smp_32.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. #include <asm/leon.h>
  32. #include "irq.h"
  33. volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
  34. unsigned char boot_cpu_id = 0;
  35. unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
  36. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  37. /* The only guaranteed locking primitive available on all Sparc
  38. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  39. * places the current byte at the effective address into dest_reg and
  40. * places 0xff there afterwards. Pretty lame locking primitive
  41. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  42. * instruction which is much better...
  43. */
  44. void __cpuinit smp_store_cpu_info(int id)
  45. {
  46. int cpu_node;
  47. cpu_data(id).udelay_val = loops_per_jiffy;
  48. cpu_find_by_mid(id, &cpu_node);
  49. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  50. "clock-frequency", 0);
  51. cpu_data(id).prom_node = cpu_node;
  52. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  53. if (cpu_data(id).mid < 0)
  54. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  55. }
  56. void __init smp_cpus_done(unsigned int max_cpus)
  57. {
  58. extern void smp4m_smp_done(void);
  59. extern void smp4d_smp_done(void);
  60. unsigned long bogosum = 0;
  61. int cpu, num = 0;
  62. for_each_online_cpu(cpu) {
  63. num++;
  64. bogosum += cpu_data(cpu).udelay_val;
  65. }
  66. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  67. num, bogosum/(500000/HZ),
  68. (bogosum/(5000/HZ))%100);
  69. switch(sparc_cpu_model) {
  70. case sun4:
  71. printk("SUN4\n");
  72. BUG();
  73. break;
  74. case sun4c:
  75. printk("SUN4C\n");
  76. BUG();
  77. break;
  78. case sun4m:
  79. smp4m_smp_done();
  80. break;
  81. case sun4d:
  82. smp4d_smp_done();
  83. break;
  84. case sparc_leon:
  85. leon_smp_done();
  86. break;
  87. case sun4e:
  88. printk("SUN4E\n");
  89. BUG();
  90. break;
  91. case sun4u:
  92. printk("SUN4U\n");
  93. BUG();
  94. break;
  95. default:
  96. printk("UNKNOWN!\n");
  97. BUG();
  98. break;
  99. };
  100. }
  101. void cpu_panic(void)
  102. {
  103. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  104. panic("SMP bolixed\n");
  105. }
  106. struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
  107. void smp_send_reschedule(int cpu)
  108. {
  109. /*
  110. * XXX missing reschedule IPI, see scheduler_ipi()
  111. */
  112. }
  113. void smp_send_stop(void)
  114. {
  115. }
  116. void smp_flush_cache_all(void)
  117. {
  118. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  119. local_flush_cache_all();
  120. }
  121. void smp_flush_tlb_all(void)
  122. {
  123. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  124. local_flush_tlb_all();
  125. }
  126. void smp_flush_cache_mm(struct mm_struct *mm)
  127. {
  128. if(mm->context != NO_CONTEXT) {
  129. cpumask_t cpu_mask = *mm_cpumask(mm);
  130. cpu_clear(smp_processor_id(), cpu_mask);
  131. if (!cpus_empty(cpu_mask))
  132. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  133. local_flush_cache_mm(mm);
  134. }
  135. }
  136. void smp_flush_tlb_mm(struct mm_struct *mm)
  137. {
  138. if(mm->context != NO_CONTEXT) {
  139. cpumask_t cpu_mask = *mm_cpumask(mm);
  140. cpu_clear(smp_processor_id(), cpu_mask);
  141. if (!cpus_empty(cpu_mask)) {
  142. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  143. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  144. cpumask_copy(mm_cpumask(mm),
  145. cpumask_of(smp_processor_id()));
  146. }
  147. local_flush_tlb_mm(mm);
  148. }
  149. }
  150. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  151. unsigned long end)
  152. {
  153. struct mm_struct *mm = vma->vm_mm;
  154. if (mm->context != NO_CONTEXT) {
  155. cpumask_t cpu_mask = *mm_cpumask(mm);
  156. cpu_clear(smp_processor_id(), cpu_mask);
  157. if (!cpus_empty(cpu_mask))
  158. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  159. local_flush_cache_range(vma, start, end);
  160. }
  161. }
  162. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  163. unsigned long end)
  164. {
  165. struct mm_struct *mm = vma->vm_mm;
  166. if (mm->context != NO_CONTEXT) {
  167. cpumask_t cpu_mask = *mm_cpumask(mm);
  168. cpu_clear(smp_processor_id(), cpu_mask);
  169. if (!cpus_empty(cpu_mask))
  170. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  171. local_flush_tlb_range(vma, start, end);
  172. }
  173. }
  174. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  175. {
  176. struct mm_struct *mm = vma->vm_mm;
  177. if(mm->context != NO_CONTEXT) {
  178. cpumask_t cpu_mask = *mm_cpumask(mm);
  179. cpu_clear(smp_processor_id(), cpu_mask);
  180. if (!cpus_empty(cpu_mask))
  181. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  182. local_flush_cache_page(vma, page);
  183. }
  184. }
  185. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  186. {
  187. struct mm_struct *mm = vma->vm_mm;
  188. if(mm->context != NO_CONTEXT) {
  189. cpumask_t cpu_mask = *mm_cpumask(mm);
  190. cpu_clear(smp_processor_id(), cpu_mask);
  191. if (!cpus_empty(cpu_mask))
  192. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  193. local_flush_tlb_page(vma, page);
  194. }
  195. }
  196. void smp_reschedule_irq(void)
  197. {
  198. set_need_resched();
  199. }
  200. void smp_flush_page_to_ram(unsigned long page)
  201. {
  202. /* Current theory is that those who call this are the one's
  203. * who have just dirtied their cache with the pages contents
  204. * in kernel space, therefore we only run this on local cpu.
  205. *
  206. * XXX This experiment failed, research further... -DaveM
  207. */
  208. #if 1
  209. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  210. #endif
  211. local_flush_page_to_ram(page);
  212. }
  213. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  214. {
  215. cpumask_t cpu_mask = *mm_cpumask(mm);
  216. cpu_clear(smp_processor_id(), cpu_mask);
  217. if (!cpus_empty(cpu_mask))
  218. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  219. local_flush_sig_insns(mm, insn_addr);
  220. }
  221. extern unsigned int lvl14_resolution;
  222. /* /proc/profile writes can call this, don't __init it please. */
  223. static DEFINE_SPINLOCK(prof_setup_lock);
  224. int setup_profiling_timer(unsigned int multiplier)
  225. {
  226. int i;
  227. unsigned long flags;
  228. /* Prevent level14 ticker IRQ flooding. */
  229. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  230. return -EINVAL;
  231. spin_lock_irqsave(&prof_setup_lock, flags);
  232. for_each_possible_cpu(i) {
  233. load_profile_irq(i, lvl14_resolution / multiplier);
  234. prof_multiplier(i) = multiplier;
  235. }
  236. spin_unlock_irqrestore(&prof_setup_lock, flags);
  237. return 0;
  238. }
  239. void __init smp_prepare_cpus(unsigned int max_cpus)
  240. {
  241. extern void __init smp4m_boot_cpus(void);
  242. extern void __init smp4d_boot_cpus(void);
  243. int i, cpuid, extra;
  244. printk("Entering SMP Mode...\n");
  245. extra = 0;
  246. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  247. if (cpuid >= NR_CPUS)
  248. extra++;
  249. }
  250. /* i = number of cpus */
  251. if (extra && max_cpus > i - extra)
  252. printk("Warning: NR_CPUS is too low to start all cpus\n");
  253. smp_store_cpu_info(boot_cpu_id);
  254. switch(sparc_cpu_model) {
  255. case sun4:
  256. printk("SUN4\n");
  257. BUG();
  258. break;
  259. case sun4c:
  260. printk("SUN4C\n");
  261. BUG();
  262. break;
  263. case sun4m:
  264. smp4m_boot_cpus();
  265. break;
  266. case sun4d:
  267. smp4d_boot_cpus();
  268. break;
  269. case sparc_leon:
  270. leon_boot_cpus();
  271. break;
  272. case sun4e:
  273. printk("SUN4E\n");
  274. BUG();
  275. break;
  276. case sun4u:
  277. printk("SUN4U\n");
  278. BUG();
  279. break;
  280. default:
  281. printk("UNKNOWN!\n");
  282. BUG();
  283. break;
  284. };
  285. }
  286. /* Set this up early so that things like the scheduler can init
  287. * properly. We use the same cpu mask for both the present and
  288. * possible cpu map.
  289. */
  290. void __init smp_setup_cpu_possible_map(void)
  291. {
  292. int instance, mid;
  293. instance = 0;
  294. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  295. if (mid < NR_CPUS) {
  296. set_cpu_possible(mid, true);
  297. set_cpu_present(mid, true);
  298. }
  299. instance++;
  300. }
  301. }
  302. void __init smp_prepare_boot_cpu(void)
  303. {
  304. int cpuid = hard_smp_processor_id();
  305. if (cpuid >= NR_CPUS) {
  306. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  307. prom_halt();
  308. }
  309. if (cpuid != 0)
  310. printk("boot cpu id != 0, this could work but is untested\n");
  311. current_thread_info()->cpu = cpuid;
  312. set_cpu_online(cpuid, true);
  313. set_cpu_possible(cpuid, true);
  314. }
  315. int __cpuinit __cpu_up(unsigned int cpu)
  316. {
  317. extern int __cpuinit smp4m_boot_one_cpu(int);
  318. extern int __cpuinit smp4d_boot_one_cpu(int);
  319. int ret=0;
  320. switch(sparc_cpu_model) {
  321. case sun4:
  322. printk("SUN4\n");
  323. BUG();
  324. break;
  325. case sun4c:
  326. printk("SUN4C\n");
  327. BUG();
  328. break;
  329. case sun4m:
  330. ret = smp4m_boot_one_cpu(cpu);
  331. break;
  332. case sun4d:
  333. ret = smp4d_boot_one_cpu(cpu);
  334. break;
  335. case sparc_leon:
  336. ret = leon_boot_one_cpu(cpu);
  337. break;
  338. case sun4e:
  339. printk("SUN4E\n");
  340. BUG();
  341. break;
  342. case sun4u:
  343. printk("SUN4U\n");
  344. BUG();
  345. break;
  346. default:
  347. printk("UNKNOWN!\n");
  348. BUG();
  349. break;
  350. };
  351. if (!ret) {
  352. cpu_set(cpu, smp_commenced_mask);
  353. while (!cpu_online(cpu))
  354. mb();
  355. }
  356. return ret;
  357. }
  358. void smp_bogo(struct seq_file *m)
  359. {
  360. int i;
  361. for_each_online_cpu(i) {
  362. seq_printf(m,
  363. "Cpu%dBogo\t: %lu.%02lu\n",
  364. i,
  365. cpu_data(i).udelay_val/(500000/HZ),
  366. (cpu_data(i).udelay_val/(5000/HZ))%100);
  367. }
  368. }
  369. void smp_info(struct seq_file *m)
  370. {
  371. int i;
  372. seq_printf(m, "State:\n");
  373. for_each_online_cpu(i)
  374. seq_printf(m, "CPU%d\t\t: online\n", i);
  375. }