mxc_nand.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17. * MA 02110-1301, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/nand.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/clk.h>
  30. #include <linux/err.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/completion.h>
  34. #include <asm/mach/flash.h>
  35. #include <mach/mxc_nand.h>
  36. #include <mach/hardware.h>
  37. #define DRIVER_NAME "mxc_nand"
  38. #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
  39. #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
  40. #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
  41. #define nfc_is_v3() nfc_is_v3_2()
  42. /* Addresses for NFC registers */
  43. #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
  44. #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
  45. #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
  46. #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
  47. #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
  48. #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
  49. #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
  50. #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
  51. #define NFC_V1_V2_WRPROT (host->regs + 0x12)
  52. #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
  53. #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
  54. #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
  55. #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
  56. #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
  57. #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
  58. #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
  59. #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
  60. #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
  61. #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
  62. #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
  63. #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
  64. #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
  65. #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
  66. #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
  67. #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
  68. #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
  69. #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
  70. #define NFC_V1_V2_CONFIG1_RST (1 << 6)
  71. #define NFC_V1_V2_CONFIG1_CE (1 << 7)
  72. #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
  73. #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
  74. #define NFC_V2_CONFIG1_FP_INT (1 << 11)
  75. #define NFC_V1_V2_CONFIG2_INT (1 << 15)
  76. /*
  77. * Operation modes for the NFC. Valid for v1, v2 and v3
  78. * type controllers.
  79. */
  80. #define NFC_CMD (1 << 0)
  81. #define NFC_ADDR (1 << 1)
  82. #define NFC_INPUT (1 << 2)
  83. #define NFC_OUTPUT (1 << 3)
  84. #define NFC_ID (1 << 4)
  85. #define NFC_STATUS (1 << 5)
  86. #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
  87. #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
  88. #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
  89. #define NFC_V3_CONFIG1_SP_EN (1 << 0)
  90. #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
  91. #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
  92. #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
  93. #define NFC_V3_WRPROT (host->regs_ip + 0x0)
  94. #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
  95. #define NFC_V3_WRPROT_LOCK (1 << 1)
  96. #define NFC_V3_WRPROT_UNLOCK (1 << 2)
  97. #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
  98. #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
  99. #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
  100. #define NFC_V3_CONFIG2_PS_512 (0 << 0)
  101. #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
  102. #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
  103. #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
  104. #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
  105. #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
  106. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
  107. #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
  108. #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
  109. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
  110. #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
  111. #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
  112. #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
  113. #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
  114. #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
  115. #define NFC_V3_CONFIG3_FW8 (1 << 3)
  116. #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
  117. #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
  118. #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
  119. #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
  120. #define NFC_V3_IPC (host->regs_ip + 0x2C)
  121. #define NFC_V3_IPC_CREQ (1 << 0)
  122. #define NFC_V3_IPC_INT (1 << 31)
  123. #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
  124. struct mxc_nand_host;
  125. struct mxc_nand_devtype_data {
  126. void (*preset)(struct mtd_info *);
  127. void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
  128. void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
  129. void (*send_page)(struct mtd_info *, unsigned int);
  130. void (*send_read_id)(struct mxc_nand_host *);
  131. uint16_t (*get_dev_status)(struct mxc_nand_host *);
  132. int (*check_int)(struct mxc_nand_host *);
  133. void (*irq_control)(struct mxc_nand_host *, int);
  134. u32 (*get_ecc_status)(struct mxc_nand_host *);
  135. struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
  136. };
  137. struct mxc_nand_host {
  138. struct mtd_info mtd;
  139. struct nand_chip nand;
  140. struct device *dev;
  141. void *spare0;
  142. void *main_area0;
  143. void __iomem *base;
  144. void __iomem *regs;
  145. void __iomem *regs_axi;
  146. void __iomem *regs_ip;
  147. int status_request;
  148. struct clk *clk;
  149. int clk_act;
  150. int irq;
  151. int eccsize;
  152. int active_cs;
  153. struct completion op_completion;
  154. uint8_t *data_buf;
  155. unsigned int buf_start;
  156. int spare_len;
  157. const struct mxc_nand_devtype_data *devtype_data;
  158. /*
  159. * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
  160. * (CONFIG1:INT_MSK is set). To handle this the driver uses
  161. * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
  162. */
  163. int irqpending_quirk;
  164. };
  165. /* OOB placement block for use with hardware ecc generation */
  166. static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
  167. .eccbytes = 5,
  168. .eccpos = {6, 7, 8, 9, 10},
  169. .oobfree = {{0, 5}, {12, 4}, }
  170. };
  171. static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
  172. .eccbytes = 20,
  173. .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
  174. 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
  175. .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
  176. };
  177. /* OOB description for 512 byte pages with 16 byte OOB */
  178. static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
  179. .eccbytes = 1 * 9,
  180. .eccpos = {
  181. 7, 8, 9, 10, 11, 12, 13, 14, 15
  182. },
  183. .oobfree = {
  184. {.offset = 0, .length = 5}
  185. }
  186. };
  187. /* OOB description for 2048 byte pages with 64 byte OOB */
  188. static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
  189. .eccbytes = 4 * 9,
  190. .eccpos = {
  191. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  192. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  193. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  194. 55, 56, 57, 58, 59, 60, 61, 62, 63
  195. },
  196. .oobfree = {
  197. {.offset = 2, .length = 4},
  198. {.offset = 16, .length = 7},
  199. {.offset = 32, .length = 7},
  200. {.offset = 48, .length = 7}
  201. }
  202. };
  203. /* OOB description for 4096 byte pages with 128 byte OOB */
  204. static struct nand_ecclayout nandv2_hw_eccoob_4k = {
  205. .eccbytes = 8 * 9,
  206. .eccpos = {
  207. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  208. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  209. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  210. 55, 56, 57, 58, 59, 60, 61, 62, 63,
  211. 71, 72, 73, 74, 75, 76, 77, 78, 79,
  212. 87, 88, 89, 90, 91, 92, 93, 94, 95,
  213. 103, 104, 105, 106, 107, 108, 109, 110, 111,
  214. 119, 120, 121, 122, 123, 124, 125, 126, 127,
  215. },
  216. .oobfree = {
  217. {.offset = 2, .length = 4},
  218. {.offset = 16, .length = 7},
  219. {.offset = 32, .length = 7},
  220. {.offset = 48, .length = 7},
  221. {.offset = 64, .length = 7},
  222. {.offset = 80, .length = 7},
  223. {.offset = 96, .length = 7},
  224. {.offset = 112, .length = 7},
  225. }
  226. };
  227. static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
  228. static int check_int_v3(struct mxc_nand_host *host)
  229. {
  230. uint32_t tmp;
  231. tmp = readl(NFC_V3_IPC);
  232. if (!(tmp & NFC_V3_IPC_INT))
  233. return 0;
  234. tmp &= ~NFC_V3_IPC_INT;
  235. writel(tmp, NFC_V3_IPC);
  236. return 1;
  237. }
  238. static int check_int_v1_v2(struct mxc_nand_host *host)
  239. {
  240. uint32_t tmp;
  241. tmp = readw(NFC_V1_V2_CONFIG2);
  242. if (!(tmp & NFC_V1_V2_CONFIG2_INT))
  243. return 0;
  244. if (!host->irqpending_quirk)
  245. writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
  246. return 1;
  247. }
  248. static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
  249. {
  250. uint16_t tmp;
  251. tmp = readw(NFC_V1_V2_CONFIG1);
  252. if (activate)
  253. tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
  254. else
  255. tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
  256. writew(tmp, NFC_V1_V2_CONFIG1);
  257. }
  258. static void irq_control_v3(struct mxc_nand_host *host, int activate)
  259. {
  260. uint32_t tmp;
  261. tmp = readl(NFC_V3_CONFIG2);
  262. if (activate)
  263. tmp &= ~NFC_V3_CONFIG2_INT_MSK;
  264. else
  265. tmp |= NFC_V3_CONFIG2_INT_MSK;
  266. writel(tmp, NFC_V3_CONFIG2);
  267. }
  268. static void irq_control(struct mxc_nand_host *host, int activate)
  269. {
  270. if (host->irqpending_quirk) {
  271. if (activate)
  272. enable_irq(host->irq);
  273. else
  274. disable_irq_nosync(host->irq);
  275. } else {
  276. host->devtype_data->irq_control(host, activate);
  277. }
  278. }
  279. static u32 get_ecc_status_v1(struct mxc_nand_host *host)
  280. {
  281. return readw(NFC_V1_V2_ECC_STATUS_RESULT);
  282. }
  283. static u32 get_ecc_status_v2(struct mxc_nand_host *host)
  284. {
  285. return readl(NFC_V1_V2_ECC_STATUS_RESULT);
  286. }
  287. static u32 get_ecc_status_v3(struct mxc_nand_host *host)
  288. {
  289. return readl(NFC_V3_ECC_STATUS_RESULT);
  290. }
  291. static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
  292. {
  293. struct mxc_nand_host *host = dev_id;
  294. if (!host->devtype_data->check_int(host))
  295. return IRQ_NONE;
  296. irq_control(host, 0);
  297. complete(&host->op_completion);
  298. return IRQ_HANDLED;
  299. }
  300. /* This function polls the NANDFC to wait for the basic operation to
  301. * complete by checking the INT bit of config2 register.
  302. */
  303. static void wait_op_done(struct mxc_nand_host *host, int useirq)
  304. {
  305. int max_retries = 8000;
  306. if (useirq) {
  307. if (!host->devtype_data->check_int(host)) {
  308. INIT_COMPLETION(host->op_completion);
  309. irq_control(host, 1);
  310. wait_for_completion(&host->op_completion);
  311. }
  312. } else {
  313. while (max_retries-- > 0) {
  314. if (host->devtype_data->check_int(host))
  315. break;
  316. udelay(1);
  317. }
  318. if (max_retries < 0)
  319. pr_debug("%s: INT not set\n", __func__);
  320. }
  321. }
  322. static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  323. {
  324. /* fill command */
  325. writel(cmd, NFC_V3_FLASH_CMD);
  326. /* send out command */
  327. writel(NFC_CMD, NFC_V3_LAUNCH);
  328. /* Wait for operation to complete */
  329. wait_op_done(host, useirq);
  330. }
  331. /* This function issues the specified command to the NAND device and
  332. * waits for completion. */
  333. static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  334. {
  335. pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
  336. writew(cmd, NFC_V1_V2_FLASH_CMD);
  337. writew(NFC_CMD, NFC_V1_V2_CONFIG2);
  338. if (host->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
  339. int max_retries = 100;
  340. /* Reset completion is indicated by NFC_CONFIG2 */
  341. /* being set to 0 */
  342. while (max_retries-- > 0) {
  343. if (readw(NFC_V1_V2_CONFIG2) == 0) {
  344. break;
  345. }
  346. udelay(1);
  347. }
  348. if (max_retries < 0)
  349. pr_debug("%s: RESET failed\n", __func__);
  350. } else {
  351. /* Wait for operation to complete */
  352. wait_op_done(host, useirq);
  353. }
  354. }
  355. static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
  356. {
  357. /* fill address */
  358. writel(addr, NFC_V3_FLASH_ADDR0);
  359. /* send out address */
  360. writel(NFC_ADDR, NFC_V3_LAUNCH);
  361. wait_op_done(host, 0);
  362. }
  363. /* This function sends an address (or partial address) to the
  364. * NAND device. The address is used to select the source/destination for
  365. * a NAND command. */
  366. static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
  367. {
  368. pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
  369. writew(addr, NFC_V1_V2_FLASH_ADDR);
  370. writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
  371. /* Wait for operation to complete */
  372. wait_op_done(host, islast);
  373. }
  374. static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
  375. {
  376. struct nand_chip *nand_chip = mtd->priv;
  377. struct mxc_nand_host *host = nand_chip->priv;
  378. uint32_t tmp;
  379. tmp = readl(NFC_V3_CONFIG1);
  380. tmp &= ~(7 << 4);
  381. writel(tmp, NFC_V3_CONFIG1);
  382. /* transfer data from NFC ram to nand */
  383. writel(ops, NFC_V3_LAUNCH);
  384. wait_op_done(host, false);
  385. }
  386. static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
  387. {
  388. struct nand_chip *nand_chip = mtd->priv;
  389. struct mxc_nand_host *host = nand_chip->priv;
  390. /* NANDFC buffer 0 is used for page read/write */
  391. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  392. writew(ops, NFC_V1_V2_CONFIG2);
  393. /* Wait for operation to complete */
  394. wait_op_done(host, true);
  395. }
  396. static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
  397. {
  398. struct nand_chip *nand_chip = mtd->priv;
  399. struct mxc_nand_host *host = nand_chip->priv;
  400. int bufs, i;
  401. if (mtd->writesize > 512)
  402. bufs = 4;
  403. else
  404. bufs = 1;
  405. for (i = 0; i < bufs; i++) {
  406. /* NANDFC buffer 0 is used for page read/write */
  407. writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
  408. writew(ops, NFC_V1_V2_CONFIG2);
  409. /* Wait for operation to complete */
  410. wait_op_done(host, true);
  411. }
  412. }
  413. static void send_read_id_v3(struct mxc_nand_host *host)
  414. {
  415. /* Read ID into main buffer */
  416. writel(NFC_ID, NFC_V3_LAUNCH);
  417. wait_op_done(host, true);
  418. memcpy(host->data_buf, host->main_area0, 16);
  419. }
  420. /* Request the NANDFC to perform a read of the NAND device ID. */
  421. static void send_read_id_v1_v2(struct mxc_nand_host *host)
  422. {
  423. struct nand_chip *this = &host->nand;
  424. /* NANDFC buffer 0 is used for device ID output */
  425. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  426. writew(NFC_ID, NFC_V1_V2_CONFIG2);
  427. /* Wait for operation to complete */
  428. wait_op_done(host, true);
  429. memcpy(host->data_buf, host->main_area0, 16);
  430. if (this->options & NAND_BUSWIDTH_16) {
  431. /* compress the ID info */
  432. host->data_buf[1] = host->data_buf[2];
  433. host->data_buf[2] = host->data_buf[4];
  434. host->data_buf[3] = host->data_buf[6];
  435. host->data_buf[4] = host->data_buf[8];
  436. host->data_buf[5] = host->data_buf[10];
  437. }
  438. }
  439. static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
  440. {
  441. writew(NFC_STATUS, NFC_V3_LAUNCH);
  442. wait_op_done(host, true);
  443. return readl(NFC_V3_CONFIG1) >> 16;
  444. }
  445. /* This function requests the NANDFC to perform a read of the
  446. * NAND device status and returns the current status. */
  447. static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
  448. {
  449. void __iomem *main_buf = host->main_area0;
  450. uint32_t store;
  451. uint16_t ret;
  452. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  453. /*
  454. * The device status is stored in main_area0. To
  455. * prevent corruption of the buffer save the value
  456. * and restore it afterwards.
  457. */
  458. store = readl(main_buf);
  459. writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
  460. wait_op_done(host, true);
  461. ret = readw(main_buf);
  462. writel(store, main_buf);
  463. return ret;
  464. }
  465. /* This functions is used by upper layer to checks if device is ready */
  466. static int mxc_nand_dev_ready(struct mtd_info *mtd)
  467. {
  468. /*
  469. * NFC handles R/B internally. Therefore, this function
  470. * always returns status as ready.
  471. */
  472. return 1;
  473. }
  474. static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  475. {
  476. /*
  477. * If HW ECC is enabled, we turn it on during init. There is
  478. * no need to enable again here.
  479. */
  480. }
  481. static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
  482. u_char *read_ecc, u_char *calc_ecc)
  483. {
  484. struct nand_chip *nand_chip = mtd->priv;
  485. struct mxc_nand_host *host = nand_chip->priv;
  486. /*
  487. * 1-Bit errors are automatically corrected in HW. No need for
  488. * additional correction. 2-Bit errors cannot be corrected by
  489. * HW ECC, so we need to return failure
  490. */
  491. uint16_t ecc_status = get_ecc_status_v1(host);
  492. if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
  493. pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
  494. return -1;
  495. }
  496. return 0;
  497. }
  498. static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
  499. u_char *read_ecc, u_char *calc_ecc)
  500. {
  501. struct nand_chip *nand_chip = mtd->priv;
  502. struct mxc_nand_host *host = nand_chip->priv;
  503. u32 ecc_stat, err;
  504. int no_subpages = 1;
  505. int ret = 0;
  506. u8 ecc_bit_mask, err_limit;
  507. ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
  508. err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
  509. no_subpages = mtd->writesize >> 9;
  510. ecc_stat = host->devtype_data->get_ecc_status(host);
  511. do {
  512. err = ecc_stat & ecc_bit_mask;
  513. if (err > err_limit) {
  514. printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
  515. return -1;
  516. } else {
  517. ret += err;
  518. }
  519. ecc_stat >>= 4;
  520. } while (--no_subpages);
  521. mtd->ecc_stats.corrected += ret;
  522. pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
  523. return ret;
  524. }
  525. static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  526. u_char *ecc_code)
  527. {
  528. return 0;
  529. }
  530. static u_char mxc_nand_read_byte(struct mtd_info *mtd)
  531. {
  532. struct nand_chip *nand_chip = mtd->priv;
  533. struct mxc_nand_host *host = nand_chip->priv;
  534. uint8_t ret;
  535. /* Check for status request */
  536. if (host->status_request)
  537. return host->devtype_data->get_dev_status(host) & 0xFF;
  538. ret = *(uint8_t *)(host->data_buf + host->buf_start);
  539. host->buf_start++;
  540. return ret;
  541. }
  542. static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
  543. {
  544. struct nand_chip *nand_chip = mtd->priv;
  545. struct mxc_nand_host *host = nand_chip->priv;
  546. uint16_t ret;
  547. ret = *(uint16_t *)(host->data_buf + host->buf_start);
  548. host->buf_start += 2;
  549. return ret;
  550. }
  551. /* Write data of length len to buffer buf. The data to be
  552. * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  553. * Operation by the NFC, the data is written to NAND Flash */
  554. static void mxc_nand_write_buf(struct mtd_info *mtd,
  555. const u_char *buf, int len)
  556. {
  557. struct nand_chip *nand_chip = mtd->priv;
  558. struct mxc_nand_host *host = nand_chip->priv;
  559. u16 col = host->buf_start;
  560. int n = mtd->oobsize + mtd->writesize - col;
  561. n = min(n, len);
  562. memcpy(host->data_buf + col, buf, n);
  563. host->buf_start += n;
  564. }
  565. /* Read the data buffer from the NAND Flash. To read the data from NAND
  566. * Flash first the data output cycle is initiated by the NFC, which copies
  567. * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  568. */
  569. static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  570. {
  571. struct nand_chip *nand_chip = mtd->priv;
  572. struct mxc_nand_host *host = nand_chip->priv;
  573. u16 col = host->buf_start;
  574. int n = mtd->oobsize + mtd->writesize - col;
  575. n = min(n, len);
  576. memcpy(buf, host->data_buf + col, n);
  577. host->buf_start += n;
  578. }
  579. /* Used by the upper layer to verify the data in NAND Flash
  580. * with the data in the buf. */
  581. static int mxc_nand_verify_buf(struct mtd_info *mtd,
  582. const u_char *buf, int len)
  583. {
  584. return -EFAULT;
  585. }
  586. /* This function is used by upper layer for select and
  587. * deselect of the NAND chip */
  588. static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
  589. {
  590. struct nand_chip *nand_chip = mtd->priv;
  591. struct mxc_nand_host *host = nand_chip->priv;
  592. if (chip == -1) {
  593. /* Disable the NFC clock */
  594. if (host->clk_act) {
  595. clk_disable(host->clk);
  596. host->clk_act = 0;
  597. }
  598. return;
  599. }
  600. if (!host->clk_act) {
  601. /* Enable the NFC clock */
  602. clk_enable(host->clk);
  603. host->clk_act = 1;
  604. }
  605. if (nfc_is_v21()) {
  606. host->active_cs = chip;
  607. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  608. }
  609. }
  610. /*
  611. * Function to transfer data to/from spare area.
  612. */
  613. static void copy_spare(struct mtd_info *mtd, bool bfrom)
  614. {
  615. struct nand_chip *this = mtd->priv;
  616. struct mxc_nand_host *host = this->priv;
  617. u16 i, j;
  618. u16 n = mtd->writesize >> 9;
  619. u8 *d = host->data_buf + mtd->writesize;
  620. u8 *s = host->spare0;
  621. u16 t = host->spare_len;
  622. j = (mtd->oobsize / n >> 1) << 1;
  623. if (bfrom) {
  624. for (i = 0; i < n - 1; i++)
  625. memcpy(d + i * j, s + i * t, j);
  626. /* the last section */
  627. memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
  628. } else {
  629. for (i = 0; i < n - 1; i++)
  630. memcpy(&s[i * t], &d[i * j], j);
  631. /* the last section */
  632. memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
  633. }
  634. }
  635. static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
  636. {
  637. struct nand_chip *nand_chip = mtd->priv;
  638. struct mxc_nand_host *host = nand_chip->priv;
  639. /* Write out column address, if necessary */
  640. if (column != -1) {
  641. /*
  642. * MXC NANDFC can only perform full page+spare or
  643. * spare-only read/write. When the upper layers
  644. * perform a read/write buf operation, the saved column
  645. * address is used to index into the full page.
  646. */
  647. host->devtype_data->send_addr(host, 0, page_addr == -1);
  648. if (mtd->writesize > 512)
  649. /* another col addr cycle for 2k page */
  650. host->devtype_data->send_addr(host, 0, false);
  651. }
  652. /* Write out page address, if necessary */
  653. if (page_addr != -1) {
  654. /* paddr_0 - p_addr_7 */
  655. host->devtype_data->send_addr(host, (page_addr & 0xff), false);
  656. if (mtd->writesize > 512) {
  657. if (mtd->size >= 0x10000000) {
  658. /* paddr_8 - paddr_15 */
  659. host->devtype_data->send_addr(host,
  660. (page_addr >> 8) & 0xff,
  661. false);
  662. host->devtype_data->send_addr(host,
  663. (page_addr >> 16) & 0xff,
  664. true);
  665. } else
  666. /* paddr_8 - paddr_15 */
  667. host->devtype_data->send_addr(host,
  668. (page_addr >> 8) & 0xff, true);
  669. } else {
  670. /* One more address cycle for higher density devices */
  671. if (mtd->size >= 0x4000000) {
  672. /* paddr_8 - paddr_15 */
  673. host->devtype_data->send_addr(host,
  674. (page_addr >> 8) & 0xff,
  675. false);
  676. host->devtype_data->send_addr(host,
  677. (page_addr >> 16) & 0xff,
  678. true);
  679. } else
  680. /* paddr_8 - paddr_15 */
  681. host->devtype_data->send_addr(host,
  682. (page_addr >> 8) & 0xff, true);
  683. }
  684. }
  685. }
  686. /*
  687. * v2 and v3 type controllers can do 4bit or 8bit ecc depending
  688. * on how much oob the nand chip has. For 8bit ecc we need at least
  689. * 26 bytes of oob data per 512 byte block.
  690. */
  691. static int get_eccsize(struct mtd_info *mtd)
  692. {
  693. int oobbytes_per_512 = 0;
  694. oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
  695. if (oobbytes_per_512 < 26)
  696. return 4;
  697. else
  698. return 8;
  699. }
  700. static void preset_v1(struct mtd_info *mtd)
  701. {
  702. struct nand_chip *nand_chip = mtd->priv;
  703. struct mxc_nand_host *host = nand_chip->priv;
  704. uint16_t config1 = 0;
  705. if (nand_chip->ecc.mode == NAND_ECC_HW)
  706. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  707. if (!host->irqpending_quirk)
  708. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  709. host->eccsize = 1;
  710. writew(config1, NFC_V1_V2_CONFIG1);
  711. /* preset operation */
  712. /* Unlock the internal RAM Buffer */
  713. writew(0x2, NFC_V1_V2_CONFIG);
  714. /* Blocks to be unlocked */
  715. writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
  716. writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
  717. /* Unlock Block Command for given address range */
  718. writew(0x4, NFC_V1_V2_WRPROT);
  719. }
  720. static void preset_v2(struct mtd_info *mtd)
  721. {
  722. struct nand_chip *nand_chip = mtd->priv;
  723. struct mxc_nand_host *host = nand_chip->priv;
  724. uint16_t config1 = 0;
  725. if (nand_chip->ecc.mode == NAND_ECC_HW)
  726. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  727. config1 |= NFC_V2_CONFIG1_FP_INT;
  728. if (!host->irqpending_quirk)
  729. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  730. if (mtd->writesize) {
  731. uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
  732. host->eccsize = get_eccsize(mtd);
  733. if (host->eccsize == 4)
  734. config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
  735. config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
  736. } else {
  737. host->eccsize = 1;
  738. }
  739. writew(config1, NFC_V1_V2_CONFIG1);
  740. /* preset operation */
  741. /* Unlock the internal RAM Buffer */
  742. writew(0x2, NFC_V1_V2_CONFIG);
  743. /* Blocks to be unlocked */
  744. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
  745. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
  746. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
  747. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
  748. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
  749. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
  750. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
  751. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
  752. /* Unlock Block Command for given address range */
  753. writew(0x4, NFC_V1_V2_WRPROT);
  754. }
  755. static void preset_v3(struct mtd_info *mtd)
  756. {
  757. struct nand_chip *chip = mtd->priv;
  758. struct mxc_nand_host *host = chip->priv;
  759. uint32_t config2, config3;
  760. int i, addr_phases;
  761. writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
  762. writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
  763. /* Unlock the internal RAM Buffer */
  764. writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
  765. NFC_V3_WRPROT);
  766. /* Blocks to be unlocked */
  767. for (i = 0; i < NAND_MAX_CHIPS; i++)
  768. writel(0x0 | (0xffff << 16),
  769. NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
  770. writel(0, NFC_V3_IPC);
  771. config2 = NFC_V3_CONFIG2_ONE_CYCLE |
  772. NFC_V3_CONFIG2_2CMD_PHASES |
  773. NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
  774. NFC_V3_CONFIG2_ST_CMD(0x70) |
  775. NFC_V3_CONFIG2_INT_MSK |
  776. NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
  777. if (chip->ecc.mode == NAND_ECC_HW)
  778. config2 |= NFC_V3_CONFIG2_ECC_EN;
  779. addr_phases = fls(chip->pagemask) >> 3;
  780. if (mtd->writesize == 2048) {
  781. config2 |= NFC_V3_CONFIG2_PS_2048;
  782. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  783. } else if (mtd->writesize == 4096) {
  784. config2 |= NFC_V3_CONFIG2_PS_4096;
  785. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  786. } else {
  787. config2 |= NFC_V3_CONFIG2_PS_512;
  788. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
  789. }
  790. if (mtd->writesize) {
  791. config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
  792. host->eccsize = get_eccsize(mtd);
  793. if (host->eccsize == 8)
  794. config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
  795. }
  796. writel(config2, NFC_V3_CONFIG2);
  797. config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
  798. NFC_V3_CONFIG3_NO_SDMA |
  799. NFC_V3_CONFIG3_RBB_MODE |
  800. NFC_V3_CONFIG3_SBB(6) | /* Reset default */
  801. NFC_V3_CONFIG3_ADD_OP(0);
  802. if (!(chip->options & NAND_BUSWIDTH_16))
  803. config3 |= NFC_V3_CONFIG3_FW8;
  804. writel(config3, NFC_V3_CONFIG3);
  805. writel(0, NFC_V3_DELAY_LINE);
  806. }
  807. /* Used by the upper layer to write command to NAND Flash for
  808. * different operations to be carried out on NAND Flash */
  809. static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
  810. int column, int page_addr)
  811. {
  812. struct nand_chip *nand_chip = mtd->priv;
  813. struct mxc_nand_host *host = nand_chip->priv;
  814. pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
  815. command, column, page_addr);
  816. /* Reset command state information */
  817. host->status_request = false;
  818. /* Command pre-processing step */
  819. switch (command) {
  820. case NAND_CMD_RESET:
  821. host->devtype_data->preset(mtd);
  822. host->devtype_data->send_cmd(host, command, false);
  823. break;
  824. case NAND_CMD_STATUS:
  825. host->buf_start = 0;
  826. host->status_request = true;
  827. host->devtype_data->send_cmd(host, command, true);
  828. mxc_do_addr_cycle(mtd, column, page_addr);
  829. break;
  830. case NAND_CMD_READ0:
  831. case NAND_CMD_READOOB:
  832. if (command == NAND_CMD_READ0)
  833. host->buf_start = column;
  834. else
  835. host->buf_start = column + mtd->writesize;
  836. command = NAND_CMD_READ0; /* only READ0 is valid */
  837. host->devtype_data->send_cmd(host, command, false);
  838. mxc_do_addr_cycle(mtd, column, page_addr);
  839. if (mtd->writesize > 512)
  840. host->devtype_data->send_cmd(host,
  841. NAND_CMD_READSTART, true);
  842. host->devtype_data->send_page(mtd, NFC_OUTPUT);
  843. memcpy(host->data_buf, host->main_area0, mtd->writesize);
  844. copy_spare(mtd, true);
  845. break;
  846. case NAND_CMD_SEQIN:
  847. if (column >= mtd->writesize)
  848. /* call ourself to read a page */
  849. mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
  850. host->buf_start = column;
  851. host->devtype_data->send_cmd(host, command, false);
  852. mxc_do_addr_cycle(mtd, column, page_addr);
  853. break;
  854. case NAND_CMD_PAGEPROG:
  855. memcpy(host->main_area0, host->data_buf, mtd->writesize);
  856. copy_spare(mtd, false);
  857. host->devtype_data->send_page(mtd, NFC_INPUT);
  858. host->devtype_data->send_cmd(host, command, true);
  859. mxc_do_addr_cycle(mtd, column, page_addr);
  860. break;
  861. case NAND_CMD_READID:
  862. host->devtype_data->send_cmd(host, command, true);
  863. mxc_do_addr_cycle(mtd, column, page_addr);
  864. host->devtype_data->send_read_id(host);
  865. host->buf_start = column;
  866. break;
  867. case NAND_CMD_ERASE1:
  868. case NAND_CMD_ERASE2:
  869. host->devtype_data->send_cmd(host, command, false);
  870. mxc_do_addr_cycle(mtd, column, page_addr);
  871. break;
  872. }
  873. }
  874. /*
  875. * The generic flash bbt decriptors overlap with our ecc
  876. * hardware, so define some i.MX specific ones.
  877. */
  878. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  879. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  880. static struct nand_bbt_descr bbt_main_descr = {
  881. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  882. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  883. .offs = 0,
  884. .len = 4,
  885. .veroffs = 4,
  886. .maxblocks = 4,
  887. .pattern = bbt_pattern,
  888. };
  889. static struct nand_bbt_descr bbt_mirror_descr = {
  890. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  891. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  892. .offs = 0,
  893. .len = 4,
  894. .veroffs = 4,
  895. .maxblocks = 4,
  896. .pattern = mirror_pattern,
  897. };
  898. /* v1: i.MX21, i.MX27, i.MX31 */
  899. static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
  900. .preset = preset_v1,
  901. .send_cmd = send_cmd_v1_v2,
  902. .send_addr = send_addr_v1_v2,
  903. .send_page = send_page_v1,
  904. .send_read_id = send_read_id_v1_v2,
  905. .get_dev_status = get_dev_status_v1_v2,
  906. .check_int = check_int_v1_v2,
  907. .irq_control = irq_control_v1_v2,
  908. .get_ecc_status = get_ecc_status_v1,
  909. .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
  910. .ecclayout_2k = &nandv1_hw_eccoob_largepage,
  911. .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
  912. };
  913. /* v21: i.MX25, i.MX35 */
  914. static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
  915. .preset = preset_v2,
  916. .send_cmd = send_cmd_v1_v2,
  917. .send_addr = send_addr_v1_v2,
  918. .send_page = send_page_v2,
  919. .send_read_id = send_read_id_v1_v2,
  920. .get_dev_status = get_dev_status_v1_v2,
  921. .check_int = check_int_v1_v2,
  922. .irq_control = irq_control_v1_v2,
  923. .get_ecc_status = get_ecc_status_v2,
  924. .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
  925. .ecclayout_2k = &nandv2_hw_eccoob_largepage,
  926. .ecclayout_4k = &nandv2_hw_eccoob_4k,
  927. };
  928. /* v3: i.MX51, i.MX53 */
  929. static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
  930. .preset = preset_v3,
  931. .send_cmd = send_cmd_v3,
  932. .send_addr = send_addr_v3,
  933. .send_page = send_page_v3,
  934. .send_read_id = send_read_id_v3,
  935. .get_dev_status = get_dev_status_v3,
  936. .check_int = check_int_v3,
  937. .irq_control = irq_control_v3,
  938. .get_ecc_status = get_ecc_status_v3,
  939. .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
  940. .ecclayout_2k = &nandv2_hw_eccoob_largepage,
  941. .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
  942. };
  943. static int __init mxcnd_probe(struct platform_device *pdev)
  944. {
  945. struct nand_chip *this;
  946. struct mtd_info *mtd;
  947. struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
  948. struct mxc_nand_host *host;
  949. struct resource *res;
  950. int err = 0;
  951. /* Allocate memory for MTD device structure and private data */
  952. host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
  953. NAND_MAX_OOBSIZE, GFP_KERNEL);
  954. if (!host)
  955. return -ENOMEM;
  956. host->data_buf = (uint8_t *)(host + 1);
  957. host->dev = &pdev->dev;
  958. /* structures must be linked */
  959. this = &host->nand;
  960. mtd = &host->mtd;
  961. mtd->priv = this;
  962. mtd->owner = THIS_MODULE;
  963. mtd->dev.parent = &pdev->dev;
  964. mtd->name = DRIVER_NAME;
  965. /* 50 us command delay time */
  966. this->chip_delay = 5;
  967. this->priv = host;
  968. this->dev_ready = mxc_nand_dev_ready;
  969. this->cmdfunc = mxc_nand_command;
  970. this->select_chip = mxc_nand_select_chip;
  971. this->read_byte = mxc_nand_read_byte;
  972. this->read_word = mxc_nand_read_word;
  973. this->write_buf = mxc_nand_write_buf;
  974. this->read_buf = mxc_nand_read_buf;
  975. this->verify_buf = mxc_nand_verify_buf;
  976. host->clk = clk_get(&pdev->dev, "nfc");
  977. if (IS_ERR(host->clk)) {
  978. err = PTR_ERR(host->clk);
  979. goto eclk;
  980. }
  981. clk_enable(host->clk);
  982. host->clk_act = 1;
  983. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  984. if (!res) {
  985. err = -ENODEV;
  986. goto eres;
  987. }
  988. host->base = ioremap(res->start, resource_size(res));
  989. if (!host->base) {
  990. err = -ENOMEM;
  991. goto eres;
  992. }
  993. host->main_area0 = host->base;
  994. if (nfc_is_v1()) {
  995. host->devtype_data = &imx21_nand_devtype_data;
  996. if (cpu_is_mx21())
  997. host->irqpending_quirk = 1;
  998. host->regs = host->base + 0xe00;
  999. host->spare0 = host->base + 0x800;
  1000. host->spare_len = 16;
  1001. this->ecc.bytes = 3;
  1002. host->eccsize = 1;
  1003. } else if (nfc_is_v21()) {
  1004. host->devtype_data = &imx25_nand_devtype_data;
  1005. host->regs = host->base + 0x1e00;
  1006. host->spare0 = host->base + 0x1000;
  1007. host->spare_len = 64;
  1008. this->ecc.bytes = 9;
  1009. } else if (nfc_is_v3_2()) {
  1010. host->devtype_data = &imx51_nand_devtype_data;
  1011. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1012. if (!res) {
  1013. err = -ENODEV;
  1014. goto eirq;
  1015. }
  1016. host->regs_ip = ioremap(res->start, resource_size(res));
  1017. if (!host->regs_ip) {
  1018. err = -ENOMEM;
  1019. goto eirq;
  1020. }
  1021. host->regs_axi = host->base + 0x1e00;
  1022. host->spare0 = host->base + 0x1000;
  1023. host->spare_len = 64;
  1024. } else
  1025. BUG();
  1026. this->ecc.size = 512;
  1027. this->ecc.layout = host->devtype_data->ecclayout_512;
  1028. if (pdata->hw_ecc) {
  1029. this->ecc.calculate = mxc_nand_calculate_ecc;
  1030. this->ecc.hwctl = mxc_nand_enable_hwecc;
  1031. if (nfc_is_v1())
  1032. this->ecc.correct = mxc_nand_correct_data_v1;
  1033. else
  1034. this->ecc.correct = mxc_nand_correct_data_v2_v3;
  1035. this->ecc.mode = NAND_ECC_HW;
  1036. } else {
  1037. this->ecc.mode = NAND_ECC_SOFT;
  1038. }
  1039. /* NAND bus width determines access funtions used by upper layer */
  1040. if (pdata->width == 2)
  1041. this->options |= NAND_BUSWIDTH_16;
  1042. if (pdata->flash_bbt) {
  1043. this->bbt_td = &bbt_main_descr;
  1044. this->bbt_md = &bbt_mirror_descr;
  1045. /* update flash based bbt */
  1046. this->bbt_options |= NAND_BBT_USE_FLASH;
  1047. }
  1048. init_completion(&host->op_completion);
  1049. host->irq = platform_get_irq(pdev, 0);
  1050. /*
  1051. * Use host->devtype_data->irq_control() here instead of irq_control()
  1052. * because we must not disable_irq_nosync without having requested the
  1053. * irq.
  1054. */
  1055. host->devtype_data->irq_control(host, 0);
  1056. err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
  1057. if (err)
  1058. goto eirq;
  1059. /*
  1060. * Now that we "own" the interrupt make sure the interrupt mask bit is
  1061. * cleared on i.MX21. Otherwise we can't read the interrupt status bit
  1062. * on this machine.
  1063. */
  1064. if (host->irqpending_quirk) {
  1065. disable_irq_nosync(host->irq);
  1066. host->devtype_data->irq_control(host, 1);
  1067. }
  1068. /* first scan to find the device and get the page size */
  1069. if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
  1070. err = -ENXIO;
  1071. goto escan;
  1072. }
  1073. /* Call preset again, with correct writesize this time */
  1074. host->devtype_data->preset(mtd);
  1075. if (mtd->writesize == 2048)
  1076. this->ecc.layout = host->devtype_data->ecclayout_2k;
  1077. else if (mtd->writesize == 4096)
  1078. this->ecc.layout = host->devtype_data->ecclayout_4k;
  1079. /* second phase scan */
  1080. if (nand_scan_tail(mtd)) {
  1081. err = -ENXIO;
  1082. goto escan;
  1083. }
  1084. if (this->ecc.mode == NAND_ECC_HW) {
  1085. if (nfc_is_v1())
  1086. this->ecc.strength = 1;
  1087. else
  1088. this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
  1089. }
  1090. /* Register the partitions */
  1091. mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts,
  1092. pdata->nr_parts);
  1093. platform_set_drvdata(pdev, host);
  1094. return 0;
  1095. escan:
  1096. free_irq(host->irq, host);
  1097. eirq:
  1098. if (host->regs_ip)
  1099. iounmap(host->regs_ip);
  1100. iounmap(host->base);
  1101. eres:
  1102. clk_put(host->clk);
  1103. eclk:
  1104. kfree(host);
  1105. return err;
  1106. }
  1107. static int __devexit mxcnd_remove(struct platform_device *pdev)
  1108. {
  1109. struct mxc_nand_host *host = platform_get_drvdata(pdev);
  1110. clk_put(host->clk);
  1111. platform_set_drvdata(pdev, NULL);
  1112. nand_release(&host->mtd);
  1113. free_irq(host->irq, host);
  1114. if (host->regs_ip)
  1115. iounmap(host->regs_ip);
  1116. iounmap(host->base);
  1117. kfree(host);
  1118. return 0;
  1119. }
  1120. static struct platform_driver mxcnd_driver = {
  1121. .driver = {
  1122. .name = DRIVER_NAME,
  1123. .owner = THIS_MODULE,
  1124. },
  1125. .remove = __devexit_p(mxcnd_remove),
  1126. };
  1127. static int __init mxc_nd_init(void)
  1128. {
  1129. return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
  1130. }
  1131. static void __exit mxc_nd_cleanup(void)
  1132. {
  1133. /* Unregister the device structure */
  1134. platform_driver_unregister(&mxcnd_driver);
  1135. }
  1136. module_init(mxc_nd_init);
  1137. module_exit(mxc_nd_cleanup);
  1138. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  1139. MODULE_DESCRIPTION("MXC NAND MTD driver");
  1140. MODULE_LICENSE("GPL");