eeprom_4k.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
  19. {
  20. return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
  21. }
  22. static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
  23. {
  24. return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
  25. }
  26. static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
  27. {
  28. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  29. struct ath_common *common = ath9k_hw_common(ah);
  30. u16 *eep_data = (u16 *)&ah->eeprom.map4k;
  31. int addr, eep_start_loc = 0;
  32. eep_start_loc = 64;
  33. if (!ath9k_hw_use_flash(ah)) {
  34. ath_print(common, ATH_DBG_EEPROM,
  35. "Reading from EEPROM, not flash\n");
  36. }
  37. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  38. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
  39. ath_print(common, ATH_DBG_EEPROM,
  40. "Unable to read eeprom region\n");
  41. return false;
  42. }
  43. eep_data++;
  44. }
  45. return true;
  46. #undef SIZE_EEPROM_4K
  47. }
  48. static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
  49. {
  50. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  51. struct ath_common *common = ath9k_hw_common(ah);
  52. struct ar5416_eeprom_4k *eep =
  53. (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
  54. u16 *eepdata, temp, magic, magic2;
  55. u32 sum = 0, el;
  56. bool need_swap = false;
  57. int i, addr;
  58. if (!ath9k_hw_use_flash(ah)) {
  59. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  60. &magic)) {
  61. ath_print(common, ATH_DBG_FATAL,
  62. "Reading Magic # failed\n");
  63. return false;
  64. }
  65. ath_print(common, ATH_DBG_EEPROM,
  66. "Read Magic = 0x%04X\n", magic);
  67. if (magic != AR5416_EEPROM_MAGIC) {
  68. magic2 = swab16(magic);
  69. if (magic2 == AR5416_EEPROM_MAGIC) {
  70. need_swap = true;
  71. eepdata = (u16 *) (&ah->eeprom);
  72. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  73. temp = swab16(*eepdata);
  74. *eepdata = temp;
  75. eepdata++;
  76. }
  77. } else {
  78. ath_print(common, ATH_DBG_FATAL,
  79. "Invalid EEPROM Magic. "
  80. "endianness mismatch.\n");
  81. return -EINVAL;
  82. }
  83. }
  84. }
  85. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  86. need_swap ? "True" : "False");
  87. if (need_swap)
  88. el = swab16(ah->eeprom.map4k.baseEepHeader.length);
  89. else
  90. el = ah->eeprom.map4k.baseEepHeader.length;
  91. if (el > sizeof(struct ar5416_eeprom_4k))
  92. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  93. else
  94. el = el / sizeof(u16);
  95. eepdata = (u16 *)(&ah->eeprom);
  96. for (i = 0; i < el; i++)
  97. sum ^= *eepdata++;
  98. if (need_swap) {
  99. u32 integer;
  100. u16 word;
  101. ath_print(common, ATH_DBG_EEPROM,
  102. "EEPROM Endianness is not native.. Changing\n");
  103. word = swab16(eep->baseEepHeader.length);
  104. eep->baseEepHeader.length = word;
  105. word = swab16(eep->baseEepHeader.checksum);
  106. eep->baseEepHeader.checksum = word;
  107. word = swab16(eep->baseEepHeader.version);
  108. eep->baseEepHeader.version = word;
  109. word = swab16(eep->baseEepHeader.regDmn[0]);
  110. eep->baseEepHeader.regDmn[0] = word;
  111. word = swab16(eep->baseEepHeader.regDmn[1]);
  112. eep->baseEepHeader.regDmn[1] = word;
  113. word = swab16(eep->baseEepHeader.rfSilent);
  114. eep->baseEepHeader.rfSilent = word;
  115. word = swab16(eep->baseEepHeader.blueToothOptions);
  116. eep->baseEepHeader.blueToothOptions = word;
  117. word = swab16(eep->baseEepHeader.deviceCap);
  118. eep->baseEepHeader.deviceCap = word;
  119. integer = swab32(eep->modalHeader.antCtrlCommon);
  120. eep->modalHeader.antCtrlCommon = integer;
  121. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  122. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  123. eep->modalHeader.antCtrlChain[i] = integer;
  124. }
  125. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  126. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  127. eep->modalHeader.spurChans[i].spurChan = word;
  128. }
  129. }
  130. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  131. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  132. ath_print(common, ATH_DBG_FATAL,
  133. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  134. sum, ah->eep_ops->get_eeprom_ver(ah));
  135. return -EINVAL;
  136. }
  137. return 0;
  138. #undef EEPROM_4K_SIZE
  139. }
  140. static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
  141. enum eeprom_param param)
  142. {
  143. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  144. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  145. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  146. switch (param) {
  147. case EEP_NFTHRESH_2:
  148. return pModal->noiseFloorThreshCh[0];
  149. case EEP_MAC_LSW:
  150. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  151. case EEP_MAC_MID:
  152. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  153. case EEP_MAC_MSW:
  154. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  155. case EEP_REG_0:
  156. return pBase->regDmn[0];
  157. case EEP_REG_1:
  158. return pBase->regDmn[1];
  159. case EEP_OP_CAP:
  160. return pBase->deviceCap;
  161. case EEP_OP_MODE:
  162. return pBase->opCapFlags;
  163. case EEP_RF_SILENT:
  164. return pBase->rfSilent;
  165. case EEP_OB_2:
  166. return pModal->ob_0;
  167. case EEP_DB_2:
  168. return pModal->db1_1;
  169. case EEP_MINOR_REV:
  170. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  171. case EEP_TX_MASK:
  172. return pBase->txMask;
  173. case EEP_RX_MASK:
  174. return pBase->rxMask;
  175. case EEP_FRAC_N_5G:
  176. return 0;
  177. case EEP_PWR_TABLE_OFFSET:
  178. return AR5416_PWR_TABLE_OFFSET_DB;
  179. default:
  180. return 0;
  181. }
  182. }
  183. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  184. struct ath9k_channel *chan,
  185. struct cal_data_per_freq_4k *pRawDataSet,
  186. u8 *bChans, u16 availPiers,
  187. u16 tPdGainOverlap, int16_t *pMinCalPower,
  188. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  189. u16 numXpdGains)
  190. {
  191. #define TMP_VAL_VPD_TABLE \
  192. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  193. int i, j, k;
  194. int16_t ss;
  195. u16 idxL = 0, idxR = 0, numPiers;
  196. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  197. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  198. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  199. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  200. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  201. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  202. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  203. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  204. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  205. int16_t vpdStep;
  206. int16_t tmpVal;
  207. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  208. bool match;
  209. int16_t minDelta = 0;
  210. struct chan_centers centers;
  211. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  212. ath9k_hw_get_channel_centers(ah, chan, &centers);
  213. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  214. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  215. break;
  216. }
  217. match = ath9k_hw_get_lower_upper_index(
  218. (u8)FREQ2FBIN(centers.synth_center,
  219. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  220. &idxL, &idxR);
  221. if (match) {
  222. for (i = 0; i < numXpdGains; i++) {
  223. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  224. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  225. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  226. pRawDataSet[idxL].pwrPdg[i],
  227. pRawDataSet[idxL].vpdPdg[i],
  228. AR5416_EEP4K_PD_GAIN_ICEPTS,
  229. vpdTableI[i]);
  230. }
  231. } else {
  232. for (i = 0; i < numXpdGains; i++) {
  233. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  234. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  235. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  236. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  237. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  238. maxPwrT4[i] =
  239. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  240. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  241. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  242. pPwrL, pVpdL,
  243. AR5416_EEP4K_PD_GAIN_ICEPTS,
  244. vpdTableL[i]);
  245. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  246. pPwrR, pVpdR,
  247. AR5416_EEP4K_PD_GAIN_ICEPTS,
  248. vpdTableR[i]);
  249. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  250. vpdTableI[i][j] =
  251. (u8)(ath9k_hw_interpolate((u16)
  252. FREQ2FBIN(centers.
  253. synth_center,
  254. IS_CHAN_2GHZ
  255. (chan)),
  256. bChans[idxL], bChans[idxR],
  257. vpdTableL[i][j], vpdTableR[i][j]));
  258. }
  259. }
  260. }
  261. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  262. k = 0;
  263. for (i = 0; i < numXpdGains; i++) {
  264. if (i == (numXpdGains - 1))
  265. pPdGainBoundaries[i] =
  266. (u16)(maxPwrT4[i] / 2);
  267. else
  268. pPdGainBoundaries[i] =
  269. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  270. pPdGainBoundaries[i] =
  271. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  272. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  273. minDelta = pPdGainBoundaries[0] - 23;
  274. pPdGainBoundaries[0] = 23;
  275. } else {
  276. minDelta = 0;
  277. }
  278. if (i == 0) {
  279. if (AR_SREV_9280_10_OR_LATER(ah))
  280. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  281. else
  282. ss = 0;
  283. } else {
  284. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  285. (minPwrT4[i] / 2)) -
  286. tPdGainOverlap + 1 + minDelta);
  287. }
  288. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  289. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  290. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  291. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  292. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  293. ss++;
  294. }
  295. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  296. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  297. (minPwrT4[i] / 2));
  298. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  299. tgtIndex : sizeCurrVpdTable;
  300. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  301. pPDADCValues[k++] = vpdTableI[i][ss++];
  302. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  303. vpdTableI[i][sizeCurrVpdTable - 2]);
  304. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  305. if (tgtIndex >= maxIndex) {
  306. while ((ss <= tgtIndex) &&
  307. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  308. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  309. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  310. 255 : tmpVal);
  311. ss++;
  312. }
  313. }
  314. }
  315. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  316. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  317. i++;
  318. }
  319. while (k < AR5416_NUM_PDADC_VALUES) {
  320. pPDADCValues[k] = pPDADCValues[k - 1];
  321. k++;
  322. }
  323. return;
  324. #undef TMP_VAL_VPD_TABLE
  325. }
  326. static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  327. struct ath9k_channel *chan,
  328. int16_t *pTxPowerIndexOffset)
  329. {
  330. struct ath_common *common = ath9k_hw_common(ah);
  331. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  332. struct cal_data_per_freq_4k *pRawDataset;
  333. u8 *pCalBChans = NULL;
  334. u16 pdGainOverlap_t2;
  335. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  336. u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
  337. u16 numPiers, i, j;
  338. int16_t tMinCalPower;
  339. u16 numXpdGain, xpdMask;
  340. u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
  341. u32 reg32, regOffset, regChainOffset;
  342. xpdMask = pEepData->modalHeader.xpdGain;
  343. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  344. AR5416_EEP_MINOR_VER_2) {
  345. pdGainOverlap_t2 =
  346. pEepData->modalHeader.pdGainOverlap;
  347. } else {
  348. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  349. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  350. }
  351. pCalBChans = pEepData->calFreqPier2G;
  352. numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
  353. numXpdGain = 0;
  354. for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
  355. if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
  356. if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
  357. break;
  358. xpdGainValues[numXpdGain] =
  359. (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
  360. numXpdGain++;
  361. }
  362. }
  363. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  364. (numXpdGain - 1) & 0x3);
  365. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  366. xpdGainValues[0]);
  367. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  368. xpdGainValues[1]);
  369. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
  370. for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
  371. if (AR_SREV_5416_20_OR_LATER(ah) &&
  372. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  373. (i != 0)) {
  374. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  375. } else
  376. regChainOffset = i * 0x1000;
  377. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  378. pRawDataset = pEepData->calPierData2G[i];
  379. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  380. pRawDataset, pCalBChans,
  381. numPiers, pdGainOverlap_t2,
  382. &tMinCalPower, gainBoundaries,
  383. pdadcValues, numXpdGain);
  384. ENABLE_REGWRITE_BUFFER(ah);
  385. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  386. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  387. SM(pdGainOverlap_t2,
  388. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  389. | SM(gainBoundaries[0],
  390. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  391. | SM(gainBoundaries[1],
  392. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  393. | SM(gainBoundaries[2],
  394. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  395. | SM(gainBoundaries[3],
  396. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  397. }
  398. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  399. for (j = 0; j < 32; j++) {
  400. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  401. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  402. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  403. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  404. REG_WRITE(ah, regOffset, reg32);
  405. ath_print(common, ATH_DBG_EEPROM,
  406. "PDADC (%d,%4x): %4.4x %8.8x\n",
  407. i, regChainOffset, regOffset,
  408. reg32);
  409. ath_print(common, ATH_DBG_EEPROM,
  410. "PDADC: Chain %d | "
  411. "PDADC %3d Value %3d | "
  412. "PDADC %3d Value %3d | "
  413. "PDADC %3d Value %3d | "
  414. "PDADC %3d Value %3d |\n",
  415. i, 4 * j, pdadcValues[4 * j],
  416. 4 * j + 1, pdadcValues[4 * j + 1],
  417. 4 * j + 2, pdadcValues[4 * j + 2],
  418. 4 * j + 3,
  419. pdadcValues[4 * j + 3]);
  420. regOffset += 4;
  421. }
  422. REGWRITE_BUFFER_FLUSH(ah);
  423. DISABLE_REGWRITE_BUFFER(ah);
  424. }
  425. }
  426. *pTxPowerIndexOffset = 0;
  427. }
  428. static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  429. struct ath9k_channel *chan,
  430. int16_t *ratesArray,
  431. u16 cfgCtl,
  432. u16 AntennaReduction,
  433. u16 twiceMaxRegulatoryPower,
  434. u16 powerLimit)
  435. {
  436. #define CMP_TEST_GRP \
  437. (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  438. pEepData->ctlIndex[i]) \
  439. || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  440. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  441. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  442. int i;
  443. int16_t twiceLargestAntenna;
  444. u16 twiceMinEdgePower;
  445. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  446. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  447. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  448. struct chan_centers centers;
  449. struct cal_ctl_data_4k *rep;
  450. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  451. static const u16 tpScaleReductionTable[5] =
  452. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  453. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  454. 0, { 0, 0, 0, 0}
  455. };
  456. struct cal_target_power_leg targetPowerOfdmExt = {
  457. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  458. 0, { 0, 0, 0, 0 }
  459. };
  460. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  461. 0, {0, 0, 0, 0}
  462. };
  463. u16 ctlModesFor11g[] =
  464. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  465. CTL_2GHT40
  466. };
  467. ath9k_hw_get_channel_centers(ah, chan, &centers);
  468. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  469. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  470. twiceLargestAntenna, 0);
  471. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  472. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  473. maxRegAllowedPower -=
  474. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  475. }
  476. scaledPower = min(powerLimit, maxRegAllowedPower);
  477. scaledPower = max((u16)0, scaledPower);
  478. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  479. pCtlMode = ctlModesFor11g;
  480. ath9k_hw_get_legacy_target_powers(ah, chan,
  481. pEepData->calTargetPowerCck,
  482. AR5416_NUM_2G_CCK_TARGET_POWERS,
  483. &targetPowerCck, 4, false);
  484. ath9k_hw_get_legacy_target_powers(ah, chan,
  485. pEepData->calTargetPower2G,
  486. AR5416_NUM_2G_20_TARGET_POWERS,
  487. &targetPowerOfdm, 4, false);
  488. ath9k_hw_get_target_powers(ah, chan,
  489. pEepData->calTargetPower2GHT20,
  490. AR5416_NUM_2G_20_TARGET_POWERS,
  491. &targetPowerHt20, 8, false);
  492. if (IS_CHAN_HT40(chan)) {
  493. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  494. ath9k_hw_get_target_powers(ah, chan,
  495. pEepData->calTargetPower2GHT40,
  496. AR5416_NUM_2G_40_TARGET_POWERS,
  497. &targetPowerHt40, 8, true);
  498. ath9k_hw_get_legacy_target_powers(ah, chan,
  499. pEepData->calTargetPowerCck,
  500. AR5416_NUM_2G_CCK_TARGET_POWERS,
  501. &targetPowerCckExt, 4, true);
  502. ath9k_hw_get_legacy_target_powers(ah, chan,
  503. pEepData->calTargetPower2G,
  504. AR5416_NUM_2G_20_TARGET_POWERS,
  505. &targetPowerOfdmExt, 4, true);
  506. }
  507. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  508. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  509. (pCtlMode[ctlMode] == CTL_2GHT40);
  510. if (isHt40CtlMode)
  511. freq = centers.synth_center;
  512. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  513. freq = centers.ext_center;
  514. else
  515. freq = centers.ctl_center;
  516. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  517. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  518. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  519. for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
  520. pEepData->ctlIndex[i]; i++) {
  521. if (CMP_TEST_GRP) {
  522. rep = &(pEepData->ctlData[i]);
  523. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  524. freq,
  525. rep->ctlEdges[
  526. ar5416_get_ntxchains(ah->txchainmask) - 1],
  527. IS_CHAN_2GHZ(chan),
  528. AR5416_EEP4K_NUM_BAND_EDGES);
  529. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  530. twiceMaxEdgePower =
  531. min(twiceMaxEdgePower,
  532. twiceMinEdgePower);
  533. } else {
  534. twiceMaxEdgePower = twiceMinEdgePower;
  535. break;
  536. }
  537. }
  538. }
  539. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  540. switch (pCtlMode[ctlMode]) {
  541. case CTL_11B:
  542. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  543. targetPowerCck.tPow2x[i] =
  544. min((u16)targetPowerCck.tPow2x[i],
  545. minCtlPower);
  546. }
  547. break;
  548. case CTL_11G:
  549. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  550. targetPowerOfdm.tPow2x[i] =
  551. min((u16)targetPowerOfdm.tPow2x[i],
  552. minCtlPower);
  553. }
  554. break;
  555. case CTL_2GHT20:
  556. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  557. targetPowerHt20.tPow2x[i] =
  558. min((u16)targetPowerHt20.tPow2x[i],
  559. minCtlPower);
  560. }
  561. break;
  562. case CTL_11B_EXT:
  563. targetPowerCckExt.tPow2x[0] =
  564. min((u16)targetPowerCckExt.tPow2x[0],
  565. minCtlPower);
  566. break;
  567. case CTL_11G_EXT:
  568. targetPowerOfdmExt.tPow2x[0] =
  569. min((u16)targetPowerOfdmExt.tPow2x[0],
  570. minCtlPower);
  571. break;
  572. case CTL_2GHT40:
  573. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  574. targetPowerHt40.tPow2x[i] =
  575. min((u16)targetPowerHt40.tPow2x[i],
  576. minCtlPower);
  577. }
  578. break;
  579. default:
  580. break;
  581. }
  582. }
  583. ratesArray[rate6mb] =
  584. ratesArray[rate9mb] =
  585. ratesArray[rate12mb] =
  586. ratesArray[rate18mb] =
  587. ratesArray[rate24mb] =
  588. targetPowerOfdm.tPow2x[0];
  589. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  590. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  591. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  592. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  593. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  594. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  595. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  596. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  597. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  598. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  599. if (IS_CHAN_HT40(chan)) {
  600. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  601. ratesArray[rateHt40_0 + i] =
  602. targetPowerHt40.tPow2x[i];
  603. }
  604. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  605. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  606. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  607. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  608. }
  609. #undef CMP_TEST_GRP
  610. }
  611. static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  612. struct ath9k_channel *chan,
  613. u16 cfgCtl,
  614. u8 twiceAntennaReduction,
  615. u8 twiceMaxRegulatoryPower,
  616. u8 powerLimit)
  617. {
  618. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  619. struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
  620. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  621. int16_t ratesArray[Ar5416RateSize];
  622. int16_t txPowerIndexOffset = 0;
  623. u8 ht40PowerIncForPdadc = 2;
  624. int i;
  625. memset(ratesArray, 0, sizeof(ratesArray));
  626. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  627. AR5416_EEP_MINOR_VER_2) {
  628. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  629. }
  630. ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  631. &ratesArray[0], cfgCtl,
  632. twiceAntennaReduction,
  633. twiceMaxRegulatoryPower,
  634. powerLimit);
  635. ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
  636. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  637. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  638. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  639. ratesArray[i] = AR5416_MAX_RATE_POWER;
  640. }
  641. /* Update regulatory */
  642. i = rate6mb;
  643. if (IS_CHAN_HT40(chan))
  644. i = rateHt40_0;
  645. else if (IS_CHAN_HT20(chan))
  646. i = rateHt20_0;
  647. regulatory->max_power_level = ratesArray[i];
  648. if (AR_SREV_9280_10_OR_LATER(ah)) {
  649. for (i = 0; i < Ar5416RateSize; i++)
  650. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  651. }
  652. ENABLE_REGWRITE_BUFFER(ah);
  653. /* OFDM power per rate */
  654. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  655. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  656. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  657. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  658. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  659. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  660. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  661. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  662. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  663. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  664. /* CCK power per rate */
  665. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  666. ATH9K_POW_SM(ratesArray[rate2s], 24)
  667. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  668. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  669. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  670. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  671. ATH9K_POW_SM(ratesArray[rate11s], 24)
  672. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  673. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  674. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  675. /* HT20 power per rate */
  676. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  677. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  678. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  679. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  680. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  681. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  682. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  683. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  684. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  685. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  686. /* HT40 power per rate */
  687. if (IS_CHAN_HT40(chan)) {
  688. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  689. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  690. ht40PowerIncForPdadc, 24)
  691. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  692. ht40PowerIncForPdadc, 16)
  693. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  694. ht40PowerIncForPdadc, 8)
  695. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  696. ht40PowerIncForPdadc, 0));
  697. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  698. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  699. ht40PowerIncForPdadc, 24)
  700. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  701. ht40PowerIncForPdadc, 16)
  702. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  703. ht40PowerIncForPdadc, 8)
  704. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  705. ht40PowerIncForPdadc, 0));
  706. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  707. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  708. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  709. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  710. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  711. }
  712. REGWRITE_BUFFER_FLUSH(ah);
  713. DISABLE_REGWRITE_BUFFER(ah);
  714. }
  715. static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
  716. struct ath9k_channel *chan)
  717. {
  718. struct modal_eep_4k_header *pModal;
  719. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  720. u8 biaslevel;
  721. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  722. return;
  723. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  724. return;
  725. pModal = &eep->modalHeader;
  726. if (pModal->xpaBiasLvl != 0xff) {
  727. biaslevel = pModal->xpaBiasLvl;
  728. INI_RA(&ah->iniAddac, 7, 1) =
  729. (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  730. }
  731. }
  732. static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
  733. struct modal_eep_4k_header *pModal,
  734. struct ar5416_eeprom_4k *eep,
  735. u8 txRxAttenLocal)
  736. {
  737. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  738. pModal->antCtrlChain[0]);
  739. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
  740. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
  741. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  742. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  743. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  744. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  745. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  746. AR5416_EEP_MINOR_VER_3) {
  747. txRxAttenLocal = pModal->txRxAttenCh[0];
  748. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  749. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  750. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  751. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  753. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  754. pModal->xatten2Margin[0]);
  755. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  756. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  757. /* Set the block 1 value to block 0 value */
  758. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  759. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  760. pModal->bswMargin[0]);
  761. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  762. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  763. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  764. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  765. pModal->xatten2Margin[0]);
  766. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  767. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  768. pModal->xatten2Db[0]);
  769. }
  770. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  771. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  772. REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  773. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  774. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  775. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  776. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  777. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  778. if (AR_SREV_9285_11(ah))
  779. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  780. }
  781. /*
  782. * Read EEPROM header info and program the device for correct operation
  783. * given the channel value.
  784. */
  785. static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
  786. struct ath9k_channel *chan)
  787. {
  788. struct modal_eep_4k_header *pModal;
  789. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  790. u8 txRxAttenLocal;
  791. u8 ob[5], db1[5], db2[5];
  792. u8 ant_div_control1, ant_div_control2;
  793. u32 regVal;
  794. pModal = &eep->modalHeader;
  795. txRxAttenLocal = 23;
  796. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  797. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  798. /* Single chain for 4K EEPROM*/
  799. ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
  800. /* Initialize Ant Diversity settings from EEPROM */
  801. if (pModal->version >= 3) {
  802. ant_div_control1 = pModal->antdiv_ctl1;
  803. ant_div_control2 = pModal->antdiv_ctl2;
  804. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  805. regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
  806. regVal |= SM(ant_div_control1,
  807. AR_PHY_9285_ANT_DIV_CTL);
  808. regVal |= SM(ant_div_control2,
  809. AR_PHY_9285_ANT_DIV_ALT_LNACONF);
  810. regVal |= SM((ant_div_control2 >> 2),
  811. AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
  812. regVal |= SM((ant_div_control1 >> 1),
  813. AR_PHY_9285_ANT_DIV_ALT_GAINTB);
  814. regVal |= SM((ant_div_control1 >> 2),
  815. AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
  816. REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
  817. regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
  818. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  819. regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  820. regVal |= SM((ant_div_control1 >> 3),
  821. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
  822. REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
  823. regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
  824. }
  825. if (pModal->version >= 2) {
  826. ob[0] = pModal->ob_0;
  827. ob[1] = pModal->ob_1;
  828. ob[2] = pModal->ob_2;
  829. ob[3] = pModal->ob_3;
  830. ob[4] = pModal->ob_4;
  831. db1[0] = pModal->db1_0;
  832. db1[1] = pModal->db1_1;
  833. db1[2] = pModal->db1_2;
  834. db1[3] = pModal->db1_3;
  835. db1[4] = pModal->db1_4;
  836. db2[0] = pModal->db2_0;
  837. db2[1] = pModal->db2_1;
  838. db2[2] = pModal->db2_2;
  839. db2[3] = pModal->db2_3;
  840. db2[4] = pModal->db2_4;
  841. } else if (pModal->version == 1) {
  842. ob[0] = pModal->ob_0;
  843. ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  844. db1[0] = pModal->db1_0;
  845. db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  846. db2[0] = pModal->db2_0;
  847. db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  848. } else {
  849. int i;
  850. for (i = 0; i < 5; i++) {
  851. ob[i] = pModal->ob_0;
  852. db1[i] = pModal->db1_0;
  853. db2[i] = pModal->db1_0;
  854. }
  855. }
  856. if (AR_SREV_9271(ah)) {
  857. ath9k_hw_analog_shift_rmw(ah,
  858. AR9285_AN_RF2G3,
  859. AR9271_AN_RF2G3_OB_cck,
  860. AR9271_AN_RF2G3_OB_cck_S,
  861. ob[0]);
  862. ath9k_hw_analog_shift_rmw(ah,
  863. AR9285_AN_RF2G3,
  864. AR9271_AN_RF2G3_OB_psk,
  865. AR9271_AN_RF2G3_OB_psk_S,
  866. ob[1]);
  867. ath9k_hw_analog_shift_rmw(ah,
  868. AR9285_AN_RF2G3,
  869. AR9271_AN_RF2G3_OB_qam,
  870. AR9271_AN_RF2G3_OB_qam_S,
  871. ob[2]);
  872. ath9k_hw_analog_shift_rmw(ah,
  873. AR9285_AN_RF2G3,
  874. AR9271_AN_RF2G3_DB_1,
  875. AR9271_AN_RF2G3_DB_1_S,
  876. db1[0]);
  877. ath9k_hw_analog_shift_rmw(ah,
  878. AR9285_AN_RF2G4,
  879. AR9271_AN_RF2G4_DB_2,
  880. AR9271_AN_RF2G4_DB_2_S,
  881. db2[0]);
  882. } else {
  883. ath9k_hw_analog_shift_rmw(ah,
  884. AR9285_AN_RF2G3,
  885. AR9285_AN_RF2G3_OB_0,
  886. AR9285_AN_RF2G3_OB_0_S,
  887. ob[0]);
  888. ath9k_hw_analog_shift_rmw(ah,
  889. AR9285_AN_RF2G3,
  890. AR9285_AN_RF2G3_OB_1,
  891. AR9285_AN_RF2G3_OB_1_S,
  892. ob[1]);
  893. ath9k_hw_analog_shift_rmw(ah,
  894. AR9285_AN_RF2G3,
  895. AR9285_AN_RF2G3_OB_2,
  896. AR9285_AN_RF2G3_OB_2_S,
  897. ob[2]);
  898. ath9k_hw_analog_shift_rmw(ah,
  899. AR9285_AN_RF2G3,
  900. AR9285_AN_RF2G3_OB_3,
  901. AR9285_AN_RF2G3_OB_3_S,
  902. ob[3]);
  903. ath9k_hw_analog_shift_rmw(ah,
  904. AR9285_AN_RF2G3,
  905. AR9285_AN_RF2G3_OB_4,
  906. AR9285_AN_RF2G3_OB_4_S,
  907. ob[4]);
  908. ath9k_hw_analog_shift_rmw(ah,
  909. AR9285_AN_RF2G3,
  910. AR9285_AN_RF2G3_DB1_0,
  911. AR9285_AN_RF2G3_DB1_0_S,
  912. db1[0]);
  913. ath9k_hw_analog_shift_rmw(ah,
  914. AR9285_AN_RF2G3,
  915. AR9285_AN_RF2G3_DB1_1,
  916. AR9285_AN_RF2G3_DB1_1_S,
  917. db1[1]);
  918. ath9k_hw_analog_shift_rmw(ah,
  919. AR9285_AN_RF2G3,
  920. AR9285_AN_RF2G3_DB1_2,
  921. AR9285_AN_RF2G3_DB1_2_S,
  922. db1[2]);
  923. ath9k_hw_analog_shift_rmw(ah,
  924. AR9285_AN_RF2G4,
  925. AR9285_AN_RF2G4_DB1_3,
  926. AR9285_AN_RF2G4_DB1_3_S,
  927. db1[3]);
  928. ath9k_hw_analog_shift_rmw(ah,
  929. AR9285_AN_RF2G4,
  930. AR9285_AN_RF2G4_DB1_4,
  931. AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  932. ath9k_hw_analog_shift_rmw(ah,
  933. AR9285_AN_RF2G4,
  934. AR9285_AN_RF2G4_DB2_0,
  935. AR9285_AN_RF2G4_DB2_0_S,
  936. db2[0]);
  937. ath9k_hw_analog_shift_rmw(ah,
  938. AR9285_AN_RF2G4,
  939. AR9285_AN_RF2G4_DB2_1,
  940. AR9285_AN_RF2G4_DB2_1_S,
  941. db2[1]);
  942. ath9k_hw_analog_shift_rmw(ah,
  943. AR9285_AN_RF2G4,
  944. AR9285_AN_RF2G4_DB2_2,
  945. AR9285_AN_RF2G4_DB2_2_S,
  946. db2[2]);
  947. ath9k_hw_analog_shift_rmw(ah,
  948. AR9285_AN_RF2G4,
  949. AR9285_AN_RF2G4_DB2_3,
  950. AR9285_AN_RF2G4_DB2_3_S,
  951. db2[3]);
  952. ath9k_hw_analog_shift_rmw(ah,
  953. AR9285_AN_RF2G4,
  954. AR9285_AN_RF2G4_DB2_4,
  955. AR9285_AN_RF2G4_DB2_4_S,
  956. db2[4]);
  957. }
  958. if (AR_SREV_9285_11(ah))
  959. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  960. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  961. pModal->switchSettling);
  962. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  963. pModal->adcDesiredSize);
  964. REG_WRITE(ah, AR_PHY_RF_CTL4,
  965. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  966. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  967. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  968. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  969. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  970. pModal->txEndToRxOn);
  971. if (AR_SREV_9271_10(ah))
  972. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  973. pModal->txEndToRxOn);
  974. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  975. pModal->thresh62);
  976. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  977. pModal->thresh62);
  978. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  979. AR5416_EEP_MINOR_VER_2) {
  980. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  981. pModal->txFrameToDataStart);
  982. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  983. pModal->txFrameToPaOn);
  984. }
  985. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  986. AR5416_EEP_MINOR_VER_3) {
  987. if (IS_CHAN_HT40(chan))
  988. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  989. AR_PHY_SETTLING_SWITCH,
  990. pModal->swSettleHt40);
  991. }
  992. }
  993. static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
  994. struct ath9k_channel *chan)
  995. {
  996. struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
  997. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  998. return pModal->antCtrlCommon & 0xFFFF;
  999. }
  1000. static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
  1001. enum ieee80211_band freq_band)
  1002. {
  1003. return 1;
  1004. }
  1005. static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1006. {
  1007. #define EEP_MAP4K_SPURCHAN \
  1008. (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
  1009. struct ath_common *common = ath9k_hw_common(ah);
  1010. u16 spur_val = AR_NO_SPUR;
  1011. ath_print(common, ATH_DBG_ANI,
  1012. "Getting spur idx %d is2Ghz. %d val %x\n",
  1013. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1014. switch (ah->config.spurmode) {
  1015. case SPUR_DISABLE:
  1016. break;
  1017. case SPUR_ENABLE_IOCTL:
  1018. spur_val = ah->config.spurchans[i][is2GHz];
  1019. ath_print(common, ATH_DBG_ANI,
  1020. "Getting spur val from new loc. %d\n", spur_val);
  1021. break;
  1022. case SPUR_ENABLE_EEPROM:
  1023. spur_val = EEP_MAP4K_SPURCHAN;
  1024. break;
  1025. }
  1026. return spur_val;
  1027. #undef EEP_MAP4K_SPURCHAN
  1028. }
  1029. const struct eeprom_ops eep_4k_ops = {
  1030. .check_eeprom = ath9k_hw_4k_check_eeprom,
  1031. .get_eeprom = ath9k_hw_4k_get_eeprom,
  1032. .fill_eeprom = ath9k_hw_4k_fill_eeprom,
  1033. .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
  1034. .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
  1035. .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
  1036. .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
  1037. .set_board_values = ath9k_hw_4k_set_board_values,
  1038. .set_addac = ath9k_hw_4k_set_addac,
  1039. .set_txpower = ath9k_hw_4k_set_txpower,
  1040. .get_spur_channel = ath9k_hw_4k_get_spur_channel
  1041. };