tlb_64.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/smp.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <asm/tlbflush.h>
  8. #include <asm/mmu_context.h>
  9. #include <asm/apic.h>
  10. #include <asm/uv/uv.h>
  11. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  12. = { &init_mm, 0, };
  13. #include <mach_ipi.h>
  14. /*
  15. * Smarter SMP flushing macros.
  16. * c/o Linus Torvalds.
  17. *
  18. * These mean you can really definitely utterly forget about
  19. * writing to user space from interrupts. (Its not allowed anyway).
  20. *
  21. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  22. *
  23. * More scalable flush, from Andi Kleen
  24. *
  25. * To avoid global state use 8 different call vectors.
  26. * Each CPU uses a specific vector to trigger flushes on other
  27. * CPUs. Depending on the received vector the target CPUs look into
  28. * the right per cpu variable for the flush data.
  29. *
  30. * With more than 8 CPUs they are hashed to the 8 available
  31. * vectors. The limited global vector space forces us to this right now.
  32. * In future when interrupts are split into per CPU domains this could be
  33. * fixed, at the cost of triggering multiple IPIs in some cases.
  34. */
  35. union smp_flush_state {
  36. struct {
  37. struct mm_struct *flush_mm;
  38. unsigned long flush_va;
  39. spinlock_t tlbstate_lock;
  40. DECLARE_BITMAP(flush_cpumask, NR_CPUS);
  41. };
  42. char pad[SMP_CACHE_BYTES];
  43. } ____cacheline_aligned;
  44. /* State is put into the per CPU data section, but padded
  45. to a full cache line because other CPUs can access it and we don't
  46. want false sharing in the per cpu data segment. */
  47. static DEFINE_PER_CPU(union smp_flush_state, flush_state);
  48. /*
  49. * We cannot call mmdrop() because we are in interrupt context,
  50. * instead update mm->cpu_vm_mask.
  51. */
  52. void leave_mm(int cpu)
  53. {
  54. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  55. BUG();
  56. cpu_clear(cpu, percpu_read(cpu_tlbstate.active_mm)->cpu_vm_mask);
  57. load_cr3(swapper_pg_dir);
  58. }
  59. EXPORT_SYMBOL_GPL(leave_mm);
  60. /*
  61. *
  62. * The flush IPI assumes that a thread switch happens in this order:
  63. * [cpu0: the cpu that switches]
  64. * 1) switch_mm() either 1a) or 1b)
  65. * 1a) thread switch to a different mm
  66. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  67. * Stop ipi delivery for the old mm. This is not synchronized with
  68. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  69. * for the wrong mm, and in the worst case we perform a superfluous
  70. * tlb flush.
  71. * 1a2) set cpu mmu_state to TLBSTATE_OK
  72. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  73. * was in lazy tlb mode.
  74. * 1a3) update cpu active_mm
  75. * Now cpu0 accepts tlb flushes for the new mm.
  76. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  77. * Now the other cpus will send tlb flush ipis.
  78. * 1a4) change cr3.
  79. * 1b) thread switch without mm change
  80. * cpu active_mm is correct, cpu0 already handles
  81. * flush ipis.
  82. * 1b1) set cpu mmu_state to TLBSTATE_OK
  83. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  84. * Atomically set the bit [other cpus will start sending flush ipis],
  85. * and test the bit.
  86. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  87. * 2) switch %%esp, ie current
  88. *
  89. * The interrupt must handle 2 special cases:
  90. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  91. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  92. * runs in kernel space, the cpu could load tlb entries for user space
  93. * pages.
  94. *
  95. * The good news is that cpu mmu_state is local to each cpu, no
  96. * write/read ordering problems.
  97. */
  98. /*
  99. * TLB flush IPI:
  100. *
  101. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  102. * 2) Leave the mm if we are in the lazy tlb mode.
  103. *
  104. * Interrupts are disabled.
  105. */
  106. asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
  107. {
  108. unsigned int cpu;
  109. unsigned int sender;
  110. union smp_flush_state *f;
  111. cpu = smp_processor_id();
  112. /*
  113. * orig_rax contains the negated interrupt vector.
  114. * Use that to determine where the sender put the data.
  115. */
  116. sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
  117. f = &per_cpu(flush_state, sender);
  118. if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
  119. goto out;
  120. /*
  121. * This was a BUG() but until someone can quote me the
  122. * line from the intel manual that guarantees an IPI to
  123. * multiple CPUs is retried _only_ on the erroring CPUs
  124. * its staying as a return
  125. *
  126. * BUG();
  127. */
  128. if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
  129. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  130. if (f->flush_va == TLB_FLUSH_ALL)
  131. local_flush_tlb();
  132. else
  133. __flush_tlb_one(f->flush_va);
  134. } else
  135. leave_mm(cpu);
  136. }
  137. out:
  138. ack_APIC_irq();
  139. smp_mb__before_clear_bit();
  140. cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
  141. smp_mb__after_clear_bit();
  142. inc_irq_stat(irq_tlb_count);
  143. }
  144. static void flush_tlb_others_ipi(const struct cpumask *cpumask,
  145. struct mm_struct *mm, unsigned long va)
  146. {
  147. unsigned int sender;
  148. union smp_flush_state *f;
  149. /* Caller has disabled preemption */
  150. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  151. f = &per_cpu(flush_state, sender);
  152. /*
  153. * Could avoid this lock when
  154. * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  155. * probably not worth checking this for a cache-hot lock.
  156. */
  157. spin_lock(&f->tlbstate_lock);
  158. f->flush_mm = mm;
  159. f->flush_va = va;
  160. cpumask_andnot(to_cpumask(f->flush_cpumask),
  161. cpumask, cpumask_of(smp_processor_id()));
  162. /*
  163. * Make the above memory operations globally visible before
  164. * sending the IPI.
  165. */
  166. smp_mb();
  167. /*
  168. * We have to send the IPI only to
  169. * CPUs affected.
  170. */
  171. send_IPI_mask(to_cpumask(f->flush_cpumask),
  172. INVALIDATE_TLB_VECTOR_START + sender);
  173. while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
  174. cpu_relax();
  175. f->flush_mm = NULL;
  176. f->flush_va = 0;
  177. spin_unlock(&f->tlbstate_lock);
  178. }
  179. void native_flush_tlb_others(const struct cpumask *cpumask,
  180. struct mm_struct *mm, unsigned long va)
  181. {
  182. if (is_uv_system()) {
  183. unsigned int cpu;
  184. cpu = get_cpu();
  185. cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
  186. if (cpumask)
  187. flush_tlb_others_ipi(cpumask, mm, va);
  188. put_cpu();
  189. return;
  190. }
  191. flush_tlb_others_ipi(cpumask, mm, va);
  192. }
  193. static int __cpuinit init_smp_flush(void)
  194. {
  195. int i;
  196. for_each_possible_cpu(i)
  197. spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
  198. return 0;
  199. }
  200. core_initcall(init_smp_flush);
  201. void flush_tlb_current_task(void)
  202. {
  203. struct mm_struct *mm = current->mm;
  204. preempt_disable();
  205. local_flush_tlb();
  206. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  207. flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
  208. preempt_enable();
  209. }
  210. void flush_tlb_mm(struct mm_struct *mm)
  211. {
  212. preempt_disable();
  213. if (current->active_mm == mm) {
  214. if (current->mm)
  215. local_flush_tlb();
  216. else
  217. leave_mm(smp_processor_id());
  218. }
  219. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  220. flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
  221. preempt_enable();
  222. }
  223. void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
  224. {
  225. struct mm_struct *mm = vma->vm_mm;
  226. preempt_disable();
  227. if (current->active_mm == mm) {
  228. if (current->mm)
  229. __flush_tlb_one(va);
  230. else
  231. leave_mm(smp_processor_id());
  232. }
  233. if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
  234. flush_tlb_others(&mm->cpu_vm_mask, mm, va);
  235. preempt_enable();
  236. }
  237. static void do_flush_tlb_all(void *info)
  238. {
  239. unsigned long cpu = smp_processor_id();
  240. __flush_tlb_all();
  241. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  242. leave_mm(cpu);
  243. }
  244. void flush_tlb_all(void)
  245. {
  246. on_each_cpu(do_flush_tlb_all, NULL, 1);
  247. }