_tree_block(root, block1, blocksize, 0);
  1308. free_extent_buffer(eb);
  1309. }
  1310. if (block2) {
  1311. eb = read_tree_block(root, block2, blocksize, 0);
  1312. free_extent_buffer(eb);
  1313. }
  1314. }
  1315. return ret;
  1316. }
  1317. /*
  1318. * when we walk down the tree, it is usually safe to unlock the higher layers
  1319. * in the tree. The exceptions are when our path goes through slot 0, because
  1320. * operations on the tree might require changing key pointers higher up in the
  1321. * tree.
  1322. *
  1323. * callers might also have set path->keep_locks, which tells this code to keep
  1324. * the lock if the path points to the last slot in the block. This is part of
  1325. * walking through the tree, and selecting the next slot in the higher block.
  1326. *
  1327. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1328. * if lowest_unlock is 1, level 0 won't be unlocked
  1329. */
  1330. static noinline void unlock_up(struct btrfs_path *path, int level,
  1331. int lowest_unlock)
  1332. {
  1333. int i;
  1334. int skip_level = level;
  1335. int no_skips = 0;
  1336. struct extent_buffer *t;
  1337. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1338. if (!path->nodes[i])
  1339. break;
  1340. if (!path->locks[i])
  1341. break;
  1342. if (!no_skips && path->slots[i] == 0) {
  1343. skip_level = i + 1;
  1344. continue;
  1345. }
  1346. if (!no_skips && path->keep_locks) {
  1347. u32 nritems;
  1348. t = path->nodes[i];
  1349. nritems = btrfs_header_nritems(t);
  1350. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1351. skip_level = i + 1;
  1352. continue;
  1353. }
  1354. }
  1355. if (skip_level < i && i >= lowest_unlock)
  1356. no_skips = 1;
  1357. t = path->nodes[i];
  1358. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1359. btrfs_tree_unlock(t);
  1360. path->locks[i] = 0;
  1361. }
  1362. }
  1363. }
  1364. /*
  1365. * This releases any locks held in the path starting at level and
  1366. * going all the way up to the root.
  1367. *
  1368. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1369. * corner cases, such as COW of the block at slot zero in the node. This
  1370. * ignores those rules, and it should only be called when there are no
  1371. * more updates to be done higher up in the tree.
  1372. */
  1373. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1374. {
  1375. int i;
  1376. if (path->keep_locks)
  1377. return;
  1378. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1379. if (!path->nodes[i])
  1380. continue;
  1381. if (!path->locks[i])
  1382. continue;
  1383. btrfs_tree_unlock(path->nodes[i]);
  1384. path->locks[i] = 0;
  1385. }
  1386. }
  1387. /*
  1388. * helper function for btrfs_search_slot. The goal is to find a block
  1389. * in cache without setting the path to blocking. If we find the block
  1390. * we return zero and the path is unchanged.
  1391. *
  1392. * If we can't find the block, we set the path blocking and do some
  1393. * reada. -EAGAIN is returned and the search must be repeated.
  1394. */
  1395. static int
  1396. read_block_for_search(struct btrfs_trans_handle *trans,
  1397. struct btrfs_root *root, struct btrfs_path *p,
  1398. struct extent_buffer **eb_ret, int level, int slot,
  1399. struct btrfs_key *key)
  1400. {
  1401. u64 blocknr;
  1402. u64 gen;
  1403. u32 blocksize;
  1404. struct extent_buffer *b = *eb_ret;
  1405. struct extent_buffer *tmp;
  1406. int ret;
  1407. blocknr = btrfs_node_blockptr(b, slot);
  1408. gen = btrfs_node_ptr_generation(b, slot);
  1409. blocksize = btrfs_level_size(root, level - 1);
  1410. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1411. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1412. /*
  1413. * we found an up to date block without sleeping, return
  1414. * right away
  1415. */
  1416. *eb_ret = tmp;
  1417. return 0;
  1418. }
  1419. /*
  1420. * reduce lock contention at high levels
  1421. * of the btree by dropping locks before
  1422. * we read. Don't release the lock on the current
  1423. * level because we need to walk this node to figure
  1424. * out which blocks to read.
  1425. */
  1426. btrfs_unlock_up_safe(p, level + 1);
  1427. btrfs_set_path_blocking(p);
  1428. if (tmp)
  1429. free_extent_buffer(tmp);
  1430. if (p->reada)
  1431. reada_for_search(root, p, level, slot, key->objectid);
  1432. btrfs_release_path(NULL, p);
  1433. ret = -EAGAIN;
  1434. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1435. if (tmp) {
  1436. /*
  1437. * If the read above didn't mark this buffer up to date,
  1438. * it will never end up being up to date. Set ret to EIO now
  1439. * and give up so that our caller doesn't loop forever
  1440. * on our EAGAINs.
  1441. */
  1442. if (!btrfs_buffer_uptodate(tmp, 0))
  1443. ret = -EIO;
  1444. free_extent_buffer(tmp);
  1445. }
  1446. return ret;
  1447. }
  1448. /*
  1449. * helper function for btrfs_search_slot. This does all of the checks
  1450. * for node-level blocks and does any balancing required based on
  1451. * the ins_len.
  1452. *
  1453. * If no extra work was required, zero is returned. If we had to
  1454. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1455. * start over
  1456. */
  1457. static int
  1458. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1459. struct btrfs_root *root, struct btrfs_path *p,
  1460. struct extent_buffer *b, int level, int ins_len)
  1461. {
  1462. int ret;
  1463. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1464. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1465. int sret;
  1466. sret = reada_for_balance(root, p, level);
  1467. if (sret)
  1468. goto again;
  1469. btrfs_set_path_blocking(p);
  1470. sret = split_node(trans, root, p, level);
  1471. btrfs_clear_path_blocking(p, NULL);
  1472. BUG_ON(sret > 0);
  1473. if (sret) {
  1474. ret = sret;
  1475. goto done;
  1476. }
  1477. b = p->nodes[level];
  1478. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1479. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1480. int sret;
  1481. sret = reada_for_balance(root, p, level);
  1482. if (sret)
  1483. goto again;
  1484. btrfs_set_path_blocking(p);
  1485. sret = balance_level(trans, root, p, level);
  1486. btrfs_clear_path_blocking(p, NULL);
  1487. if (sret) {
  1488. ret = sret;
  1489. goto done;
  1490. }
  1491. b = p->nodes[level];
  1492. if (!b) {
  1493. btrfs_release_path(NULL, p);
  1494. goto again;
  1495. }
  1496. BUG_ON(btrfs_header_nritems(b) == 1);
  1497. }
  1498. return 0;
  1499. again:
  1500. ret = -EAGAIN;
  1501. done:
  1502. return ret;
  1503. }
  1504. /*
  1505. * look for key in the tree. path is filled in with nodes along the way
  1506. * if key is found, we return zero and you can find the item in the leaf
  1507. * level of the path (level 0)
  1508. *
  1509. * If the key isn't found, the path points to the slot where it should
  1510. * be inserted, and 1 is returned. If there are other errors during the
  1511. * search a negative error number is returned.
  1512. *
  1513. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1514. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1515. * possible)
  1516. */
  1517. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1518. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1519. ins_len, int cow)
  1520. {
  1521. struct extent_buffer *b;
  1522. int slot;
  1523. int ret;
  1524. int err;
  1525. int level;
  1526. int lowest_unlock = 1;
  1527. u8 lowest_level = 0;
  1528. lowest_level = p->lowest_level;
  1529. WARN_ON(lowest_level && ins_len > 0);
  1530. WARN_ON(p->nodes[0] != NULL);
  1531. if (ins_len < 0)
  1532. lowest_unlock = 2;
  1533. again:
  1534. if (p->search_commit_root) {
  1535. b = root->commit_root;
  1536. extent_buffer_get(b);
  1537. if (!p->skip_locking)
  1538. btrfs_tree_lock(b);
  1539. } else {
  1540. if (p->skip_locking)
  1541. b = btrfs_root_node(root);
  1542. else
  1543. b = btrfs_lock_root_node(root);
  1544. }
  1545. while (b) {
  1546. level = btrfs_header_level(b);
  1547. /*
  1548. * setup the path here so we can release it under lock
  1549. * contention with the cow code
  1550. */
  1551. p->nodes[level] = b;
  1552. if (!p->skip_locking)
  1553. p->locks[level] = 1;
  1554. if (cow) {
  1555. /*
  1556. * if we don't really need to cow this block
  1557. * then we don't want to set the path blocking,
  1558. * so we test it here
  1559. */
  1560. if (!should_cow_block(trans, root, b))
  1561. goto cow_done;
  1562. btrfs_set_path_blocking(p);
  1563. err = btrfs_cow_block(trans, root, b,
  1564. p->nodes[level + 1],
  1565. p->slots[level + 1], &b);
  1566. if (err) {
  1567. free_extent_buffer(b);
  1568. ret = err;
  1569. goto done;
  1570. }
  1571. }
  1572. cow_done:
  1573. BUG_ON(!cow && ins_len);
  1574. if (level != btrfs_header_level(b))
  1575. WARN_ON(1);
  1576. level = btrfs_header_level(b);
  1577. p->nodes[level] = b;
  1578. if (!p->skip_locking)
  1579. p->locks[level] = 1;
  1580. btrfs_clear_path_blocking(p, NULL);
  1581. /*
  1582. * we have a lock on b and as long as we aren't changing
  1583. * the tree, there is no way to for the items in b to change.
  1584. * It is safe to drop the lock on our parent before we
  1585. * go through the expensive btree search on b.
  1586. *
  1587. * If cow is true, then we might be changing slot zero,
  1588. * which may require changing the parent. So, we can't
  1589. * drop the lock until after we know which slot we're
  1590. * operating on.
  1591. */
  1592. if (!cow)
  1593. btrfs_unlock_up_safe(p, level + 1);
  1594. ret = check_block(root, p, level);
  1595. if (ret) {
  1596. ret = -1;
  1597. goto done;
  1598. }
  1599. ret = bin_search(b, key, level, &slot);
  1600. if (level != 0) {
  1601. int dec = 0;
  1602. if (ret && slot > 0) {
  1603. dec = 1;
  1604. slot -= 1;
  1605. }
  1606. p->slots[level] = slot;
  1607. err = setup_nodes_for_search(trans, root, p, b, level,
  1608. ins_len);
  1609. if (err == -EAGAIN)
  1610. goto again;
  1611. if (err) {
  1612. ret = err;
  1613. goto done;
  1614. }
  1615. b = p->nodes[level];
  1616. slot = p->slots[level];
  1617. unlock_up(p, level, lowest_unlock);
  1618. if (level == lowest_level) {
  1619. if (dec)
  1620. p->slots[level]++;
  1621. goto done;
  1622. }
  1623. err = read_block_for_search(trans, root, p,
  1624. &b, level, slot, key);
  1625. if (err == -EAGAIN)
  1626. goto again;
  1627. if (err) {
  1628. ret = err;
  1629. goto done;
  1630. }
  1631. if (!p->skip_locking) {
  1632. btrfs_clear_path_blocking(p, NULL);
  1633. err = btrfs_try_spin_lock(b);
  1634. if (!err) {
  1635. btrfs_set_path_blocking(p);
  1636. btrfs_tree_lock(b);
  1637. btrfs_clear_path_blocking(p, b);
  1638. }
  1639. }
  1640. } else {
  1641. p->slots[level] = slot;
  1642. if (ins_len > 0 &&
  1643. btrfs_leaf_free_space(root, b) < ins_len) {
  1644. btrfs_set_path_blocking(p);
  1645. err = split_leaf(trans, root, key,
  1646. p, ins_len, ret == 0);
  1647. btrfs_clear_path_blocking(p, NULL);
  1648. BUG_ON(err > 0);
  1649. if (err) {
  1650. ret = err;
  1651. goto done;
  1652. }
  1653. }
  1654. if (!p->search_for_split)
  1655. unlock_up(p, level, lowest_unlock);
  1656. goto done;
  1657. }
  1658. }
  1659. ret = 1;
  1660. done:
  1661. /*
  1662. * we don't really know what they plan on doing with the path
  1663. * from here on, so for now just mark it as blocking
  1664. */
  1665. if (!p->leave_spinning)
  1666. btrfs_set_path_blocking(p);
  1667. if (ret < 0)
  1668. btrfs_release_path(root, p);
  1669. return ret;
  1670. }
  1671. /*
  1672. * adjust the pointers going up the tree, starting at level
  1673. * making sure the right key of each node is points to 'key'.
  1674. * This is used after shifting pointers to the left, so it stops
  1675. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1676. * higher levels
  1677. *
  1678. * If this fails to write a tree block, it returns -1, but continues
  1679. * fixing up the blocks in ram so the tree is consistent.
  1680. */
  1681. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1682. struct btrfs_root *root, struct btrfs_path *path,
  1683. struct btrfs_disk_key *key, int level)
  1684. {
  1685. int i;
  1686. int ret = 0;
  1687. struct extent_buffer *t;
  1688. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1689. int tslot = path->slots[i];
  1690. if (!path->nodes[i])
  1691. break;
  1692. t = path->nodes[i];
  1693. btrfs_set_node_key(t, key, tslot);
  1694. btrfs_mark_buffer_dirty(path->nodes[i]);
  1695. if (tslot != 0)
  1696. break;
  1697. }
  1698. return ret;
  1699. }
  1700. /*
  1701. * update item key.
  1702. *
  1703. * This function isn't completely safe. It's the caller's responsibility
  1704. * that the new key won't break the order
  1705. */
  1706. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1707. struct btrfs_root *root, struct btrfs_path *path,
  1708. struct btrfs_key *new_key)
  1709. {
  1710. struct btrfs_disk_key disk_key;
  1711. struct extent_buffer *eb;
  1712. int slot;
  1713. eb = path->nodes[0];
  1714. slot = path->slots[0];
  1715. if (slot > 0) {
  1716. btrfs_item_key(eb, &disk_key, slot - 1);
  1717. if (comp_keys(&disk_key, new_key) >= 0)
  1718. return -1;
  1719. }
  1720. if (slot < btrfs_header_nritems(eb) - 1) {
  1721. btrfs_item_key(eb, &disk_key, slot + 1);
  1722. if (comp_keys(&disk_key, new_key) <= 0)
  1723. return -1;
  1724. }
  1725. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1726. btrfs_set_item_key(eb, &disk_key, slot);
  1727. btrfs_mark_buffer_dirty(eb);
  1728. if (slot == 0)
  1729. fixup_low_keys(trans, root, path, &disk_key, 1);
  1730. return 0;
  1731. }
  1732. /*
  1733. * try to push data from one node into the next node left in the
  1734. * tree.
  1735. *
  1736. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1737. * error, and > 0 if there was no room in the left hand block.
  1738. */
  1739. static int push_node_left(struct btrfs_trans_handle *trans,
  1740. struct btrfs_root *root, struct extent_buffer *dst,
  1741. struct extent_buffer *src, int empty)
  1742. {
  1743. int push_items = 0;
  1744. int src_nritems;
  1745. int dst_nritems;
  1746. int ret = 0;
  1747. src_nritems = btrfs_header_nritems(src);
  1748. dst_nritems = btrfs_header_nritems(dst);
  1749. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1750. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1751. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1752. if (!empty && src_nritems <= 8)
  1753. return 1;
  1754. if (push_items <= 0)
  1755. return 1;
  1756. if (empty) {
  1757. push_items = min(src_nritems, push_items);
  1758. if (push_items < src_nritems) {
  1759. /* leave at least 8 pointers in the node if
  1760. * we aren't going to empty it
  1761. */
  1762. if (src_nritems - push_items < 8) {
  1763. if (push_items <= 8)
  1764. return 1;
  1765. push_items -= 8;
  1766. }
  1767. }
  1768. } else
  1769. push_items = min(src_nritems - 8, push_items);
  1770. copy_extent_buffer(dst, src,
  1771. btrfs_node_key_ptr_offset(dst_nritems),
  1772. btrfs_node_key_ptr_offset(0),
  1773. push_items * sizeof(struct btrfs_key_ptr));
  1774. if (push_items < src_nritems) {
  1775. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1776. btrfs_node_key_ptr_offset(push_items),
  1777. (src_nritems - push_items) *
  1778. sizeof(struct btrfs_key_ptr));
  1779. }
  1780. btrfs_set_header_nritems(src, src_nritems - push_items);
  1781. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1782. btrfs_mark_buffer_dirty(src);
  1783. btrfs_mark_buffer_dirty(dst);
  1784. return ret;
  1785. }
  1786. /*
  1787. * try to push data from one node into the next node right in the
  1788. * tree.
  1789. *
  1790. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1791. * error, and > 0 if there was no room in the right hand block.
  1792. *
  1793. * this will only push up to 1/2 the contents of the left node over
  1794. */
  1795. static int balance_node_right(struct btrfs_trans_handle *trans,
  1796. struct btrfs_root *root,
  1797. struct extent_buffer *dst,
  1798. struct extent_buffer *src)
  1799. {
  1800. int push_items = 0;
  1801. int max_push;
  1802. int src_nritems;
  1803. int dst_nritems;
  1804. int ret = 0;
  1805. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1806. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1807. src_nritems = btrfs_header_nritems(src);
  1808. dst_nritems = btrfs_header_nritems(dst);
  1809. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1810. if (push_items <= 0)
  1811. return 1;
  1812. if (src_nritems < 4)
  1813. return 1;
  1814. max_push = src_nritems / 2 + 1;
  1815. /* don't try to empty the node */
  1816. if (max_push >= src_nritems)
  1817. return 1;
  1818. if (max_push < push_items)
  1819. push_items = max_push;
  1820. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1821. btrfs_node_key_ptr_offset(0),
  1822. (dst_nritems) *
  1823. sizeof(struct btrfs_key_ptr));
  1824. copy_extent_buffer(dst, src,
  1825. btrfs_node_key_ptr_offset(0),
  1826. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1827. push_items * sizeof(struct btrfs_key_ptr));
  1828. btrfs_set_header_nritems(src, src_nritems - push_items);
  1829. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1830. btrfs_mark_buffer_dirty(src);
  1831. btrfs_mark_buffer_dirty(dst);
  1832. return ret;
  1833. }
  1834. /*
  1835. * helper function to insert a new root level in the tree.
  1836. * A new node is allocated, and a single item is inserted to
  1837. * point to the existing root
  1838. *
  1839. * returns zero on success or < 0 on failure.
  1840. */
  1841. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1842. struct btrfs_root *root,
  1843. struct btrfs_path *path, int level)
  1844. {
  1845. u64 lower_gen;
  1846. struct extent_buffer *lower;
  1847. struct extent_buffer *c;
  1848. struct extent_buffer *old;
  1849. struct btrfs_disk_key lower_key;
  1850. BUG_ON(path->nodes[level]);
  1851. BUG_ON(path->nodes[level-1] != root->node);
  1852. lower = path->nodes[level-1];
  1853. if (level == 1)
  1854. btrfs_item_key(lower, &lower_key, 0);
  1855. else
  1856. btrfs_node_key(lower, &lower_key, 0);
  1857. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1858. root->root_key.objectid, &lower_key,
  1859. level, root->node->start, 0);
  1860. if (IS_ERR(c))
  1861. return PTR_ERR(c);
  1862. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1863. btrfs_set_header_nritems(c, 1);
  1864. btrfs_set_header_level(c, level);
  1865. btrfs_set_header_bytenr(c, c->start);
  1866. btrfs_set_header_generation(c, trans->transid);
  1867. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1868. btrfs_set_header_owner(c, root->root_key.objectid);
  1869. write_extent_buffer(c, root->fs_info->fsid,
  1870. (unsigned long)btrfs_header_fsid(c),
  1871. BTRFS_FSID_SIZE);
  1872. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1873. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1874. BTRFS_UUID_SIZE);
  1875. btrfs_set_node_key(c, &lower_key, 0);
  1876. btrfs_set_node_blockptr(c, 0, lower->start);
  1877. lower_gen = btrfs_header_generation(lower);
  1878. WARN_ON(lower_gen != trans->transid);
  1879. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1880. btrfs_mark_buffer_dirty(c);
  1881. spin_lock(&root->node_lock);
  1882. old = root->node;
  1883. root->node = c;
  1884. spin_unlock(&root->node_lock);
  1885. /* the super has an extra ref to root->node */
  1886. free_extent_buffer(old);
  1887. add_root_to_dirty_list(root);
  1888. extent_buffer_get(c);
  1889. path->nodes[level] = c;
  1890. path->locks[level] = 1;
  1891. path->slots[level] = 0;
  1892. return 0;
  1893. }
  1894. /*
  1895. * worker function to insert a single pointer in a node.
  1896. * the node should have enough room for the pointer already
  1897. *
  1898. * slot and level indicate where you want the key to go, and
  1899. * blocknr is the block the key points to.
  1900. *
  1901. * returns zero on success and < 0 on any error
  1902. */
  1903. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1904. *root, struct btrfs_path *path, struct btrfs_disk_key
  1905. *key, u64 bytenr, int slot, int level)
  1906. {
  1907. struct extent_buffer *lower;
  1908. int nritems;
  1909. BUG_ON(!path->nodes[level]);
  1910. lower = path->nodes[level];
  1911. nritems = btrfs_header_nritems(lower);
  1912. BUG_ON(slot > nritems);
  1913. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1914. BUG();
  1915. if (slot != nritems) {
  1916. memmove_extent_buffer(lower,
  1917. btrfs_node_key_ptr_offset(slot + 1),
  1918. btrfs_node_key_ptr_offset(slot),
  1919. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1920. }
  1921. btrfs_set_node_key(lower, key, slot);
  1922. btrfs_set_node_blockptr(lower, slot, bytenr);
  1923. WARN_ON(trans->transid == 0);
  1924. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1925. btrfs_set_header_nritems(lower, nritems + 1);
  1926. btrfs_mark_buffer_dirty(lower);
  1927. return 0;
  1928. }
  1929. /*
  1930. * split the node at the specified level in path in two.
  1931. * The path is corrected to point to the appropriate node after the split
  1932. *
  1933. * Before splitting this tries to make some room in the node by pushing
  1934. * left and right, if either one works, it returns right away.
  1935. *
  1936. * returns 0 on success and < 0 on failure
  1937. */
  1938. static noinline int split_node(struct btrfs_trans_handle *trans,
  1939. struct btrfs_root *root,
  1940. struct btrfs_path *path, int level)
  1941. {
  1942. struct extent_buffer *c;
  1943. struct extent_buffer *split;
  1944. struct btrfs_disk_key disk_key;
  1945. int mid;
  1946. int ret;
  1947. int wret;
  1948. u32 c_nritems;
  1949. c = path->nodes[level];
  1950. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1951. if (c == root->node) {
  1952. /* trying to split the root, lets make a new one */
  1953. ret = insert_new_root(trans, root, path, level + 1);
  1954. if (ret)
  1955. return ret;
  1956. } else {
  1957. ret = push_nodes_for_insert(trans, root, path, level);
  1958. c = path->nodes[level];
  1959. if (!ret && btrfs_header_nritems(c) <
  1960. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1961. return 0;
  1962. if (ret < 0)
  1963. return ret;
  1964. }
  1965. c_nritems = btrfs_header_nritems(c);
  1966. mid = (c_nritems + 1) / 2;
  1967. btrfs_node_key(c, &disk_key, mid);
  1968. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1969. root->root_key.objectid,
  1970. &disk_key, level, c->start, 0);
  1971. if (IS_ERR(split))
  1972. return PTR_ERR(split);
  1973. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1974. btrfs_set_header_level(split, btrfs_header_level(c));
  1975. btrfs_set_header_bytenr(split, split->start);
  1976. btrfs_set_header_generation(split, trans->transid);
  1977. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1978. btrfs_set_header_owner(split, root->root_key.objectid);
  1979. write_extent_buffer(split, root->fs_info->fsid,
  1980. (unsigned long)btrfs_header_fsid(split),
  1981. BTRFS_FSID_SIZE);
  1982. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1983. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1984. BTRFS_UUID_SIZE);
  1985. copy_extent_buffer(split, c,
  1986. btrfs_node_key_ptr_offset(0),
  1987. btrfs_node_key_ptr_offset(mid),
  1988. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1989. btrfs_set_header_nritems(split, c_nritems - mid);
  1990. btrfs_set_header_nritems(c, mid);
  1991. ret = 0;
  1992. btrfs_mark_buffer_dirty(c);
  1993. btrfs_mark_buffer_dirty(split);
  1994. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1995. path->slots[level + 1] + 1,
  1996. level + 1);
  1997. if (wret)
  1998. ret = wret;
  1999. if (path->slots[level] >= mid) {
  2000. path->slots[level] -= mid;
  2001. btrfs_tree_unlock(c);
  2002. free_extent_buffer(c);
  2003. path->nodes[level] = split;
  2004. path->slots[level + 1] += 1;
  2005. } else {
  2006. btrfs_tree_unlock(split);
  2007. free_extent_buffer(split);
  2008. }
  2009. return ret;
  2010. }
  2011. /*
  2012. * how many bytes are required to store the items in a leaf. start
  2013. * and nr indicate which items in the leaf to check. This totals up the
  2014. * space used both by the item structs and the item data
  2015. */
  2016. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2017. {
  2018. int data_len;
  2019. int nritems = btrfs_header_nritems(l);
  2020. int end = min(nritems, start + nr) - 1;
  2021. if (!nr)
  2022. return 0;
  2023. data_len = btrfs_item_end_nr(l, start);
  2024. data_len = data_len - btrfs_item_offset_nr(l, end);
  2025. data_len += sizeof(struct btrfs_item) * nr;
  2026. WARN_ON(data_len < 0);
  2027. return data_len;
  2028. }
  2029. /*
  2030. * The space between the end of the leaf items and
  2031. * the start of the leaf data. IOW, how much room
  2032. * the leaf has left for both items and data
  2033. */
  2034. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2035. struct extent_buffer *leaf)
  2036. {
  2037. int nritems = btrfs_header_nritems(leaf);
  2038. int ret;
  2039. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2040. if (ret < 0) {
  2041. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2042. "used %d nritems %d\n",
  2043. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2044. leaf_space_used(leaf, 0, nritems), nritems);
  2045. }
  2046. return ret;
  2047. }
  2048. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2049. struct btrfs_root *root,
  2050. struct btrfs_path *path,
  2051. int data_size, int empty,
  2052. struct extent_buffer *right,
  2053. int free_space, u32 left_nritems)
  2054. {
  2055. struct extent_buffer *left = path->nodes[0];
  2056. struct extent_buffer *upper = path->nodes[1];
  2057. struct btrfs_disk_key disk_key;
  2058. int slot;
  2059. u32 i;
  2060. int push_space = 0;
  2061. int push_items = 0;
  2062. struct btrfs_item *item;
  2063. u32 nr;
  2064. u32 right_nritems;
  2065. u32 data_end;
  2066. u32 this_item_size;
  2067. if (empty)
  2068. nr = 0;
  2069. else
  2070. nr = 1;
  2071. if (path->slots[0] >= left_nritems)
  2072. push_space += data_size;
  2073. slot = path->slots[1];
  2074. i = left_nritems - 1;
  2075. while (i >= nr) {
  2076. item = btrfs_item_nr(left, i);
  2077. if (!empty && push_items > 0) {
  2078. if (path->slots[0] > i)
  2079. break;
  2080. if (path->slots[0] == i) {
  2081. int space = btrfs_leaf_free_space(root, left);
  2082. if (space + push_space * 2 > free_space)
  2083. break;
  2084. }
  2085. }
  2086. if (path->slots[0] == i)
  2087. push_space += data_size;
  2088. if (!left->map_token) {
  2089. map_extent_buffer(left, (unsigned long)item,
  2090. sizeof(struct btrfs_item),
  2091. &left->map_token, &left->kaddr,
  2092. &left->map_start, &left->map_len,
  2093. KM_USER1);
  2094. }
  2095. this_item_size = btrfs_item_size(left, item);
  2096. if (this_item_size + sizeof(*item) + push_space > free_space)
  2097. break;
  2098. push_items++;
  2099. push_space += this_item_size + sizeof(*item);
  2100. if (i == 0)
  2101. break;
  2102. i--;
  2103. }
  2104. if (left->map_token) {
  2105. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2106. left->map_token = NULL;
  2107. }
  2108. if (push_items == 0)
  2109. goto out_unlock;
  2110. if (!empty && push_items == left_nritems)
  2111. WARN_ON(1);
  2112. /* push left to right */
  2113. right_nritems = btrfs_header_nritems(right);
  2114. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2115. push_space -= leaf_data_end(root, left);
  2116. /* make room in the right data area */
  2117. data_end = leaf_data_end(root, right);
  2118. memmove_extent_buffer(right,
  2119. btrfs_leaf_data(right) + data_end - push_space,
  2120. btrfs_leaf_data(right) + data_end,
  2121. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2122. /* copy from the left data area */
  2123. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2124. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2125. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2126. push_space);
  2127. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2128. btrfs_item_nr_offset(0),
  2129. right_nritems * sizeof(struct btrfs_item));
  2130. /* copy the items from left to right */
  2131. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2132. btrfs_item_nr_offset(left_nritems - push_items),
  2133. push_items * sizeof(struct btrfs_item));
  2134. /* update the item pointers */
  2135. right_nritems += push_items;
  2136. btrfs_set_header_nritems(right, right_nritems);
  2137. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2138. for (i = 0; i < right_nritems; i++) {
  2139. item = btrfs_item_nr(right, i);
  2140. if (!right->map_token) {
  2141. map_extent_buffer(right, (unsigned long)item,
  2142. sizeof(struct btrfs_item),
  2143. &right->map_token, &right->kaddr,
  2144. &right->map_start, &right->map_len,
  2145. KM_USER1);
  2146. }
  2147. push_space -= btrfs_item_size(right, item);
  2148. btrfs_set_item_offset(right, item, push_space);
  2149. }
  2150. if (right->map_token) {
  2151. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2152. right->map_token = NULL;
  2153. }
  2154. left_nritems -= push_items;
  2155. btrfs_set_header_nritems(left, left_nritems);
  2156. if (left_nritems)
  2157. btrfs_mark_buffer_dirty(left);
  2158. btrfs_mark_buffer_dirty(right);
  2159. btrfs_item_key(right, &disk_key, 0);
  2160. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2161. btrfs_mark_buffer_dirty(upper);
  2162. /* then fixup the leaf pointer in the path */
  2163. if (path->slots[0] >= left_nritems) {
  2164. path->slots[0] -= left_nritems;
  2165. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2166. clean_tree_block(trans, root, path->nodes[0]);
  2167. btrfs_tree_unlock(path->nodes[0]);
  2168. free_extent_buffer(path->nodes[0]);
  2169. path->nodes[0] = right;
  2170. path->slots[1] += 1;
  2171. } else {
  2172. btrfs_tree_unlock(right);
  2173. free_extent_buffer(right);
  2174. }
  2175. return 0;
  2176. out_unlock:
  2177. btrfs_tree_unlock(right);
  2178. free_extent_buffer(right);
  2179. return 1;
  2180. }
  2181. /*
  2182. * push some data in the path leaf to the right, trying to free up at
  2183. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2184. *
  2185. * returns 1 if the push failed because the other node didn't have enough
  2186. * room, 0 if everything worked out and < 0 if there were major errors.
  2187. */
  2188. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2189. *root, struct btrfs_path *path, int data_size,
  2190. int empty)
  2191. {
  2192. struct extent_buffer *left = path->nodes[0];
  2193. struct extent_buffer *right;
  2194. struct extent_buffer *upper;
  2195. int slot;
  2196. int free_space;
  2197. u32 left_nritems;
  2198. int ret;
  2199. if (!path->nodes[1])
  2200. return 1;
  2201. slot = path->slots[1];
  2202. upper = path->nodes[1];
  2203. if (slot >= btrfs_header_nritems(upper) - 1)
  2204. return 1;
  2205. btrfs_assert_tree_locked(path->nodes[1]);
  2206. right = read_node_slot(root, upper, slot + 1);
  2207. btrfs_tree_lock(right);
  2208. btrfs_set_lock_blocking(right);
  2209. free_space = btrfs_leaf_free_space(root, right);
  2210. if (free_space < data_size)
  2211. goto out_unlock;
  2212. /* cow and double check */
  2213. ret = btrfs_cow_block(trans, root, right, upper,
  2214. slot + 1, &right);
  2215. if (ret)
  2216. goto out_unlock;
  2217. free_space = btrfs_leaf_free_space(root, right);
  2218. if (free_space < data_size)
  2219. goto out_unlock;
  2220. left_nritems = btrfs_header_nritems(left);
  2221. if (left_nritems == 0)
  2222. goto out_unlock;
  2223. return __push_leaf_right(trans, root, path, data_size, empty,
  2224. right, free_space, left_nritems);
  2225. out_unlock:
  2226. btrfs_tree_unlock(right);
  2227. free_extent_buffer(right);
  2228. return 1;
  2229. }
  2230. /*
  2231. * push some data in the path leaf to the left, trying to free up at
  2232. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2233. */
  2234. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2235. struct btrfs_root *root,
  2236. struct btrfs_path *path, int data_size,
  2237. int empty, struct extent_buffer *left,
  2238. int free_space, int right_nritems)
  2239. {
  2240. struct btrfs_disk_key disk_key;
  2241. struct extent_buffer *right = path->nodes[0];
  2242. int slot;
  2243. int i;
  2244. int push_space = 0;
  2245. int push_items = 0;
  2246. struct btrfs_item *item;
  2247. u32 old_left_nritems;
  2248. u32 nr;
  2249. int ret = 0;
  2250. int wret;
  2251. u32 this_item_size;
  2252. u32 old_left_item_size;
  2253. slot = path->slots[1];
  2254. if (empty)
  2255. nr = right_nritems;
  2256. else
  2257. nr = right_nritems - 1;
  2258. for (i = 0; i < nr; i++) {
  2259. item = btrfs_item_nr(right, i);
  2260. if (!right->map_token) {
  2261. map_extent_buffer(right, (unsigned long)item,
  2262. sizeof(struct btrfs_item),
  2263. &right->map_token, &right->kaddr,
  2264. &right->map_start, &right->map_len,
  2265. KM_USER1);
  2266. }
  2267. if (!empty && push_items > 0) {
  2268. if (path->slots[0] < i)
  2269. break;
  2270. if (path->slots[0] == i) {
  2271. int space = btrfs_leaf_free_space(root, right);
  2272. if (space + push_space * 2 > free_space)
  2273. break;
  2274. }
  2275. }
  2276. if (path->slots[0] == i)
  2277. push_space += data_size;
  2278. this_item_size = btrfs_item_size(right, item);
  2279. if (this_item_size + sizeof(*item) + push_space > free_space)
  2280. break;
  2281. push_items++;
  2282. push_space += this_item_size + sizeof(*item);
  2283. }
  2284. if (right->map_token) {
  2285. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2286. right->map_token = NULL;
  2287. }
  2288. if (push_items == 0) {
  2289. ret = 1;
  2290. goto out;
  2291. }
  2292. if (!empty && push_items == btrfs_header_nritems(right))
  2293. WARN_ON(1);
  2294. /* push data from right to left */
  2295. copy_extent_buffer(left, right,
  2296. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2297. btrfs_item_nr_offset(0),
  2298. push_items * sizeof(struct btrfs_item));
  2299. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2300. btrfs_item_offset_nr(right, push_items - 1);
  2301. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2302. leaf_data_end(root, left) - push_space,
  2303. btrfs_leaf_data(right) +
  2304. btrfs_item_offset_nr(right, push_items - 1),
  2305. push_space);
  2306. old_left_nritems = btrfs_header_nritems(left);
  2307. BUG_ON(old_left_nritems <= 0);
  2308. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2309. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2310. u32 ioff;
  2311. item = btrfs_item_nr(left, i);
  2312. if (!left->map_token) {
  2313. map_extent_buffer(left, (unsigned long)item,
  2314. sizeof(struct btrfs_item),
  2315. &left->map_token, &left->kaddr,
  2316. &left->map_start, &left->map_len,
  2317. KM_USER1);
  2318. }
  2319. ioff = btrfs_item_offset(left, item);
  2320. btrfs_set_item_offset(left, item,
  2321. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2322. }
  2323. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2324. if (left->map_token) {
  2325. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2326. left->map_token = NULL;
  2327. }
  2328. /* fixup right node */
  2329. if (push_items > right_nritems) {
  2330. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2331. right_nritems);
  2332. WARN_ON(1);
  2333. }
  2334. if (push_items < right_nritems) {
  2335. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2336. leaf_data_end(root, right);
  2337. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2338. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2339. btrfs_leaf_data(right) +
  2340. leaf_data_end(root, right), push_space);
  2341. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2342. btrfs_item_nr_offset(push_items),
  2343. (btrfs_header_nritems(right) - push_items) *
  2344. sizeof(struct btrfs_item));
  2345. }
  2346. right_nritems -= push_items;
  2347. btrfs_set_header_nritems(right, right_nritems);
  2348. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2349. for (i = 0; i < right_nritems; i++) {
  2350. item = btrfs_item_nr(right, i);
  2351. if (!right->map_token) {
  2352. map_extent_buffer(right, (unsigned long)item,
  2353. sizeof(struct btrfs_item),
  2354. &right->map_token, &right->kaddr,
  2355. &right->map_start, &right->map_len,
  2356. KM_USER1);
  2357. }
  2358. push_space = push_space - btrfs_item_size(right, item);
  2359. btrfs_set_item_offset(right, item, push_space);
  2360. }
  2361. if (right->map_token) {
  2362. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2363. right->map_token = NULL;
  2364. }
  2365. btrfs_mark_buffer_dirty(left);
  2366. if (right_nritems)
  2367. btrfs_mark_buffer_dirty(right);
  2368. btrfs_item_key(right, &disk_key, 0);
  2369. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2370. if (wret)
  2371. ret = wret;
  2372. /* then fixup the leaf pointer in the path */
  2373. if (path->slots[0] < push_items) {
  2374. path->slots[0] += old_left_nritems;
  2375. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2376. clean_tree_block(trans, root, path->nodes[0]);
  2377. btrfs_tree_unlock(path->nodes[0]);
  2378. free_extent_buffer(path->nodes[0]);
  2379. path->nodes[0] = left;
  2380. path->slots[1] -= 1;
  2381. } else {
  2382. btrfs_tree_unlock(left);
  2383. free_extent_buffer(left);
  2384. path->slots[0] -= push_items;
  2385. }
  2386. BUG_ON(path->slots[0] < 0);
  2387. return ret;
  2388. out:
  2389. btrfs_tree_unlock(left);
  2390. free_extent_buffer(left);
  2391. return ret;
  2392. }
  2393. /*
  2394. * push some data in the path leaf to the left, trying to free up at
  2395. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2396. */
  2397. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2398. *root, struct btrfs_path *path, int data_size,
  2399. int empty)
  2400. {
  2401. struct extent_buffer *right = path->nodes[0];
  2402. struct extent_buffer *left;
  2403. int slot;
  2404. int free_space;
  2405. u32 right_nritems;
  2406. int ret = 0;
  2407. slot = path->slots[1];
  2408. if (slot == 0)
  2409. return 1;
  2410. if (!path->nodes[1])
  2411. return 1;
  2412. right_nritems = btrfs_header_nritems(right);
  2413. if (right_nritems == 0)
  2414. return 1;
  2415. btrfs_assert_tree_locked(path->nodes[1]);
  2416. left = read_node_slot(root, path->nodes[1], slot - 1);
  2417. btrfs_tree_lock(left);
  2418. btrfs_set_lock_blocking(left);
  2419. free_space = btrfs_leaf_free_space(root, left);
  2420. if (free_space < data_size) {
  2421. ret = 1;
  2422. goto out;
  2423. }
  2424. /* cow and double check */
  2425. ret = btrfs_cow_block(trans, root, left,
  2426. path->nodes[1], slot - 1, &left);
  2427. if (ret) {
  2428. /* we hit -ENOSPC, but it isn't fatal here */
  2429. ret = 1;
  2430. goto out;
  2431. }
  2432. free_space = btrfs_leaf_free_space(root, left);
  2433. if (free_space < data_size) {
  2434. ret = 1;
  2435. goto out;
  2436. }
  2437. return __push_leaf_left(trans, root, path, data_size,
  2438. empty, left, free_space, right_nritems);
  2439. out:
  2440. btrfs_tree_unlock(left);
  2441. free_extent_buffer(left);
  2442. return ret;
  2443. }
  2444. /*
  2445. * split the path's leaf in two, making sure there is at least data_size
  2446. * available for the resulting leaf level of the path.
  2447. *
  2448. * returns 0 if all went well and < 0 on failure.
  2449. */
  2450. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2451. struct btrfs_root *root,
  2452. struct btrfs_path *path,
  2453. struct extent_buffer *l,
  2454. struct extent_buffer *right,
  2455. int slot, int mid, int nritems)
  2456. {
  2457. int data_copy_size;
  2458. int rt_data_off;
  2459. int i;
  2460. int ret = 0;
  2461. int wret;
  2462. struct btrfs_disk_key disk_key;
  2463. nritems = nritems - mid;
  2464. btrfs_set_header_nritems(right, nritems);
  2465. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2466. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2467. btrfs_item_nr_offset(mid),
  2468. nritems * sizeof(struct btrfs_item));
  2469. copy_extent_buffer(right, l,
  2470. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2471. data_copy_size, btrfs_leaf_data(l) +
  2472. leaf_data_end(root, l), data_copy_size);
  2473. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2474. btrfs_item_end_nr(l, mid);
  2475. for (i = 0; i < nritems; i++) {
  2476. struct btrfs_item *item = btrfs_item_nr(right, i);
  2477. u32 ioff;
  2478. if (!right->map_token) {
  2479. map_extent_buffer(right, (unsigned long)item,
  2480. sizeof(struct btrfs_item),
  2481. &right->map_token, &right->kaddr,
  2482. &right->map_start, &right->map_len,
  2483. KM_USER1);
  2484. }
  2485. ioff = btrfs_item_offset(right, item);
  2486. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2487. }
  2488. if (right->map_token) {
  2489. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2490. right->map_token = NULL;
  2491. }
  2492. btrfs_set_header_nritems(l, mid);
  2493. ret = 0;
  2494. btrfs_item_key(right, &disk_key, 0);
  2495. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2496. path->slots[1] + 1, 1);
  2497. if (wret)
  2498. ret = wret;
  2499. btrfs_mark_buffer_dirty(right);
  2500. btrfs_mark_buffer_dirty(l);
  2501. BUG_ON(path->slots[0] != slot);
  2502. if (mid <= slot) {
  2503. btrfs_tree_unlock(path->nodes[0]);
  2504. free_extent_buffer(path->nodes[0]);
  2505. path->nodes[0] = right;
  2506. path->slots[0] -= mid;
  2507. path->slots[1] += 1;
  2508. } else {
  2509. btrfs_tree_unlock(right);
  2510. free_extent_buffer(right);
  2511. }
  2512. BUG_ON(path->slots[0] < 0);
  2513. return ret;
  2514. }
  2515. /*
  2516. * split the path's leaf in two, making sure there is at least data_size
  2517. * available for the resulting leaf level of the path.
  2518. *
  2519. * returns 0 if all went well and < 0 on failure.
  2520. */
  2521. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2522. struct btrfs_root *root,
  2523. struct btrfs_key *ins_key,
  2524. struct btrfs_path *path, int data_size,
  2525. int extend)
  2526. {
  2527. struct btrfs_disk_key disk_key;
  2528. struct extent_buffer *l;
  2529. u32 nritems;
  2530. int mid;
  2531. int slot;
  2532. struct extent_buffer *right;
  2533. int ret = 0;
  2534. int wret;
  2535. int split;
  2536. int num_doubles = 0;
  2537. l = path->nodes[0];
  2538. slot = path->slots[0];
  2539. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2540. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2541. return -EOVERFLOW;
  2542. /* first try to make some room by pushing left and right */
  2543. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2544. wret = push_leaf_right(trans, root, path, data_size, 0);
  2545. if (wret < 0)
  2546. return wret;
  2547. if (wret) {
  2548. wret = push_leaf_left(trans, root, path, data_size, 0);
  2549. if (wret < 0)
  2550. return wret;
  2551. }
  2552. l = path->nodes[0];
  2553. /* did the pushes work? */
  2554. if (btrfs_leaf_free_space(root, l) >= data_size)
  2555. return 0;
  2556. }
  2557. if (!path->nodes[1]) {
  2558. ret = insert_new_root(trans, root, path, 1);
  2559. if (ret)
  2560. return ret;
  2561. }
  2562. again:
  2563. split = 1;
  2564. l = path->nodes[0];
  2565. slot = path->slots[0];
  2566. nritems = btrfs_header_nritems(l);
  2567. mid = (nritems + 1) / 2;
  2568. if (mid <= slot) {
  2569. if (nritems == 1 ||
  2570. leaf_space_used(l, mid, nritems - mid) + data_size >
  2571. BTRFS_LEAF_DATA_SIZE(root)) {
  2572. if (slot >= nritems) {
  2573. split = 0;
  2574. } else {
  2575. mid = slot;
  2576. if (mid != nritems &&
  2577. leaf_space_used(l, mid, nritems - mid) +
  2578. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2579. split = 2;
  2580. }
  2581. }
  2582. }
  2583. } else {
  2584. if (leaf_space_used(l, 0, mid) + data_size >
  2585. BTRFS_LEAF_DATA_SIZE(root)) {
  2586. if (!extend && data_size && slot == 0) {
  2587. split = 0;
  2588. } else if ((extend || !data_size) && slot == 0) {
  2589. mid = 1;
  2590. } else {
  2591. mid = slot;
  2592. if (mid != nritems &&
  2593. leaf_space_used(l, mid, nritems - mid) +
  2594. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2595. split = 2 ;
  2596. }
  2597. }
  2598. }
  2599. }
  2600. if (split == 0)
  2601. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2602. else
  2603. btrfs_item_key(l, &disk_key, mid);
  2604. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2605. root->root_key.objectid,
  2606. &disk_key, 0, l->start, 0);
  2607. if (IS_ERR(right)) {
  2608. BUG_ON(1);
  2609. return PTR_ERR(right);
  2610. }
  2611. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2612. btrfs_set_header_bytenr(right, right->start);
  2613. btrfs_set_header_generation(right, trans->transid);
  2614. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2615. btrfs_set_header_owner(right, root->root_key.objectid);
  2616. btrfs_set_header_level(right, 0);
  2617. write_extent_buffer(right, root->fs_info->fsid,
  2618. (unsigned long)btrfs_header_fsid(right),
  2619. BTRFS_FSID_SIZE);
  2620. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2621. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2622. BTRFS_UUID_SIZE);
  2623. if (split == 0) {
  2624. if (mid <= slot) {
  2625. btrfs_set_header_nritems(right, 0);
  2626. wret = insert_ptr(trans, root, path,
  2627. &disk_key, right->start,
  2628. path->slots[1] + 1, 1);
  2629. if (wret)
  2630. ret = wret;
  2631. btrfs_tree_unlock(path->nodes[0]);
  2632. free_extent_buffer(path->nodes[0]);
  2633. path->nodes[0] = right;
  2634. path->slots[0] = 0;
  2635. path->slots[1] += 1;
  2636. } else {
  2637. btrfs_set_header_nritems(right, 0);
  2638. wret = insert_ptr(trans, root, path,
  2639. &disk_key,
  2640. right->start,
  2641. path->slots[1], 1);
  2642. if (wret)
  2643. ret = wret;
  2644. btrfs_tree_unlock(path->nodes[0]);
  2645. free_extent_buffer(path->nodes[0]);
  2646. path->nodes[0] = right;
  2647. path->slots[0] = 0;
  2648. if (path->slots[1] == 0) {
  2649. wret = fixup_low_keys(trans, root,
  2650. path, &disk_key, 1);
  2651. if (wret)
  2652. ret = wret;
  2653. }
  2654. }
  2655. btrfs_mark_buffer_dirty(right);
  2656. return ret;
  2657. }
  2658. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2659. BUG_ON(ret);
  2660. if (split == 2) {
  2661. BUG_ON(num_doubles != 0);
  2662. num_doubles++;
  2663. goto again;
  2664. }
  2665. return ret;
  2666. }
  2667. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2668. struct btrfs_root *root,
  2669. struct btrfs_path *path, int ins_len)
  2670. {
  2671. struct btrfs_key key;
  2672. struct extent_buffer *leaf;
  2673. struct btrfs_file_extent_item *fi;
  2674. u64 extent_len = 0;
  2675. u32 item_size;
  2676. int ret;
  2677. leaf = path->nodes[0];
  2678. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2679. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2680. key.type != BTRFS_EXTENT_CSUM_KEY);
  2681. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2682. return 0;
  2683. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2684. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2685. fi = btrfs_item_ptr(leaf, path->slots[0],
  2686. struct btrfs_file_extent_item);
  2687. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2688. }
  2689. btrfs_release_path(root, path);
  2690. path->keep_locks = 1;
  2691. path->search_for_split = 1;
  2692. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2693. path->search_for_split = 0;
  2694. if (ret < 0)
  2695. goto err;
  2696. ret = -EAGAIN;
  2697. leaf = path->nodes[0];
  2698. /* if our item isn't there or got smaller, return now */
  2699. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2700. goto err;
  2701. /* the leaf has changed, it now has room. return now */
  2702. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2703. goto err;
  2704. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2705. fi = btrfs_item_ptr(leaf, path->slots[0],
  2706. struct btrfs_file_extent_item);
  2707. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2708. goto err;
  2709. }
  2710. btrfs_set_path_blocking(path);
  2711. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2712. BUG_ON(ret);
  2713. path->keep_locks = 0;
  2714. btrfs_unlock_up_safe(path, 1);
  2715. return 0;
  2716. err:
  2717. path->keep_locks = 0;
  2718. return ret;
  2719. }
  2720. static noinline int split_item(struct btrfs_trans_handle *trans,
  2721. struct btrfs_root *root,
  2722. struct btrfs_path *path,
  2723. struct btrfs_key *new_key,
  2724. unsigned long split_offset)
  2725. {
  2726. struct extent_buffer *leaf;
  2727. struct btrfs_item *item;
  2728. struct btrfs_item *new_item;
  2729. int slot;
  2730. char *buf;
  2731. u32 nritems;
  2732. u32 item_size;
  2733. u32 orig_offset;
  2734. struct btrfs_disk_key disk_key;
  2735. leaf = path->nodes[0];
  2736. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2737. btrfs_set_path_blocking(path);
  2738. item = btrfs_item_nr(leaf, path->slots[0]);
  2739. orig_offset = btrfs_item_offset(leaf, item);
  2740. item_size = btrfs_item_size(leaf, item);
  2741. buf = kmalloc(item_size, GFP_NOFS);
  2742. if (!buf)
  2743. return -ENOMEM;
  2744. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2745. path->slots[0]), item_size);
  2746. slot = path->slots[0] + 1;
  2747. nritems = btrfs_header_nritems(leaf);
  2748. if (slot != nritems) {
  2749. /* shift the items */
  2750. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2751. btrfs_item_nr_offset(slot),
  2752. (nritems - slot) * sizeof(struct btrfs_item));
  2753. }
  2754. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2755. btrfs_set_item_key(leaf, &disk_key, slot);
  2756. new_item = btrfs_item_nr(leaf, slot);
  2757. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2758. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2759. btrfs_set_item_offset(leaf, item,
  2760. orig_offset + item_size - split_offset);
  2761. btrfs_set_item_size(leaf, item, split_offset);
  2762. btrfs_set_header_nritems(leaf, nritems + 1);
  2763. /* write the data for the start of the original item */
  2764. write_extent_buffer(leaf, buf,
  2765. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2766. split_offset);
  2767. /* write the data for the new item */
  2768. write_extent_buffer(leaf, buf + split_offset,
  2769. btrfs_item_ptr_offset(leaf, slot),
  2770. item_size - split_offset);
  2771. btrfs_mark_buffer_dirty(leaf);
  2772. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2773. kfree(buf);
  2774. return 0;
  2775. }
  2776. /*
  2777. * This function splits a single item into two items,
  2778. * giving 'new_key' to the new item and splitting the
  2779. * old one at split_offset (from the start of the item).
  2780. *
  2781. * The path may be released by this operation. After
  2782. * the split, the path is pointing to the old item. The
  2783. * new item is going to be in the same node as the old one.
  2784. *
  2785. * Note, the item being split must be smaller enough to live alone on
  2786. * a tree block with room for one extra struct btrfs_item
  2787. *
  2788. * This allows us to split the item in place, keeping a lock on the
  2789. * leaf the entire time.
  2790. */
  2791. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2792. struct btrfs_root *root,
  2793. struct btrfs_path *path,
  2794. struct btrfs_key *new_key,
  2795. unsigned long split_offset)
  2796. {
  2797. int ret;
  2798. ret = setup_leaf_for_split(trans, root, path,
  2799. sizeof(struct btrfs_item));
  2800. if (ret)
  2801. return ret;
  2802. ret = split_item(trans, root, path, new_key, split_offset);
  2803. return ret;
  2804. }
  2805. /*
  2806. * This function duplicate a item, giving 'new_key' to the new item.
  2807. * It guarantees both items live in the same tree leaf and the new item
  2808. * is contiguous with the original item.
  2809. *
  2810. * This allows us to split file extent in place, keeping a lock on the
  2811. * leaf the entire time.
  2812. */
  2813. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2814. struct btrfs_root *root,
  2815. struct btrfs_path *path,
  2816. struct btrfs_key *new_key)
  2817. {
  2818. struct extent_buffer *leaf;
  2819. int ret;
  2820. u32 item_size;
  2821. leaf = path->nodes[0];
  2822. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2823. ret = setup_leaf_for_split(trans, root, path,
  2824. item_size + sizeof(struct btrfs_item));
  2825. if (ret)
  2826. return ret;
  2827. path->slots[0]++;
  2828. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2829. item_size, item_size +
  2830. sizeof(struct btrfs_item), 1);
  2831. BUG_ON(ret);
  2832. leaf = path->nodes[0];
  2833. memcpy_extent_buffer(leaf,
  2834. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2835. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2836. item_size);
  2837. return 0;
  2838. }
  2839. /*
  2840. * make the item pointed to by the path smaller. new_size indicates
  2841. * how small to make it, and from_end tells us if we just chop bytes
  2842. * off the end of the item or if we shift the item to chop bytes off
  2843. * the front.
  2844. */
  2845. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2846. struct btrfs_root *root,
  2847. struct btrfs_path *path,
  2848. u32 new_size, int from_end)
  2849. {
  2850. int ret = 0;
  2851. int slot;
  2852. int slot_orig;
  2853. struct extent_buffer *leaf;
  2854. struct btrfs_item *item;
  2855. u32 nritems;
  2856. unsigned int data_end;
  2857. unsigned int old_data_start;
  2858. unsigned int old_size;
  2859. unsigned int size_diff;
  2860. int i;
  2861. slot_orig = path->slots[0];
  2862. leaf = path->nodes[0];
  2863. slot = path->slots[0];
  2864. old_size = btrfs_item_size_nr(leaf, slot);
  2865. if (old_size == new_size)
  2866. return 0;
  2867. nritems = btrfs_header_nritems(leaf);
  2868. data_end = leaf_data_end(root, leaf);
  2869. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2870. size_diff = old_size - new_size;
  2871. BUG_ON(slot < 0);
  2872. BUG_ON(slot >= nritems);
  2873. /*
  2874. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2875. */
  2876. /* first correct the data pointers */
  2877. for (i = slot; i < nritems; i++) {
  2878. u32 ioff;
  2879. item = btrfs_item_nr(leaf, i);
  2880. if (!leaf->map_token) {
  2881. map_extent_buffer(leaf, (unsigned long)item,
  2882. sizeof(struct btrfs_item),
  2883. &leaf->map_token, &leaf->kaddr,
  2884. &leaf->map_start, &leaf->map_len,
  2885. KM_USER1);
  2886. }
  2887. ioff = btrfs_item_offset(leaf, item);
  2888. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2889. }
  2890. if (leaf->map_token) {
  2891. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2892. leaf->map_token = NULL;
  2893. }
  2894. /* shift the data */
  2895. if (from_end) {
  2896. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2897. data_end + size_diff, btrfs_leaf_data(leaf) +
  2898. data_end, old_data_start + new_size - data_end);
  2899. } else {
  2900. struct btrfs_disk_key disk_key;
  2901. u64 offset;
  2902. btrfs_item_key(leaf, &disk_key, slot);
  2903. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2904. unsigned long ptr;
  2905. struct btrfs_file_extent_item *fi;
  2906. fi = btrfs_item_ptr(leaf, slot,
  2907. struct btrfs_file_extent_item);
  2908. fi = (struct btrfs_file_extent_item *)(
  2909. (unsigned long)fi - size_diff);
  2910. if (btrfs_file_extent_type(leaf, fi) ==
  2911. BTRFS_FILE_EXTENT_INLINE) {
  2912. ptr = btrfs_item_ptr_offset(leaf, slot);
  2913. memmove_extent_buffer(leaf, ptr,
  2914. (unsigned long)fi,
  2915. offsetof(struct btrfs_file_extent_item,
  2916. disk_bytenr));
  2917. }
  2918. }
  2919. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2920. data_end + size_diff, btrfs_leaf_data(leaf) +
  2921. data_end, old_data_start - data_end);
  2922. offset = btrfs_disk_key_offset(&disk_key);
  2923. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2924. btrfs_set_item_key(leaf, &disk_key, slot);
  2925. if (slot == 0)
  2926. fixup_low_keys(trans, root, path, &disk_key, 1);
  2927. }
  2928. item = btrfs_item_nr(leaf, slot);
  2929. btrfs_set_item_size(leaf, item, new_size);
  2930. btrfs_mark_buffer_dirty(leaf);
  2931. ret = 0;
  2932. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2933. btrfs_print_leaf(root, leaf);
  2934. BUG();
  2935. }
  2936. return ret;
  2937. }
  2938. /*
  2939. * make the item pointed to by the path bigger, data_size is the new size.
  2940. */
  2941. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2942. struct btrfs_root *root, struct btrfs_path *path,
  2943. u32 data_size)
  2944. {
  2945. int ret = 0;
  2946. int slot;
  2947. int slot_orig;
  2948. struct extent_buffer *leaf;
  2949. struct btrfs_item *item;
  2950. u32 nritems;
  2951. unsigned int data_end;
  2952. unsigned int old_data;
  2953. unsigned int old_size;
  2954. int i;
  2955. slot_orig = path->slots[0];
  2956. leaf = path->nodes[0];
  2957. nritems = btrfs_header_nritems(leaf);
  2958. data_end = leaf_data_end(root, leaf);
  2959. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2960. btrfs_print_leaf(root, leaf);
  2961. BUG();
  2962. }
  2963. slot = path->slots[0];
  2964. old_data = btrfs_item_end_nr(leaf, slot);
  2965. BUG_ON(slot < 0);
  2966. if (slot >= nritems) {
  2967. btrfs_print_leaf(root, leaf);
  2968. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2969. slot, nritems);
  2970. BUG_ON(1);
  2971. }
  2972. /*
  2973. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2974. */
  2975. /* first correct the data pointers */
  2976. for (i = slot; i < nritems; i++) {
  2977. u32 ioff;
  2978. item = btrfs_item_nr(leaf, i);
  2979. if (!leaf->map_token) {
  2980. map_extent_buffer(leaf, (unsigned long)item,
  2981. sizeof(struct btrfs_item),
  2982. &leaf->map_token, &leaf->kaddr,
  2983. &leaf->map_start, &leaf->map_len,
  2984. KM_USER1);
  2985. }
  2986. ioff = btrfs_item_offset(leaf, item);
  2987. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2988. }
  2989. if (leaf->map_token) {
  2990. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2991. leaf->map_token = NULL;
  2992. }
  2993. /* shift the data */
  2994. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2995. data_end - data_size, btrfs_leaf_data(leaf) +
  2996. data_end, old_data - data_end);
  2997. data_end = old_data;
  2998. old_size = btrfs_item_size_nr(leaf, slot);
  2999. item = btrfs_item_nr(leaf, slot);
  3000. btrfs_set_item_size(leaf, item, old_size + data_size);
  3001. btrfs_mark_buffer_dirty(leaf);
  3002. ret = 0;
  3003. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3004. btrfs_print_leaf(root, leaf);
  3005. BUG();
  3006. }
  3007. return ret;
  3008. }
  3009. /*
  3010. * Given a key and some data, insert items into the tree.
  3011. * This does all the path init required, making room in the tree if needed.
  3012. * Returns the number of keys that were inserted.
  3013. */
  3014. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3015. struct btrfs_root *root,
  3016. struct btrfs_path *path,
  3017. struct btrfs_key *cpu_key, u32 *data_size,
  3018. int nr)
  3019. {
  3020. struct extent_buffer *leaf;
  3021. struct btrfs_item *item;
  3022. int ret = 0;
  3023. int slot;
  3024. int i;
  3025. u32 nritems;
  3026. u32 total_data = 0;
  3027. u32 total_size = 0;
  3028. unsigned int data_end;
  3029. struct btrfs_disk_key disk_key;
  3030. struct btrfs_key found_key;
  3031. for (i = 0; i < nr; i++) {
  3032. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3033. BTRFS_LEAF_DATA_SIZE(root)) {
  3034. break;
  3035. nr = i;
  3036. }
  3037. total_data += data_size[i];
  3038. total_size += data_size[i] + sizeof(struct btrfs_item);
  3039. }
  3040. BUG_ON(nr == 0);
  3041. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3042. if (ret == 0)
  3043. return -EEXIST;
  3044. if (ret < 0)
  3045. goto out;
  3046. leaf = path->nodes[0];
  3047. nritems = btrfs_header_nritems(leaf);
  3048. data_end = leaf_data_end(root, leaf);
  3049. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3050. for (i = nr; i >= 0; i--) {
  3051. total_data -= data_size[i];
  3052. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3053. if (total_size < btrfs_leaf_free_space(root, leaf))
  3054. break;
  3055. }
  3056. nr = i;
  3057. }
  3058. slot = path->slots[0];
  3059. BUG_ON(slot < 0);
  3060. if (slot != nritems) {
  3061. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3062. item = btrfs_item_nr(leaf, slot);
  3063. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3064. /* figure out how many keys we can insert in here */
  3065. total_data = data_size[0];
  3066. for (i = 1; i < nr; i++) {
  3067. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3068. break;
  3069. total_data += data_size[i];
  3070. }
  3071. nr = i;
  3072. if (old_data < data_end) {
  3073. btrfs_print_leaf(root, leaf);
  3074. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3075. slot, old_data, data_end);
  3076. BUG_ON(1);
  3077. }
  3078. /*
  3079. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3080. */
  3081. /* first correct the data pointers */
  3082. WARN_ON(leaf->map_token);
  3083. for (i = slot; i < nritems; i++) {
  3084. u32 ioff;
  3085. item = btrfs_item_nr(leaf, i);
  3086. if (!leaf->map_token) {
  3087. map_extent_buffer(leaf, (unsigned long)item,
  3088. sizeof(struct btrfs_item),
  3089. &leaf->map_token, &leaf->kaddr,
  3090. &leaf->map_start, &leaf->map_len,
  3091. KM_USER1);
  3092. }
  3093. ioff = btrfs_item_offset(leaf, item);
  3094. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3095. }
  3096. if (leaf->map_token) {
  3097. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3098. leaf->map_token = NULL;
  3099. }
  3100. /* shift the items */
  3101. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3102. btrfs_item_nr_offset(slot),
  3103. (nritems - slot) * sizeof(struct btrfs_item));
  3104. /* shift the data */
  3105. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3106. data_end - total_data, btrfs_leaf_data(leaf) +
  3107. data_end, old_data - data_end);
  3108. data_end = old_data;
  3109. } else {
  3110. /*
  3111. * this sucks but it has to be done, if we are inserting at
  3112. * the end of the leaf only insert 1 of the items, since we
  3113. * have no way of knowing whats on the next leaf and we'd have
  3114. * to drop our current locks to figure it out
  3115. */
  3116. nr = 1;
  3117. }
  3118. /* setup the item for the new data */
  3119. for (i = 0; i < nr; i++) {
  3120. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3121. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3122. item = btrfs_item_nr(leaf, slot + i);
  3123. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3124. data_end -= data_size[i];
  3125. btrfs_set_item_size(leaf, item, data_size[i]);
  3126. }
  3127. btrfs_set_header_nritems(leaf, nritems + nr);
  3128. btrfs_mark_buffer_dirty(leaf);
  3129. ret = 0;
  3130. if (slot == 0) {
  3131. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3132. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3133. }
  3134. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3135. btrfs_print_leaf(root, leaf);
  3136. BUG();
  3137. }
  3138. out:
  3139. if (!ret)
  3140. ret = nr;
  3141. return ret;
  3142. }
  3143. /*
  3144. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3145. * to save stack depth by doing the bulk of the work in a function
  3146. * that doesn't call btrfs_search_slot
  3147. */
  3148. static noinline_for_stack int
  3149. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3150. struct btrfs_root *root, struct btrfs_path *path,
  3151. struct btrfs_key *cpu_key, u32 *data_size,
  3152. u32 total_data, u32 total_size, int nr)
  3153. {
  3154. struct btrfs_item *item;
  3155. int i;
  3156. u32 nritems;
  3157. unsigned int data_end;
  3158. struct btrfs_disk_key disk_key;
  3159. int ret;
  3160. struct extent_buffer *leaf;
  3161. int slot;
  3162. leaf = path->nodes[0];
  3163. slot = path->slots[0];
  3164. nritems = btrfs_header_nritems(leaf);
  3165. data_end = leaf_data_end(root, leaf);
  3166. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3167. btrfs_print_leaf(root, leaf);
  3168. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3169. total_size, btrfs_leaf_free_space(root, leaf));
  3170. BUG();
  3171. }
  3172. if (slot != nritems) {
  3173. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3174. if (old_data < data_end) {
  3175. btrfs_print_leaf(root, leaf);
  3176. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3177. slot, old_data, data_end);
  3178. BUG_ON(1);
  3179. }
  3180. /*
  3181. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3182. */
  3183. /* first correct the data pointers */
  3184. WARN_ON(leaf->map_token);
  3185. for (i = slot; i < nritems; i++) {
  3186. u32 ioff;
  3187. item = btrfs_item_nr(leaf, i);
  3188. if (!leaf->map_token) {
  3189. map_extent_buffer(leaf, (unsigned long)item,
  3190. sizeof(struct btrfs_item),
  3191. &leaf->map_token, &leaf->kaddr,
  3192. &leaf->map_start, &leaf->map_len,
  3193. KM_USER1);
  3194. }
  3195. ioff = btrfs_item_offset(leaf, item);
  3196. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3197. }
  3198. if (leaf->map_token) {
  3199. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3200. leaf->map_token = NULL;
  3201. }
  3202. /* shift the items */
  3203. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3204. btrfs_item_nr_offset(slot),
  3205. (nritems - slot) * sizeof(struct btrfs_item));
  3206. /* shift the data */
  3207. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3208. data_end - total_data, btrfs_leaf_data(leaf) +
  3209. data_end, old_data - data_end);
  3210. data_end = old_data;
  3211. }
  3212. /* setup the item for the new data */
  3213. for (i = 0; i < nr; i++) {
  3214. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3215. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3216. item = btrfs_item_nr(leaf, slot + i);
  3217. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3218. data_end -= data_size[i];
  3219. btrfs_set_item_size(leaf, item, data_size[i]);
  3220. }
  3221. btrfs_set_header_nritems(leaf, nritems + nr);
  3222. ret = 0;
  3223. if (slot == 0) {
  3224. struct btrfs_disk_key disk_key;
  3225. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3226. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3227. }
  3228. btrfs_unlock_up_safe(path, 1);
  3229. btrfs_mark_buffer_dirty(leaf);
  3230. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3231. btrfs_print_leaf(root, leaf);
  3232. BUG();
  3233. }
  3234. return ret;
  3235. }
  3236. /*
  3237. * Given a key and some data, insert items into the tree.
  3238. * This does all the path init required, making room in the tree if needed.
  3239. */
  3240. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3241. struct btrfs_root *root,
  3242. struct btrfs_path *path,
  3243. struct btrfs_key *cpu_key, u32 *data_size,
  3244. int nr)
  3245. {
  3246. struct extent_buffer *leaf;
  3247. int ret = 0;
  3248. int slot;
  3249. int i;
  3250. u32 total_size = 0;
  3251. u32 total_data = 0;
  3252. for (i = 0; i < nr; i++)
  3253. total_data += data_size[i];
  3254. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3255. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3256. if (ret == 0)
  3257. return -EEXIST;
  3258. if (ret < 0)
  3259. goto out;
  3260. leaf = path->nodes[0];
  3261. slot = path->slots[0];
  3262. BUG_ON(slot < 0);
  3263. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3264. total_data, total_size, nr);
  3265. out:
  3266. return ret;
  3267. }
  3268. /*
  3269. * Given a key and some data, insert an item into the tree.
  3270. * This does all the path init required, making room in the tree if needed.
  3271. */
  3272. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3273. *root, struct btrfs_key *cpu_key, void *data, u32
  3274. data_size)
  3275. {
  3276. int ret = 0;
  3277. struct btrfs_path *path;
  3278. struct extent_buffer *leaf;
  3279. unsigned long ptr;
  3280. path = btrfs_alloc_path();
  3281. BUG_ON(!path);
  3282. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3283. if (!ret) {
  3284. leaf = path->nodes[0];
  3285. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3286. write_extent_buffer(leaf, data, ptr, data_size);
  3287. btrfs_mark_buffer_dirty(leaf);
  3288. }
  3289. btrfs_free_path(path);
  3290. return ret;
  3291. }
  3292. /*
  3293. * delete the pointer from a given node.
  3294. *
  3295. * the tree should have been previously balanced so the deletion does not
  3296. * empty a node.
  3297. */
  3298. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3299. struct btrfs_path *path, int level, int slot)
  3300. {
  3301. struct extent_buffer *parent = path->nodes[level];
  3302. u32 nritems;
  3303. int ret = 0;
  3304. int wret;
  3305. nritems = btrfs_header_nritems(parent);
  3306. if (slot != nritems - 1) {
  3307. memmove_extent_buffer(parent,
  3308. btrfs_node_key_ptr_offset(slot),
  3309. btrfs_node_key_ptr_offset(slot + 1),
  3310. sizeof(struct btrfs_key_ptr) *
  3311. (nritems - slot - 1));
  3312. }
  3313. nritems--;
  3314. btrfs_set_header_nritems(parent, nritems);
  3315. if (nritems == 0 && parent == root->node) {
  3316. BUG_ON(btrfs_header_level(root->node) != 1);
  3317. /* just turn the root into a leaf and break */
  3318. btrfs_set_header_level(root->node, 0);
  3319. } else if (slot == 0) {
  3320. struct btrfs_disk_key disk_key;
  3321. btrfs_node_key(parent, &disk_key, 0);
  3322. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3323. if (wret)
  3324. ret = wret;
  3325. }
  3326. btrfs_mark_buffer_dirty(parent);
  3327. return ret;
  3328. }
  3329. /*
  3330. * a helper function to delete the leaf pointed to by path->slots[1] and
  3331. * path->nodes[1].
  3332. *
  3333. * This deletes the pointer in path->nodes[1] and frees the leaf
  3334. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3335. *
  3336. * The path must have already been setup for deleting the leaf, including
  3337. * all the proper balancing. path->nodes[1] must be locked.
  3338. */
  3339. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3340. struct btrfs_root *root,
  3341. struct btrfs_path *path,
  3342. struct extent_buffer *leaf)
  3343. {
  3344. int ret;
  3345. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3346. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3347. if (ret)
  3348. return ret;
  3349. /*
  3350. * btrfs_free_extent is expensive, we want to make sure we
  3351. * aren't holding any locks when we call it
  3352. */
  3353. btrfs_unlock_up_safe(path, 0);
  3354. ret = btrfs_free_tree_block(trans, root, leaf->start, leaf->len,
  3355. 0, root->root_key.objectid, 0);
  3356. return ret;
  3357. }
  3358. /*
  3359. * delete the item at the leaf level in path. If that empties
  3360. * the leaf, remove it from the tree
  3361. */
  3362. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3363. struct btrfs_path *path, int slot, int nr)
  3364. {
  3365. struct extent_buffer *leaf;
  3366. struct btrfs_item *item;
  3367. int last_off;
  3368. int dsize = 0;
  3369. int ret = 0;
  3370. int wret;
  3371. int i;
  3372. u32 nritems;
  3373. leaf = path->nodes[0];
  3374. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3375. for (i = 0; i < nr; i++)
  3376. dsize += btrfs_item_size_nr(leaf, slot + i);
  3377. nritems = btrfs_header_nritems(leaf);
  3378. if (slot + nr != nritems) {
  3379. int data_end = leaf_data_end(root, leaf);
  3380. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3381. data_end + dsize,
  3382. btrfs_leaf_data(leaf) + data_end,
  3383. last_off - data_end);
  3384. for (i = slot + nr; i < nritems; i++) {
  3385. u32 ioff;
  3386. item = btrfs_item_nr(leaf, i);
  3387. if (!leaf->map_token) {
  3388. map_extent_buffer(leaf, (unsigned long)item,
  3389. sizeof(struct btrfs_item),
  3390. &leaf->map_token, &leaf->kaddr,
  3391. &leaf->map_start, &leaf->map_len,
  3392. KM_USER1);
  3393. }
  3394. ioff = btrfs_item_offset(leaf, item);
  3395. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3396. }
  3397. if (leaf->map_token) {
  3398. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3399. leaf->map_token = NULL;
  3400. }
  3401. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3402. btrfs_item_nr_offset(slot + nr),
  3403. sizeof(struct btrfs_item) *
  3404. (nritems - slot - nr));
  3405. }
  3406. btrfs_set_header_nritems(leaf, nritems - nr);
  3407. nritems -= nr;
  3408. /* delete the leaf if we've emptied it */
  3409. if (nritems == 0) {
  3410. if (leaf == root->node) {
  3411. btrfs_set_header_level(leaf, 0);
  3412. } else {
  3413. ret = btrfs_del_leaf(trans, root, path, leaf);
  3414. BUG_ON(ret);
  3415. }
  3416. } else {
  3417. int used = leaf_space_used(leaf, 0, nritems);
  3418. if (slot == 0) {
  3419. struct btrfs_disk_key disk_key;
  3420. btrfs_item_key(leaf, &disk_key, 0);
  3421. wret = fixup_low_keys(trans, root, path,
  3422. &disk_key, 1);
  3423. if (wret)
  3424. ret = wret;
  3425. }
  3426. /* delete the leaf if it is mostly empty */
  3427. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3428. /* push_leaf_left fixes the path.
  3429. * make sure the path still points to our leaf
  3430. * for possible call to del_ptr below
  3431. */
  3432. slot = path->slots[1];
  3433. extent_buffer_get(leaf);
  3434. btrfs_set_path_blocking(path);
  3435. wret = push_leaf_left(trans, root, path, 1, 1);
  3436. if (wret < 0 && wret != -ENOSPC)
  3437. ret = wret;
  3438. if (path->nodes[0] == leaf &&
  3439. btrfs_header_nritems(leaf)) {
  3440. wret = push_leaf_right(trans, root, path, 1, 1);
  3441. if (wret < 0 && wret != -ENOSPC)
  3442. ret = wret;
  3443. }
  3444. if (btrfs_header_nritems(leaf) == 0) {
  3445. path->slots[1] = slot;
  3446. ret = btrfs_del_leaf(trans, root, path, leaf);
  3447. BUG_ON(ret);
  3448. free_extent_buffer(leaf);
  3449. } else {
  3450. /* if we're still in the path, make sure
  3451. * we're dirty. Otherwise, one of the
  3452. * push_leaf functions must have already
  3453. * dirtied this buffer
  3454. */
  3455. if (path->nodes[0] == leaf)
  3456. btrfs_mark_buffer_dirty(leaf);
  3457. free_extent_buffer(leaf);
  3458. }
  3459. } else {
  3460. btrfs_mark_buffer_dirty(leaf);
  3461. }
  3462. }
  3463. return ret;
  3464. }
  3465. /*
  3466. * search the tree again to find a leaf with lesser keys
  3467. * returns 0 if it found something or 1 if there are no lesser leaves.
  3468. * returns < 0 on io errors.
  3469. *
  3470. * This may release the path, and so you may lose any locks held at the
  3471. * time you call it.
  3472. */
  3473. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3474. {
  3475. struct btrfs_key key;
  3476. struct btrfs_disk_key found_key;
  3477. int ret;
  3478. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3479. if (key.offset > 0)
  3480. key.offset--;
  3481. else if (key.type > 0)
  3482. key.type--;
  3483. else if (key.objectid > 0)
  3484. key.objectid--;
  3485. else
  3486. return 1;
  3487. btrfs_release_path(root, path);
  3488. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3489. if (ret < 0)
  3490. return ret;
  3491. btrfs_item_key(path->nodes[0], &found_key, 0);
  3492. ret = comp_keys(&found_key, &key);
  3493. if (ret < 0)
  3494. return 0;
  3495. return 1;
  3496. }
  3497. /*
  3498. * A helper function to walk down the tree starting at min_key, and looking
  3499. * for nodes or leaves that are either in cache or have a minimum
  3500. * transaction id. This is used by the btree defrag code, and tree logging
  3501. *
  3502. * This does not cow, but it does stuff the starting key it finds back
  3503. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3504. * key and get a writable path.
  3505. *
  3506. * This does lock as it descends, and path->keep_locks should be set
  3507. * to 1 by the caller.
  3508. *
  3509. * This honors path->lowest_level to prevent descent past a given level
  3510. * of the tree.
  3511. *
  3512. * min_trans indicates the oldest transaction that you are interested
  3513. * in walking through. Any nodes or leaves older than min_trans are
  3514. * skipped over (without reading them).
  3515. *
  3516. * returns zero if something useful was found, < 0 on error and 1 if there
  3517. * was nothing in the tree that matched the search criteria.
  3518. */
  3519. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3520. struct btrfs_key *max_key,
  3521. struct btrfs_path *path, int cache_only,
  3522. u64 min_trans)
  3523. {
  3524. struct extent_buffer *cur;
  3525. struct btrfs_key found_key;
  3526. int slot;
  3527. int sret;
  3528. u32 nritems;
  3529. int level;
  3530. int ret = 1;
  3531. WARN_ON(!path->keep_locks);
  3532. again:
  3533. cur = btrfs_lock_root_node(root);
  3534. level = btrfs_header_level(cur);
  3535. WARN_ON(path->nodes[level]);
  3536. path->nodes[level] = cur;
  3537. path->locks[level] = 1;
  3538. if (btrfs_header_generation(cur) < min_trans) {
  3539. ret = 1;
  3540. goto out;
  3541. }
  3542. while (1) {
  3543. nritems = btrfs_header_nritems(cur);
  3544. level = btrfs_header_level(cur);
  3545. sret = bin_search(cur, min_key, level, &slot);
  3546. /* at the lowest level, we're done, setup the path and exit */
  3547. if (level == path->lowest_level) {
  3548. if (slot >= nritems)
  3549. goto find_next_key;
  3550. ret = 0;
  3551. path->slots[level] = slot;
  3552. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3553. goto out;
  3554. }
  3555. if (sret && slot > 0)
  3556. slot--;
  3557. /*
  3558. * check this node pointer against the cache_only and
  3559. * min_trans parameters. If it isn't in cache or is too
  3560. * old, skip to the next one.
  3561. */
  3562. while (slot < nritems) {
  3563. u64 blockptr;
  3564. u64 gen;
  3565. struct extent_buffer *tmp;
  3566. struct btrfs_disk_key disk_key;
  3567. blockptr = btrfs_node_blockptr(cur, slot);
  3568. gen = btrfs_node_ptr_generation(cur, slot);
  3569. if (gen < min_trans) {
  3570. slot++;
  3571. continue;
  3572. }
  3573. if (!cache_only)
  3574. break;
  3575. if (max_key) {
  3576. btrfs_node_key(cur, &disk_key, slot);
  3577. if (comp_keys(&disk_key, max_key) >= 0) {
  3578. ret = 1;
  3579. goto out;
  3580. }
  3581. }
  3582. tmp = btrfs_find_tree_block(root, blockptr,
  3583. btrfs_level_size(root, level - 1));
  3584. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3585. free_extent_buffer(tmp);
  3586. break;
  3587. }
  3588. if (tmp)
  3589. free_extent_buffer(tmp);
  3590. slot++;
  3591. }
  3592. find_next_key:
  3593. /*
  3594. * we didn't find a candidate key in this node, walk forward
  3595. * and find another one
  3596. */
  3597. if (slot >= nritems) {
  3598. path->slots[level] = slot;
  3599. btrfs_set_path_blocking(path);
  3600. sret = btrfs_find_next_key(root, path, min_key, level,
  3601. cache_only, min_trans);
  3602. if (sret == 0) {
  3603. btrfs_release_path(root, path);
  3604. goto again;
  3605. } else {
  3606. goto out;
  3607. }
  3608. }
  3609. /* save our key for returning back */
  3610. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3611. path->slots[level] = slot;
  3612. if (level == path->lowest_level) {
  3613. ret = 0;
  3614. unlock_up(path, level, 1);
  3615. goto out;
  3616. }
  3617. btrfs_set_path_blocking(path);
  3618. cur = read_node_slot(root, cur, slot);
  3619. btrfs_tree_lock(cur);
  3620. path->locks[level - 1] = 1;
  3621. path->nodes[level - 1] = cur;
  3622. unlock_up(path, level, 1);
  3623. btrfs_clear_path_blocking(path, NULL);
  3624. }
  3625. out:
  3626. if (ret == 0)
  3627. memcpy(min_key, &found_key, sizeof(found_key));
  3628. btrfs_set_path_blocking(path);
  3629. return ret;
  3630. }
  3631. /*
  3632. * this is similar to btrfs_next_leaf, but does not try to preserve
  3633. * and fixup the path. It looks for and returns the next key in the
  3634. * tree based on the current path and the cache_only and min_trans
  3635. * parameters.
  3636. *
  3637. * 0 is returned if another key is found, < 0 if there are any errors
  3638. * and 1 is returned if there are no higher keys in the tree
  3639. *
  3640. * path->keep_locks should be set to 1 on the search made before
  3641. * calling this function.
  3642. */
  3643. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3644. struct btrfs_key *key, int level,
  3645. int cache_only, u64 min_trans)
  3646. {
  3647. int slot;
  3648. struct extent_buffer *c;
  3649. WARN_ON(!path->keep_locks);
  3650. while (level < BTRFS_MAX_LEVEL) {
  3651. if (!path->nodes[level])
  3652. return 1;
  3653. slot = path->slots[level] + 1;
  3654. c = path->nodes[level];
  3655. next:
  3656. if (slot >= btrfs_header_nritems(c)) {
  3657. int ret;
  3658. int orig_lowest;
  3659. struct btrfs_key cur_key;
  3660. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3661. !path->nodes[level + 1])
  3662. return 1;
  3663. if (path->locks[level + 1]) {
  3664. level++;
  3665. continue;
  3666. }
  3667. slot = btrfs_header_nritems(c) - 1;
  3668. if (level == 0)
  3669. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3670. else
  3671. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3672. orig_lowest = path->lowest_level;
  3673. btrfs_release_path(root, path);
  3674. path->lowest_level = level;
  3675. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3676. 0, 0);
  3677. path->lowest_level = orig_lowest;
  3678. if (ret < 0)
  3679. return ret;
  3680. c = path->nodes[level];
  3681. slot = path->slots[level];
  3682. if (ret == 0)
  3683. slot++;
  3684. goto next;
  3685. }
  3686. if (level == 0)
  3687. btrfs_item_key_to_cpu(c, key, slot);
  3688. else {
  3689. u64 blockptr = btrfs_node_blockptr(c, slot);
  3690. u64 gen = btrfs_node_ptr_generation(c, slot);
  3691. if (cache_only) {
  3692. struct extent_buffer *cur;
  3693. cur = btrfs_find_tree_block(root, blockptr,
  3694. btrfs_level_size(root, level - 1));
  3695. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3696. slot++;
  3697. if (cur)
  3698. free_extent_buffer(cur);
  3699. goto next;
  3700. }
  3701. free_extent_buffer(cur);
  3702. }
  3703. if (gen < min_trans) {
  3704. slot++;
  3705. goto next;
  3706. }
  3707. btrfs_node_key_to_cpu(c, key, slot);
  3708. }
  3709. return 0;
  3710. }
  3711. return 1;
  3712. }
  3713. /*
  3714. * search the tree again to find a leaf with greater keys
  3715. * returns 0 if it found something or 1 if there are no greater leaves.
  3716. * returns < 0 on io errors.
  3717. */
  3718. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3719. {
  3720. int slot;
  3721. int level;
  3722. struct extent_buffer *c;
  3723. struct extent_buffer *next;
  3724. struct btrfs_key key;
  3725. u32 nritems;
  3726. int ret;
  3727. int old_spinning = path->leave_spinning;
  3728. int force_blocking = 0;
  3729. nritems = btrfs_header_nritems(path->nodes[0]);
  3730. if (nritems == 0)
  3731. return 1;
  3732. /*
  3733. * we take the blocks in an order that upsets lockdep. Using
  3734. * blocking mode is the only way around it.
  3735. */
  3736. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3737. force_blocking = 1;
  3738. #endif
  3739. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3740. again:
  3741. level = 1;
  3742. next = NULL;
  3743. btrfs_release_path(root, path);
  3744. path->keep_locks = 1;
  3745. if (!force_blocking)
  3746. path->leave_spinning = 1;
  3747. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3748. path->keep_locks = 0;
  3749. if (ret < 0)
  3750. return ret;
  3751. nritems = btrfs_header_nritems(path->nodes[0]);
  3752. /*
  3753. * by releasing the path above we dropped all our locks. A balance
  3754. * could have added more items next to the key that used to be
  3755. * at the very end of the block. So, check again here and
  3756. * advance the path if there are now more items available.
  3757. */
  3758. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3759. if (ret == 0)
  3760. path->slots[0]++;
  3761. ret = 0;
  3762. goto done;
  3763. }
  3764. while (level < BTRFS_MAX_LEVEL) {
  3765. if (!path->nodes[level]) {
  3766. ret = 1;
  3767. goto done;
  3768. }
  3769. slot = path->slots[level] + 1;
  3770. c = path->nodes[level];
  3771. if (slot >= btrfs_header_nritems(c)) {
  3772. level++;
  3773. if (level == BTRFS_MAX_LEVEL) {
  3774. ret = 1;
  3775. goto done;
  3776. }
  3777. continue;
  3778. }
  3779. if (next) {
  3780. btrfs_tree_unlock(next);
  3781. free_extent_buffer(next);
  3782. }
  3783. next = c;
  3784. ret = read_block_for_search(NULL, root, path, &next, level,
  3785. slot, &key);
  3786. if (ret == -EAGAIN)
  3787. goto again;
  3788. if (ret < 0) {
  3789. btrfs_release_path(root, path);
  3790. goto done;
  3791. }
  3792. if (!path->skip_locking) {
  3793. ret = btrfs_try_spin_lock(next);
  3794. if (!ret) {
  3795. btrfs_set_path_blocking(path);
  3796. btrfs_tree_lock(next);
  3797. if (!force_blocking)
  3798. btrfs_clear_path_blocking(path, next);
  3799. }
  3800. if (force_blocking)
  3801. btrfs_set_lock_blocking(next);
  3802. }
  3803. break;
  3804. }
  3805. path->slots[level] = slot;
  3806. while (1) {
  3807. level--;
  3808. c = path->nodes[level];
  3809. if (path->locks[level])
  3810. btrfs_tree_unlock(c);
  3811. free_extent_buffer(c);
  3812. path->nodes[level] = next;
  3813. path->slots[level] = 0;
  3814. if (!path->skip_locking)
  3815. path->locks[level] = 1;
  3816. if (!level)
  3817. break;
  3818. ret = read_block_for_search(NULL, root, path, &next, level,
  3819. 0, &key);
  3820. if (ret == -EAGAIN)
  3821. goto again;
  3822. if (ret < 0) {
  3823. btrfs_release_path(root, path);
  3824. goto done;
  3825. }
  3826. if (!path->skip_locking) {
  3827. btrfs_assert_tree_locked(path->nodes[level]);
  3828. ret = btrfs_try_spin_lock(next);
  3829. if (!ret) {
  3830. btrfs_set_path_blocking(path);
  3831. btrfs_tree_lock(next);
  3832. if (!force_blocking)
  3833. btrfs_clear_path_blocking(path, next);
  3834. }
  3835. if (force_blocking)
  3836. btrfs_set_lock_blocking(next);
  3837. }
  3838. }
  3839. ret = 0;
  3840. done:
  3841. unlock_up(path, 0, 1);
  3842. path->leave_spinning = old_spinning;
  3843. if (!old_spinning)
  3844. btrfs_set_path_blocking(path);
  3845. return ret;
  3846. }
  3847. /*
  3848. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3849. * searching until it gets past min_objectid or finds an item of 'type'
  3850. *
  3851. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3852. */
  3853. int btrfs_previous_item(struct btrfs_root *root,
  3854. struct btrfs_path *path, u64 min_objectid,
  3855. int type)
  3856. {
  3857. struct btrfs_key found_key;
  3858. struct extent_buffer *leaf;
  3859. u32 nritems;
  3860. int ret;
  3861. while (1) {
  3862. if (path->slots[0] == 0) {
  3863. btrfs_set_path_blocking(path);
  3864. ret = btrfs_prev_leaf(root, path);
  3865. if (ret != 0)
  3866. return ret;
  3867. } else {
  3868. path->slots[0]--;
  3869. }
  3870. leaf = path->nodes[0];
  3871. nritems = btrfs_header_nritems(leaf);
  3872. if (nritems == 0)
  3873. return 1;
  3874. if (path->slots[0] == nritems)
  3875. path->slots[0]--;
  3876. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3877. if (found_key.objectid < min_objectid)
  3878. break;
  3879. if (found_key.type == type)
  3880. return 0;
  3881. if (found_key.objectid == min_objectid &&
  3882. found_key.type < type)
  3883. break;
  3884. }
  3885. return 1;
  3886. }