memory-failure.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include <linux/migrate.h>
  44. #include <linux/page-isolation.h>
  45. #include <linux/suspend.h>
  46. #include <linux/slab.h>
  47. #include <linux/swapops.h>
  48. #include <linux/hugetlb.h>
  49. #include "internal.h"
  50. int sysctl_memory_failure_early_kill __read_mostly = 0;
  51. int sysctl_memory_failure_recovery __read_mostly = 1;
  52. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  53. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  54. u32 hwpoison_filter_enable = 0;
  55. u32 hwpoison_filter_dev_major = ~0U;
  56. u32 hwpoison_filter_dev_minor = ~0U;
  57. u64 hwpoison_filter_flags_mask;
  58. u64 hwpoison_filter_flags_value;
  59. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  60. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  61. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  62. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  63. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  64. static int hwpoison_filter_dev(struct page *p)
  65. {
  66. struct address_space *mapping;
  67. dev_t dev;
  68. if (hwpoison_filter_dev_major == ~0U &&
  69. hwpoison_filter_dev_minor == ~0U)
  70. return 0;
  71. /*
  72. * page_mapping() does not accept slab page
  73. */
  74. if (PageSlab(p))
  75. return -EINVAL;
  76. mapping = page_mapping(p);
  77. if (mapping == NULL || mapping->host == NULL)
  78. return -EINVAL;
  79. dev = mapping->host->i_sb->s_dev;
  80. if (hwpoison_filter_dev_major != ~0U &&
  81. hwpoison_filter_dev_major != MAJOR(dev))
  82. return -EINVAL;
  83. if (hwpoison_filter_dev_minor != ~0U &&
  84. hwpoison_filter_dev_minor != MINOR(dev))
  85. return -EINVAL;
  86. return 0;
  87. }
  88. static int hwpoison_filter_flags(struct page *p)
  89. {
  90. if (!hwpoison_filter_flags_mask)
  91. return 0;
  92. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  93. hwpoison_filter_flags_value)
  94. return 0;
  95. else
  96. return -EINVAL;
  97. }
  98. /*
  99. * This allows stress tests to limit test scope to a collection of tasks
  100. * by putting them under some memcg. This prevents killing unrelated/important
  101. * processes such as /sbin/init. Note that the target task may share clean
  102. * pages with init (eg. libc text), which is harmless. If the target task
  103. * share _dirty_ pages with another task B, the test scheme must make sure B
  104. * is also included in the memcg. At last, due to race conditions this filter
  105. * can only guarantee that the page either belongs to the memcg tasks, or is
  106. * a freed page.
  107. */
  108. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  109. u64 hwpoison_filter_memcg;
  110. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  111. static int hwpoison_filter_task(struct page *p)
  112. {
  113. struct mem_cgroup *mem;
  114. struct cgroup_subsys_state *css;
  115. unsigned long ino;
  116. if (!hwpoison_filter_memcg)
  117. return 0;
  118. mem = try_get_mem_cgroup_from_page(p);
  119. if (!mem)
  120. return -EINVAL;
  121. css = mem_cgroup_css(mem);
  122. /* root_mem_cgroup has NULL dentries */
  123. if (!css->cgroup->dentry)
  124. return -EINVAL;
  125. ino = css->cgroup->dentry->d_inode->i_ino;
  126. css_put(css);
  127. if (ino != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped an ``action optional''
  155. * signal.
  156. */
  157. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  158. unsigned long pfn, struct page *page)
  159. {
  160. struct siginfo si;
  161. int ret;
  162. printk(KERN_ERR
  163. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_code = BUS_MCEERR_AO;
  168. si.si_addr = (void *)addr;
  169. #ifdef __ARCH_SI_TRAPNO
  170. si.si_trapno = trapno;
  171. #endif
  172. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  173. /*
  174. * Don't use force here, it's convenient if the signal
  175. * can be temporarily blocked.
  176. * This could cause a loop when the user sets SIGBUS
  177. * to SIG_IGN, but hopefully noone will do that?
  178. */
  179. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  180. if (ret < 0)
  181. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  182. t->comm, t->pid, ret);
  183. return ret;
  184. }
  185. /*
  186. * When a unknown page type is encountered drain as many buffers as possible
  187. * in the hope to turn the page into a LRU or free page, which we can handle.
  188. */
  189. void shake_page(struct page *p, int access)
  190. {
  191. if (!PageSlab(p)) {
  192. lru_add_drain_all();
  193. if (PageLRU(p))
  194. return;
  195. drain_all_pages();
  196. if (PageLRU(p) || is_free_buddy_page(p))
  197. return;
  198. }
  199. /*
  200. * Only all shrink_slab here (which would also
  201. * shrink other caches) if access is not potentially fatal.
  202. */
  203. if (access) {
  204. int nr;
  205. do {
  206. nr = shrink_slab(1000, GFP_KERNEL, 1000);
  207. if (page_count(p) == 1)
  208. break;
  209. } while (nr > 10);
  210. }
  211. }
  212. EXPORT_SYMBOL_GPL(shake_page);
  213. /*
  214. * Kill all processes that have a poisoned page mapped and then isolate
  215. * the page.
  216. *
  217. * General strategy:
  218. * Find all processes having the page mapped and kill them.
  219. * But we keep a page reference around so that the page is not
  220. * actually freed yet.
  221. * Then stash the page away
  222. *
  223. * There's no convenient way to get back to mapped processes
  224. * from the VMAs. So do a brute-force search over all
  225. * running processes.
  226. *
  227. * Remember that machine checks are not common (or rather
  228. * if they are common you have other problems), so this shouldn't
  229. * be a performance issue.
  230. *
  231. * Also there are some races possible while we get from the
  232. * error detection to actually handle it.
  233. */
  234. struct to_kill {
  235. struct list_head nd;
  236. struct task_struct *tsk;
  237. unsigned long addr;
  238. unsigned addr_valid:1;
  239. };
  240. /*
  241. * Failure handling: if we can't find or can't kill a process there's
  242. * not much we can do. We just print a message and ignore otherwise.
  243. */
  244. /*
  245. * Schedule a process for later kill.
  246. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  247. * TBD would GFP_NOIO be enough?
  248. */
  249. static void add_to_kill(struct task_struct *tsk, struct page *p,
  250. struct vm_area_struct *vma,
  251. struct list_head *to_kill,
  252. struct to_kill **tkc)
  253. {
  254. struct to_kill *tk;
  255. if (*tkc) {
  256. tk = *tkc;
  257. *tkc = NULL;
  258. } else {
  259. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  260. if (!tk) {
  261. printk(KERN_ERR
  262. "MCE: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  292. int fail, struct page *page, unsigned long pfn)
  293. {
  294. struct to_kill *tk, *next;
  295. list_for_each_entry_safe (tk, next, to_kill, nd) {
  296. if (doit) {
  297. /*
  298. * In case something went wrong with munmapping
  299. * make sure the process doesn't catch the
  300. * signal and then access the memory. Just kill it.
  301. */
  302. if (fail || tk->addr_valid == 0) {
  303. printk(KERN_ERR
  304. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  305. pfn, tk->tsk->comm, tk->tsk->pid);
  306. force_sig(SIGKILL, tk->tsk);
  307. }
  308. /*
  309. * In theory the process could have mapped
  310. * something else on the address in-between. We could
  311. * check for that, but we need to tell the
  312. * process anyways.
  313. */
  314. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  315. pfn, page) < 0)
  316. printk(KERN_ERR
  317. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  318. pfn, tk->tsk->comm, tk->tsk->pid);
  319. }
  320. put_task_struct(tk->tsk);
  321. kfree(tk);
  322. }
  323. }
  324. static int task_early_kill(struct task_struct *tsk)
  325. {
  326. if (!tsk->mm)
  327. return 0;
  328. if (tsk->flags & PF_MCE_PROCESS)
  329. return !!(tsk->flags & PF_MCE_EARLY);
  330. return sysctl_memory_failure_early_kill;
  331. }
  332. /*
  333. * Collect processes when the error hit an anonymous page.
  334. */
  335. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  336. struct to_kill **tkc)
  337. {
  338. struct vm_area_struct *vma;
  339. struct task_struct *tsk;
  340. struct anon_vma *av;
  341. read_lock(&tasklist_lock);
  342. av = page_lock_anon_vma(page);
  343. if (av == NULL) /* Not actually mapped anymore */
  344. goto out;
  345. for_each_process (tsk) {
  346. struct anon_vma_chain *vmac;
  347. if (!task_early_kill(tsk))
  348. continue;
  349. list_for_each_entry(vmac, &av->head, same_anon_vma) {
  350. vma = vmac->vma;
  351. if (!page_mapped_in_vma(page, vma))
  352. continue;
  353. if (vma->vm_mm == tsk->mm)
  354. add_to_kill(tsk, page, vma, to_kill, tkc);
  355. }
  356. }
  357. page_unlock_anon_vma(av);
  358. out:
  359. read_unlock(&tasklist_lock);
  360. }
  361. /*
  362. * Collect processes when the error hit a file mapped page.
  363. */
  364. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  365. struct to_kill **tkc)
  366. {
  367. struct vm_area_struct *vma;
  368. struct task_struct *tsk;
  369. struct prio_tree_iter iter;
  370. struct address_space *mapping = page->mapping;
  371. /*
  372. * A note on the locking order between the two locks.
  373. * We don't rely on this particular order.
  374. * If you have some other code that needs a different order
  375. * feel free to switch them around. Or add a reverse link
  376. * from mm_struct to task_struct, then this could be all
  377. * done without taking tasklist_lock and looping over all tasks.
  378. */
  379. read_lock(&tasklist_lock);
  380. spin_lock(&mapping->i_mmap_lock);
  381. for_each_process(tsk) {
  382. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  383. if (!task_early_kill(tsk))
  384. continue;
  385. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  386. pgoff) {
  387. /*
  388. * Send early kill signal to tasks where a vma covers
  389. * the page but the corrupted page is not necessarily
  390. * mapped it in its pte.
  391. * Assume applications who requested early kill want
  392. * to be informed of all such data corruptions.
  393. */
  394. if (vma->vm_mm == tsk->mm)
  395. add_to_kill(tsk, page, vma, to_kill, tkc);
  396. }
  397. }
  398. spin_unlock(&mapping->i_mmap_lock);
  399. read_unlock(&tasklist_lock);
  400. }
  401. /*
  402. * Collect the processes who have the corrupted page mapped to kill.
  403. * This is done in two steps for locking reasons.
  404. * First preallocate one tokill structure outside the spin locks,
  405. * so that we can kill at least one process reasonably reliable.
  406. */
  407. static void collect_procs(struct page *page, struct list_head *tokill)
  408. {
  409. struct to_kill *tk;
  410. if (!page->mapping)
  411. return;
  412. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  413. if (!tk)
  414. return;
  415. if (PageAnon(page))
  416. collect_procs_anon(page, tokill, &tk);
  417. else
  418. collect_procs_file(page, tokill, &tk);
  419. kfree(tk);
  420. }
  421. /*
  422. * Error handlers for various types of pages.
  423. */
  424. enum outcome {
  425. IGNORED, /* Error: cannot be handled */
  426. FAILED, /* Error: handling failed */
  427. DELAYED, /* Will be handled later */
  428. RECOVERED, /* Successfully recovered */
  429. };
  430. static const char *action_name[] = {
  431. [IGNORED] = "Ignored",
  432. [FAILED] = "Failed",
  433. [DELAYED] = "Delayed",
  434. [RECOVERED] = "Recovered",
  435. };
  436. /*
  437. * XXX: It is possible that a page is isolated from LRU cache,
  438. * and then kept in swap cache or failed to remove from page cache.
  439. * The page count will stop it from being freed by unpoison.
  440. * Stress tests should be aware of this memory leak problem.
  441. */
  442. static int delete_from_lru_cache(struct page *p)
  443. {
  444. if (!isolate_lru_page(p)) {
  445. /*
  446. * Clear sensible page flags, so that the buddy system won't
  447. * complain when the page is unpoison-and-freed.
  448. */
  449. ClearPageActive(p);
  450. ClearPageUnevictable(p);
  451. /*
  452. * drop the page count elevated by isolate_lru_page()
  453. */
  454. page_cache_release(p);
  455. return 0;
  456. }
  457. return -EIO;
  458. }
  459. /*
  460. * Error hit kernel page.
  461. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  462. * could be more sophisticated.
  463. */
  464. static int me_kernel(struct page *p, unsigned long pfn)
  465. {
  466. return IGNORED;
  467. }
  468. /*
  469. * Page in unknown state. Do nothing.
  470. */
  471. static int me_unknown(struct page *p, unsigned long pfn)
  472. {
  473. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  474. return FAILED;
  475. }
  476. /*
  477. * Clean (or cleaned) page cache page.
  478. */
  479. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  480. {
  481. int err;
  482. int ret = FAILED;
  483. struct address_space *mapping;
  484. delete_from_lru_cache(p);
  485. /*
  486. * For anonymous pages we're done the only reference left
  487. * should be the one m_f() holds.
  488. */
  489. if (PageAnon(p))
  490. return RECOVERED;
  491. /*
  492. * Now truncate the page in the page cache. This is really
  493. * more like a "temporary hole punch"
  494. * Don't do this for block devices when someone else
  495. * has a reference, because it could be file system metadata
  496. * and that's not safe to truncate.
  497. */
  498. mapping = page_mapping(p);
  499. if (!mapping) {
  500. /*
  501. * Page has been teared down in the meanwhile
  502. */
  503. return FAILED;
  504. }
  505. /*
  506. * Truncation is a bit tricky. Enable it per file system for now.
  507. *
  508. * Open: to take i_mutex or not for this? Right now we don't.
  509. */
  510. if (mapping->a_ops->error_remove_page) {
  511. err = mapping->a_ops->error_remove_page(mapping, p);
  512. if (err != 0) {
  513. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  514. pfn, err);
  515. } else if (page_has_private(p) &&
  516. !try_to_release_page(p, GFP_NOIO)) {
  517. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  518. } else {
  519. ret = RECOVERED;
  520. }
  521. } else {
  522. /*
  523. * If the file system doesn't support it just invalidate
  524. * This fails on dirty or anything with private pages
  525. */
  526. if (invalidate_inode_page(p))
  527. ret = RECOVERED;
  528. else
  529. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  530. pfn);
  531. }
  532. return ret;
  533. }
  534. /*
  535. * Dirty cache page page
  536. * Issues: when the error hit a hole page the error is not properly
  537. * propagated.
  538. */
  539. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  540. {
  541. struct address_space *mapping = page_mapping(p);
  542. SetPageError(p);
  543. /* TBD: print more information about the file. */
  544. if (mapping) {
  545. /*
  546. * IO error will be reported by write(), fsync(), etc.
  547. * who check the mapping.
  548. * This way the application knows that something went
  549. * wrong with its dirty file data.
  550. *
  551. * There's one open issue:
  552. *
  553. * The EIO will be only reported on the next IO
  554. * operation and then cleared through the IO map.
  555. * Normally Linux has two mechanisms to pass IO error
  556. * first through the AS_EIO flag in the address space
  557. * and then through the PageError flag in the page.
  558. * Since we drop pages on memory failure handling the
  559. * only mechanism open to use is through AS_AIO.
  560. *
  561. * This has the disadvantage that it gets cleared on
  562. * the first operation that returns an error, while
  563. * the PageError bit is more sticky and only cleared
  564. * when the page is reread or dropped. If an
  565. * application assumes it will always get error on
  566. * fsync, but does other operations on the fd before
  567. * and the page is dropped inbetween then the error
  568. * will not be properly reported.
  569. *
  570. * This can already happen even without hwpoisoned
  571. * pages: first on metadata IO errors (which only
  572. * report through AS_EIO) or when the page is dropped
  573. * at the wrong time.
  574. *
  575. * So right now we assume that the application DTRT on
  576. * the first EIO, but we're not worse than other parts
  577. * of the kernel.
  578. */
  579. mapping_set_error(mapping, EIO);
  580. }
  581. return me_pagecache_clean(p, pfn);
  582. }
  583. /*
  584. * Clean and dirty swap cache.
  585. *
  586. * Dirty swap cache page is tricky to handle. The page could live both in page
  587. * cache and swap cache(ie. page is freshly swapped in). So it could be
  588. * referenced concurrently by 2 types of PTEs:
  589. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  590. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  591. * and then
  592. * - clear dirty bit to prevent IO
  593. * - remove from LRU
  594. * - but keep in the swap cache, so that when we return to it on
  595. * a later page fault, we know the application is accessing
  596. * corrupted data and shall be killed (we installed simple
  597. * interception code in do_swap_page to catch it).
  598. *
  599. * Clean swap cache pages can be directly isolated. A later page fault will
  600. * bring in the known good data from disk.
  601. */
  602. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  603. {
  604. ClearPageDirty(p);
  605. /* Trigger EIO in shmem: */
  606. ClearPageUptodate(p);
  607. if (!delete_from_lru_cache(p))
  608. return DELAYED;
  609. else
  610. return FAILED;
  611. }
  612. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  613. {
  614. delete_from_swap_cache(p);
  615. if (!delete_from_lru_cache(p))
  616. return RECOVERED;
  617. else
  618. return FAILED;
  619. }
  620. /*
  621. * Huge pages. Needs work.
  622. * Issues:
  623. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  624. * To narrow down kill region to one page, we need to break up pmd.
  625. * - To support soft-offlining for hugepage, we need to support hugepage
  626. * migration.
  627. */
  628. static int me_huge_page(struct page *p, unsigned long pfn)
  629. {
  630. int res = 0;
  631. struct page *hpage = compound_head(p);
  632. /*
  633. * We can safely recover from error on free or reserved (i.e.
  634. * not in-use) hugepage by dequeuing it from freelist.
  635. * To check whether a hugepage is in-use or not, we can't use
  636. * page->lru because it can be used in other hugepage operations,
  637. * such as __unmap_hugepage_range() and gather_surplus_pages().
  638. * So instead we use page_mapping() and PageAnon().
  639. * We assume that this function is called with page lock held,
  640. * so there is no race between isolation and mapping/unmapping.
  641. */
  642. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  643. res = dequeue_hwpoisoned_huge_page(hpage);
  644. if (!res)
  645. return RECOVERED;
  646. }
  647. return DELAYED;
  648. }
  649. /*
  650. * Various page states we can handle.
  651. *
  652. * A page state is defined by its current page->flags bits.
  653. * The table matches them in order and calls the right handler.
  654. *
  655. * This is quite tricky because we can access page at any time
  656. * in its live cycle, so all accesses have to be extremly careful.
  657. *
  658. * This is not complete. More states could be added.
  659. * For any missing state don't attempt recovery.
  660. */
  661. #define dirty (1UL << PG_dirty)
  662. #define sc (1UL << PG_swapcache)
  663. #define unevict (1UL << PG_unevictable)
  664. #define mlock (1UL << PG_mlocked)
  665. #define writeback (1UL << PG_writeback)
  666. #define lru (1UL << PG_lru)
  667. #define swapbacked (1UL << PG_swapbacked)
  668. #define head (1UL << PG_head)
  669. #define tail (1UL << PG_tail)
  670. #define compound (1UL << PG_compound)
  671. #define slab (1UL << PG_slab)
  672. #define reserved (1UL << PG_reserved)
  673. static struct page_state {
  674. unsigned long mask;
  675. unsigned long res;
  676. char *msg;
  677. int (*action)(struct page *p, unsigned long pfn);
  678. } error_states[] = {
  679. { reserved, reserved, "reserved kernel", me_kernel },
  680. /*
  681. * free pages are specially detected outside this table:
  682. * PG_buddy pages only make a small fraction of all free pages.
  683. */
  684. /*
  685. * Could in theory check if slab page is free or if we can drop
  686. * currently unused objects without touching them. But just
  687. * treat it as standard kernel for now.
  688. */
  689. { slab, slab, "kernel slab", me_kernel },
  690. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  691. { head, head, "huge", me_huge_page },
  692. { tail, tail, "huge", me_huge_page },
  693. #else
  694. { compound, compound, "huge", me_huge_page },
  695. #endif
  696. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  697. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  698. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  699. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  700. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  701. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  702. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  703. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  704. /*
  705. * Catchall entry: must be at end.
  706. */
  707. { 0, 0, "unknown page state", me_unknown },
  708. };
  709. #undef dirty
  710. #undef sc
  711. #undef unevict
  712. #undef mlock
  713. #undef writeback
  714. #undef lru
  715. #undef swapbacked
  716. #undef head
  717. #undef tail
  718. #undef compound
  719. #undef slab
  720. #undef reserved
  721. static void action_result(unsigned long pfn, char *msg, int result)
  722. {
  723. struct page *page = pfn_to_page(pfn);
  724. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  725. pfn,
  726. PageDirty(page) ? "dirty " : "",
  727. msg, action_name[result]);
  728. }
  729. static int page_action(struct page_state *ps, struct page *p,
  730. unsigned long pfn)
  731. {
  732. int result;
  733. int count;
  734. result = ps->action(p, pfn);
  735. action_result(pfn, ps->msg, result);
  736. count = page_count(p) - 1;
  737. if (ps->action == me_swapcache_dirty && result == DELAYED)
  738. count--;
  739. if (count != 0) {
  740. printk(KERN_ERR
  741. "MCE %#lx: %s page still referenced by %d users\n",
  742. pfn, ps->msg, count);
  743. result = FAILED;
  744. }
  745. /* Could do more checks here if page looks ok */
  746. /*
  747. * Could adjust zone counters here to correct for the missing page.
  748. */
  749. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  750. }
  751. #define N_UNMAP_TRIES 5
  752. /*
  753. * Do all that is necessary to remove user space mappings. Unmap
  754. * the pages and send SIGBUS to the processes if the data was dirty.
  755. */
  756. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  757. int trapno)
  758. {
  759. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  760. struct address_space *mapping;
  761. LIST_HEAD(tokill);
  762. int ret;
  763. int i;
  764. int kill = 1;
  765. struct page *hpage = compound_head(p);
  766. if (PageReserved(p) || PageSlab(p))
  767. return SWAP_SUCCESS;
  768. /*
  769. * This check implies we don't kill processes if their pages
  770. * are in the swap cache early. Those are always late kills.
  771. */
  772. if (!page_mapped(hpage))
  773. return SWAP_SUCCESS;
  774. if (PageKsm(p))
  775. return SWAP_FAIL;
  776. if (PageSwapCache(p)) {
  777. printk(KERN_ERR
  778. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  779. ttu |= TTU_IGNORE_HWPOISON;
  780. }
  781. /*
  782. * Propagate the dirty bit from PTEs to struct page first, because we
  783. * need this to decide if we should kill or just drop the page.
  784. * XXX: the dirty test could be racy: set_page_dirty() may not always
  785. * be called inside page lock (it's recommended but not enforced).
  786. */
  787. mapping = page_mapping(hpage);
  788. if (!PageDirty(hpage) && mapping &&
  789. mapping_cap_writeback_dirty(mapping)) {
  790. if (page_mkclean(hpage)) {
  791. SetPageDirty(hpage);
  792. } else {
  793. kill = 0;
  794. ttu |= TTU_IGNORE_HWPOISON;
  795. printk(KERN_INFO
  796. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  797. pfn);
  798. }
  799. }
  800. /*
  801. * First collect all the processes that have the page
  802. * mapped in dirty form. This has to be done before try_to_unmap,
  803. * because ttu takes the rmap data structures down.
  804. *
  805. * Error handling: We ignore errors here because
  806. * there's nothing that can be done.
  807. */
  808. if (kill)
  809. collect_procs(hpage, &tokill);
  810. /*
  811. * try_to_unmap can fail temporarily due to races.
  812. * Try a few times (RED-PEN better strategy?)
  813. */
  814. for (i = 0; i < N_UNMAP_TRIES; i++) {
  815. ret = try_to_unmap(hpage, ttu);
  816. if (ret == SWAP_SUCCESS)
  817. break;
  818. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  819. }
  820. if (ret != SWAP_SUCCESS)
  821. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  822. pfn, page_mapcount(hpage));
  823. /*
  824. * Now that the dirty bit has been propagated to the
  825. * struct page and all unmaps done we can decide if
  826. * killing is needed or not. Only kill when the page
  827. * was dirty, otherwise the tokill list is merely
  828. * freed. When there was a problem unmapping earlier
  829. * use a more force-full uncatchable kill to prevent
  830. * any accesses to the poisoned memory.
  831. */
  832. kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
  833. ret != SWAP_SUCCESS, p, pfn);
  834. return ret;
  835. }
  836. static void set_page_hwpoison_huge_page(struct page *hpage)
  837. {
  838. int i;
  839. int nr_pages = 1 << compound_order(hpage);
  840. for (i = 0; i < nr_pages; i++)
  841. SetPageHWPoison(hpage + i);
  842. }
  843. static void clear_page_hwpoison_huge_page(struct page *hpage)
  844. {
  845. int i;
  846. int nr_pages = 1 << compound_order(hpage);
  847. for (i = 0; i < nr_pages; i++)
  848. ClearPageHWPoison(hpage + i);
  849. }
  850. int __memory_failure(unsigned long pfn, int trapno, int flags)
  851. {
  852. struct page_state *ps;
  853. struct page *p;
  854. struct page *hpage;
  855. int res;
  856. unsigned int nr_pages;
  857. if (!sysctl_memory_failure_recovery)
  858. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  859. if (!pfn_valid(pfn)) {
  860. printk(KERN_ERR
  861. "MCE %#lx: memory outside kernel control\n",
  862. pfn);
  863. return -ENXIO;
  864. }
  865. p = pfn_to_page(pfn);
  866. hpage = compound_head(p);
  867. if (TestSetPageHWPoison(p)) {
  868. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  869. return 0;
  870. }
  871. nr_pages = 1 << compound_order(hpage);
  872. atomic_long_add(nr_pages, &mce_bad_pages);
  873. /*
  874. * We need/can do nothing about count=0 pages.
  875. * 1) it's a free page, and therefore in safe hand:
  876. * prep_new_page() will be the gate keeper.
  877. * 2) it's part of a non-compound high order page.
  878. * Implies some kernel user: cannot stop them from
  879. * R/W the page; let's pray that the page has been
  880. * used and will be freed some time later.
  881. * In fact it's dangerous to directly bump up page count from 0,
  882. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  883. */
  884. if (!(flags & MF_COUNT_INCREASED) &&
  885. !get_page_unless_zero(hpage)) {
  886. if (is_free_buddy_page(p)) {
  887. action_result(pfn, "free buddy", DELAYED);
  888. return 0;
  889. } else {
  890. action_result(pfn, "high order kernel", IGNORED);
  891. return -EBUSY;
  892. }
  893. }
  894. /*
  895. * We ignore non-LRU pages for good reasons.
  896. * - PG_locked is only well defined for LRU pages and a few others
  897. * - to avoid races with __set_page_locked()
  898. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  899. * The check (unnecessarily) ignores LRU pages being isolated and
  900. * walked by the page reclaim code, however that's not a big loss.
  901. */
  902. if (!PageLRU(p) && !PageHuge(p))
  903. shake_page(p, 0);
  904. if (!PageLRU(p) && !PageHuge(p)) {
  905. /*
  906. * shake_page could have turned it free.
  907. */
  908. if (is_free_buddy_page(p)) {
  909. action_result(pfn, "free buddy, 2nd try", DELAYED);
  910. return 0;
  911. }
  912. action_result(pfn, "non LRU", IGNORED);
  913. put_page(p);
  914. return -EBUSY;
  915. }
  916. /*
  917. * Lock the page and wait for writeback to finish.
  918. * It's very difficult to mess with pages currently under IO
  919. * and in many cases impossible, so we just avoid it here.
  920. */
  921. lock_page_nosync(hpage);
  922. /*
  923. * unpoison always clear PG_hwpoison inside page lock
  924. */
  925. if (!PageHWPoison(p)) {
  926. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  927. res = 0;
  928. goto out;
  929. }
  930. if (hwpoison_filter(p)) {
  931. if (TestClearPageHWPoison(p))
  932. atomic_long_sub(nr_pages, &mce_bad_pages);
  933. unlock_page(hpage);
  934. put_page(hpage);
  935. return 0;
  936. }
  937. /*
  938. * For error on the tail page, we should set PG_hwpoison
  939. * on the head page to show that the hugepage is hwpoisoned
  940. */
  941. if (PageTail(p) && TestSetPageHWPoison(hpage)) {
  942. action_result(pfn, "hugepage already hardware poisoned",
  943. IGNORED);
  944. unlock_page(hpage);
  945. put_page(hpage);
  946. return 0;
  947. }
  948. /*
  949. * Set PG_hwpoison on all pages in an error hugepage,
  950. * because containment is done in hugepage unit for now.
  951. * Since we have done TestSetPageHWPoison() for the head page with
  952. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  953. */
  954. if (PageHuge(p))
  955. set_page_hwpoison_huge_page(hpage);
  956. wait_on_page_writeback(p);
  957. /*
  958. * Now take care of user space mappings.
  959. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  960. */
  961. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  962. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  963. res = -EBUSY;
  964. goto out;
  965. }
  966. /*
  967. * Torn down by someone else?
  968. */
  969. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  970. action_result(pfn, "already truncated LRU", IGNORED);
  971. res = -EBUSY;
  972. goto out;
  973. }
  974. res = -EBUSY;
  975. for (ps = error_states;; ps++) {
  976. if ((p->flags & ps->mask) == ps->res) {
  977. res = page_action(ps, p, pfn);
  978. break;
  979. }
  980. }
  981. out:
  982. unlock_page(hpage);
  983. return res;
  984. }
  985. EXPORT_SYMBOL_GPL(__memory_failure);
  986. /**
  987. * memory_failure - Handle memory failure of a page.
  988. * @pfn: Page Number of the corrupted page
  989. * @trapno: Trap number reported in the signal to user space.
  990. *
  991. * This function is called by the low level machine check code
  992. * of an architecture when it detects hardware memory corruption
  993. * of a page. It tries its best to recover, which includes
  994. * dropping pages, killing processes etc.
  995. *
  996. * The function is primarily of use for corruptions that
  997. * happen outside the current execution context (e.g. when
  998. * detected by a background scrubber)
  999. *
  1000. * Must run in process context (e.g. a work queue) with interrupts
  1001. * enabled and no spinlocks hold.
  1002. */
  1003. void memory_failure(unsigned long pfn, int trapno)
  1004. {
  1005. __memory_failure(pfn, trapno, 0);
  1006. }
  1007. /**
  1008. * unpoison_memory - Unpoison a previously poisoned page
  1009. * @pfn: Page number of the to be unpoisoned page
  1010. *
  1011. * Software-unpoison a page that has been poisoned by
  1012. * memory_failure() earlier.
  1013. *
  1014. * This is only done on the software-level, so it only works
  1015. * for linux injected failures, not real hardware failures
  1016. *
  1017. * Returns 0 for success, otherwise -errno.
  1018. */
  1019. int unpoison_memory(unsigned long pfn)
  1020. {
  1021. struct page *page;
  1022. struct page *p;
  1023. int freeit = 0;
  1024. unsigned int nr_pages;
  1025. if (!pfn_valid(pfn))
  1026. return -ENXIO;
  1027. p = pfn_to_page(pfn);
  1028. page = compound_head(p);
  1029. if (!PageHWPoison(p)) {
  1030. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  1031. return 0;
  1032. }
  1033. nr_pages = 1 << compound_order(page);
  1034. if (!get_page_unless_zero(page)) {
  1035. if (TestClearPageHWPoison(p))
  1036. atomic_long_sub(nr_pages, &mce_bad_pages);
  1037. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1038. return 0;
  1039. }
  1040. lock_page_nosync(page);
  1041. /*
  1042. * This test is racy because PG_hwpoison is set outside of page lock.
  1043. * That's acceptable because that won't trigger kernel panic. Instead,
  1044. * the PG_hwpoison page will be caught and isolated on the entrance to
  1045. * the free buddy page pool.
  1046. */
  1047. if (TestClearPageHWPoison(page)) {
  1048. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  1049. atomic_long_sub(nr_pages, &mce_bad_pages);
  1050. freeit = 1;
  1051. }
  1052. if (PageHuge(p))
  1053. clear_page_hwpoison_huge_page(page);
  1054. unlock_page(page);
  1055. put_page(page);
  1056. if (freeit)
  1057. put_page(page);
  1058. return 0;
  1059. }
  1060. EXPORT_SYMBOL(unpoison_memory);
  1061. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1062. {
  1063. int nid = page_to_nid(p);
  1064. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1065. }
  1066. /*
  1067. * Safely get reference count of an arbitrary page.
  1068. * Returns 0 for a free page, -EIO for a zero refcount page
  1069. * that is not free, and 1 for any other page type.
  1070. * For 1 the page is returned with increased page count, otherwise not.
  1071. */
  1072. static int get_any_page(struct page *p, unsigned long pfn, int flags)
  1073. {
  1074. int ret;
  1075. if (flags & MF_COUNT_INCREASED)
  1076. return 1;
  1077. /*
  1078. * The lock_system_sleep prevents a race with memory hotplug,
  1079. * because the isolation assumes there's only a single user.
  1080. * This is a big hammer, a better would be nicer.
  1081. */
  1082. lock_system_sleep();
  1083. /*
  1084. * Isolate the page, so that it doesn't get reallocated if it
  1085. * was free.
  1086. */
  1087. set_migratetype_isolate(p);
  1088. if (!get_page_unless_zero(compound_head(p))) {
  1089. if (is_free_buddy_page(p)) {
  1090. pr_debug("get_any_page: %#lx free buddy page\n", pfn);
  1091. /* Set hwpoison bit while page is still isolated */
  1092. SetPageHWPoison(p);
  1093. ret = 0;
  1094. } else {
  1095. pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
  1096. pfn, p->flags);
  1097. ret = -EIO;
  1098. }
  1099. } else {
  1100. /* Not a free page */
  1101. ret = 1;
  1102. }
  1103. unset_migratetype_isolate(p);
  1104. unlock_system_sleep();
  1105. return ret;
  1106. }
  1107. /**
  1108. * soft_offline_page - Soft offline a page.
  1109. * @page: page to offline
  1110. * @flags: flags. Same as memory_failure().
  1111. *
  1112. * Returns 0 on success, otherwise negated errno.
  1113. *
  1114. * Soft offline a page, by migration or invalidation,
  1115. * without killing anything. This is for the case when
  1116. * a page is not corrupted yet (so it's still valid to access),
  1117. * but has had a number of corrected errors and is better taken
  1118. * out.
  1119. *
  1120. * The actual policy on when to do that is maintained by
  1121. * user space.
  1122. *
  1123. * This should never impact any application or cause data loss,
  1124. * however it might take some time.
  1125. *
  1126. * This is not a 100% solution for all memory, but tries to be
  1127. * ``good enough'' for the majority of memory.
  1128. */
  1129. int soft_offline_page(struct page *page, int flags)
  1130. {
  1131. int ret;
  1132. unsigned long pfn = page_to_pfn(page);
  1133. ret = get_any_page(page, pfn, flags);
  1134. if (ret < 0)
  1135. return ret;
  1136. if (ret == 0)
  1137. goto done;
  1138. /*
  1139. * Page cache page we can handle?
  1140. */
  1141. if (!PageLRU(page)) {
  1142. /*
  1143. * Try to free it.
  1144. */
  1145. put_page(page);
  1146. shake_page(page, 1);
  1147. /*
  1148. * Did it turn free?
  1149. */
  1150. ret = get_any_page(page, pfn, 0);
  1151. if (ret < 0)
  1152. return ret;
  1153. if (ret == 0)
  1154. goto done;
  1155. }
  1156. if (!PageLRU(page)) {
  1157. pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1158. pfn, page->flags);
  1159. return -EIO;
  1160. }
  1161. lock_page(page);
  1162. wait_on_page_writeback(page);
  1163. /*
  1164. * Synchronized using the page lock with memory_failure()
  1165. */
  1166. if (PageHWPoison(page)) {
  1167. unlock_page(page);
  1168. put_page(page);
  1169. pr_debug("soft offline: %#lx page already poisoned\n", pfn);
  1170. return -EBUSY;
  1171. }
  1172. /*
  1173. * Try to invalidate first. This should work for
  1174. * non dirty unmapped page cache pages.
  1175. */
  1176. ret = invalidate_inode_page(page);
  1177. unlock_page(page);
  1178. /*
  1179. * Drop count because page migration doesn't like raised
  1180. * counts. The page could get re-allocated, but if it becomes
  1181. * LRU the isolation will just fail.
  1182. * RED-PEN would be better to keep it isolated here, but we
  1183. * would need to fix isolation locking first.
  1184. */
  1185. put_page(page);
  1186. if (ret == 1) {
  1187. ret = 0;
  1188. pr_debug("soft_offline: %#lx: invalidated\n", pfn);
  1189. goto done;
  1190. }
  1191. /*
  1192. * Simple invalidation didn't work.
  1193. * Try to migrate to a new page instead. migrate.c
  1194. * handles a large number of cases for us.
  1195. */
  1196. ret = isolate_lru_page(page);
  1197. if (!ret) {
  1198. LIST_HEAD(pagelist);
  1199. list_add(&page->lru, &pagelist);
  1200. ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
  1201. if (ret) {
  1202. pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
  1203. pfn, ret, page->flags);
  1204. if (ret > 0)
  1205. ret = -EIO;
  1206. }
  1207. } else {
  1208. pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1209. pfn, ret, page_count(page), page->flags);
  1210. }
  1211. if (ret)
  1212. return ret;
  1213. done:
  1214. atomic_long_add(1, &mce_bad_pages);
  1215. SetPageHWPoison(page);
  1216. /* keep elevated page count for bad page */
  1217. return ret;
  1218. }
  1219. /*
  1220. * The caller must hold current->mm->mmap_sem in read mode.
  1221. */
  1222. int is_hwpoison_address(unsigned long addr)
  1223. {
  1224. pgd_t *pgdp;
  1225. pud_t pud, *pudp;
  1226. pmd_t pmd, *pmdp;
  1227. pte_t pte, *ptep;
  1228. swp_entry_t entry;
  1229. pgdp = pgd_offset(current->mm, addr);
  1230. if (!pgd_present(*pgdp))
  1231. return 0;
  1232. pudp = pud_offset(pgdp, addr);
  1233. pud = *pudp;
  1234. if (!pud_present(pud) || pud_large(pud))
  1235. return 0;
  1236. pmdp = pmd_offset(pudp, addr);
  1237. pmd = *pmdp;
  1238. if (!pmd_present(pmd) || pmd_large(pmd))
  1239. return 0;
  1240. ptep = pte_offset_map(pmdp, addr);
  1241. pte = *ptep;
  1242. pte_unmap(ptep);
  1243. if (!is_swap_pte(pte))
  1244. return 0;
  1245. entry = pte_to_swp_entry(pte);
  1246. return is_hwpoison_entry(entry);
  1247. }
  1248. EXPORT_SYMBOL_GPL(is_hwpoison_address);