imx6q-cpufreq.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/pm_opp.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/regulator/consumer.h>
  18. #define PU_SOC_VOLTAGE_NORMAL 1250000
  19. #define PU_SOC_VOLTAGE_HIGH 1275000
  20. #define FREQ_1P2_GHZ 1200000000
  21. static struct regulator *arm_reg;
  22. static struct regulator *pu_reg;
  23. static struct regulator *soc_reg;
  24. static struct clk *arm_clk;
  25. static struct clk *pll1_sys_clk;
  26. static struct clk *pll1_sw_clk;
  27. static struct clk *step_clk;
  28. static struct clk *pll2_pfd2_396m_clk;
  29. static struct device *cpu_dev;
  30. static struct cpufreq_frequency_table *freq_table;
  31. static unsigned int transition_latency;
  32. static unsigned int imx6q_get_speed(unsigned int cpu)
  33. {
  34. return clk_get_rate(arm_clk) / 1000;
  35. }
  36. static int imx6q_set_target(struct cpufreq_policy *policy,
  37. unsigned int target_freq, unsigned int relation)
  38. {
  39. struct cpufreq_freqs freqs;
  40. struct dev_pm_opp *opp;
  41. unsigned long freq_hz, volt, volt_old;
  42. unsigned int index;
  43. int ret;
  44. ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
  45. relation, &index);
  46. if (ret) {
  47. dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
  48. target_freq, ret);
  49. return ret;
  50. }
  51. freqs.new = freq_table[index].frequency;
  52. freq_hz = freqs.new * 1000;
  53. freqs.old = clk_get_rate(arm_clk) / 1000;
  54. if (freqs.old == freqs.new)
  55. return 0;
  56. rcu_read_lock();
  57. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  58. if (IS_ERR(opp)) {
  59. rcu_read_unlock();
  60. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  61. return PTR_ERR(opp);
  62. }
  63. volt = dev_pm_opp_get_voltage(opp);
  64. rcu_read_unlock();
  65. volt_old = regulator_get_voltage(arm_reg);
  66. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  67. freqs.old / 1000, volt_old / 1000,
  68. freqs.new / 1000, volt / 1000);
  69. cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
  70. /* scaling up? scale voltage before frequency */
  71. if (freqs.new > freqs.old) {
  72. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  73. if (ret) {
  74. dev_err(cpu_dev,
  75. "failed to scale vddarm up: %d\n", ret);
  76. freqs.new = freqs.old;
  77. goto post_notify;
  78. }
  79. /*
  80. * Need to increase vddpu and vddsoc for safety
  81. * if we are about to run at 1.2 GHz.
  82. */
  83. if (freqs.new == FREQ_1P2_GHZ / 1000) {
  84. regulator_set_voltage_tol(pu_reg,
  85. PU_SOC_VOLTAGE_HIGH, 0);
  86. regulator_set_voltage_tol(soc_reg,
  87. PU_SOC_VOLTAGE_HIGH, 0);
  88. }
  89. }
  90. /*
  91. * The setpoints are selected per PLL/PDF frequencies, so we need to
  92. * reprogram PLL for frequency scaling. The procedure of reprogramming
  93. * PLL1 is as below.
  94. *
  95. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  96. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  97. * - Disable pll2_pfd2_396m_clk
  98. */
  99. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  100. clk_set_parent(pll1_sw_clk, step_clk);
  101. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  102. clk_set_rate(pll1_sys_clk, freqs.new * 1000);
  103. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  104. }
  105. /* Ensure the arm clock divider is what we expect */
  106. ret = clk_set_rate(arm_clk, freqs.new * 1000);
  107. if (ret) {
  108. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  109. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  110. freqs.new = freqs.old;
  111. goto post_notify;
  112. }
  113. /* scaling down? scale voltage after frequency */
  114. if (freqs.new < freqs.old) {
  115. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  116. if (ret) {
  117. dev_warn(cpu_dev,
  118. "failed to scale vddarm down: %d\n", ret);
  119. ret = 0;
  120. }
  121. if (freqs.old == FREQ_1P2_GHZ / 1000) {
  122. regulator_set_voltage_tol(pu_reg,
  123. PU_SOC_VOLTAGE_NORMAL, 0);
  124. regulator_set_voltage_tol(soc_reg,
  125. PU_SOC_VOLTAGE_NORMAL, 0);
  126. }
  127. }
  128. post_notify:
  129. cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
  130. return ret;
  131. }
  132. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  133. {
  134. return cpufreq_generic_init(policy, freq_table, transition_latency);
  135. }
  136. static struct cpufreq_driver imx6q_cpufreq_driver = {
  137. .verify = cpufreq_generic_frequency_table_verify,
  138. .target = imx6q_set_target,
  139. .get = imx6q_get_speed,
  140. .init = imx6q_cpufreq_init,
  141. .exit = cpufreq_generic_exit,
  142. .name = "imx6q-cpufreq",
  143. .attr = cpufreq_generic_attr,
  144. };
  145. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  146. {
  147. struct device_node *np;
  148. struct dev_pm_opp *opp;
  149. unsigned long min_volt, max_volt;
  150. int num, ret;
  151. cpu_dev = get_cpu_device(0);
  152. if (!cpu_dev) {
  153. pr_err("failed to get cpu0 device\n");
  154. return -ENODEV;
  155. }
  156. np = of_node_get(cpu_dev->of_node);
  157. if (!np) {
  158. dev_err(cpu_dev, "failed to find cpu0 node\n");
  159. return -ENOENT;
  160. }
  161. arm_clk = devm_clk_get(cpu_dev, "arm");
  162. pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
  163. pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
  164. step_clk = devm_clk_get(cpu_dev, "step");
  165. pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
  166. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  167. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  168. dev_err(cpu_dev, "failed to get clocks\n");
  169. ret = -ENOENT;
  170. goto put_node;
  171. }
  172. arm_reg = devm_regulator_get(cpu_dev, "arm");
  173. pu_reg = devm_regulator_get(cpu_dev, "pu");
  174. soc_reg = devm_regulator_get(cpu_dev, "soc");
  175. if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
  176. dev_err(cpu_dev, "failed to get regulators\n");
  177. ret = -ENOENT;
  178. goto put_node;
  179. }
  180. /* We expect an OPP table supplied by platform */
  181. num = dev_pm_opp_get_opp_count(cpu_dev);
  182. if (num < 0) {
  183. ret = num;
  184. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  185. goto put_node;
  186. }
  187. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  188. if (ret) {
  189. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  190. goto put_node;
  191. }
  192. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  193. transition_latency = CPUFREQ_ETERNAL;
  194. /*
  195. * OPP is maintained in order of increasing frequency, and
  196. * freq_table initialised from OPP is therefore sorted in the
  197. * same order.
  198. */
  199. rcu_read_lock();
  200. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  201. freq_table[0].frequency * 1000, true);
  202. min_volt = dev_pm_opp_get_voltage(opp);
  203. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  204. freq_table[--num].frequency * 1000, true);
  205. max_volt = dev_pm_opp_get_voltage(opp);
  206. rcu_read_unlock();
  207. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  208. if (ret > 0)
  209. transition_latency += ret * 1000;
  210. /* Count vddpu and vddsoc latency in for 1.2 GHz support */
  211. if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
  212. ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
  213. PU_SOC_VOLTAGE_HIGH);
  214. if (ret > 0)
  215. transition_latency += ret * 1000;
  216. ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
  217. PU_SOC_VOLTAGE_HIGH);
  218. if (ret > 0)
  219. transition_latency += ret * 1000;
  220. }
  221. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  222. if (ret) {
  223. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  224. goto free_freq_table;
  225. }
  226. of_node_put(np);
  227. return 0;
  228. free_freq_table:
  229. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  230. put_node:
  231. of_node_put(np);
  232. return ret;
  233. }
  234. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  235. {
  236. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  237. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  238. return 0;
  239. }
  240. static struct platform_driver imx6q_cpufreq_platdrv = {
  241. .driver = {
  242. .name = "imx6q-cpufreq",
  243. .owner = THIS_MODULE,
  244. },
  245. .probe = imx6q_cpufreq_probe,
  246. .remove = imx6q_cpufreq_remove,
  247. };
  248. module_platform_driver(imx6q_cpufreq_platdrv);
  249. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  250. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  251. MODULE_LICENSE("GPL");