ste_dma40.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  58. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  59. * one buffer to one buffer.
  60. */
  61. struct d40_lli_pool {
  62. void *base;
  63. int size;
  64. /* Space for dst and src, plus an extra for padding */
  65. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  66. };
  67. /**
  68. * struct d40_desc - A descriptor is one DMA job.
  69. *
  70. * @lli_phy: LLI settings for physical channel. Both src and dst=
  71. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  72. * lli_len equals one.
  73. * @lli_log: Same as above but for logical channels.
  74. * @lli_pool: The pool with two entries pre-allocated.
  75. * @lli_len: Number of llis of current descriptor.
  76. * @lli_current: Number of transfered llis.
  77. * @lcla_alloc: Number of LCLA entries allocated.
  78. * @txd: DMA engine struct. Used for among other things for communication
  79. * during a transfer.
  80. * @node: List entry.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. };
  99. /**
  100. * struct d40_lcla_pool - LCLA pool settings and data.
  101. *
  102. * @base: The virtual address of LCLA. 18 bit aligned.
  103. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  104. * This pointer is only there for clean-up on error.
  105. * @pages: The number of pages needed for all physical channels.
  106. * Only used later for clean-up on error
  107. * @lock: Lock to protect the content in this struct.
  108. * @alloc_map: big map over which LCLA entry is own by which job.
  109. */
  110. struct d40_lcla_pool {
  111. void *base;
  112. void *base_unaligned;
  113. int pages;
  114. spinlock_t lock;
  115. struct d40_desc **alloc_map;
  116. };
  117. /**
  118. * struct d40_phy_res - struct for handling eventlines mapped to physical
  119. * channels.
  120. *
  121. * @lock: A lock protection this entity.
  122. * @num: The physical channel number of this entity.
  123. * @allocated_src: Bit mapped to show which src event line's are mapped to
  124. * this physical channel. Can also be free or physically allocated.
  125. * @allocated_dst: Same as for src but is dst.
  126. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  127. * event line number.
  128. */
  129. struct d40_phy_res {
  130. spinlock_t lock;
  131. int num;
  132. u32 allocated_src;
  133. u32 allocated_dst;
  134. };
  135. struct d40_base;
  136. /**
  137. * struct d40_chan - Struct that describes a channel.
  138. *
  139. * @lock: A spinlock to protect this struct.
  140. * @log_num: The logical number, if any of this channel.
  141. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  142. * current cookie.
  143. * @pending_tx: The number of pending transfers. Used between interrupt handler
  144. * and tasklet.
  145. * @busy: Set to true when transfer is ongoing on this channel.
  146. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  147. * point is NULL, then the channel is not allocated.
  148. * @chan: DMA engine handle.
  149. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  150. * transfer and call client callback.
  151. * @client: Cliented owned descriptor list.
  152. * @active: Active descriptor.
  153. * @queue: Queued jobs.
  154. * @dma_cfg: The client configuration of this dma channel.
  155. * @configured: whether the dma_cfg configuration is valid
  156. * @base: Pointer to the device instance struct.
  157. * @src_def_cfg: Default cfg register setting for src.
  158. * @dst_def_cfg: Default cfg register setting for dst.
  159. * @log_def: Default logical channel settings.
  160. * @lcla: Space for one dst src pair for logical channel transfers.
  161. * @lcpa: Pointer to dst and src lcpa settings.
  162. *
  163. * This struct can either "be" a logical or a physical channel.
  164. */
  165. struct d40_chan {
  166. spinlock_t lock;
  167. int log_num;
  168. /* ID of the most recent completed transfer */
  169. int completed;
  170. int pending_tx;
  171. bool busy;
  172. struct d40_phy_res *phy_chan;
  173. struct dma_chan chan;
  174. struct tasklet_struct tasklet;
  175. struct list_head client;
  176. struct list_head active;
  177. struct list_head queue;
  178. struct stedma40_chan_cfg dma_cfg;
  179. bool configured;
  180. struct d40_base *base;
  181. /* Default register configurations */
  182. u32 src_def_cfg;
  183. u32 dst_def_cfg;
  184. struct d40_def_lcsp log_def;
  185. struct d40_log_lli_full *lcpa;
  186. /* Runtime reconfiguration */
  187. dma_addr_t runtime_addr;
  188. enum dma_data_direction runtime_direction;
  189. };
  190. /**
  191. * struct d40_base - The big global struct, one for each probe'd instance.
  192. *
  193. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  194. * @execmd_lock: Lock for execute command usage since several channels share
  195. * the same physical register.
  196. * @dev: The device structure.
  197. * @virtbase: The virtual base address of the DMA's register.
  198. * @rev: silicon revision detected.
  199. * @clk: Pointer to the DMA clock structure.
  200. * @phy_start: Physical memory start of the DMA registers.
  201. * @phy_size: Size of the DMA register map.
  202. * @irq: The IRQ number.
  203. * @num_phy_chans: The number of physical channels. Read from HW. This
  204. * is the number of available channels for this driver, not counting "Secure
  205. * mode" allocated physical channels.
  206. * @num_log_chans: The number of logical channels. Calculated from
  207. * num_phy_chans.
  208. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  209. * @dma_slave: dma_device channels that can do only do slave transfers.
  210. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  211. * @log_chans: Room for all possible logical channels in system.
  212. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  213. * to log_chans entries.
  214. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  215. * to phy_chans entries.
  216. * @plat_data: Pointer to provided platform_data which is the driver
  217. * configuration.
  218. * @phy_res: Vector containing all physical channels.
  219. * @lcla_pool: lcla pool settings and data.
  220. * @lcpa_base: The virtual mapped address of LCPA.
  221. * @phy_lcpa: The physical address of the LCPA.
  222. * @lcpa_size: The size of the LCPA area.
  223. * @desc_slab: cache for descriptors.
  224. */
  225. struct d40_base {
  226. spinlock_t interrupt_lock;
  227. spinlock_t execmd_lock;
  228. struct device *dev;
  229. void __iomem *virtbase;
  230. u8 rev:4;
  231. struct clk *clk;
  232. phys_addr_t phy_start;
  233. resource_size_t phy_size;
  234. int irq;
  235. int num_phy_chans;
  236. int num_log_chans;
  237. struct dma_device dma_both;
  238. struct dma_device dma_slave;
  239. struct dma_device dma_memcpy;
  240. struct d40_chan *phy_chans;
  241. struct d40_chan *log_chans;
  242. struct d40_chan **lookup_log_chans;
  243. struct d40_chan **lookup_phy_chans;
  244. struct stedma40_platform_data *plat_data;
  245. /* Physical half channels */
  246. struct d40_phy_res *phy_res;
  247. struct d40_lcla_pool lcla_pool;
  248. void *lcpa_base;
  249. dma_addr_t phy_lcpa;
  250. resource_size_t lcpa_size;
  251. struct kmem_cache *desc_slab;
  252. };
  253. /**
  254. * struct d40_interrupt_lookup - lookup table for interrupt handler
  255. *
  256. * @src: Interrupt mask register.
  257. * @clr: Interrupt clear register.
  258. * @is_error: true if this is an error interrupt.
  259. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  260. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  261. */
  262. struct d40_interrupt_lookup {
  263. u32 src;
  264. u32 clr;
  265. bool is_error;
  266. int offset;
  267. };
  268. /**
  269. * struct d40_reg_val - simple lookup struct
  270. *
  271. * @reg: The register.
  272. * @val: The value that belongs to the register in reg.
  273. */
  274. struct d40_reg_val {
  275. unsigned int reg;
  276. unsigned int val;
  277. };
  278. static struct device *chan2dev(struct d40_chan *d40c)
  279. {
  280. return &d40c->chan.dev->device;
  281. }
  282. static bool chan_is_physical(struct d40_chan *chan)
  283. {
  284. return chan->log_num == D40_PHY_CHAN;
  285. }
  286. static bool chan_is_logical(struct d40_chan *chan)
  287. {
  288. return !chan_is_physical(chan);
  289. }
  290. static void __iomem *chan_base(struct d40_chan *chan)
  291. {
  292. return chan->base->virtbase + D40_DREG_PCBASE +
  293. chan->phy_chan->num * D40_DREG_PCDELTA;
  294. }
  295. #define d40_err(dev, format, arg...) \
  296. dev_err(dev, "[%s] " format, __func__, ## arg)
  297. #define chan_err(d40c, format, arg...) \
  298. d40_err(chan2dev(d40c), format, ## arg)
  299. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  300. int lli_len, bool is_log)
  301. {
  302. u32 align;
  303. void *base;
  304. if (is_log)
  305. align = sizeof(struct d40_log_lli);
  306. else
  307. align = sizeof(struct d40_phy_lli);
  308. if (lli_len == 1) {
  309. base = d40d->lli_pool.pre_alloc_lli;
  310. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  311. d40d->lli_pool.base = NULL;
  312. } else {
  313. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  314. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  315. d40d->lli_pool.base = base;
  316. if (d40d->lli_pool.base == NULL)
  317. return -ENOMEM;
  318. }
  319. if (is_log) {
  320. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  321. align);
  322. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  323. align);
  324. } else {
  325. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  326. align);
  327. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  328. align);
  329. }
  330. return 0;
  331. }
  332. static void d40_pool_lli_free(struct d40_desc *d40d)
  333. {
  334. kfree(d40d->lli_pool.base);
  335. d40d->lli_pool.base = NULL;
  336. d40d->lli_pool.size = 0;
  337. d40d->lli_log.src = NULL;
  338. d40d->lli_log.dst = NULL;
  339. d40d->lli_phy.src = NULL;
  340. d40d->lli_phy.dst = NULL;
  341. }
  342. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  343. struct d40_desc *d40d)
  344. {
  345. unsigned long flags;
  346. int i;
  347. int ret = -EINVAL;
  348. int p;
  349. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  350. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  351. /*
  352. * Allocate both src and dst at the same time, therefore the half
  353. * start on 1 since 0 can't be used since zero is used as end marker.
  354. */
  355. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  356. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  357. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  358. d40d->lcla_alloc++;
  359. ret = i;
  360. break;
  361. }
  362. }
  363. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  364. return ret;
  365. }
  366. static int d40_lcla_free_all(struct d40_chan *d40c,
  367. struct d40_desc *d40d)
  368. {
  369. unsigned long flags;
  370. int i;
  371. int ret = -EINVAL;
  372. if (chan_is_physical(d40c))
  373. return 0;
  374. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  375. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  376. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  377. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  378. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  379. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  380. d40d->lcla_alloc--;
  381. if (d40d->lcla_alloc == 0) {
  382. ret = 0;
  383. break;
  384. }
  385. }
  386. }
  387. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  388. return ret;
  389. }
  390. static void d40_desc_remove(struct d40_desc *d40d)
  391. {
  392. list_del(&d40d->node);
  393. }
  394. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  395. {
  396. struct d40_desc *desc = NULL;
  397. if (!list_empty(&d40c->client)) {
  398. struct d40_desc *d;
  399. struct d40_desc *_d;
  400. list_for_each_entry_safe(d, _d, &d40c->client, node)
  401. if (async_tx_test_ack(&d->txd)) {
  402. d40_pool_lli_free(d);
  403. d40_desc_remove(d);
  404. desc = d;
  405. memset(desc, 0, sizeof(*desc));
  406. break;
  407. }
  408. }
  409. if (!desc)
  410. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  411. if (desc)
  412. INIT_LIST_HEAD(&desc->node);
  413. return desc;
  414. }
  415. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  416. {
  417. d40_lcla_free_all(d40c, d40d);
  418. kmem_cache_free(d40c->base->desc_slab, d40d);
  419. }
  420. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  421. {
  422. list_add_tail(&desc->node, &d40c->active);
  423. }
  424. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  425. {
  426. int curr_lcla = -EINVAL, next_lcla;
  427. if (chan_is_physical(d40c)) {
  428. d40_phy_lli_write(d40c->base->virtbase,
  429. d40c->phy_chan->num,
  430. d40d->lli_phy.dst,
  431. d40d->lli_phy.src);
  432. d40d->lli_current = d40d->lli_len;
  433. } else {
  434. if ((d40d->lli_len - d40d->lli_current) > 1)
  435. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  436. d40_log_lli_lcpa_write(d40c->lcpa,
  437. &d40d->lli_log.dst[d40d->lli_current],
  438. &d40d->lli_log.src[d40d->lli_current],
  439. curr_lcla);
  440. d40d->lli_current++;
  441. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  442. struct d40_log_lli *lcla;
  443. if (d40d->lli_current + 1 < d40d->lli_len)
  444. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  445. else
  446. next_lcla = -EINVAL;
  447. lcla = d40c->base->lcla_pool.base +
  448. d40c->phy_chan->num * 1024 +
  449. 8 * curr_lcla * 2;
  450. d40_log_lli_lcla_write(lcla,
  451. &d40d->lli_log.dst[d40d->lli_current],
  452. &d40d->lli_log.src[d40d->lli_current],
  453. next_lcla);
  454. (void) dma_map_single(d40c->base->dev, lcla,
  455. 2 * sizeof(struct d40_log_lli),
  456. DMA_TO_DEVICE);
  457. curr_lcla = next_lcla;
  458. if (curr_lcla == -EINVAL) {
  459. d40d->lli_current++;
  460. break;
  461. }
  462. }
  463. }
  464. }
  465. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  466. {
  467. struct d40_desc *d;
  468. if (list_empty(&d40c->active))
  469. return NULL;
  470. d = list_first_entry(&d40c->active,
  471. struct d40_desc,
  472. node);
  473. return d;
  474. }
  475. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  476. {
  477. list_add_tail(&desc->node, &d40c->queue);
  478. }
  479. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  480. {
  481. struct d40_desc *d;
  482. if (list_empty(&d40c->queue))
  483. return NULL;
  484. d = list_first_entry(&d40c->queue,
  485. struct d40_desc,
  486. node);
  487. return d;
  488. }
  489. static int d40_psize_2_burst_size(bool is_log, int psize)
  490. {
  491. if (is_log) {
  492. if (psize == STEDMA40_PSIZE_LOG_1)
  493. return 1;
  494. } else {
  495. if (psize == STEDMA40_PSIZE_PHY_1)
  496. return 1;
  497. }
  498. return 2 << psize;
  499. }
  500. /*
  501. * The dma only supports transmitting packages up to
  502. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  503. * dma elements required to send the entire sg list
  504. */
  505. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  506. {
  507. int dmalen;
  508. u32 max_w = max(data_width1, data_width2);
  509. u32 min_w = min(data_width1, data_width2);
  510. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  511. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  512. seg_max -= (1 << max_w);
  513. if (!IS_ALIGNED(size, 1 << max_w))
  514. return -EINVAL;
  515. if (size <= seg_max)
  516. dmalen = 1;
  517. else {
  518. dmalen = size / seg_max;
  519. if (dmalen * seg_max < size)
  520. dmalen++;
  521. }
  522. return dmalen;
  523. }
  524. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  525. u32 data_width1, u32 data_width2)
  526. {
  527. struct scatterlist *sg;
  528. int i;
  529. int len = 0;
  530. int ret;
  531. for_each_sg(sgl, sg, sg_len, i) {
  532. ret = d40_size_2_dmalen(sg_dma_len(sg),
  533. data_width1, data_width2);
  534. if (ret < 0)
  535. return ret;
  536. len += ret;
  537. }
  538. return len;
  539. }
  540. /* Support functions for logical channels */
  541. static int d40_channel_execute_command(struct d40_chan *d40c,
  542. enum d40_command command)
  543. {
  544. u32 status;
  545. int i;
  546. void __iomem *active_reg;
  547. int ret = 0;
  548. unsigned long flags;
  549. u32 wmask;
  550. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  551. if (d40c->phy_chan->num % 2 == 0)
  552. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  553. else
  554. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  555. if (command == D40_DMA_SUSPEND_REQ) {
  556. status = (readl(active_reg) &
  557. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  558. D40_CHAN_POS(d40c->phy_chan->num);
  559. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  560. goto done;
  561. }
  562. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  563. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  564. active_reg);
  565. if (command == D40_DMA_SUSPEND_REQ) {
  566. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  567. status = (readl(active_reg) &
  568. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  569. D40_CHAN_POS(d40c->phy_chan->num);
  570. cpu_relax();
  571. /*
  572. * Reduce the number of bus accesses while
  573. * waiting for the DMA to suspend.
  574. */
  575. udelay(3);
  576. if (status == D40_DMA_STOP ||
  577. status == D40_DMA_SUSPENDED)
  578. break;
  579. }
  580. if (i == D40_SUSPEND_MAX_IT) {
  581. chan_err(d40c,
  582. "unable to suspend the chl %d (log: %d) status %x\n",
  583. d40c->phy_chan->num, d40c->log_num,
  584. status);
  585. dump_stack();
  586. ret = -EBUSY;
  587. }
  588. }
  589. done:
  590. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  591. return ret;
  592. }
  593. static void d40_term_all(struct d40_chan *d40c)
  594. {
  595. struct d40_desc *d40d;
  596. /* Release active descriptors */
  597. while ((d40d = d40_first_active_get(d40c))) {
  598. d40_desc_remove(d40d);
  599. d40_desc_free(d40c, d40d);
  600. }
  601. /* Release queued descriptors waiting for transfer */
  602. while ((d40d = d40_first_queued(d40c))) {
  603. d40_desc_remove(d40d);
  604. d40_desc_free(d40c, d40d);
  605. }
  606. d40c->pending_tx = 0;
  607. d40c->busy = false;
  608. }
  609. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  610. u32 event, int reg)
  611. {
  612. void __iomem *addr = chan_base(d40c) + reg;
  613. int tries;
  614. if (!enable) {
  615. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  616. | ~D40_EVENTLINE_MASK(event), addr);
  617. return;
  618. }
  619. /*
  620. * The hardware sometimes doesn't register the enable when src and dst
  621. * event lines are active on the same logical channel. Retry to ensure
  622. * it does. Usually only one retry is sufficient.
  623. */
  624. tries = 100;
  625. while (--tries) {
  626. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  627. | ~D40_EVENTLINE_MASK(event), addr);
  628. if (readl(addr) & D40_EVENTLINE_MASK(event))
  629. break;
  630. }
  631. if (tries != 99)
  632. dev_dbg(chan2dev(d40c),
  633. "[%s] workaround enable S%cLNK (%d tries)\n",
  634. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  635. 100 - tries);
  636. WARN_ON(!tries);
  637. }
  638. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  639. {
  640. unsigned long flags;
  641. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  642. /* Enable event line connected to device (or memcpy) */
  643. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  644. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  645. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  646. __d40_config_set_event(d40c, do_enable, event,
  647. D40_CHAN_REG_SSLNK);
  648. }
  649. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  650. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  651. __d40_config_set_event(d40c, do_enable, event,
  652. D40_CHAN_REG_SDLNK);
  653. }
  654. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  655. }
  656. static u32 d40_chan_has_events(struct d40_chan *d40c)
  657. {
  658. void __iomem *chanbase = chan_base(d40c);
  659. u32 val;
  660. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  661. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  662. return val;
  663. }
  664. static u32 d40_get_prmo(struct d40_chan *d40c)
  665. {
  666. static const unsigned int phy_map[] = {
  667. [STEDMA40_PCHAN_BASIC_MODE]
  668. = D40_DREG_PRMO_PCHAN_BASIC,
  669. [STEDMA40_PCHAN_MODULO_MODE]
  670. = D40_DREG_PRMO_PCHAN_MODULO,
  671. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  672. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  673. };
  674. static const unsigned int log_map[] = {
  675. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  676. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  677. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  678. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  679. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  680. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  681. };
  682. if (chan_is_physical(d40c))
  683. return phy_map[d40c->dma_cfg.mode_opt];
  684. else
  685. return log_map[d40c->dma_cfg.mode_opt];
  686. }
  687. static void d40_config_write(struct d40_chan *d40c)
  688. {
  689. u32 addr_base;
  690. u32 var;
  691. /* Odd addresses are even addresses + 4 */
  692. addr_base = (d40c->phy_chan->num % 2) * 4;
  693. /* Setup channel mode to logical or physical */
  694. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  695. D40_CHAN_POS(d40c->phy_chan->num);
  696. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  697. /* Setup operational mode option register */
  698. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  699. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  700. if (chan_is_logical(d40c)) {
  701. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  702. & D40_SREG_ELEM_LOG_LIDX_MASK;
  703. void __iomem *chanbase = chan_base(d40c);
  704. /* Set default config for CFG reg */
  705. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  706. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  707. /* Set LIDX for lcla */
  708. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  709. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  710. }
  711. }
  712. static u32 d40_residue(struct d40_chan *d40c)
  713. {
  714. u32 num_elt;
  715. if (chan_is_logical(d40c))
  716. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  717. >> D40_MEM_LCSP2_ECNT_POS;
  718. else {
  719. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  720. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  721. >> D40_SREG_ELEM_PHY_ECNT_POS;
  722. }
  723. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  724. }
  725. static bool d40_tx_is_linked(struct d40_chan *d40c)
  726. {
  727. bool is_link;
  728. if (chan_is_logical(d40c))
  729. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  730. else
  731. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  732. & D40_SREG_LNK_PHYS_LNK_MASK;
  733. return is_link;
  734. }
  735. static int d40_pause(struct dma_chan *chan)
  736. {
  737. struct d40_chan *d40c =
  738. container_of(chan, struct d40_chan, chan);
  739. int res = 0;
  740. unsigned long flags;
  741. if (!d40c->busy)
  742. return 0;
  743. spin_lock_irqsave(&d40c->lock, flags);
  744. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  745. if (res == 0) {
  746. if (chan_is_logical(d40c)) {
  747. d40_config_set_event(d40c, false);
  748. /* Resume the other logical channels if any */
  749. if (d40_chan_has_events(d40c))
  750. res = d40_channel_execute_command(d40c,
  751. D40_DMA_RUN);
  752. }
  753. }
  754. spin_unlock_irqrestore(&d40c->lock, flags);
  755. return res;
  756. }
  757. static int d40_resume(struct dma_chan *chan)
  758. {
  759. struct d40_chan *d40c =
  760. container_of(chan, struct d40_chan, chan);
  761. int res = 0;
  762. unsigned long flags;
  763. if (!d40c->busy)
  764. return 0;
  765. spin_lock_irqsave(&d40c->lock, flags);
  766. if (d40c->base->rev == 0)
  767. if (chan_is_logical(d40c)) {
  768. res = d40_channel_execute_command(d40c,
  769. D40_DMA_SUSPEND_REQ);
  770. goto no_suspend;
  771. }
  772. /* If bytes left to transfer or linked tx resume job */
  773. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  774. if (chan_is_logical(d40c))
  775. d40_config_set_event(d40c, true);
  776. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  777. }
  778. no_suspend:
  779. spin_unlock_irqrestore(&d40c->lock, flags);
  780. return res;
  781. }
  782. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  783. {
  784. struct d40_chan *d40c = container_of(tx->chan,
  785. struct d40_chan,
  786. chan);
  787. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  788. unsigned long flags;
  789. spin_lock_irqsave(&d40c->lock, flags);
  790. d40c->chan.cookie++;
  791. if (d40c->chan.cookie < 0)
  792. d40c->chan.cookie = 1;
  793. d40d->txd.cookie = d40c->chan.cookie;
  794. d40_desc_queue(d40c, d40d);
  795. spin_unlock_irqrestore(&d40c->lock, flags);
  796. return tx->cookie;
  797. }
  798. static int d40_start(struct d40_chan *d40c)
  799. {
  800. if (d40c->base->rev == 0) {
  801. int err;
  802. if (chan_is_logical(d40c)) {
  803. err = d40_channel_execute_command(d40c,
  804. D40_DMA_SUSPEND_REQ);
  805. if (err)
  806. return err;
  807. }
  808. }
  809. if (chan_is_logical(d40c))
  810. d40_config_set_event(d40c, true);
  811. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  812. }
  813. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  814. {
  815. struct d40_desc *d40d;
  816. int err;
  817. /* Start queued jobs, if any */
  818. d40d = d40_first_queued(d40c);
  819. if (d40d != NULL) {
  820. d40c->busy = true;
  821. /* Remove from queue */
  822. d40_desc_remove(d40d);
  823. /* Add to active queue */
  824. d40_desc_submit(d40c, d40d);
  825. /* Initiate DMA job */
  826. d40_desc_load(d40c, d40d);
  827. /* Start dma job */
  828. err = d40_start(d40c);
  829. if (err)
  830. return NULL;
  831. }
  832. return d40d;
  833. }
  834. /* called from interrupt context */
  835. static void dma_tc_handle(struct d40_chan *d40c)
  836. {
  837. struct d40_desc *d40d;
  838. /* Get first active entry from list */
  839. d40d = d40_first_active_get(d40c);
  840. if (d40d == NULL)
  841. return;
  842. d40_lcla_free_all(d40c, d40d);
  843. if (d40d->lli_current < d40d->lli_len) {
  844. d40_desc_load(d40c, d40d);
  845. /* Start dma job */
  846. (void) d40_start(d40c);
  847. return;
  848. }
  849. if (d40_queue_start(d40c) == NULL)
  850. d40c->busy = false;
  851. d40c->pending_tx++;
  852. tasklet_schedule(&d40c->tasklet);
  853. }
  854. static void dma_tasklet(unsigned long data)
  855. {
  856. struct d40_chan *d40c = (struct d40_chan *) data;
  857. struct d40_desc *d40d;
  858. unsigned long flags;
  859. dma_async_tx_callback callback;
  860. void *callback_param;
  861. spin_lock_irqsave(&d40c->lock, flags);
  862. /* Get first active entry from list */
  863. d40d = d40_first_active_get(d40c);
  864. if (d40d == NULL)
  865. goto err;
  866. d40c->completed = d40d->txd.cookie;
  867. /*
  868. * If terminating a channel pending_tx is set to zero.
  869. * This prevents any finished active jobs to return to the client.
  870. */
  871. if (d40c->pending_tx == 0) {
  872. spin_unlock_irqrestore(&d40c->lock, flags);
  873. return;
  874. }
  875. /* Callback to client */
  876. callback = d40d->txd.callback;
  877. callback_param = d40d->txd.callback_param;
  878. if (async_tx_test_ack(&d40d->txd)) {
  879. d40_pool_lli_free(d40d);
  880. d40_desc_remove(d40d);
  881. d40_desc_free(d40c, d40d);
  882. } else {
  883. if (!d40d->is_in_client_list) {
  884. d40_desc_remove(d40d);
  885. d40_lcla_free_all(d40c, d40d);
  886. list_add_tail(&d40d->node, &d40c->client);
  887. d40d->is_in_client_list = true;
  888. }
  889. }
  890. d40c->pending_tx--;
  891. if (d40c->pending_tx)
  892. tasklet_schedule(&d40c->tasklet);
  893. spin_unlock_irqrestore(&d40c->lock, flags);
  894. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  895. callback(callback_param);
  896. return;
  897. err:
  898. /* Rescue manouver if receiving double interrupts */
  899. if (d40c->pending_tx > 0)
  900. d40c->pending_tx--;
  901. spin_unlock_irqrestore(&d40c->lock, flags);
  902. }
  903. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  904. {
  905. static const struct d40_interrupt_lookup il[] = {
  906. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  907. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  908. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  909. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  910. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  911. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  912. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  913. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  914. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  915. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  916. };
  917. int i;
  918. u32 regs[ARRAY_SIZE(il)];
  919. u32 idx;
  920. u32 row;
  921. long chan = -1;
  922. struct d40_chan *d40c;
  923. unsigned long flags;
  924. struct d40_base *base = data;
  925. spin_lock_irqsave(&base->interrupt_lock, flags);
  926. /* Read interrupt status of both logical and physical channels */
  927. for (i = 0; i < ARRAY_SIZE(il); i++)
  928. regs[i] = readl(base->virtbase + il[i].src);
  929. for (;;) {
  930. chan = find_next_bit((unsigned long *)regs,
  931. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  932. /* No more set bits found? */
  933. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  934. break;
  935. row = chan / BITS_PER_LONG;
  936. idx = chan & (BITS_PER_LONG - 1);
  937. /* ACK interrupt */
  938. writel(1 << idx, base->virtbase + il[row].clr);
  939. if (il[row].offset == D40_PHY_CHAN)
  940. d40c = base->lookup_phy_chans[idx];
  941. else
  942. d40c = base->lookup_log_chans[il[row].offset + idx];
  943. spin_lock(&d40c->lock);
  944. if (!il[row].is_error)
  945. dma_tc_handle(d40c);
  946. else
  947. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  948. chan, il[row].offset, idx);
  949. spin_unlock(&d40c->lock);
  950. }
  951. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  952. return IRQ_HANDLED;
  953. }
  954. static int d40_validate_conf(struct d40_chan *d40c,
  955. struct stedma40_chan_cfg *conf)
  956. {
  957. int res = 0;
  958. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  959. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  960. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  961. if (!conf->dir) {
  962. chan_err(d40c, "Invalid direction.\n");
  963. res = -EINVAL;
  964. }
  965. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  966. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  967. d40c->runtime_addr == 0) {
  968. chan_err(d40c, "Invalid TX channel address (%d)\n",
  969. conf->dst_dev_type);
  970. res = -EINVAL;
  971. }
  972. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  973. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  974. d40c->runtime_addr == 0) {
  975. chan_err(d40c, "Invalid RX channel address (%d)\n",
  976. conf->src_dev_type);
  977. res = -EINVAL;
  978. }
  979. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  980. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  981. chan_err(d40c, "Invalid dst\n");
  982. res = -EINVAL;
  983. }
  984. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  985. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  986. chan_err(d40c, "Invalid src\n");
  987. res = -EINVAL;
  988. }
  989. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  990. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  991. chan_err(d40c, "No event line\n");
  992. res = -EINVAL;
  993. }
  994. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  995. (src_event_group != dst_event_group)) {
  996. chan_err(d40c, "Invalid event group\n");
  997. res = -EINVAL;
  998. }
  999. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1000. /*
  1001. * DMAC HW supports it. Will be added to this driver,
  1002. * in case any dma client requires it.
  1003. */
  1004. chan_err(d40c, "periph to periph not supported\n");
  1005. res = -EINVAL;
  1006. }
  1007. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1008. (1 << conf->src_info.data_width) !=
  1009. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1010. (1 << conf->dst_info.data_width)) {
  1011. /*
  1012. * The DMAC hardware only supports
  1013. * src (burst x width) == dst (burst x width)
  1014. */
  1015. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1016. res = -EINVAL;
  1017. }
  1018. return res;
  1019. }
  1020. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1021. int log_event_line, bool is_log)
  1022. {
  1023. unsigned long flags;
  1024. spin_lock_irqsave(&phy->lock, flags);
  1025. if (!is_log) {
  1026. /* Physical interrupts are masked per physical full channel */
  1027. if (phy->allocated_src == D40_ALLOC_FREE &&
  1028. phy->allocated_dst == D40_ALLOC_FREE) {
  1029. phy->allocated_dst = D40_ALLOC_PHY;
  1030. phy->allocated_src = D40_ALLOC_PHY;
  1031. goto found;
  1032. } else
  1033. goto not_found;
  1034. }
  1035. /* Logical channel */
  1036. if (is_src) {
  1037. if (phy->allocated_src == D40_ALLOC_PHY)
  1038. goto not_found;
  1039. if (phy->allocated_src == D40_ALLOC_FREE)
  1040. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1041. if (!(phy->allocated_src & (1 << log_event_line))) {
  1042. phy->allocated_src |= 1 << log_event_line;
  1043. goto found;
  1044. } else
  1045. goto not_found;
  1046. } else {
  1047. if (phy->allocated_dst == D40_ALLOC_PHY)
  1048. goto not_found;
  1049. if (phy->allocated_dst == D40_ALLOC_FREE)
  1050. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1051. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1052. phy->allocated_dst |= 1 << log_event_line;
  1053. goto found;
  1054. } else
  1055. goto not_found;
  1056. }
  1057. not_found:
  1058. spin_unlock_irqrestore(&phy->lock, flags);
  1059. return false;
  1060. found:
  1061. spin_unlock_irqrestore(&phy->lock, flags);
  1062. return true;
  1063. }
  1064. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1065. int log_event_line)
  1066. {
  1067. unsigned long flags;
  1068. bool is_free = false;
  1069. spin_lock_irqsave(&phy->lock, flags);
  1070. if (!log_event_line) {
  1071. phy->allocated_dst = D40_ALLOC_FREE;
  1072. phy->allocated_src = D40_ALLOC_FREE;
  1073. is_free = true;
  1074. goto out;
  1075. }
  1076. /* Logical channel */
  1077. if (is_src) {
  1078. phy->allocated_src &= ~(1 << log_event_line);
  1079. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1080. phy->allocated_src = D40_ALLOC_FREE;
  1081. } else {
  1082. phy->allocated_dst &= ~(1 << log_event_line);
  1083. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1084. phy->allocated_dst = D40_ALLOC_FREE;
  1085. }
  1086. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1087. D40_ALLOC_FREE);
  1088. out:
  1089. spin_unlock_irqrestore(&phy->lock, flags);
  1090. return is_free;
  1091. }
  1092. static int d40_allocate_channel(struct d40_chan *d40c)
  1093. {
  1094. int dev_type;
  1095. int event_group;
  1096. int event_line;
  1097. struct d40_phy_res *phys;
  1098. int i;
  1099. int j;
  1100. int log_num;
  1101. bool is_src;
  1102. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1103. phys = d40c->base->phy_res;
  1104. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1105. dev_type = d40c->dma_cfg.src_dev_type;
  1106. log_num = 2 * dev_type;
  1107. is_src = true;
  1108. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1109. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1110. /* dst event lines are used for logical memcpy */
  1111. dev_type = d40c->dma_cfg.dst_dev_type;
  1112. log_num = 2 * dev_type + 1;
  1113. is_src = false;
  1114. } else
  1115. return -EINVAL;
  1116. event_group = D40_TYPE_TO_GROUP(dev_type);
  1117. event_line = D40_TYPE_TO_EVENT(dev_type);
  1118. if (!is_log) {
  1119. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1120. /* Find physical half channel */
  1121. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1122. if (d40_alloc_mask_set(&phys[i], is_src,
  1123. 0, is_log))
  1124. goto found_phy;
  1125. }
  1126. } else
  1127. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1128. int phy_num = j + event_group * 2;
  1129. for (i = phy_num; i < phy_num + 2; i++) {
  1130. if (d40_alloc_mask_set(&phys[i],
  1131. is_src,
  1132. 0,
  1133. is_log))
  1134. goto found_phy;
  1135. }
  1136. }
  1137. return -EINVAL;
  1138. found_phy:
  1139. d40c->phy_chan = &phys[i];
  1140. d40c->log_num = D40_PHY_CHAN;
  1141. goto out;
  1142. }
  1143. if (dev_type == -1)
  1144. return -EINVAL;
  1145. /* Find logical channel */
  1146. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1147. int phy_num = j + event_group * 2;
  1148. /*
  1149. * Spread logical channels across all available physical rather
  1150. * than pack every logical channel at the first available phy
  1151. * channels.
  1152. */
  1153. if (is_src) {
  1154. for (i = phy_num; i < phy_num + 2; i++) {
  1155. if (d40_alloc_mask_set(&phys[i], is_src,
  1156. event_line, is_log))
  1157. goto found_log;
  1158. }
  1159. } else {
  1160. for (i = phy_num + 1; i >= phy_num; i--) {
  1161. if (d40_alloc_mask_set(&phys[i], is_src,
  1162. event_line, is_log))
  1163. goto found_log;
  1164. }
  1165. }
  1166. }
  1167. return -EINVAL;
  1168. found_log:
  1169. d40c->phy_chan = &phys[i];
  1170. d40c->log_num = log_num;
  1171. out:
  1172. if (is_log)
  1173. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1174. else
  1175. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1176. return 0;
  1177. }
  1178. static int d40_config_memcpy(struct d40_chan *d40c)
  1179. {
  1180. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1181. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1182. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1183. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1184. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1185. memcpy[d40c->chan.chan_id];
  1186. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1187. dma_has_cap(DMA_SLAVE, cap)) {
  1188. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1189. } else {
  1190. chan_err(d40c, "No memcpy\n");
  1191. return -EINVAL;
  1192. }
  1193. return 0;
  1194. }
  1195. static int d40_free_dma(struct d40_chan *d40c)
  1196. {
  1197. int res = 0;
  1198. u32 event;
  1199. struct d40_phy_res *phy = d40c->phy_chan;
  1200. bool is_src;
  1201. struct d40_desc *d;
  1202. struct d40_desc *_d;
  1203. /* Terminate all queued and active transfers */
  1204. d40_term_all(d40c);
  1205. /* Release client owned descriptors */
  1206. if (!list_empty(&d40c->client))
  1207. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1208. d40_pool_lli_free(d);
  1209. d40_desc_remove(d);
  1210. d40_desc_free(d40c, d);
  1211. }
  1212. if (phy == NULL) {
  1213. chan_err(d40c, "phy == null\n");
  1214. return -EINVAL;
  1215. }
  1216. if (phy->allocated_src == D40_ALLOC_FREE &&
  1217. phy->allocated_dst == D40_ALLOC_FREE) {
  1218. chan_err(d40c, "channel already free\n");
  1219. return -EINVAL;
  1220. }
  1221. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1222. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1223. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1224. is_src = false;
  1225. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1226. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1227. is_src = true;
  1228. } else {
  1229. chan_err(d40c, "Unknown direction\n");
  1230. return -EINVAL;
  1231. }
  1232. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1233. if (res) {
  1234. chan_err(d40c, "suspend failed\n");
  1235. return res;
  1236. }
  1237. if (chan_is_logical(d40c)) {
  1238. /* Release logical channel, deactivate the event line */
  1239. d40_config_set_event(d40c, false);
  1240. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1241. /*
  1242. * Check if there are more logical allocation
  1243. * on this phy channel.
  1244. */
  1245. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1246. /* Resume the other logical channels if any */
  1247. if (d40_chan_has_events(d40c)) {
  1248. res = d40_channel_execute_command(d40c,
  1249. D40_DMA_RUN);
  1250. if (res) {
  1251. chan_err(d40c,
  1252. "Executing RUN command\n");
  1253. return res;
  1254. }
  1255. }
  1256. return 0;
  1257. }
  1258. } else {
  1259. (void) d40_alloc_mask_free(phy, is_src, 0);
  1260. }
  1261. /* Release physical channel */
  1262. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1263. if (res) {
  1264. chan_err(d40c, "Failed to stop channel\n");
  1265. return res;
  1266. }
  1267. d40c->phy_chan = NULL;
  1268. d40c->configured = false;
  1269. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1270. return 0;
  1271. }
  1272. static bool d40_is_paused(struct d40_chan *d40c)
  1273. {
  1274. void __iomem *chanbase = chan_base(d40c);
  1275. bool is_paused = false;
  1276. unsigned long flags;
  1277. void __iomem *active_reg;
  1278. u32 status;
  1279. u32 event;
  1280. spin_lock_irqsave(&d40c->lock, flags);
  1281. if (chan_is_physical(d40c)) {
  1282. if (d40c->phy_chan->num % 2 == 0)
  1283. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1284. else
  1285. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1286. status = (readl(active_reg) &
  1287. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1288. D40_CHAN_POS(d40c->phy_chan->num);
  1289. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1290. is_paused = true;
  1291. goto _exit;
  1292. }
  1293. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1294. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1295. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1296. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1297. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1298. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1299. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1300. } else {
  1301. chan_err(d40c, "Unknown direction\n");
  1302. goto _exit;
  1303. }
  1304. status = (status & D40_EVENTLINE_MASK(event)) >>
  1305. D40_EVENTLINE_POS(event);
  1306. if (status != D40_DMA_RUN)
  1307. is_paused = true;
  1308. _exit:
  1309. spin_unlock_irqrestore(&d40c->lock, flags);
  1310. return is_paused;
  1311. }
  1312. static u32 stedma40_residue(struct dma_chan *chan)
  1313. {
  1314. struct d40_chan *d40c =
  1315. container_of(chan, struct d40_chan, chan);
  1316. u32 bytes_left;
  1317. unsigned long flags;
  1318. spin_lock_irqsave(&d40c->lock, flags);
  1319. bytes_left = d40_residue(d40c);
  1320. spin_unlock_irqrestore(&d40c->lock, flags);
  1321. return bytes_left;
  1322. }
  1323. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1324. struct scatterlist *sgl_dst,
  1325. struct scatterlist *sgl_src,
  1326. unsigned int sgl_len,
  1327. unsigned long dma_flags)
  1328. {
  1329. int res;
  1330. struct d40_desc *d40d;
  1331. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1332. chan);
  1333. unsigned long flags;
  1334. if (d40c->phy_chan == NULL) {
  1335. chan_err(d40c, "Unallocated channel.\n");
  1336. return ERR_PTR(-EINVAL);
  1337. }
  1338. spin_lock_irqsave(&d40c->lock, flags);
  1339. d40d = d40_desc_get(d40c);
  1340. if (d40d == NULL)
  1341. goto err;
  1342. d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
  1343. d40c->dma_cfg.src_info.data_width,
  1344. d40c->dma_cfg.dst_info.data_width);
  1345. if (d40d->lli_len < 0) {
  1346. chan_err(d40c, "Unaligned size\n");
  1347. goto err;
  1348. }
  1349. d40d->lli_current = 0;
  1350. d40d->txd.flags = dma_flags;
  1351. if (chan_is_logical(d40c)) {
  1352. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1353. chan_err(d40c, "Out of memory\n");
  1354. goto err;
  1355. }
  1356. (void) d40_log_sg_to_lli(sgl_src,
  1357. sgl_len,
  1358. d40d->lli_log.src,
  1359. d40c->log_def.lcsp1,
  1360. d40c->dma_cfg.src_info.data_width,
  1361. d40c->dma_cfg.dst_info.data_width);
  1362. (void) d40_log_sg_to_lli(sgl_dst,
  1363. sgl_len,
  1364. d40d->lli_log.dst,
  1365. d40c->log_def.lcsp3,
  1366. d40c->dma_cfg.dst_info.data_width,
  1367. d40c->dma_cfg.src_info.data_width);
  1368. } else {
  1369. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1370. chan_err(d40c, "Out of memory\n");
  1371. goto err;
  1372. }
  1373. res = d40_phy_sg_to_lli(sgl_src,
  1374. sgl_len,
  1375. 0,
  1376. d40d->lli_phy.src,
  1377. virt_to_phys(d40d->lli_phy.src),
  1378. d40c->src_def_cfg,
  1379. d40c->dma_cfg.src_info.data_width,
  1380. d40c->dma_cfg.dst_info.data_width,
  1381. d40c->dma_cfg.src_info.psize);
  1382. if (res < 0)
  1383. goto err;
  1384. res = d40_phy_sg_to_lli(sgl_dst,
  1385. sgl_len,
  1386. 0,
  1387. d40d->lli_phy.dst,
  1388. virt_to_phys(d40d->lli_phy.dst),
  1389. d40c->dst_def_cfg,
  1390. d40c->dma_cfg.dst_info.data_width,
  1391. d40c->dma_cfg.src_info.data_width,
  1392. d40c->dma_cfg.dst_info.psize);
  1393. if (res < 0)
  1394. goto err;
  1395. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1396. d40d->lli_pool.size, DMA_TO_DEVICE);
  1397. }
  1398. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1399. d40d->txd.tx_submit = d40_tx_submit;
  1400. spin_unlock_irqrestore(&d40c->lock, flags);
  1401. return &d40d->txd;
  1402. err:
  1403. if (d40d)
  1404. d40_desc_free(d40c, d40d);
  1405. spin_unlock_irqrestore(&d40c->lock, flags);
  1406. return NULL;
  1407. }
  1408. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1409. bool stedma40_filter(struct dma_chan *chan, void *data)
  1410. {
  1411. struct stedma40_chan_cfg *info = data;
  1412. struct d40_chan *d40c =
  1413. container_of(chan, struct d40_chan, chan);
  1414. int err;
  1415. if (data) {
  1416. err = d40_validate_conf(d40c, info);
  1417. if (!err)
  1418. d40c->dma_cfg = *info;
  1419. } else
  1420. err = d40_config_memcpy(d40c);
  1421. if (!err)
  1422. d40c->configured = true;
  1423. return err == 0;
  1424. }
  1425. EXPORT_SYMBOL(stedma40_filter);
  1426. /* DMA ENGINE functions */
  1427. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1428. {
  1429. int err;
  1430. unsigned long flags;
  1431. struct d40_chan *d40c =
  1432. container_of(chan, struct d40_chan, chan);
  1433. bool is_free_phy;
  1434. spin_lock_irqsave(&d40c->lock, flags);
  1435. d40c->completed = chan->cookie = 1;
  1436. /* If no dma configuration is set use default configuration (memcpy) */
  1437. if (!d40c->configured) {
  1438. err = d40_config_memcpy(d40c);
  1439. if (err) {
  1440. chan_err(d40c, "Failed to configure memcpy channel\n");
  1441. goto fail;
  1442. }
  1443. }
  1444. is_free_phy = (d40c->phy_chan == NULL);
  1445. err = d40_allocate_channel(d40c);
  1446. if (err) {
  1447. chan_err(d40c, "Failed to allocate channel\n");
  1448. goto fail;
  1449. }
  1450. /* Fill in basic CFG register values */
  1451. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1452. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1453. if (chan_is_logical(d40c)) {
  1454. d40_log_cfg(&d40c->dma_cfg,
  1455. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1456. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1457. d40c->lcpa = d40c->base->lcpa_base +
  1458. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1459. else
  1460. d40c->lcpa = d40c->base->lcpa_base +
  1461. d40c->dma_cfg.dst_dev_type *
  1462. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1463. }
  1464. /*
  1465. * Only write channel configuration to the DMA if the physical
  1466. * resource is free. In case of multiple logical channels
  1467. * on the same physical resource, only the first write is necessary.
  1468. */
  1469. if (is_free_phy)
  1470. d40_config_write(d40c);
  1471. fail:
  1472. spin_unlock_irqrestore(&d40c->lock, flags);
  1473. return err;
  1474. }
  1475. static void d40_free_chan_resources(struct dma_chan *chan)
  1476. {
  1477. struct d40_chan *d40c =
  1478. container_of(chan, struct d40_chan, chan);
  1479. int err;
  1480. unsigned long flags;
  1481. if (d40c->phy_chan == NULL) {
  1482. chan_err(d40c, "Cannot free unallocated channel\n");
  1483. return;
  1484. }
  1485. spin_lock_irqsave(&d40c->lock, flags);
  1486. err = d40_free_dma(d40c);
  1487. if (err)
  1488. chan_err(d40c, "Failed to free channel\n");
  1489. spin_unlock_irqrestore(&d40c->lock, flags);
  1490. }
  1491. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1492. dma_addr_t dst,
  1493. dma_addr_t src,
  1494. size_t size,
  1495. unsigned long dma_flags)
  1496. {
  1497. struct d40_desc *d40d;
  1498. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1499. chan);
  1500. unsigned long flags;
  1501. if (d40c->phy_chan == NULL) {
  1502. chan_err(d40c, "Channel is not allocated.\n");
  1503. return ERR_PTR(-EINVAL);
  1504. }
  1505. spin_lock_irqsave(&d40c->lock, flags);
  1506. d40d = d40_desc_get(d40c);
  1507. if (d40d == NULL) {
  1508. chan_err(d40c, "Descriptor is NULL\n");
  1509. goto err;
  1510. }
  1511. d40d->txd.flags = dma_flags;
  1512. d40d->lli_len = d40_size_2_dmalen(size,
  1513. d40c->dma_cfg.src_info.data_width,
  1514. d40c->dma_cfg.dst_info.data_width);
  1515. if (d40d->lli_len < 0) {
  1516. chan_err(d40c, "Unaligned size\n");
  1517. goto err;
  1518. }
  1519. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1520. d40d->txd.tx_submit = d40_tx_submit;
  1521. if (chan_is_logical(d40c)) {
  1522. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1523. chan_err(d40c, "Out of memory\n");
  1524. goto err;
  1525. }
  1526. d40d->lli_current = 0;
  1527. if (d40_log_buf_to_lli(d40d->lli_log.src,
  1528. src,
  1529. size,
  1530. d40c->log_def.lcsp1,
  1531. d40c->dma_cfg.src_info.data_width,
  1532. d40c->dma_cfg.dst_info.data_width,
  1533. true) == NULL)
  1534. goto err;
  1535. if (d40_log_buf_to_lli(d40d->lli_log.dst,
  1536. dst,
  1537. size,
  1538. d40c->log_def.lcsp3,
  1539. d40c->dma_cfg.dst_info.data_width,
  1540. d40c->dma_cfg.src_info.data_width,
  1541. true) == NULL)
  1542. goto err;
  1543. } else {
  1544. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1545. chan_err(d40c, "Out of memory\n");
  1546. goto err;
  1547. }
  1548. if (d40_phy_buf_to_lli(d40d->lli_phy.src,
  1549. src,
  1550. size,
  1551. d40c->dma_cfg.src_info.psize,
  1552. 0,
  1553. d40c->src_def_cfg,
  1554. true,
  1555. d40c->dma_cfg.src_info.data_width,
  1556. d40c->dma_cfg.dst_info.data_width,
  1557. false) == NULL)
  1558. goto err;
  1559. if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
  1560. dst,
  1561. size,
  1562. d40c->dma_cfg.dst_info.psize,
  1563. 0,
  1564. d40c->dst_def_cfg,
  1565. true,
  1566. d40c->dma_cfg.dst_info.data_width,
  1567. d40c->dma_cfg.src_info.data_width,
  1568. false) == NULL)
  1569. goto err;
  1570. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1571. d40d->lli_pool.size, DMA_TO_DEVICE);
  1572. }
  1573. spin_unlock_irqrestore(&d40c->lock, flags);
  1574. return &d40d->txd;
  1575. err:
  1576. if (d40d)
  1577. d40_desc_free(d40c, d40d);
  1578. spin_unlock_irqrestore(&d40c->lock, flags);
  1579. return NULL;
  1580. }
  1581. static struct dma_async_tx_descriptor *
  1582. d40_prep_sg(struct dma_chan *chan,
  1583. struct scatterlist *dst_sg, unsigned int dst_nents,
  1584. struct scatterlist *src_sg, unsigned int src_nents,
  1585. unsigned long dma_flags)
  1586. {
  1587. if (dst_nents != src_nents)
  1588. return NULL;
  1589. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1590. }
  1591. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1592. struct d40_chan *d40c,
  1593. struct scatterlist *sgl,
  1594. unsigned int sg_len,
  1595. enum dma_data_direction direction,
  1596. unsigned long dma_flags)
  1597. {
  1598. dma_addr_t dev_addr = 0;
  1599. int total_size;
  1600. d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
  1601. d40c->dma_cfg.src_info.data_width,
  1602. d40c->dma_cfg.dst_info.data_width);
  1603. if (d40d->lli_len < 0) {
  1604. chan_err(d40c, "Unaligned size\n");
  1605. return -EINVAL;
  1606. }
  1607. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1608. chan_err(d40c, "Out of memory\n");
  1609. return -ENOMEM;
  1610. }
  1611. d40d->lli_current = 0;
  1612. if (direction == DMA_FROM_DEVICE)
  1613. if (d40c->runtime_addr)
  1614. dev_addr = d40c->runtime_addr;
  1615. else
  1616. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1617. else if (direction == DMA_TO_DEVICE)
  1618. if (d40c->runtime_addr)
  1619. dev_addr = d40c->runtime_addr;
  1620. else
  1621. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1622. else
  1623. return -EINVAL;
  1624. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1625. &d40d->lli_log,
  1626. &d40c->log_def,
  1627. d40c->dma_cfg.src_info.data_width,
  1628. d40c->dma_cfg.dst_info.data_width,
  1629. direction,
  1630. dev_addr);
  1631. if (total_size < 0)
  1632. return -EINVAL;
  1633. return 0;
  1634. }
  1635. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1636. struct d40_chan *d40c,
  1637. struct scatterlist *sgl,
  1638. unsigned int sgl_len,
  1639. enum dma_data_direction direction,
  1640. unsigned long dma_flags)
  1641. {
  1642. dma_addr_t src_dev_addr;
  1643. dma_addr_t dst_dev_addr;
  1644. int res;
  1645. d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
  1646. d40c->dma_cfg.src_info.data_width,
  1647. d40c->dma_cfg.dst_info.data_width);
  1648. if (d40d->lli_len < 0) {
  1649. chan_err(d40c, "Unaligned size\n");
  1650. return -EINVAL;
  1651. }
  1652. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1653. chan_err(d40c, "Out of memory\n");
  1654. return -ENOMEM;
  1655. }
  1656. d40d->lli_current = 0;
  1657. if (direction == DMA_FROM_DEVICE) {
  1658. dst_dev_addr = 0;
  1659. if (d40c->runtime_addr)
  1660. src_dev_addr = d40c->runtime_addr;
  1661. else
  1662. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1663. } else if (direction == DMA_TO_DEVICE) {
  1664. if (d40c->runtime_addr)
  1665. dst_dev_addr = d40c->runtime_addr;
  1666. else
  1667. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1668. src_dev_addr = 0;
  1669. } else
  1670. return -EINVAL;
  1671. res = d40_phy_sg_to_lli(sgl,
  1672. sgl_len,
  1673. src_dev_addr,
  1674. d40d->lli_phy.src,
  1675. virt_to_phys(d40d->lli_phy.src),
  1676. d40c->src_def_cfg,
  1677. d40c->dma_cfg.src_info.data_width,
  1678. d40c->dma_cfg.dst_info.data_width,
  1679. d40c->dma_cfg.src_info.psize);
  1680. if (res < 0)
  1681. return res;
  1682. res = d40_phy_sg_to_lli(sgl,
  1683. sgl_len,
  1684. dst_dev_addr,
  1685. d40d->lli_phy.dst,
  1686. virt_to_phys(d40d->lli_phy.dst),
  1687. d40c->dst_def_cfg,
  1688. d40c->dma_cfg.dst_info.data_width,
  1689. d40c->dma_cfg.src_info.data_width,
  1690. d40c->dma_cfg.dst_info.psize);
  1691. if (res < 0)
  1692. return res;
  1693. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1694. d40d->lli_pool.size, DMA_TO_DEVICE);
  1695. return 0;
  1696. }
  1697. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1698. struct scatterlist *sgl,
  1699. unsigned int sg_len,
  1700. enum dma_data_direction direction,
  1701. unsigned long dma_flags)
  1702. {
  1703. struct d40_desc *d40d;
  1704. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1705. chan);
  1706. unsigned long flags;
  1707. int err;
  1708. if (d40c->phy_chan == NULL) {
  1709. chan_err(d40c, "Cannot prepare unallocated channel\n");
  1710. return ERR_PTR(-EINVAL);
  1711. }
  1712. spin_lock_irqsave(&d40c->lock, flags);
  1713. d40d = d40_desc_get(d40c);
  1714. if (d40d == NULL)
  1715. goto err;
  1716. if (chan_is_logical(d40c))
  1717. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1718. direction, dma_flags);
  1719. else
  1720. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1721. direction, dma_flags);
  1722. if (err) {
  1723. chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
  1724. chan_is_logical(d40c) ? "log" : "phy", err);
  1725. goto err;
  1726. }
  1727. d40d->txd.flags = dma_flags;
  1728. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1729. d40d->txd.tx_submit = d40_tx_submit;
  1730. spin_unlock_irqrestore(&d40c->lock, flags);
  1731. return &d40d->txd;
  1732. err:
  1733. if (d40d)
  1734. d40_desc_free(d40c, d40d);
  1735. spin_unlock_irqrestore(&d40c->lock, flags);
  1736. return NULL;
  1737. }
  1738. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1739. dma_cookie_t cookie,
  1740. struct dma_tx_state *txstate)
  1741. {
  1742. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1743. dma_cookie_t last_used;
  1744. dma_cookie_t last_complete;
  1745. int ret;
  1746. if (d40c->phy_chan == NULL) {
  1747. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1748. return -EINVAL;
  1749. }
  1750. last_complete = d40c->completed;
  1751. last_used = chan->cookie;
  1752. if (d40_is_paused(d40c))
  1753. ret = DMA_PAUSED;
  1754. else
  1755. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1756. dma_set_tx_state(txstate, last_complete, last_used,
  1757. stedma40_residue(chan));
  1758. return ret;
  1759. }
  1760. static void d40_issue_pending(struct dma_chan *chan)
  1761. {
  1762. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1763. unsigned long flags;
  1764. if (d40c->phy_chan == NULL) {
  1765. chan_err(d40c, "Channel is not allocated!\n");
  1766. return;
  1767. }
  1768. spin_lock_irqsave(&d40c->lock, flags);
  1769. /* Busy means that pending jobs are already being processed */
  1770. if (!d40c->busy)
  1771. (void) d40_queue_start(d40c);
  1772. spin_unlock_irqrestore(&d40c->lock, flags);
  1773. }
  1774. /* Runtime reconfiguration extension */
  1775. static void d40_set_runtime_config(struct dma_chan *chan,
  1776. struct dma_slave_config *config)
  1777. {
  1778. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1779. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1780. enum dma_slave_buswidth config_addr_width;
  1781. dma_addr_t config_addr;
  1782. u32 config_maxburst;
  1783. enum stedma40_periph_data_width addr_width;
  1784. int psize;
  1785. if (config->direction == DMA_FROM_DEVICE) {
  1786. dma_addr_t dev_addr_rx =
  1787. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1788. config_addr = config->src_addr;
  1789. if (dev_addr_rx)
  1790. dev_dbg(d40c->base->dev,
  1791. "channel has a pre-wired RX address %08x "
  1792. "overriding with %08x\n",
  1793. dev_addr_rx, config_addr);
  1794. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1795. dev_dbg(d40c->base->dev,
  1796. "channel was not configured for peripheral "
  1797. "to memory transfer (%d) overriding\n",
  1798. cfg->dir);
  1799. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1800. config_addr_width = config->src_addr_width;
  1801. config_maxburst = config->src_maxburst;
  1802. } else if (config->direction == DMA_TO_DEVICE) {
  1803. dma_addr_t dev_addr_tx =
  1804. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1805. config_addr = config->dst_addr;
  1806. if (dev_addr_tx)
  1807. dev_dbg(d40c->base->dev,
  1808. "channel has a pre-wired TX address %08x "
  1809. "overriding with %08x\n",
  1810. dev_addr_tx, config_addr);
  1811. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1812. dev_dbg(d40c->base->dev,
  1813. "channel was not configured for memory "
  1814. "to peripheral transfer (%d) overriding\n",
  1815. cfg->dir);
  1816. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1817. config_addr_width = config->dst_addr_width;
  1818. config_maxburst = config->dst_maxburst;
  1819. } else {
  1820. dev_err(d40c->base->dev,
  1821. "unrecognized channel direction %d\n",
  1822. config->direction);
  1823. return;
  1824. }
  1825. switch (config_addr_width) {
  1826. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1827. addr_width = STEDMA40_BYTE_WIDTH;
  1828. break;
  1829. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1830. addr_width = STEDMA40_HALFWORD_WIDTH;
  1831. break;
  1832. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1833. addr_width = STEDMA40_WORD_WIDTH;
  1834. break;
  1835. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1836. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1837. break;
  1838. default:
  1839. dev_err(d40c->base->dev,
  1840. "illegal peripheral address width "
  1841. "requested (%d)\n",
  1842. config->src_addr_width);
  1843. return;
  1844. }
  1845. if (chan_is_logical(d40c)) {
  1846. if (config_maxburst >= 16)
  1847. psize = STEDMA40_PSIZE_LOG_16;
  1848. else if (config_maxburst >= 8)
  1849. psize = STEDMA40_PSIZE_LOG_8;
  1850. else if (config_maxburst >= 4)
  1851. psize = STEDMA40_PSIZE_LOG_4;
  1852. else
  1853. psize = STEDMA40_PSIZE_LOG_1;
  1854. } else {
  1855. if (config_maxburst >= 16)
  1856. psize = STEDMA40_PSIZE_PHY_16;
  1857. else if (config_maxburst >= 8)
  1858. psize = STEDMA40_PSIZE_PHY_8;
  1859. else if (config_maxburst >= 4)
  1860. psize = STEDMA40_PSIZE_PHY_4;
  1861. else if (config_maxburst >= 2)
  1862. psize = STEDMA40_PSIZE_PHY_2;
  1863. else
  1864. psize = STEDMA40_PSIZE_PHY_1;
  1865. }
  1866. /* Set up all the endpoint configs */
  1867. cfg->src_info.data_width = addr_width;
  1868. cfg->src_info.psize = psize;
  1869. cfg->src_info.big_endian = false;
  1870. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1871. cfg->dst_info.data_width = addr_width;
  1872. cfg->dst_info.psize = psize;
  1873. cfg->dst_info.big_endian = false;
  1874. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1875. /* Fill in register values */
  1876. if (chan_is_logical(d40c))
  1877. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1878. else
  1879. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1880. &d40c->dst_def_cfg, false);
  1881. /* These settings will take precedence later */
  1882. d40c->runtime_addr = config_addr;
  1883. d40c->runtime_direction = config->direction;
  1884. dev_dbg(d40c->base->dev,
  1885. "configured channel %s for %s, data width %d, "
  1886. "maxburst %d bytes, LE, no flow control\n",
  1887. dma_chan_name(chan),
  1888. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1889. config_addr_width,
  1890. config_maxburst);
  1891. }
  1892. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1893. unsigned long arg)
  1894. {
  1895. unsigned long flags;
  1896. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1897. if (d40c->phy_chan == NULL) {
  1898. chan_err(d40c, "Channel is not allocated!\n");
  1899. return -EINVAL;
  1900. }
  1901. switch (cmd) {
  1902. case DMA_TERMINATE_ALL:
  1903. spin_lock_irqsave(&d40c->lock, flags);
  1904. d40_term_all(d40c);
  1905. spin_unlock_irqrestore(&d40c->lock, flags);
  1906. return 0;
  1907. case DMA_PAUSE:
  1908. return d40_pause(chan);
  1909. case DMA_RESUME:
  1910. return d40_resume(chan);
  1911. case DMA_SLAVE_CONFIG:
  1912. d40_set_runtime_config(chan,
  1913. (struct dma_slave_config *) arg);
  1914. return 0;
  1915. default:
  1916. break;
  1917. }
  1918. /* Other commands are unimplemented */
  1919. return -ENXIO;
  1920. }
  1921. /* Initialization functions */
  1922. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1923. struct d40_chan *chans, int offset,
  1924. int num_chans)
  1925. {
  1926. int i = 0;
  1927. struct d40_chan *d40c;
  1928. INIT_LIST_HEAD(&dma->channels);
  1929. for (i = offset; i < offset + num_chans; i++) {
  1930. d40c = &chans[i];
  1931. d40c->base = base;
  1932. d40c->chan.device = dma;
  1933. spin_lock_init(&d40c->lock);
  1934. d40c->log_num = D40_PHY_CHAN;
  1935. INIT_LIST_HEAD(&d40c->active);
  1936. INIT_LIST_HEAD(&d40c->queue);
  1937. INIT_LIST_HEAD(&d40c->client);
  1938. tasklet_init(&d40c->tasklet, dma_tasklet,
  1939. (unsigned long) d40c);
  1940. list_add_tail(&d40c->chan.device_node,
  1941. &dma->channels);
  1942. }
  1943. }
  1944. static int __init d40_dmaengine_init(struct d40_base *base,
  1945. int num_reserved_chans)
  1946. {
  1947. int err ;
  1948. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1949. 0, base->num_log_chans);
  1950. dma_cap_zero(base->dma_slave.cap_mask);
  1951. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1952. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1953. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1954. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1955. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1956. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1957. base->dma_slave.device_tx_status = d40_tx_status;
  1958. base->dma_slave.device_issue_pending = d40_issue_pending;
  1959. base->dma_slave.device_control = d40_control;
  1960. base->dma_slave.dev = base->dev;
  1961. err = dma_async_device_register(&base->dma_slave);
  1962. if (err) {
  1963. d40_err(base->dev, "Failed to register slave channels\n");
  1964. goto failure1;
  1965. }
  1966. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1967. base->num_log_chans, base->plat_data->memcpy_len);
  1968. dma_cap_zero(base->dma_memcpy.cap_mask);
  1969. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1970. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1971. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1972. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1973. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1974. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1975. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1976. base->dma_memcpy.device_tx_status = d40_tx_status;
  1977. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1978. base->dma_memcpy.device_control = d40_control;
  1979. base->dma_memcpy.dev = base->dev;
  1980. /*
  1981. * This controller can only access address at even
  1982. * 32bit boundaries, i.e. 2^2
  1983. */
  1984. base->dma_memcpy.copy_align = 2;
  1985. err = dma_async_device_register(&base->dma_memcpy);
  1986. if (err) {
  1987. d40_err(base->dev,
  1988. "Failed to regsiter memcpy only channels\n");
  1989. goto failure2;
  1990. }
  1991. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1992. 0, num_reserved_chans);
  1993. dma_cap_zero(base->dma_both.cap_mask);
  1994. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1995. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1996. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1997. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1998. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1999. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2000. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2001. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2002. base->dma_both.device_tx_status = d40_tx_status;
  2003. base->dma_both.device_issue_pending = d40_issue_pending;
  2004. base->dma_both.device_control = d40_control;
  2005. base->dma_both.dev = base->dev;
  2006. base->dma_both.copy_align = 2;
  2007. err = dma_async_device_register(&base->dma_both);
  2008. if (err) {
  2009. d40_err(base->dev,
  2010. "Failed to register logical and physical capable channels\n");
  2011. goto failure3;
  2012. }
  2013. return 0;
  2014. failure3:
  2015. dma_async_device_unregister(&base->dma_memcpy);
  2016. failure2:
  2017. dma_async_device_unregister(&base->dma_slave);
  2018. failure1:
  2019. return err;
  2020. }
  2021. /* Initialization functions. */
  2022. static int __init d40_phy_res_init(struct d40_base *base)
  2023. {
  2024. int i;
  2025. int num_phy_chans_avail = 0;
  2026. u32 val[2];
  2027. int odd_even_bit = -2;
  2028. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2029. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2030. for (i = 0; i < base->num_phy_chans; i++) {
  2031. base->phy_res[i].num = i;
  2032. odd_even_bit += 2 * ((i % 2) == 0);
  2033. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2034. /* Mark security only channels as occupied */
  2035. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2036. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2037. } else {
  2038. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2039. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2040. num_phy_chans_avail++;
  2041. }
  2042. spin_lock_init(&base->phy_res[i].lock);
  2043. }
  2044. /* Mark disabled channels as occupied */
  2045. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2046. int chan = base->plat_data->disabled_channels[i];
  2047. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2048. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2049. num_phy_chans_avail--;
  2050. }
  2051. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2052. num_phy_chans_avail, base->num_phy_chans);
  2053. /* Verify settings extended vs standard */
  2054. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2055. for (i = 0; i < base->num_phy_chans; i++) {
  2056. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2057. (val[0] & 0x3) != 1)
  2058. dev_info(base->dev,
  2059. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2060. __func__, i, val[0] & 0x3);
  2061. val[0] = val[0] >> 2;
  2062. }
  2063. return num_phy_chans_avail;
  2064. }
  2065. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2066. {
  2067. static const struct d40_reg_val dma_id_regs[] = {
  2068. /* Peripheral Id */
  2069. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2070. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2071. /*
  2072. * D40_DREG_PERIPHID2 Depends on HW revision:
  2073. * MOP500/HREF ED has 0x0008,
  2074. * ? has 0x0018,
  2075. * HREF V1 has 0x0028
  2076. */
  2077. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2078. /* PCell Id */
  2079. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2080. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2081. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2082. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2083. };
  2084. struct stedma40_platform_data *plat_data;
  2085. struct clk *clk = NULL;
  2086. void __iomem *virtbase = NULL;
  2087. struct resource *res = NULL;
  2088. struct d40_base *base = NULL;
  2089. int num_log_chans = 0;
  2090. int num_phy_chans;
  2091. int i;
  2092. u32 val;
  2093. u32 rev;
  2094. clk = clk_get(&pdev->dev, NULL);
  2095. if (IS_ERR(clk)) {
  2096. d40_err(&pdev->dev, "No matching clock found\n");
  2097. goto failure;
  2098. }
  2099. clk_enable(clk);
  2100. /* Get IO for DMAC base address */
  2101. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2102. if (!res)
  2103. goto failure;
  2104. if (request_mem_region(res->start, resource_size(res),
  2105. D40_NAME " I/O base") == NULL)
  2106. goto failure;
  2107. virtbase = ioremap(res->start, resource_size(res));
  2108. if (!virtbase)
  2109. goto failure;
  2110. /* HW version check */
  2111. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2112. if (dma_id_regs[i].val !=
  2113. readl(virtbase + dma_id_regs[i].reg)) {
  2114. d40_err(&pdev->dev,
  2115. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2116. dma_id_regs[i].val,
  2117. dma_id_regs[i].reg,
  2118. readl(virtbase + dma_id_regs[i].reg));
  2119. goto failure;
  2120. }
  2121. }
  2122. /* Get silicon revision and designer */
  2123. val = readl(virtbase + D40_DREG_PERIPHID2);
  2124. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2125. D40_HW_DESIGNER) {
  2126. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2127. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2128. D40_HW_DESIGNER);
  2129. goto failure;
  2130. }
  2131. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2132. D40_DREG_PERIPHID2_REV_POS;
  2133. /* The number of physical channels on this HW */
  2134. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2135. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2136. rev, res->start);
  2137. plat_data = pdev->dev.platform_data;
  2138. /* Count the number of logical channels in use */
  2139. for (i = 0; i < plat_data->dev_len; i++)
  2140. if (plat_data->dev_rx[i] != 0)
  2141. num_log_chans++;
  2142. for (i = 0; i < plat_data->dev_len; i++)
  2143. if (plat_data->dev_tx[i] != 0)
  2144. num_log_chans++;
  2145. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2146. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2147. sizeof(struct d40_chan), GFP_KERNEL);
  2148. if (base == NULL) {
  2149. d40_err(&pdev->dev, "Out of memory\n");
  2150. goto failure;
  2151. }
  2152. base->rev = rev;
  2153. base->clk = clk;
  2154. base->num_phy_chans = num_phy_chans;
  2155. base->num_log_chans = num_log_chans;
  2156. base->phy_start = res->start;
  2157. base->phy_size = resource_size(res);
  2158. base->virtbase = virtbase;
  2159. base->plat_data = plat_data;
  2160. base->dev = &pdev->dev;
  2161. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2162. base->log_chans = &base->phy_chans[num_phy_chans];
  2163. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2164. GFP_KERNEL);
  2165. if (!base->phy_res)
  2166. goto failure;
  2167. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2168. sizeof(struct d40_chan *),
  2169. GFP_KERNEL);
  2170. if (!base->lookup_phy_chans)
  2171. goto failure;
  2172. if (num_log_chans + plat_data->memcpy_len) {
  2173. /*
  2174. * The max number of logical channels are event lines for all
  2175. * src devices and dst devices
  2176. */
  2177. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2178. sizeof(struct d40_chan *),
  2179. GFP_KERNEL);
  2180. if (!base->lookup_log_chans)
  2181. goto failure;
  2182. }
  2183. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2184. sizeof(struct d40_desc *) *
  2185. D40_LCLA_LINK_PER_EVENT_GRP,
  2186. GFP_KERNEL);
  2187. if (!base->lcla_pool.alloc_map)
  2188. goto failure;
  2189. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2190. 0, SLAB_HWCACHE_ALIGN,
  2191. NULL);
  2192. if (base->desc_slab == NULL)
  2193. goto failure;
  2194. return base;
  2195. failure:
  2196. if (!IS_ERR(clk)) {
  2197. clk_disable(clk);
  2198. clk_put(clk);
  2199. }
  2200. if (virtbase)
  2201. iounmap(virtbase);
  2202. if (res)
  2203. release_mem_region(res->start,
  2204. resource_size(res));
  2205. if (virtbase)
  2206. iounmap(virtbase);
  2207. if (base) {
  2208. kfree(base->lcla_pool.alloc_map);
  2209. kfree(base->lookup_log_chans);
  2210. kfree(base->lookup_phy_chans);
  2211. kfree(base->phy_res);
  2212. kfree(base);
  2213. }
  2214. return NULL;
  2215. }
  2216. static void __init d40_hw_init(struct d40_base *base)
  2217. {
  2218. static const struct d40_reg_val dma_init_reg[] = {
  2219. /* Clock every part of the DMA block from start */
  2220. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2221. /* Interrupts on all logical channels */
  2222. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2223. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2224. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2225. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2226. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2227. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2228. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2229. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2230. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2231. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2232. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2233. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2234. };
  2235. int i;
  2236. u32 prmseo[2] = {0, 0};
  2237. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2238. u32 pcmis = 0;
  2239. u32 pcicr = 0;
  2240. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2241. writel(dma_init_reg[i].val,
  2242. base->virtbase + dma_init_reg[i].reg);
  2243. /* Configure all our dma channels to default settings */
  2244. for (i = 0; i < base->num_phy_chans; i++) {
  2245. activeo[i % 2] = activeo[i % 2] << 2;
  2246. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2247. == D40_ALLOC_PHY) {
  2248. activeo[i % 2] |= 3;
  2249. continue;
  2250. }
  2251. /* Enable interrupt # */
  2252. pcmis = (pcmis << 1) | 1;
  2253. /* Clear interrupt # */
  2254. pcicr = (pcicr << 1) | 1;
  2255. /* Set channel to physical mode */
  2256. prmseo[i % 2] = prmseo[i % 2] << 2;
  2257. prmseo[i % 2] |= 1;
  2258. }
  2259. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2260. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2261. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2262. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2263. /* Write which interrupt to enable */
  2264. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2265. /* Write which interrupt to clear */
  2266. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2267. }
  2268. static int __init d40_lcla_allocate(struct d40_base *base)
  2269. {
  2270. unsigned long *page_list;
  2271. int i, j;
  2272. int ret = 0;
  2273. /*
  2274. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2275. * To full fill this hardware requirement without wasting 256 kb
  2276. * we allocate pages until we get an aligned one.
  2277. */
  2278. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2279. GFP_KERNEL);
  2280. if (!page_list) {
  2281. ret = -ENOMEM;
  2282. goto failure;
  2283. }
  2284. /* Calculating how many pages that are required */
  2285. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2286. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2287. page_list[i] = __get_free_pages(GFP_KERNEL,
  2288. base->lcla_pool.pages);
  2289. if (!page_list[i]) {
  2290. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2291. base->lcla_pool.pages);
  2292. for (j = 0; j < i; j++)
  2293. free_pages(page_list[j], base->lcla_pool.pages);
  2294. goto failure;
  2295. }
  2296. if ((virt_to_phys((void *)page_list[i]) &
  2297. (LCLA_ALIGNMENT - 1)) == 0)
  2298. break;
  2299. }
  2300. for (j = 0; j < i; j++)
  2301. free_pages(page_list[j], base->lcla_pool.pages);
  2302. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2303. base->lcla_pool.base = (void *)page_list[i];
  2304. } else {
  2305. /*
  2306. * After many attempts and no succees with finding the correct
  2307. * alignment, try with allocating a big buffer.
  2308. */
  2309. dev_warn(base->dev,
  2310. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2311. __func__, base->lcla_pool.pages);
  2312. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2313. base->num_phy_chans +
  2314. LCLA_ALIGNMENT,
  2315. GFP_KERNEL);
  2316. if (!base->lcla_pool.base_unaligned) {
  2317. ret = -ENOMEM;
  2318. goto failure;
  2319. }
  2320. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2321. LCLA_ALIGNMENT);
  2322. }
  2323. writel(virt_to_phys(base->lcla_pool.base),
  2324. base->virtbase + D40_DREG_LCLA);
  2325. failure:
  2326. kfree(page_list);
  2327. return ret;
  2328. }
  2329. static int __init d40_probe(struct platform_device *pdev)
  2330. {
  2331. int err;
  2332. int ret = -ENOENT;
  2333. struct d40_base *base;
  2334. struct resource *res = NULL;
  2335. int num_reserved_chans;
  2336. u32 val;
  2337. base = d40_hw_detect_init(pdev);
  2338. if (!base)
  2339. goto failure;
  2340. num_reserved_chans = d40_phy_res_init(base);
  2341. platform_set_drvdata(pdev, base);
  2342. spin_lock_init(&base->interrupt_lock);
  2343. spin_lock_init(&base->execmd_lock);
  2344. /* Get IO for logical channel parameter address */
  2345. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2346. if (!res) {
  2347. ret = -ENOENT;
  2348. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2349. goto failure;
  2350. }
  2351. base->lcpa_size = resource_size(res);
  2352. base->phy_lcpa = res->start;
  2353. if (request_mem_region(res->start, resource_size(res),
  2354. D40_NAME " I/O lcpa") == NULL) {
  2355. ret = -EBUSY;
  2356. d40_err(&pdev->dev,
  2357. "Failed to request LCPA region 0x%x-0x%x\n",
  2358. res->start, res->end);
  2359. goto failure;
  2360. }
  2361. /* We make use of ESRAM memory for this. */
  2362. val = readl(base->virtbase + D40_DREG_LCPA);
  2363. if (res->start != val && val != 0) {
  2364. dev_warn(&pdev->dev,
  2365. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2366. __func__, val, res->start);
  2367. } else
  2368. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2369. base->lcpa_base = ioremap(res->start, resource_size(res));
  2370. if (!base->lcpa_base) {
  2371. ret = -ENOMEM;
  2372. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2373. goto failure;
  2374. }
  2375. ret = d40_lcla_allocate(base);
  2376. if (ret) {
  2377. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2378. goto failure;
  2379. }
  2380. spin_lock_init(&base->lcla_pool.lock);
  2381. base->irq = platform_get_irq(pdev, 0);
  2382. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2383. if (ret) {
  2384. d40_err(&pdev->dev, "No IRQ defined\n");
  2385. goto failure;
  2386. }
  2387. err = d40_dmaengine_init(base, num_reserved_chans);
  2388. if (err)
  2389. goto failure;
  2390. d40_hw_init(base);
  2391. dev_info(base->dev, "initialized\n");
  2392. return 0;
  2393. failure:
  2394. if (base) {
  2395. if (base->desc_slab)
  2396. kmem_cache_destroy(base->desc_slab);
  2397. if (base->virtbase)
  2398. iounmap(base->virtbase);
  2399. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2400. free_pages((unsigned long)base->lcla_pool.base,
  2401. base->lcla_pool.pages);
  2402. kfree(base->lcla_pool.base_unaligned);
  2403. if (base->phy_lcpa)
  2404. release_mem_region(base->phy_lcpa,
  2405. base->lcpa_size);
  2406. if (base->phy_start)
  2407. release_mem_region(base->phy_start,
  2408. base->phy_size);
  2409. if (base->clk) {
  2410. clk_disable(base->clk);
  2411. clk_put(base->clk);
  2412. }
  2413. kfree(base->lcla_pool.alloc_map);
  2414. kfree(base->lookup_log_chans);
  2415. kfree(base->lookup_phy_chans);
  2416. kfree(base->phy_res);
  2417. kfree(base);
  2418. }
  2419. d40_err(&pdev->dev, "probe failed\n");
  2420. return ret;
  2421. }
  2422. static struct platform_driver d40_driver = {
  2423. .driver = {
  2424. .owner = THIS_MODULE,
  2425. .name = D40_NAME,
  2426. },
  2427. };
  2428. static int __init stedma40_init(void)
  2429. {
  2430. return platform_driver_probe(&d40_driver, d40_probe);
  2431. }
  2432. arch_initcall(stedma40_init);