t4_hw.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. #if 0
  116. /**
  117. * t4_write_indirect - write indirectly addressed registers
  118. * @adap: the adapter
  119. * @addr_reg: register holding the indirect addresses
  120. * @data_reg: register holding the value for the indirect registers
  121. * @vals: values to write
  122. * @nregs: how many indirect registers to write
  123. * @start_idx: address of first indirect register to write
  124. *
  125. * Writes a sequential block of registers that are accessed indirectly
  126. * through an address/data register pair.
  127. */
  128. static void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  129. unsigned int data_reg, const u32 *vals,
  130. unsigned int nregs, unsigned int start_idx)
  131. {
  132. while (nregs--) {
  133. t4_write_reg(adap, addr_reg, start_idx++);
  134. t4_write_reg(adap, data_reg, *vals++);
  135. }
  136. }
  137. #endif
  138. /*
  139. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  140. */
  141. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  142. u32 mbox_addr)
  143. {
  144. for ( ; nflit; nflit--, mbox_addr += 8)
  145. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  146. }
  147. /*
  148. * Handle a FW assertion reported in a mailbox.
  149. */
  150. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  151. {
  152. struct fw_debug_cmd asrt;
  153. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  154. dev_alert(adap->pdev_dev,
  155. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  156. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  157. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  158. }
  159. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  160. {
  161. dev_err(adap->pdev_dev,
  162. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  163. (unsigned long long)t4_read_reg64(adap, data_reg),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  169. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  170. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  171. }
  172. /**
  173. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  174. * @adap: the adapter
  175. * @mbox: index of the mailbox to use
  176. * @cmd: the command to write
  177. * @size: command length in bytes
  178. * @rpl: where to optionally store the reply
  179. * @sleep_ok: if true we may sleep while awaiting command completion
  180. *
  181. * Sends the given command to FW through the selected mailbox and waits
  182. * for the FW to execute the command. If @rpl is not %NULL it is used to
  183. * store the FW's reply to the command. The command and its optional
  184. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  185. * to respond. @sleep_ok determines whether we may sleep while awaiting
  186. * the response. If sleeping is allowed we use progressive backoff
  187. * otherwise we spin.
  188. *
  189. * The return value is 0 on success or a negative errno on failure. A
  190. * failure can happen either because we are not able to execute the
  191. * command or FW executes it but signals an error. In the latter case
  192. * the return value is the error code indicated by FW (negated).
  193. */
  194. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  195. void *rpl, bool sleep_ok)
  196. {
  197. static int delay[] = {
  198. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  199. };
  200. u32 v;
  201. u64 res;
  202. int i, ms, delay_idx;
  203. const __be64 *p = cmd;
  204. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  205. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  206. if ((size & 15) || size > MBOX_LEN)
  207. return -EINVAL;
  208. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  209. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  210. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  211. if (v != MBOX_OWNER_DRV)
  212. return v ? -EBUSY : -ETIMEDOUT;
  213. for (i = 0; i < size; i += 8)
  214. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  215. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  216. t4_read_reg(adap, ctl_reg); /* flush write */
  217. delay_idx = 0;
  218. ms = delay[0];
  219. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  220. if (sleep_ok) {
  221. ms = delay[delay_idx]; /* last element may repeat */
  222. if (delay_idx < ARRAY_SIZE(delay) - 1)
  223. delay_idx++;
  224. msleep(ms);
  225. } else
  226. mdelay(ms);
  227. v = t4_read_reg(adap, ctl_reg);
  228. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  229. if (!(v & MBMSGVALID)) {
  230. t4_write_reg(adap, ctl_reg, 0);
  231. continue;
  232. }
  233. res = t4_read_reg64(adap, data_reg);
  234. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  235. fw_asrt(adap, data_reg);
  236. res = FW_CMD_RETVAL(EIO);
  237. } else if (rpl)
  238. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  239. if (FW_CMD_RETVAL_GET((int)res))
  240. dump_mbox(adap, mbox, data_reg);
  241. t4_write_reg(adap, ctl_reg, 0);
  242. return -FW_CMD_RETVAL_GET((int)res);
  243. }
  244. }
  245. dump_mbox(adap, mbox, data_reg);
  246. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  247. *(const u8 *)cmd, mbox);
  248. return -ETIMEDOUT;
  249. }
  250. /**
  251. * t4_mc_read - read from MC through backdoor accesses
  252. * @adap: the adapter
  253. * @addr: address of first byte requested
  254. * @data: 64 bytes of data containing the requested address
  255. * @ecc: where to store the corresponding 64-bit ECC word
  256. *
  257. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  258. * that covers the requested address @addr. If @parity is not %NULL it
  259. * is assigned the 64-bit ECC word for the read data.
  260. */
  261. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  262. {
  263. int i;
  264. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  265. return -EBUSY;
  266. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  267. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  268. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  269. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  270. BIST_CMD_GAP(1));
  271. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  272. if (i)
  273. return i;
  274. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  275. for (i = 15; i >= 0; i--)
  276. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  277. if (ecc)
  278. *ecc = t4_read_reg64(adap, MC_DATA(16));
  279. #undef MC_DATA
  280. return 0;
  281. }
  282. /**
  283. * t4_edc_read - read from EDC through backdoor accesses
  284. * @adap: the adapter
  285. * @idx: which EDC to access
  286. * @addr: address of first byte requested
  287. * @data: 64 bytes of data containing the requested address
  288. * @ecc: where to store the corresponding 64-bit ECC word
  289. *
  290. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  291. * that covers the requested address @addr. If @parity is not %NULL it
  292. * is assigned the 64-bit ECC word for the read data.
  293. */
  294. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  295. {
  296. int i;
  297. idx *= EDC_STRIDE;
  298. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  299. return -EBUSY;
  300. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  301. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  302. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  303. t4_write_reg(adap, EDC_BIST_CMD + idx,
  304. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  305. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  306. if (i)
  307. return i;
  308. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  309. for (i = 15; i >= 0; i--)
  310. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  311. if (ecc)
  312. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  313. #undef EDC_DATA
  314. return 0;
  315. }
  316. /*
  317. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  318. * VPD-R header.
  319. */
  320. struct t4_vpd_hdr {
  321. u8 id_tag;
  322. u8 id_len[2];
  323. u8 id_data[ID_LEN];
  324. u8 vpdr_tag;
  325. u8 vpdr_len[2];
  326. };
  327. #define EEPROM_STAT_ADDR 0x7bfc
  328. #define VPD_BASE 0
  329. #define VPD_LEN 512
  330. /**
  331. * t4_seeprom_wp - enable/disable EEPROM write protection
  332. * @adapter: the adapter
  333. * @enable: whether to enable or disable write protection
  334. *
  335. * Enables or disables write protection on the serial EEPROM.
  336. */
  337. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  338. {
  339. unsigned int v = enable ? 0xc : 0;
  340. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  341. return ret < 0 ? ret : 0;
  342. }
  343. /**
  344. * get_vpd_params - read VPD parameters from VPD EEPROM
  345. * @adapter: adapter to read
  346. * @p: where to store the parameters
  347. *
  348. * Reads card parameters stored in VPD EEPROM.
  349. */
  350. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  351. {
  352. int i, ret;
  353. int ec, sn, v2;
  354. u8 vpd[VPD_LEN], csum;
  355. unsigned int vpdr_len;
  356. const struct t4_vpd_hdr *v;
  357. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
  358. if (ret < 0)
  359. return ret;
  360. v = (const struct t4_vpd_hdr *)vpd;
  361. vpdr_len = pci_vpd_lrdt_size(&v->vpdr_tag);
  362. if (vpdr_len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
  363. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  364. return -EINVAL;
  365. }
  366. #define FIND_VPD_KW(var, name) do { \
  367. var = pci_vpd_find_info_keyword(&v->id_tag, sizeof(struct t4_vpd_hdr), \
  368. vpdr_len, name); \
  369. if (var < 0) { \
  370. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  371. return -EINVAL; \
  372. } \
  373. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  374. } while (0)
  375. FIND_VPD_KW(i, "RV");
  376. for (csum = 0; i >= 0; i--)
  377. csum += vpd[i];
  378. if (csum) {
  379. dev_err(adapter->pdev_dev,
  380. "corrupted VPD EEPROM, actual csum %u\n", csum);
  381. return -EINVAL;
  382. }
  383. FIND_VPD_KW(ec, "EC");
  384. FIND_VPD_KW(sn, "SN");
  385. FIND_VPD_KW(v2, "V2");
  386. #undef FIND_VPD_KW
  387. p->cclk = simple_strtoul(vpd + v2, NULL, 10);
  388. memcpy(p->id, v->id_data, ID_LEN);
  389. strim(p->id);
  390. memcpy(p->ec, vpd + ec, EC_LEN);
  391. strim(p->ec);
  392. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  393. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  394. strim(p->sn);
  395. return 0;
  396. }
  397. /* serial flash and firmware constants */
  398. enum {
  399. SF_ATTEMPTS = 10, /* max retries for SF operations */
  400. /* flash command opcodes */
  401. SF_PROG_PAGE = 2, /* program page */
  402. SF_WR_DISABLE = 4, /* disable writes */
  403. SF_RD_STATUS = 5, /* read status register */
  404. SF_WR_ENABLE = 6, /* enable writes */
  405. SF_RD_DATA_FAST = 0xb, /* read flash */
  406. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  407. FW_START_SEC = 8, /* first flash sector for FW */
  408. FW_END_SEC = 15, /* last flash sector for FW */
  409. FW_IMG_START = FW_START_SEC * SF_SEC_SIZE,
  410. FW_MAX_SIZE = (FW_END_SEC - FW_START_SEC + 1) * SF_SEC_SIZE,
  411. };
  412. /**
  413. * sf1_read - read data from the serial flash
  414. * @adapter: the adapter
  415. * @byte_cnt: number of bytes to read
  416. * @cont: whether another operation will be chained
  417. * @lock: whether to lock SF for PL access only
  418. * @valp: where to store the read data
  419. *
  420. * Reads up to 4 bytes of data from the serial flash. The location of
  421. * the read needs to be specified prior to calling this by issuing the
  422. * appropriate commands to the serial flash.
  423. */
  424. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  425. int lock, u32 *valp)
  426. {
  427. int ret;
  428. if (!byte_cnt || byte_cnt > 4)
  429. return -EINVAL;
  430. if (t4_read_reg(adapter, SF_OP) & BUSY)
  431. return -EBUSY;
  432. cont = cont ? SF_CONT : 0;
  433. lock = lock ? SF_LOCK : 0;
  434. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  435. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  436. if (!ret)
  437. *valp = t4_read_reg(adapter, SF_DATA);
  438. return ret;
  439. }
  440. /**
  441. * sf1_write - write data to the serial flash
  442. * @adapter: the adapter
  443. * @byte_cnt: number of bytes to write
  444. * @cont: whether another operation will be chained
  445. * @lock: whether to lock SF for PL access only
  446. * @val: value to write
  447. *
  448. * Writes up to 4 bytes of data to the serial flash. The location of
  449. * the write needs to be specified prior to calling this by issuing the
  450. * appropriate commands to the serial flash.
  451. */
  452. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  453. int lock, u32 val)
  454. {
  455. if (!byte_cnt || byte_cnt > 4)
  456. return -EINVAL;
  457. if (t4_read_reg(adapter, SF_OP) & BUSY)
  458. return -EBUSY;
  459. cont = cont ? SF_CONT : 0;
  460. lock = lock ? SF_LOCK : 0;
  461. t4_write_reg(adapter, SF_DATA, val);
  462. t4_write_reg(adapter, SF_OP, lock |
  463. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  464. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  465. }
  466. /**
  467. * flash_wait_op - wait for a flash operation to complete
  468. * @adapter: the adapter
  469. * @attempts: max number of polls of the status register
  470. * @delay: delay between polls in ms
  471. *
  472. * Wait for a flash operation to complete by polling the status register.
  473. */
  474. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  475. {
  476. int ret;
  477. u32 status;
  478. while (1) {
  479. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  480. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  481. return ret;
  482. if (!(status & 1))
  483. return 0;
  484. if (--attempts == 0)
  485. return -EAGAIN;
  486. if (delay)
  487. msleep(delay);
  488. }
  489. }
  490. /**
  491. * t4_read_flash - read words from serial flash
  492. * @adapter: the adapter
  493. * @addr: the start address for the read
  494. * @nwords: how many 32-bit words to read
  495. * @data: where to store the read data
  496. * @byte_oriented: whether to store data as bytes or as words
  497. *
  498. * Read the specified number of 32-bit words from the serial flash.
  499. * If @byte_oriented is set the read data is stored as a byte array
  500. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  501. * natural endianess.
  502. */
  503. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  504. unsigned int nwords, u32 *data, int byte_oriented)
  505. {
  506. int ret;
  507. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  508. return -EINVAL;
  509. addr = swab32(addr) | SF_RD_DATA_FAST;
  510. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  511. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  512. return ret;
  513. for ( ; nwords; nwords--, data++) {
  514. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  515. if (nwords == 1)
  516. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  517. if (ret)
  518. return ret;
  519. if (byte_oriented)
  520. *data = htonl(*data);
  521. }
  522. return 0;
  523. }
  524. /**
  525. * t4_write_flash - write up to a page of data to the serial flash
  526. * @adapter: the adapter
  527. * @addr: the start address to write
  528. * @n: length of data to write in bytes
  529. * @data: the data to write
  530. *
  531. * Writes up to a page of data (256 bytes) to the serial flash starting
  532. * at the given address. All the data must be written to the same page.
  533. */
  534. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  535. unsigned int n, const u8 *data)
  536. {
  537. int ret;
  538. u32 buf[64];
  539. unsigned int i, c, left, val, offset = addr & 0xff;
  540. if (addr >= SF_SIZE || offset + n > SF_PAGE_SIZE)
  541. return -EINVAL;
  542. val = swab32(addr) | SF_PROG_PAGE;
  543. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  544. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  545. goto unlock;
  546. for (left = n; left; left -= c) {
  547. c = min(left, 4U);
  548. for (val = 0, i = 0; i < c; ++i)
  549. val = (val << 8) + *data++;
  550. ret = sf1_write(adapter, c, c != left, 1, val);
  551. if (ret)
  552. goto unlock;
  553. }
  554. ret = flash_wait_op(adapter, 5, 1);
  555. if (ret)
  556. goto unlock;
  557. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  558. /* Read the page to verify the write succeeded */
  559. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  560. if (ret)
  561. return ret;
  562. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  563. dev_err(adapter->pdev_dev,
  564. "failed to correctly write the flash page at %#x\n",
  565. addr);
  566. return -EIO;
  567. }
  568. return 0;
  569. unlock:
  570. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  571. return ret;
  572. }
  573. /**
  574. * get_fw_version - read the firmware version
  575. * @adapter: the adapter
  576. * @vers: where to place the version
  577. *
  578. * Reads the FW version from flash.
  579. */
  580. static int get_fw_version(struct adapter *adapter, u32 *vers)
  581. {
  582. return t4_read_flash(adapter,
  583. FW_IMG_START + offsetof(struct fw_hdr, fw_ver), 1,
  584. vers, 0);
  585. }
  586. /**
  587. * get_tp_version - read the TP microcode version
  588. * @adapter: the adapter
  589. * @vers: where to place the version
  590. *
  591. * Reads the TP microcode version from flash.
  592. */
  593. static int get_tp_version(struct adapter *adapter, u32 *vers)
  594. {
  595. return t4_read_flash(adapter, FW_IMG_START + offsetof(struct fw_hdr,
  596. tp_microcode_ver),
  597. 1, vers, 0);
  598. }
  599. /**
  600. * t4_check_fw_version - check if the FW is compatible with this driver
  601. * @adapter: the adapter
  602. *
  603. * Checks if an adapter's FW is compatible with the driver. Returns 0
  604. * if there's exact match, a negative error if the version could not be
  605. * read or there's a major version mismatch, and a positive value if the
  606. * expected major version is found but there's a minor version mismatch.
  607. */
  608. int t4_check_fw_version(struct adapter *adapter)
  609. {
  610. u32 api_vers[2];
  611. int ret, major, minor, micro;
  612. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  613. if (!ret)
  614. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  615. if (!ret)
  616. ret = t4_read_flash(adapter,
  617. FW_IMG_START + offsetof(struct fw_hdr, intfver_nic),
  618. 2, api_vers, 1);
  619. if (ret)
  620. return ret;
  621. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  622. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  623. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  624. memcpy(adapter->params.api_vers, api_vers,
  625. sizeof(adapter->params.api_vers));
  626. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  627. dev_err(adapter->pdev_dev,
  628. "card FW has major version %u, driver wants %u\n",
  629. major, FW_VERSION_MAJOR);
  630. return -EINVAL;
  631. }
  632. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  633. return 0; /* perfect match */
  634. /* Minor/micro version mismatch. Report it but often it's OK. */
  635. return 1;
  636. }
  637. /**
  638. * t4_flash_erase_sectors - erase a range of flash sectors
  639. * @adapter: the adapter
  640. * @start: the first sector to erase
  641. * @end: the last sector to erase
  642. *
  643. * Erases the sectors in the given inclusive range.
  644. */
  645. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  646. {
  647. int ret = 0;
  648. while (start <= end) {
  649. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  650. (ret = sf1_write(adapter, 4, 0, 1,
  651. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  652. (ret = flash_wait_op(adapter, 5, 500)) != 0) {
  653. dev_err(adapter->pdev_dev,
  654. "erase of flash sector %d failed, error %d\n",
  655. start, ret);
  656. break;
  657. }
  658. start++;
  659. }
  660. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  661. return ret;
  662. }
  663. /**
  664. * t4_load_fw - download firmware
  665. * @adap: the adapter
  666. * @fw_data: the firmware image to write
  667. * @size: image size
  668. *
  669. * Write the supplied firmware image to the card's serial flash.
  670. */
  671. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  672. {
  673. u32 csum;
  674. int ret, addr;
  675. unsigned int i;
  676. u8 first_page[SF_PAGE_SIZE];
  677. const u32 *p = (const u32 *)fw_data;
  678. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  679. if (!size) {
  680. dev_err(adap->pdev_dev, "FW image has no data\n");
  681. return -EINVAL;
  682. }
  683. if (size & 511) {
  684. dev_err(adap->pdev_dev,
  685. "FW image size not multiple of 512 bytes\n");
  686. return -EINVAL;
  687. }
  688. if (ntohs(hdr->len512) * 512 != size) {
  689. dev_err(adap->pdev_dev,
  690. "FW image size differs from size in FW header\n");
  691. return -EINVAL;
  692. }
  693. if (size > FW_MAX_SIZE) {
  694. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  695. FW_MAX_SIZE);
  696. return -EFBIG;
  697. }
  698. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  699. csum += ntohl(p[i]);
  700. if (csum != 0xffffffff) {
  701. dev_err(adap->pdev_dev,
  702. "corrupted firmware image, checksum %#x\n", csum);
  703. return -EINVAL;
  704. }
  705. i = DIV_ROUND_UP(size, SF_SEC_SIZE); /* # of sectors spanned */
  706. ret = t4_flash_erase_sectors(adap, FW_START_SEC, FW_START_SEC + i - 1);
  707. if (ret)
  708. goto out;
  709. /*
  710. * We write the correct version at the end so the driver can see a bad
  711. * version if the FW write fails. Start by writing a copy of the
  712. * first page with a bad version.
  713. */
  714. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  715. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  716. ret = t4_write_flash(adap, FW_IMG_START, SF_PAGE_SIZE, first_page);
  717. if (ret)
  718. goto out;
  719. addr = FW_IMG_START;
  720. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  721. addr += SF_PAGE_SIZE;
  722. fw_data += SF_PAGE_SIZE;
  723. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  724. if (ret)
  725. goto out;
  726. }
  727. ret = t4_write_flash(adap,
  728. FW_IMG_START + offsetof(struct fw_hdr, fw_ver),
  729. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  730. out:
  731. if (ret)
  732. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  733. ret);
  734. return ret;
  735. }
  736. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  737. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  738. /**
  739. * t4_link_start - apply link configuration to MAC/PHY
  740. * @phy: the PHY to setup
  741. * @mac: the MAC to setup
  742. * @lc: the requested link configuration
  743. *
  744. * Set up a port's MAC and PHY according to a desired link configuration.
  745. * - If the PHY can auto-negotiate first decide what to advertise, then
  746. * enable/disable auto-negotiation as desired, and reset.
  747. * - If the PHY does not auto-negotiate just reset it.
  748. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  749. * otherwise do it later based on the outcome of auto-negotiation.
  750. */
  751. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  752. struct link_config *lc)
  753. {
  754. struct fw_port_cmd c;
  755. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  756. lc->link_ok = 0;
  757. if (lc->requested_fc & PAUSE_RX)
  758. fc |= FW_PORT_CAP_FC_RX;
  759. if (lc->requested_fc & PAUSE_TX)
  760. fc |= FW_PORT_CAP_FC_TX;
  761. memset(&c, 0, sizeof(c));
  762. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  763. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  764. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  765. FW_LEN16(c));
  766. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  767. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  768. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  769. } else if (lc->autoneg == AUTONEG_DISABLE) {
  770. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  771. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  772. } else
  773. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  774. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  775. }
  776. /**
  777. * t4_restart_aneg - restart autonegotiation
  778. * @adap: the adapter
  779. * @mbox: mbox to use for the FW command
  780. * @port: the port id
  781. *
  782. * Restarts autonegotiation for the selected port.
  783. */
  784. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  785. {
  786. struct fw_port_cmd c;
  787. memset(&c, 0, sizeof(c));
  788. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  789. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  790. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  791. FW_LEN16(c));
  792. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  793. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  794. }
  795. /**
  796. * t4_set_vlan_accel - configure HW VLAN extraction
  797. * @adap: the adapter
  798. * @ports: bitmap of adapter ports to operate on
  799. * @on: enable (1) or disable (0) HW VLAN extraction
  800. *
  801. * Enables or disables HW extraction of VLAN tags for the ports specified
  802. * by @ports. @ports is a bitmap with the ith bit designating the port
  803. * associated with the ith adapter channel.
  804. */
  805. void t4_set_vlan_accel(struct adapter *adap, unsigned int ports, int on)
  806. {
  807. ports <<= VLANEXTENABLE_SHIFT;
  808. t4_set_reg_field(adap, TP_OUT_CONFIG, ports, on ? ports : 0);
  809. }
  810. struct intr_info {
  811. unsigned int mask; /* bits to check in interrupt status */
  812. const char *msg; /* message to print or NULL */
  813. short stat_idx; /* stat counter to increment or -1 */
  814. unsigned short fatal; /* whether the condition reported is fatal */
  815. };
  816. /**
  817. * t4_handle_intr_status - table driven interrupt handler
  818. * @adapter: the adapter that generated the interrupt
  819. * @reg: the interrupt status register to process
  820. * @acts: table of interrupt actions
  821. *
  822. * A table driven interrupt handler that applies a set of masks to an
  823. * interrupt status word and performs the corresponding actions if the
  824. * interrupts described by the mask have occured. The actions include
  825. * optionally emitting a warning or alert message. The table is terminated
  826. * by an entry specifying mask 0. Returns the number of fatal interrupt
  827. * conditions.
  828. */
  829. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  830. const struct intr_info *acts)
  831. {
  832. int fatal = 0;
  833. unsigned int mask = 0;
  834. unsigned int status = t4_read_reg(adapter, reg);
  835. for ( ; acts->mask; ++acts) {
  836. if (!(status & acts->mask))
  837. continue;
  838. if (acts->fatal) {
  839. fatal++;
  840. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  841. status & acts->mask);
  842. } else if (acts->msg && printk_ratelimit())
  843. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  844. status & acts->mask);
  845. mask |= acts->mask;
  846. }
  847. status &= mask;
  848. if (status) /* clear processed interrupts */
  849. t4_write_reg(adapter, reg, status);
  850. return fatal;
  851. }
  852. /*
  853. * Interrupt handler for the PCIE module.
  854. */
  855. static void pcie_intr_handler(struct adapter *adapter)
  856. {
  857. static struct intr_info sysbus_intr_info[] = {
  858. { RNPP, "RXNP array parity error", -1, 1 },
  859. { RPCP, "RXPC array parity error", -1, 1 },
  860. { RCIP, "RXCIF array parity error", -1, 1 },
  861. { RCCP, "Rx completions control array parity error", -1, 1 },
  862. { RFTP, "RXFT array parity error", -1, 1 },
  863. { 0 }
  864. };
  865. static struct intr_info pcie_port_intr_info[] = {
  866. { TPCP, "TXPC array parity error", -1, 1 },
  867. { TNPP, "TXNP array parity error", -1, 1 },
  868. { TFTP, "TXFT array parity error", -1, 1 },
  869. { TCAP, "TXCA array parity error", -1, 1 },
  870. { TCIP, "TXCIF array parity error", -1, 1 },
  871. { RCAP, "RXCA array parity error", -1, 1 },
  872. { OTDD, "outbound request TLP discarded", -1, 1 },
  873. { RDPE, "Rx data parity error", -1, 1 },
  874. { TDUE, "Tx uncorrectable data error", -1, 1 },
  875. { 0 }
  876. };
  877. static struct intr_info pcie_intr_info[] = {
  878. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  879. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  880. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  881. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  882. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  883. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  884. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  885. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  886. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  887. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  888. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  889. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  890. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  891. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  892. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  893. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  894. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  895. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  896. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  897. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  898. { FIDPERR, "PCI FID parity error", -1, 1 },
  899. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  900. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  901. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  902. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  903. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  904. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  905. { PCIESINT, "PCI core secondary fault", -1, 1 },
  906. { PCIEPINT, "PCI core primary fault", -1, 1 },
  907. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  908. { 0 }
  909. };
  910. int fat;
  911. fat = t4_handle_intr_status(adapter,
  912. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  913. sysbus_intr_info) +
  914. t4_handle_intr_status(adapter,
  915. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  916. pcie_port_intr_info) +
  917. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  918. if (fat)
  919. t4_fatal_err(adapter);
  920. }
  921. /*
  922. * TP interrupt handler.
  923. */
  924. static void tp_intr_handler(struct adapter *adapter)
  925. {
  926. static struct intr_info tp_intr_info[] = {
  927. { 0x3fffffff, "TP parity error", -1, 1 },
  928. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  929. { 0 }
  930. };
  931. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  932. t4_fatal_err(adapter);
  933. }
  934. /*
  935. * SGE interrupt handler.
  936. */
  937. static void sge_intr_handler(struct adapter *adapter)
  938. {
  939. u64 v;
  940. static struct intr_info sge_intr_info[] = {
  941. { ERR_CPL_EXCEED_IQE_SIZE,
  942. "SGE received CPL exceeding IQE size", -1, 1 },
  943. { ERR_INVALID_CIDX_INC,
  944. "SGE GTS CIDX increment too large", -1, 0 },
  945. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  946. { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
  947. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  948. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  949. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  950. 0 },
  951. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  952. 0 },
  953. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  954. 0 },
  955. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  956. 0 },
  957. { ERR_ING_CTXT_PRIO,
  958. "SGE too many priority ingress contexts", -1, 0 },
  959. { ERR_EGR_CTXT_PRIO,
  960. "SGE too many priority egress contexts", -1, 0 },
  961. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  962. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  963. { 0 }
  964. };
  965. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  966. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  967. if (v) {
  968. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  969. (unsigned long long)v);
  970. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  971. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  972. }
  973. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  974. v != 0)
  975. t4_fatal_err(adapter);
  976. }
  977. /*
  978. * CIM interrupt handler.
  979. */
  980. static void cim_intr_handler(struct adapter *adapter)
  981. {
  982. static struct intr_info cim_intr_info[] = {
  983. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  984. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  985. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  986. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  987. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  988. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  989. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  990. { 0 }
  991. };
  992. static struct intr_info cim_upintr_info[] = {
  993. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  994. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  995. { ILLWRINT, "CIM illegal write", -1, 1 },
  996. { ILLRDINT, "CIM illegal read", -1, 1 },
  997. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  998. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  999. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1000. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1001. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1002. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1003. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1004. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1005. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1006. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1007. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1008. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1009. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1010. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1011. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1012. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1013. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1014. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1015. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1016. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1017. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1018. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1019. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1020. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1021. { 0 }
  1022. };
  1023. int fat;
  1024. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1025. cim_intr_info) +
  1026. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1027. cim_upintr_info);
  1028. if (fat)
  1029. t4_fatal_err(adapter);
  1030. }
  1031. /*
  1032. * ULP RX interrupt handler.
  1033. */
  1034. static void ulprx_intr_handler(struct adapter *adapter)
  1035. {
  1036. static struct intr_info ulprx_intr_info[] = {
  1037. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1038. { 0 }
  1039. };
  1040. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1041. t4_fatal_err(adapter);
  1042. }
  1043. /*
  1044. * ULP TX interrupt handler.
  1045. */
  1046. static void ulptx_intr_handler(struct adapter *adapter)
  1047. {
  1048. static struct intr_info ulptx_intr_info[] = {
  1049. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1050. 0 },
  1051. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1052. 0 },
  1053. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1054. 0 },
  1055. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1056. 0 },
  1057. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1058. { 0 }
  1059. };
  1060. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1061. t4_fatal_err(adapter);
  1062. }
  1063. /*
  1064. * PM TX interrupt handler.
  1065. */
  1066. static void pmtx_intr_handler(struct adapter *adapter)
  1067. {
  1068. static struct intr_info pmtx_intr_info[] = {
  1069. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1070. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1071. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1072. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1073. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1074. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1075. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1076. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1077. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1078. { 0 }
  1079. };
  1080. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1081. t4_fatal_err(adapter);
  1082. }
  1083. /*
  1084. * PM RX interrupt handler.
  1085. */
  1086. static void pmrx_intr_handler(struct adapter *adapter)
  1087. {
  1088. static struct intr_info pmrx_intr_info[] = {
  1089. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1090. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1091. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1092. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1093. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1094. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1095. { 0 }
  1096. };
  1097. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1098. t4_fatal_err(adapter);
  1099. }
  1100. /*
  1101. * CPL switch interrupt handler.
  1102. */
  1103. static void cplsw_intr_handler(struct adapter *adapter)
  1104. {
  1105. static struct intr_info cplsw_intr_info[] = {
  1106. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1107. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1108. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1109. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1110. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1111. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1112. { 0 }
  1113. };
  1114. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1115. t4_fatal_err(adapter);
  1116. }
  1117. /*
  1118. * LE interrupt handler.
  1119. */
  1120. static void le_intr_handler(struct adapter *adap)
  1121. {
  1122. static struct intr_info le_intr_info[] = {
  1123. { LIPMISS, "LE LIP miss", -1, 0 },
  1124. { LIP0, "LE 0 LIP error", -1, 0 },
  1125. { PARITYERR, "LE parity error", -1, 1 },
  1126. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1127. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1128. { 0 }
  1129. };
  1130. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1131. t4_fatal_err(adap);
  1132. }
  1133. /*
  1134. * MPS interrupt handler.
  1135. */
  1136. static void mps_intr_handler(struct adapter *adapter)
  1137. {
  1138. static struct intr_info mps_rx_intr_info[] = {
  1139. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1140. { 0 }
  1141. };
  1142. static struct intr_info mps_tx_intr_info[] = {
  1143. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1144. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1145. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1146. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1147. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1148. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1149. { FRMERR, "MPS Tx framing error", -1, 1 },
  1150. { 0 }
  1151. };
  1152. static struct intr_info mps_trc_intr_info[] = {
  1153. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1154. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1155. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1156. { 0 }
  1157. };
  1158. static struct intr_info mps_stat_sram_intr_info[] = {
  1159. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1160. { 0 }
  1161. };
  1162. static struct intr_info mps_stat_tx_intr_info[] = {
  1163. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1164. { 0 }
  1165. };
  1166. static struct intr_info mps_stat_rx_intr_info[] = {
  1167. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1168. { 0 }
  1169. };
  1170. static struct intr_info mps_cls_intr_info[] = {
  1171. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1172. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1173. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1174. { 0 }
  1175. };
  1176. int fat;
  1177. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1178. mps_rx_intr_info) +
  1179. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1180. mps_tx_intr_info) +
  1181. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1182. mps_trc_intr_info) +
  1183. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1184. mps_stat_sram_intr_info) +
  1185. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1186. mps_stat_tx_intr_info) +
  1187. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1188. mps_stat_rx_intr_info) +
  1189. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1190. mps_cls_intr_info);
  1191. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1192. RXINT | TXINT | STATINT);
  1193. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1194. if (fat)
  1195. t4_fatal_err(adapter);
  1196. }
  1197. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1198. /*
  1199. * EDC/MC interrupt handler.
  1200. */
  1201. static void mem_intr_handler(struct adapter *adapter, int idx)
  1202. {
  1203. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1204. unsigned int addr, cnt_addr, v;
  1205. if (idx <= MEM_EDC1) {
  1206. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1207. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1208. } else {
  1209. addr = MC_INT_CAUSE;
  1210. cnt_addr = MC_ECC_STATUS;
  1211. }
  1212. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1213. if (v & PERR_INT_CAUSE)
  1214. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1215. name[idx]);
  1216. if (v & ECC_CE_INT_CAUSE) {
  1217. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1218. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1219. if (printk_ratelimit())
  1220. dev_warn(adapter->pdev_dev,
  1221. "%u %s correctable ECC data error%s\n",
  1222. cnt, name[idx], cnt > 1 ? "s" : "");
  1223. }
  1224. if (v & ECC_UE_INT_CAUSE)
  1225. dev_alert(adapter->pdev_dev,
  1226. "%s uncorrectable ECC data error\n", name[idx]);
  1227. t4_write_reg(adapter, addr, v);
  1228. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1229. t4_fatal_err(adapter);
  1230. }
  1231. /*
  1232. * MA interrupt handler.
  1233. */
  1234. static void ma_intr_handler(struct adapter *adap)
  1235. {
  1236. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1237. if (status & MEM_PERR_INT_CAUSE)
  1238. dev_alert(adap->pdev_dev,
  1239. "MA parity error, parity status %#x\n",
  1240. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1241. if (status & MEM_WRAP_INT_CAUSE) {
  1242. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1243. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1244. "client %u to address %#x\n",
  1245. MEM_WRAP_CLIENT_NUM_GET(v),
  1246. MEM_WRAP_ADDRESS_GET(v) << 4);
  1247. }
  1248. t4_write_reg(adap, MA_INT_CAUSE, status);
  1249. t4_fatal_err(adap);
  1250. }
  1251. /*
  1252. * SMB interrupt handler.
  1253. */
  1254. static void smb_intr_handler(struct adapter *adap)
  1255. {
  1256. static struct intr_info smb_intr_info[] = {
  1257. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1258. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1259. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1260. { 0 }
  1261. };
  1262. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1263. t4_fatal_err(adap);
  1264. }
  1265. /*
  1266. * NC-SI interrupt handler.
  1267. */
  1268. static void ncsi_intr_handler(struct adapter *adap)
  1269. {
  1270. static struct intr_info ncsi_intr_info[] = {
  1271. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1272. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1273. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1274. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1275. { 0 }
  1276. };
  1277. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1278. t4_fatal_err(adap);
  1279. }
  1280. /*
  1281. * XGMAC interrupt handler.
  1282. */
  1283. static void xgmac_intr_handler(struct adapter *adap, int port)
  1284. {
  1285. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1286. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1287. if (!v)
  1288. return;
  1289. if (v & TXFIFO_PRTY_ERR)
  1290. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1291. port);
  1292. if (v & RXFIFO_PRTY_ERR)
  1293. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1294. port);
  1295. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1296. t4_fatal_err(adap);
  1297. }
  1298. /*
  1299. * PL interrupt handler.
  1300. */
  1301. static void pl_intr_handler(struct adapter *adap)
  1302. {
  1303. static struct intr_info pl_intr_info[] = {
  1304. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1305. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1306. { 0 }
  1307. };
  1308. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1309. t4_fatal_err(adap);
  1310. }
  1311. #define PF_INTR_MASK (PFSW | PFCIM)
  1312. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1313. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1314. CPL_SWITCH | SGE | ULP_TX)
  1315. /**
  1316. * t4_slow_intr_handler - control path interrupt handler
  1317. * @adapter: the adapter
  1318. *
  1319. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1320. * The designation 'slow' is because it involves register reads, while
  1321. * data interrupts typically don't involve any MMIOs.
  1322. */
  1323. int t4_slow_intr_handler(struct adapter *adapter)
  1324. {
  1325. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1326. if (!(cause & GLBL_INTR_MASK))
  1327. return 0;
  1328. if (cause & CIM)
  1329. cim_intr_handler(adapter);
  1330. if (cause & MPS)
  1331. mps_intr_handler(adapter);
  1332. if (cause & NCSI)
  1333. ncsi_intr_handler(adapter);
  1334. if (cause & PL)
  1335. pl_intr_handler(adapter);
  1336. if (cause & SMB)
  1337. smb_intr_handler(adapter);
  1338. if (cause & XGMAC0)
  1339. xgmac_intr_handler(adapter, 0);
  1340. if (cause & XGMAC1)
  1341. xgmac_intr_handler(adapter, 1);
  1342. if (cause & XGMAC_KR0)
  1343. xgmac_intr_handler(adapter, 2);
  1344. if (cause & XGMAC_KR1)
  1345. xgmac_intr_handler(adapter, 3);
  1346. if (cause & PCIE)
  1347. pcie_intr_handler(adapter);
  1348. if (cause & MC)
  1349. mem_intr_handler(adapter, MEM_MC);
  1350. if (cause & EDC0)
  1351. mem_intr_handler(adapter, MEM_EDC0);
  1352. if (cause & EDC1)
  1353. mem_intr_handler(adapter, MEM_EDC1);
  1354. if (cause & LE)
  1355. le_intr_handler(adapter);
  1356. if (cause & TP)
  1357. tp_intr_handler(adapter);
  1358. if (cause & MA)
  1359. ma_intr_handler(adapter);
  1360. if (cause & PM_TX)
  1361. pmtx_intr_handler(adapter);
  1362. if (cause & PM_RX)
  1363. pmrx_intr_handler(adapter);
  1364. if (cause & ULP_RX)
  1365. ulprx_intr_handler(adapter);
  1366. if (cause & CPL_SWITCH)
  1367. cplsw_intr_handler(adapter);
  1368. if (cause & SGE)
  1369. sge_intr_handler(adapter);
  1370. if (cause & ULP_TX)
  1371. ulptx_intr_handler(adapter);
  1372. /* Clear the interrupts just processed for which we are the master. */
  1373. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1374. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1375. return 1;
  1376. }
  1377. /**
  1378. * t4_intr_enable - enable interrupts
  1379. * @adapter: the adapter whose interrupts should be enabled
  1380. *
  1381. * Enable PF-specific interrupts for the calling function and the top-level
  1382. * interrupt concentrator for global interrupts. Interrupts are already
  1383. * enabled at each module, here we just enable the roots of the interrupt
  1384. * hierarchies.
  1385. *
  1386. * Note: this function should be called only when the driver manages
  1387. * non PF-specific interrupts from the various HW modules. Only one PCI
  1388. * function at a time should be doing this.
  1389. */
  1390. void t4_intr_enable(struct adapter *adapter)
  1391. {
  1392. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1393. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1394. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1395. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1396. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1397. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1398. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1399. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1400. EGRESS_SIZE_ERR);
  1401. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1402. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1403. }
  1404. /**
  1405. * t4_intr_disable - disable interrupts
  1406. * @adapter: the adapter whose interrupts should be disabled
  1407. *
  1408. * Disable interrupts. We only disable the top-level interrupt
  1409. * concentrators. The caller must be a PCI function managing global
  1410. * interrupts.
  1411. */
  1412. void t4_intr_disable(struct adapter *adapter)
  1413. {
  1414. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1415. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1416. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1417. }
  1418. /**
  1419. * t4_intr_clear - clear all interrupts
  1420. * @adapter: the adapter whose interrupts should be cleared
  1421. *
  1422. * Clears all interrupts. The caller must be a PCI function managing
  1423. * global interrupts.
  1424. */
  1425. void t4_intr_clear(struct adapter *adapter)
  1426. {
  1427. static const unsigned int cause_reg[] = {
  1428. SGE_INT_CAUSE1, SGE_INT_CAUSE2, SGE_INT_CAUSE3,
  1429. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1430. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1431. PCIE_NONFAT_ERR, PCIE_INT_CAUSE,
  1432. MC_INT_CAUSE,
  1433. MA_INT_WRAP_STATUS, MA_PARITY_ERROR_STATUS, MA_INT_CAUSE,
  1434. EDC_INT_CAUSE, EDC_REG(EDC_INT_CAUSE, 1),
  1435. CIM_HOST_INT_CAUSE, CIM_HOST_UPACC_INT_CAUSE,
  1436. MYPF_REG(CIM_PF_HOST_INT_CAUSE),
  1437. TP_INT_CAUSE,
  1438. ULP_RX_INT_CAUSE, ULP_TX_INT_CAUSE,
  1439. PM_RX_INT_CAUSE, PM_TX_INT_CAUSE,
  1440. MPS_RX_PERR_INT_CAUSE,
  1441. CPL_INTR_CAUSE,
  1442. MYPF_REG(PL_PF_INT_CAUSE),
  1443. PL_PL_INT_CAUSE,
  1444. LE_DB_INT_CAUSE,
  1445. };
  1446. unsigned int i;
  1447. for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
  1448. t4_write_reg(adapter, cause_reg[i], 0xffffffff);
  1449. t4_write_reg(adapter, PL_INT_CAUSE, GLBL_INTR_MASK);
  1450. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1451. }
  1452. /**
  1453. * hash_mac_addr - return the hash value of a MAC address
  1454. * @addr: the 48-bit Ethernet MAC address
  1455. *
  1456. * Hashes a MAC address according to the hash function used by HW inexact
  1457. * (hash) address matching.
  1458. */
  1459. static int hash_mac_addr(const u8 *addr)
  1460. {
  1461. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1462. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1463. a ^= b;
  1464. a ^= (a >> 12);
  1465. a ^= (a >> 6);
  1466. return a & 0x3f;
  1467. }
  1468. /**
  1469. * t4_config_rss_range - configure a portion of the RSS mapping table
  1470. * @adapter: the adapter
  1471. * @mbox: mbox to use for the FW command
  1472. * @viid: virtual interface whose RSS subtable is to be written
  1473. * @start: start entry in the table to write
  1474. * @n: how many table entries to write
  1475. * @rspq: values for the response queue lookup table
  1476. * @nrspq: number of values in @rspq
  1477. *
  1478. * Programs the selected part of the VI's RSS mapping table with the
  1479. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1480. * until the full table range is populated.
  1481. *
  1482. * The caller must ensure the values in @rspq are in the range allowed for
  1483. * @viid.
  1484. */
  1485. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1486. int start, int n, const u16 *rspq, unsigned int nrspq)
  1487. {
  1488. int ret;
  1489. const u16 *rsp = rspq;
  1490. const u16 *rsp_end = rspq + nrspq;
  1491. struct fw_rss_ind_tbl_cmd cmd;
  1492. memset(&cmd, 0, sizeof(cmd));
  1493. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1494. FW_CMD_REQUEST | FW_CMD_WRITE |
  1495. FW_RSS_IND_TBL_CMD_VIID(viid));
  1496. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1497. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1498. while (n > 0) {
  1499. int nq = min(n, 32);
  1500. __be32 *qp = &cmd.iq0_to_iq2;
  1501. cmd.niqid = htons(nq);
  1502. cmd.startidx = htons(start);
  1503. start += nq;
  1504. n -= nq;
  1505. while (nq > 0) {
  1506. unsigned int v;
  1507. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1508. if (++rsp >= rsp_end)
  1509. rsp = rspq;
  1510. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1511. if (++rsp >= rsp_end)
  1512. rsp = rspq;
  1513. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1514. if (++rsp >= rsp_end)
  1515. rsp = rspq;
  1516. *qp++ = htonl(v);
  1517. nq -= 3;
  1518. }
  1519. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1520. if (ret)
  1521. return ret;
  1522. }
  1523. return 0;
  1524. }
  1525. /**
  1526. * t4_config_glbl_rss - configure the global RSS mode
  1527. * @adapter: the adapter
  1528. * @mbox: mbox to use for the FW command
  1529. * @mode: global RSS mode
  1530. * @flags: mode-specific flags
  1531. *
  1532. * Sets the global RSS mode.
  1533. */
  1534. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1535. unsigned int flags)
  1536. {
  1537. struct fw_rss_glb_config_cmd c;
  1538. memset(&c, 0, sizeof(c));
  1539. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1540. FW_CMD_REQUEST | FW_CMD_WRITE);
  1541. c.retval_len16 = htonl(FW_LEN16(c));
  1542. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1543. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1544. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1545. c.u.basicvirtual.mode_pkd =
  1546. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1547. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1548. } else
  1549. return -EINVAL;
  1550. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1551. }
  1552. /* Read an RSS table row */
  1553. static int rd_rss_row(struct adapter *adap, int row, u32 *val)
  1554. {
  1555. t4_write_reg(adap, TP_RSS_LKP_TABLE, 0xfff00000 | row);
  1556. return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE, LKPTBLROWVLD, 1,
  1557. 5, 0, val);
  1558. }
  1559. /**
  1560. * t4_read_rss - read the contents of the RSS mapping table
  1561. * @adapter: the adapter
  1562. * @map: holds the contents of the RSS mapping table
  1563. *
  1564. * Reads the contents of the RSS hash->queue mapping table.
  1565. */
  1566. int t4_read_rss(struct adapter *adapter, u16 *map)
  1567. {
  1568. u32 val;
  1569. int i, ret;
  1570. for (i = 0; i < RSS_NENTRIES / 2; ++i) {
  1571. ret = rd_rss_row(adapter, i, &val);
  1572. if (ret)
  1573. return ret;
  1574. *map++ = LKPTBLQUEUE0_GET(val);
  1575. *map++ = LKPTBLQUEUE1_GET(val);
  1576. }
  1577. return 0;
  1578. }
  1579. /**
  1580. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1581. * @adap: the adapter
  1582. * @v4: holds the TCP/IP counter values
  1583. * @v6: holds the TCP/IPv6 counter values
  1584. *
  1585. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1586. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1587. */
  1588. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1589. struct tp_tcp_stats *v6)
  1590. {
  1591. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1592. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1593. #define STAT(x) val[STAT_IDX(x)]
  1594. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1595. if (v4) {
  1596. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1597. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1598. v4->tcpOutRsts = STAT(OUT_RST);
  1599. v4->tcpInSegs = STAT64(IN_SEG);
  1600. v4->tcpOutSegs = STAT64(OUT_SEG);
  1601. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1602. }
  1603. if (v6) {
  1604. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1605. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1606. v6->tcpOutRsts = STAT(OUT_RST);
  1607. v6->tcpInSegs = STAT64(IN_SEG);
  1608. v6->tcpOutSegs = STAT64(OUT_SEG);
  1609. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1610. }
  1611. #undef STAT64
  1612. #undef STAT
  1613. #undef STAT_IDX
  1614. }
  1615. /**
  1616. * t4_tp_get_err_stats - read TP's error MIB counters
  1617. * @adap: the adapter
  1618. * @st: holds the counter values
  1619. *
  1620. * Returns the values of TP's error counters.
  1621. */
  1622. void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
  1623. {
  1624. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->macInErrs,
  1625. 12, TP_MIB_MAC_IN_ERR_0);
  1626. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlCongDrops,
  1627. 8, TP_MIB_TNL_CNG_DROP_0);
  1628. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tnlTxDrops,
  1629. 4, TP_MIB_TNL_DROP_0);
  1630. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->ofldVlanDrops,
  1631. 4, TP_MIB_OFD_VLN_DROP_0);
  1632. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, st->tcp6InErrs,
  1633. 4, TP_MIB_TCP_V6IN_ERR_0);
  1634. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, &st->ofldNoNeigh,
  1635. 2, TP_MIB_OFD_ARP_DROP);
  1636. }
  1637. /**
  1638. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1639. * @adap: the adapter
  1640. * @mtus: where to store the MTU values
  1641. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1642. *
  1643. * Reads the HW path MTU table.
  1644. */
  1645. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1646. {
  1647. u32 v;
  1648. int i;
  1649. for (i = 0; i < NMTUS; ++i) {
  1650. t4_write_reg(adap, TP_MTU_TABLE,
  1651. MTUINDEX(0xff) | MTUVALUE(i));
  1652. v = t4_read_reg(adap, TP_MTU_TABLE);
  1653. mtus[i] = MTUVALUE_GET(v);
  1654. if (mtu_log)
  1655. mtu_log[i] = MTUWIDTH_GET(v);
  1656. }
  1657. }
  1658. /**
  1659. * init_cong_ctrl - initialize congestion control parameters
  1660. * @a: the alpha values for congestion control
  1661. * @b: the beta values for congestion control
  1662. *
  1663. * Initialize the congestion control parameters.
  1664. */
  1665. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1666. {
  1667. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1668. a[9] = 2;
  1669. a[10] = 3;
  1670. a[11] = 4;
  1671. a[12] = 5;
  1672. a[13] = 6;
  1673. a[14] = 7;
  1674. a[15] = 8;
  1675. a[16] = 9;
  1676. a[17] = 10;
  1677. a[18] = 14;
  1678. a[19] = 17;
  1679. a[20] = 21;
  1680. a[21] = 25;
  1681. a[22] = 30;
  1682. a[23] = 35;
  1683. a[24] = 45;
  1684. a[25] = 60;
  1685. a[26] = 80;
  1686. a[27] = 100;
  1687. a[28] = 200;
  1688. a[29] = 300;
  1689. a[30] = 400;
  1690. a[31] = 500;
  1691. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1692. b[9] = b[10] = 1;
  1693. b[11] = b[12] = 2;
  1694. b[13] = b[14] = b[15] = b[16] = 3;
  1695. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1696. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1697. b[28] = b[29] = 6;
  1698. b[30] = b[31] = 7;
  1699. }
  1700. /* The minimum additive increment value for the congestion control table */
  1701. #define CC_MIN_INCR 2U
  1702. /**
  1703. * t4_load_mtus - write the MTU and congestion control HW tables
  1704. * @adap: the adapter
  1705. * @mtus: the values for the MTU table
  1706. * @alpha: the values for the congestion control alpha parameter
  1707. * @beta: the values for the congestion control beta parameter
  1708. *
  1709. * Write the HW MTU table with the supplied MTUs and the high-speed
  1710. * congestion control table with the supplied alpha, beta, and MTUs.
  1711. * We write the two tables together because the additive increments
  1712. * depend on the MTUs.
  1713. */
  1714. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1715. const unsigned short *alpha, const unsigned short *beta)
  1716. {
  1717. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1718. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1719. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1720. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1721. };
  1722. unsigned int i, w;
  1723. for (i = 0; i < NMTUS; ++i) {
  1724. unsigned int mtu = mtus[i];
  1725. unsigned int log2 = fls(mtu);
  1726. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1727. log2--;
  1728. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1729. MTUWIDTH(log2) | MTUVALUE(mtu));
  1730. for (w = 0; w < NCCTRL_WIN; ++w) {
  1731. unsigned int inc;
  1732. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1733. CC_MIN_INCR);
  1734. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1735. (w << 16) | (beta[w] << 13) | inc);
  1736. }
  1737. }
  1738. }
  1739. /**
  1740. * t4_set_trace_filter - configure one of the tracing filters
  1741. * @adap: the adapter
  1742. * @tp: the desired trace filter parameters
  1743. * @idx: which filter to configure
  1744. * @enable: whether to enable or disable the filter
  1745. *
  1746. * Configures one of the tracing filters available in HW. If @enable is
  1747. * %0 @tp is not examined and may be %NULL.
  1748. */
  1749. int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
  1750. int idx, int enable)
  1751. {
  1752. int i, ofst = idx * 4;
  1753. u32 data_reg, mask_reg, cfg;
  1754. u32 multitrc = TRCMULTIFILTER;
  1755. if (!enable) {
  1756. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
  1757. goto out;
  1758. }
  1759. if (tp->port > 11 || tp->invert > 1 || tp->skip_len > 0x1f ||
  1760. tp->skip_ofst > 0x1f || tp->min_len > 0x1ff ||
  1761. tp->snap_len > 9600 || (idx && tp->snap_len > 256))
  1762. return -EINVAL;
  1763. if (tp->snap_len > 256) { /* must be tracer 0 */
  1764. if ((t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 4) |
  1765. t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 8) |
  1766. t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + 12)) & TFEN)
  1767. return -EINVAL; /* other tracers are enabled */
  1768. multitrc = 0;
  1769. } else if (idx) {
  1770. i = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B);
  1771. if (TFCAPTUREMAX_GET(i) > 256 &&
  1772. (t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A) & TFEN))
  1773. return -EINVAL;
  1774. }
  1775. /* stop the tracer we'll be changing */
  1776. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
  1777. /* disable tracing globally if running in the wrong single/multi mode */
  1778. cfg = t4_read_reg(adap, MPS_TRC_CFG);
  1779. if ((cfg & TRCEN) && multitrc != (cfg & TRCMULTIFILTER)) {
  1780. t4_write_reg(adap, MPS_TRC_CFG, cfg ^ TRCEN);
  1781. t4_read_reg(adap, MPS_TRC_CFG); /* flush */
  1782. msleep(1);
  1783. if (!(t4_read_reg(adap, MPS_TRC_CFG) & TRCFIFOEMPTY))
  1784. return -ETIMEDOUT;
  1785. }
  1786. /*
  1787. * At this point either the tracing is enabled and in the right mode or
  1788. * disabled.
  1789. */
  1790. idx *= (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH);
  1791. data_reg = MPS_TRC_FILTER0_MATCH + idx;
  1792. mask_reg = MPS_TRC_FILTER0_DONT_CARE + idx;
  1793. for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
  1794. t4_write_reg(adap, data_reg, tp->data[i]);
  1795. t4_write_reg(adap, mask_reg, ~tp->mask[i]);
  1796. }
  1797. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst,
  1798. TFCAPTUREMAX(tp->snap_len) |
  1799. TFMINPKTSIZE(tp->min_len));
  1800. t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst,
  1801. TFOFFSET(tp->skip_ofst) | TFLENGTH(tp->skip_len) |
  1802. TFPORT(tp->port) | TFEN |
  1803. (tp->invert ? TFINVERTMATCH : 0));
  1804. cfg &= ~TRCMULTIFILTER;
  1805. t4_write_reg(adap, MPS_TRC_CFG, cfg | TRCEN | multitrc);
  1806. out: t4_read_reg(adap, MPS_TRC_CFG); /* flush */
  1807. return 0;
  1808. }
  1809. /**
  1810. * t4_get_trace_filter - query one of the tracing filters
  1811. * @adap: the adapter
  1812. * @tp: the current trace filter parameters
  1813. * @idx: which trace filter to query
  1814. * @enabled: non-zero if the filter is enabled
  1815. *
  1816. * Returns the current settings of one of the HW tracing filters.
  1817. */
  1818. void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
  1819. int *enabled)
  1820. {
  1821. u32 ctla, ctlb;
  1822. int i, ofst = idx * 4;
  1823. u32 data_reg, mask_reg;
  1824. ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A + ofst);
  1825. ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B + ofst);
  1826. *enabled = !!(ctla & TFEN);
  1827. tp->snap_len = TFCAPTUREMAX_GET(ctlb);
  1828. tp->min_len = TFMINPKTSIZE_GET(ctlb);
  1829. tp->skip_ofst = TFOFFSET_GET(ctla);
  1830. tp->skip_len = TFLENGTH_GET(ctla);
  1831. tp->invert = !!(ctla & TFINVERTMATCH);
  1832. tp->port = TFPORT_GET(ctla);
  1833. ofst = (MPS_TRC_FILTER1_MATCH - MPS_TRC_FILTER0_MATCH) * idx;
  1834. data_reg = MPS_TRC_FILTER0_MATCH + ofst;
  1835. mask_reg = MPS_TRC_FILTER0_DONT_CARE + ofst;
  1836. for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
  1837. tp->mask[i] = ~t4_read_reg(adap, mask_reg);
  1838. tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
  1839. }
  1840. }
  1841. /**
  1842. * get_mps_bg_map - return the buffer groups associated with a port
  1843. * @adap: the adapter
  1844. * @idx: the port index
  1845. *
  1846. * Returns a bitmap indicating which MPS buffer groups are associated
  1847. * with the given port. Bit i is set if buffer group i is used by the
  1848. * port.
  1849. */
  1850. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1851. {
  1852. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1853. if (n == 0)
  1854. return idx == 0 ? 0xf : 0;
  1855. if (n == 1)
  1856. return idx < 2 ? (3 << (2 * idx)) : 0;
  1857. return 1 << idx;
  1858. }
  1859. /**
  1860. * t4_get_port_stats - collect port statistics
  1861. * @adap: the adapter
  1862. * @idx: the port index
  1863. * @p: the stats structure to fill
  1864. *
  1865. * Collect statistics related to the given port from HW.
  1866. */
  1867. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1868. {
  1869. u32 bgmap = get_mps_bg_map(adap, idx);
  1870. #define GET_STAT(name) \
  1871. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1872. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1873. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1874. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1875. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1876. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1877. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1878. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1879. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1880. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1881. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1882. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1883. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1884. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1885. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1886. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1887. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1888. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1889. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1890. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1891. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1892. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1893. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1894. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1895. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1896. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1897. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1898. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1899. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1900. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1901. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1902. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1903. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1904. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1905. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1906. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1907. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1908. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1909. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1910. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1911. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1912. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1913. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1914. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1915. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1916. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1917. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1918. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1919. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1920. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1921. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1922. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1923. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1924. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1925. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1926. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1927. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1928. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1929. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1930. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1931. #undef GET_STAT
  1932. #undef GET_STAT_COM
  1933. }
  1934. /**
  1935. * t4_get_lb_stats - collect loopback port statistics
  1936. * @adap: the adapter
  1937. * @idx: the loopback port index
  1938. * @p: the stats structure to fill
  1939. *
  1940. * Return HW statistics for the given loopback port.
  1941. */
  1942. void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
  1943. {
  1944. u32 bgmap = get_mps_bg_map(adap, idx);
  1945. #define GET_STAT(name) \
  1946. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))
  1947. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1948. p->octets = GET_STAT(BYTES);
  1949. p->frames = GET_STAT(FRAMES);
  1950. p->bcast_frames = GET_STAT(BCAST);
  1951. p->mcast_frames = GET_STAT(MCAST);
  1952. p->ucast_frames = GET_STAT(UCAST);
  1953. p->error_frames = GET_STAT(ERROR);
  1954. p->frames_64 = GET_STAT(64B);
  1955. p->frames_65_127 = GET_STAT(65B_127B);
  1956. p->frames_128_255 = GET_STAT(128B_255B);
  1957. p->frames_256_511 = GET_STAT(256B_511B);
  1958. p->frames_512_1023 = GET_STAT(512B_1023B);
  1959. p->frames_1024_1518 = GET_STAT(1024B_1518B);
  1960. p->frames_1519_max = GET_STAT(1519B_MAX);
  1961. p->drop = t4_read_reg(adap, PORT_REG(idx,
  1962. MPS_PORT_STAT_LB_PORT_DROP_FRAMES));
  1963. p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
  1964. p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
  1965. p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
  1966. p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
  1967. p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
  1968. p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
  1969. p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
  1970. p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
  1971. #undef GET_STAT
  1972. #undef GET_STAT_COM
  1973. }
  1974. /**
  1975. * t4_wol_magic_enable - enable/disable magic packet WoL
  1976. * @adap: the adapter
  1977. * @port: the physical port index
  1978. * @addr: MAC address expected in magic packets, %NULL to disable
  1979. *
  1980. * Enables/disables magic packet wake-on-LAN for the selected port.
  1981. */
  1982. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1983. const u8 *addr)
  1984. {
  1985. if (addr) {
  1986. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1987. (addr[2] << 24) | (addr[3] << 16) |
  1988. (addr[4] << 8) | addr[5]);
  1989. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1990. (addr[0] << 8) | addr[1]);
  1991. }
  1992. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1993. addr ? MAGICEN : 0);
  1994. }
  1995. /**
  1996. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1997. * @adap: the adapter
  1998. * @port: the physical port index
  1999. * @map: bitmap of which HW pattern filters to set
  2000. * @mask0: byte mask for bytes 0-63 of a packet
  2001. * @mask1: byte mask for bytes 64-127 of a packet
  2002. * @crc: Ethernet CRC for selected bytes
  2003. * @enable: enable/disable switch
  2004. *
  2005. * Sets the pattern filters indicated in @map to mask out the bytes
  2006. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2007. * the resulting packet against @crc. If @enable is %true pattern-based
  2008. * WoL is enabled, otherwise disabled.
  2009. */
  2010. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2011. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2012. {
  2013. int i;
  2014. if (!enable) {
  2015. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  2016. PATEN, 0);
  2017. return 0;
  2018. }
  2019. if (map > 0xff)
  2020. return -EINVAL;
  2021. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  2022. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2023. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2024. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2025. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2026. if (!(map & 1))
  2027. continue;
  2028. /* write byte masks */
  2029. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2030. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2031. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2032. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2033. return -ETIMEDOUT;
  2034. /* write CRC */
  2035. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2036. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2037. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2038. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2039. return -ETIMEDOUT;
  2040. }
  2041. #undef EPIO_REG
  2042. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2043. return 0;
  2044. }
  2045. #define INIT_CMD(var, cmd, rd_wr) do { \
  2046. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2047. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2048. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2049. } while (0)
  2050. /**
  2051. * t4_mdio_rd - read a PHY register through MDIO
  2052. * @adap: the adapter
  2053. * @mbox: mailbox to use for the FW command
  2054. * @phy_addr: the PHY address
  2055. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2056. * @reg: the register to read
  2057. * @valp: where to store the value
  2058. *
  2059. * Issues a FW command through the given mailbox to read a PHY register.
  2060. */
  2061. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2062. unsigned int mmd, unsigned int reg, u16 *valp)
  2063. {
  2064. int ret;
  2065. struct fw_ldst_cmd c;
  2066. memset(&c, 0, sizeof(c));
  2067. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2068. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2069. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2070. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2071. FW_LDST_CMD_MMD(mmd));
  2072. c.u.mdio.raddr = htons(reg);
  2073. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2074. if (ret == 0)
  2075. *valp = ntohs(c.u.mdio.rval);
  2076. return ret;
  2077. }
  2078. /**
  2079. * t4_mdio_wr - write a PHY register through MDIO
  2080. * @adap: the adapter
  2081. * @mbox: mailbox to use for the FW command
  2082. * @phy_addr: the PHY address
  2083. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2084. * @reg: the register to write
  2085. * @valp: value to write
  2086. *
  2087. * Issues a FW command through the given mailbox to write a PHY register.
  2088. */
  2089. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2090. unsigned int mmd, unsigned int reg, u16 val)
  2091. {
  2092. struct fw_ldst_cmd c;
  2093. memset(&c, 0, sizeof(c));
  2094. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2095. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2096. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2097. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2098. FW_LDST_CMD_MMD(mmd));
  2099. c.u.mdio.raddr = htons(reg);
  2100. c.u.mdio.rval = htons(val);
  2101. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2102. }
  2103. /**
  2104. * t4_fw_hello - establish communication with FW
  2105. * @adap: the adapter
  2106. * @mbox: mailbox to use for the FW command
  2107. * @evt_mbox: mailbox to receive async FW events
  2108. * @master: specifies the caller's willingness to be the device master
  2109. * @state: returns the current device state
  2110. *
  2111. * Issues a command to establish communication with FW.
  2112. */
  2113. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2114. enum dev_master master, enum dev_state *state)
  2115. {
  2116. int ret;
  2117. struct fw_hello_cmd c;
  2118. INIT_CMD(c, HELLO, WRITE);
  2119. c.err_to_mbasyncnot = htonl(
  2120. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2121. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2122. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox : 0xff) |
  2123. FW_HELLO_CMD_MBASYNCNOT(evt_mbox));
  2124. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2125. if (ret == 0 && state) {
  2126. u32 v = ntohl(c.err_to_mbasyncnot);
  2127. if (v & FW_HELLO_CMD_INIT)
  2128. *state = DEV_STATE_INIT;
  2129. else if (v & FW_HELLO_CMD_ERR)
  2130. *state = DEV_STATE_ERR;
  2131. else
  2132. *state = DEV_STATE_UNINIT;
  2133. }
  2134. return ret;
  2135. }
  2136. /**
  2137. * t4_fw_bye - end communication with FW
  2138. * @adap: the adapter
  2139. * @mbox: mailbox to use for the FW command
  2140. *
  2141. * Issues a command to terminate communication with FW.
  2142. */
  2143. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2144. {
  2145. struct fw_bye_cmd c;
  2146. INIT_CMD(c, BYE, WRITE);
  2147. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2148. }
  2149. /**
  2150. * t4_init_cmd - ask FW to initialize the device
  2151. * @adap: the adapter
  2152. * @mbox: mailbox to use for the FW command
  2153. *
  2154. * Issues a command to FW to partially initialize the device. This
  2155. * performs initialization that generally doesn't depend on user input.
  2156. */
  2157. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2158. {
  2159. struct fw_initialize_cmd c;
  2160. INIT_CMD(c, INITIALIZE, WRITE);
  2161. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2162. }
  2163. /**
  2164. * t4_fw_reset - issue a reset to FW
  2165. * @adap: the adapter
  2166. * @mbox: mailbox to use for the FW command
  2167. * @reset: specifies the type of reset to perform
  2168. *
  2169. * Issues a reset command of the specified type to FW.
  2170. */
  2171. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2172. {
  2173. struct fw_reset_cmd c;
  2174. INIT_CMD(c, RESET, WRITE);
  2175. c.val = htonl(reset);
  2176. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2177. }
  2178. /**
  2179. * t4_query_params - query FW or device parameters
  2180. * @adap: the adapter
  2181. * @mbox: mailbox to use for the FW command
  2182. * @pf: the PF
  2183. * @vf: the VF
  2184. * @nparams: the number of parameters
  2185. * @params: the parameter names
  2186. * @val: the parameter values
  2187. *
  2188. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2189. * queried at once.
  2190. */
  2191. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2192. unsigned int vf, unsigned int nparams, const u32 *params,
  2193. u32 *val)
  2194. {
  2195. int i, ret;
  2196. struct fw_params_cmd c;
  2197. __be32 *p = &c.param[0].mnem;
  2198. if (nparams > 7)
  2199. return -EINVAL;
  2200. memset(&c, 0, sizeof(c));
  2201. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2202. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2203. FW_PARAMS_CMD_VFN(vf));
  2204. c.retval_len16 = htonl(FW_LEN16(c));
  2205. for (i = 0; i < nparams; i++, p += 2)
  2206. *p = htonl(*params++);
  2207. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2208. if (ret == 0)
  2209. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2210. *val++ = ntohl(*p);
  2211. return ret;
  2212. }
  2213. /**
  2214. * t4_set_params - sets FW or device parameters
  2215. * @adap: the adapter
  2216. * @mbox: mailbox to use for the FW command
  2217. * @pf: the PF
  2218. * @vf: the VF
  2219. * @nparams: the number of parameters
  2220. * @params: the parameter names
  2221. * @val: the parameter values
  2222. *
  2223. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2224. * specified at once.
  2225. */
  2226. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2227. unsigned int vf, unsigned int nparams, const u32 *params,
  2228. const u32 *val)
  2229. {
  2230. struct fw_params_cmd c;
  2231. __be32 *p = &c.param[0].mnem;
  2232. if (nparams > 7)
  2233. return -EINVAL;
  2234. memset(&c, 0, sizeof(c));
  2235. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2236. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2237. FW_PARAMS_CMD_VFN(vf));
  2238. c.retval_len16 = htonl(FW_LEN16(c));
  2239. while (nparams--) {
  2240. *p++ = htonl(*params++);
  2241. *p++ = htonl(*val++);
  2242. }
  2243. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2244. }
  2245. /**
  2246. * t4_cfg_pfvf - configure PF/VF resource limits
  2247. * @adap: the adapter
  2248. * @mbox: mailbox to use for the FW command
  2249. * @pf: the PF being configured
  2250. * @vf: the VF being configured
  2251. * @txq: the max number of egress queues
  2252. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2253. * @rxqi: the max number of interrupt-capable ingress queues
  2254. * @rxq: the max number of interruptless ingress queues
  2255. * @tc: the PCI traffic class
  2256. * @vi: the max number of virtual interfaces
  2257. * @cmask: the channel access rights mask for the PF/VF
  2258. * @pmask: the port access rights mask for the PF/VF
  2259. * @nexact: the maximum number of exact MPS filters
  2260. * @rcaps: read capabilities
  2261. * @wxcaps: write/execute capabilities
  2262. *
  2263. * Configures resource limits and capabilities for a physical or virtual
  2264. * function.
  2265. */
  2266. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2267. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2268. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2269. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2270. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2271. {
  2272. struct fw_pfvf_cmd c;
  2273. memset(&c, 0, sizeof(c));
  2274. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2275. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2276. FW_PFVF_CMD_VFN(vf));
  2277. c.retval_len16 = htonl(FW_LEN16(c));
  2278. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2279. FW_PFVF_CMD_NIQ(rxq));
  2280. c.cmask_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2281. FW_PFVF_CMD_PMASK(pmask) |
  2282. FW_PFVF_CMD_NEQ(txq));
  2283. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2284. FW_PFVF_CMD_NEXACTF(nexact));
  2285. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2286. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2287. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2288. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2289. }
  2290. /**
  2291. * t4_alloc_vi - allocate a virtual interface
  2292. * @adap: the adapter
  2293. * @mbox: mailbox to use for the FW command
  2294. * @port: physical port associated with the VI
  2295. * @pf: the PF owning the VI
  2296. * @vf: the VF owning the VI
  2297. * @nmac: number of MAC addresses needed (1 to 5)
  2298. * @mac: the MAC addresses of the VI
  2299. * @rss_size: size of RSS table slice associated with this VI
  2300. *
  2301. * Allocates a virtual interface for the given physical port. If @mac is
  2302. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2303. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2304. * stored consecutively so the space needed is @nmac * 6 bytes.
  2305. * Returns a negative error number or the non-negative VI id.
  2306. */
  2307. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2308. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2309. unsigned int *rss_size)
  2310. {
  2311. int ret;
  2312. struct fw_vi_cmd c;
  2313. memset(&c, 0, sizeof(c));
  2314. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2315. FW_CMD_WRITE | FW_CMD_EXEC |
  2316. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2317. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2318. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2319. c.nmac = nmac - 1;
  2320. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2321. if (ret)
  2322. return ret;
  2323. if (mac) {
  2324. memcpy(mac, c.mac, sizeof(c.mac));
  2325. switch (nmac) {
  2326. case 5:
  2327. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2328. case 4:
  2329. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2330. case 3:
  2331. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2332. case 2:
  2333. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2334. }
  2335. }
  2336. if (rss_size)
  2337. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2338. return ntohs(c.viid_pkd);
  2339. }
  2340. /**
  2341. * t4_free_vi - free a virtual interface
  2342. * @adap: the adapter
  2343. * @mbox: mailbox to use for the FW command
  2344. * @pf: the PF owning the VI
  2345. * @vf: the VF owning the VI
  2346. * @viid: virtual interface identifiler
  2347. *
  2348. * Free a previously allocated virtual interface.
  2349. */
  2350. int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2351. unsigned int vf, unsigned int viid)
  2352. {
  2353. struct fw_vi_cmd c;
  2354. memset(&c, 0, sizeof(c));
  2355. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2356. FW_CMD_EXEC | FW_VI_CMD_PFN(pf) |
  2357. FW_VI_CMD_VFN(vf));
  2358. c.alloc_to_len16 = htonl(FW_VI_CMD_FREE | FW_LEN16(c));
  2359. c.viid_pkd = htons(FW_VI_CMD_VIID(viid));
  2360. return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2361. }
  2362. /**
  2363. * t4_set_rxmode - set Rx properties of a virtual interface
  2364. * @adap: the adapter
  2365. * @mbox: mailbox to use for the FW command
  2366. * @viid: the VI id
  2367. * @mtu: the new MTU or -1
  2368. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2369. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2370. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2371. * @sleep_ok: if true we may sleep while awaiting command completion
  2372. *
  2373. * Sets Rx properties of a virtual interface.
  2374. */
  2375. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2376. int mtu, int promisc, int all_multi, int bcast, bool sleep_ok)
  2377. {
  2378. struct fw_vi_rxmode_cmd c;
  2379. /* convert to FW values */
  2380. if (mtu < 0)
  2381. mtu = FW_RXMODE_MTU_NO_CHG;
  2382. if (promisc < 0)
  2383. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2384. if (all_multi < 0)
  2385. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2386. if (bcast < 0)
  2387. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2388. memset(&c, 0, sizeof(c));
  2389. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2390. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2391. c.retval_len16 = htonl(FW_LEN16(c));
  2392. c.mtu_to_broadcasten = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2393. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2394. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2395. FW_VI_RXMODE_CMD_BROADCASTEN(bcast));
  2396. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2397. }
  2398. /**
  2399. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2400. * @adap: the adapter
  2401. * @mbox: mailbox to use for the FW command
  2402. * @viid: the VI id
  2403. * @free: if true any existing filters for this VI id are first removed
  2404. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2405. * @addr: the MAC address(es)
  2406. * @idx: where to store the index of each allocated filter
  2407. * @hash: pointer to hash address filter bitmap
  2408. * @sleep_ok: call is allowed to sleep
  2409. *
  2410. * Allocates an exact-match filter for each of the supplied addresses and
  2411. * sets it to the corresponding address. If @idx is not %NULL it should
  2412. * have at least @naddr entries, each of which will be set to the index of
  2413. * the filter allocated for the corresponding MAC address. If a filter
  2414. * could not be allocated for an address its index is set to 0xffff.
  2415. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2416. * are hashed and update the hash filter bitmap pointed at by @hash.
  2417. *
  2418. * Returns a negative error number or the number of filters allocated.
  2419. */
  2420. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2421. unsigned int viid, bool free, unsigned int naddr,
  2422. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2423. {
  2424. int i, ret;
  2425. struct fw_vi_mac_cmd c;
  2426. struct fw_vi_mac_exact *p;
  2427. if (naddr > 7)
  2428. return -EINVAL;
  2429. memset(&c, 0, sizeof(c));
  2430. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2431. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2432. FW_VI_MAC_CMD_VIID(viid));
  2433. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2434. FW_CMD_LEN16((naddr + 2) / 2));
  2435. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2436. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2437. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2438. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2439. }
  2440. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2441. if (ret)
  2442. return ret;
  2443. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2444. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2445. if (idx)
  2446. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2447. if (index < NEXACT_MAC)
  2448. ret++;
  2449. else if (hash)
  2450. *hash |= (1 << hash_mac_addr(addr[i]));
  2451. }
  2452. return ret;
  2453. }
  2454. /**
  2455. * t4_change_mac - modifies the exact-match filter for a MAC address
  2456. * @adap: the adapter
  2457. * @mbox: mailbox to use for the FW command
  2458. * @viid: the VI id
  2459. * @idx: index of existing filter for old value of MAC address, or -1
  2460. * @addr: the new MAC address value
  2461. * @persist: whether a new MAC allocation should be persistent
  2462. * @add_smt: if true also add the address to the HW SMT
  2463. *
  2464. * Modifies an exact-match filter and sets it to the new MAC address.
  2465. * Note that in general it is not possible to modify the value of a given
  2466. * filter so the generic way to modify an address filter is to free the one
  2467. * being used by the old address value and allocate a new filter for the
  2468. * new address value. @idx can be -1 if the address is a new addition.
  2469. *
  2470. * Returns a negative error number or the index of the filter with the new
  2471. * MAC value.
  2472. */
  2473. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2474. int idx, const u8 *addr, bool persist, bool add_smt)
  2475. {
  2476. int ret, mode;
  2477. struct fw_vi_mac_cmd c;
  2478. struct fw_vi_mac_exact *p = c.u.exact;
  2479. if (idx < 0) /* new allocation */
  2480. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2481. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2482. memset(&c, 0, sizeof(c));
  2483. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2484. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2485. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2486. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2487. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2488. FW_VI_MAC_CMD_IDX(idx));
  2489. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2490. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2491. if (ret == 0) {
  2492. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2493. if (ret >= NEXACT_MAC)
  2494. ret = -ENOMEM;
  2495. }
  2496. return ret;
  2497. }
  2498. /**
  2499. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2500. * @adap: the adapter
  2501. * @mbox: mailbox to use for the FW command
  2502. * @viid: the VI id
  2503. * @ucast: whether the hash filter should also match unicast addresses
  2504. * @vec: the value to be written to the hash filter
  2505. * @sleep_ok: call is allowed to sleep
  2506. *
  2507. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2508. */
  2509. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2510. bool ucast, u64 vec, bool sleep_ok)
  2511. {
  2512. struct fw_vi_mac_cmd c;
  2513. memset(&c, 0, sizeof(c));
  2514. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2515. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2516. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2517. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2518. FW_CMD_LEN16(1));
  2519. c.u.hash.hashvec = cpu_to_be64(vec);
  2520. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2521. }
  2522. /**
  2523. * t4_enable_vi - enable/disable a virtual interface
  2524. * @adap: the adapter
  2525. * @mbox: mailbox to use for the FW command
  2526. * @viid: the VI id
  2527. * @rx_en: 1=enable Rx, 0=disable Rx
  2528. * @tx_en: 1=enable Tx, 0=disable Tx
  2529. *
  2530. * Enables/disables a virtual interface.
  2531. */
  2532. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2533. bool rx_en, bool tx_en)
  2534. {
  2535. struct fw_vi_enable_cmd c;
  2536. memset(&c, 0, sizeof(c));
  2537. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2538. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2539. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2540. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2541. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2542. }
  2543. /**
  2544. * t4_identify_port - identify a VI's port by blinking its LED
  2545. * @adap: the adapter
  2546. * @mbox: mailbox to use for the FW command
  2547. * @viid: the VI id
  2548. * @nblinks: how many times to blink LED at 2.5 Hz
  2549. *
  2550. * Identifies a VI's port by blinking its LED.
  2551. */
  2552. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2553. unsigned int nblinks)
  2554. {
  2555. struct fw_vi_enable_cmd c;
  2556. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2557. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2558. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2559. c.blinkdur = htons(nblinks);
  2560. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2561. }
  2562. /**
  2563. * t4_iq_start_stop - enable/disable an ingress queue and its FLs
  2564. * @adap: the adapter
  2565. * @mbox: mailbox to use for the FW command
  2566. * @start: %true to enable the queues, %false to disable them
  2567. * @pf: the PF owning the queues
  2568. * @vf: the VF owning the queues
  2569. * @iqid: ingress queue id
  2570. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2571. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2572. *
  2573. * Starts or stops an ingress queue and its associated FLs, if any.
  2574. */
  2575. int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
  2576. unsigned int pf, unsigned int vf, unsigned int iqid,
  2577. unsigned int fl0id, unsigned int fl1id)
  2578. {
  2579. struct fw_iq_cmd c;
  2580. memset(&c, 0, sizeof(c));
  2581. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2582. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2583. FW_IQ_CMD_VFN(vf));
  2584. c.alloc_to_len16 = htonl(FW_IQ_CMD_IQSTART(start) |
  2585. FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
  2586. c.iqid = htons(iqid);
  2587. c.fl0id = htons(fl0id);
  2588. c.fl1id = htons(fl1id);
  2589. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2590. }
  2591. /**
  2592. * t4_iq_free - free an ingress queue and its FLs
  2593. * @adap: the adapter
  2594. * @mbox: mailbox to use for the FW command
  2595. * @pf: the PF owning the queues
  2596. * @vf: the VF owning the queues
  2597. * @iqtype: the ingress queue type
  2598. * @iqid: ingress queue id
  2599. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2600. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2601. *
  2602. * Frees an ingress queue and its associated FLs, if any.
  2603. */
  2604. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2605. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2606. unsigned int fl0id, unsigned int fl1id)
  2607. {
  2608. struct fw_iq_cmd c;
  2609. memset(&c, 0, sizeof(c));
  2610. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2611. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2612. FW_IQ_CMD_VFN(vf));
  2613. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2614. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2615. c.iqid = htons(iqid);
  2616. c.fl0id = htons(fl0id);
  2617. c.fl1id = htons(fl1id);
  2618. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2619. }
  2620. /**
  2621. * t4_eth_eq_free - free an Ethernet egress queue
  2622. * @adap: the adapter
  2623. * @mbox: mailbox to use for the FW command
  2624. * @pf: the PF owning the queue
  2625. * @vf: the VF owning the queue
  2626. * @eqid: egress queue id
  2627. *
  2628. * Frees an Ethernet egress queue.
  2629. */
  2630. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2631. unsigned int vf, unsigned int eqid)
  2632. {
  2633. struct fw_eq_eth_cmd c;
  2634. memset(&c, 0, sizeof(c));
  2635. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  2636. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  2637. FW_EQ_ETH_CMD_VFN(vf));
  2638. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  2639. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  2640. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2641. }
  2642. /**
  2643. * t4_ctrl_eq_free - free a control egress queue
  2644. * @adap: the adapter
  2645. * @mbox: mailbox to use for the FW command
  2646. * @pf: the PF owning the queue
  2647. * @vf: the VF owning the queue
  2648. * @eqid: egress queue id
  2649. *
  2650. * Frees a control egress queue.
  2651. */
  2652. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2653. unsigned int vf, unsigned int eqid)
  2654. {
  2655. struct fw_eq_ctrl_cmd c;
  2656. memset(&c, 0, sizeof(c));
  2657. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  2658. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  2659. FW_EQ_CTRL_CMD_VFN(vf));
  2660. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  2661. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  2662. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2663. }
  2664. /**
  2665. * t4_ofld_eq_free - free an offload egress queue
  2666. * @adap: the adapter
  2667. * @mbox: mailbox to use for the FW command
  2668. * @pf: the PF owning the queue
  2669. * @vf: the VF owning the queue
  2670. * @eqid: egress queue id
  2671. *
  2672. * Frees a control egress queue.
  2673. */
  2674. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2675. unsigned int vf, unsigned int eqid)
  2676. {
  2677. struct fw_eq_ofld_cmd c;
  2678. memset(&c, 0, sizeof(c));
  2679. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  2680. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  2681. FW_EQ_OFLD_CMD_VFN(vf));
  2682. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  2683. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  2684. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2685. }
  2686. /**
  2687. * t4_handle_fw_rpl - process a FW reply message
  2688. * @adap: the adapter
  2689. * @rpl: start of the FW message
  2690. *
  2691. * Processes a FW message, such as link state change messages.
  2692. */
  2693. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  2694. {
  2695. u8 opcode = *(const u8 *)rpl;
  2696. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  2697. int speed = 0, fc = 0;
  2698. const struct fw_port_cmd *p = (void *)rpl;
  2699. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  2700. int port = adap->chan_map[chan];
  2701. struct port_info *pi = adap2pinfo(adap, port);
  2702. struct link_config *lc = &pi->link_cfg;
  2703. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  2704. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  2705. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  2706. if (stat & FW_PORT_CMD_RXPAUSE)
  2707. fc |= PAUSE_RX;
  2708. if (stat & FW_PORT_CMD_TXPAUSE)
  2709. fc |= PAUSE_TX;
  2710. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  2711. speed = SPEED_100;
  2712. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  2713. speed = SPEED_1000;
  2714. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  2715. speed = SPEED_10000;
  2716. if (link_ok != lc->link_ok || speed != lc->speed ||
  2717. fc != lc->fc) { /* something changed */
  2718. lc->link_ok = link_ok;
  2719. lc->speed = speed;
  2720. lc->fc = fc;
  2721. t4_os_link_changed(adap, port, link_ok);
  2722. }
  2723. if (mod != pi->mod_type) {
  2724. pi->mod_type = mod;
  2725. t4_os_portmod_changed(adap, port);
  2726. }
  2727. }
  2728. return 0;
  2729. }
  2730. static void __devinit get_pci_mode(struct adapter *adapter,
  2731. struct pci_params *p)
  2732. {
  2733. u16 val;
  2734. u32 pcie_cap = pci_pcie_cap(adapter->pdev);
  2735. if (pcie_cap) {
  2736. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2737. &val);
  2738. p->speed = val & PCI_EXP_LNKSTA_CLS;
  2739. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  2740. }
  2741. }
  2742. /**
  2743. * init_link_config - initialize a link's SW state
  2744. * @lc: structure holding the link state
  2745. * @caps: link capabilities
  2746. *
  2747. * Initializes the SW state maintained for each link, including the link's
  2748. * capabilities and default speed/flow-control/autonegotiation settings.
  2749. */
  2750. static void __devinit init_link_config(struct link_config *lc,
  2751. unsigned int caps)
  2752. {
  2753. lc->supported = caps;
  2754. lc->requested_speed = 0;
  2755. lc->speed = 0;
  2756. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2757. if (lc->supported & FW_PORT_CAP_ANEG) {
  2758. lc->advertising = lc->supported & ADVERT_MASK;
  2759. lc->autoneg = AUTONEG_ENABLE;
  2760. lc->requested_fc |= PAUSE_AUTONEG;
  2761. } else {
  2762. lc->advertising = 0;
  2763. lc->autoneg = AUTONEG_DISABLE;
  2764. }
  2765. }
  2766. static int __devinit wait_dev_ready(struct adapter *adap)
  2767. {
  2768. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  2769. return 0;
  2770. msleep(500);
  2771. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  2772. }
  2773. /**
  2774. * t4_prep_adapter - prepare SW and HW for operation
  2775. * @adapter: the adapter
  2776. * @reset: if true perform a HW reset
  2777. *
  2778. * Initialize adapter SW state for the various HW modules, set initial
  2779. * values for some adapter tunables, take PHYs out of reset, and
  2780. * initialize the MDIO interface.
  2781. */
  2782. int __devinit t4_prep_adapter(struct adapter *adapter)
  2783. {
  2784. int ret;
  2785. ret = wait_dev_ready(adapter);
  2786. if (ret < 0)
  2787. return ret;
  2788. get_pci_mode(adapter, &adapter->params.pci);
  2789. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  2790. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2791. if (ret < 0)
  2792. return ret;
  2793. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2794. /*
  2795. * Default port for debugging in case we can't reach FW.
  2796. */
  2797. adapter->params.nports = 1;
  2798. adapter->params.portvec = 1;
  2799. return 0;
  2800. }
  2801. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  2802. {
  2803. u8 addr[6];
  2804. int ret, i, j = 0;
  2805. struct fw_port_cmd c;
  2806. memset(&c, 0, sizeof(c));
  2807. for_each_port(adap, i) {
  2808. unsigned int rss_size;
  2809. struct port_info *p = adap2pinfo(adap, i);
  2810. while ((adap->params.portvec & (1 << j)) == 0)
  2811. j++;
  2812. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  2813. FW_CMD_REQUEST | FW_CMD_READ |
  2814. FW_PORT_CMD_PORTID(j));
  2815. c.action_to_len16 = htonl(
  2816. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  2817. FW_LEN16(c));
  2818. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2819. if (ret)
  2820. return ret;
  2821. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  2822. if (ret < 0)
  2823. return ret;
  2824. p->viid = ret;
  2825. p->tx_chan = j;
  2826. p->lport = j;
  2827. p->rss_size = rss_size;
  2828. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  2829. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  2830. ret = ntohl(c.u.info.lstatus_to_modtype);
  2831. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  2832. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  2833. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  2834. p->mod_type = FW_PORT_CMD_MODTYPE_GET(ret);
  2835. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  2836. j++;
  2837. }
  2838. return 0;
  2839. }