aio.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/backing-dev.h>
  19. #include <linux/uio.h>
  20. #define DEBUG 0
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/slab.h>
  28. #include <linux/timer.h>
  29. #include <linux/aio.h>
  30. #include <linux/highmem.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/security.h>
  33. #include <linux/eventfd.h>
  34. #include <linux/blkdev.h>
  35. #include <linux/mempool.h>
  36. #include <linux/hash.h>
  37. #include <asm/kmap_types.h>
  38. #include <asm/uaccess.h>
  39. #if DEBUG > 1
  40. #define dprintk printk
  41. #else
  42. #define dprintk(x...) do { ; } while (0)
  43. #endif
  44. /*------ sysctl variables----*/
  45. static DEFINE_SPINLOCK(aio_nr_lock);
  46. unsigned long aio_nr; /* current system wide number of aio requests */
  47. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  48. /*----end sysctl variables---*/
  49. static struct kmem_cache *kiocb_cachep;
  50. static struct kmem_cache *kioctx_cachep;
  51. static struct workqueue_struct *aio_wq;
  52. /* Used for rare fput completion. */
  53. static void aio_fput_routine(struct work_struct *);
  54. static DECLARE_WORK(fput_work, aio_fput_routine);
  55. static DEFINE_SPINLOCK(fput_lock);
  56. static LIST_HEAD(fput_head);
  57. #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
  58. #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
  59. struct aio_batch_entry {
  60. struct hlist_node list;
  61. struct address_space *mapping;
  62. };
  63. mempool_t *abe_pool;
  64. static void aio_kick_handler(struct work_struct *);
  65. static void aio_queue_work(struct kioctx *);
  66. /* aio_setup
  67. * Creates the slab caches used by the aio routines, panic on
  68. * failure as this is done early during the boot sequence.
  69. */
  70. static int __init aio_setup(void)
  71. {
  72. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  73. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  74. aio_wq = create_workqueue("aio");
  75. abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
  76. BUG_ON(!abe_pool);
  77. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  78. return 0;
  79. }
  80. __initcall(aio_setup);
  81. static void aio_free_ring(struct kioctx *ctx)
  82. {
  83. struct aio_ring_info *info = &ctx->ring_info;
  84. long i;
  85. for (i=0; i<info->nr_pages; i++)
  86. put_page(info->ring_pages[i]);
  87. if (info->mmap_size) {
  88. down_write(&ctx->mm->mmap_sem);
  89. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  90. up_write(&ctx->mm->mmap_sem);
  91. }
  92. if (info->ring_pages && info->ring_pages != info->internal_pages)
  93. kfree(info->ring_pages);
  94. info->ring_pages = NULL;
  95. info->nr = 0;
  96. }
  97. static int aio_setup_ring(struct kioctx *ctx)
  98. {
  99. struct aio_ring *ring;
  100. struct aio_ring_info *info = &ctx->ring_info;
  101. unsigned nr_events = ctx->max_reqs;
  102. unsigned long size;
  103. int nr_pages;
  104. /* Compensate for the ring buffer's head/tail overlap entry */
  105. nr_events += 2; /* 1 is required, 2 for good luck */
  106. size = sizeof(struct aio_ring);
  107. size += sizeof(struct io_event) * nr_events;
  108. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  109. if (nr_pages < 0)
  110. return -EINVAL;
  111. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  112. info->nr = 0;
  113. info->ring_pages = info->internal_pages;
  114. if (nr_pages > AIO_RING_PAGES) {
  115. info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  116. if (!info->ring_pages)
  117. return -ENOMEM;
  118. }
  119. info->mmap_size = nr_pages * PAGE_SIZE;
  120. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  121. down_write(&ctx->mm->mmap_sem);
  122. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  123. PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
  124. 0);
  125. if (IS_ERR((void *)info->mmap_base)) {
  126. up_write(&ctx->mm->mmap_sem);
  127. info->mmap_size = 0;
  128. aio_free_ring(ctx);
  129. return -EAGAIN;
  130. }
  131. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  132. info->nr_pages = get_user_pages(current, ctx->mm,
  133. info->mmap_base, nr_pages,
  134. 1, 0, info->ring_pages, NULL);
  135. up_write(&ctx->mm->mmap_sem);
  136. if (unlikely(info->nr_pages != nr_pages)) {
  137. aio_free_ring(ctx);
  138. return -EAGAIN;
  139. }
  140. ctx->user_id = info->mmap_base;
  141. info->nr = nr_events; /* trusted copy */
  142. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  143. ring->nr = nr_events; /* user copy */
  144. ring->id = ctx->user_id;
  145. ring->head = ring->tail = 0;
  146. ring->magic = AIO_RING_MAGIC;
  147. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  148. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  149. ring->header_length = sizeof(struct aio_ring);
  150. kunmap_atomic(ring, KM_USER0);
  151. return 0;
  152. }
  153. /* aio_ring_event: returns a pointer to the event at the given index from
  154. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  155. */
  156. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  157. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  158. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  159. #define aio_ring_event(info, nr, km) ({ \
  160. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  161. struct io_event *__event; \
  162. __event = kmap_atomic( \
  163. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  164. __event += pos % AIO_EVENTS_PER_PAGE; \
  165. __event; \
  166. })
  167. #define put_aio_ring_event(event, km) do { \
  168. struct io_event *__event = (event); \
  169. (void)__event; \
  170. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  171. } while(0)
  172. static void ctx_rcu_free(struct rcu_head *head)
  173. {
  174. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  175. unsigned nr_events = ctx->max_reqs;
  176. kmem_cache_free(kioctx_cachep, ctx);
  177. if (nr_events) {
  178. spin_lock(&aio_nr_lock);
  179. BUG_ON(aio_nr - nr_events > aio_nr);
  180. aio_nr -= nr_events;
  181. spin_unlock(&aio_nr_lock);
  182. }
  183. }
  184. /* __put_ioctx
  185. * Called when the last user of an aio context has gone away,
  186. * and the struct needs to be freed.
  187. */
  188. static void __put_ioctx(struct kioctx *ctx)
  189. {
  190. BUG_ON(ctx->reqs_active);
  191. cancel_delayed_work(&ctx->wq);
  192. cancel_work_sync(&ctx->wq.work);
  193. aio_free_ring(ctx);
  194. mmdrop(ctx->mm);
  195. ctx->mm = NULL;
  196. pr_debug("__put_ioctx: freeing %p\n", ctx);
  197. call_rcu(&ctx->rcu_head, ctx_rcu_free);
  198. }
  199. #define get_ioctx(kioctx) do { \
  200. BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
  201. atomic_inc(&(kioctx)->users); \
  202. } while (0)
  203. #define put_ioctx(kioctx) do { \
  204. BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
  205. if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
  206. __put_ioctx(kioctx); \
  207. } while (0)
  208. /* ioctx_alloc
  209. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  210. */
  211. static struct kioctx *ioctx_alloc(unsigned nr_events)
  212. {
  213. struct mm_struct *mm;
  214. struct kioctx *ctx;
  215. int did_sync = 0;
  216. /* Prevent overflows */
  217. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  218. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  219. pr_debug("ENOMEM: nr_events too high\n");
  220. return ERR_PTR(-EINVAL);
  221. }
  222. if ((unsigned long)nr_events > aio_max_nr)
  223. return ERR_PTR(-EAGAIN);
  224. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  225. if (!ctx)
  226. return ERR_PTR(-ENOMEM);
  227. ctx->max_reqs = nr_events;
  228. mm = ctx->mm = current->mm;
  229. atomic_inc(&mm->mm_count);
  230. atomic_set(&ctx->users, 1);
  231. spin_lock_init(&ctx->ctx_lock);
  232. spin_lock_init(&ctx->ring_info.ring_lock);
  233. init_waitqueue_head(&ctx->wait);
  234. INIT_LIST_HEAD(&ctx->active_reqs);
  235. INIT_LIST_HEAD(&ctx->run_list);
  236. INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
  237. if (aio_setup_ring(ctx) < 0)
  238. goto out_freectx;
  239. /* limit the number of system wide aios */
  240. do {
  241. spin_lock_bh(&aio_nr_lock);
  242. if (aio_nr + nr_events > aio_max_nr ||
  243. aio_nr + nr_events < aio_nr)
  244. ctx->max_reqs = 0;
  245. else
  246. aio_nr += ctx->max_reqs;
  247. spin_unlock_bh(&aio_nr_lock);
  248. if (ctx->max_reqs || did_sync)
  249. break;
  250. /* wait for rcu callbacks to have completed before giving up */
  251. synchronize_rcu();
  252. did_sync = 1;
  253. ctx->max_reqs = nr_events;
  254. } while (1);
  255. if (ctx->max_reqs == 0)
  256. goto out_cleanup;
  257. /* now link into global list. */
  258. spin_lock(&mm->ioctx_lock);
  259. hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
  260. spin_unlock(&mm->ioctx_lock);
  261. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  262. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  263. return ctx;
  264. out_cleanup:
  265. __put_ioctx(ctx);
  266. return ERR_PTR(-EAGAIN);
  267. out_freectx:
  268. mmdrop(mm);
  269. kmem_cache_free(kioctx_cachep, ctx);
  270. ctx = ERR_PTR(-ENOMEM);
  271. dprintk("aio: error allocating ioctx %p\n", ctx);
  272. return ctx;
  273. }
  274. /* aio_cancel_all
  275. * Cancels all outstanding aio requests on an aio context. Used
  276. * when the processes owning a context have all exited to encourage
  277. * the rapid destruction of the kioctx.
  278. */
  279. static void aio_cancel_all(struct kioctx *ctx)
  280. {
  281. int (*cancel)(struct kiocb *, struct io_event *);
  282. struct io_event res;
  283. spin_lock_irq(&ctx->ctx_lock);
  284. ctx->dead = 1;
  285. while (!list_empty(&ctx->active_reqs)) {
  286. struct list_head *pos = ctx->active_reqs.next;
  287. struct kiocb *iocb = list_kiocb(pos);
  288. list_del_init(&iocb->ki_list);
  289. cancel = iocb->ki_cancel;
  290. kiocbSetCancelled(iocb);
  291. if (cancel) {
  292. iocb->ki_users++;
  293. spin_unlock_irq(&ctx->ctx_lock);
  294. cancel(iocb, &res);
  295. spin_lock_irq(&ctx->ctx_lock);
  296. }
  297. }
  298. spin_unlock_irq(&ctx->ctx_lock);
  299. }
  300. static void wait_for_all_aios(struct kioctx *ctx)
  301. {
  302. struct task_struct *tsk = current;
  303. DECLARE_WAITQUEUE(wait, tsk);
  304. spin_lock_irq(&ctx->ctx_lock);
  305. if (!ctx->reqs_active)
  306. goto out;
  307. add_wait_queue(&ctx->wait, &wait);
  308. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  309. while (ctx->reqs_active) {
  310. spin_unlock_irq(&ctx->ctx_lock);
  311. io_schedule();
  312. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  313. spin_lock_irq(&ctx->ctx_lock);
  314. }
  315. __set_task_state(tsk, TASK_RUNNING);
  316. remove_wait_queue(&ctx->wait, &wait);
  317. out:
  318. spin_unlock_irq(&ctx->ctx_lock);
  319. }
  320. /* wait_on_sync_kiocb:
  321. * Waits on the given sync kiocb to complete.
  322. */
  323. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  324. {
  325. while (iocb->ki_users) {
  326. set_current_state(TASK_UNINTERRUPTIBLE);
  327. if (!iocb->ki_users)
  328. break;
  329. io_schedule();
  330. }
  331. __set_current_state(TASK_RUNNING);
  332. return iocb->ki_user_data;
  333. }
  334. EXPORT_SYMBOL(wait_on_sync_kiocb);
  335. /* exit_aio: called when the last user of mm goes away. At this point,
  336. * there is no way for any new requests to be submited or any of the
  337. * io_* syscalls to be called on the context. However, there may be
  338. * outstanding requests which hold references to the context; as they
  339. * go away, they will call put_ioctx and release any pinned memory
  340. * associated with the request (held via struct page * references).
  341. */
  342. void exit_aio(struct mm_struct *mm)
  343. {
  344. struct kioctx *ctx;
  345. while (!hlist_empty(&mm->ioctx_list)) {
  346. ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
  347. hlist_del_rcu(&ctx->list);
  348. aio_cancel_all(ctx);
  349. wait_for_all_aios(ctx);
  350. /*
  351. * Ensure we don't leave the ctx on the aio_wq
  352. */
  353. cancel_work_sync(&ctx->wq.work);
  354. if (1 != atomic_read(&ctx->users))
  355. printk(KERN_DEBUG
  356. "exit_aio:ioctx still alive: %d %d %d\n",
  357. atomic_read(&ctx->users), ctx->dead,
  358. ctx->reqs_active);
  359. put_ioctx(ctx);
  360. }
  361. }
  362. /* aio_get_req
  363. * Allocate a slot for an aio request. Increments the users count
  364. * of the kioctx so that the kioctx stays around until all requests are
  365. * complete. Returns NULL if no requests are free.
  366. *
  367. * Returns with kiocb->users set to 2. The io submit code path holds
  368. * an extra reference while submitting the i/o.
  369. * This prevents races between the aio code path referencing the
  370. * req (after submitting it) and aio_complete() freeing the req.
  371. */
  372. static struct kiocb *__aio_get_req(struct kioctx *ctx)
  373. {
  374. struct kiocb *req = NULL;
  375. struct aio_ring *ring;
  376. int okay = 0;
  377. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  378. if (unlikely(!req))
  379. return NULL;
  380. req->ki_flags = 0;
  381. req->ki_users = 2;
  382. req->ki_key = 0;
  383. req->ki_ctx = ctx;
  384. req->ki_cancel = NULL;
  385. req->ki_retry = NULL;
  386. req->ki_dtor = NULL;
  387. req->private = NULL;
  388. req->ki_iovec = NULL;
  389. INIT_LIST_HEAD(&req->ki_run_list);
  390. req->ki_eventfd = NULL;
  391. /* Check if the completion queue has enough free space to
  392. * accept an event from this io.
  393. */
  394. spin_lock_irq(&ctx->ctx_lock);
  395. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  396. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  397. list_add(&req->ki_list, &ctx->active_reqs);
  398. ctx->reqs_active++;
  399. okay = 1;
  400. }
  401. kunmap_atomic(ring, KM_USER0);
  402. spin_unlock_irq(&ctx->ctx_lock);
  403. if (!okay) {
  404. kmem_cache_free(kiocb_cachep, req);
  405. req = NULL;
  406. }
  407. return req;
  408. }
  409. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  410. {
  411. struct kiocb *req;
  412. /* Handle a potential starvation case -- should be exceedingly rare as
  413. * requests will be stuck on fput_head only if the aio_fput_routine is
  414. * delayed and the requests were the last user of the struct file.
  415. */
  416. req = __aio_get_req(ctx);
  417. if (unlikely(NULL == req)) {
  418. aio_fput_routine(NULL);
  419. req = __aio_get_req(ctx);
  420. }
  421. return req;
  422. }
  423. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  424. {
  425. assert_spin_locked(&ctx->ctx_lock);
  426. if (req->ki_eventfd != NULL)
  427. eventfd_ctx_put(req->ki_eventfd);
  428. if (req->ki_dtor)
  429. req->ki_dtor(req);
  430. if (req->ki_iovec != &req->ki_inline_vec)
  431. kfree(req->ki_iovec);
  432. kmem_cache_free(kiocb_cachep, req);
  433. ctx->reqs_active--;
  434. if (unlikely(!ctx->reqs_active && ctx->dead))
  435. wake_up(&ctx->wait);
  436. }
  437. static void aio_fput_routine(struct work_struct *data)
  438. {
  439. spin_lock_irq(&fput_lock);
  440. while (likely(!list_empty(&fput_head))) {
  441. struct kiocb *req = list_kiocb(fput_head.next);
  442. struct kioctx *ctx = req->ki_ctx;
  443. list_del(&req->ki_list);
  444. spin_unlock_irq(&fput_lock);
  445. /* Complete the fput(s) */
  446. if (req->ki_filp != NULL)
  447. __fput(req->ki_filp);
  448. /* Link the iocb into the context's free list */
  449. spin_lock_irq(&ctx->ctx_lock);
  450. really_put_req(ctx, req);
  451. spin_unlock_irq(&ctx->ctx_lock);
  452. put_ioctx(ctx);
  453. spin_lock_irq(&fput_lock);
  454. }
  455. spin_unlock_irq(&fput_lock);
  456. }
  457. /* __aio_put_req
  458. * Returns true if this put was the last user of the request.
  459. */
  460. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  461. {
  462. dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
  463. req, atomic_long_read(&req->ki_filp->f_count));
  464. assert_spin_locked(&ctx->ctx_lock);
  465. req->ki_users--;
  466. BUG_ON(req->ki_users < 0);
  467. if (likely(req->ki_users))
  468. return 0;
  469. list_del(&req->ki_list); /* remove from active_reqs */
  470. req->ki_cancel = NULL;
  471. req->ki_retry = NULL;
  472. /*
  473. * Try to optimize the aio and eventfd file* puts, by avoiding to
  474. * schedule work in case it is not __fput() time. In normal cases,
  475. * we would not be holding the last reference to the file*, so
  476. * this function will be executed w/out any aio kthread wakeup.
  477. */
  478. if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
  479. get_ioctx(ctx);
  480. spin_lock(&fput_lock);
  481. list_add(&req->ki_list, &fput_head);
  482. spin_unlock(&fput_lock);
  483. queue_work(aio_wq, &fput_work);
  484. } else {
  485. req->ki_filp = NULL;
  486. really_put_req(ctx, req);
  487. }
  488. return 1;
  489. }
  490. /* aio_put_req
  491. * Returns true if this put was the last user of the kiocb,
  492. * false if the request is still in use.
  493. */
  494. int aio_put_req(struct kiocb *req)
  495. {
  496. struct kioctx *ctx = req->ki_ctx;
  497. int ret;
  498. spin_lock_irq(&ctx->ctx_lock);
  499. ret = __aio_put_req(ctx, req);
  500. spin_unlock_irq(&ctx->ctx_lock);
  501. return ret;
  502. }
  503. EXPORT_SYMBOL(aio_put_req);
  504. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  505. {
  506. struct mm_struct *mm = current->mm;
  507. struct kioctx *ctx, *ret = NULL;
  508. struct hlist_node *n;
  509. rcu_read_lock();
  510. hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
  511. if (ctx->user_id == ctx_id && !ctx->dead) {
  512. get_ioctx(ctx);
  513. ret = ctx;
  514. break;
  515. }
  516. }
  517. rcu_read_unlock();
  518. return ret;
  519. }
  520. /*
  521. * Queue up a kiocb to be retried. Assumes that the kiocb
  522. * has already been marked as kicked, and places it on
  523. * the retry run list for the corresponding ioctx, if it
  524. * isn't already queued. Returns 1 if it actually queued
  525. * the kiocb (to tell the caller to activate the work
  526. * queue to process it), or 0, if it found that it was
  527. * already queued.
  528. */
  529. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  530. {
  531. struct kioctx *ctx = iocb->ki_ctx;
  532. assert_spin_locked(&ctx->ctx_lock);
  533. if (list_empty(&iocb->ki_run_list)) {
  534. list_add_tail(&iocb->ki_run_list,
  535. &ctx->run_list);
  536. return 1;
  537. }
  538. return 0;
  539. }
  540. /* aio_run_iocb
  541. * This is the core aio execution routine. It is
  542. * invoked both for initial i/o submission and
  543. * subsequent retries via the aio_kick_handler.
  544. * Expects to be invoked with iocb->ki_ctx->lock
  545. * already held. The lock is released and reacquired
  546. * as needed during processing.
  547. *
  548. * Calls the iocb retry method (already setup for the
  549. * iocb on initial submission) for operation specific
  550. * handling, but takes care of most of common retry
  551. * execution details for a given iocb. The retry method
  552. * needs to be non-blocking as far as possible, to avoid
  553. * holding up other iocbs waiting to be serviced by the
  554. * retry kernel thread.
  555. *
  556. * The trickier parts in this code have to do with
  557. * ensuring that only one retry instance is in progress
  558. * for a given iocb at any time. Providing that guarantee
  559. * simplifies the coding of individual aio operations as
  560. * it avoids various potential races.
  561. */
  562. static ssize_t aio_run_iocb(struct kiocb *iocb)
  563. {
  564. struct kioctx *ctx = iocb->ki_ctx;
  565. ssize_t (*retry)(struct kiocb *);
  566. ssize_t ret;
  567. if (!(retry = iocb->ki_retry)) {
  568. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  569. return 0;
  570. }
  571. /*
  572. * We don't want the next retry iteration for this
  573. * operation to start until this one has returned and
  574. * updated the iocb state. However, wait_queue functions
  575. * can trigger a kick_iocb from interrupt context in the
  576. * meantime, indicating that data is available for the next
  577. * iteration. We want to remember that and enable the
  578. * next retry iteration _after_ we are through with
  579. * this one.
  580. *
  581. * So, in order to be able to register a "kick", but
  582. * prevent it from being queued now, we clear the kick
  583. * flag, but make the kick code *think* that the iocb is
  584. * still on the run list until we are actually done.
  585. * When we are done with this iteration, we check if
  586. * the iocb was kicked in the meantime and if so, queue
  587. * it up afresh.
  588. */
  589. kiocbClearKicked(iocb);
  590. /*
  591. * This is so that aio_complete knows it doesn't need to
  592. * pull the iocb off the run list (We can't just call
  593. * INIT_LIST_HEAD because we don't want a kick_iocb to
  594. * queue this on the run list yet)
  595. */
  596. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  597. spin_unlock_irq(&ctx->ctx_lock);
  598. /* Quit retrying if the i/o has been cancelled */
  599. if (kiocbIsCancelled(iocb)) {
  600. ret = -EINTR;
  601. aio_complete(iocb, ret, 0);
  602. /* must not access the iocb after this */
  603. goto out;
  604. }
  605. /*
  606. * Now we are all set to call the retry method in async
  607. * context.
  608. */
  609. ret = retry(iocb);
  610. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED)
  611. aio_complete(iocb, ret, 0);
  612. out:
  613. spin_lock_irq(&ctx->ctx_lock);
  614. if (-EIOCBRETRY == ret) {
  615. /*
  616. * OK, now that we are done with this iteration
  617. * and know that there is more left to go,
  618. * this is where we let go so that a subsequent
  619. * "kick" can start the next iteration
  620. */
  621. /* will make __queue_kicked_iocb succeed from here on */
  622. INIT_LIST_HEAD(&iocb->ki_run_list);
  623. /* we must queue the next iteration ourselves, if it
  624. * has already been kicked */
  625. if (kiocbIsKicked(iocb)) {
  626. __queue_kicked_iocb(iocb);
  627. /*
  628. * __queue_kicked_iocb will always return 1 here, because
  629. * iocb->ki_run_list is empty at this point so it should
  630. * be safe to unconditionally queue the context into the
  631. * work queue.
  632. */
  633. aio_queue_work(ctx);
  634. }
  635. }
  636. return ret;
  637. }
  638. /*
  639. * __aio_run_iocbs:
  640. * Process all pending retries queued on the ioctx
  641. * run list.
  642. * Assumes it is operating within the aio issuer's mm
  643. * context.
  644. */
  645. static int __aio_run_iocbs(struct kioctx *ctx)
  646. {
  647. struct kiocb *iocb;
  648. struct list_head run_list;
  649. assert_spin_locked(&ctx->ctx_lock);
  650. list_replace_init(&ctx->run_list, &run_list);
  651. while (!list_empty(&run_list)) {
  652. iocb = list_entry(run_list.next, struct kiocb,
  653. ki_run_list);
  654. list_del(&iocb->ki_run_list);
  655. /*
  656. * Hold an extra reference while retrying i/o.
  657. */
  658. iocb->ki_users++; /* grab extra reference */
  659. aio_run_iocb(iocb);
  660. __aio_put_req(ctx, iocb);
  661. }
  662. if (!list_empty(&ctx->run_list))
  663. return 1;
  664. return 0;
  665. }
  666. static void aio_queue_work(struct kioctx * ctx)
  667. {
  668. unsigned long timeout;
  669. /*
  670. * if someone is waiting, get the work started right
  671. * away, otherwise, use a longer delay
  672. */
  673. smp_mb();
  674. if (waitqueue_active(&ctx->wait))
  675. timeout = 1;
  676. else
  677. timeout = HZ/10;
  678. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  679. }
  680. /*
  681. * aio_run_iocbs:
  682. * Process all pending retries queued on the ioctx
  683. * run list.
  684. * Assumes it is operating within the aio issuer's mm
  685. * context.
  686. */
  687. static inline void aio_run_iocbs(struct kioctx *ctx)
  688. {
  689. int requeue;
  690. spin_lock_irq(&ctx->ctx_lock);
  691. requeue = __aio_run_iocbs(ctx);
  692. spin_unlock_irq(&ctx->ctx_lock);
  693. if (requeue)
  694. aio_queue_work(ctx);
  695. }
  696. /*
  697. * just like aio_run_iocbs, but keeps running them until
  698. * the list stays empty
  699. */
  700. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  701. {
  702. spin_lock_irq(&ctx->ctx_lock);
  703. while (__aio_run_iocbs(ctx))
  704. ;
  705. spin_unlock_irq(&ctx->ctx_lock);
  706. }
  707. /*
  708. * aio_kick_handler:
  709. * Work queue handler triggered to process pending
  710. * retries on an ioctx. Takes on the aio issuer's
  711. * mm context before running the iocbs, so that
  712. * copy_xxx_user operates on the issuer's address
  713. * space.
  714. * Run on aiod's context.
  715. */
  716. static void aio_kick_handler(struct work_struct *work)
  717. {
  718. struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
  719. mm_segment_t oldfs = get_fs();
  720. struct mm_struct *mm;
  721. int requeue;
  722. set_fs(USER_DS);
  723. use_mm(ctx->mm);
  724. spin_lock_irq(&ctx->ctx_lock);
  725. requeue =__aio_run_iocbs(ctx);
  726. mm = ctx->mm;
  727. spin_unlock_irq(&ctx->ctx_lock);
  728. unuse_mm(mm);
  729. set_fs(oldfs);
  730. /*
  731. * we're in a worker thread already, don't use queue_delayed_work,
  732. */
  733. if (requeue)
  734. queue_delayed_work(aio_wq, &ctx->wq, 0);
  735. }
  736. /*
  737. * Called by kick_iocb to queue the kiocb for retry
  738. * and if required activate the aio work queue to process
  739. * it
  740. */
  741. static void try_queue_kicked_iocb(struct kiocb *iocb)
  742. {
  743. struct kioctx *ctx = iocb->ki_ctx;
  744. unsigned long flags;
  745. int run = 0;
  746. spin_lock_irqsave(&ctx->ctx_lock, flags);
  747. /* set this inside the lock so that we can't race with aio_run_iocb()
  748. * testing it and putting the iocb on the run list under the lock */
  749. if (!kiocbTryKick(iocb))
  750. run = __queue_kicked_iocb(iocb);
  751. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  752. if (run)
  753. aio_queue_work(ctx);
  754. }
  755. /*
  756. * kick_iocb:
  757. * Called typically from a wait queue callback context
  758. * to trigger a retry of the iocb.
  759. * The retry is usually executed by aio workqueue
  760. * threads (See aio_kick_handler).
  761. */
  762. void kick_iocb(struct kiocb *iocb)
  763. {
  764. /* sync iocbs are easy: they can only ever be executing from a
  765. * single context. */
  766. if (is_sync_kiocb(iocb)) {
  767. kiocbSetKicked(iocb);
  768. wake_up_process(iocb->ki_obj.tsk);
  769. return;
  770. }
  771. try_queue_kicked_iocb(iocb);
  772. }
  773. EXPORT_SYMBOL(kick_iocb);
  774. /* aio_complete
  775. * Called when the io request on the given iocb is complete.
  776. * Returns true if this is the last user of the request. The
  777. * only other user of the request can be the cancellation code.
  778. */
  779. int aio_complete(struct kiocb *iocb, long res, long res2)
  780. {
  781. struct kioctx *ctx = iocb->ki_ctx;
  782. struct aio_ring_info *info;
  783. struct aio_ring *ring;
  784. struct io_event *event;
  785. unsigned long flags;
  786. unsigned long tail;
  787. int ret;
  788. /*
  789. * Special case handling for sync iocbs:
  790. * - events go directly into the iocb for fast handling
  791. * - the sync task with the iocb in its stack holds the single iocb
  792. * ref, no other paths have a way to get another ref
  793. * - the sync task helpfully left a reference to itself in the iocb
  794. */
  795. if (is_sync_kiocb(iocb)) {
  796. BUG_ON(iocb->ki_users != 1);
  797. iocb->ki_user_data = res;
  798. iocb->ki_users = 0;
  799. wake_up_process(iocb->ki_obj.tsk);
  800. return 1;
  801. }
  802. info = &ctx->ring_info;
  803. /* add a completion event to the ring buffer.
  804. * must be done holding ctx->ctx_lock to prevent
  805. * other code from messing with the tail
  806. * pointer since we might be called from irq
  807. * context.
  808. */
  809. spin_lock_irqsave(&ctx->ctx_lock, flags);
  810. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  811. list_del_init(&iocb->ki_run_list);
  812. /*
  813. * cancelled requests don't get events, userland was given one
  814. * when the event got cancelled.
  815. */
  816. if (kiocbIsCancelled(iocb))
  817. goto put_rq;
  818. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  819. tail = info->tail;
  820. event = aio_ring_event(info, tail, KM_IRQ0);
  821. if (++tail >= info->nr)
  822. tail = 0;
  823. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  824. event->data = iocb->ki_user_data;
  825. event->res = res;
  826. event->res2 = res2;
  827. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  828. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  829. res, res2);
  830. /* after flagging the request as done, we
  831. * must never even look at it again
  832. */
  833. smp_wmb(); /* make event visible before updating tail */
  834. info->tail = tail;
  835. ring->tail = tail;
  836. put_aio_ring_event(event, KM_IRQ0);
  837. kunmap_atomic(ring, KM_IRQ1);
  838. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  839. /*
  840. * Check if the user asked us to deliver the result through an
  841. * eventfd. The eventfd_signal() function is safe to be called
  842. * from IRQ context.
  843. */
  844. if (iocb->ki_eventfd != NULL)
  845. eventfd_signal(iocb->ki_eventfd, 1);
  846. put_rq:
  847. /* everything turned out well, dispose of the aiocb. */
  848. ret = __aio_put_req(ctx, iocb);
  849. /*
  850. * We have to order our ring_info tail store above and test
  851. * of the wait list below outside the wait lock. This is
  852. * like in wake_up_bit() where clearing a bit has to be
  853. * ordered with the unlocked test.
  854. */
  855. smp_mb();
  856. if (waitqueue_active(&ctx->wait))
  857. wake_up(&ctx->wait);
  858. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  859. return ret;
  860. }
  861. EXPORT_SYMBOL(aio_complete);
  862. /* aio_read_evt
  863. * Pull an event off of the ioctx's event ring. Returns the number of
  864. * events fetched (0 or 1 ;-)
  865. * FIXME: make this use cmpxchg.
  866. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  867. */
  868. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  869. {
  870. struct aio_ring_info *info = &ioctx->ring_info;
  871. struct aio_ring *ring;
  872. unsigned long head;
  873. int ret = 0;
  874. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  875. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  876. (unsigned long)ring->head, (unsigned long)ring->tail,
  877. (unsigned long)ring->nr);
  878. if (ring->head == ring->tail)
  879. goto out;
  880. spin_lock(&info->ring_lock);
  881. head = ring->head % info->nr;
  882. if (head != ring->tail) {
  883. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  884. *ent = *evp;
  885. head = (head + 1) % info->nr;
  886. smp_mb(); /* finish reading the event before updatng the head */
  887. ring->head = head;
  888. ret = 1;
  889. put_aio_ring_event(evp, KM_USER1);
  890. }
  891. spin_unlock(&info->ring_lock);
  892. out:
  893. kunmap_atomic(ring, KM_USER0);
  894. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  895. (unsigned long)ring->head, (unsigned long)ring->tail);
  896. return ret;
  897. }
  898. struct aio_timeout {
  899. struct timer_list timer;
  900. int timed_out;
  901. struct task_struct *p;
  902. };
  903. static void timeout_func(unsigned long data)
  904. {
  905. struct aio_timeout *to = (struct aio_timeout *)data;
  906. to->timed_out = 1;
  907. wake_up_process(to->p);
  908. }
  909. static inline void init_timeout(struct aio_timeout *to)
  910. {
  911. setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
  912. to->timed_out = 0;
  913. to->p = current;
  914. }
  915. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  916. const struct timespec *ts)
  917. {
  918. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  919. if (time_after(to->timer.expires, jiffies))
  920. add_timer(&to->timer);
  921. else
  922. to->timed_out = 1;
  923. }
  924. static inline void clear_timeout(struct aio_timeout *to)
  925. {
  926. del_singleshot_timer_sync(&to->timer);
  927. }
  928. static int read_events(struct kioctx *ctx,
  929. long min_nr, long nr,
  930. struct io_event __user *event,
  931. struct timespec __user *timeout)
  932. {
  933. long start_jiffies = jiffies;
  934. struct task_struct *tsk = current;
  935. DECLARE_WAITQUEUE(wait, tsk);
  936. int ret;
  937. int i = 0;
  938. struct io_event ent;
  939. struct aio_timeout to;
  940. int retry = 0;
  941. /* needed to zero any padding within an entry (there shouldn't be
  942. * any, but C is fun!
  943. */
  944. memset(&ent, 0, sizeof(ent));
  945. retry:
  946. ret = 0;
  947. while (likely(i < nr)) {
  948. ret = aio_read_evt(ctx, &ent);
  949. if (unlikely(ret <= 0))
  950. break;
  951. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  952. ent.data, ent.obj, ent.res, ent.res2);
  953. /* Could we split the check in two? */
  954. ret = -EFAULT;
  955. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  956. dprintk("aio: lost an event due to EFAULT.\n");
  957. break;
  958. }
  959. ret = 0;
  960. /* Good, event copied to userland, update counts. */
  961. event ++;
  962. i ++;
  963. }
  964. if (min_nr <= i)
  965. return i;
  966. if (ret)
  967. return ret;
  968. /* End fast path */
  969. /* racey check, but it gets redone */
  970. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  971. retry = 1;
  972. aio_run_all_iocbs(ctx);
  973. goto retry;
  974. }
  975. init_timeout(&to);
  976. if (timeout) {
  977. struct timespec ts;
  978. ret = -EFAULT;
  979. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  980. goto out;
  981. set_timeout(start_jiffies, &to, &ts);
  982. }
  983. while (likely(i < nr)) {
  984. add_wait_queue_exclusive(&ctx->wait, &wait);
  985. do {
  986. set_task_state(tsk, TASK_INTERRUPTIBLE);
  987. ret = aio_read_evt(ctx, &ent);
  988. if (ret)
  989. break;
  990. if (min_nr <= i)
  991. break;
  992. if (unlikely(ctx->dead)) {
  993. ret = -EINVAL;
  994. break;
  995. }
  996. if (to.timed_out) /* Only check after read evt */
  997. break;
  998. /* Try to only show up in io wait if there are ops
  999. * in flight */
  1000. if (ctx->reqs_active)
  1001. io_schedule();
  1002. else
  1003. schedule();
  1004. if (signal_pending(tsk)) {
  1005. ret = -EINTR;
  1006. break;
  1007. }
  1008. /*ret = aio_read_evt(ctx, &ent);*/
  1009. } while (1) ;
  1010. set_task_state(tsk, TASK_RUNNING);
  1011. remove_wait_queue(&ctx->wait, &wait);
  1012. if (unlikely(ret <= 0))
  1013. break;
  1014. ret = -EFAULT;
  1015. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1016. dprintk("aio: lost an event due to EFAULT.\n");
  1017. break;
  1018. }
  1019. /* Good, event copied to userland, update counts. */
  1020. event ++;
  1021. i ++;
  1022. }
  1023. if (timeout)
  1024. clear_timeout(&to);
  1025. out:
  1026. destroy_timer_on_stack(&to.timer);
  1027. return i ? i : ret;
  1028. }
  1029. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1030. * against races with itself via ->dead.
  1031. */
  1032. static void io_destroy(struct kioctx *ioctx)
  1033. {
  1034. struct mm_struct *mm = current->mm;
  1035. int was_dead;
  1036. /* delete the entry from the list is someone else hasn't already */
  1037. spin_lock(&mm->ioctx_lock);
  1038. was_dead = ioctx->dead;
  1039. ioctx->dead = 1;
  1040. hlist_del_rcu(&ioctx->list);
  1041. spin_unlock(&mm->ioctx_lock);
  1042. dprintk("aio_release(%p)\n", ioctx);
  1043. if (likely(!was_dead))
  1044. put_ioctx(ioctx); /* twice for the list */
  1045. aio_cancel_all(ioctx);
  1046. wait_for_all_aios(ioctx);
  1047. /*
  1048. * Wake up any waiters. The setting of ctx->dead must be seen
  1049. * by other CPUs at this point. Right now, we rely on the
  1050. * locking done by the above calls to ensure this consistency.
  1051. */
  1052. wake_up(&ioctx->wait);
  1053. put_ioctx(ioctx); /* once for the lookup */
  1054. }
  1055. /* sys_io_setup:
  1056. * Create an aio_context capable of receiving at least nr_events.
  1057. * ctxp must not point to an aio_context that already exists, and
  1058. * must be initialized to 0 prior to the call. On successful
  1059. * creation of the aio_context, *ctxp is filled in with the resulting
  1060. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1061. * if the specified nr_events exceeds internal limits. May fail
  1062. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1063. * of available events. May fail with -ENOMEM if insufficient kernel
  1064. * resources are available. May fail with -EFAULT if an invalid
  1065. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1066. * implemented.
  1067. */
  1068. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1069. {
  1070. struct kioctx *ioctx = NULL;
  1071. unsigned long ctx;
  1072. long ret;
  1073. ret = get_user(ctx, ctxp);
  1074. if (unlikely(ret))
  1075. goto out;
  1076. ret = -EINVAL;
  1077. if (unlikely(ctx || nr_events == 0)) {
  1078. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1079. ctx, nr_events);
  1080. goto out;
  1081. }
  1082. ioctx = ioctx_alloc(nr_events);
  1083. ret = PTR_ERR(ioctx);
  1084. if (!IS_ERR(ioctx)) {
  1085. ret = put_user(ioctx->user_id, ctxp);
  1086. if (!ret)
  1087. return 0;
  1088. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1089. io_destroy(ioctx);
  1090. }
  1091. out:
  1092. return ret;
  1093. }
  1094. /* sys_io_destroy:
  1095. * Destroy the aio_context specified. May cancel any outstanding
  1096. * AIOs and block on completion. Will fail with -ENOSYS if not
  1097. * implemented. May fail with -EFAULT if the context pointed to
  1098. * is invalid.
  1099. */
  1100. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1101. {
  1102. struct kioctx *ioctx = lookup_ioctx(ctx);
  1103. if (likely(NULL != ioctx)) {
  1104. io_destroy(ioctx);
  1105. return 0;
  1106. }
  1107. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1108. return -EINVAL;
  1109. }
  1110. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  1111. {
  1112. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  1113. BUG_ON(ret <= 0);
  1114. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  1115. ssize_t this = min((ssize_t)iov->iov_len, ret);
  1116. iov->iov_base += this;
  1117. iov->iov_len -= this;
  1118. iocb->ki_left -= this;
  1119. ret -= this;
  1120. if (iov->iov_len == 0) {
  1121. iocb->ki_cur_seg++;
  1122. iov++;
  1123. }
  1124. }
  1125. /* the caller should not have done more io than what fit in
  1126. * the remaining iovecs */
  1127. BUG_ON(ret > 0 && iocb->ki_left == 0);
  1128. }
  1129. static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
  1130. {
  1131. struct file *file = iocb->ki_filp;
  1132. struct address_space *mapping = file->f_mapping;
  1133. struct inode *inode = mapping->host;
  1134. ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
  1135. unsigned long, loff_t);
  1136. ssize_t ret = 0;
  1137. unsigned short opcode;
  1138. if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
  1139. (iocb->ki_opcode == IOCB_CMD_PREAD)) {
  1140. rw_op = file->f_op->aio_read;
  1141. opcode = IOCB_CMD_PREADV;
  1142. } else {
  1143. rw_op = file->f_op->aio_write;
  1144. opcode = IOCB_CMD_PWRITEV;
  1145. }
  1146. /* This matches the pread()/pwrite() logic */
  1147. if (iocb->ki_pos < 0)
  1148. return -EINVAL;
  1149. do {
  1150. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  1151. iocb->ki_nr_segs - iocb->ki_cur_seg,
  1152. iocb->ki_pos);
  1153. if (ret > 0)
  1154. aio_advance_iovec(iocb, ret);
  1155. /* retry all partial writes. retry partial reads as long as its a
  1156. * regular file. */
  1157. } while (ret > 0 && iocb->ki_left > 0 &&
  1158. (opcode == IOCB_CMD_PWRITEV ||
  1159. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  1160. /* This means we must have transferred all that we could */
  1161. /* No need to retry anymore */
  1162. if ((ret == 0) || (iocb->ki_left == 0))
  1163. ret = iocb->ki_nbytes - iocb->ki_left;
  1164. /* If we managed to write some out we return that, rather than
  1165. * the eventual error. */
  1166. if (opcode == IOCB_CMD_PWRITEV
  1167. && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
  1168. && iocb->ki_nbytes - iocb->ki_left)
  1169. ret = iocb->ki_nbytes - iocb->ki_left;
  1170. return ret;
  1171. }
  1172. static ssize_t aio_fdsync(struct kiocb *iocb)
  1173. {
  1174. struct file *file = iocb->ki_filp;
  1175. ssize_t ret = -EINVAL;
  1176. if (file->f_op->aio_fsync)
  1177. ret = file->f_op->aio_fsync(iocb, 1);
  1178. return ret;
  1179. }
  1180. static ssize_t aio_fsync(struct kiocb *iocb)
  1181. {
  1182. struct file *file = iocb->ki_filp;
  1183. ssize_t ret = -EINVAL;
  1184. if (file->f_op->aio_fsync)
  1185. ret = file->f_op->aio_fsync(iocb, 0);
  1186. return ret;
  1187. }
  1188. static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
  1189. {
  1190. ssize_t ret;
  1191. ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
  1192. kiocb->ki_nbytes, 1,
  1193. &kiocb->ki_inline_vec, &kiocb->ki_iovec);
  1194. if (ret < 0)
  1195. goto out;
  1196. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  1197. kiocb->ki_cur_seg = 0;
  1198. /* ki_nbytes/left now reflect bytes instead of segs */
  1199. kiocb->ki_nbytes = ret;
  1200. kiocb->ki_left = ret;
  1201. ret = 0;
  1202. out:
  1203. return ret;
  1204. }
  1205. static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
  1206. {
  1207. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  1208. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  1209. kiocb->ki_iovec->iov_len = kiocb->ki_left;
  1210. kiocb->ki_nr_segs = 1;
  1211. kiocb->ki_cur_seg = 0;
  1212. return 0;
  1213. }
  1214. /*
  1215. * aio_setup_iocb:
  1216. * Performs the initial checks and aio retry method
  1217. * setup for the kiocb at the time of io submission.
  1218. */
  1219. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1220. {
  1221. struct file *file = kiocb->ki_filp;
  1222. ssize_t ret = 0;
  1223. switch (kiocb->ki_opcode) {
  1224. case IOCB_CMD_PREAD:
  1225. ret = -EBADF;
  1226. if (unlikely(!(file->f_mode & FMODE_READ)))
  1227. break;
  1228. ret = -EFAULT;
  1229. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1230. kiocb->ki_left)))
  1231. break;
  1232. ret = security_file_permission(file, MAY_READ);
  1233. if (unlikely(ret))
  1234. break;
  1235. ret = aio_setup_single_vector(kiocb);
  1236. if (ret)
  1237. break;
  1238. ret = -EINVAL;
  1239. if (file->f_op->aio_read)
  1240. kiocb->ki_retry = aio_rw_vect_retry;
  1241. break;
  1242. case IOCB_CMD_PWRITE:
  1243. ret = -EBADF;
  1244. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1245. break;
  1246. ret = -EFAULT;
  1247. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1248. kiocb->ki_left)))
  1249. break;
  1250. ret = security_file_permission(file, MAY_WRITE);
  1251. if (unlikely(ret))
  1252. break;
  1253. ret = aio_setup_single_vector(kiocb);
  1254. if (ret)
  1255. break;
  1256. ret = -EINVAL;
  1257. if (file->f_op->aio_write)
  1258. kiocb->ki_retry = aio_rw_vect_retry;
  1259. break;
  1260. case IOCB_CMD_PREADV:
  1261. ret = -EBADF;
  1262. if (unlikely(!(file->f_mode & FMODE_READ)))
  1263. break;
  1264. ret = security_file_permission(file, MAY_READ);
  1265. if (unlikely(ret))
  1266. break;
  1267. ret = aio_setup_vectored_rw(READ, kiocb);
  1268. if (ret)
  1269. break;
  1270. ret = -EINVAL;
  1271. if (file->f_op->aio_read)
  1272. kiocb->ki_retry = aio_rw_vect_retry;
  1273. break;
  1274. case IOCB_CMD_PWRITEV:
  1275. ret = -EBADF;
  1276. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1277. break;
  1278. ret = security_file_permission(file, MAY_WRITE);
  1279. if (unlikely(ret))
  1280. break;
  1281. ret = aio_setup_vectored_rw(WRITE, kiocb);
  1282. if (ret)
  1283. break;
  1284. ret = -EINVAL;
  1285. if (file->f_op->aio_write)
  1286. kiocb->ki_retry = aio_rw_vect_retry;
  1287. break;
  1288. case IOCB_CMD_FDSYNC:
  1289. ret = -EINVAL;
  1290. if (file->f_op->aio_fsync)
  1291. kiocb->ki_retry = aio_fdsync;
  1292. break;
  1293. case IOCB_CMD_FSYNC:
  1294. ret = -EINVAL;
  1295. if (file->f_op->aio_fsync)
  1296. kiocb->ki_retry = aio_fsync;
  1297. break;
  1298. default:
  1299. dprintk("EINVAL: io_submit: no operation provided\n");
  1300. ret = -EINVAL;
  1301. }
  1302. if (!kiocb->ki_retry)
  1303. return ret;
  1304. return 0;
  1305. }
  1306. static void aio_batch_add(struct address_space *mapping,
  1307. struct hlist_head *batch_hash)
  1308. {
  1309. struct aio_batch_entry *abe;
  1310. struct hlist_node *pos;
  1311. unsigned bucket;
  1312. bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
  1313. hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
  1314. if (abe->mapping == mapping)
  1315. return;
  1316. }
  1317. abe = mempool_alloc(abe_pool, GFP_KERNEL);
  1318. BUG_ON(!igrab(mapping->host));
  1319. abe->mapping = mapping;
  1320. hlist_add_head(&abe->list, &batch_hash[bucket]);
  1321. return;
  1322. }
  1323. static void aio_batch_free(struct hlist_head *batch_hash)
  1324. {
  1325. struct aio_batch_entry *abe;
  1326. struct hlist_node *pos, *n;
  1327. int i;
  1328. for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
  1329. hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
  1330. blk_run_address_space(abe->mapping);
  1331. iput(abe->mapping->host);
  1332. hlist_del(&abe->list);
  1333. mempool_free(abe, abe_pool);
  1334. }
  1335. }
  1336. }
  1337. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1338. struct iocb *iocb, struct hlist_head *batch_hash)
  1339. {
  1340. struct kiocb *req;
  1341. struct file *file;
  1342. ssize_t ret;
  1343. /* enforce forwards compatibility on users */
  1344. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1345. pr_debug("EINVAL: io_submit: reserve field set\n");
  1346. return -EINVAL;
  1347. }
  1348. /* prevent overflows */
  1349. if (unlikely(
  1350. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1351. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1352. ((ssize_t)iocb->aio_nbytes < 0)
  1353. )) {
  1354. pr_debug("EINVAL: io_submit: overflow check\n");
  1355. return -EINVAL;
  1356. }
  1357. file = fget(iocb->aio_fildes);
  1358. if (unlikely(!file))
  1359. return -EBADF;
  1360. req = aio_get_req(ctx); /* returns with 2 references to req */
  1361. if (unlikely(!req)) {
  1362. fput(file);
  1363. return -EAGAIN;
  1364. }
  1365. req->ki_filp = file;
  1366. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1367. /*
  1368. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1369. * instance of the file* now. The file descriptor must be
  1370. * an eventfd() fd, and will be signaled for each completed
  1371. * event using the eventfd_signal() function.
  1372. */
  1373. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1374. if (IS_ERR(req->ki_eventfd)) {
  1375. ret = PTR_ERR(req->ki_eventfd);
  1376. req->ki_eventfd = NULL;
  1377. goto out_put_req;
  1378. }
  1379. }
  1380. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1381. if (unlikely(ret)) {
  1382. dprintk("EFAULT: aio_key\n");
  1383. goto out_put_req;
  1384. }
  1385. req->ki_obj.user = user_iocb;
  1386. req->ki_user_data = iocb->aio_data;
  1387. req->ki_pos = iocb->aio_offset;
  1388. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1389. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1390. req->ki_opcode = iocb->aio_lio_opcode;
  1391. ret = aio_setup_iocb(req);
  1392. if (ret)
  1393. goto out_put_req;
  1394. spin_lock_irq(&ctx->ctx_lock);
  1395. aio_run_iocb(req);
  1396. if (!list_empty(&ctx->run_list)) {
  1397. /* drain the run list */
  1398. while (__aio_run_iocbs(ctx))
  1399. ;
  1400. }
  1401. spin_unlock_irq(&ctx->ctx_lock);
  1402. if (req->ki_opcode == IOCB_CMD_PREAD ||
  1403. req->ki_opcode == IOCB_CMD_PREADV ||
  1404. req->ki_opcode == IOCB_CMD_PWRITE ||
  1405. req->ki_opcode == IOCB_CMD_PWRITEV)
  1406. aio_batch_add(file->f_mapping, batch_hash);
  1407. aio_put_req(req); /* drop extra ref to req */
  1408. return 0;
  1409. out_put_req:
  1410. aio_put_req(req); /* drop extra ref to req */
  1411. aio_put_req(req); /* drop i/o ref to req */
  1412. return ret;
  1413. }
  1414. /* sys_io_submit:
  1415. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1416. * the number of iocbs queued. May return -EINVAL if the aio_context
  1417. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1418. * *iocbpp[0] is not properly initialized, if the operation specified
  1419. * is invalid for the file descriptor in the iocb. May fail with
  1420. * -EFAULT if any of the data structures point to invalid data. May
  1421. * fail with -EBADF if the file descriptor specified in the first
  1422. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1423. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1424. * fail with -ENOSYS if not implemented.
  1425. */
  1426. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1427. struct iocb __user * __user *, iocbpp)
  1428. {
  1429. struct kioctx *ctx;
  1430. long ret = 0;
  1431. int i;
  1432. struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
  1433. if (unlikely(nr < 0))
  1434. return -EINVAL;
  1435. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1436. return -EFAULT;
  1437. ctx = lookup_ioctx(ctx_id);
  1438. if (unlikely(!ctx)) {
  1439. pr_debug("EINVAL: io_submit: invalid context id\n");
  1440. return -EINVAL;
  1441. }
  1442. /*
  1443. * AKPM: should this return a partial result if some of the IOs were
  1444. * successfully submitted?
  1445. */
  1446. for (i=0; i<nr; i++) {
  1447. struct iocb __user *user_iocb;
  1448. struct iocb tmp;
  1449. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1450. ret = -EFAULT;
  1451. break;
  1452. }
  1453. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1454. ret = -EFAULT;
  1455. break;
  1456. }
  1457. ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash);
  1458. if (ret)
  1459. break;
  1460. }
  1461. aio_batch_free(batch_hash);
  1462. put_ioctx(ctx);
  1463. return i ? i : ret;
  1464. }
  1465. /* lookup_kiocb
  1466. * Finds a given iocb for cancellation.
  1467. */
  1468. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1469. u32 key)
  1470. {
  1471. struct list_head *pos;
  1472. assert_spin_locked(&ctx->ctx_lock);
  1473. /* TODO: use a hash or array, this sucks. */
  1474. list_for_each(pos, &ctx->active_reqs) {
  1475. struct kiocb *kiocb = list_kiocb(pos);
  1476. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1477. return kiocb;
  1478. }
  1479. return NULL;
  1480. }
  1481. /* sys_io_cancel:
  1482. * Attempts to cancel an iocb previously passed to io_submit. If
  1483. * the operation is successfully cancelled, the resulting event is
  1484. * copied into the memory pointed to by result without being placed
  1485. * into the completion queue and 0 is returned. May fail with
  1486. * -EFAULT if any of the data structures pointed to are invalid.
  1487. * May fail with -EINVAL if aio_context specified by ctx_id is
  1488. * invalid. May fail with -EAGAIN if the iocb specified was not
  1489. * cancelled. Will fail with -ENOSYS if not implemented.
  1490. */
  1491. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1492. struct io_event __user *, result)
  1493. {
  1494. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1495. struct kioctx *ctx;
  1496. struct kiocb *kiocb;
  1497. u32 key;
  1498. int ret;
  1499. ret = get_user(key, &iocb->aio_key);
  1500. if (unlikely(ret))
  1501. return -EFAULT;
  1502. ctx = lookup_ioctx(ctx_id);
  1503. if (unlikely(!ctx))
  1504. return -EINVAL;
  1505. spin_lock_irq(&ctx->ctx_lock);
  1506. ret = -EAGAIN;
  1507. kiocb = lookup_kiocb(ctx, iocb, key);
  1508. if (kiocb && kiocb->ki_cancel) {
  1509. cancel = kiocb->ki_cancel;
  1510. kiocb->ki_users ++;
  1511. kiocbSetCancelled(kiocb);
  1512. } else
  1513. cancel = NULL;
  1514. spin_unlock_irq(&ctx->ctx_lock);
  1515. if (NULL != cancel) {
  1516. struct io_event tmp;
  1517. pr_debug("calling cancel\n");
  1518. memset(&tmp, 0, sizeof(tmp));
  1519. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1520. tmp.data = kiocb->ki_user_data;
  1521. ret = cancel(kiocb, &tmp);
  1522. if (!ret) {
  1523. /* Cancellation succeeded -- copy the result
  1524. * into the user's buffer.
  1525. */
  1526. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1527. ret = -EFAULT;
  1528. }
  1529. } else
  1530. ret = -EINVAL;
  1531. put_ioctx(ctx);
  1532. return ret;
  1533. }
  1534. /* io_getevents:
  1535. * Attempts to read at least min_nr events and up to nr events from
  1536. * the completion queue for the aio_context specified by ctx_id. May
  1537. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1538. * if nr is out of range, if when is out of range. May fail with
  1539. * -EFAULT if any of the memory specified to is invalid. May return
  1540. * 0 or < min_nr if no events are available and the timeout specified
  1541. * by when has elapsed, where when == NULL specifies an infinite
  1542. * timeout. Note that the timeout pointed to by when is relative and
  1543. * will be updated if not NULL and the operation blocks. Will fail
  1544. * with -ENOSYS if not implemented.
  1545. */
  1546. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1547. long, min_nr,
  1548. long, nr,
  1549. struct io_event __user *, events,
  1550. struct timespec __user *, timeout)
  1551. {
  1552. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1553. long ret = -EINVAL;
  1554. if (likely(ioctx)) {
  1555. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1556. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1557. put_ioctx(ioctx);
  1558. }
  1559. asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
  1560. return ret;
  1561. }