common.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/debugreg.h>
  21. #include <asm/sections.h>
  22. #include <linux/topology.h>
  23. #include <linux/cpumask.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/atomic.h>
  26. #include <asm/proto.h>
  27. #include <asm/setup.h>
  28. #include <asm/apic.h>
  29. #include <asm/desc.h>
  30. #include <asm/i387.h>
  31. #include <asm/fpu-internal.h>
  32. #include <asm/mtrr.h>
  33. #include <linux/numa.h>
  34. #include <asm/asm.h>
  35. #include <asm/cpu.h>
  36. #include <asm/mce.h>
  37. #include <asm/msr.h>
  38. #include <asm/pat.h>
  39. #include <asm/microcode.h>
  40. #include <asm/microcode_intel.h>
  41. #ifdef CONFIG_X86_LOCAL_APIC
  42. #include <asm/uv/uv.h>
  43. #endif
  44. #include "cpu.h"
  45. /* all of these masks are initialized in setup_cpu_local_masks() */
  46. cpumask_var_t cpu_initialized_mask;
  47. cpumask_var_t cpu_callout_mask;
  48. cpumask_var_t cpu_callin_mask;
  49. /* representing cpus for which sibling maps can be computed */
  50. cpumask_var_t cpu_sibling_setup_mask;
  51. /* correctly size the local cpu masks */
  52. void __init setup_cpu_local_masks(void)
  53. {
  54. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  55. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  56. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  57. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  58. }
  59. static void default_init(struct cpuinfo_x86 *c)
  60. {
  61. #ifdef CONFIG_X86_64
  62. cpu_detect_cache_sizes(c);
  63. #else
  64. /* Not much we can do here... */
  65. /* Check if at least it has cpuid */
  66. if (c->cpuid_level == -1) {
  67. /* No cpuid. It must be an ancient CPU */
  68. if (c->x86 == 4)
  69. strcpy(c->x86_model_id, "486");
  70. else if (c->x86 == 3)
  71. strcpy(c->x86_model_id, "386");
  72. }
  73. #endif
  74. }
  75. static const struct cpu_dev default_cpu = {
  76. .c_init = default_init,
  77. .c_vendor = "Unknown",
  78. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  79. };
  80. static const struct cpu_dev *this_cpu = &default_cpu;
  81. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  82. #ifdef CONFIG_X86_64
  83. /*
  84. * We need valid kernel segments for data and code in long mode too
  85. * IRET will check the segment types kkeil 2000/10/28
  86. * Also sysret mandates a special GDT layout
  87. *
  88. * TLS descriptors are currently at a different place compared to i386.
  89. * Hopefully nobody expects them at a fixed place (Wine?)
  90. */
  91. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  92. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  93. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  94. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  95. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  97. #else
  98. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  99. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  100. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  101. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  102. /*
  103. * Segments used for calling PnP BIOS have byte granularity.
  104. * They code segments and data segments have fixed 64k limits,
  105. * the transfer segment sizes are set at run time.
  106. */
  107. /* 32-bit code */
  108. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  109. /* 16-bit code */
  110. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  113. /* 16-bit data */
  114. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  115. /* 16-bit data */
  116. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  117. /*
  118. * The APM segments have byte granularity and their bases
  119. * are set at run time. All have 64k limits.
  120. */
  121. /* 32-bit code */
  122. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  123. /* 16-bit code */
  124. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  125. /* data */
  126. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  127. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  128. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  129. GDT_STACK_CANARY_INIT
  130. #endif
  131. } };
  132. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  133. static int __init x86_xsave_setup(char *s)
  134. {
  135. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  136. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  137. setup_clear_cpu_cap(X86_FEATURE_AVX);
  138. setup_clear_cpu_cap(X86_FEATURE_AVX2);
  139. return 1;
  140. }
  141. __setup("noxsave", x86_xsave_setup);
  142. static int __init x86_xsaveopt_setup(char *s)
  143. {
  144. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  145. return 1;
  146. }
  147. __setup("noxsaveopt", x86_xsaveopt_setup);
  148. #ifdef CONFIG_X86_32
  149. static int cachesize_override = -1;
  150. static int disable_x86_serial_nr = 1;
  151. static int __init cachesize_setup(char *str)
  152. {
  153. get_option(&str, &cachesize_override);
  154. return 1;
  155. }
  156. __setup("cachesize=", cachesize_setup);
  157. static int __init x86_fxsr_setup(char *s)
  158. {
  159. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  160. setup_clear_cpu_cap(X86_FEATURE_XMM);
  161. return 1;
  162. }
  163. __setup("nofxsr", x86_fxsr_setup);
  164. static int __init x86_sep_setup(char *s)
  165. {
  166. setup_clear_cpu_cap(X86_FEATURE_SEP);
  167. return 1;
  168. }
  169. __setup("nosep", x86_sep_setup);
  170. /* Standard macro to see if a specific flag is changeable */
  171. static inline int flag_is_changeable_p(u32 flag)
  172. {
  173. u32 f1, f2;
  174. /*
  175. * Cyrix and IDT cpus allow disabling of CPUID
  176. * so the code below may return different results
  177. * when it is executed before and after enabling
  178. * the CPUID. Add "volatile" to not allow gcc to
  179. * optimize the subsequent calls to this function.
  180. */
  181. asm volatile ("pushfl \n\t"
  182. "pushfl \n\t"
  183. "popl %0 \n\t"
  184. "movl %0, %1 \n\t"
  185. "xorl %2, %0 \n\t"
  186. "pushl %0 \n\t"
  187. "popfl \n\t"
  188. "pushfl \n\t"
  189. "popl %0 \n\t"
  190. "popfl \n\t"
  191. : "=&r" (f1), "=&r" (f2)
  192. : "ir" (flag));
  193. return ((f1^f2) & flag) != 0;
  194. }
  195. /* Probe for the CPUID instruction */
  196. int have_cpuid_p(void)
  197. {
  198. return flag_is_changeable_p(X86_EFLAGS_ID);
  199. }
  200. static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  201. {
  202. unsigned long lo, hi;
  203. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  204. return;
  205. /* Disable processor serial number: */
  206. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  207. lo |= 0x200000;
  208. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  209. printk(KERN_NOTICE "CPU serial number disabled.\n");
  210. clear_cpu_cap(c, X86_FEATURE_PN);
  211. /* Disabling the serial number may affect the cpuid level */
  212. c->cpuid_level = cpuid_eax(0);
  213. }
  214. static int __init x86_serial_nr_setup(char *s)
  215. {
  216. disable_x86_serial_nr = 0;
  217. return 1;
  218. }
  219. __setup("serialnumber", x86_serial_nr_setup);
  220. #else
  221. static inline int flag_is_changeable_p(u32 flag)
  222. {
  223. return 1;
  224. }
  225. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  226. {
  227. }
  228. #endif
  229. static __init int setup_disable_smep(char *arg)
  230. {
  231. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  232. return 1;
  233. }
  234. __setup("nosmep", setup_disable_smep);
  235. static __always_inline void setup_smep(struct cpuinfo_x86 *c)
  236. {
  237. if (cpu_has(c, X86_FEATURE_SMEP))
  238. set_in_cr4(X86_CR4_SMEP);
  239. }
  240. static __init int setup_disable_smap(char *arg)
  241. {
  242. setup_clear_cpu_cap(X86_FEATURE_SMAP);
  243. return 1;
  244. }
  245. __setup("nosmap", setup_disable_smap);
  246. static __always_inline void setup_smap(struct cpuinfo_x86 *c)
  247. {
  248. unsigned long eflags;
  249. /* This should have been cleared long ago */
  250. raw_local_save_flags(eflags);
  251. BUG_ON(eflags & X86_EFLAGS_AC);
  252. if (cpu_has(c, X86_FEATURE_SMAP))
  253. set_in_cr4(X86_CR4_SMAP);
  254. }
  255. /*
  256. * Some CPU features depend on higher CPUID levels, which may not always
  257. * be available due to CPUID level capping or broken virtualization
  258. * software. Add those features to this table to auto-disable them.
  259. */
  260. struct cpuid_dependent_feature {
  261. u32 feature;
  262. u32 level;
  263. };
  264. static const struct cpuid_dependent_feature
  265. cpuid_dependent_features[] = {
  266. { X86_FEATURE_MWAIT, 0x00000005 },
  267. { X86_FEATURE_DCA, 0x00000009 },
  268. { X86_FEATURE_XSAVE, 0x0000000d },
  269. { 0, 0 }
  270. };
  271. static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  272. {
  273. const struct cpuid_dependent_feature *df;
  274. for (df = cpuid_dependent_features; df->feature; df++) {
  275. if (!cpu_has(c, df->feature))
  276. continue;
  277. /*
  278. * Note: cpuid_level is set to -1 if unavailable, but
  279. * extended_extended_level is set to 0 if unavailable
  280. * and the legitimate extended levels are all negative
  281. * when signed; hence the weird messing around with
  282. * signs here...
  283. */
  284. if (!((s32)df->level < 0 ?
  285. (u32)df->level > (u32)c->extended_cpuid_level :
  286. (s32)df->level > (s32)c->cpuid_level))
  287. continue;
  288. clear_cpu_cap(c, df->feature);
  289. if (!warn)
  290. continue;
  291. printk(KERN_WARNING
  292. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  293. x86_cap_flags[df->feature], df->level);
  294. }
  295. }
  296. /*
  297. * Naming convention should be: <Name> [(<Codename>)]
  298. * This table only is used unless init_<vendor>() below doesn't set it;
  299. * in particular, if CPUID levels 0x80000002..4 are supported, this
  300. * isn't used
  301. */
  302. /* Look up CPU names by table lookup. */
  303. static const char *table_lookup_model(struct cpuinfo_x86 *c)
  304. {
  305. #ifdef CONFIG_X86_32
  306. const struct legacy_cpu_model_info *info;
  307. if (c->x86_model >= 16)
  308. return NULL; /* Range check */
  309. if (!this_cpu)
  310. return NULL;
  311. info = this_cpu->legacy_models;
  312. while (info->family) {
  313. if (info->family == c->x86)
  314. return info->model_names[c->x86_model];
  315. info++;
  316. }
  317. #endif
  318. return NULL; /* Not found */
  319. }
  320. __u32 cpu_caps_cleared[NCAPINTS];
  321. __u32 cpu_caps_set[NCAPINTS];
  322. void load_percpu_segment(int cpu)
  323. {
  324. #ifdef CONFIG_X86_32
  325. loadsegment(fs, __KERNEL_PERCPU);
  326. #else
  327. loadsegment(gs, 0);
  328. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  329. #endif
  330. load_stack_canary_segment();
  331. }
  332. /*
  333. * Current gdt points %fs at the "master" per-cpu area: after this,
  334. * it's on the real one.
  335. */
  336. void switch_to_new_gdt(int cpu)
  337. {
  338. struct desc_ptr gdt_descr;
  339. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  340. gdt_descr.size = GDT_SIZE - 1;
  341. load_gdt(&gdt_descr);
  342. /* Reload the per-cpu base */
  343. load_percpu_segment(cpu);
  344. }
  345. static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  346. static void get_model_name(struct cpuinfo_x86 *c)
  347. {
  348. unsigned int *v;
  349. char *p, *q;
  350. if (c->extended_cpuid_level < 0x80000004)
  351. return;
  352. v = (unsigned int *)c->x86_model_id;
  353. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  354. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  355. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  356. c->x86_model_id[48] = 0;
  357. /*
  358. * Intel chips right-justify this string for some dumb reason;
  359. * undo that brain damage:
  360. */
  361. p = q = &c->x86_model_id[0];
  362. while (*p == ' ')
  363. p++;
  364. if (p != q) {
  365. while (*p)
  366. *q++ = *p++;
  367. while (q <= &c->x86_model_id[48])
  368. *q++ = '\0'; /* Zero-pad the rest */
  369. }
  370. }
  371. void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  372. {
  373. unsigned int n, dummy, ebx, ecx, edx, l2size;
  374. n = c->extended_cpuid_level;
  375. if (n >= 0x80000005) {
  376. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  377. c->x86_cache_size = (ecx>>24) + (edx>>24);
  378. #ifdef CONFIG_X86_64
  379. /* On K8 L1 TLB is inclusive, so don't count it */
  380. c->x86_tlbsize = 0;
  381. #endif
  382. }
  383. if (n < 0x80000006) /* Some chips just has a large L1. */
  384. return;
  385. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  386. l2size = ecx >> 16;
  387. #ifdef CONFIG_X86_64
  388. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  389. #else
  390. /* do processor-specific cache resizing */
  391. if (this_cpu->legacy_cache_size)
  392. l2size = this_cpu->legacy_cache_size(c, l2size);
  393. /* Allow user to override all this if necessary. */
  394. if (cachesize_override != -1)
  395. l2size = cachesize_override;
  396. if (l2size == 0)
  397. return; /* Again, no L2 cache is possible */
  398. #endif
  399. c->x86_cache_size = l2size;
  400. }
  401. u16 __read_mostly tlb_lli_4k[NR_INFO];
  402. u16 __read_mostly tlb_lli_2m[NR_INFO];
  403. u16 __read_mostly tlb_lli_4m[NR_INFO];
  404. u16 __read_mostly tlb_lld_4k[NR_INFO];
  405. u16 __read_mostly tlb_lld_2m[NR_INFO];
  406. u16 __read_mostly tlb_lld_4m[NR_INFO];
  407. /*
  408. * tlb_flushall_shift shows the balance point in replacing cr3 write
  409. * with multiple 'invlpg'. It will do this replacement when
  410. * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
  411. * If tlb_flushall_shift is -1, means the replacement will be disabled.
  412. */
  413. s8 __read_mostly tlb_flushall_shift = -1;
  414. void cpu_detect_tlb(struct cpuinfo_x86 *c)
  415. {
  416. if (this_cpu->c_detect_tlb)
  417. this_cpu->c_detect_tlb(c);
  418. printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  419. "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
  420. "tlb_flushall_shift: %d\n",
  421. tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
  422. tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
  423. tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
  424. tlb_flushall_shift);
  425. }
  426. void detect_ht(struct cpuinfo_x86 *c)
  427. {
  428. #ifdef CONFIG_X86_HT
  429. u32 eax, ebx, ecx, edx;
  430. int index_msb, core_bits;
  431. static bool printed;
  432. if (!cpu_has(c, X86_FEATURE_HT))
  433. return;
  434. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  435. goto out;
  436. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  437. return;
  438. cpuid(1, &eax, &ebx, &ecx, &edx);
  439. smp_num_siblings = (ebx & 0xff0000) >> 16;
  440. if (smp_num_siblings == 1) {
  441. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  442. goto out;
  443. }
  444. if (smp_num_siblings <= 1)
  445. goto out;
  446. index_msb = get_count_order(smp_num_siblings);
  447. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  448. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  449. index_msb = get_count_order(smp_num_siblings);
  450. core_bits = get_count_order(c->x86_max_cores);
  451. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  452. ((1 << core_bits) - 1);
  453. out:
  454. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  455. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  456. c->phys_proc_id);
  457. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  458. c->cpu_core_id);
  459. printed = 1;
  460. }
  461. #endif
  462. }
  463. static void get_cpu_vendor(struct cpuinfo_x86 *c)
  464. {
  465. char *v = c->x86_vendor_id;
  466. int i;
  467. for (i = 0; i < X86_VENDOR_NUM; i++) {
  468. if (!cpu_devs[i])
  469. break;
  470. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  471. (cpu_devs[i]->c_ident[1] &&
  472. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  473. this_cpu = cpu_devs[i];
  474. c->x86_vendor = this_cpu->c_x86_vendor;
  475. return;
  476. }
  477. }
  478. printk_once(KERN_ERR
  479. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  480. "CPU: Your system may be unstable.\n", v);
  481. c->x86_vendor = X86_VENDOR_UNKNOWN;
  482. this_cpu = &default_cpu;
  483. }
  484. void cpu_detect(struct cpuinfo_x86 *c)
  485. {
  486. /* Get vendor name */
  487. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  488. (unsigned int *)&c->x86_vendor_id[0],
  489. (unsigned int *)&c->x86_vendor_id[8],
  490. (unsigned int *)&c->x86_vendor_id[4]);
  491. c->x86 = 4;
  492. /* Intel-defined flags: level 0x00000001 */
  493. if (c->cpuid_level >= 0x00000001) {
  494. u32 junk, tfms, cap0, misc;
  495. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  496. c->x86 = (tfms >> 8) & 0xf;
  497. c->x86_model = (tfms >> 4) & 0xf;
  498. c->x86_mask = tfms & 0xf;
  499. if (c->x86 == 0xf)
  500. c->x86 += (tfms >> 20) & 0xff;
  501. if (c->x86 >= 0x6)
  502. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  503. if (cap0 & (1<<19)) {
  504. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  505. c->x86_cache_alignment = c->x86_clflush_size;
  506. }
  507. }
  508. }
  509. void get_cpu_cap(struct cpuinfo_x86 *c)
  510. {
  511. u32 tfms, xlvl;
  512. u32 ebx;
  513. /* Intel-defined flags: level 0x00000001 */
  514. if (c->cpuid_level >= 0x00000001) {
  515. u32 capability, excap;
  516. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  517. c->x86_capability[0] = capability;
  518. c->x86_capability[4] = excap;
  519. }
  520. /* Additional Intel-defined flags: level 0x00000007 */
  521. if (c->cpuid_level >= 0x00000007) {
  522. u32 eax, ebx, ecx, edx;
  523. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  524. c->x86_capability[9] = ebx;
  525. }
  526. /* AMD-defined flags: level 0x80000001 */
  527. xlvl = cpuid_eax(0x80000000);
  528. c->extended_cpuid_level = xlvl;
  529. if ((xlvl & 0xffff0000) == 0x80000000) {
  530. if (xlvl >= 0x80000001) {
  531. c->x86_capability[1] = cpuid_edx(0x80000001);
  532. c->x86_capability[6] = cpuid_ecx(0x80000001);
  533. }
  534. }
  535. if (c->extended_cpuid_level >= 0x80000008) {
  536. u32 eax = cpuid_eax(0x80000008);
  537. c->x86_virt_bits = (eax >> 8) & 0xff;
  538. c->x86_phys_bits = eax & 0xff;
  539. }
  540. #ifdef CONFIG_X86_32
  541. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  542. c->x86_phys_bits = 36;
  543. #endif
  544. if (c->extended_cpuid_level >= 0x80000007)
  545. c->x86_power = cpuid_edx(0x80000007);
  546. init_scattered_cpuid_features(c);
  547. }
  548. static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  549. {
  550. #ifdef CONFIG_X86_32
  551. int i;
  552. /*
  553. * First of all, decide if this is a 486 or higher
  554. * It's a 486 if we can modify the AC flag
  555. */
  556. if (flag_is_changeable_p(X86_EFLAGS_AC))
  557. c->x86 = 4;
  558. else
  559. c->x86 = 3;
  560. for (i = 0; i < X86_VENDOR_NUM; i++)
  561. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  562. c->x86_vendor_id[0] = 0;
  563. cpu_devs[i]->c_identify(c);
  564. if (c->x86_vendor_id[0]) {
  565. get_cpu_vendor(c);
  566. break;
  567. }
  568. }
  569. #endif
  570. }
  571. /*
  572. * Do minimum CPU detection early.
  573. * Fields really needed: vendor, cpuid_level, family, model, mask,
  574. * cache alignment.
  575. * The others are not touched to avoid unwanted side effects.
  576. *
  577. * WARNING: this function is only called on the BP. Don't add code here
  578. * that is supposed to run on all CPUs.
  579. */
  580. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  581. {
  582. #ifdef CONFIG_X86_64
  583. c->x86_clflush_size = 64;
  584. c->x86_phys_bits = 36;
  585. c->x86_virt_bits = 48;
  586. #else
  587. c->x86_clflush_size = 32;
  588. c->x86_phys_bits = 32;
  589. c->x86_virt_bits = 32;
  590. #endif
  591. c->x86_cache_alignment = c->x86_clflush_size;
  592. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  593. c->extended_cpuid_level = 0;
  594. if (!have_cpuid_p())
  595. identify_cpu_without_cpuid(c);
  596. /* cyrix could have cpuid enabled via c_identify()*/
  597. if (!have_cpuid_p())
  598. return;
  599. cpu_detect(c);
  600. get_cpu_vendor(c);
  601. get_cpu_cap(c);
  602. fpu_detect(c);
  603. if (this_cpu->c_early_init)
  604. this_cpu->c_early_init(c);
  605. c->cpu_index = 0;
  606. filter_cpuid_features(c, false);
  607. if (this_cpu->c_bsp_init)
  608. this_cpu->c_bsp_init(c);
  609. setup_force_cpu_cap(X86_FEATURE_ALWAYS);
  610. }
  611. void __init early_cpu_init(void)
  612. {
  613. const struct cpu_dev *const *cdev;
  614. int count = 0;
  615. #ifdef CONFIG_PROCESSOR_SELECT
  616. printk(KERN_INFO "KERNEL supported cpus:\n");
  617. #endif
  618. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  619. const struct cpu_dev *cpudev = *cdev;
  620. if (count >= X86_VENDOR_NUM)
  621. break;
  622. cpu_devs[count] = cpudev;
  623. count++;
  624. #ifdef CONFIG_PROCESSOR_SELECT
  625. {
  626. unsigned int j;
  627. for (j = 0; j < 2; j++) {
  628. if (!cpudev->c_ident[j])
  629. continue;
  630. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  631. cpudev->c_ident[j]);
  632. }
  633. }
  634. #endif
  635. }
  636. early_identify_cpu(&boot_cpu_data);
  637. }
  638. /*
  639. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  640. * unfortunately, that's not true in practice because of early VIA
  641. * chips and (more importantly) broken virtualizers that are not easy
  642. * to detect. In the latter case it doesn't even *fail* reliably, so
  643. * probing for it doesn't even work. Disable it completely on 32-bit
  644. * unless we can find a reliable way to detect all the broken cases.
  645. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  646. */
  647. static void detect_nopl(struct cpuinfo_x86 *c)
  648. {
  649. #ifdef CONFIG_X86_32
  650. clear_cpu_cap(c, X86_FEATURE_NOPL);
  651. #else
  652. set_cpu_cap(c, X86_FEATURE_NOPL);
  653. #endif
  654. }
  655. static void generic_identify(struct cpuinfo_x86 *c)
  656. {
  657. c->extended_cpuid_level = 0;
  658. if (!have_cpuid_p())
  659. identify_cpu_without_cpuid(c);
  660. /* cyrix could have cpuid enabled via c_identify()*/
  661. if (!have_cpuid_p())
  662. return;
  663. cpu_detect(c);
  664. get_cpu_vendor(c);
  665. get_cpu_cap(c);
  666. if (c->cpuid_level >= 0x00000001) {
  667. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  668. #ifdef CONFIG_X86_32
  669. # ifdef CONFIG_X86_HT
  670. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  671. # else
  672. c->apicid = c->initial_apicid;
  673. # endif
  674. #endif
  675. c->phys_proc_id = c->initial_apicid;
  676. }
  677. get_model_name(c); /* Default name */
  678. detect_nopl(c);
  679. }
  680. /*
  681. * This does the hard work of actually picking apart the CPU stuff...
  682. */
  683. static void identify_cpu(struct cpuinfo_x86 *c)
  684. {
  685. int i;
  686. c->loops_per_jiffy = loops_per_jiffy;
  687. c->x86_cache_size = -1;
  688. c->x86_vendor = X86_VENDOR_UNKNOWN;
  689. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  690. c->x86_vendor_id[0] = '\0'; /* Unset */
  691. c->x86_model_id[0] = '\0'; /* Unset */
  692. c->x86_max_cores = 1;
  693. c->x86_coreid_bits = 0;
  694. #ifdef CONFIG_X86_64
  695. c->x86_clflush_size = 64;
  696. c->x86_phys_bits = 36;
  697. c->x86_virt_bits = 48;
  698. #else
  699. c->cpuid_level = -1; /* CPUID not detected */
  700. c->x86_clflush_size = 32;
  701. c->x86_phys_bits = 32;
  702. c->x86_virt_bits = 32;
  703. #endif
  704. c->x86_cache_alignment = c->x86_clflush_size;
  705. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  706. generic_identify(c);
  707. if (this_cpu->c_identify)
  708. this_cpu->c_identify(c);
  709. /* Clear/Set all flags overriden by options, after probe */
  710. for (i = 0; i < NCAPINTS; i++) {
  711. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  712. c->x86_capability[i] |= cpu_caps_set[i];
  713. }
  714. #ifdef CONFIG_X86_64
  715. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  716. #endif
  717. /*
  718. * Vendor-specific initialization. In this section we
  719. * canonicalize the feature flags, meaning if there are
  720. * features a certain CPU supports which CPUID doesn't
  721. * tell us, CPUID claiming incorrect flags, or other bugs,
  722. * we handle them here.
  723. *
  724. * At the end of this section, c->x86_capability better
  725. * indicate the features this CPU genuinely supports!
  726. */
  727. if (this_cpu->c_init)
  728. this_cpu->c_init(c);
  729. /* Disable the PN if appropriate */
  730. squash_the_stupid_serial_number(c);
  731. /* Set up SMEP/SMAP */
  732. setup_smep(c);
  733. setup_smap(c);
  734. /*
  735. * The vendor-specific functions might have changed features.
  736. * Now we do "generic changes."
  737. */
  738. /* Filter out anything that depends on CPUID levels we don't have */
  739. filter_cpuid_features(c, true);
  740. /* If the model name is still unset, do table lookup. */
  741. if (!c->x86_model_id[0]) {
  742. const char *p;
  743. p = table_lookup_model(c);
  744. if (p)
  745. strcpy(c->x86_model_id, p);
  746. else
  747. /* Last resort... */
  748. sprintf(c->x86_model_id, "%02x/%02x",
  749. c->x86, c->x86_model);
  750. }
  751. #ifdef CONFIG_X86_64
  752. detect_ht(c);
  753. #endif
  754. init_hypervisor(c);
  755. x86_init_rdrand(c);
  756. /*
  757. * Clear/Set all flags overriden by options, need do it
  758. * before following smp all cpus cap AND.
  759. */
  760. for (i = 0; i < NCAPINTS; i++) {
  761. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  762. c->x86_capability[i] |= cpu_caps_set[i];
  763. }
  764. /*
  765. * On SMP, boot_cpu_data holds the common feature set between
  766. * all CPUs; so make sure that we indicate which features are
  767. * common between the CPUs. The first time this routine gets
  768. * executed, c == &boot_cpu_data.
  769. */
  770. if (c != &boot_cpu_data) {
  771. /* AND the already accumulated flags with these */
  772. for (i = 0; i < NCAPINTS; i++)
  773. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  774. /* OR, i.e. replicate the bug flags */
  775. for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
  776. c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
  777. }
  778. /* Init Machine Check Exception if available. */
  779. mcheck_cpu_init(c);
  780. select_idle_routine(c);
  781. #ifdef CONFIG_NUMA
  782. numa_add_cpu(smp_processor_id());
  783. #endif
  784. }
  785. #ifdef CONFIG_X86_64
  786. static void vgetcpu_set_mode(void)
  787. {
  788. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  789. vgetcpu_mode = VGETCPU_RDTSCP;
  790. else
  791. vgetcpu_mode = VGETCPU_LSL;
  792. }
  793. #endif
  794. void __init identify_boot_cpu(void)
  795. {
  796. identify_cpu(&boot_cpu_data);
  797. init_amd_e400_c1e_mask();
  798. #ifdef CONFIG_X86_32
  799. sysenter_setup();
  800. enable_sep_cpu();
  801. #else
  802. vgetcpu_set_mode();
  803. #endif
  804. cpu_detect_tlb(&boot_cpu_data);
  805. }
  806. void identify_secondary_cpu(struct cpuinfo_x86 *c)
  807. {
  808. BUG_ON(c == &boot_cpu_data);
  809. identify_cpu(c);
  810. #ifdef CONFIG_X86_32
  811. enable_sep_cpu();
  812. #endif
  813. mtrr_ap_init();
  814. }
  815. struct msr_range {
  816. unsigned min;
  817. unsigned max;
  818. };
  819. static const struct msr_range msr_range_array[] = {
  820. { 0x00000000, 0x00000418},
  821. { 0xc0000000, 0xc000040b},
  822. { 0xc0010000, 0xc0010142},
  823. { 0xc0011000, 0xc001103b},
  824. };
  825. static void __print_cpu_msr(void)
  826. {
  827. unsigned index_min, index_max;
  828. unsigned index;
  829. u64 val;
  830. int i;
  831. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  832. index_min = msr_range_array[i].min;
  833. index_max = msr_range_array[i].max;
  834. for (index = index_min; index < index_max; index++) {
  835. if (rdmsrl_safe(index, &val))
  836. continue;
  837. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  838. }
  839. }
  840. }
  841. static int show_msr;
  842. static __init int setup_show_msr(char *arg)
  843. {
  844. int num;
  845. get_option(&arg, &num);
  846. if (num > 0)
  847. show_msr = num;
  848. return 1;
  849. }
  850. __setup("show_msr=", setup_show_msr);
  851. static __init int setup_noclflush(char *arg)
  852. {
  853. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  854. return 1;
  855. }
  856. __setup("noclflush", setup_noclflush);
  857. void print_cpu_info(struct cpuinfo_x86 *c)
  858. {
  859. const char *vendor = NULL;
  860. if (c->x86_vendor < X86_VENDOR_NUM) {
  861. vendor = this_cpu->c_vendor;
  862. } else {
  863. if (c->cpuid_level >= 0)
  864. vendor = c->x86_vendor_id;
  865. }
  866. if (vendor && !strstr(c->x86_model_id, vendor))
  867. printk(KERN_CONT "%s ", vendor);
  868. if (c->x86_model_id[0])
  869. printk(KERN_CONT "%s", strim(c->x86_model_id));
  870. else
  871. printk(KERN_CONT "%d86", c->x86);
  872. printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
  873. if (c->x86_mask || c->cpuid_level >= 0)
  874. printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
  875. else
  876. printk(KERN_CONT ")\n");
  877. print_cpu_msr(c);
  878. }
  879. void print_cpu_msr(struct cpuinfo_x86 *c)
  880. {
  881. if (c->cpu_index < show_msr)
  882. __print_cpu_msr();
  883. }
  884. static __init int setup_disablecpuid(char *arg)
  885. {
  886. int bit;
  887. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  888. setup_clear_cpu_cap(bit);
  889. else
  890. return 0;
  891. return 1;
  892. }
  893. __setup("clearcpuid=", setup_disablecpuid);
  894. #ifdef CONFIG_X86_64
  895. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  896. struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
  897. (unsigned long) debug_idt_table };
  898. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  899. irq_stack_union) __aligned(PAGE_SIZE) __visible;
  900. /*
  901. * The following four percpu variables are hot. Align current_task to
  902. * cacheline size such that all four fall in the same cacheline.
  903. */
  904. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  905. &init_task;
  906. EXPORT_PER_CPU_SYMBOL(current_task);
  907. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  908. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  909. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  910. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  911. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  912. DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
  913. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  914. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  915. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  916. /*
  917. * Special IST stacks which the CPU switches to when it calls
  918. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  919. * limit), all of them are 4K, except the debug stack which
  920. * is 8K.
  921. */
  922. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  923. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  924. [DEBUG_STACK - 1] = DEBUG_STKSZ
  925. };
  926. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  927. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  928. /* May not be marked __init: used by software suspend */
  929. void syscall_init(void)
  930. {
  931. /*
  932. * LSTAR and STAR live in a bit strange symbiosis.
  933. * They both write to the same internal register. STAR allows to
  934. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  935. */
  936. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  937. wrmsrl(MSR_LSTAR, system_call);
  938. wrmsrl(MSR_CSTAR, ignore_sysret);
  939. #ifdef CONFIG_IA32_EMULATION
  940. syscall32_cpu_init();
  941. #endif
  942. /* Flags to clear on syscall */
  943. wrmsrl(MSR_SYSCALL_MASK,
  944. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
  945. X86_EFLAGS_IOPL|X86_EFLAGS_AC);
  946. }
  947. /*
  948. * Copies of the original ist values from the tss are only accessed during
  949. * debugging, no special alignment required.
  950. */
  951. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  952. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  953. DEFINE_PER_CPU(int, debug_stack_usage);
  954. int is_debug_stack(unsigned long addr)
  955. {
  956. return __get_cpu_var(debug_stack_usage) ||
  957. (addr <= __get_cpu_var(debug_stack_addr) &&
  958. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  959. }
  960. DEFINE_PER_CPU(u32, debug_idt_ctr);
  961. void debug_stack_set_zero(void)
  962. {
  963. this_cpu_inc(debug_idt_ctr);
  964. load_current_idt();
  965. }
  966. void debug_stack_reset(void)
  967. {
  968. if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
  969. return;
  970. if (this_cpu_dec_return(debug_idt_ctr) == 0)
  971. load_current_idt();
  972. }
  973. #else /* CONFIG_X86_64 */
  974. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  975. EXPORT_PER_CPU_SYMBOL(current_task);
  976. DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
  977. EXPORT_PER_CPU_SYMBOL(__preempt_count);
  978. DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
  979. #ifdef CONFIG_CC_STACKPROTECTOR
  980. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  981. #endif
  982. #endif /* CONFIG_X86_64 */
  983. /*
  984. * Clear all 6 debug registers:
  985. */
  986. static void clear_all_debug_regs(void)
  987. {
  988. int i;
  989. for (i = 0; i < 8; i++) {
  990. /* Ignore db4, db5 */
  991. if ((i == 4) || (i == 5))
  992. continue;
  993. set_debugreg(0, i);
  994. }
  995. }
  996. #ifdef CONFIG_KGDB
  997. /*
  998. * Restore debug regs if using kgdbwait and you have a kernel debugger
  999. * connection established.
  1000. */
  1001. static void dbg_restore_debug_regs(void)
  1002. {
  1003. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  1004. arch_kgdb_ops.correct_hw_break();
  1005. }
  1006. #else /* ! CONFIG_KGDB */
  1007. #define dbg_restore_debug_regs()
  1008. #endif /* ! CONFIG_KGDB */
  1009. /*
  1010. * cpu_init() initializes state that is per-CPU. Some data is already
  1011. * initialized (naturally) in the bootstrap process, such as the GDT
  1012. * and IDT. We reload them nevertheless, this function acts as a
  1013. * 'CPU state barrier', nothing should get across.
  1014. * A lot of state is already set up in PDA init for 64 bit
  1015. */
  1016. #ifdef CONFIG_X86_64
  1017. void cpu_init(void)
  1018. {
  1019. struct orig_ist *oist;
  1020. struct task_struct *me;
  1021. struct tss_struct *t;
  1022. unsigned long v;
  1023. int cpu;
  1024. int i;
  1025. /*
  1026. * Load microcode on this cpu if a valid microcode is available.
  1027. * This is early microcode loading procedure.
  1028. */
  1029. load_ucode_ap();
  1030. cpu = stack_smp_processor_id();
  1031. t = &per_cpu(init_tss, cpu);
  1032. oist = &per_cpu(orig_ist, cpu);
  1033. #ifdef CONFIG_NUMA
  1034. if (this_cpu_read(numa_node) == 0 &&
  1035. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  1036. set_numa_node(early_cpu_to_node(cpu));
  1037. #endif
  1038. me = current;
  1039. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  1040. panic("CPU#%d already initialized!\n", cpu);
  1041. pr_debug("Initializing CPU#%d\n", cpu);
  1042. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1043. /*
  1044. * Initialize the per-CPU GDT with the boot GDT,
  1045. * and set up the GDT descriptor:
  1046. */
  1047. switch_to_new_gdt(cpu);
  1048. loadsegment(fs, 0);
  1049. load_current_idt();
  1050. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1051. syscall_init();
  1052. wrmsrl(MSR_FS_BASE, 0);
  1053. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1054. barrier();
  1055. x86_configure_nx();
  1056. enable_x2apic();
  1057. /*
  1058. * set up and load the per-CPU TSS
  1059. */
  1060. if (!oist->ist[0]) {
  1061. char *estacks = per_cpu(exception_stacks, cpu);
  1062. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1063. estacks += exception_stack_sizes[v];
  1064. oist->ist[v] = t->x86_tss.ist[v] =
  1065. (unsigned long)estacks;
  1066. if (v == DEBUG_STACK-1)
  1067. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1068. }
  1069. }
  1070. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1071. /*
  1072. * <= is required because the CPU will access up to
  1073. * 8 bits beyond the end of the IO permission bitmap.
  1074. */
  1075. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1076. t->io_bitmap[i] = ~0UL;
  1077. atomic_inc(&init_mm.mm_count);
  1078. me->active_mm = &init_mm;
  1079. BUG_ON(me->mm);
  1080. enter_lazy_tlb(&init_mm, me);
  1081. load_sp0(t, &current->thread);
  1082. set_tss_desc(cpu, t);
  1083. load_TR_desc();
  1084. load_LDT(&init_mm.context);
  1085. clear_all_debug_regs();
  1086. dbg_restore_debug_regs();
  1087. fpu_init();
  1088. if (is_uv_system())
  1089. uv_cpu_init();
  1090. }
  1091. #else
  1092. void cpu_init(void)
  1093. {
  1094. int cpu = smp_processor_id();
  1095. struct task_struct *curr = current;
  1096. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1097. struct thread_struct *thread = &curr->thread;
  1098. show_ucode_info_early();
  1099. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1100. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1101. for (;;)
  1102. local_irq_enable();
  1103. }
  1104. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1105. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1106. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1107. load_current_idt();
  1108. switch_to_new_gdt(cpu);
  1109. /*
  1110. * Set up and load the per-CPU TSS and LDT
  1111. */
  1112. atomic_inc(&init_mm.mm_count);
  1113. curr->active_mm = &init_mm;
  1114. BUG_ON(curr->mm);
  1115. enter_lazy_tlb(&init_mm, curr);
  1116. load_sp0(t, thread);
  1117. set_tss_desc(cpu, t);
  1118. load_TR_desc();
  1119. load_LDT(&init_mm.context);
  1120. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1121. #ifdef CONFIG_DOUBLEFAULT
  1122. /* Set up doublefault TSS pointer in the GDT */
  1123. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1124. #endif
  1125. clear_all_debug_regs();
  1126. dbg_restore_debug_regs();
  1127. fpu_init();
  1128. }
  1129. #endif
  1130. #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
  1131. void warn_pre_alternatives(void)
  1132. {
  1133. WARN(1, "You're using static_cpu_has before alternatives have run!\n");
  1134. }
  1135. EXPORT_SYMBOL_GPL(warn_pre_alternatives);
  1136. #endif
  1137. inline bool __static_cpu_has_safe(u16 bit)
  1138. {
  1139. return boot_cpu_has(bit);
  1140. }
  1141. EXPORT_SYMBOL_GPL(__static_cpu_has_safe);