sched.c 214 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
  143. struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
  270. * (The default weight is 1024 - so there's no practical
  271. * limitation from this.)
  272. */
  273. #define MIN_SHARES 2
  274. #define MAX_SHARES (ULONG_MAX - 1)
  275. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  276. #endif
  277. /* Default task group.
  278. * Every task in system belong to this group at bootup.
  279. */
  280. struct task_group init_task_group;
  281. /* return group to which a task belongs */
  282. static inline struct task_group *task_group(struct task_struct *p)
  283. {
  284. struct task_group *tg;
  285. #ifdef CONFIG_USER_SCHED
  286. tg = p->user->tg;
  287. #elif defined(CONFIG_CGROUP_SCHED)
  288. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  289. struct task_group, css);
  290. #else
  291. tg = &init_task_group;
  292. #endif
  293. return tg;
  294. }
  295. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  296. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  297. {
  298. #ifdef CONFIG_FAIR_GROUP_SCHED
  299. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  300. p->se.parent = task_group(p)->se[cpu];
  301. #endif
  302. #ifdef CONFIG_RT_GROUP_SCHED
  303. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  304. p->rt.parent = task_group(p)->rt_se[cpu];
  305. #endif
  306. }
  307. #else
  308. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  309. #endif /* CONFIG_GROUP_SCHED */
  310. /* CFS-related fields in a runqueue */
  311. struct cfs_rq {
  312. struct load_weight load;
  313. unsigned long nr_running;
  314. u64 exec_clock;
  315. u64 min_vruntime;
  316. struct rb_root tasks_timeline;
  317. struct rb_node *rb_leftmost;
  318. struct list_head tasks;
  319. struct list_head *balance_iterator;
  320. /*
  321. * 'curr' points to currently running entity on this cfs_rq.
  322. * It is set to NULL otherwise (i.e when none are currently running).
  323. */
  324. struct sched_entity *curr, *next;
  325. unsigned long nr_spread_over;
  326. #ifdef CONFIG_FAIR_GROUP_SCHED
  327. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  328. /*
  329. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  330. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  331. * (like users, containers etc.)
  332. *
  333. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  334. * list is used during load balance.
  335. */
  336. struct list_head leaf_cfs_rq_list;
  337. struct task_group *tg; /* group that "owns" this runqueue */
  338. #endif
  339. };
  340. /* Real-Time classes' related field in a runqueue: */
  341. struct rt_rq {
  342. struct rt_prio_array active;
  343. unsigned long rt_nr_running;
  344. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  345. int highest_prio; /* highest queued rt task prio */
  346. #endif
  347. #ifdef CONFIG_SMP
  348. unsigned long rt_nr_migratory;
  349. int overloaded;
  350. #endif
  351. int rt_throttled;
  352. u64 rt_time;
  353. u64 rt_runtime;
  354. /* Nests inside the rq lock: */
  355. spinlock_t rt_runtime_lock;
  356. #ifdef CONFIG_RT_GROUP_SCHED
  357. unsigned long rt_nr_boosted;
  358. struct rq *rq;
  359. struct list_head leaf_rt_rq_list;
  360. struct task_group *tg;
  361. struct sched_rt_entity *rt_se;
  362. #endif
  363. };
  364. #ifdef CONFIG_SMP
  365. /*
  366. * We add the notion of a root-domain which will be used to define per-domain
  367. * variables. Each exclusive cpuset essentially defines an island domain by
  368. * fully partitioning the member cpus from any other cpuset. Whenever a new
  369. * exclusive cpuset is created, we also create and attach a new root-domain
  370. * object.
  371. *
  372. */
  373. struct root_domain {
  374. atomic_t refcount;
  375. cpumask_t span;
  376. cpumask_t online;
  377. /*
  378. * The "RT overload" flag: it gets set if a CPU has more than
  379. * one runnable RT task.
  380. */
  381. cpumask_t rto_mask;
  382. atomic_t rto_count;
  383. #ifdef CONFIG_SMP
  384. struct cpupri cpupri;
  385. #endif
  386. };
  387. /*
  388. * By default the system creates a single root-domain with all cpus as
  389. * members (mimicking the global state we have today).
  390. */
  391. static struct root_domain def_root_domain;
  392. #endif
  393. /*
  394. * This is the main, per-CPU runqueue data structure.
  395. *
  396. * Locking rule: those places that want to lock multiple runqueues
  397. * (such as the load balancing or the thread migration code), lock
  398. * acquire operations must be ordered by ascending &runqueue.
  399. */
  400. struct rq {
  401. /* runqueue lock: */
  402. spinlock_t lock;
  403. /*
  404. * nr_running and cpu_load should be in the same cacheline because
  405. * remote CPUs use both these fields when doing load calculation.
  406. */
  407. unsigned long nr_running;
  408. #define CPU_LOAD_IDX_MAX 5
  409. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  410. unsigned char idle_at_tick;
  411. #ifdef CONFIG_NO_HZ
  412. unsigned long last_tick_seen;
  413. unsigned char in_nohz_recently;
  414. #endif
  415. /* capture load from *all* tasks on this cpu: */
  416. struct load_weight load;
  417. unsigned long nr_load_updates;
  418. u64 nr_switches;
  419. struct cfs_rq cfs;
  420. struct rt_rq rt;
  421. #ifdef CONFIG_FAIR_GROUP_SCHED
  422. /* list of leaf cfs_rq on this cpu: */
  423. struct list_head leaf_cfs_rq_list;
  424. #endif
  425. #ifdef CONFIG_RT_GROUP_SCHED
  426. struct list_head leaf_rt_rq_list;
  427. #endif
  428. /*
  429. * This is part of a global counter where only the total sum
  430. * over all CPUs matters. A task can increase this counter on
  431. * one CPU and if it got migrated afterwards it may decrease
  432. * it on another CPU. Always updated under the runqueue lock:
  433. */
  434. unsigned long nr_uninterruptible;
  435. struct task_struct *curr, *idle;
  436. unsigned long next_balance;
  437. struct mm_struct *prev_mm;
  438. u64 clock;
  439. atomic_t nr_iowait;
  440. #ifdef CONFIG_SMP
  441. struct root_domain *rd;
  442. struct sched_domain *sd;
  443. /* For active balancing */
  444. int active_balance;
  445. int push_cpu;
  446. /* cpu of this runqueue: */
  447. int cpu;
  448. struct task_struct *migration_thread;
  449. struct list_head migration_queue;
  450. #endif
  451. #ifdef CONFIG_SCHED_HRTICK
  452. unsigned long hrtick_flags;
  453. ktime_t hrtick_expire;
  454. struct hrtimer hrtick_timer;
  455. #endif
  456. #ifdef CONFIG_SCHEDSTATS
  457. /* latency stats */
  458. struct sched_info rq_sched_info;
  459. /* sys_sched_yield() stats */
  460. unsigned int yld_exp_empty;
  461. unsigned int yld_act_empty;
  462. unsigned int yld_both_empty;
  463. unsigned int yld_count;
  464. /* schedule() stats */
  465. unsigned int sched_switch;
  466. unsigned int sched_count;
  467. unsigned int sched_goidle;
  468. /* try_to_wake_up() stats */
  469. unsigned int ttwu_count;
  470. unsigned int ttwu_local;
  471. /* BKL stats */
  472. unsigned int bkl_count;
  473. #endif
  474. struct lock_class_key rq_lock_key;
  475. };
  476. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  477. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  478. {
  479. rq->curr->sched_class->check_preempt_curr(rq, p);
  480. }
  481. static inline int cpu_of(struct rq *rq)
  482. {
  483. #ifdef CONFIG_SMP
  484. return rq->cpu;
  485. #else
  486. return 0;
  487. #endif
  488. }
  489. /*
  490. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  491. * See detach_destroy_domains: synchronize_sched for details.
  492. *
  493. * The domain tree of any CPU may only be accessed from within
  494. * preempt-disabled sections.
  495. */
  496. #define for_each_domain(cpu, __sd) \
  497. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  498. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  499. #define this_rq() (&__get_cpu_var(runqueues))
  500. #define task_rq(p) cpu_rq(task_cpu(p))
  501. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  502. static inline void update_rq_clock(struct rq *rq)
  503. {
  504. rq->clock = sched_clock_cpu(cpu_of(rq));
  505. }
  506. /*
  507. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  508. */
  509. #ifdef CONFIG_SCHED_DEBUG
  510. # define const_debug __read_mostly
  511. #else
  512. # define const_debug static const
  513. #endif
  514. /*
  515. * Debugging: various feature bits
  516. */
  517. #define SCHED_FEAT(name, enabled) \
  518. __SCHED_FEAT_##name ,
  519. enum {
  520. #include "sched_features.h"
  521. };
  522. #undef SCHED_FEAT
  523. #define SCHED_FEAT(name, enabled) \
  524. (1UL << __SCHED_FEAT_##name) * enabled |
  525. const_debug unsigned int sysctl_sched_features =
  526. #include "sched_features.h"
  527. 0;
  528. #undef SCHED_FEAT
  529. #ifdef CONFIG_SCHED_DEBUG
  530. #define SCHED_FEAT(name, enabled) \
  531. #name ,
  532. static __read_mostly char *sched_feat_names[] = {
  533. #include "sched_features.h"
  534. NULL
  535. };
  536. #undef SCHED_FEAT
  537. static int sched_feat_open(struct inode *inode, struct file *filp)
  538. {
  539. filp->private_data = inode->i_private;
  540. return 0;
  541. }
  542. static ssize_t
  543. sched_feat_read(struct file *filp, char __user *ubuf,
  544. size_t cnt, loff_t *ppos)
  545. {
  546. char *buf;
  547. int r = 0;
  548. int len = 0;
  549. int i;
  550. for (i = 0; sched_feat_names[i]; i++) {
  551. len += strlen(sched_feat_names[i]);
  552. len += 4;
  553. }
  554. buf = kmalloc(len + 2, GFP_KERNEL);
  555. if (!buf)
  556. return -ENOMEM;
  557. for (i = 0; sched_feat_names[i]; i++) {
  558. if (sysctl_sched_features & (1UL << i))
  559. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  560. else
  561. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  562. }
  563. r += sprintf(buf + r, "\n");
  564. WARN_ON(r >= len + 2);
  565. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  566. kfree(buf);
  567. return r;
  568. }
  569. static ssize_t
  570. sched_feat_write(struct file *filp, const char __user *ubuf,
  571. size_t cnt, loff_t *ppos)
  572. {
  573. char buf[64];
  574. char *cmp = buf;
  575. int neg = 0;
  576. int i;
  577. if (cnt > 63)
  578. cnt = 63;
  579. if (copy_from_user(&buf, ubuf, cnt))
  580. return -EFAULT;
  581. buf[cnt] = 0;
  582. if (strncmp(buf, "NO_", 3) == 0) {
  583. neg = 1;
  584. cmp += 3;
  585. }
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. int len = strlen(sched_feat_names[i]);
  588. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  589. if (neg)
  590. sysctl_sched_features &= ~(1UL << i);
  591. else
  592. sysctl_sched_features |= (1UL << i);
  593. break;
  594. }
  595. }
  596. if (!sched_feat_names[i])
  597. return -EINVAL;
  598. filp->f_pos += cnt;
  599. return cnt;
  600. }
  601. static struct file_operations sched_feat_fops = {
  602. .open = sched_feat_open,
  603. .read = sched_feat_read,
  604. .write = sched_feat_write,
  605. };
  606. static __init int sched_init_debug(void)
  607. {
  608. debugfs_create_file("sched_features", 0644, NULL, NULL,
  609. &sched_feat_fops);
  610. return 0;
  611. }
  612. late_initcall(sched_init_debug);
  613. #endif
  614. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  615. /*
  616. * Number of tasks to iterate in a single balance run.
  617. * Limited because this is done with IRQs disabled.
  618. */
  619. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  620. /*
  621. * period over which we measure -rt task cpu usage in us.
  622. * default: 1s
  623. */
  624. unsigned int sysctl_sched_rt_period = 1000000;
  625. static __read_mostly int scheduler_running;
  626. /*
  627. * part of the period that we allow rt tasks to run in us.
  628. * default: 0.95s
  629. */
  630. int sysctl_sched_rt_runtime = 950000;
  631. static inline u64 global_rt_period(void)
  632. {
  633. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  634. }
  635. static inline u64 global_rt_runtime(void)
  636. {
  637. if (sysctl_sched_rt_period < 0)
  638. return RUNTIME_INF;
  639. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  640. }
  641. unsigned long long time_sync_thresh = 100000;
  642. static DEFINE_PER_CPU(unsigned long long, time_offset);
  643. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  644. /*
  645. * Global lock which we take every now and then to synchronize
  646. * the CPUs time. This method is not warp-safe, but it's good
  647. * enough to synchronize slowly diverging time sources and thus
  648. * it's good enough for tracing:
  649. */
  650. static DEFINE_SPINLOCK(time_sync_lock);
  651. static unsigned long long prev_global_time;
  652. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  653. {
  654. /*
  655. * We want this inlined, to not get tracer function calls
  656. * in this critical section:
  657. */
  658. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  659. __raw_spin_lock(&time_sync_lock.raw_lock);
  660. if (time < prev_global_time) {
  661. per_cpu(time_offset, cpu) += prev_global_time - time;
  662. time = prev_global_time;
  663. } else {
  664. prev_global_time = time;
  665. }
  666. __raw_spin_unlock(&time_sync_lock.raw_lock);
  667. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  668. return time;
  669. }
  670. static unsigned long long __cpu_clock(int cpu)
  671. {
  672. unsigned long long now;
  673. /*
  674. * Only call sched_clock() if the scheduler has already been
  675. * initialized (some code might call cpu_clock() very early):
  676. */
  677. if (unlikely(!scheduler_running))
  678. return 0;
  679. now = sched_clock_cpu(cpu);
  680. return now;
  681. }
  682. /*
  683. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  684. * clock constructed from sched_clock():
  685. */
  686. unsigned long long cpu_clock(int cpu)
  687. {
  688. unsigned long long prev_cpu_time, time, delta_time;
  689. unsigned long flags;
  690. local_irq_save(flags);
  691. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  692. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  693. delta_time = time-prev_cpu_time;
  694. if (unlikely(delta_time > time_sync_thresh)) {
  695. time = __sync_cpu_clock(time, cpu);
  696. per_cpu(prev_cpu_time, cpu) = time;
  697. }
  698. local_irq_restore(flags);
  699. return time;
  700. }
  701. EXPORT_SYMBOL_GPL(cpu_clock);
  702. #ifndef prepare_arch_switch
  703. # define prepare_arch_switch(next) do { } while (0)
  704. #endif
  705. #ifndef finish_arch_switch
  706. # define finish_arch_switch(prev) do { } while (0)
  707. #endif
  708. static inline int task_current(struct rq *rq, struct task_struct *p)
  709. {
  710. return rq->curr == p;
  711. }
  712. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  713. static inline int task_running(struct rq *rq, struct task_struct *p)
  714. {
  715. return task_current(rq, p);
  716. }
  717. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  718. {
  719. }
  720. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  721. {
  722. #ifdef CONFIG_DEBUG_SPINLOCK
  723. /* this is a valid case when another task releases the spinlock */
  724. rq->lock.owner = current;
  725. #endif
  726. /*
  727. * If we are tracking spinlock dependencies then we have to
  728. * fix up the runqueue lock - which gets 'carried over' from
  729. * prev into current:
  730. */
  731. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  732. spin_unlock_irq(&rq->lock);
  733. }
  734. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  735. static inline int task_running(struct rq *rq, struct task_struct *p)
  736. {
  737. #ifdef CONFIG_SMP
  738. return p->oncpu;
  739. #else
  740. return task_current(rq, p);
  741. #endif
  742. }
  743. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  744. {
  745. #ifdef CONFIG_SMP
  746. /*
  747. * We can optimise this out completely for !SMP, because the
  748. * SMP rebalancing from interrupt is the only thing that cares
  749. * here.
  750. */
  751. next->oncpu = 1;
  752. #endif
  753. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  754. spin_unlock_irq(&rq->lock);
  755. #else
  756. spin_unlock(&rq->lock);
  757. #endif
  758. }
  759. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  760. {
  761. #ifdef CONFIG_SMP
  762. /*
  763. * After ->oncpu is cleared, the task can be moved to a different CPU.
  764. * We must ensure this doesn't happen until the switch is completely
  765. * finished.
  766. */
  767. smp_wmb();
  768. prev->oncpu = 0;
  769. #endif
  770. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  771. local_irq_enable();
  772. #endif
  773. }
  774. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  775. /*
  776. * __task_rq_lock - lock the runqueue a given task resides on.
  777. * Must be called interrupts disabled.
  778. */
  779. static inline struct rq *__task_rq_lock(struct task_struct *p)
  780. __acquires(rq->lock)
  781. {
  782. for (;;) {
  783. struct rq *rq = task_rq(p);
  784. spin_lock(&rq->lock);
  785. if (likely(rq == task_rq(p)))
  786. return rq;
  787. spin_unlock(&rq->lock);
  788. }
  789. }
  790. /*
  791. * task_rq_lock - lock the runqueue a given task resides on and disable
  792. * interrupts. Note the ordering: we can safely lookup the task_rq without
  793. * explicitly disabling preemption.
  794. */
  795. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  796. __acquires(rq->lock)
  797. {
  798. struct rq *rq;
  799. for (;;) {
  800. local_irq_save(*flags);
  801. rq = task_rq(p);
  802. spin_lock(&rq->lock);
  803. if (likely(rq == task_rq(p)))
  804. return rq;
  805. spin_unlock_irqrestore(&rq->lock, *flags);
  806. }
  807. }
  808. static void __task_rq_unlock(struct rq *rq)
  809. __releases(rq->lock)
  810. {
  811. spin_unlock(&rq->lock);
  812. }
  813. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  814. __releases(rq->lock)
  815. {
  816. spin_unlock_irqrestore(&rq->lock, *flags);
  817. }
  818. /*
  819. * this_rq_lock - lock this runqueue and disable interrupts.
  820. */
  821. static struct rq *this_rq_lock(void)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_disable();
  826. rq = this_rq();
  827. spin_lock(&rq->lock);
  828. return rq;
  829. }
  830. static void __resched_task(struct task_struct *p, int tif_bit);
  831. static inline void resched_task(struct task_struct *p)
  832. {
  833. __resched_task(p, TIF_NEED_RESCHED);
  834. }
  835. #ifdef CONFIG_SCHED_HRTICK
  836. /*
  837. * Use HR-timers to deliver accurate preemption points.
  838. *
  839. * Its all a bit involved since we cannot program an hrt while holding the
  840. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  841. * reschedule event.
  842. *
  843. * When we get rescheduled we reprogram the hrtick_timer outside of the
  844. * rq->lock.
  845. */
  846. static inline void resched_hrt(struct task_struct *p)
  847. {
  848. __resched_task(p, TIF_HRTICK_RESCHED);
  849. }
  850. static inline void resched_rq(struct rq *rq)
  851. {
  852. unsigned long flags;
  853. spin_lock_irqsave(&rq->lock, flags);
  854. resched_task(rq->curr);
  855. spin_unlock_irqrestore(&rq->lock, flags);
  856. }
  857. enum {
  858. HRTICK_SET, /* re-programm hrtick_timer */
  859. HRTICK_RESET, /* not a new slice */
  860. HRTICK_BLOCK, /* stop hrtick operations */
  861. };
  862. /*
  863. * Use hrtick when:
  864. * - enabled by features
  865. * - hrtimer is actually high res
  866. */
  867. static inline int hrtick_enabled(struct rq *rq)
  868. {
  869. if (!sched_feat(HRTICK))
  870. return 0;
  871. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  872. return 0;
  873. return hrtimer_is_hres_active(&rq->hrtick_timer);
  874. }
  875. /*
  876. * Called to set the hrtick timer state.
  877. *
  878. * called with rq->lock held and irqs disabled
  879. */
  880. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  881. {
  882. assert_spin_locked(&rq->lock);
  883. /*
  884. * preempt at: now + delay
  885. */
  886. rq->hrtick_expire =
  887. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  888. /*
  889. * indicate we need to program the timer
  890. */
  891. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  892. if (reset)
  893. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  894. /*
  895. * New slices are called from the schedule path and don't need a
  896. * forced reschedule.
  897. */
  898. if (reset)
  899. resched_hrt(rq->curr);
  900. }
  901. static void hrtick_clear(struct rq *rq)
  902. {
  903. if (hrtimer_active(&rq->hrtick_timer))
  904. hrtimer_cancel(&rq->hrtick_timer);
  905. }
  906. /*
  907. * Update the timer from the possible pending state.
  908. */
  909. static void hrtick_set(struct rq *rq)
  910. {
  911. ktime_t time;
  912. int set, reset;
  913. unsigned long flags;
  914. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  915. spin_lock_irqsave(&rq->lock, flags);
  916. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  917. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  918. time = rq->hrtick_expire;
  919. clear_thread_flag(TIF_HRTICK_RESCHED);
  920. spin_unlock_irqrestore(&rq->lock, flags);
  921. if (set) {
  922. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  923. if (reset && !hrtimer_active(&rq->hrtick_timer))
  924. resched_rq(rq);
  925. } else
  926. hrtick_clear(rq);
  927. }
  928. /*
  929. * High-resolution timer tick.
  930. * Runs from hardirq context with interrupts disabled.
  931. */
  932. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  933. {
  934. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  935. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  936. spin_lock(&rq->lock);
  937. update_rq_clock(rq);
  938. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  939. spin_unlock(&rq->lock);
  940. return HRTIMER_NORESTART;
  941. }
  942. #ifdef CONFIG_SMP
  943. static void hotplug_hrtick_disable(int cpu)
  944. {
  945. struct rq *rq = cpu_rq(cpu);
  946. unsigned long flags;
  947. spin_lock_irqsave(&rq->lock, flags);
  948. rq->hrtick_flags = 0;
  949. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  950. spin_unlock_irqrestore(&rq->lock, flags);
  951. hrtick_clear(rq);
  952. }
  953. static void hotplug_hrtick_enable(int cpu)
  954. {
  955. struct rq *rq = cpu_rq(cpu);
  956. unsigned long flags;
  957. spin_lock_irqsave(&rq->lock, flags);
  958. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  959. spin_unlock_irqrestore(&rq->lock, flags);
  960. }
  961. static int
  962. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  963. {
  964. int cpu = (int)(long)hcpu;
  965. switch (action) {
  966. case CPU_UP_CANCELED:
  967. case CPU_UP_CANCELED_FROZEN:
  968. case CPU_DOWN_PREPARE:
  969. case CPU_DOWN_PREPARE_FROZEN:
  970. case CPU_DEAD:
  971. case CPU_DEAD_FROZEN:
  972. hotplug_hrtick_disable(cpu);
  973. return NOTIFY_OK;
  974. case CPU_UP_PREPARE:
  975. case CPU_UP_PREPARE_FROZEN:
  976. case CPU_DOWN_FAILED:
  977. case CPU_DOWN_FAILED_FROZEN:
  978. case CPU_ONLINE:
  979. case CPU_ONLINE_FROZEN:
  980. hotplug_hrtick_enable(cpu);
  981. return NOTIFY_OK;
  982. }
  983. return NOTIFY_DONE;
  984. }
  985. static void init_hrtick(void)
  986. {
  987. hotcpu_notifier(hotplug_hrtick, 0);
  988. }
  989. #endif /* CONFIG_SMP */
  990. static void init_rq_hrtick(struct rq *rq)
  991. {
  992. rq->hrtick_flags = 0;
  993. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  994. rq->hrtick_timer.function = hrtick;
  995. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  996. }
  997. void hrtick_resched(void)
  998. {
  999. struct rq *rq;
  1000. unsigned long flags;
  1001. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1002. return;
  1003. local_irq_save(flags);
  1004. rq = cpu_rq(smp_processor_id());
  1005. hrtick_set(rq);
  1006. local_irq_restore(flags);
  1007. }
  1008. #else
  1009. static inline void hrtick_clear(struct rq *rq)
  1010. {
  1011. }
  1012. static inline void hrtick_set(struct rq *rq)
  1013. {
  1014. }
  1015. static inline void init_rq_hrtick(struct rq *rq)
  1016. {
  1017. }
  1018. void hrtick_resched(void)
  1019. {
  1020. }
  1021. static inline void init_hrtick(void)
  1022. {
  1023. }
  1024. #endif
  1025. /*
  1026. * resched_task - mark a task 'to be rescheduled now'.
  1027. *
  1028. * On UP this means the setting of the need_resched flag, on SMP it
  1029. * might also involve a cross-CPU call to trigger the scheduler on
  1030. * the target CPU.
  1031. */
  1032. #ifdef CONFIG_SMP
  1033. #ifndef tsk_is_polling
  1034. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1035. #endif
  1036. static void __resched_task(struct task_struct *p, int tif_bit)
  1037. {
  1038. int cpu;
  1039. assert_spin_locked(&task_rq(p)->lock);
  1040. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1041. return;
  1042. set_tsk_thread_flag(p, tif_bit);
  1043. cpu = task_cpu(p);
  1044. if (cpu == smp_processor_id())
  1045. return;
  1046. /* NEED_RESCHED must be visible before we test polling */
  1047. smp_mb();
  1048. if (!tsk_is_polling(p))
  1049. smp_send_reschedule(cpu);
  1050. }
  1051. static void resched_cpu(int cpu)
  1052. {
  1053. struct rq *rq = cpu_rq(cpu);
  1054. unsigned long flags;
  1055. if (!spin_trylock_irqsave(&rq->lock, flags))
  1056. return;
  1057. resched_task(cpu_curr(cpu));
  1058. spin_unlock_irqrestore(&rq->lock, flags);
  1059. }
  1060. #ifdef CONFIG_NO_HZ
  1061. /*
  1062. * When add_timer_on() enqueues a timer into the timer wheel of an
  1063. * idle CPU then this timer might expire before the next timer event
  1064. * which is scheduled to wake up that CPU. In case of a completely
  1065. * idle system the next event might even be infinite time into the
  1066. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1067. * leaves the inner idle loop so the newly added timer is taken into
  1068. * account when the CPU goes back to idle and evaluates the timer
  1069. * wheel for the next timer event.
  1070. */
  1071. void wake_up_idle_cpu(int cpu)
  1072. {
  1073. struct rq *rq = cpu_rq(cpu);
  1074. if (cpu == smp_processor_id())
  1075. return;
  1076. /*
  1077. * This is safe, as this function is called with the timer
  1078. * wheel base lock of (cpu) held. When the CPU is on the way
  1079. * to idle and has not yet set rq->curr to idle then it will
  1080. * be serialized on the timer wheel base lock and take the new
  1081. * timer into account automatically.
  1082. */
  1083. if (rq->curr != rq->idle)
  1084. return;
  1085. /*
  1086. * We can set TIF_RESCHED on the idle task of the other CPU
  1087. * lockless. The worst case is that the other CPU runs the
  1088. * idle task through an additional NOOP schedule()
  1089. */
  1090. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1091. /* NEED_RESCHED must be visible before we test polling */
  1092. smp_mb();
  1093. if (!tsk_is_polling(rq->idle))
  1094. smp_send_reschedule(cpu);
  1095. }
  1096. #endif /* CONFIG_NO_HZ */
  1097. #else /* !CONFIG_SMP */
  1098. static void __resched_task(struct task_struct *p, int tif_bit)
  1099. {
  1100. assert_spin_locked(&task_rq(p)->lock);
  1101. set_tsk_thread_flag(p, tif_bit);
  1102. }
  1103. #endif /* CONFIG_SMP */
  1104. #if BITS_PER_LONG == 32
  1105. # define WMULT_CONST (~0UL)
  1106. #else
  1107. # define WMULT_CONST (1UL << 32)
  1108. #endif
  1109. #define WMULT_SHIFT 32
  1110. /*
  1111. * Shift right and round:
  1112. */
  1113. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1114. static unsigned long
  1115. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1116. struct load_weight *lw)
  1117. {
  1118. u64 tmp;
  1119. if (!lw->inv_weight)
  1120. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1121. tmp = (u64)delta_exec * weight;
  1122. /*
  1123. * Check whether we'd overflow the 64-bit multiplication:
  1124. */
  1125. if (unlikely(tmp > WMULT_CONST))
  1126. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1127. WMULT_SHIFT/2);
  1128. else
  1129. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1130. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1131. }
  1132. static inline unsigned long
  1133. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1134. {
  1135. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1136. }
  1137. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1138. {
  1139. lw->weight += inc;
  1140. lw->inv_weight = 0;
  1141. }
  1142. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1143. {
  1144. lw->weight -= dec;
  1145. lw->inv_weight = 0;
  1146. }
  1147. /*
  1148. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1149. * of tasks with abnormal "nice" values across CPUs the contribution that
  1150. * each task makes to its run queue's load is weighted according to its
  1151. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1152. * scaled version of the new time slice allocation that they receive on time
  1153. * slice expiry etc.
  1154. */
  1155. #define WEIGHT_IDLEPRIO 2
  1156. #define WMULT_IDLEPRIO (1 << 31)
  1157. /*
  1158. * Nice levels are multiplicative, with a gentle 10% change for every
  1159. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1160. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1161. * that remained on nice 0.
  1162. *
  1163. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1164. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1165. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1166. * If a task goes up by ~10% and another task goes down by ~10% then
  1167. * the relative distance between them is ~25%.)
  1168. */
  1169. static const int prio_to_weight[40] = {
  1170. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1171. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1172. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1173. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1174. /* 0 */ 1024, 820, 655, 526, 423,
  1175. /* 5 */ 335, 272, 215, 172, 137,
  1176. /* 10 */ 110, 87, 70, 56, 45,
  1177. /* 15 */ 36, 29, 23, 18, 15,
  1178. };
  1179. /*
  1180. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1181. *
  1182. * In cases where the weight does not change often, we can use the
  1183. * precalculated inverse to speed up arithmetics by turning divisions
  1184. * into multiplications:
  1185. */
  1186. static const u32 prio_to_wmult[40] = {
  1187. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1188. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1189. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1190. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1191. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1192. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1193. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1194. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1195. };
  1196. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1197. /*
  1198. * runqueue iterator, to support SMP load-balancing between different
  1199. * scheduling classes, without having to expose their internal data
  1200. * structures to the load-balancing proper:
  1201. */
  1202. struct rq_iterator {
  1203. void *arg;
  1204. struct task_struct *(*start)(void *);
  1205. struct task_struct *(*next)(void *);
  1206. };
  1207. #ifdef CONFIG_SMP
  1208. static unsigned long
  1209. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1210. unsigned long max_load_move, struct sched_domain *sd,
  1211. enum cpu_idle_type idle, int *all_pinned,
  1212. int *this_best_prio, struct rq_iterator *iterator);
  1213. static int
  1214. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1215. struct sched_domain *sd, enum cpu_idle_type idle,
  1216. struct rq_iterator *iterator);
  1217. #endif
  1218. #ifdef CONFIG_CGROUP_CPUACCT
  1219. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1220. #else
  1221. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1222. #endif
  1223. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1224. {
  1225. update_load_add(&rq->load, load);
  1226. }
  1227. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1228. {
  1229. update_load_sub(&rq->load, load);
  1230. }
  1231. #ifdef CONFIG_SMP
  1232. static unsigned long source_load(int cpu, int type);
  1233. static unsigned long target_load(int cpu, int type);
  1234. static unsigned long cpu_avg_load_per_task(int cpu);
  1235. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1236. #else /* CONFIG_SMP */
  1237. #ifdef CONFIG_FAIR_GROUP_SCHED
  1238. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1239. {
  1240. }
  1241. #endif
  1242. #endif /* CONFIG_SMP */
  1243. #include "sched_stats.h"
  1244. #include "sched_idletask.c"
  1245. #include "sched_fair.c"
  1246. #include "sched_rt.c"
  1247. #ifdef CONFIG_SCHED_DEBUG
  1248. # include "sched_debug.c"
  1249. #endif
  1250. #define sched_class_highest (&rt_sched_class)
  1251. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1252. {
  1253. update_load_add(&rq->load, p->se.load.weight);
  1254. }
  1255. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1256. {
  1257. update_load_sub(&rq->load, p->se.load.weight);
  1258. }
  1259. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1260. {
  1261. rq->nr_running++;
  1262. inc_load(rq, p);
  1263. }
  1264. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1265. {
  1266. rq->nr_running--;
  1267. dec_load(rq, p);
  1268. }
  1269. static void set_load_weight(struct task_struct *p)
  1270. {
  1271. if (task_has_rt_policy(p)) {
  1272. p->se.load.weight = prio_to_weight[0] * 2;
  1273. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1274. return;
  1275. }
  1276. /*
  1277. * SCHED_IDLE tasks get minimal weight:
  1278. */
  1279. if (p->policy == SCHED_IDLE) {
  1280. p->se.load.weight = WEIGHT_IDLEPRIO;
  1281. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1282. return;
  1283. }
  1284. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1285. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1286. }
  1287. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1288. {
  1289. sched_info_queued(p);
  1290. p->sched_class->enqueue_task(rq, p, wakeup);
  1291. p->se.on_rq = 1;
  1292. }
  1293. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1294. {
  1295. p->sched_class->dequeue_task(rq, p, sleep);
  1296. p->se.on_rq = 0;
  1297. }
  1298. /*
  1299. * __normal_prio - return the priority that is based on the static prio
  1300. */
  1301. static inline int __normal_prio(struct task_struct *p)
  1302. {
  1303. return p->static_prio;
  1304. }
  1305. /*
  1306. * Calculate the expected normal priority: i.e. priority
  1307. * without taking RT-inheritance into account. Might be
  1308. * boosted by interactivity modifiers. Changes upon fork,
  1309. * setprio syscalls, and whenever the interactivity
  1310. * estimator recalculates.
  1311. */
  1312. static inline int normal_prio(struct task_struct *p)
  1313. {
  1314. int prio;
  1315. if (task_has_rt_policy(p))
  1316. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1317. else
  1318. prio = __normal_prio(p);
  1319. return prio;
  1320. }
  1321. /*
  1322. * Calculate the current priority, i.e. the priority
  1323. * taken into account by the scheduler. This value might
  1324. * be boosted by RT tasks, or might be boosted by
  1325. * interactivity modifiers. Will be RT if the task got
  1326. * RT-boosted. If not then it returns p->normal_prio.
  1327. */
  1328. static int effective_prio(struct task_struct *p)
  1329. {
  1330. p->normal_prio = normal_prio(p);
  1331. /*
  1332. * If we are RT tasks or we were boosted to RT priority,
  1333. * keep the priority unchanged. Otherwise, update priority
  1334. * to the normal priority:
  1335. */
  1336. if (!rt_prio(p->prio))
  1337. return p->normal_prio;
  1338. return p->prio;
  1339. }
  1340. /*
  1341. * activate_task - move a task to the runqueue.
  1342. */
  1343. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1344. {
  1345. if (task_contributes_to_load(p))
  1346. rq->nr_uninterruptible--;
  1347. enqueue_task(rq, p, wakeup);
  1348. inc_nr_running(p, rq);
  1349. }
  1350. /*
  1351. * deactivate_task - remove a task from the runqueue.
  1352. */
  1353. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1354. {
  1355. if (task_contributes_to_load(p))
  1356. rq->nr_uninterruptible++;
  1357. dequeue_task(rq, p, sleep);
  1358. dec_nr_running(p, rq);
  1359. }
  1360. /**
  1361. * task_curr - is this task currently executing on a CPU?
  1362. * @p: the task in question.
  1363. */
  1364. inline int task_curr(const struct task_struct *p)
  1365. {
  1366. return cpu_curr(task_cpu(p)) == p;
  1367. }
  1368. /* Used instead of source_load when we know the type == 0 */
  1369. static unsigned long weighted_cpuload(const int cpu)
  1370. {
  1371. return cpu_rq(cpu)->load.weight;
  1372. }
  1373. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1374. {
  1375. set_task_rq(p, cpu);
  1376. #ifdef CONFIG_SMP
  1377. /*
  1378. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1379. * successfuly executed on another CPU. We must ensure that updates of
  1380. * per-task data have been completed by this moment.
  1381. */
  1382. smp_wmb();
  1383. task_thread_info(p)->cpu = cpu;
  1384. #endif
  1385. }
  1386. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1387. const struct sched_class *prev_class,
  1388. int oldprio, int running)
  1389. {
  1390. if (prev_class != p->sched_class) {
  1391. if (prev_class->switched_from)
  1392. prev_class->switched_from(rq, p, running);
  1393. p->sched_class->switched_to(rq, p, running);
  1394. } else
  1395. p->sched_class->prio_changed(rq, p, oldprio, running);
  1396. }
  1397. #ifdef CONFIG_SMP
  1398. /*
  1399. * Is this task likely cache-hot:
  1400. */
  1401. static int
  1402. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1403. {
  1404. s64 delta;
  1405. /*
  1406. * Buddy candidates are cache hot:
  1407. */
  1408. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1409. return 1;
  1410. if (p->sched_class != &fair_sched_class)
  1411. return 0;
  1412. if (sysctl_sched_migration_cost == -1)
  1413. return 1;
  1414. if (sysctl_sched_migration_cost == 0)
  1415. return 0;
  1416. delta = now - p->se.exec_start;
  1417. return delta < (s64)sysctl_sched_migration_cost;
  1418. }
  1419. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1420. {
  1421. int old_cpu = task_cpu(p);
  1422. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1423. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1424. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1425. u64 clock_offset;
  1426. clock_offset = old_rq->clock - new_rq->clock;
  1427. #ifdef CONFIG_SCHEDSTATS
  1428. if (p->se.wait_start)
  1429. p->se.wait_start -= clock_offset;
  1430. if (p->se.sleep_start)
  1431. p->se.sleep_start -= clock_offset;
  1432. if (p->se.block_start)
  1433. p->se.block_start -= clock_offset;
  1434. if (old_cpu != new_cpu) {
  1435. schedstat_inc(p, se.nr_migrations);
  1436. if (task_hot(p, old_rq->clock, NULL))
  1437. schedstat_inc(p, se.nr_forced2_migrations);
  1438. }
  1439. #endif
  1440. p->se.vruntime -= old_cfsrq->min_vruntime -
  1441. new_cfsrq->min_vruntime;
  1442. __set_task_cpu(p, new_cpu);
  1443. }
  1444. struct migration_req {
  1445. struct list_head list;
  1446. struct task_struct *task;
  1447. int dest_cpu;
  1448. struct completion done;
  1449. };
  1450. /*
  1451. * The task's runqueue lock must be held.
  1452. * Returns true if you have to wait for migration thread.
  1453. */
  1454. static int
  1455. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1456. {
  1457. struct rq *rq = task_rq(p);
  1458. /*
  1459. * If the task is not on a runqueue (and not running), then
  1460. * it is sufficient to simply update the task's cpu field.
  1461. */
  1462. if (!p->se.on_rq && !task_running(rq, p)) {
  1463. set_task_cpu(p, dest_cpu);
  1464. return 0;
  1465. }
  1466. init_completion(&req->done);
  1467. req->task = p;
  1468. req->dest_cpu = dest_cpu;
  1469. list_add(&req->list, &rq->migration_queue);
  1470. return 1;
  1471. }
  1472. /*
  1473. * wait_task_inactive - wait for a thread to unschedule.
  1474. *
  1475. * The caller must ensure that the task *will* unschedule sometime soon,
  1476. * else this function might spin for a *long* time. This function can't
  1477. * be called with interrupts off, or it may introduce deadlock with
  1478. * smp_call_function() if an IPI is sent by the same process we are
  1479. * waiting to become inactive.
  1480. */
  1481. void wait_task_inactive(struct task_struct *p)
  1482. {
  1483. unsigned long flags;
  1484. int running, on_rq;
  1485. struct rq *rq;
  1486. for (;;) {
  1487. /*
  1488. * We do the initial early heuristics without holding
  1489. * any task-queue locks at all. We'll only try to get
  1490. * the runqueue lock when things look like they will
  1491. * work out!
  1492. */
  1493. rq = task_rq(p);
  1494. /*
  1495. * If the task is actively running on another CPU
  1496. * still, just relax and busy-wait without holding
  1497. * any locks.
  1498. *
  1499. * NOTE! Since we don't hold any locks, it's not
  1500. * even sure that "rq" stays as the right runqueue!
  1501. * But we don't care, since "task_running()" will
  1502. * return false if the runqueue has changed and p
  1503. * is actually now running somewhere else!
  1504. */
  1505. while (task_running(rq, p))
  1506. cpu_relax();
  1507. /*
  1508. * Ok, time to look more closely! We need the rq
  1509. * lock now, to be *sure*. If we're wrong, we'll
  1510. * just go back and repeat.
  1511. */
  1512. rq = task_rq_lock(p, &flags);
  1513. running = task_running(rq, p);
  1514. on_rq = p->se.on_rq;
  1515. task_rq_unlock(rq, &flags);
  1516. /*
  1517. * Was it really running after all now that we
  1518. * checked with the proper locks actually held?
  1519. *
  1520. * Oops. Go back and try again..
  1521. */
  1522. if (unlikely(running)) {
  1523. cpu_relax();
  1524. continue;
  1525. }
  1526. /*
  1527. * It's not enough that it's not actively running,
  1528. * it must be off the runqueue _entirely_, and not
  1529. * preempted!
  1530. *
  1531. * So if it wa still runnable (but just not actively
  1532. * running right now), it's preempted, and we should
  1533. * yield - it could be a while.
  1534. */
  1535. if (unlikely(on_rq)) {
  1536. schedule_timeout_uninterruptible(1);
  1537. continue;
  1538. }
  1539. /*
  1540. * Ahh, all good. It wasn't running, and it wasn't
  1541. * runnable, which means that it will never become
  1542. * running in the future either. We're all done!
  1543. */
  1544. break;
  1545. }
  1546. }
  1547. /***
  1548. * kick_process - kick a running thread to enter/exit the kernel
  1549. * @p: the to-be-kicked thread
  1550. *
  1551. * Cause a process which is running on another CPU to enter
  1552. * kernel-mode, without any delay. (to get signals handled.)
  1553. *
  1554. * NOTE: this function doesnt have to take the runqueue lock,
  1555. * because all it wants to ensure is that the remote task enters
  1556. * the kernel. If the IPI races and the task has been migrated
  1557. * to another CPU then no harm is done and the purpose has been
  1558. * achieved as well.
  1559. */
  1560. void kick_process(struct task_struct *p)
  1561. {
  1562. int cpu;
  1563. preempt_disable();
  1564. cpu = task_cpu(p);
  1565. if ((cpu != smp_processor_id()) && task_curr(p))
  1566. smp_send_reschedule(cpu);
  1567. preempt_enable();
  1568. }
  1569. /*
  1570. * Return a low guess at the load of a migration-source cpu weighted
  1571. * according to the scheduling class and "nice" value.
  1572. *
  1573. * We want to under-estimate the load of migration sources, to
  1574. * balance conservatively.
  1575. */
  1576. static unsigned long source_load(int cpu, int type)
  1577. {
  1578. struct rq *rq = cpu_rq(cpu);
  1579. unsigned long total = weighted_cpuload(cpu);
  1580. if (type == 0)
  1581. return total;
  1582. return min(rq->cpu_load[type-1], total);
  1583. }
  1584. /*
  1585. * Return a high guess at the load of a migration-target cpu weighted
  1586. * according to the scheduling class and "nice" value.
  1587. */
  1588. static unsigned long target_load(int cpu, int type)
  1589. {
  1590. struct rq *rq = cpu_rq(cpu);
  1591. unsigned long total = weighted_cpuload(cpu);
  1592. if (type == 0)
  1593. return total;
  1594. return max(rq->cpu_load[type-1], total);
  1595. }
  1596. /*
  1597. * Return the average load per task on the cpu's run queue
  1598. */
  1599. static unsigned long cpu_avg_load_per_task(int cpu)
  1600. {
  1601. struct rq *rq = cpu_rq(cpu);
  1602. unsigned long total = weighted_cpuload(cpu);
  1603. unsigned long n = rq->nr_running;
  1604. return n ? total / n : SCHED_LOAD_SCALE;
  1605. }
  1606. /*
  1607. * find_idlest_group finds and returns the least busy CPU group within the
  1608. * domain.
  1609. */
  1610. static struct sched_group *
  1611. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1612. {
  1613. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1614. unsigned long min_load = ULONG_MAX, this_load = 0;
  1615. int load_idx = sd->forkexec_idx;
  1616. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1617. do {
  1618. unsigned long load, avg_load;
  1619. int local_group;
  1620. int i;
  1621. /* Skip over this group if it has no CPUs allowed */
  1622. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1623. continue;
  1624. local_group = cpu_isset(this_cpu, group->cpumask);
  1625. /* Tally up the load of all CPUs in the group */
  1626. avg_load = 0;
  1627. for_each_cpu_mask(i, group->cpumask) {
  1628. /* Bias balancing toward cpus of our domain */
  1629. if (local_group)
  1630. load = source_load(i, load_idx);
  1631. else
  1632. load = target_load(i, load_idx);
  1633. avg_load += load;
  1634. }
  1635. /* Adjust by relative CPU power of the group */
  1636. avg_load = sg_div_cpu_power(group,
  1637. avg_load * SCHED_LOAD_SCALE);
  1638. if (local_group) {
  1639. this_load = avg_load;
  1640. this = group;
  1641. } else if (avg_load < min_load) {
  1642. min_load = avg_load;
  1643. idlest = group;
  1644. }
  1645. } while (group = group->next, group != sd->groups);
  1646. if (!idlest || 100*this_load < imbalance*min_load)
  1647. return NULL;
  1648. return idlest;
  1649. }
  1650. /*
  1651. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1652. */
  1653. static int
  1654. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1655. cpumask_t *tmp)
  1656. {
  1657. unsigned long load, min_load = ULONG_MAX;
  1658. int idlest = -1;
  1659. int i;
  1660. /* Traverse only the allowed CPUs */
  1661. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1662. for_each_cpu_mask(i, *tmp) {
  1663. load = weighted_cpuload(i);
  1664. if (load < min_load || (load == min_load && i == this_cpu)) {
  1665. min_load = load;
  1666. idlest = i;
  1667. }
  1668. }
  1669. return idlest;
  1670. }
  1671. /*
  1672. * sched_balance_self: balance the current task (running on cpu) in domains
  1673. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1674. * SD_BALANCE_EXEC.
  1675. *
  1676. * Balance, ie. select the least loaded group.
  1677. *
  1678. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1679. *
  1680. * preempt must be disabled.
  1681. */
  1682. static int sched_balance_self(int cpu, int flag)
  1683. {
  1684. struct task_struct *t = current;
  1685. struct sched_domain *tmp, *sd = NULL;
  1686. for_each_domain(cpu, tmp) {
  1687. /*
  1688. * If power savings logic is enabled for a domain, stop there.
  1689. */
  1690. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1691. break;
  1692. if (tmp->flags & flag)
  1693. sd = tmp;
  1694. }
  1695. while (sd) {
  1696. cpumask_t span, tmpmask;
  1697. struct sched_group *group;
  1698. int new_cpu, weight;
  1699. if (!(sd->flags & flag)) {
  1700. sd = sd->child;
  1701. continue;
  1702. }
  1703. span = sd->span;
  1704. group = find_idlest_group(sd, t, cpu);
  1705. if (!group) {
  1706. sd = sd->child;
  1707. continue;
  1708. }
  1709. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1710. if (new_cpu == -1 || new_cpu == cpu) {
  1711. /* Now try balancing at a lower domain level of cpu */
  1712. sd = sd->child;
  1713. continue;
  1714. }
  1715. /* Now try balancing at a lower domain level of new_cpu */
  1716. cpu = new_cpu;
  1717. sd = NULL;
  1718. weight = cpus_weight(span);
  1719. for_each_domain(cpu, tmp) {
  1720. if (weight <= cpus_weight(tmp->span))
  1721. break;
  1722. if (tmp->flags & flag)
  1723. sd = tmp;
  1724. }
  1725. /* while loop will break here if sd == NULL */
  1726. }
  1727. return cpu;
  1728. }
  1729. #endif /* CONFIG_SMP */
  1730. /***
  1731. * try_to_wake_up - wake up a thread
  1732. * @p: the to-be-woken-up thread
  1733. * @state: the mask of task states that can be woken
  1734. * @sync: do a synchronous wakeup?
  1735. *
  1736. * Put it on the run-queue if it's not already there. The "current"
  1737. * thread is always on the run-queue (except when the actual
  1738. * re-schedule is in progress), and as such you're allowed to do
  1739. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1740. * runnable without the overhead of this.
  1741. *
  1742. * returns failure only if the task is already active.
  1743. */
  1744. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1745. {
  1746. int cpu, orig_cpu, this_cpu, success = 0;
  1747. unsigned long flags;
  1748. long old_state;
  1749. struct rq *rq;
  1750. if (!sched_feat(SYNC_WAKEUPS))
  1751. sync = 0;
  1752. smp_wmb();
  1753. rq = task_rq_lock(p, &flags);
  1754. old_state = p->state;
  1755. if (!(old_state & state))
  1756. goto out;
  1757. if (p->se.on_rq)
  1758. goto out_running;
  1759. cpu = task_cpu(p);
  1760. orig_cpu = cpu;
  1761. this_cpu = smp_processor_id();
  1762. #ifdef CONFIG_SMP
  1763. if (unlikely(task_running(rq, p)))
  1764. goto out_activate;
  1765. cpu = p->sched_class->select_task_rq(p, sync);
  1766. if (cpu != orig_cpu) {
  1767. set_task_cpu(p, cpu);
  1768. task_rq_unlock(rq, &flags);
  1769. /* might preempt at this point */
  1770. rq = task_rq_lock(p, &flags);
  1771. old_state = p->state;
  1772. if (!(old_state & state))
  1773. goto out;
  1774. if (p->se.on_rq)
  1775. goto out_running;
  1776. this_cpu = smp_processor_id();
  1777. cpu = task_cpu(p);
  1778. }
  1779. #ifdef CONFIG_SCHEDSTATS
  1780. schedstat_inc(rq, ttwu_count);
  1781. if (cpu == this_cpu)
  1782. schedstat_inc(rq, ttwu_local);
  1783. else {
  1784. struct sched_domain *sd;
  1785. for_each_domain(this_cpu, sd) {
  1786. if (cpu_isset(cpu, sd->span)) {
  1787. schedstat_inc(sd, ttwu_wake_remote);
  1788. break;
  1789. }
  1790. }
  1791. }
  1792. #endif /* CONFIG_SCHEDSTATS */
  1793. out_activate:
  1794. #endif /* CONFIG_SMP */
  1795. schedstat_inc(p, se.nr_wakeups);
  1796. if (sync)
  1797. schedstat_inc(p, se.nr_wakeups_sync);
  1798. if (orig_cpu != cpu)
  1799. schedstat_inc(p, se.nr_wakeups_migrate);
  1800. if (cpu == this_cpu)
  1801. schedstat_inc(p, se.nr_wakeups_local);
  1802. else
  1803. schedstat_inc(p, se.nr_wakeups_remote);
  1804. update_rq_clock(rq);
  1805. activate_task(rq, p, 1);
  1806. success = 1;
  1807. out_running:
  1808. check_preempt_curr(rq, p);
  1809. p->state = TASK_RUNNING;
  1810. #ifdef CONFIG_SMP
  1811. if (p->sched_class->task_wake_up)
  1812. p->sched_class->task_wake_up(rq, p);
  1813. #endif
  1814. out:
  1815. task_rq_unlock(rq, &flags);
  1816. return success;
  1817. }
  1818. int wake_up_process(struct task_struct *p)
  1819. {
  1820. return try_to_wake_up(p, TASK_ALL, 0);
  1821. }
  1822. EXPORT_SYMBOL(wake_up_process);
  1823. int wake_up_state(struct task_struct *p, unsigned int state)
  1824. {
  1825. return try_to_wake_up(p, state, 0);
  1826. }
  1827. /*
  1828. * Perform scheduler related setup for a newly forked process p.
  1829. * p is forked by current.
  1830. *
  1831. * __sched_fork() is basic setup used by init_idle() too:
  1832. */
  1833. static void __sched_fork(struct task_struct *p)
  1834. {
  1835. p->se.exec_start = 0;
  1836. p->se.sum_exec_runtime = 0;
  1837. p->se.prev_sum_exec_runtime = 0;
  1838. p->se.last_wakeup = 0;
  1839. p->se.avg_overlap = 0;
  1840. #ifdef CONFIG_SCHEDSTATS
  1841. p->se.wait_start = 0;
  1842. p->se.sum_sleep_runtime = 0;
  1843. p->se.sleep_start = 0;
  1844. p->se.block_start = 0;
  1845. p->se.sleep_max = 0;
  1846. p->se.block_max = 0;
  1847. p->se.exec_max = 0;
  1848. p->se.slice_max = 0;
  1849. p->se.wait_max = 0;
  1850. #endif
  1851. INIT_LIST_HEAD(&p->rt.run_list);
  1852. p->se.on_rq = 0;
  1853. INIT_LIST_HEAD(&p->se.group_node);
  1854. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1855. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1856. #endif
  1857. /*
  1858. * We mark the process as running here, but have not actually
  1859. * inserted it onto the runqueue yet. This guarantees that
  1860. * nobody will actually run it, and a signal or other external
  1861. * event cannot wake it up and insert it on the runqueue either.
  1862. */
  1863. p->state = TASK_RUNNING;
  1864. }
  1865. /*
  1866. * fork()/clone()-time setup:
  1867. */
  1868. void sched_fork(struct task_struct *p, int clone_flags)
  1869. {
  1870. int cpu = get_cpu();
  1871. __sched_fork(p);
  1872. #ifdef CONFIG_SMP
  1873. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1874. #endif
  1875. set_task_cpu(p, cpu);
  1876. /*
  1877. * Make sure we do not leak PI boosting priority to the child:
  1878. */
  1879. p->prio = current->normal_prio;
  1880. if (!rt_prio(p->prio))
  1881. p->sched_class = &fair_sched_class;
  1882. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1883. if (likely(sched_info_on()))
  1884. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1885. #endif
  1886. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1887. p->oncpu = 0;
  1888. #endif
  1889. #ifdef CONFIG_PREEMPT
  1890. /* Want to start with kernel preemption disabled. */
  1891. task_thread_info(p)->preempt_count = 1;
  1892. #endif
  1893. put_cpu();
  1894. }
  1895. /*
  1896. * wake_up_new_task - wake up a newly created task for the first time.
  1897. *
  1898. * This function will do some initial scheduler statistics housekeeping
  1899. * that must be done for every newly created context, then puts the task
  1900. * on the runqueue and wakes it.
  1901. */
  1902. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1903. {
  1904. unsigned long flags;
  1905. struct rq *rq;
  1906. rq = task_rq_lock(p, &flags);
  1907. BUG_ON(p->state != TASK_RUNNING);
  1908. update_rq_clock(rq);
  1909. p->prio = effective_prio(p);
  1910. if (!p->sched_class->task_new || !current->se.on_rq) {
  1911. activate_task(rq, p, 0);
  1912. } else {
  1913. /*
  1914. * Let the scheduling class do new task startup
  1915. * management (if any):
  1916. */
  1917. p->sched_class->task_new(rq, p);
  1918. inc_nr_running(p, rq);
  1919. }
  1920. check_preempt_curr(rq, p);
  1921. #ifdef CONFIG_SMP
  1922. if (p->sched_class->task_wake_up)
  1923. p->sched_class->task_wake_up(rq, p);
  1924. #endif
  1925. task_rq_unlock(rq, &flags);
  1926. }
  1927. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1928. /**
  1929. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1930. * @notifier: notifier struct to register
  1931. */
  1932. void preempt_notifier_register(struct preempt_notifier *notifier)
  1933. {
  1934. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1935. }
  1936. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1937. /**
  1938. * preempt_notifier_unregister - no longer interested in preemption notifications
  1939. * @notifier: notifier struct to unregister
  1940. *
  1941. * This is safe to call from within a preemption notifier.
  1942. */
  1943. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1944. {
  1945. hlist_del(&notifier->link);
  1946. }
  1947. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1948. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1949. {
  1950. struct preempt_notifier *notifier;
  1951. struct hlist_node *node;
  1952. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1953. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1954. }
  1955. static void
  1956. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1957. struct task_struct *next)
  1958. {
  1959. struct preempt_notifier *notifier;
  1960. struct hlist_node *node;
  1961. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1962. notifier->ops->sched_out(notifier, next);
  1963. }
  1964. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1965. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1966. {
  1967. }
  1968. static void
  1969. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1970. struct task_struct *next)
  1971. {
  1972. }
  1973. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1974. /**
  1975. * prepare_task_switch - prepare to switch tasks
  1976. * @rq: the runqueue preparing to switch
  1977. * @prev: the current task that is being switched out
  1978. * @next: the task we are going to switch to.
  1979. *
  1980. * This is called with the rq lock held and interrupts off. It must
  1981. * be paired with a subsequent finish_task_switch after the context
  1982. * switch.
  1983. *
  1984. * prepare_task_switch sets up locking and calls architecture specific
  1985. * hooks.
  1986. */
  1987. static inline void
  1988. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1989. struct task_struct *next)
  1990. {
  1991. fire_sched_out_preempt_notifiers(prev, next);
  1992. prepare_lock_switch(rq, next);
  1993. prepare_arch_switch(next);
  1994. }
  1995. /**
  1996. * finish_task_switch - clean up after a task-switch
  1997. * @rq: runqueue associated with task-switch
  1998. * @prev: the thread we just switched away from.
  1999. *
  2000. * finish_task_switch must be called after the context switch, paired
  2001. * with a prepare_task_switch call before the context switch.
  2002. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2003. * and do any other architecture-specific cleanup actions.
  2004. *
  2005. * Note that we may have delayed dropping an mm in context_switch(). If
  2006. * so, we finish that here outside of the runqueue lock. (Doing it
  2007. * with the lock held can cause deadlocks; see schedule() for
  2008. * details.)
  2009. */
  2010. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2011. __releases(rq->lock)
  2012. {
  2013. struct mm_struct *mm = rq->prev_mm;
  2014. long prev_state;
  2015. rq->prev_mm = NULL;
  2016. /*
  2017. * A task struct has one reference for the use as "current".
  2018. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2019. * schedule one last time. The schedule call will never return, and
  2020. * the scheduled task must drop that reference.
  2021. * The test for TASK_DEAD must occur while the runqueue locks are
  2022. * still held, otherwise prev could be scheduled on another cpu, die
  2023. * there before we look at prev->state, and then the reference would
  2024. * be dropped twice.
  2025. * Manfred Spraul <manfred@colorfullife.com>
  2026. */
  2027. prev_state = prev->state;
  2028. finish_arch_switch(prev);
  2029. finish_lock_switch(rq, prev);
  2030. #ifdef CONFIG_SMP
  2031. if (current->sched_class->post_schedule)
  2032. current->sched_class->post_schedule(rq);
  2033. #endif
  2034. fire_sched_in_preempt_notifiers(current);
  2035. if (mm)
  2036. mmdrop(mm);
  2037. if (unlikely(prev_state == TASK_DEAD)) {
  2038. /*
  2039. * Remove function-return probe instances associated with this
  2040. * task and put them back on the free list.
  2041. */
  2042. kprobe_flush_task(prev);
  2043. put_task_struct(prev);
  2044. }
  2045. }
  2046. /**
  2047. * schedule_tail - first thing a freshly forked thread must call.
  2048. * @prev: the thread we just switched away from.
  2049. */
  2050. asmlinkage void schedule_tail(struct task_struct *prev)
  2051. __releases(rq->lock)
  2052. {
  2053. struct rq *rq = this_rq();
  2054. finish_task_switch(rq, prev);
  2055. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2056. /* In this case, finish_task_switch does not reenable preemption */
  2057. preempt_enable();
  2058. #endif
  2059. if (current->set_child_tid)
  2060. put_user(task_pid_vnr(current), current->set_child_tid);
  2061. }
  2062. /*
  2063. * context_switch - switch to the new MM and the new
  2064. * thread's register state.
  2065. */
  2066. static inline void
  2067. context_switch(struct rq *rq, struct task_struct *prev,
  2068. struct task_struct *next)
  2069. {
  2070. struct mm_struct *mm, *oldmm;
  2071. prepare_task_switch(rq, prev, next);
  2072. mm = next->mm;
  2073. oldmm = prev->active_mm;
  2074. /*
  2075. * For paravirt, this is coupled with an exit in switch_to to
  2076. * combine the page table reload and the switch backend into
  2077. * one hypercall.
  2078. */
  2079. arch_enter_lazy_cpu_mode();
  2080. if (unlikely(!mm)) {
  2081. next->active_mm = oldmm;
  2082. atomic_inc(&oldmm->mm_count);
  2083. enter_lazy_tlb(oldmm, next);
  2084. } else
  2085. switch_mm(oldmm, mm, next);
  2086. if (unlikely(!prev->mm)) {
  2087. prev->active_mm = NULL;
  2088. rq->prev_mm = oldmm;
  2089. }
  2090. /*
  2091. * Since the runqueue lock will be released by the next
  2092. * task (which is an invalid locking op but in the case
  2093. * of the scheduler it's an obvious special-case), so we
  2094. * do an early lockdep release here:
  2095. */
  2096. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2097. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2098. #endif
  2099. /* Here we just switch the register state and the stack. */
  2100. switch_to(prev, next, prev);
  2101. barrier();
  2102. /*
  2103. * this_rq must be evaluated again because prev may have moved
  2104. * CPUs since it called schedule(), thus the 'rq' on its stack
  2105. * frame will be invalid.
  2106. */
  2107. finish_task_switch(this_rq(), prev);
  2108. }
  2109. /*
  2110. * nr_running, nr_uninterruptible and nr_context_switches:
  2111. *
  2112. * externally visible scheduler statistics: current number of runnable
  2113. * threads, current number of uninterruptible-sleeping threads, total
  2114. * number of context switches performed since bootup.
  2115. */
  2116. unsigned long nr_running(void)
  2117. {
  2118. unsigned long i, sum = 0;
  2119. for_each_online_cpu(i)
  2120. sum += cpu_rq(i)->nr_running;
  2121. return sum;
  2122. }
  2123. unsigned long nr_uninterruptible(void)
  2124. {
  2125. unsigned long i, sum = 0;
  2126. for_each_possible_cpu(i)
  2127. sum += cpu_rq(i)->nr_uninterruptible;
  2128. /*
  2129. * Since we read the counters lockless, it might be slightly
  2130. * inaccurate. Do not allow it to go below zero though:
  2131. */
  2132. if (unlikely((long)sum < 0))
  2133. sum = 0;
  2134. return sum;
  2135. }
  2136. unsigned long long nr_context_switches(void)
  2137. {
  2138. int i;
  2139. unsigned long long sum = 0;
  2140. for_each_possible_cpu(i)
  2141. sum += cpu_rq(i)->nr_switches;
  2142. return sum;
  2143. }
  2144. unsigned long nr_iowait(void)
  2145. {
  2146. unsigned long i, sum = 0;
  2147. for_each_possible_cpu(i)
  2148. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2149. return sum;
  2150. }
  2151. unsigned long nr_active(void)
  2152. {
  2153. unsigned long i, running = 0, uninterruptible = 0;
  2154. for_each_online_cpu(i) {
  2155. running += cpu_rq(i)->nr_running;
  2156. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2157. }
  2158. if (unlikely((long)uninterruptible < 0))
  2159. uninterruptible = 0;
  2160. return running + uninterruptible;
  2161. }
  2162. /*
  2163. * Update rq->cpu_load[] statistics. This function is usually called every
  2164. * scheduler tick (TICK_NSEC).
  2165. */
  2166. static void update_cpu_load(struct rq *this_rq)
  2167. {
  2168. unsigned long this_load = this_rq->load.weight;
  2169. int i, scale;
  2170. this_rq->nr_load_updates++;
  2171. /* Update our load: */
  2172. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2173. unsigned long old_load, new_load;
  2174. /* scale is effectively 1 << i now, and >> i divides by scale */
  2175. old_load = this_rq->cpu_load[i];
  2176. new_load = this_load;
  2177. /*
  2178. * Round up the averaging division if load is increasing. This
  2179. * prevents us from getting stuck on 9 if the load is 10, for
  2180. * example.
  2181. */
  2182. if (new_load > old_load)
  2183. new_load += scale-1;
  2184. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2185. }
  2186. }
  2187. #ifdef CONFIG_SMP
  2188. /*
  2189. * double_rq_lock - safely lock two runqueues
  2190. *
  2191. * Note this does not disable interrupts like task_rq_lock,
  2192. * you need to do so manually before calling.
  2193. */
  2194. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2195. __acquires(rq1->lock)
  2196. __acquires(rq2->lock)
  2197. {
  2198. BUG_ON(!irqs_disabled());
  2199. if (rq1 == rq2) {
  2200. spin_lock(&rq1->lock);
  2201. __acquire(rq2->lock); /* Fake it out ;) */
  2202. } else {
  2203. if (rq1 < rq2) {
  2204. spin_lock(&rq1->lock);
  2205. spin_lock(&rq2->lock);
  2206. } else {
  2207. spin_lock(&rq2->lock);
  2208. spin_lock(&rq1->lock);
  2209. }
  2210. }
  2211. update_rq_clock(rq1);
  2212. update_rq_clock(rq2);
  2213. }
  2214. /*
  2215. * double_rq_unlock - safely unlock two runqueues
  2216. *
  2217. * Note this does not restore interrupts like task_rq_unlock,
  2218. * you need to do so manually after calling.
  2219. */
  2220. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2221. __releases(rq1->lock)
  2222. __releases(rq2->lock)
  2223. {
  2224. spin_unlock(&rq1->lock);
  2225. if (rq1 != rq2)
  2226. spin_unlock(&rq2->lock);
  2227. else
  2228. __release(rq2->lock);
  2229. }
  2230. /*
  2231. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2232. */
  2233. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2234. __releases(this_rq->lock)
  2235. __acquires(busiest->lock)
  2236. __acquires(this_rq->lock)
  2237. {
  2238. int ret = 0;
  2239. if (unlikely(!irqs_disabled())) {
  2240. /* printk() doesn't work good under rq->lock */
  2241. spin_unlock(&this_rq->lock);
  2242. BUG_ON(1);
  2243. }
  2244. if (unlikely(!spin_trylock(&busiest->lock))) {
  2245. if (busiest < this_rq) {
  2246. spin_unlock(&this_rq->lock);
  2247. spin_lock(&busiest->lock);
  2248. spin_lock(&this_rq->lock);
  2249. ret = 1;
  2250. } else
  2251. spin_lock(&busiest->lock);
  2252. }
  2253. return ret;
  2254. }
  2255. /*
  2256. * If dest_cpu is allowed for this process, migrate the task to it.
  2257. * This is accomplished by forcing the cpu_allowed mask to only
  2258. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2259. * the cpu_allowed mask is restored.
  2260. */
  2261. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2262. {
  2263. struct migration_req req;
  2264. unsigned long flags;
  2265. struct rq *rq;
  2266. rq = task_rq_lock(p, &flags);
  2267. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2268. || unlikely(cpu_is_offline(dest_cpu)))
  2269. goto out;
  2270. /* force the process onto the specified CPU */
  2271. if (migrate_task(p, dest_cpu, &req)) {
  2272. /* Need to wait for migration thread (might exit: take ref). */
  2273. struct task_struct *mt = rq->migration_thread;
  2274. get_task_struct(mt);
  2275. task_rq_unlock(rq, &flags);
  2276. wake_up_process(mt);
  2277. put_task_struct(mt);
  2278. wait_for_completion(&req.done);
  2279. return;
  2280. }
  2281. out:
  2282. task_rq_unlock(rq, &flags);
  2283. }
  2284. /*
  2285. * sched_exec - execve() is a valuable balancing opportunity, because at
  2286. * this point the task has the smallest effective memory and cache footprint.
  2287. */
  2288. void sched_exec(void)
  2289. {
  2290. int new_cpu, this_cpu = get_cpu();
  2291. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2292. put_cpu();
  2293. if (new_cpu != this_cpu)
  2294. sched_migrate_task(current, new_cpu);
  2295. }
  2296. /*
  2297. * pull_task - move a task from a remote runqueue to the local runqueue.
  2298. * Both runqueues must be locked.
  2299. */
  2300. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2301. struct rq *this_rq, int this_cpu)
  2302. {
  2303. deactivate_task(src_rq, p, 0);
  2304. set_task_cpu(p, this_cpu);
  2305. activate_task(this_rq, p, 0);
  2306. /*
  2307. * Note that idle threads have a prio of MAX_PRIO, for this test
  2308. * to be always true for them.
  2309. */
  2310. check_preempt_curr(this_rq, p);
  2311. }
  2312. /*
  2313. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2314. */
  2315. static
  2316. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2317. struct sched_domain *sd, enum cpu_idle_type idle,
  2318. int *all_pinned)
  2319. {
  2320. /*
  2321. * We do not migrate tasks that are:
  2322. * 1) running (obviously), or
  2323. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2324. * 3) are cache-hot on their current CPU.
  2325. */
  2326. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2327. schedstat_inc(p, se.nr_failed_migrations_affine);
  2328. return 0;
  2329. }
  2330. *all_pinned = 0;
  2331. if (task_running(rq, p)) {
  2332. schedstat_inc(p, se.nr_failed_migrations_running);
  2333. return 0;
  2334. }
  2335. /*
  2336. * Aggressive migration if:
  2337. * 1) task is cache cold, or
  2338. * 2) too many balance attempts have failed.
  2339. */
  2340. if (!task_hot(p, rq->clock, sd) ||
  2341. sd->nr_balance_failed > sd->cache_nice_tries) {
  2342. #ifdef CONFIG_SCHEDSTATS
  2343. if (task_hot(p, rq->clock, sd)) {
  2344. schedstat_inc(sd, lb_hot_gained[idle]);
  2345. schedstat_inc(p, se.nr_forced_migrations);
  2346. }
  2347. #endif
  2348. return 1;
  2349. }
  2350. if (task_hot(p, rq->clock, sd)) {
  2351. schedstat_inc(p, se.nr_failed_migrations_hot);
  2352. return 0;
  2353. }
  2354. return 1;
  2355. }
  2356. static unsigned long
  2357. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2358. unsigned long max_load_move, struct sched_domain *sd,
  2359. enum cpu_idle_type idle, int *all_pinned,
  2360. int *this_best_prio, struct rq_iterator *iterator)
  2361. {
  2362. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2363. struct task_struct *p;
  2364. long rem_load_move = max_load_move;
  2365. if (max_load_move == 0)
  2366. goto out;
  2367. pinned = 1;
  2368. /*
  2369. * Start the load-balancing iterator:
  2370. */
  2371. p = iterator->start(iterator->arg);
  2372. next:
  2373. if (!p || loops++ > sysctl_sched_nr_migrate)
  2374. goto out;
  2375. /*
  2376. * To help distribute high priority tasks across CPUs we don't
  2377. * skip a task if it will be the highest priority task (i.e. smallest
  2378. * prio value) on its new queue regardless of its load weight
  2379. */
  2380. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2381. SCHED_LOAD_SCALE_FUZZ;
  2382. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2383. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2384. p = iterator->next(iterator->arg);
  2385. goto next;
  2386. }
  2387. pull_task(busiest, p, this_rq, this_cpu);
  2388. pulled++;
  2389. rem_load_move -= p->se.load.weight;
  2390. /*
  2391. * We only want to steal up to the prescribed amount of weighted load.
  2392. */
  2393. if (rem_load_move > 0) {
  2394. if (p->prio < *this_best_prio)
  2395. *this_best_prio = p->prio;
  2396. p = iterator->next(iterator->arg);
  2397. goto next;
  2398. }
  2399. out:
  2400. /*
  2401. * Right now, this is one of only two places pull_task() is called,
  2402. * so we can safely collect pull_task() stats here rather than
  2403. * inside pull_task().
  2404. */
  2405. schedstat_add(sd, lb_gained[idle], pulled);
  2406. if (all_pinned)
  2407. *all_pinned = pinned;
  2408. return max_load_move - rem_load_move;
  2409. }
  2410. /*
  2411. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2412. * this_rq, as part of a balancing operation within domain "sd".
  2413. * Returns 1 if successful and 0 otherwise.
  2414. *
  2415. * Called with both runqueues locked.
  2416. */
  2417. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2418. unsigned long max_load_move,
  2419. struct sched_domain *sd, enum cpu_idle_type idle,
  2420. int *all_pinned)
  2421. {
  2422. const struct sched_class *class = sched_class_highest;
  2423. unsigned long total_load_moved = 0;
  2424. int this_best_prio = this_rq->curr->prio;
  2425. do {
  2426. total_load_moved +=
  2427. class->load_balance(this_rq, this_cpu, busiest,
  2428. max_load_move - total_load_moved,
  2429. sd, idle, all_pinned, &this_best_prio);
  2430. class = class->next;
  2431. } while (class && max_load_move > total_load_moved);
  2432. return total_load_moved > 0;
  2433. }
  2434. static int
  2435. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2436. struct sched_domain *sd, enum cpu_idle_type idle,
  2437. struct rq_iterator *iterator)
  2438. {
  2439. struct task_struct *p = iterator->start(iterator->arg);
  2440. int pinned = 0;
  2441. while (p) {
  2442. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2443. pull_task(busiest, p, this_rq, this_cpu);
  2444. /*
  2445. * Right now, this is only the second place pull_task()
  2446. * is called, so we can safely collect pull_task()
  2447. * stats here rather than inside pull_task().
  2448. */
  2449. schedstat_inc(sd, lb_gained[idle]);
  2450. return 1;
  2451. }
  2452. p = iterator->next(iterator->arg);
  2453. }
  2454. return 0;
  2455. }
  2456. /*
  2457. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2458. * part of active balancing operations within "domain".
  2459. * Returns 1 if successful and 0 otherwise.
  2460. *
  2461. * Called with both runqueues locked.
  2462. */
  2463. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2464. struct sched_domain *sd, enum cpu_idle_type idle)
  2465. {
  2466. const struct sched_class *class;
  2467. for (class = sched_class_highest; class; class = class->next)
  2468. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2469. return 1;
  2470. return 0;
  2471. }
  2472. /*
  2473. * find_busiest_group finds and returns the busiest CPU group within the
  2474. * domain. It calculates and returns the amount of weighted load which
  2475. * should be moved to restore balance via the imbalance parameter.
  2476. */
  2477. static struct sched_group *
  2478. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2479. unsigned long *imbalance, enum cpu_idle_type idle,
  2480. int *sd_idle, const cpumask_t *cpus, int *balance)
  2481. {
  2482. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2483. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2484. unsigned long max_pull;
  2485. unsigned long busiest_load_per_task, busiest_nr_running;
  2486. unsigned long this_load_per_task, this_nr_running;
  2487. int load_idx, group_imb = 0;
  2488. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2489. int power_savings_balance = 1;
  2490. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2491. unsigned long min_nr_running = ULONG_MAX;
  2492. struct sched_group *group_min = NULL, *group_leader = NULL;
  2493. #endif
  2494. max_load = this_load = total_load = total_pwr = 0;
  2495. busiest_load_per_task = busiest_nr_running = 0;
  2496. this_load_per_task = this_nr_running = 0;
  2497. if (idle == CPU_NOT_IDLE)
  2498. load_idx = sd->busy_idx;
  2499. else if (idle == CPU_NEWLY_IDLE)
  2500. load_idx = sd->newidle_idx;
  2501. else
  2502. load_idx = sd->idle_idx;
  2503. do {
  2504. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2505. int local_group;
  2506. int i;
  2507. int __group_imb = 0;
  2508. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2509. unsigned long sum_nr_running, sum_weighted_load;
  2510. local_group = cpu_isset(this_cpu, group->cpumask);
  2511. if (local_group)
  2512. balance_cpu = first_cpu(group->cpumask);
  2513. /* Tally up the load of all CPUs in the group */
  2514. sum_weighted_load = sum_nr_running = avg_load = 0;
  2515. max_cpu_load = 0;
  2516. min_cpu_load = ~0UL;
  2517. for_each_cpu_mask(i, group->cpumask) {
  2518. struct rq *rq;
  2519. if (!cpu_isset(i, *cpus))
  2520. continue;
  2521. rq = cpu_rq(i);
  2522. if (*sd_idle && rq->nr_running)
  2523. *sd_idle = 0;
  2524. /* Bias balancing toward cpus of our domain */
  2525. if (local_group) {
  2526. if (idle_cpu(i) && !first_idle_cpu) {
  2527. first_idle_cpu = 1;
  2528. balance_cpu = i;
  2529. }
  2530. load = target_load(i, load_idx);
  2531. } else {
  2532. load = source_load(i, load_idx);
  2533. if (load > max_cpu_load)
  2534. max_cpu_load = load;
  2535. if (min_cpu_load > load)
  2536. min_cpu_load = load;
  2537. }
  2538. avg_load += load;
  2539. sum_nr_running += rq->nr_running;
  2540. sum_weighted_load += weighted_cpuload(i);
  2541. }
  2542. /*
  2543. * First idle cpu or the first cpu(busiest) in this sched group
  2544. * is eligible for doing load balancing at this and above
  2545. * domains. In the newly idle case, we will allow all the cpu's
  2546. * to do the newly idle load balance.
  2547. */
  2548. if (idle != CPU_NEWLY_IDLE && local_group &&
  2549. balance_cpu != this_cpu && balance) {
  2550. *balance = 0;
  2551. goto ret;
  2552. }
  2553. total_load += avg_load;
  2554. total_pwr += group->__cpu_power;
  2555. /* Adjust by relative CPU power of the group */
  2556. avg_load = sg_div_cpu_power(group,
  2557. avg_load * SCHED_LOAD_SCALE);
  2558. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2559. __group_imb = 1;
  2560. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2561. if (local_group) {
  2562. this_load = avg_load;
  2563. this = group;
  2564. this_nr_running = sum_nr_running;
  2565. this_load_per_task = sum_weighted_load;
  2566. } else if (avg_load > max_load &&
  2567. (sum_nr_running > group_capacity || __group_imb)) {
  2568. max_load = avg_load;
  2569. busiest = group;
  2570. busiest_nr_running = sum_nr_running;
  2571. busiest_load_per_task = sum_weighted_load;
  2572. group_imb = __group_imb;
  2573. }
  2574. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2575. /*
  2576. * Busy processors will not participate in power savings
  2577. * balance.
  2578. */
  2579. if (idle == CPU_NOT_IDLE ||
  2580. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2581. goto group_next;
  2582. /*
  2583. * If the local group is idle or completely loaded
  2584. * no need to do power savings balance at this domain
  2585. */
  2586. if (local_group && (this_nr_running >= group_capacity ||
  2587. !this_nr_running))
  2588. power_savings_balance = 0;
  2589. /*
  2590. * If a group is already running at full capacity or idle,
  2591. * don't include that group in power savings calculations
  2592. */
  2593. if (!power_savings_balance || sum_nr_running >= group_capacity
  2594. || !sum_nr_running)
  2595. goto group_next;
  2596. /*
  2597. * Calculate the group which has the least non-idle load.
  2598. * This is the group from where we need to pick up the load
  2599. * for saving power
  2600. */
  2601. if ((sum_nr_running < min_nr_running) ||
  2602. (sum_nr_running == min_nr_running &&
  2603. first_cpu(group->cpumask) <
  2604. first_cpu(group_min->cpumask))) {
  2605. group_min = group;
  2606. min_nr_running = sum_nr_running;
  2607. min_load_per_task = sum_weighted_load /
  2608. sum_nr_running;
  2609. }
  2610. /*
  2611. * Calculate the group which is almost near its
  2612. * capacity but still has some space to pick up some load
  2613. * from other group and save more power
  2614. */
  2615. if (sum_nr_running <= group_capacity - 1) {
  2616. if (sum_nr_running > leader_nr_running ||
  2617. (sum_nr_running == leader_nr_running &&
  2618. first_cpu(group->cpumask) >
  2619. first_cpu(group_leader->cpumask))) {
  2620. group_leader = group;
  2621. leader_nr_running = sum_nr_running;
  2622. }
  2623. }
  2624. group_next:
  2625. #endif
  2626. group = group->next;
  2627. } while (group != sd->groups);
  2628. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2629. goto out_balanced;
  2630. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2631. if (this_load >= avg_load ||
  2632. 100*max_load <= sd->imbalance_pct*this_load)
  2633. goto out_balanced;
  2634. busiest_load_per_task /= busiest_nr_running;
  2635. if (group_imb)
  2636. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2637. /*
  2638. * We're trying to get all the cpus to the average_load, so we don't
  2639. * want to push ourselves above the average load, nor do we wish to
  2640. * reduce the max loaded cpu below the average load, as either of these
  2641. * actions would just result in more rebalancing later, and ping-pong
  2642. * tasks around. Thus we look for the minimum possible imbalance.
  2643. * Negative imbalances (*we* are more loaded than anyone else) will
  2644. * be counted as no imbalance for these purposes -- we can't fix that
  2645. * by pulling tasks to us. Be careful of negative numbers as they'll
  2646. * appear as very large values with unsigned longs.
  2647. */
  2648. if (max_load <= busiest_load_per_task)
  2649. goto out_balanced;
  2650. /*
  2651. * In the presence of smp nice balancing, certain scenarios can have
  2652. * max load less than avg load(as we skip the groups at or below
  2653. * its cpu_power, while calculating max_load..)
  2654. */
  2655. if (max_load < avg_load) {
  2656. *imbalance = 0;
  2657. goto small_imbalance;
  2658. }
  2659. /* Don't want to pull so many tasks that a group would go idle */
  2660. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2661. /* How much load to actually move to equalise the imbalance */
  2662. *imbalance = min(max_pull * busiest->__cpu_power,
  2663. (avg_load - this_load) * this->__cpu_power)
  2664. / SCHED_LOAD_SCALE;
  2665. /*
  2666. * if *imbalance is less than the average load per runnable task
  2667. * there is no gaurantee that any tasks will be moved so we'll have
  2668. * a think about bumping its value to force at least one task to be
  2669. * moved
  2670. */
  2671. if (*imbalance < busiest_load_per_task) {
  2672. unsigned long tmp, pwr_now, pwr_move;
  2673. unsigned int imbn;
  2674. small_imbalance:
  2675. pwr_move = pwr_now = 0;
  2676. imbn = 2;
  2677. if (this_nr_running) {
  2678. this_load_per_task /= this_nr_running;
  2679. if (busiest_load_per_task > this_load_per_task)
  2680. imbn = 1;
  2681. } else
  2682. this_load_per_task = SCHED_LOAD_SCALE;
  2683. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2684. busiest_load_per_task * imbn) {
  2685. *imbalance = busiest_load_per_task;
  2686. return busiest;
  2687. }
  2688. /*
  2689. * OK, we don't have enough imbalance to justify moving tasks,
  2690. * however we may be able to increase total CPU power used by
  2691. * moving them.
  2692. */
  2693. pwr_now += busiest->__cpu_power *
  2694. min(busiest_load_per_task, max_load);
  2695. pwr_now += this->__cpu_power *
  2696. min(this_load_per_task, this_load);
  2697. pwr_now /= SCHED_LOAD_SCALE;
  2698. /* Amount of load we'd subtract */
  2699. tmp = sg_div_cpu_power(busiest,
  2700. busiest_load_per_task * SCHED_LOAD_SCALE);
  2701. if (max_load > tmp)
  2702. pwr_move += busiest->__cpu_power *
  2703. min(busiest_load_per_task, max_load - tmp);
  2704. /* Amount of load we'd add */
  2705. if (max_load * busiest->__cpu_power <
  2706. busiest_load_per_task * SCHED_LOAD_SCALE)
  2707. tmp = sg_div_cpu_power(this,
  2708. max_load * busiest->__cpu_power);
  2709. else
  2710. tmp = sg_div_cpu_power(this,
  2711. busiest_load_per_task * SCHED_LOAD_SCALE);
  2712. pwr_move += this->__cpu_power *
  2713. min(this_load_per_task, this_load + tmp);
  2714. pwr_move /= SCHED_LOAD_SCALE;
  2715. /* Move if we gain throughput */
  2716. if (pwr_move > pwr_now)
  2717. *imbalance = busiest_load_per_task;
  2718. }
  2719. return busiest;
  2720. out_balanced:
  2721. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2722. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2723. goto ret;
  2724. if (this == group_leader && group_leader != group_min) {
  2725. *imbalance = min_load_per_task;
  2726. return group_min;
  2727. }
  2728. #endif
  2729. ret:
  2730. *imbalance = 0;
  2731. return NULL;
  2732. }
  2733. /*
  2734. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2735. */
  2736. static struct rq *
  2737. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2738. unsigned long imbalance, const cpumask_t *cpus)
  2739. {
  2740. struct rq *busiest = NULL, *rq;
  2741. unsigned long max_load = 0;
  2742. int i;
  2743. for_each_cpu_mask(i, group->cpumask) {
  2744. unsigned long wl;
  2745. if (!cpu_isset(i, *cpus))
  2746. continue;
  2747. rq = cpu_rq(i);
  2748. wl = weighted_cpuload(i);
  2749. if (rq->nr_running == 1 && wl > imbalance)
  2750. continue;
  2751. if (wl > max_load) {
  2752. max_load = wl;
  2753. busiest = rq;
  2754. }
  2755. }
  2756. return busiest;
  2757. }
  2758. /*
  2759. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2760. * so long as it is large enough.
  2761. */
  2762. #define MAX_PINNED_INTERVAL 512
  2763. /*
  2764. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2765. * tasks if there is an imbalance.
  2766. */
  2767. static int load_balance(int this_cpu, struct rq *this_rq,
  2768. struct sched_domain *sd, enum cpu_idle_type idle,
  2769. int *balance, cpumask_t *cpus)
  2770. {
  2771. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2772. struct sched_group *group;
  2773. unsigned long imbalance;
  2774. struct rq *busiest;
  2775. unsigned long flags;
  2776. cpus_setall(*cpus);
  2777. /*
  2778. * When power savings policy is enabled for the parent domain, idle
  2779. * sibling can pick up load irrespective of busy siblings. In this case,
  2780. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2781. * portraying it as CPU_NOT_IDLE.
  2782. */
  2783. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2784. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2785. sd_idle = 1;
  2786. schedstat_inc(sd, lb_count[idle]);
  2787. redo:
  2788. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2789. cpus, balance);
  2790. if (*balance == 0)
  2791. goto out_balanced;
  2792. if (!group) {
  2793. schedstat_inc(sd, lb_nobusyg[idle]);
  2794. goto out_balanced;
  2795. }
  2796. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2797. if (!busiest) {
  2798. schedstat_inc(sd, lb_nobusyq[idle]);
  2799. goto out_balanced;
  2800. }
  2801. BUG_ON(busiest == this_rq);
  2802. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2803. ld_moved = 0;
  2804. if (busiest->nr_running > 1) {
  2805. /*
  2806. * Attempt to move tasks. If find_busiest_group has found
  2807. * an imbalance but busiest->nr_running <= 1, the group is
  2808. * still unbalanced. ld_moved simply stays zero, so it is
  2809. * correctly treated as an imbalance.
  2810. */
  2811. local_irq_save(flags);
  2812. double_rq_lock(this_rq, busiest);
  2813. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2814. imbalance, sd, idle, &all_pinned);
  2815. double_rq_unlock(this_rq, busiest);
  2816. local_irq_restore(flags);
  2817. /*
  2818. * some other cpu did the load balance for us.
  2819. */
  2820. if (ld_moved && this_cpu != smp_processor_id())
  2821. resched_cpu(this_cpu);
  2822. /* All tasks on this runqueue were pinned by CPU affinity */
  2823. if (unlikely(all_pinned)) {
  2824. cpu_clear(cpu_of(busiest), *cpus);
  2825. if (!cpus_empty(*cpus))
  2826. goto redo;
  2827. goto out_balanced;
  2828. }
  2829. }
  2830. if (!ld_moved) {
  2831. schedstat_inc(sd, lb_failed[idle]);
  2832. sd->nr_balance_failed++;
  2833. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2834. spin_lock_irqsave(&busiest->lock, flags);
  2835. /* don't kick the migration_thread, if the curr
  2836. * task on busiest cpu can't be moved to this_cpu
  2837. */
  2838. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2839. spin_unlock_irqrestore(&busiest->lock, flags);
  2840. all_pinned = 1;
  2841. goto out_one_pinned;
  2842. }
  2843. if (!busiest->active_balance) {
  2844. busiest->active_balance = 1;
  2845. busiest->push_cpu = this_cpu;
  2846. active_balance = 1;
  2847. }
  2848. spin_unlock_irqrestore(&busiest->lock, flags);
  2849. if (active_balance)
  2850. wake_up_process(busiest->migration_thread);
  2851. /*
  2852. * We've kicked active balancing, reset the failure
  2853. * counter.
  2854. */
  2855. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2856. }
  2857. } else
  2858. sd->nr_balance_failed = 0;
  2859. if (likely(!active_balance)) {
  2860. /* We were unbalanced, so reset the balancing interval */
  2861. sd->balance_interval = sd->min_interval;
  2862. } else {
  2863. /*
  2864. * If we've begun active balancing, start to back off. This
  2865. * case may not be covered by the all_pinned logic if there
  2866. * is only 1 task on the busy runqueue (because we don't call
  2867. * move_tasks).
  2868. */
  2869. if (sd->balance_interval < sd->max_interval)
  2870. sd->balance_interval *= 2;
  2871. }
  2872. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2873. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2874. return -1;
  2875. return ld_moved;
  2876. out_balanced:
  2877. schedstat_inc(sd, lb_balanced[idle]);
  2878. sd->nr_balance_failed = 0;
  2879. out_one_pinned:
  2880. /* tune up the balancing interval */
  2881. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2882. (sd->balance_interval < sd->max_interval))
  2883. sd->balance_interval *= 2;
  2884. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2885. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2886. return -1;
  2887. return 0;
  2888. }
  2889. /*
  2890. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2891. * tasks if there is an imbalance.
  2892. *
  2893. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2894. * this_rq is locked.
  2895. */
  2896. static int
  2897. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2898. cpumask_t *cpus)
  2899. {
  2900. struct sched_group *group;
  2901. struct rq *busiest = NULL;
  2902. unsigned long imbalance;
  2903. int ld_moved = 0;
  2904. int sd_idle = 0;
  2905. int all_pinned = 0;
  2906. cpus_setall(*cpus);
  2907. /*
  2908. * When power savings policy is enabled for the parent domain, idle
  2909. * sibling can pick up load irrespective of busy siblings. In this case,
  2910. * let the state of idle sibling percolate up as IDLE, instead of
  2911. * portraying it as CPU_NOT_IDLE.
  2912. */
  2913. if (sd->flags & SD_SHARE_CPUPOWER &&
  2914. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2915. sd_idle = 1;
  2916. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2917. redo:
  2918. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2919. &sd_idle, cpus, NULL);
  2920. if (!group) {
  2921. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2922. goto out_balanced;
  2923. }
  2924. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2925. if (!busiest) {
  2926. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2927. goto out_balanced;
  2928. }
  2929. BUG_ON(busiest == this_rq);
  2930. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2931. ld_moved = 0;
  2932. if (busiest->nr_running > 1) {
  2933. /* Attempt to move tasks */
  2934. double_lock_balance(this_rq, busiest);
  2935. /* this_rq->clock is already updated */
  2936. update_rq_clock(busiest);
  2937. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2938. imbalance, sd, CPU_NEWLY_IDLE,
  2939. &all_pinned);
  2940. spin_unlock(&busiest->lock);
  2941. if (unlikely(all_pinned)) {
  2942. cpu_clear(cpu_of(busiest), *cpus);
  2943. if (!cpus_empty(*cpus))
  2944. goto redo;
  2945. }
  2946. }
  2947. if (!ld_moved) {
  2948. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2949. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2950. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2951. return -1;
  2952. } else
  2953. sd->nr_balance_failed = 0;
  2954. return ld_moved;
  2955. out_balanced:
  2956. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2957. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2958. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2959. return -1;
  2960. sd->nr_balance_failed = 0;
  2961. return 0;
  2962. }
  2963. /*
  2964. * idle_balance is called by schedule() if this_cpu is about to become
  2965. * idle. Attempts to pull tasks from other CPUs.
  2966. */
  2967. static void idle_balance(int this_cpu, struct rq *this_rq)
  2968. {
  2969. struct sched_domain *sd;
  2970. int pulled_task = -1;
  2971. unsigned long next_balance = jiffies + HZ;
  2972. cpumask_t tmpmask;
  2973. for_each_domain(this_cpu, sd) {
  2974. unsigned long interval;
  2975. if (!(sd->flags & SD_LOAD_BALANCE))
  2976. continue;
  2977. if (sd->flags & SD_BALANCE_NEWIDLE)
  2978. /* If we've pulled tasks over stop searching: */
  2979. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2980. sd, &tmpmask);
  2981. interval = msecs_to_jiffies(sd->balance_interval);
  2982. if (time_after(next_balance, sd->last_balance + interval))
  2983. next_balance = sd->last_balance + interval;
  2984. if (pulled_task)
  2985. break;
  2986. }
  2987. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2988. /*
  2989. * We are going idle. next_balance may be set based on
  2990. * a busy processor. So reset next_balance.
  2991. */
  2992. this_rq->next_balance = next_balance;
  2993. }
  2994. }
  2995. /*
  2996. * active_load_balance is run by migration threads. It pushes running tasks
  2997. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2998. * running on each physical CPU where possible, and avoids physical /
  2999. * logical imbalances.
  3000. *
  3001. * Called with busiest_rq locked.
  3002. */
  3003. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3004. {
  3005. int target_cpu = busiest_rq->push_cpu;
  3006. struct sched_domain *sd;
  3007. struct rq *target_rq;
  3008. /* Is there any task to move? */
  3009. if (busiest_rq->nr_running <= 1)
  3010. return;
  3011. target_rq = cpu_rq(target_cpu);
  3012. /*
  3013. * This condition is "impossible", if it occurs
  3014. * we need to fix it. Originally reported by
  3015. * Bjorn Helgaas on a 128-cpu setup.
  3016. */
  3017. BUG_ON(busiest_rq == target_rq);
  3018. /* move a task from busiest_rq to target_rq */
  3019. double_lock_balance(busiest_rq, target_rq);
  3020. update_rq_clock(busiest_rq);
  3021. update_rq_clock(target_rq);
  3022. /* Search for an sd spanning us and the target CPU. */
  3023. for_each_domain(target_cpu, sd) {
  3024. if ((sd->flags & SD_LOAD_BALANCE) &&
  3025. cpu_isset(busiest_cpu, sd->span))
  3026. break;
  3027. }
  3028. if (likely(sd)) {
  3029. schedstat_inc(sd, alb_count);
  3030. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3031. sd, CPU_IDLE))
  3032. schedstat_inc(sd, alb_pushed);
  3033. else
  3034. schedstat_inc(sd, alb_failed);
  3035. }
  3036. spin_unlock(&target_rq->lock);
  3037. }
  3038. #ifdef CONFIG_NO_HZ
  3039. static struct {
  3040. atomic_t load_balancer;
  3041. cpumask_t cpu_mask;
  3042. } nohz ____cacheline_aligned = {
  3043. .load_balancer = ATOMIC_INIT(-1),
  3044. .cpu_mask = CPU_MASK_NONE,
  3045. };
  3046. /*
  3047. * This routine will try to nominate the ilb (idle load balancing)
  3048. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3049. * load balancing on behalf of all those cpus. If all the cpus in the system
  3050. * go into this tickless mode, then there will be no ilb owner (as there is
  3051. * no need for one) and all the cpus will sleep till the next wakeup event
  3052. * arrives...
  3053. *
  3054. * For the ilb owner, tick is not stopped. And this tick will be used
  3055. * for idle load balancing. ilb owner will still be part of
  3056. * nohz.cpu_mask..
  3057. *
  3058. * While stopping the tick, this cpu will become the ilb owner if there
  3059. * is no other owner. And will be the owner till that cpu becomes busy
  3060. * or if all cpus in the system stop their ticks at which point
  3061. * there is no need for ilb owner.
  3062. *
  3063. * When the ilb owner becomes busy, it nominates another owner, during the
  3064. * next busy scheduler_tick()
  3065. */
  3066. int select_nohz_load_balancer(int stop_tick)
  3067. {
  3068. int cpu = smp_processor_id();
  3069. if (stop_tick) {
  3070. cpu_set(cpu, nohz.cpu_mask);
  3071. cpu_rq(cpu)->in_nohz_recently = 1;
  3072. /*
  3073. * If we are going offline and still the leader, give up!
  3074. */
  3075. if (cpu_is_offline(cpu) &&
  3076. atomic_read(&nohz.load_balancer) == cpu) {
  3077. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3078. BUG();
  3079. return 0;
  3080. }
  3081. /* time for ilb owner also to sleep */
  3082. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3083. if (atomic_read(&nohz.load_balancer) == cpu)
  3084. atomic_set(&nohz.load_balancer, -1);
  3085. return 0;
  3086. }
  3087. if (atomic_read(&nohz.load_balancer) == -1) {
  3088. /* make me the ilb owner */
  3089. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3090. return 1;
  3091. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3092. return 1;
  3093. } else {
  3094. if (!cpu_isset(cpu, nohz.cpu_mask))
  3095. return 0;
  3096. cpu_clear(cpu, nohz.cpu_mask);
  3097. if (atomic_read(&nohz.load_balancer) == cpu)
  3098. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3099. BUG();
  3100. }
  3101. return 0;
  3102. }
  3103. #endif
  3104. static DEFINE_SPINLOCK(balancing);
  3105. /*
  3106. * It checks each scheduling domain to see if it is due to be balanced,
  3107. * and initiates a balancing operation if so.
  3108. *
  3109. * Balancing parameters are set up in arch_init_sched_domains.
  3110. */
  3111. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3112. {
  3113. int balance = 1;
  3114. struct rq *rq = cpu_rq(cpu);
  3115. unsigned long interval;
  3116. struct sched_domain *sd;
  3117. /* Earliest time when we have to do rebalance again */
  3118. unsigned long next_balance = jiffies + 60*HZ;
  3119. int update_next_balance = 0;
  3120. int need_serialize;
  3121. cpumask_t tmp;
  3122. for_each_domain(cpu, sd) {
  3123. if (!(sd->flags & SD_LOAD_BALANCE))
  3124. continue;
  3125. interval = sd->balance_interval;
  3126. if (idle != CPU_IDLE)
  3127. interval *= sd->busy_factor;
  3128. /* scale ms to jiffies */
  3129. interval = msecs_to_jiffies(interval);
  3130. if (unlikely(!interval))
  3131. interval = 1;
  3132. if (interval > HZ*NR_CPUS/10)
  3133. interval = HZ*NR_CPUS/10;
  3134. need_serialize = sd->flags & SD_SERIALIZE;
  3135. if (need_serialize) {
  3136. if (!spin_trylock(&balancing))
  3137. goto out;
  3138. }
  3139. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3140. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3141. /*
  3142. * We've pulled tasks over so either we're no
  3143. * longer idle, or one of our SMT siblings is
  3144. * not idle.
  3145. */
  3146. idle = CPU_NOT_IDLE;
  3147. }
  3148. sd->last_balance = jiffies;
  3149. }
  3150. if (need_serialize)
  3151. spin_unlock(&balancing);
  3152. out:
  3153. if (time_after(next_balance, sd->last_balance + interval)) {
  3154. next_balance = sd->last_balance + interval;
  3155. update_next_balance = 1;
  3156. }
  3157. /*
  3158. * Stop the load balance at this level. There is another
  3159. * CPU in our sched group which is doing load balancing more
  3160. * actively.
  3161. */
  3162. if (!balance)
  3163. break;
  3164. }
  3165. /*
  3166. * next_balance will be updated only when there is a need.
  3167. * When the cpu is attached to null domain for ex, it will not be
  3168. * updated.
  3169. */
  3170. if (likely(update_next_balance))
  3171. rq->next_balance = next_balance;
  3172. }
  3173. /*
  3174. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3175. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3176. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3177. */
  3178. static void run_rebalance_domains(struct softirq_action *h)
  3179. {
  3180. int this_cpu = smp_processor_id();
  3181. struct rq *this_rq = cpu_rq(this_cpu);
  3182. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3183. CPU_IDLE : CPU_NOT_IDLE;
  3184. rebalance_domains(this_cpu, idle);
  3185. #ifdef CONFIG_NO_HZ
  3186. /*
  3187. * If this cpu is the owner for idle load balancing, then do the
  3188. * balancing on behalf of the other idle cpus whose ticks are
  3189. * stopped.
  3190. */
  3191. if (this_rq->idle_at_tick &&
  3192. atomic_read(&nohz.load_balancer) == this_cpu) {
  3193. cpumask_t cpus = nohz.cpu_mask;
  3194. struct rq *rq;
  3195. int balance_cpu;
  3196. cpu_clear(this_cpu, cpus);
  3197. for_each_cpu_mask(balance_cpu, cpus) {
  3198. /*
  3199. * If this cpu gets work to do, stop the load balancing
  3200. * work being done for other cpus. Next load
  3201. * balancing owner will pick it up.
  3202. */
  3203. if (need_resched())
  3204. break;
  3205. rebalance_domains(balance_cpu, CPU_IDLE);
  3206. rq = cpu_rq(balance_cpu);
  3207. if (time_after(this_rq->next_balance, rq->next_balance))
  3208. this_rq->next_balance = rq->next_balance;
  3209. }
  3210. }
  3211. #endif
  3212. }
  3213. /*
  3214. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3215. *
  3216. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3217. * idle load balancing owner or decide to stop the periodic load balancing,
  3218. * if the whole system is idle.
  3219. */
  3220. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3221. {
  3222. #ifdef CONFIG_NO_HZ
  3223. /*
  3224. * If we were in the nohz mode recently and busy at the current
  3225. * scheduler tick, then check if we need to nominate new idle
  3226. * load balancer.
  3227. */
  3228. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3229. rq->in_nohz_recently = 0;
  3230. if (atomic_read(&nohz.load_balancer) == cpu) {
  3231. cpu_clear(cpu, nohz.cpu_mask);
  3232. atomic_set(&nohz.load_balancer, -1);
  3233. }
  3234. if (atomic_read(&nohz.load_balancer) == -1) {
  3235. /*
  3236. * simple selection for now: Nominate the
  3237. * first cpu in the nohz list to be the next
  3238. * ilb owner.
  3239. *
  3240. * TBD: Traverse the sched domains and nominate
  3241. * the nearest cpu in the nohz.cpu_mask.
  3242. */
  3243. int ilb = first_cpu(nohz.cpu_mask);
  3244. if (ilb < nr_cpu_ids)
  3245. resched_cpu(ilb);
  3246. }
  3247. }
  3248. /*
  3249. * If this cpu is idle and doing idle load balancing for all the
  3250. * cpus with ticks stopped, is it time for that to stop?
  3251. */
  3252. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3253. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3254. resched_cpu(cpu);
  3255. return;
  3256. }
  3257. /*
  3258. * If this cpu is idle and the idle load balancing is done by
  3259. * someone else, then no need raise the SCHED_SOFTIRQ
  3260. */
  3261. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3262. cpu_isset(cpu, nohz.cpu_mask))
  3263. return;
  3264. #endif
  3265. if (time_after_eq(jiffies, rq->next_balance))
  3266. raise_softirq(SCHED_SOFTIRQ);
  3267. }
  3268. #else /* CONFIG_SMP */
  3269. /*
  3270. * on UP we do not need to balance between CPUs:
  3271. */
  3272. static inline void idle_balance(int cpu, struct rq *rq)
  3273. {
  3274. }
  3275. #endif
  3276. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3277. EXPORT_PER_CPU_SYMBOL(kstat);
  3278. /*
  3279. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3280. * that have not yet been banked in case the task is currently running.
  3281. */
  3282. unsigned long long task_sched_runtime(struct task_struct *p)
  3283. {
  3284. unsigned long flags;
  3285. u64 ns, delta_exec;
  3286. struct rq *rq;
  3287. rq = task_rq_lock(p, &flags);
  3288. ns = p->se.sum_exec_runtime;
  3289. if (task_current(rq, p)) {
  3290. update_rq_clock(rq);
  3291. delta_exec = rq->clock - p->se.exec_start;
  3292. if ((s64)delta_exec > 0)
  3293. ns += delta_exec;
  3294. }
  3295. task_rq_unlock(rq, &flags);
  3296. return ns;
  3297. }
  3298. /*
  3299. * Account user cpu time to a process.
  3300. * @p: the process that the cpu time gets accounted to
  3301. * @cputime: the cpu time spent in user space since the last update
  3302. */
  3303. void account_user_time(struct task_struct *p, cputime_t cputime)
  3304. {
  3305. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3306. cputime64_t tmp;
  3307. p->utime = cputime_add(p->utime, cputime);
  3308. /* Add user time to cpustat. */
  3309. tmp = cputime_to_cputime64(cputime);
  3310. if (TASK_NICE(p) > 0)
  3311. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3312. else
  3313. cpustat->user = cputime64_add(cpustat->user, tmp);
  3314. }
  3315. /*
  3316. * Account guest cpu time to a process.
  3317. * @p: the process that the cpu time gets accounted to
  3318. * @cputime: the cpu time spent in virtual machine since the last update
  3319. */
  3320. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3321. {
  3322. cputime64_t tmp;
  3323. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3324. tmp = cputime_to_cputime64(cputime);
  3325. p->utime = cputime_add(p->utime, cputime);
  3326. p->gtime = cputime_add(p->gtime, cputime);
  3327. cpustat->user = cputime64_add(cpustat->user, tmp);
  3328. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3329. }
  3330. /*
  3331. * Account scaled user cpu time to a process.
  3332. * @p: the process that the cpu time gets accounted to
  3333. * @cputime: the cpu time spent in user space since the last update
  3334. */
  3335. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3336. {
  3337. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3338. }
  3339. /*
  3340. * Account system cpu time to a process.
  3341. * @p: the process that the cpu time gets accounted to
  3342. * @hardirq_offset: the offset to subtract from hardirq_count()
  3343. * @cputime: the cpu time spent in kernel space since the last update
  3344. */
  3345. void account_system_time(struct task_struct *p, int hardirq_offset,
  3346. cputime_t cputime)
  3347. {
  3348. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3349. struct rq *rq = this_rq();
  3350. cputime64_t tmp;
  3351. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3352. account_guest_time(p, cputime);
  3353. return;
  3354. }
  3355. p->stime = cputime_add(p->stime, cputime);
  3356. /* Add system time to cpustat. */
  3357. tmp = cputime_to_cputime64(cputime);
  3358. if (hardirq_count() - hardirq_offset)
  3359. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3360. else if (softirq_count())
  3361. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3362. else if (p != rq->idle)
  3363. cpustat->system = cputime64_add(cpustat->system, tmp);
  3364. else if (atomic_read(&rq->nr_iowait) > 0)
  3365. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3366. else
  3367. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3368. /* Account for system time used */
  3369. acct_update_integrals(p);
  3370. }
  3371. /*
  3372. * Account scaled system cpu time to a process.
  3373. * @p: the process that the cpu time gets accounted to
  3374. * @hardirq_offset: the offset to subtract from hardirq_count()
  3375. * @cputime: the cpu time spent in kernel space since the last update
  3376. */
  3377. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3378. {
  3379. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3380. }
  3381. /*
  3382. * Account for involuntary wait time.
  3383. * @p: the process from which the cpu time has been stolen
  3384. * @steal: the cpu time spent in involuntary wait
  3385. */
  3386. void account_steal_time(struct task_struct *p, cputime_t steal)
  3387. {
  3388. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3389. cputime64_t tmp = cputime_to_cputime64(steal);
  3390. struct rq *rq = this_rq();
  3391. if (p == rq->idle) {
  3392. p->stime = cputime_add(p->stime, steal);
  3393. if (atomic_read(&rq->nr_iowait) > 0)
  3394. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3395. else
  3396. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3397. } else
  3398. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3399. }
  3400. /*
  3401. * This function gets called by the timer code, with HZ frequency.
  3402. * We call it with interrupts disabled.
  3403. *
  3404. * It also gets called by the fork code, when changing the parent's
  3405. * timeslices.
  3406. */
  3407. void scheduler_tick(void)
  3408. {
  3409. int cpu = smp_processor_id();
  3410. struct rq *rq = cpu_rq(cpu);
  3411. struct task_struct *curr = rq->curr;
  3412. sched_clock_tick();
  3413. spin_lock(&rq->lock);
  3414. update_rq_clock(rq);
  3415. update_cpu_load(rq);
  3416. curr->sched_class->task_tick(rq, curr, 0);
  3417. spin_unlock(&rq->lock);
  3418. #ifdef CONFIG_SMP
  3419. rq->idle_at_tick = idle_cpu(cpu);
  3420. trigger_load_balance(rq, cpu);
  3421. #endif
  3422. }
  3423. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3424. void __kprobes add_preempt_count(int val)
  3425. {
  3426. /*
  3427. * Underflow?
  3428. */
  3429. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3430. return;
  3431. preempt_count() += val;
  3432. /*
  3433. * Spinlock count overflowing soon?
  3434. */
  3435. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3436. PREEMPT_MASK - 10);
  3437. }
  3438. EXPORT_SYMBOL(add_preempt_count);
  3439. void __kprobes sub_preempt_count(int val)
  3440. {
  3441. /*
  3442. * Underflow?
  3443. */
  3444. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3445. return;
  3446. /*
  3447. * Is the spinlock portion underflowing?
  3448. */
  3449. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3450. !(preempt_count() & PREEMPT_MASK)))
  3451. return;
  3452. preempt_count() -= val;
  3453. }
  3454. EXPORT_SYMBOL(sub_preempt_count);
  3455. #endif
  3456. /*
  3457. * Print scheduling while atomic bug:
  3458. */
  3459. static noinline void __schedule_bug(struct task_struct *prev)
  3460. {
  3461. struct pt_regs *regs = get_irq_regs();
  3462. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3463. prev->comm, prev->pid, preempt_count());
  3464. debug_show_held_locks(prev);
  3465. print_modules();
  3466. if (irqs_disabled())
  3467. print_irqtrace_events(prev);
  3468. if (regs)
  3469. show_regs(regs);
  3470. else
  3471. dump_stack();
  3472. }
  3473. /*
  3474. * Various schedule()-time debugging checks and statistics:
  3475. */
  3476. static inline void schedule_debug(struct task_struct *prev)
  3477. {
  3478. /*
  3479. * Test if we are atomic. Since do_exit() needs to call into
  3480. * schedule() atomically, we ignore that path for now.
  3481. * Otherwise, whine if we are scheduling when we should not be.
  3482. */
  3483. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3484. __schedule_bug(prev);
  3485. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3486. schedstat_inc(this_rq(), sched_count);
  3487. #ifdef CONFIG_SCHEDSTATS
  3488. if (unlikely(prev->lock_depth >= 0)) {
  3489. schedstat_inc(this_rq(), bkl_count);
  3490. schedstat_inc(prev, sched_info.bkl_count);
  3491. }
  3492. #endif
  3493. }
  3494. /*
  3495. * Pick up the highest-prio task:
  3496. */
  3497. static inline struct task_struct *
  3498. pick_next_task(struct rq *rq, struct task_struct *prev)
  3499. {
  3500. const struct sched_class *class;
  3501. struct task_struct *p;
  3502. /*
  3503. * Optimization: we know that if all tasks are in
  3504. * the fair class we can call that function directly:
  3505. */
  3506. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3507. p = fair_sched_class.pick_next_task(rq);
  3508. if (likely(p))
  3509. return p;
  3510. }
  3511. class = sched_class_highest;
  3512. for ( ; ; ) {
  3513. p = class->pick_next_task(rq);
  3514. if (p)
  3515. return p;
  3516. /*
  3517. * Will never be NULL as the idle class always
  3518. * returns a non-NULL p:
  3519. */
  3520. class = class->next;
  3521. }
  3522. }
  3523. /*
  3524. * schedule() is the main scheduler function.
  3525. */
  3526. asmlinkage void __sched schedule(void)
  3527. {
  3528. struct task_struct *prev, *next;
  3529. unsigned long *switch_count;
  3530. struct rq *rq;
  3531. int cpu, hrtick = sched_feat(HRTICK);
  3532. need_resched:
  3533. preempt_disable();
  3534. cpu = smp_processor_id();
  3535. rq = cpu_rq(cpu);
  3536. rcu_qsctr_inc(cpu);
  3537. prev = rq->curr;
  3538. switch_count = &prev->nivcsw;
  3539. release_kernel_lock(prev);
  3540. need_resched_nonpreemptible:
  3541. schedule_debug(prev);
  3542. if (hrtick)
  3543. hrtick_clear(rq);
  3544. /*
  3545. * Do the rq-clock update outside the rq lock:
  3546. */
  3547. local_irq_disable();
  3548. update_rq_clock(rq);
  3549. spin_lock(&rq->lock);
  3550. clear_tsk_need_resched(prev);
  3551. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3552. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3553. signal_pending(prev))) {
  3554. prev->state = TASK_RUNNING;
  3555. } else {
  3556. deactivate_task(rq, prev, 1);
  3557. }
  3558. switch_count = &prev->nvcsw;
  3559. }
  3560. #ifdef CONFIG_SMP
  3561. if (prev->sched_class->pre_schedule)
  3562. prev->sched_class->pre_schedule(rq, prev);
  3563. #endif
  3564. if (unlikely(!rq->nr_running))
  3565. idle_balance(cpu, rq);
  3566. prev->sched_class->put_prev_task(rq, prev);
  3567. next = pick_next_task(rq, prev);
  3568. if (likely(prev != next)) {
  3569. sched_info_switch(prev, next);
  3570. rq->nr_switches++;
  3571. rq->curr = next;
  3572. ++*switch_count;
  3573. context_switch(rq, prev, next); /* unlocks the rq */
  3574. /*
  3575. * the context switch might have flipped the stack from under
  3576. * us, hence refresh the local variables.
  3577. */
  3578. cpu = smp_processor_id();
  3579. rq = cpu_rq(cpu);
  3580. } else
  3581. spin_unlock_irq(&rq->lock);
  3582. if (hrtick)
  3583. hrtick_set(rq);
  3584. if (unlikely(reacquire_kernel_lock(current) < 0))
  3585. goto need_resched_nonpreemptible;
  3586. preempt_enable_no_resched();
  3587. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3588. goto need_resched;
  3589. }
  3590. EXPORT_SYMBOL(schedule);
  3591. #ifdef CONFIG_PREEMPT
  3592. /*
  3593. * this is the entry point to schedule() from in-kernel preemption
  3594. * off of preempt_enable. Kernel preemptions off return from interrupt
  3595. * occur there and call schedule directly.
  3596. */
  3597. asmlinkage void __sched preempt_schedule(void)
  3598. {
  3599. struct thread_info *ti = current_thread_info();
  3600. /*
  3601. * If there is a non-zero preempt_count or interrupts are disabled,
  3602. * we do not want to preempt the current task. Just return..
  3603. */
  3604. if (likely(ti->preempt_count || irqs_disabled()))
  3605. return;
  3606. do {
  3607. add_preempt_count(PREEMPT_ACTIVE);
  3608. schedule();
  3609. sub_preempt_count(PREEMPT_ACTIVE);
  3610. /*
  3611. * Check again in case we missed a preemption opportunity
  3612. * between schedule and now.
  3613. */
  3614. barrier();
  3615. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3616. }
  3617. EXPORT_SYMBOL(preempt_schedule);
  3618. /*
  3619. * this is the entry point to schedule() from kernel preemption
  3620. * off of irq context.
  3621. * Note, that this is called and return with irqs disabled. This will
  3622. * protect us against recursive calling from irq.
  3623. */
  3624. asmlinkage void __sched preempt_schedule_irq(void)
  3625. {
  3626. struct thread_info *ti = current_thread_info();
  3627. /* Catch callers which need to be fixed */
  3628. BUG_ON(ti->preempt_count || !irqs_disabled());
  3629. do {
  3630. add_preempt_count(PREEMPT_ACTIVE);
  3631. local_irq_enable();
  3632. schedule();
  3633. local_irq_disable();
  3634. sub_preempt_count(PREEMPT_ACTIVE);
  3635. /*
  3636. * Check again in case we missed a preemption opportunity
  3637. * between schedule and now.
  3638. */
  3639. barrier();
  3640. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3641. }
  3642. #endif /* CONFIG_PREEMPT */
  3643. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3644. void *key)
  3645. {
  3646. return try_to_wake_up(curr->private, mode, sync);
  3647. }
  3648. EXPORT_SYMBOL(default_wake_function);
  3649. /*
  3650. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3651. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3652. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3653. *
  3654. * There are circumstances in which we can try to wake a task which has already
  3655. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3656. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3657. */
  3658. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3659. int nr_exclusive, int sync, void *key)
  3660. {
  3661. wait_queue_t *curr, *next;
  3662. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3663. unsigned flags = curr->flags;
  3664. if (curr->func(curr, mode, sync, key) &&
  3665. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3666. break;
  3667. }
  3668. }
  3669. /**
  3670. * __wake_up - wake up threads blocked on a waitqueue.
  3671. * @q: the waitqueue
  3672. * @mode: which threads
  3673. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3674. * @key: is directly passed to the wakeup function
  3675. */
  3676. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3677. int nr_exclusive, void *key)
  3678. {
  3679. unsigned long flags;
  3680. spin_lock_irqsave(&q->lock, flags);
  3681. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3682. spin_unlock_irqrestore(&q->lock, flags);
  3683. }
  3684. EXPORT_SYMBOL(__wake_up);
  3685. /*
  3686. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3687. */
  3688. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3689. {
  3690. __wake_up_common(q, mode, 1, 0, NULL);
  3691. }
  3692. /**
  3693. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3694. * @q: the waitqueue
  3695. * @mode: which threads
  3696. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3697. *
  3698. * The sync wakeup differs that the waker knows that it will schedule
  3699. * away soon, so while the target thread will be woken up, it will not
  3700. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3701. * with each other. This can prevent needless bouncing between CPUs.
  3702. *
  3703. * On UP it can prevent extra preemption.
  3704. */
  3705. void
  3706. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3707. {
  3708. unsigned long flags;
  3709. int sync = 1;
  3710. if (unlikely(!q))
  3711. return;
  3712. if (unlikely(!nr_exclusive))
  3713. sync = 0;
  3714. spin_lock_irqsave(&q->lock, flags);
  3715. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3716. spin_unlock_irqrestore(&q->lock, flags);
  3717. }
  3718. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3719. void complete(struct completion *x)
  3720. {
  3721. unsigned long flags;
  3722. spin_lock_irqsave(&x->wait.lock, flags);
  3723. x->done++;
  3724. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3725. spin_unlock_irqrestore(&x->wait.lock, flags);
  3726. }
  3727. EXPORT_SYMBOL(complete);
  3728. void complete_all(struct completion *x)
  3729. {
  3730. unsigned long flags;
  3731. spin_lock_irqsave(&x->wait.lock, flags);
  3732. x->done += UINT_MAX/2;
  3733. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3734. spin_unlock_irqrestore(&x->wait.lock, flags);
  3735. }
  3736. EXPORT_SYMBOL(complete_all);
  3737. static inline long __sched
  3738. do_wait_for_common(struct completion *x, long timeout, int state)
  3739. {
  3740. if (!x->done) {
  3741. DECLARE_WAITQUEUE(wait, current);
  3742. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3743. __add_wait_queue_tail(&x->wait, &wait);
  3744. do {
  3745. if ((state == TASK_INTERRUPTIBLE &&
  3746. signal_pending(current)) ||
  3747. (state == TASK_KILLABLE &&
  3748. fatal_signal_pending(current))) {
  3749. __remove_wait_queue(&x->wait, &wait);
  3750. return -ERESTARTSYS;
  3751. }
  3752. __set_current_state(state);
  3753. spin_unlock_irq(&x->wait.lock);
  3754. timeout = schedule_timeout(timeout);
  3755. spin_lock_irq(&x->wait.lock);
  3756. if (!timeout) {
  3757. __remove_wait_queue(&x->wait, &wait);
  3758. return timeout;
  3759. }
  3760. } while (!x->done);
  3761. __remove_wait_queue(&x->wait, &wait);
  3762. }
  3763. x->done--;
  3764. return timeout;
  3765. }
  3766. static long __sched
  3767. wait_for_common(struct completion *x, long timeout, int state)
  3768. {
  3769. might_sleep();
  3770. spin_lock_irq(&x->wait.lock);
  3771. timeout = do_wait_for_common(x, timeout, state);
  3772. spin_unlock_irq(&x->wait.lock);
  3773. return timeout;
  3774. }
  3775. void __sched wait_for_completion(struct completion *x)
  3776. {
  3777. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3778. }
  3779. EXPORT_SYMBOL(wait_for_completion);
  3780. unsigned long __sched
  3781. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3782. {
  3783. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3784. }
  3785. EXPORT_SYMBOL(wait_for_completion_timeout);
  3786. int __sched wait_for_completion_interruptible(struct completion *x)
  3787. {
  3788. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3789. if (t == -ERESTARTSYS)
  3790. return t;
  3791. return 0;
  3792. }
  3793. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3794. unsigned long __sched
  3795. wait_for_completion_interruptible_timeout(struct completion *x,
  3796. unsigned long timeout)
  3797. {
  3798. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3799. }
  3800. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3801. int __sched wait_for_completion_killable(struct completion *x)
  3802. {
  3803. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3804. if (t == -ERESTARTSYS)
  3805. return t;
  3806. return 0;
  3807. }
  3808. EXPORT_SYMBOL(wait_for_completion_killable);
  3809. static long __sched
  3810. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3811. {
  3812. unsigned long flags;
  3813. wait_queue_t wait;
  3814. init_waitqueue_entry(&wait, current);
  3815. __set_current_state(state);
  3816. spin_lock_irqsave(&q->lock, flags);
  3817. __add_wait_queue(q, &wait);
  3818. spin_unlock(&q->lock);
  3819. timeout = schedule_timeout(timeout);
  3820. spin_lock_irq(&q->lock);
  3821. __remove_wait_queue(q, &wait);
  3822. spin_unlock_irqrestore(&q->lock, flags);
  3823. return timeout;
  3824. }
  3825. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3826. {
  3827. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3828. }
  3829. EXPORT_SYMBOL(interruptible_sleep_on);
  3830. long __sched
  3831. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3832. {
  3833. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3834. }
  3835. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3836. void __sched sleep_on(wait_queue_head_t *q)
  3837. {
  3838. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3839. }
  3840. EXPORT_SYMBOL(sleep_on);
  3841. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3842. {
  3843. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3844. }
  3845. EXPORT_SYMBOL(sleep_on_timeout);
  3846. #ifdef CONFIG_RT_MUTEXES
  3847. /*
  3848. * rt_mutex_setprio - set the current priority of a task
  3849. * @p: task
  3850. * @prio: prio value (kernel-internal form)
  3851. *
  3852. * This function changes the 'effective' priority of a task. It does
  3853. * not touch ->normal_prio like __setscheduler().
  3854. *
  3855. * Used by the rt_mutex code to implement priority inheritance logic.
  3856. */
  3857. void rt_mutex_setprio(struct task_struct *p, int prio)
  3858. {
  3859. unsigned long flags;
  3860. int oldprio, on_rq, running;
  3861. struct rq *rq;
  3862. const struct sched_class *prev_class = p->sched_class;
  3863. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3864. rq = task_rq_lock(p, &flags);
  3865. update_rq_clock(rq);
  3866. oldprio = p->prio;
  3867. on_rq = p->se.on_rq;
  3868. running = task_current(rq, p);
  3869. if (on_rq)
  3870. dequeue_task(rq, p, 0);
  3871. if (running)
  3872. p->sched_class->put_prev_task(rq, p);
  3873. if (rt_prio(prio))
  3874. p->sched_class = &rt_sched_class;
  3875. else
  3876. p->sched_class = &fair_sched_class;
  3877. p->prio = prio;
  3878. if (running)
  3879. p->sched_class->set_curr_task(rq);
  3880. if (on_rq) {
  3881. enqueue_task(rq, p, 0);
  3882. check_class_changed(rq, p, prev_class, oldprio, running);
  3883. }
  3884. task_rq_unlock(rq, &flags);
  3885. }
  3886. #endif
  3887. void set_user_nice(struct task_struct *p, long nice)
  3888. {
  3889. int old_prio, delta, on_rq;
  3890. unsigned long flags;
  3891. struct rq *rq;
  3892. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3893. return;
  3894. /*
  3895. * We have to be careful, if called from sys_setpriority(),
  3896. * the task might be in the middle of scheduling on another CPU.
  3897. */
  3898. rq = task_rq_lock(p, &flags);
  3899. update_rq_clock(rq);
  3900. /*
  3901. * The RT priorities are set via sched_setscheduler(), but we still
  3902. * allow the 'normal' nice value to be set - but as expected
  3903. * it wont have any effect on scheduling until the task is
  3904. * SCHED_FIFO/SCHED_RR:
  3905. */
  3906. if (task_has_rt_policy(p)) {
  3907. p->static_prio = NICE_TO_PRIO(nice);
  3908. goto out_unlock;
  3909. }
  3910. on_rq = p->se.on_rq;
  3911. if (on_rq) {
  3912. dequeue_task(rq, p, 0);
  3913. dec_load(rq, p);
  3914. }
  3915. p->static_prio = NICE_TO_PRIO(nice);
  3916. set_load_weight(p);
  3917. old_prio = p->prio;
  3918. p->prio = effective_prio(p);
  3919. delta = p->prio - old_prio;
  3920. if (on_rq) {
  3921. enqueue_task(rq, p, 0);
  3922. inc_load(rq, p);
  3923. /*
  3924. * If the task increased its priority or is running and
  3925. * lowered its priority, then reschedule its CPU:
  3926. */
  3927. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3928. resched_task(rq->curr);
  3929. }
  3930. out_unlock:
  3931. task_rq_unlock(rq, &flags);
  3932. }
  3933. EXPORT_SYMBOL(set_user_nice);
  3934. /*
  3935. * can_nice - check if a task can reduce its nice value
  3936. * @p: task
  3937. * @nice: nice value
  3938. */
  3939. int can_nice(const struct task_struct *p, const int nice)
  3940. {
  3941. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3942. int nice_rlim = 20 - nice;
  3943. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3944. capable(CAP_SYS_NICE));
  3945. }
  3946. #ifdef __ARCH_WANT_SYS_NICE
  3947. /*
  3948. * sys_nice - change the priority of the current process.
  3949. * @increment: priority increment
  3950. *
  3951. * sys_setpriority is a more generic, but much slower function that
  3952. * does similar things.
  3953. */
  3954. asmlinkage long sys_nice(int increment)
  3955. {
  3956. long nice, retval;
  3957. /*
  3958. * Setpriority might change our priority at the same moment.
  3959. * We don't have to worry. Conceptually one call occurs first
  3960. * and we have a single winner.
  3961. */
  3962. if (increment < -40)
  3963. increment = -40;
  3964. if (increment > 40)
  3965. increment = 40;
  3966. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3967. if (nice < -20)
  3968. nice = -20;
  3969. if (nice > 19)
  3970. nice = 19;
  3971. if (increment < 0 && !can_nice(current, nice))
  3972. return -EPERM;
  3973. retval = security_task_setnice(current, nice);
  3974. if (retval)
  3975. return retval;
  3976. set_user_nice(current, nice);
  3977. return 0;
  3978. }
  3979. #endif
  3980. /**
  3981. * task_prio - return the priority value of a given task.
  3982. * @p: the task in question.
  3983. *
  3984. * This is the priority value as seen by users in /proc.
  3985. * RT tasks are offset by -200. Normal tasks are centered
  3986. * around 0, value goes from -16 to +15.
  3987. */
  3988. int task_prio(const struct task_struct *p)
  3989. {
  3990. return p->prio - MAX_RT_PRIO;
  3991. }
  3992. /**
  3993. * task_nice - return the nice value of a given task.
  3994. * @p: the task in question.
  3995. */
  3996. int task_nice(const struct task_struct *p)
  3997. {
  3998. return TASK_NICE(p);
  3999. }
  4000. EXPORT_SYMBOL(task_nice);
  4001. /**
  4002. * idle_cpu - is a given cpu idle currently?
  4003. * @cpu: the processor in question.
  4004. */
  4005. int idle_cpu(int cpu)
  4006. {
  4007. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4008. }
  4009. /**
  4010. * idle_task - return the idle task for a given cpu.
  4011. * @cpu: the processor in question.
  4012. */
  4013. struct task_struct *idle_task(int cpu)
  4014. {
  4015. return cpu_rq(cpu)->idle;
  4016. }
  4017. /**
  4018. * find_process_by_pid - find a process with a matching PID value.
  4019. * @pid: the pid in question.
  4020. */
  4021. static struct task_struct *find_process_by_pid(pid_t pid)
  4022. {
  4023. return pid ? find_task_by_vpid(pid) : current;
  4024. }
  4025. /* Actually do priority change: must hold rq lock. */
  4026. static void
  4027. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4028. {
  4029. BUG_ON(p->se.on_rq);
  4030. p->policy = policy;
  4031. switch (p->policy) {
  4032. case SCHED_NORMAL:
  4033. case SCHED_BATCH:
  4034. case SCHED_IDLE:
  4035. p->sched_class = &fair_sched_class;
  4036. break;
  4037. case SCHED_FIFO:
  4038. case SCHED_RR:
  4039. p->sched_class = &rt_sched_class;
  4040. break;
  4041. }
  4042. p->rt_priority = prio;
  4043. p->normal_prio = normal_prio(p);
  4044. /* we are holding p->pi_lock already */
  4045. p->prio = rt_mutex_getprio(p);
  4046. set_load_weight(p);
  4047. }
  4048. /**
  4049. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4050. * @p: the task in question.
  4051. * @policy: new policy.
  4052. * @param: structure containing the new RT priority.
  4053. *
  4054. * NOTE that the task may be already dead.
  4055. */
  4056. int sched_setscheduler(struct task_struct *p, int policy,
  4057. struct sched_param *param)
  4058. {
  4059. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4060. unsigned long flags;
  4061. const struct sched_class *prev_class = p->sched_class;
  4062. struct rq *rq;
  4063. /* may grab non-irq protected spin_locks */
  4064. BUG_ON(in_interrupt());
  4065. recheck:
  4066. /* double check policy once rq lock held */
  4067. if (policy < 0)
  4068. policy = oldpolicy = p->policy;
  4069. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4070. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4071. policy != SCHED_IDLE)
  4072. return -EINVAL;
  4073. /*
  4074. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4075. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4076. * SCHED_BATCH and SCHED_IDLE is 0.
  4077. */
  4078. if (param->sched_priority < 0 ||
  4079. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4080. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4081. return -EINVAL;
  4082. if (rt_policy(policy) != (param->sched_priority != 0))
  4083. return -EINVAL;
  4084. /*
  4085. * Allow unprivileged RT tasks to decrease priority:
  4086. */
  4087. if (!capable(CAP_SYS_NICE)) {
  4088. if (rt_policy(policy)) {
  4089. unsigned long rlim_rtprio;
  4090. if (!lock_task_sighand(p, &flags))
  4091. return -ESRCH;
  4092. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4093. unlock_task_sighand(p, &flags);
  4094. /* can't set/change the rt policy */
  4095. if (policy != p->policy && !rlim_rtprio)
  4096. return -EPERM;
  4097. /* can't increase priority */
  4098. if (param->sched_priority > p->rt_priority &&
  4099. param->sched_priority > rlim_rtprio)
  4100. return -EPERM;
  4101. }
  4102. /*
  4103. * Like positive nice levels, dont allow tasks to
  4104. * move out of SCHED_IDLE either:
  4105. */
  4106. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4107. return -EPERM;
  4108. /* can't change other user's priorities */
  4109. if ((current->euid != p->euid) &&
  4110. (current->euid != p->uid))
  4111. return -EPERM;
  4112. }
  4113. #ifdef CONFIG_RT_GROUP_SCHED
  4114. /*
  4115. * Do not allow realtime tasks into groups that have no runtime
  4116. * assigned.
  4117. */
  4118. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4119. return -EPERM;
  4120. #endif
  4121. retval = security_task_setscheduler(p, policy, param);
  4122. if (retval)
  4123. return retval;
  4124. /*
  4125. * make sure no PI-waiters arrive (or leave) while we are
  4126. * changing the priority of the task:
  4127. */
  4128. spin_lock_irqsave(&p->pi_lock, flags);
  4129. /*
  4130. * To be able to change p->policy safely, the apropriate
  4131. * runqueue lock must be held.
  4132. */
  4133. rq = __task_rq_lock(p);
  4134. /* recheck policy now with rq lock held */
  4135. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4136. policy = oldpolicy = -1;
  4137. __task_rq_unlock(rq);
  4138. spin_unlock_irqrestore(&p->pi_lock, flags);
  4139. goto recheck;
  4140. }
  4141. update_rq_clock(rq);
  4142. on_rq = p->se.on_rq;
  4143. running = task_current(rq, p);
  4144. if (on_rq)
  4145. deactivate_task(rq, p, 0);
  4146. if (running)
  4147. p->sched_class->put_prev_task(rq, p);
  4148. oldprio = p->prio;
  4149. __setscheduler(rq, p, policy, param->sched_priority);
  4150. if (running)
  4151. p->sched_class->set_curr_task(rq);
  4152. if (on_rq) {
  4153. activate_task(rq, p, 0);
  4154. check_class_changed(rq, p, prev_class, oldprio, running);
  4155. }
  4156. __task_rq_unlock(rq);
  4157. spin_unlock_irqrestore(&p->pi_lock, flags);
  4158. rt_mutex_adjust_pi(p);
  4159. return 0;
  4160. }
  4161. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4162. static int
  4163. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4164. {
  4165. struct sched_param lparam;
  4166. struct task_struct *p;
  4167. int retval;
  4168. if (!param || pid < 0)
  4169. return -EINVAL;
  4170. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4171. return -EFAULT;
  4172. rcu_read_lock();
  4173. retval = -ESRCH;
  4174. p = find_process_by_pid(pid);
  4175. if (p != NULL)
  4176. retval = sched_setscheduler(p, policy, &lparam);
  4177. rcu_read_unlock();
  4178. return retval;
  4179. }
  4180. /**
  4181. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4182. * @pid: the pid in question.
  4183. * @policy: new policy.
  4184. * @param: structure containing the new RT priority.
  4185. */
  4186. asmlinkage long
  4187. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4188. {
  4189. /* negative values for policy are not valid */
  4190. if (policy < 0)
  4191. return -EINVAL;
  4192. return do_sched_setscheduler(pid, policy, param);
  4193. }
  4194. /**
  4195. * sys_sched_setparam - set/change the RT priority of a thread
  4196. * @pid: the pid in question.
  4197. * @param: structure containing the new RT priority.
  4198. */
  4199. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4200. {
  4201. return do_sched_setscheduler(pid, -1, param);
  4202. }
  4203. /**
  4204. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4205. * @pid: the pid in question.
  4206. */
  4207. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4208. {
  4209. struct task_struct *p;
  4210. int retval;
  4211. if (pid < 0)
  4212. return -EINVAL;
  4213. retval = -ESRCH;
  4214. read_lock(&tasklist_lock);
  4215. p = find_process_by_pid(pid);
  4216. if (p) {
  4217. retval = security_task_getscheduler(p);
  4218. if (!retval)
  4219. retval = p->policy;
  4220. }
  4221. read_unlock(&tasklist_lock);
  4222. return retval;
  4223. }
  4224. /**
  4225. * sys_sched_getscheduler - get the RT priority of a thread
  4226. * @pid: the pid in question.
  4227. * @param: structure containing the RT priority.
  4228. */
  4229. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4230. {
  4231. struct sched_param lp;
  4232. struct task_struct *p;
  4233. int retval;
  4234. if (!param || pid < 0)
  4235. return -EINVAL;
  4236. read_lock(&tasklist_lock);
  4237. p = find_process_by_pid(pid);
  4238. retval = -ESRCH;
  4239. if (!p)
  4240. goto out_unlock;
  4241. retval = security_task_getscheduler(p);
  4242. if (retval)
  4243. goto out_unlock;
  4244. lp.sched_priority = p->rt_priority;
  4245. read_unlock(&tasklist_lock);
  4246. /*
  4247. * This one might sleep, we cannot do it with a spinlock held ...
  4248. */
  4249. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4250. return retval;
  4251. out_unlock:
  4252. read_unlock(&tasklist_lock);
  4253. return retval;
  4254. }
  4255. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4256. {
  4257. cpumask_t cpus_allowed;
  4258. cpumask_t new_mask = *in_mask;
  4259. struct task_struct *p;
  4260. int retval;
  4261. get_online_cpus();
  4262. read_lock(&tasklist_lock);
  4263. p = find_process_by_pid(pid);
  4264. if (!p) {
  4265. read_unlock(&tasklist_lock);
  4266. put_online_cpus();
  4267. return -ESRCH;
  4268. }
  4269. /*
  4270. * It is not safe to call set_cpus_allowed with the
  4271. * tasklist_lock held. We will bump the task_struct's
  4272. * usage count and then drop tasklist_lock.
  4273. */
  4274. get_task_struct(p);
  4275. read_unlock(&tasklist_lock);
  4276. retval = -EPERM;
  4277. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4278. !capable(CAP_SYS_NICE))
  4279. goto out_unlock;
  4280. retval = security_task_setscheduler(p, 0, NULL);
  4281. if (retval)
  4282. goto out_unlock;
  4283. cpuset_cpus_allowed(p, &cpus_allowed);
  4284. cpus_and(new_mask, new_mask, cpus_allowed);
  4285. again:
  4286. retval = set_cpus_allowed_ptr(p, &new_mask);
  4287. if (!retval) {
  4288. cpuset_cpus_allowed(p, &cpus_allowed);
  4289. if (!cpus_subset(new_mask, cpus_allowed)) {
  4290. /*
  4291. * We must have raced with a concurrent cpuset
  4292. * update. Just reset the cpus_allowed to the
  4293. * cpuset's cpus_allowed
  4294. */
  4295. new_mask = cpus_allowed;
  4296. goto again;
  4297. }
  4298. }
  4299. out_unlock:
  4300. put_task_struct(p);
  4301. put_online_cpus();
  4302. return retval;
  4303. }
  4304. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4305. cpumask_t *new_mask)
  4306. {
  4307. if (len < sizeof(cpumask_t)) {
  4308. memset(new_mask, 0, sizeof(cpumask_t));
  4309. } else if (len > sizeof(cpumask_t)) {
  4310. len = sizeof(cpumask_t);
  4311. }
  4312. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4313. }
  4314. /**
  4315. * sys_sched_setaffinity - set the cpu affinity of a process
  4316. * @pid: pid of the process
  4317. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4318. * @user_mask_ptr: user-space pointer to the new cpu mask
  4319. */
  4320. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4321. unsigned long __user *user_mask_ptr)
  4322. {
  4323. cpumask_t new_mask;
  4324. int retval;
  4325. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4326. if (retval)
  4327. return retval;
  4328. return sched_setaffinity(pid, &new_mask);
  4329. }
  4330. /*
  4331. * Represents all cpu's present in the system
  4332. * In systems capable of hotplug, this map could dynamically grow
  4333. * as new cpu's are detected in the system via any platform specific
  4334. * method, such as ACPI for e.g.
  4335. */
  4336. cpumask_t cpu_present_map __read_mostly;
  4337. EXPORT_SYMBOL(cpu_present_map);
  4338. #ifndef CONFIG_SMP
  4339. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4340. EXPORT_SYMBOL(cpu_online_map);
  4341. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4342. EXPORT_SYMBOL(cpu_possible_map);
  4343. #endif
  4344. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4345. {
  4346. struct task_struct *p;
  4347. int retval;
  4348. get_online_cpus();
  4349. read_lock(&tasklist_lock);
  4350. retval = -ESRCH;
  4351. p = find_process_by_pid(pid);
  4352. if (!p)
  4353. goto out_unlock;
  4354. retval = security_task_getscheduler(p);
  4355. if (retval)
  4356. goto out_unlock;
  4357. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4358. out_unlock:
  4359. read_unlock(&tasklist_lock);
  4360. put_online_cpus();
  4361. return retval;
  4362. }
  4363. /**
  4364. * sys_sched_getaffinity - get the cpu affinity of a process
  4365. * @pid: pid of the process
  4366. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4367. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4368. */
  4369. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4370. unsigned long __user *user_mask_ptr)
  4371. {
  4372. int ret;
  4373. cpumask_t mask;
  4374. if (len < sizeof(cpumask_t))
  4375. return -EINVAL;
  4376. ret = sched_getaffinity(pid, &mask);
  4377. if (ret < 0)
  4378. return ret;
  4379. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4380. return -EFAULT;
  4381. return sizeof(cpumask_t);
  4382. }
  4383. /**
  4384. * sys_sched_yield - yield the current processor to other threads.
  4385. *
  4386. * This function yields the current CPU to other tasks. If there are no
  4387. * other threads running on this CPU then this function will return.
  4388. */
  4389. asmlinkage long sys_sched_yield(void)
  4390. {
  4391. struct rq *rq = this_rq_lock();
  4392. schedstat_inc(rq, yld_count);
  4393. current->sched_class->yield_task(rq);
  4394. /*
  4395. * Since we are going to call schedule() anyway, there's
  4396. * no need to preempt or enable interrupts:
  4397. */
  4398. __release(rq->lock);
  4399. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4400. _raw_spin_unlock(&rq->lock);
  4401. preempt_enable_no_resched();
  4402. schedule();
  4403. return 0;
  4404. }
  4405. static void __cond_resched(void)
  4406. {
  4407. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4408. __might_sleep(__FILE__, __LINE__);
  4409. #endif
  4410. /*
  4411. * The BKS might be reacquired before we have dropped
  4412. * PREEMPT_ACTIVE, which could trigger a second
  4413. * cond_resched() call.
  4414. */
  4415. do {
  4416. add_preempt_count(PREEMPT_ACTIVE);
  4417. schedule();
  4418. sub_preempt_count(PREEMPT_ACTIVE);
  4419. } while (need_resched());
  4420. }
  4421. int __sched _cond_resched(void)
  4422. {
  4423. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4424. system_state == SYSTEM_RUNNING) {
  4425. __cond_resched();
  4426. return 1;
  4427. }
  4428. return 0;
  4429. }
  4430. EXPORT_SYMBOL(_cond_resched);
  4431. /*
  4432. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4433. * call schedule, and on return reacquire the lock.
  4434. *
  4435. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4436. * operations here to prevent schedule() from being called twice (once via
  4437. * spin_unlock(), once by hand).
  4438. */
  4439. int cond_resched_lock(spinlock_t *lock)
  4440. {
  4441. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4442. int ret = 0;
  4443. if (spin_needbreak(lock) || resched) {
  4444. spin_unlock(lock);
  4445. if (resched && need_resched())
  4446. __cond_resched();
  4447. else
  4448. cpu_relax();
  4449. ret = 1;
  4450. spin_lock(lock);
  4451. }
  4452. return ret;
  4453. }
  4454. EXPORT_SYMBOL(cond_resched_lock);
  4455. int __sched cond_resched_softirq(void)
  4456. {
  4457. BUG_ON(!in_softirq());
  4458. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4459. local_bh_enable();
  4460. __cond_resched();
  4461. local_bh_disable();
  4462. return 1;
  4463. }
  4464. return 0;
  4465. }
  4466. EXPORT_SYMBOL(cond_resched_softirq);
  4467. /**
  4468. * yield - yield the current processor to other threads.
  4469. *
  4470. * This is a shortcut for kernel-space yielding - it marks the
  4471. * thread runnable and calls sys_sched_yield().
  4472. */
  4473. void __sched yield(void)
  4474. {
  4475. set_current_state(TASK_RUNNING);
  4476. sys_sched_yield();
  4477. }
  4478. EXPORT_SYMBOL(yield);
  4479. /*
  4480. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4481. * that process accounting knows that this is a task in IO wait state.
  4482. *
  4483. * But don't do that if it is a deliberate, throttling IO wait (this task
  4484. * has set its backing_dev_info: the queue against which it should throttle)
  4485. */
  4486. void __sched io_schedule(void)
  4487. {
  4488. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4489. delayacct_blkio_start();
  4490. atomic_inc(&rq->nr_iowait);
  4491. schedule();
  4492. atomic_dec(&rq->nr_iowait);
  4493. delayacct_blkio_end();
  4494. }
  4495. EXPORT_SYMBOL(io_schedule);
  4496. long __sched io_schedule_timeout(long timeout)
  4497. {
  4498. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4499. long ret;
  4500. delayacct_blkio_start();
  4501. atomic_inc(&rq->nr_iowait);
  4502. ret = schedule_timeout(timeout);
  4503. atomic_dec(&rq->nr_iowait);
  4504. delayacct_blkio_end();
  4505. return ret;
  4506. }
  4507. /**
  4508. * sys_sched_get_priority_max - return maximum RT priority.
  4509. * @policy: scheduling class.
  4510. *
  4511. * this syscall returns the maximum rt_priority that can be used
  4512. * by a given scheduling class.
  4513. */
  4514. asmlinkage long sys_sched_get_priority_max(int policy)
  4515. {
  4516. int ret = -EINVAL;
  4517. switch (policy) {
  4518. case SCHED_FIFO:
  4519. case SCHED_RR:
  4520. ret = MAX_USER_RT_PRIO-1;
  4521. break;
  4522. case SCHED_NORMAL:
  4523. case SCHED_BATCH:
  4524. case SCHED_IDLE:
  4525. ret = 0;
  4526. break;
  4527. }
  4528. return ret;
  4529. }
  4530. /**
  4531. * sys_sched_get_priority_min - return minimum RT priority.
  4532. * @policy: scheduling class.
  4533. *
  4534. * this syscall returns the minimum rt_priority that can be used
  4535. * by a given scheduling class.
  4536. */
  4537. asmlinkage long sys_sched_get_priority_min(int policy)
  4538. {
  4539. int ret = -EINVAL;
  4540. switch (policy) {
  4541. case SCHED_FIFO:
  4542. case SCHED_RR:
  4543. ret = 1;
  4544. break;
  4545. case SCHED_NORMAL:
  4546. case SCHED_BATCH:
  4547. case SCHED_IDLE:
  4548. ret = 0;
  4549. }
  4550. return ret;
  4551. }
  4552. /**
  4553. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4554. * @pid: pid of the process.
  4555. * @interval: userspace pointer to the timeslice value.
  4556. *
  4557. * this syscall writes the default timeslice value of a given process
  4558. * into the user-space timespec buffer. A value of '0' means infinity.
  4559. */
  4560. asmlinkage
  4561. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4562. {
  4563. struct task_struct *p;
  4564. unsigned int time_slice;
  4565. int retval;
  4566. struct timespec t;
  4567. if (pid < 0)
  4568. return -EINVAL;
  4569. retval = -ESRCH;
  4570. read_lock(&tasklist_lock);
  4571. p = find_process_by_pid(pid);
  4572. if (!p)
  4573. goto out_unlock;
  4574. retval = security_task_getscheduler(p);
  4575. if (retval)
  4576. goto out_unlock;
  4577. /*
  4578. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4579. * tasks that are on an otherwise idle runqueue:
  4580. */
  4581. time_slice = 0;
  4582. if (p->policy == SCHED_RR) {
  4583. time_slice = DEF_TIMESLICE;
  4584. } else if (p->policy != SCHED_FIFO) {
  4585. struct sched_entity *se = &p->se;
  4586. unsigned long flags;
  4587. struct rq *rq;
  4588. rq = task_rq_lock(p, &flags);
  4589. if (rq->cfs.load.weight)
  4590. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4591. task_rq_unlock(rq, &flags);
  4592. }
  4593. read_unlock(&tasklist_lock);
  4594. jiffies_to_timespec(time_slice, &t);
  4595. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4596. return retval;
  4597. out_unlock:
  4598. read_unlock(&tasklist_lock);
  4599. return retval;
  4600. }
  4601. static const char stat_nam[] = "RSDTtZX";
  4602. void sched_show_task(struct task_struct *p)
  4603. {
  4604. unsigned long free = 0;
  4605. unsigned state;
  4606. state = p->state ? __ffs(p->state) + 1 : 0;
  4607. printk(KERN_INFO "%-13.13s %c", p->comm,
  4608. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4609. #if BITS_PER_LONG == 32
  4610. if (state == TASK_RUNNING)
  4611. printk(KERN_CONT " running ");
  4612. else
  4613. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4614. #else
  4615. if (state == TASK_RUNNING)
  4616. printk(KERN_CONT " running task ");
  4617. else
  4618. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4619. #endif
  4620. #ifdef CONFIG_DEBUG_STACK_USAGE
  4621. {
  4622. unsigned long *n = end_of_stack(p);
  4623. while (!*n)
  4624. n++;
  4625. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4626. }
  4627. #endif
  4628. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4629. task_pid_nr(p), task_pid_nr(p->real_parent));
  4630. show_stack(p, NULL);
  4631. }
  4632. void show_state_filter(unsigned long state_filter)
  4633. {
  4634. struct task_struct *g, *p;
  4635. #if BITS_PER_LONG == 32
  4636. printk(KERN_INFO
  4637. " task PC stack pid father\n");
  4638. #else
  4639. printk(KERN_INFO
  4640. " task PC stack pid father\n");
  4641. #endif
  4642. read_lock(&tasklist_lock);
  4643. do_each_thread(g, p) {
  4644. /*
  4645. * reset the NMI-timeout, listing all files on a slow
  4646. * console might take alot of time:
  4647. */
  4648. touch_nmi_watchdog();
  4649. if (!state_filter || (p->state & state_filter))
  4650. sched_show_task(p);
  4651. } while_each_thread(g, p);
  4652. touch_all_softlockup_watchdogs();
  4653. #ifdef CONFIG_SCHED_DEBUG
  4654. sysrq_sched_debug_show();
  4655. #endif
  4656. read_unlock(&tasklist_lock);
  4657. /*
  4658. * Only show locks if all tasks are dumped:
  4659. */
  4660. if (state_filter == -1)
  4661. debug_show_all_locks();
  4662. }
  4663. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4664. {
  4665. idle->sched_class = &idle_sched_class;
  4666. }
  4667. /**
  4668. * init_idle - set up an idle thread for a given CPU
  4669. * @idle: task in question
  4670. * @cpu: cpu the idle task belongs to
  4671. *
  4672. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4673. * flag, to make booting more robust.
  4674. */
  4675. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4676. {
  4677. struct rq *rq = cpu_rq(cpu);
  4678. unsigned long flags;
  4679. __sched_fork(idle);
  4680. idle->se.exec_start = sched_clock();
  4681. idle->prio = idle->normal_prio = MAX_PRIO;
  4682. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4683. __set_task_cpu(idle, cpu);
  4684. spin_lock_irqsave(&rq->lock, flags);
  4685. rq->curr = rq->idle = idle;
  4686. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4687. idle->oncpu = 1;
  4688. #endif
  4689. spin_unlock_irqrestore(&rq->lock, flags);
  4690. /* Set the preempt count _outside_ the spinlocks! */
  4691. #if defined(CONFIG_PREEMPT)
  4692. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4693. #else
  4694. task_thread_info(idle)->preempt_count = 0;
  4695. #endif
  4696. /*
  4697. * The idle tasks have their own, simple scheduling class:
  4698. */
  4699. idle->sched_class = &idle_sched_class;
  4700. }
  4701. /*
  4702. * In a system that switches off the HZ timer nohz_cpu_mask
  4703. * indicates which cpus entered this state. This is used
  4704. * in the rcu update to wait only for active cpus. For system
  4705. * which do not switch off the HZ timer nohz_cpu_mask should
  4706. * always be CPU_MASK_NONE.
  4707. */
  4708. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4709. /*
  4710. * Increase the granularity value when there are more CPUs,
  4711. * because with more CPUs the 'effective latency' as visible
  4712. * to users decreases. But the relationship is not linear,
  4713. * so pick a second-best guess by going with the log2 of the
  4714. * number of CPUs.
  4715. *
  4716. * This idea comes from the SD scheduler of Con Kolivas:
  4717. */
  4718. static inline void sched_init_granularity(void)
  4719. {
  4720. unsigned int factor = 1 + ilog2(num_online_cpus());
  4721. const unsigned long limit = 200000000;
  4722. sysctl_sched_min_granularity *= factor;
  4723. if (sysctl_sched_min_granularity > limit)
  4724. sysctl_sched_min_granularity = limit;
  4725. sysctl_sched_latency *= factor;
  4726. if (sysctl_sched_latency > limit)
  4727. sysctl_sched_latency = limit;
  4728. sysctl_sched_wakeup_granularity *= factor;
  4729. }
  4730. #ifdef CONFIG_SMP
  4731. /*
  4732. * This is how migration works:
  4733. *
  4734. * 1) we queue a struct migration_req structure in the source CPU's
  4735. * runqueue and wake up that CPU's migration thread.
  4736. * 2) we down() the locked semaphore => thread blocks.
  4737. * 3) migration thread wakes up (implicitly it forces the migrated
  4738. * thread off the CPU)
  4739. * 4) it gets the migration request and checks whether the migrated
  4740. * task is still in the wrong runqueue.
  4741. * 5) if it's in the wrong runqueue then the migration thread removes
  4742. * it and puts it into the right queue.
  4743. * 6) migration thread up()s the semaphore.
  4744. * 7) we wake up and the migration is done.
  4745. */
  4746. /*
  4747. * Change a given task's CPU affinity. Migrate the thread to a
  4748. * proper CPU and schedule it away if the CPU it's executing on
  4749. * is removed from the allowed bitmask.
  4750. *
  4751. * NOTE: the caller must have a valid reference to the task, the
  4752. * task must not exit() & deallocate itself prematurely. The
  4753. * call is not atomic; no spinlocks may be held.
  4754. */
  4755. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4756. {
  4757. struct migration_req req;
  4758. unsigned long flags;
  4759. struct rq *rq;
  4760. int ret = 0;
  4761. rq = task_rq_lock(p, &flags);
  4762. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4763. ret = -EINVAL;
  4764. goto out;
  4765. }
  4766. if (p->sched_class->set_cpus_allowed)
  4767. p->sched_class->set_cpus_allowed(p, new_mask);
  4768. else {
  4769. p->cpus_allowed = *new_mask;
  4770. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4771. }
  4772. /* Can the task run on the task's current CPU? If so, we're done */
  4773. if (cpu_isset(task_cpu(p), *new_mask))
  4774. goto out;
  4775. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4776. /* Need help from migration thread: drop lock and wait. */
  4777. task_rq_unlock(rq, &flags);
  4778. wake_up_process(rq->migration_thread);
  4779. wait_for_completion(&req.done);
  4780. tlb_migrate_finish(p->mm);
  4781. return 0;
  4782. }
  4783. out:
  4784. task_rq_unlock(rq, &flags);
  4785. return ret;
  4786. }
  4787. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4788. /*
  4789. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4790. * this because either it can't run here any more (set_cpus_allowed()
  4791. * away from this CPU, or CPU going down), or because we're
  4792. * attempting to rebalance this task on exec (sched_exec).
  4793. *
  4794. * So we race with normal scheduler movements, but that's OK, as long
  4795. * as the task is no longer on this CPU.
  4796. *
  4797. * Returns non-zero if task was successfully migrated.
  4798. */
  4799. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4800. {
  4801. struct rq *rq_dest, *rq_src;
  4802. int ret = 0, on_rq;
  4803. if (unlikely(cpu_is_offline(dest_cpu)))
  4804. return ret;
  4805. rq_src = cpu_rq(src_cpu);
  4806. rq_dest = cpu_rq(dest_cpu);
  4807. double_rq_lock(rq_src, rq_dest);
  4808. /* Already moved. */
  4809. if (task_cpu(p) != src_cpu)
  4810. goto out;
  4811. /* Affinity changed (again). */
  4812. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4813. goto out;
  4814. on_rq = p->se.on_rq;
  4815. if (on_rq)
  4816. deactivate_task(rq_src, p, 0);
  4817. set_task_cpu(p, dest_cpu);
  4818. if (on_rq) {
  4819. activate_task(rq_dest, p, 0);
  4820. check_preempt_curr(rq_dest, p);
  4821. }
  4822. ret = 1;
  4823. out:
  4824. double_rq_unlock(rq_src, rq_dest);
  4825. return ret;
  4826. }
  4827. /*
  4828. * migration_thread - this is a highprio system thread that performs
  4829. * thread migration by bumping thread off CPU then 'pushing' onto
  4830. * another runqueue.
  4831. */
  4832. static int migration_thread(void *data)
  4833. {
  4834. int cpu = (long)data;
  4835. struct rq *rq;
  4836. rq = cpu_rq(cpu);
  4837. BUG_ON(rq->migration_thread != current);
  4838. set_current_state(TASK_INTERRUPTIBLE);
  4839. while (!kthread_should_stop()) {
  4840. struct migration_req *req;
  4841. struct list_head *head;
  4842. spin_lock_irq(&rq->lock);
  4843. if (cpu_is_offline(cpu)) {
  4844. spin_unlock_irq(&rq->lock);
  4845. goto wait_to_die;
  4846. }
  4847. if (rq->active_balance) {
  4848. active_load_balance(rq, cpu);
  4849. rq->active_balance = 0;
  4850. }
  4851. head = &rq->migration_queue;
  4852. if (list_empty(head)) {
  4853. spin_unlock_irq(&rq->lock);
  4854. schedule();
  4855. set_current_state(TASK_INTERRUPTIBLE);
  4856. continue;
  4857. }
  4858. req = list_entry(head->next, struct migration_req, list);
  4859. list_del_init(head->next);
  4860. spin_unlock(&rq->lock);
  4861. __migrate_task(req->task, cpu, req->dest_cpu);
  4862. local_irq_enable();
  4863. complete(&req->done);
  4864. }
  4865. __set_current_state(TASK_RUNNING);
  4866. return 0;
  4867. wait_to_die:
  4868. /* Wait for kthread_stop */
  4869. set_current_state(TASK_INTERRUPTIBLE);
  4870. while (!kthread_should_stop()) {
  4871. schedule();
  4872. set_current_state(TASK_INTERRUPTIBLE);
  4873. }
  4874. __set_current_state(TASK_RUNNING);
  4875. return 0;
  4876. }
  4877. #ifdef CONFIG_HOTPLUG_CPU
  4878. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4879. {
  4880. int ret;
  4881. local_irq_disable();
  4882. ret = __migrate_task(p, src_cpu, dest_cpu);
  4883. local_irq_enable();
  4884. return ret;
  4885. }
  4886. /*
  4887. * Figure out where task on dead CPU should go, use force if necessary.
  4888. * NOTE: interrupts should be disabled by the caller
  4889. */
  4890. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4891. {
  4892. unsigned long flags;
  4893. cpumask_t mask;
  4894. struct rq *rq;
  4895. int dest_cpu;
  4896. do {
  4897. /* On same node? */
  4898. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4899. cpus_and(mask, mask, p->cpus_allowed);
  4900. dest_cpu = any_online_cpu(mask);
  4901. /* On any allowed CPU? */
  4902. if (dest_cpu >= nr_cpu_ids)
  4903. dest_cpu = any_online_cpu(p->cpus_allowed);
  4904. /* No more Mr. Nice Guy. */
  4905. if (dest_cpu >= nr_cpu_ids) {
  4906. cpumask_t cpus_allowed;
  4907. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4908. /*
  4909. * Try to stay on the same cpuset, where the
  4910. * current cpuset may be a subset of all cpus.
  4911. * The cpuset_cpus_allowed_locked() variant of
  4912. * cpuset_cpus_allowed() will not block. It must be
  4913. * called within calls to cpuset_lock/cpuset_unlock.
  4914. */
  4915. rq = task_rq_lock(p, &flags);
  4916. p->cpus_allowed = cpus_allowed;
  4917. dest_cpu = any_online_cpu(p->cpus_allowed);
  4918. task_rq_unlock(rq, &flags);
  4919. /*
  4920. * Don't tell them about moving exiting tasks or
  4921. * kernel threads (both mm NULL), since they never
  4922. * leave kernel.
  4923. */
  4924. if (p->mm && printk_ratelimit()) {
  4925. printk(KERN_INFO "process %d (%s) no "
  4926. "longer affine to cpu%d\n",
  4927. task_pid_nr(p), p->comm, dead_cpu);
  4928. }
  4929. }
  4930. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4931. }
  4932. /*
  4933. * While a dead CPU has no uninterruptible tasks queued at this point,
  4934. * it might still have a nonzero ->nr_uninterruptible counter, because
  4935. * for performance reasons the counter is not stricly tracking tasks to
  4936. * their home CPUs. So we just add the counter to another CPU's counter,
  4937. * to keep the global sum constant after CPU-down:
  4938. */
  4939. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4940. {
  4941. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4942. unsigned long flags;
  4943. local_irq_save(flags);
  4944. double_rq_lock(rq_src, rq_dest);
  4945. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4946. rq_src->nr_uninterruptible = 0;
  4947. double_rq_unlock(rq_src, rq_dest);
  4948. local_irq_restore(flags);
  4949. }
  4950. /* Run through task list and migrate tasks from the dead cpu. */
  4951. static void migrate_live_tasks(int src_cpu)
  4952. {
  4953. struct task_struct *p, *t;
  4954. read_lock(&tasklist_lock);
  4955. do_each_thread(t, p) {
  4956. if (p == current)
  4957. continue;
  4958. if (task_cpu(p) == src_cpu)
  4959. move_task_off_dead_cpu(src_cpu, p);
  4960. } while_each_thread(t, p);
  4961. read_unlock(&tasklist_lock);
  4962. }
  4963. /*
  4964. * Schedules idle task to be the next runnable task on current CPU.
  4965. * It does so by boosting its priority to highest possible.
  4966. * Used by CPU offline code.
  4967. */
  4968. void sched_idle_next(void)
  4969. {
  4970. int this_cpu = smp_processor_id();
  4971. struct rq *rq = cpu_rq(this_cpu);
  4972. struct task_struct *p = rq->idle;
  4973. unsigned long flags;
  4974. /* cpu has to be offline */
  4975. BUG_ON(cpu_online(this_cpu));
  4976. /*
  4977. * Strictly not necessary since rest of the CPUs are stopped by now
  4978. * and interrupts disabled on the current cpu.
  4979. */
  4980. spin_lock_irqsave(&rq->lock, flags);
  4981. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4982. update_rq_clock(rq);
  4983. activate_task(rq, p, 0);
  4984. spin_unlock_irqrestore(&rq->lock, flags);
  4985. }
  4986. /*
  4987. * Ensures that the idle task is using init_mm right before its cpu goes
  4988. * offline.
  4989. */
  4990. void idle_task_exit(void)
  4991. {
  4992. struct mm_struct *mm = current->active_mm;
  4993. BUG_ON(cpu_online(smp_processor_id()));
  4994. if (mm != &init_mm)
  4995. switch_mm(mm, &init_mm, current);
  4996. mmdrop(mm);
  4997. }
  4998. /* called under rq->lock with disabled interrupts */
  4999. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5000. {
  5001. struct rq *rq = cpu_rq(dead_cpu);
  5002. /* Must be exiting, otherwise would be on tasklist. */
  5003. BUG_ON(!p->exit_state);
  5004. /* Cannot have done final schedule yet: would have vanished. */
  5005. BUG_ON(p->state == TASK_DEAD);
  5006. get_task_struct(p);
  5007. /*
  5008. * Drop lock around migration; if someone else moves it,
  5009. * that's OK. No task can be added to this CPU, so iteration is
  5010. * fine.
  5011. */
  5012. spin_unlock_irq(&rq->lock);
  5013. move_task_off_dead_cpu(dead_cpu, p);
  5014. spin_lock_irq(&rq->lock);
  5015. put_task_struct(p);
  5016. }
  5017. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5018. static void migrate_dead_tasks(unsigned int dead_cpu)
  5019. {
  5020. struct rq *rq = cpu_rq(dead_cpu);
  5021. struct task_struct *next;
  5022. for ( ; ; ) {
  5023. if (!rq->nr_running)
  5024. break;
  5025. update_rq_clock(rq);
  5026. next = pick_next_task(rq, rq->curr);
  5027. if (!next)
  5028. break;
  5029. migrate_dead(dead_cpu, next);
  5030. }
  5031. }
  5032. #endif /* CONFIG_HOTPLUG_CPU */
  5033. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5034. static struct ctl_table sd_ctl_dir[] = {
  5035. {
  5036. .procname = "sched_domain",
  5037. .mode = 0555,
  5038. },
  5039. {0, },
  5040. };
  5041. static struct ctl_table sd_ctl_root[] = {
  5042. {
  5043. .ctl_name = CTL_KERN,
  5044. .procname = "kernel",
  5045. .mode = 0555,
  5046. .child = sd_ctl_dir,
  5047. },
  5048. {0, },
  5049. };
  5050. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5051. {
  5052. struct ctl_table *entry =
  5053. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5054. return entry;
  5055. }
  5056. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5057. {
  5058. struct ctl_table *entry;
  5059. /*
  5060. * In the intermediate directories, both the child directory and
  5061. * procname are dynamically allocated and could fail but the mode
  5062. * will always be set. In the lowest directory the names are
  5063. * static strings and all have proc handlers.
  5064. */
  5065. for (entry = *tablep; entry->mode; entry++) {
  5066. if (entry->child)
  5067. sd_free_ctl_entry(&entry->child);
  5068. if (entry->proc_handler == NULL)
  5069. kfree(entry->procname);
  5070. }
  5071. kfree(*tablep);
  5072. *tablep = NULL;
  5073. }
  5074. static void
  5075. set_table_entry(struct ctl_table *entry,
  5076. const char *procname, void *data, int maxlen,
  5077. mode_t mode, proc_handler *proc_handler)
  5078. {
  5079. entry->procname = procname;
  5080. entry->data = data;
  5081. entry->maxlen = maxlen;
  5082. entry->mode = mode;
  5083. entry->proc_handler = proc_handler;
  5084. }
  5085. static struct ctl_table *
  5086. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5087. {
  5088. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5089. if (table == NULL)
  5090. return NULL;
  5091. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5092. sizeof(long), 0644, proc_doulongvec_minmax);
  5093. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5094. sizeof(long), 0644, proc_doulongvec_minmax);
  5095. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5096. sizeof(int), 0644, proc_dointvec_minmax);
  5097. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5098. sizeof(int), 0644, proc_dointvec_minmax);
  5099. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5100. sizeof(int), 0644, proc_dointvec_minmax);
  5101. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5102. sizeof(int), 0644, proc_dointvec_minmax);
  5103. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5104. sizeof(int), 0644, proc_dointvec_minmax);
  5105. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5106. sizeof(int), 0644, proc_dointvec_minmax);
  5107. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5108. sizeof(int), 0644, proc_dointvec_minmax);
  5109. set_table_entry(&table[9], "cache_nice_tries",
  5110. &sd->cache_nice_tries,
  5111. sizeof(int), 0644, proc_dointvec_minmax);
  5112. set_table_entry(&table[10], "flags", &sd->flags,
  5113. sizeof(int), 0644, proc_dointvec_minmax);
  5114. /* &table[11] is terminator */
  5115. return table;
  5116. }
  5117. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5118. {
  5119. struct ctl_table *entry, *table;
  5120. struct sched_domain *sd;
  5121. int domain_num = 0, i;
  5122. char buf[32];
  5123. for_each_domain(cpu, sd)
  5124. domain_num++;
  5125. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5126. if (table == NULL)
  5127. return NULL;
  5128. i = 0;
  5129. for_each_domain(cpu, sd) {
  5130. snprintf(buf, 32, "domain%d", i);
  5131. entry->procname = kstrdup(buf, GFP_KERNEL);
  5132. entry->mode = 0555;
  5133. entry->child = sd_alloc_ctl_domain_table(sd);
  5134. entry++;
  5135. i++;
  5136. }
  5137. return table;
  5138. }
  5139. static struct ctl_table_header *sd_sysctl_header;
  5140. static void register_sched_domain_sysctl(void)
  5141. {
  5142. int i, cpu_num = num_online_cpus();
  5143. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5144. char buf[32];
  5145. WARN_ON(sd_ctl_dir[0].child);
  5146. sd_ctl_dir[0].child = entry;
  5147. if (entry == NULL)
  5148. return;
  5149. for_each_online_cpu(i) {
  5150. snprintf(buf, 32, "cpu%d", i);
  5151. entry->procname = kstrdup(buf, GFP_KERNEL);
  5152. entry->mode = 0555;
  5153. entry->child = sd_alloc_ctl_cpu_table(i);
  5154. entry++;
  5155. }
  5156. WARN_ON(sd_sysctl_header);
  5157. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5158. }
  5159. /* may be called multiple times per register */
  5160. static void unregister_sched_domain_sysctl(void)
  5161. {
  5162. if (sd_sysctl_header)
  5163. unregister_sysctl_table(sd_sysctl_header);
  5164. sd_sysctl_header = NULL;
  5165. if (sd_ctl_dir[0].child)
  5166. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5167. }
  5168. #else
  5169. static void register_sched_domain_sysctl(void)
  5170. {
  5171. }
  5172. static void unregister_sched_domain_sysctl(void)
  5173. {
  5174. }
  5175. #endif
  5176. /*
  5177. * migration_call - callback that gets triggered when a CPU is added.
  5178. * Here we can start up the necessary migration thread for the new CPU.
  5179. */
  5180. static int __cpuinit
  5181. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5182. {
  5183. struct task_struct *p;
  5184. int cpu = (long)hcpu;
  5185. unsigned long flags;
  5186. struct rq *rq;
  5187. switch (action) {
  5188. case CPU_UP_PREPARE:
  5189. case CPU_UP_PREPARE_FROZEN:
  5190. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5191. if (IS_ERR(p))
  5192. return NOTIFY_BAD;
  5193. kthread_bind(p, cpu);
  5194. /* Must be high prio: stop_machine expects to yield to it. */
  5195. rq = task_rq_lock(p, &flags);
  5196. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5197. task_rq_unlock(rq, &flags);
  5198. cpu_rq(cpu)->migration_thread = p;
  5199. break;
  5200. case CPU_ONLINE:
  5201. case CPU_ONLINE_FROZEN:
  5202. /* Strictly unnecessary, as first user will wake it. */
  5203. wake_up_process(cpu_rq(cpu)->migration_thread);
  5204. /* Update our root-domain */
  5205. rq = cpu_rq(cpu);
  5206. spin_lock_irqsave(&rq->lock, flags);
  5207. if (rq->rd) {
  5208. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5209. cpu_set(cpu, rq->rd->online);
  5210. }
  5211. spin_unlock_irqrestore(&rq->lock, flags);
  5212. break;
  5213. #ifdef CONFIG_HOTPLUG_CPU
  5214. case CPU_UP_CANCELED:
  5215. case CPU_UP_CANCELED_FROZEN:
  5216. if (!cpu_rq(cpu)->migration_thread)
  5217. break;
  5218. /* Unbind it from offline cpu so it can run. Fall thru. */
  5219. kthread_bind(cpu_rq(cpu)->migration_thread,
  5220. any_online_cpu(cpu_online_map));
  5221. kthread_stop(cpu_rq(cpu)->migration_thread);
  5222. cpu_rq(cpu)->migration_thread = NULL;
  5223. break;
  5224. case CPU_DEAD:
  5225. case CPU_DEAD_FROZEN:
  5226. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5227. migrate_live_tasks(cpu);
  5228. rq = cpu_rq(cpu);
  5229. kthread_stop(rq->migration_thread);
  5230. rq->migration_thread = NULL;
  5231. /* Idle task back to normal (off runqueue, low prio) */
  5232. spin_lock_irq(&rq->lock);
  5233. update_rq_clock(rq);
  5234. deactivate_task(rq, rq->idle, 0);
  5235. rq->idle->static_prio = MAX_PRIO;
  5236. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5237. rq->idle->sched_class = &idle_sched_class;
  5238. migrate_dead_tasks(cpu);
  5239. spin_unlock_irq(&rq->lock);
  5240. cpuset_unlock();
  5241. migrate_nr_uninterruptible(rq);
  5242. BUG_ON(rq->nr_running != 0);
  5243. /*
  5244. * No need to migrate the tasks: it was best-effort if
  5245. * they didn't take sched_hotcpu_mutex. Just wake up
  5246. * the requestors.
  5247. */
  5248. spin_lock_irq(&rq->lock);
  5249. while (!list_empty(&rq->migration_queue)) {
  5250. struct migration_req *req;
  5251. req = list_entry(rq->migration_queue.next,
  5252. struct migration_req, list);
  5253. list_del_init(&req->list);
  5254. complete(&req->done);
  5255. }
  5256. spin_unlock_irq(&rq->lock);
  5257. break;
  5258. case CPU_DYING:
  5259. case CPU_DYING_FROZEN:
  5260. /* Update our root-domain */
  5261. rq = cpu_rq(cpu);
  5262. spin_lock_irqsave(&rq->lock, flags);
  5263. if (rq->rd) {
  5264. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5265. cpu_clear(cpu, rq->rd->online);
  5266. }
  5267. spin_unlock_irqrestore(&rq->lock, flags);
  5268. break;
  5269. #endif
  5270. }
  5271. return NOTIFY_OK;
  5272. }
  5273. /* Register at highest priority so that task migration (migrate_all_tasks)
  5274. * happens before everything else.
  5275. */
  5276. static struct notifier_block __cpuinitdata migration_notifier = {
  5277. .notifier_call = migration_call,
  5278. .priority = 10
  5279. };
  5280. void __init migration_init(void)
  5281. {
  5282. void *cpu = (void *)(long)smp_processor_id();
  5283. int err;
  5284. /* Start one for the boot CPU: */
  5285. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5286. BUG_ON(err == NOTIFY_BAD);
  5287. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5288. register_cpu_notifier(&migration_notifier);
  5289. }
  5290. #endif
  5291. #ifdef CONFIG_SMP
  5292. #ifdef CONFIG_SCHED_DEBUG
  5293. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5294. cpumask_t *groupmask)
  5295. {
  5296. struct sched_group *group = sd->groups;
  5297. char str[256];
  5298. cpulist_scnprintf(str, sizeof(str), sd->span);
  5299. cpus_clear(*groupmask);
  5300. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5301. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5302. printk("does not load-balance\n");
  5303. if (sd->parent)
  5304. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5305. " has parent");
  5306. return -1;
  5307. }
  5308. printk(KERN_CONT "span %s\n", str);
  5309. if (!cpu_isset(cpu, sd->span)) {
  5310. printk(KERN_ERR "ERROR: domain->span does not contain "
  5311. "CPU%d\n", cpu);
  5312. }
  5313. if (!cpu_isset(cpu, group->cpumask)) {
  5314. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5315. " CPU%d\n", cpu);
  5316. }
  5317. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5318. do {
  5319. if (!group) {
  5320. printk("\n");
  5321. printk(KERN_ERR "ERROR: group is NULL\n");
  5322. break;
  5323. }
  5324. if (!group->__cpu_power) {
  5325. printk(KERN_CONT "\n");
  5326. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5327. "set\n");
  5328. break;
  5329. }
  5330. if (!cpus_weight(group->cpumask)) {
  5331. printk(KERN_CONT "\n");
  5332. printk(KERN_ERR "ERROR: empty group\n");
  5333. break;
  5334. }
  5335. if (cpus_intersects(*groupmask, group->cpumask)) {
  5336. printk(KERN_CONT "\n");
  5337. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5338. break;
  5339. }
  5340. cpus_or(*groupmask, *groupmask, group->cpumask);
  5341. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5342. printk(KERN_CONT " %s", str);
  5343. group = group->next;
  5344. } while (group != sd->groups);
  5345. printk(KERN_CONT "\n");
  5346. if (!cpus_equal(sd->span, *groupmask))
  5347. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5348. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5349. printk(KERN_ERR "ERROR: parent span is not a superset "
  5350. "of domain->span\n");
  5351. return 0;
  5352. }
  5353. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5354. {
  5355. cpumask_t *groupmask;
  5356. int level = 0;
  5357. if (!sd) {
  5358. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5359. return;
  5360. }
  5361. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5362. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5363. if (!groupmask) {
  5364. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5365. return;
  5366. }
  5367. for (;;) {
  5368. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5369. break;
  5370. level++;
  5371. sd = sd->parent;
  5372. if (!sd)
  5373. break;
  5374. }
  5375. kfree(groupmask);
  5376. }
  5377. #else /* !CONFIG_SCHED_DEBUG */
  5378. # define sched_domain_debug(sd, cpu) do { } while (0)
  5379. #endif /* CONFIG_SCHED_DEBUG */
  5380. static int sd_degenerate(struct sched_domain *sd)
  5381. {
  5382. if (cpus_weight(sd->span) == 1)
  5383. return 1;
  5384. /* Following flags need at least 2 groups */
  5385. if (sd->flags & (SD_LOAD_BALANCE |
  5386. SD_BALANCE_NEWIDLE |
  5387. SD_BALANCE_FORK |
  5388. SD_BALANCE_EXEC |
  5389. SD_SHARE_CPUPOWER |
  5390. SD_SHARE_PKG_RESOURCES)) {
  5391. if (sd->groups != sd->groups->next)
  5392. return 0;
  5393. }
  5394. /* Following flags don't use groups */
  5395. if (sd->flags & (SD_WAKE_IDLE |
  5396. SD_WAKE_AFFINE |
  5397. SD_WAKE_BALANCE))
  5398. return 0;
  5399. return 1;
  5400. }
  5401. static int
  5402. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5403. {
  5404. unsigned long cflags = sd->flags, pflags = parent->flags;
  5405. if (sd_degenerate(parent))
  5406. return 1;
  5407. if (!cpus_equal(sd->span, parent->span))
  5408. return 0;
  5409. /* Does parent contain flags not in child? */
  5410. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5411. if (cflags & SD_WAKE_AFFINE)
  5412. pflags &= ~SD_WAKE_BALANCE;
  5413. /* Flags needing groups don't count if only 1 group in parent */
  5414. if (parent->groups == parent->groups->next) {
  5415. pflags &= ~(SD_LOAD_BALANCE |
  5416. SD_BALANCE_NEWIDLE |
  5417. SD_BALANCE_FORK |
  5418. SD_BALANCE_EXEC |
  5419. SD_SHARE_CPUPOWER |
  5420. SD_SHARE_PKG_RESOURCES);
  5421. }
  5422. if (~cflags & pflags)
  5423. return 0;
  5424. return 1;
  5425. }
  5426. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5427. {
  5428. unsigned long flags;
  5429. const struct sched_class *class;
  5430. spin_lock_irqsave(&rq->lock, flags);
  5431. if (rq->rd) {
  5432. struct root_domain *old_rd = rq->rd;
  5433. for (class = sched_class_highest; class; class = class->next) {
  5434. if (class->leave_domain)
  5435. class->leave_domain(rq);
  5436. }
  5437. cpu_clear(rq->cpu, old_rd->span);
  5438. cpu_clear(rq->cpu, old_rd->online);
  5439. if (atomic_dec_and_test(&old_rd->refcount))
  5440. kfree(old_rd);
  5441. }
  5442. atomic_inc(&rd->refcount);
  5443. rq->rd = rd;
  5444. cpu_set(rq->cpu, rd->span);
  5445. if (cpu_isset(rq->cpu, cpu_online_map))
  5446. cpu_set(rq->cpu, rd->online);
  5447. for (class = sched_class_highest; class; class = class->next) {
  5448. if (class->join_domain)
  5449. class->join_domain(rq);
  5450. }
  5451. spin_unlock_irqrestore(&rq->lock, flags);
  5452. }
  5453. static void init_rootdomain(struct root_domain *rd)
  5454. {
  5455. memset(rd, 0, sizeof(*rd));
  5456. cpus_clear(rd->span);
  5457. cpus_clear(rd->online);
  5458. cpupri_init(&rd->cpupri);
  5459. }
  5460. static void init_defrootdomain(void)
  5461. {
  5462. init_rootdomain(&def_root_domain);
  5463. atomic_set(&def_root_domain.refcount, 1);
  5464. }
  5465. static struct root_domain *alloc_rootdomain(void)
  5466. {
  5467. struct root_domain *rd;
  5468. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5469. if (!rd)
  5470. return NULL;
  5471. init_rootdomain(rd);
  5472. return rd;
  5473. }
  5474. /*
  5475. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5476. * hold the hotplug lock.
  5477. */
  5478. static void
  5479. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5480. {
  5481. struct rq *rq = cpu_rq(cpu);
  5482. struct sched_domain *tmp;
  5483. /* Remove the sched domains which do not contribute to scheduling. */
  5484. for (tmp = sd; tmp; tmp = tmp->parent) {
  5485. struct sched_domain *parent = tmp->parent;
  5486. if (!parent)
  5487. break;
  5488. if (sd_parent_degenerate(tmp, parent)) {
  5489. tmp->parent = parent->parent;
  5490. if (parent->parent)
  5491. parent->parent->child = tmp;
  5492. }
  5493. }
  5494. if (sd && sd_degenerate(sd)) {
  5495. sd = sd->parent;
  5496. if (sd)
  5497. sd->child = NULL;
  5498. }
  5499. sched_domain_debug(sd, cpu);
  5500. rq_attach_root(rq, rd);
  5501. rcu_assign_pointer(rq->sd, sd);
  5502. }
  5503. /* cpus with isolated domains */
  5504. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5505. /* Setup the mask of cpus configured for isolated domains */
  5506. static int __init isolated_cpu_setup(char *str)
  5507. {
  5508. int ints[NR_CPUS], i;
  5509. str = get_options(str, ARRAY_SIZE(ints), ints);
  5510. cpus_clear(cpu_isolated_map);
  5511. for (i = 1; i <= ints[0]; i++)
  5512. if (ints[i] < NR_CPUS)
  5513. cpu_set(ints[i], cpu_isolated_map);
  5514. return 1;
  5515. }
  5516. __setup("isolcpus=", isolated_cpu_setup);
  5517. /*
  5518. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5519. * to a function which identifies what group(along with sched group) a CPU
  5520. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5521. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5522. *
  5523. * init_sched_build_groups will build a circular linked list of the groups
  5524. * covered by the given span, and will set each group's ->cpumask correctly,
  5525. * and ->cpu_power to 0.
  5526. */
  5527. static void
  5528. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5529. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5530. struct sched_group **sg,
  5531. cpumask_t *tmpmask),
  5532. cpumask_t *covered, cpumask_t *tmpmask)
  5533. {
  5534. struct sched_group *first = NULL, *last = NULL;
  5535. int i;
  5536. cpus_clear(*covered);
  5537. for_each_cpu_mask(i, *span) {
  5538. struct sched_group *sg;
  5539. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5540. int j;
  5541. if (cpu_isset(i, *covered))
  5542. continue;
  5543. cpus_clear(sg->cpumask);
  5544. sg->__cpu_power = 0;
  5545. for_each_cpu_mask(j, *span) {
  5546. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5547. continue;
  5548. cpu_set(j, *covered);
  5549. cpu_set(j, sg->cpumask);
  5550. }
  5551. if (!first)
  5552. first = sg;
  5553. if (last)
  5554. last->next = sg;
  5555. last = sg;
  5556. }
  5557. last->next = first;
  5558. }
  5559. #define SD_NODES_PER_DOMAIN 16
  5560. #ifdef CONFIG_NUMA
  5561. /**
  5562. * find_next_best_node - find the next node to include in a sched_domain
  5563. * @node: node whose sched_domain we're building
  5564. * @used_nodes: nodes already in the sched_domain
  5565. *
  5566. * Find the next node to include in a given scheduling domain. Simply
  5567. * finds the closest node not already in the @used_nodes map.
  5568. *
  5569. * Should use nodemask_t.
  5570. */
  5571. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5572. {
  5573. int i, n, val, min_val, best_node = 0;
  5574. min_val = INT_MAX;
  5575. for (i = 0; i < MAX_NUMNODES; i++) {
  5576. /* Start at @node */
  5577. n = (node + i) % MAX_NUMNODES;
  5578. if (!nr_cpus_node(n))
  5579. continue;
  5580. /* Skip already used nodes */
  5581. if (node_isset(n, *used_nodes))
  5582. continue;
  5583. /* Simple min distance search */
  5584. val = node_distance(node, n);
  5585. if (val < min_val) {
  5586. min_val = val;
  5587. best_node = n;
  5588. }
  5589. }
  5590. node_set(best_node, *used_nodes);
  5591. return best_node;
  5592. }
  5593. /**
  5594. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5595. * @node: node whose cpumask we're constructing
  5596. * @span: resulting cpumask
  5597. *
  5598. * Given a node, construct a good cpumask for its sched_domain to span. It
  5599. * should be one that prevents unnecessary balancing, but also spreads tasks
  5600. * out optimally.
  5601. */
  5602. static void sched_domain_node_span(int node, cpumask_t *span)
  5603. {
  5604. nodemask_t used_nodes;
  5605. node_to_cpumask_ptr(nodemask, node);
  5606. int i;
  5607. cpus_clear(*span);
  5608. nodes_clear(used_nodes);
  5609. cpus_or(*span, *span, *nodemask);
  5610. node_set(node, used_nodes);
  5611. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5612. int next_node = find_next_best_node(node, &used_nodes);
  5613. node_to_cpumask_ptr_next(nodemask, next_node);
  5614. cpus_or(*span, *span, *nodemask);
  5615. }
  5616. }
  5617. #endif /* CONFIG_NUMA */
  5618. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5619. /*
  5620. * SMT sched-domains:
  5621. */
  5622. #ifdef CONFIG_SCHED_SMT
  5623. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5624. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5625. static int
  5626. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5627. cpumask_t *unused)
  5628. {
  5629. if (sg)
  5630. *sg = &per_cpu(sched_group_cpus, cpu);
  5631. return cpu;
  5632. }
  5633. #endif /* CONFIG_SCHED_SMT */
  5634. /*
  5635. * multi-core sched-domains:
  5636. */
  5637. #ifdef CONFIG_SCHED_MC
  5638. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5639. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5640. #endif /* CONFIG_SCHED_MC */
  5641. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5642. static int
  5643. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5644. cpumask_t *mask)
  5645. {
  5646. int group;
  5647. *mask = per_cpu(cpu_sibling_map, cpu);
  5648. cpus_and(*mask, *mask, *cpu_map);
  5649. group = first_cpu(*mask);
  5650. if (sg)
  5651. *sg = &per_cpu(sched_group_core, group);
  5652. return group;
  5653. }
  5654. #elif defined(CONFIG_SCHED_MC)
  5655. static int
  5656. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5657. cpumask_t *unused)
  5658. {
  5659. if (sg)
  5660. *sg = &per_cpu(sched_group_core, cpu);
  5661. return cpu;
  5662. }
  5663. #endif
  5664. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5665. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5666. static int
  5667. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5668. cpumask_t *mask)
  5669. {
  5670. int group;
  5671. #ifdef CONFIG_SCHED_MC
  5672. *mask = cpu_coregroup_map(cpu);
  5673. cpus_and(*mask, *mask, *cpu_map);
  5674. group = first_cpu(*mask);
  5675. #elif defined(CONFIG_SCHED_SMT)
  5676. *mask = per_cpu(cpu_sibling_map, cpu);
  5677. cpus_and(*mask, *mask, *cpu_map);
  5678. group = first_cpu(*mask);
  5679. #else
  5680. group = cpu;
  5681. #endif
  5682. if (sg)
  5683. *sg = &per_cpu(sched_group_phys, group);
  5684. return group;
  5685. }
  5686. #ifdef CONFIG_NUMA
  5687. /*
  5688. * The init_sched_build_groups can't handle what we want to do with node
  5689. * groups, so roll our own. Now each node has its own list of groups which
  5690. * gets dynamically allocated.
  5691. */
  5692. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5693. static struct sched_group ***sched_group_nodes_bycpu;
  5694. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5695. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5696. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5697. struct sched_group **sg, cpumask_t *nodemask)
  5698. {
  5699. int group;
  5700. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5701. cpus_and(*nodemask, *nodemask, *cpu_map);
  5702. group = first_cpu(*nodemask);
  5703. if (sg)
  5704. *sg = &per_cpu(sched_group_allnodes, group);
  5705. return group;
  5706. }
  5707. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5708. {
  5709. struct sched_group *sg = group_head;
  5710. int j;
  5711. if (!sg)
  5712. return;
  5713. do {
  5714. for_each_cpu_mask(j, sg->cpumask) {
  5715. struct sched_domain *sd;
  5716. sd = &per_cpu(phys_domains, j);
  5717. if (j != first_cpu(sd->groups->cpumask)) {
  5718. /*
  5719. * Only add "power" once for each
  5720. * physical package.
  5721. */
  5722. continue;
  5723. }
  5724. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5725. }
  5726. sg = sg->next;
  5727. } while (sg != group_head);
  5728. }
  5729. #endif /* CONFIG_NUMA */
  5730. #ifdef CONFIG_NUMA
  5731. /* Free memory allocated for various sched_group structures */
  5732. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5733. {
  5734. int cpu, i;
  5735. for_each_cpu_mask(cpu, *cpu_map) {
  5736. struct sched_group **sched_group_nodes
  5737. = sched_group_nodes_bycpu[cpu];
  5738. if (!sched_group_nodes)
  5739. continue;
  5740. for (i = 0; i < MAX_NUMNODES; i++) {
  5741. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5742. *nodemask = node_to_cpumask(i);
  5743. cpus_and(*nodemask, *nodemask, *cpu_map);
  5744. if (cpus_empty(*nodemask))
  5745. continue;
  5746. if (sg == NULL)
  5747. continue;
  5748. sg = sg->next;
  5749. next_sg:
  5750. oldsg = sg;
  5751. sg = sg->next;
  5752. kfree(oldsg);
  5753. if (oldsg != sched_group_nodes[i])
  5754. goto next_sg;
  5755. }
  5756. kfree(sched_group_nodes);
  5757. sched_group_nodes_bycpu[cpu] = NULL;
  5758. }
  5759. }
  5760. #else /* !CONFIG_NUMA */
  5761. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5762. {
  5763. }
  5764. #endif /* CONFIG_NUMA */
  5765. /*
  5766. * Initialize sched groups cpu_power.
  5767. *
  5768. * cpu_power indicates the capacity of sched group, which is used while
  5769. * distributing the load between different sched groups in a sched domain.
  5770. * Typically cpu_power for all the groups in a sched domain will be same unless
  5771. * there are asymmetries in the topology. If there are asymmetries, group
  5772. * having more cpu_power will pickup more load compared to the group having
  5773. * less cpu_power.
  5774. *
  5775. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5776. * the maximum number of tasks a group can handle in the presence of other idle
  5777. * or lightly loaded groups in the same sched domain.
  5778. */
  5779. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5780. {
  5781. struct sched_domain *child;
  5782. struct sched_group *group;
  5783. WARN_ON(!sd || !sd->groups);
  5784. if (cpu != first_cpu(sd->groups->cpumask))
  5785. return;
  5786. child = sd->child;
  5787. sd->groups->__cpu_power = 0;
  5788. /*
  5789. * For perf policy, if the groups in child domain share resources
  5790. * (for example cores sharing some portions of the cache hierarchy
  5791. * or SMT), then set this domain groups cpu_power such that each group
  5792. * can handle only one task, when there are other idle groups in the
  5793. * same sched domain.
  5794. */
  5795. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5796. (child->flags &
  5797. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5798. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5799. return;
  5800. }
  5801. /*
  5802. * add cpu_power of each child group to this groups cpu_power
  5803. */
  5804. group = child->groups;
  5805. do {
  5806. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5807. group = group->next;
  5808. } while (group != child->groups);
  5809. }
  5810. /*
  5811. * Initializers for schedule domains
  5812. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5813. */
  5814. #define SD_INIT(sd, type) sd_init_##type(sd)
  5815. #define SD_INIT_FUNC(type) \
  5816. static noinline void sd_init_##type(struct sched_domain *sd) \
  5817. { \
  5818. memset(sd, 0, sizeof(*sd)); \
  5819. *sd = SD_##type##_INIT; \
  5820. sd->level = SD_LV_##type; \
  5821. }
  5822. SD_INIT_FUNC(CPU)
  5823. #ifdef CONFIG_NUMA
  5824. SD_INIT_FUNC(ALLNODES)
  5825. SD_INIT_FUNC(NODE)
  5826. #endif
  5827. #ifdef CONFIG_SCHED_SMT
  5828. SD_INIT_FUNC(SIBLING)
  5829. #endif
  5830. #ifdef CONFIG_SCHED_MC
  5831. SD_INIT_FUNC(MC)
  5832. #endif
  5833. /*
  5834. * To minimize stack usage kmalloc room for cpumasks and share the
  5835. * space as the usage in build_sched_domains() dictates. Used only
  5836. * if the amount of space is significant.
  5837. */
  5838. struct allmasks {
  5839. cpumask_t tmpmask; /* make this one first */
  5840. union {
  5841. cpumask_t nodemask;
  5842. cpumask_t this_sibling_map;
  5843. cpumask_t this_core_map;
  5844. };
  5845. cpumask_t send_covered;
  5846. #ifdef CONFIG_NUMA
  5847. cpumask_t domainspan;
  5848. cpumask_t covered;
  5849. cpumask_t notcovered;
  5850. #endif
  5851. };
  5852. #if NR_CPUS > 128
  5853. #define SCHED_CPUMASK_ALLOC 1
  5854. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5855. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5856. #else
  5857. #define SCHED_CPUMASK_ALLOC 0
  5858. #define SCHED_CPUMASK_FREE(v)
  5859. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5860. #endif
  5861. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5862. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5863. static int default_relax_domain_level = -1;
  5864. static int __init setup_relax_domain_level(char *str)
  5865. {
  5866. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  5867. return 1;
  5868. }
  5869. __setup("relax_domain_level=", setup_relax_domain_level);
  5870. static void set_domain_attribute(struct sched_domain *sd,
  5871. struct sched_domain_attr *attr)
  5872. {
  5873. int request;
  5874. if (!attr || attr->relax_domain_level < 0) {
  5875. if (default_relax_domain_level < 0)
  5876. return;
  5877. else
  5878. request = default_relax_domain_level;
  5879. } else
  5880. request = attr->relax_domain_level;
  5881. if (request < sd->level) {
  5882. /* turn off idle balance on this domain */
  5883. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5884. } else {
  5885. /* turn on idle balance on this domain */
  5886. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5887. }
  5888. }
  5889. /*
  5890. * Build sched domains for a given set of cpus and attach the sched domains
  5891. * to the individual cpus
  5892. */
  5893. static int __build_sched_domains(const cpumask_t *cpu_map,
  5894. struct sched_domain_attr *attr)
  5895. {
  5896. int i;
  5897. struct root_domain *rd;
  5898. SCHED_CPUMASK_DECLARE(allmasks);
  5899. cpumask_t *tmpmask;
  5900. #ifdef CONFIG_NUMA
  5901. struct sched_group **sched_group_nodes = NULL;
  5902. int sd_allnodes = 0;
  5903. /*
  5904. * Allocate the per-node list of sched groups
  5905. */
  5906. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5907. GFP_KERNEL);
  5908. if (!sched_group_nodes) {
  5909. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5910. return -ENOMEM;
  5911. }
  5912. #endif
  5913. rd = alloc_rootdomain();
  5914. if (!rd) {
  5915. printk(KERN_WARNING "Cannot alloc root domain\n");
  5916. #ifdef CONFIG_NUMA
  5917. kfree(sched_group_nodes);
  5918. #endif
  5919. return -ENOMEM;
  5920. }
  5921. #if SCHED_CPUMASK_ALLOC
  5922. /* get space for all scratch cpumask variables */
  5923. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5924. if (!allmasks) {
  5925. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5926. kfree(rd);
  5927. #ifdef CONFIG_NUMA
  5928. kfree(sched_group_nodes);
  5929. #endif
  5930. return -ENOMEM;
  5931. }
  5932. #endif
  5933. tmpmask = (cpumask_t *)allmasks;
  5934. #ifdef CONFIG_NUMA
  5935. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5936. #endif
  5937. /*
  5938. * Set up domains for cpus specified by the cpu_map.
  5939. */
  5940. for_each_cpu_mask(i, *cpu_map) {
  5941. struct sched_domain *sd = NULL, *p;
  5942. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5943. *nodemask = node_to_cpumask(cpu_to_node(i));
  5944. cpus_and(*nodemask, *nodemask, *cpu_map);
  5945. #ifdef CONFIG_NUMA
  5946. if (cpus_weight(*cpu_map) >
  5947. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5948. sd = &per_cpu(allnodes_domains, i);
  5949. SD_INIT(sd, ALLNODES);
  5950. set_domain_attribute(sd, attr);
  5951. sd->span = *cpu_map;
  5952. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5953. p = sd;
  5954. sd_allnodes = 1;
  5955. } else
  5956. p = NULL;
  5957. sd = &per_cpu(node_domains, i);
  5958. SD_INIT(sd, NODE);
  5959. set_domain_attribute(sd, attr);
  5960. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5961. sd->parent = p;
  5962. if (p)
  5963. p->child = sd;
  5964. cpus_and(sd->span, sd->span, *cpu_map);
  5965. #endif
  5966. p = sd;
  5967. sd = &per_cpu(phys_domains, i);
  5968. SD_INIT(sd, CPU);
  5969. set_domain_attribute(sd, attr);
  5970. sd->span = *nodemask;
  5971. sd->parent = p;
  5972. if (p)
  5973. p->child = sd;
  5974. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5975. #ifdef CONFIG_SCHED_MC
  5976. p = sd;
  5977. sd = &per_cpu(core_domains, i);
  5978. SD_INIT(sd, MC);
  5979. set_domain_attribute(sd, attr);
  5980. sd->span = cpu_coregroup_map(i);
  5981. cpus_and(sd->span, sd->span, *cpu_map);
  5982. sd->parent = p;
  5983. p->child = sd;
  5984. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5985. #endif
  5986. #ifdef CONFIG_SCHED_SMT
  5987. p = sd;
  5988. sd = &per_cpu(cpu_domains, i);
  5989. SD_INIT(sd, SIBLING);
  5990. set_domain_attribute(sd, attr);
  5991. sd->span = per_cpu(cpu_sibling_map, i);
  5992. cpus_and(sd->span, sd->span, *cpu_map);
  5993. sd->parent = p;
  5994. p->child = sd;
  5995. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5996. #endif
  5997. }
  5998. #ifdef CONFIG_SCHED_SMT
  5999. /* Set up CPU (sibling) groups */
  6000. for_each_cpu_mask(i, *cpu_map) {
  6001. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6002. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6003. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6004. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6005. if (i != first_cpu(*this_sibling_map))
  6006. continue;
  6007. init_sched_build_groups(this_sibling_map, cpu_map,
  6008. &cpu_to_cpu_group,
  6009. send_covered, tmpmask);
  6010. }
  6011. #endif
  6012. #ifdef CONFIG_SCHED_MC
  6013. /* Set up multi-core groups */
  6014. for_each_cpu_mask(i, *cpu_map) {
  6015. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6016. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6017. *this_core_map = cpu_coregroup_map(i);
  6018. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6019. if (i != first_cpu(*this_core_map))
  6020. continue;
  6021. init_sched_build_groups(this_core_map, cpu_map,
  6022. &cpu_to_core_group,
  6023. send_covered, tmpmask);
  6024. }
  6025. #endif
  6026. /* Set up physical groups */
  6027. for (i = 0; i < MAX_NUMNODES; i++) {
  6028. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6029. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6030. *nodemask = node_to_cpumask(i);
  6031. cpus_and(*nodemask, *nodemask, *cpu_map);
  6032. if (cpus_empty(*nodemask))
  6033. continue;
  6034. init_sched_build_groups(nodemask, cpu_map,
  6035. &cpu_to_phys_group,
  6036. send_covered, tmpmask);
  6037. }
  6038. #ifdef CONFIG_NUMA
  6039. /* Set up node groups */
  6040. if (sd_allnodes) {
  6041. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6042. init_sched_build_groups(cpu_map, cpu_map,
  6043. &cpu_to_allnodes_group,
  6044. send_covered, tmpmask);
  6045. }
  6046. for (i = 0; i < MAX_NUMNODES; i++) {
  6047. /* Set up node groups */
  6048. struct sched_group *sg, *prev;
  6049. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6050. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6051. SCHED_CPUMASK_VAR(covered, allmasks);
  6052. int j;
  6053. *nodemask = node_to_cpumask(i);
  6054. cpus_clear(*covered);
  6055. cpus_and(*nodemask, *nodemask, *cpu_map);
  6056. if (cpus_empty(*nodemask)) {
  6057. sched_group_nodes[i] = NULL;
  6058. continue;
  6059. }
  6060. sched_domain_node_span(i, domainspan);
  6061. cpus_and(*domainspan, *domainspan, *cpu_map);
  6062. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6063. if (!sg) {
  6064. printk(KERN_WARNING "Can not alloc domain group for "
  6065. "node %d\n", i);
  6066. goto error;
  6067. }
  6068. sched_group_nodes[i] = sg;
  6069. for_each_cpu_mask(j, *nodemask) {
  6070. struct sched_domain *sd;
  6071. sd = &per_cpu(node_domains, j);
  6072. sd->groups = sg;
  6073. }
  6074. sg->__cpu_power = 0;
  6075. sg->cpumask = *nodemask;
  6076. sg->next = sg;
  6077. cpus_or(*covered, *covered, *nodemask);
  6078. prev = sg;
  6079. for (j = 0; j < MAX_NUMNODES; j++) {
  6080. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6081. int n = (i + j) % MAX_NUMNODES;
  6082. node_to_cpumask_ptr(pnodemask, n);
  6083. cpus_complement(*notcovered, *covered);
  6084. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6085. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6086. if (cpus_empty(*tmpmask))
  6087. break;
  6088. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6089. if (cpus_empty(*tmpmask))
  6090. continue;
  6091. sg = kmalloc_node(sizeof(struct sched_group),
  6092. GFP_KERNEL, i);
  6093. if (!sg) {
  6094. printk(KERN_WARNING
  6095. "Can not alloc domain group for node %d\n", j);
  6096. goto error;
  6097. }
  6098. sg->__cpu_power = 0;
  6099. sg->cpumask = *tmpmask;
  6100. sg->next = prev->next;
  6101. cpus_or(*covered, *covered, *tmpmask);
  6102. prev->next = sg;
  6103. prev = sg;
  6104. }
  6105. }
  6106. #endif
  6107. /* Calculate CPU power for physical packages and nodes */
  6108. #ifdef CONFIG_SCHED_SMT
  6109. for_each_cpu_mask(i, *cpu_map) {
  6110. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6111. init_sched_groups_power(i, sd);
  6112. }
  6113. #endif
  6114. #ifdef CONFIG_SCHED_MC
  6115. for_each_cpu_mask(i, *cpu_map) {
  6116. struct sched_domain *sd = &per_cpu(core_domains, i);
  6117. init_sched_groups_power(i, sd);
  6118. }
  6119. #endif
  6120. for_each_cpu_mask(i, *cpu_map) {
  6121. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6122. init_sched_groups_power(i, sd);
  6123. }
  6124. #ifdef CONFIG_NUMA
  6125. for (i = 0; i < MAX_NUMNODES; i++)
  6126. init_numa_sched_groups_power(sched_group_nodes[i]);
  6127. if (sd_allnodes) {
  6128. struct sched_group *sg;
  6129. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6130. tmpmask);
  6131. init_numa_sched_groups_power(sg);
  6132. }
  6133. #endif
  6134. /* Attach the domains */
  6135. for_each_cpu_mask(i, *cpu_map) {
  6136. struct sched_domain *sd;
  6137. #ifdef CONFIG_SCHED_SMT
  6138. sd = &per_cpu(cpu_domains, i);
  6139. #elif defined(CONFIG_SCHED_MC)
  6140. sd = &per_cpu(core_domains, i);
  6141. #else
  6142. sd = &per_cpu(phys_domains, i);
  6143. #endif
  6144. cpu_attach_domain(sd, rd, i);
  6145. }
  6146. SCHED_CPUMASK_FREE((void *)allmasks);
  6147. return 0;
  6148. #ifdef CONFIG_NUMA
  6149. error:
  6150. free_sched_groups(cpu_map, tmpmask);
  6151. SCHED_CPUMASK_FREE((void *)allmasks);
  6152. return -ENOMEM;
  6153. #endif
  6154. }
  6155. static int build_sched_domains(const cpumask_t *cpu_map)
  6156. {
  6157. return __build_sched_domains(cpu_map, NULL);
  6158. }
  6159. static cpumask_t *doms_cur; /* current sched domains */
  6160. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6161. static struct sched_domain_attr *dattr_cur;
  6162. /* attribues of custom domains in 'doms_cur' */
  6163. /*
  6164. * Special case: If a kmalloc of a doms_cur partition (array of
  6165. * cpumask_t) fails, then fallback to a single sched domain,
  6166. * as determined by the single cpumask_t fallback_doms.
  6167. */
  6168. static cpumask_t fallback_doms;
  6169. void __attribute__((weak)) arch_update_cpu_topology(void)
  6170. {
  6171. }
  6172. /*
  6173. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6174. * For now this just excludes isolated cpus, but could be used to
  6175. * exclude other special cases in the future.
  6176. */
  6177. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6178. {
  6179. int err;
  6180. arch_update_cpu_topology();
  6181. ndoms_cur = 1;
  6182. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6183. if (!doms_cur)
  6184. doms_cur = &fallback_doms;
  6185. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6186. dattr_cur = NULL;
  6187. err = build_sched_domains(doms_cur);
  6188. register_sched_domain_sysctl();
  6189. return err;
  6190. }
  6191. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6192. cpumask_t *tmpmask)
  6193. {
  6194. free_sched_groups(cpu_map, tmpmask);
  6195. }
  6196. /*
  6197. * Detach sched domains from a group of cpus specified in cpu_map
  6198. * These cpus will now be attached to the NULL domain
  6199. */
  6200. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6201. {
  6202. cpumask_t tmpmask;
  6203. int i;
  6204. unregister_sched_domain_sysctl();
  6205. for_each_cpu_mask(i, *cpu_map)
  6206. cpu_attach_domain(NULL, &def_root_domain, i);
  6207. synchronize_sched();
  6208. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6209. }
  6210. /* handle null as "default" */
  6211. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6212. struct sched_domain_attr *new, int idx_new)
  6213. {
  6214. struct sched_domain_attr tmp;
  6215. /* fast path */
  6216. if (!new && !cur)
  6217. return 1;
  6218. tmp = SD_ATTR_INIT;
  6219. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6220. new ? (new + idx_new) : &tmp,
  6221. sizeof(struct sched_domain_attr));
  6222. }
  6223. /*
  6224. * Partition sched domains as specified by the 'ndoms_new'
  6225. * cpumasks in the array doms_new[] of cpumasks. This compares
  6226. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6227. * It destroys each deleted domain and builds each new domain.
  6228. *
  6229. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6230. * The masks don't intersect (don't overlap.) We should setup one
  6231. * sched domain for each mask. CPUs not in any of the cpumasks will
  6232. * not be load balanced. If the same cpumask appears both in the
  6233. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6234. * it as it is.
  6235. *
  6236. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6237. * ownership of it and will kfree it when done with it. If the caller
  6238. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6239. * and partition_sched_domains() will fallback to the single partition
  6240. * 'fallback_doms'.
  6241. *
  6242. * Call with hotplug lock held
  6243. */
  6244. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6245. struct sched_domain_attr *dattr_new)
  6246. {
  6247. int i, j;
  6248. mutex_lock(&sched_domains_mutex);
  6249. /* always unregister in case we don't destroy any domains */
  6250. unregister_sched_domain_sysctl();
  6251. if (doms_new == NULL) {
  6252. ndoms_new = 1;
  6253. doms_new = &fallback_doms;
  6254. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6255. dattr_new = NULL;
  6256. }
  6257. /* Destroy deleted domains */
  6258. for (i = 0; i < ndoms_cur; i++) {
  6259. for (j = 0; j < ndoms_new; j++) {
  6260. if (cpus_equal(doms_cur[i], doms_new[j])
  6261. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6262. goto match1;
  6263. }
  6264. /* no match - a current sched domain not in new doms_new[] */
  6265. detach_destroy_domains(doms_cur + i);
  6266. match1:
  6267. ;
  6268. }
  6269. /* Build new domains */
  6270. for (i = 0; i < ndoms_new; i++) {
  6271. for (j = 0; j < ndoms_cur; j++) {
  6272. if (cpus_equal(doms_new[i], doms_cur[j])
  6273. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6274. goto match2;
  6275. }
  6276. /* no match - add a new doms_new */
  6277. __build_sched_domains(doms_new + i,
  6278. dattr_new ? dattr_new + i : NULL);
  6279. match2:
  6280. ;
  6281. }
  6282. /* Remember the new sched domains */
  6283. if (doms_cur != &fallback_doms)
  6284. kfree(doms_cur);
  6285. kfree(dattr_cur); /* kfree(NULL) is safe */
  6286. doms_cur = doms_new;
  6287. dattr_cur = dattr_new;
  6288. ndoms_cur = ndoms_new;
  6289. register_sched_domain_sysctl();
  6290. mutex_unlock(&sched_domains_mutex);
  6291. }
  6292. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6293. int arch_reinit_sched_domains(void)
  6294. {
  6295. int err;
  6296. get_online_cpus();
  6297. mutex_lock(&sched_domains_mutex);
  6298. detach_destroy_domains(&cpu_online_map);
  6299. err = arch_init_sched_domains(&cpu_online_map);
  6300. mutex_unlock(&sched_domains_mutex);
  6301. put_online_cpus();
  6302. return err;
  6303. }
  6304. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6305. {
  6306. int ret;
  6307. if (buf[0] != '0' && buf[0] != '1')
  6308. return -EINVAL;
  6309. if (smt)
  6310. sched_smt_power_savings = (buf[0] == '1');
  6311. else
  6312. sched_mc_power_savings = (buf[0] == '1');
  6313. ret = arch_reinit_sched_domains();
  6314. return ret ? ret : count;
  6315. }
  6316. #ifdef CONFIG_SCHED_MC
  6317. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6318. {
  6319. return sprintf(page, "%u\n", sched_mc_power_savings);
  6320. }
  6321. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6322. const char *buf, size_t count)
  6323. {
  6324. return sched_power_savings_store(buf, count, 0);
  6325. }
  6326. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6327. sched_mc_power_savings_store);
  6328. #endif
  6329. #ifdef CONFIG_SCHED_SMT
  6330. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6331. {
  6332. return sprintf(page, "%u\n", sched_smt_power_savings);
  6333. }
  6334. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6335. const char *buf, size_t count)
  6336. {
  6337. return sched_power_savings_store(buf, count, 1);
  6338. }
  6339. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6340. sched_smt_power_savings_store);
  6341. #endif
  6342. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6343. {
  6344. int err = 0;
  6345. #ifdef CONFIG_SCHED_SMT
  6346. if (smt_capable())
  6347. err = sysfs_create_file(&cls->kset.kobj,
  6348. &attr_sched_smt_power_savings.attr);
  6349. #endif
  6350. #ifdef CONFIG_SCHED_MC
  6351. if (!err && mc_capable())
  6352. err = sysfs_create_file(&cls->kset.kobj,
  6353. &attr_sched_mc_power_savings.attr);
  6354. #endif
  6355. return err;
  6356. }
  6357. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6358. /*
  6359. * Force a reinitialization of the sched domains hierarchy. The domains
  6360. * and groups cannot be updated in place without racing with the balancing
  6361. * code, so we temporarily attach all running cpus to the NULL domain
  6362. * which will prevent rebalancing while the sched domains are recalculated.
  6363. */
  6364. static int update_sched_domains(struct notifier_block *nfb,
  6365. unsigned long action, void *hcpu)
  6366. {
  6367. switch (action) {
  6368. case CPU_UP_PREPARE:
  6369. case CPU_UP_PREPARE_FROZEN:
  6370. case CPU_DOWN_PREPARE:
  6371. case CPU_DOWN_PREPARE_FROZEN:
  6372. detach_destroy_domains(&cpu_online_map);
  6373. return NOTIFY_OK;
  6374. case CPU_UP_CANCELED:
  6375. case CPU_UP_CANCELED_FROZEN:
  6376. case CPU_DOWN_FAILED:
  6377. case CPU_DOWN_FAILED_FROZEN:
  6378. case CPU_ONLINE:
  6379. case CPU_ONLINE_FROZEN:
  6380. case CPU_DEAD:
  6381. case CPU_DEAD_FROZEN:
  6382. /*
  6383. * Fall through and re-initialise the domains.
  6384. */
  6385. break;
  6386. default:
  6387. return NOTIFY_DONE;
  6388. }
  6389. /* The hotplug lock is already held by cpu_up/cpu_down */
  6390. arch_init_sched_domains(&cpu_online_map);
  6391. return NOTIFY_OK;
  6392. }
  6393. void __init sched_init_smp(void)
  6394. {
  6395. cpumask_t non_isolated_cpus;
  6396. #if defined(CONFIG_NUMA)
  6397. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6398. GFP_KERNEL);
  6399. BUG_ON(sched_group_nodes_bycpu == NULL);
  6400. #endif
  6401. get_online_cpus();
  6402. mutex_lock(&sched_domains_mutex);
  6403. arch_init_sched_domains(&cpu_online_map);
  6404. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6405. if (cpus_empty(non_isolated_cpus))
  6406. cpu_set(smp_processor_id(), non_isolated_cpus);
  6407. mutex_unlock(&sched_domains_mutex);
  6408. put_online_cpus();
  6409. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6410. hotcpu_notifier(update_sched_domains, 0);
  6411. init_hrtick();
  6412. /* Move init over to a non-isolated CPU */
  6413. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6414. BUG();
  6415. sched_init_granularity();
  6416. }
  6417. #else
  6418. void __init sched_init_smp(void)
  6419. {
  6420. sched_init_granularity();
  6421. }
  6422. #endif /* CONFIG_SMP */
  6423. int in_sched_functions(unsigned long addr)
  6424. {
  6425. return in_lock_functions(addr) ||
  6426. (addr >= (unsigned long)__sched_text_start
  6427. && addr < (unsigned long)__sched_text_end);
  6428. }
  6429. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6430. {
  6431. cfs_rq->tasks_timeline = RB_ROOT;
  6432. INIT_LIST_HEAD(&cfs_rq->tasks);
  6433. #ifdef CONFIG_FAIR_GROUP_SCHED
  6434. cfs_rq->rq = rq;
  6435. #endif
  6436. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6437. }
  6438. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6439. {
  6440. struct rt_prio_array *array;
  6441. int i;
  6442. array = &rt_rq->active;
  6443. for (i = 0; i < MAX_RT_PRIO; i++) {
  6444. INIT_LIST_HEAD(array->xqueue + i);
  6445. INIT_LIST_HEAD(array->squeue + i);
  6446. __clear_bit(i, array->bitmap);
  6447. }
  6448. /* delimiter for bitsearch: */
  6449. __set_bit(MAX_RT_PRIO, array->bitmap);
  6450. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6451. rt_rq->highest_prio = MAX_RT_PRIO;
  6452. #endif
  6453. #ifdef CONFIG_SMP
  6454. rt_rq->rt_nr_migratory = 0;
  6455. rt_rq->overloaded = 0;
  6456. #endif
  6457. rt_rq->rt_time = 0;
  6458. rt_rq->rt_throttled = 0;
  6459. rt_rq->rt_runtime = 0;
  6460. spin_lock_init(&rt_rq->rt_runtime_lock);
  6461. #ifdef CONFIG_RT_GROUP_SCHED
  6462. rt_rq->rt_nr_boosted = 0;
  6463. rt_rq->rq = rq;
  6464. #endif
  6465. }
  6466. #ifdef CONFIG_FAIR_GROUP_SCHED
  6467. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6468. struct sched_entity *se, int cpu, int add,
  6469. struct sched_entity *parent)
  6470. {
  6471. struct rq *rq = cpu_rq(cpu);
  6472. tg->cfs_rq[cpu] = cfs_rq;
  6473. init_cfs_rq(cfs_rq, rq);
  6474. cfs_rq->tg = tg;
  6475. if (add)
  6476. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6477. tg->se[cpu] = se;
  6478. /* se could be NULL for init_task_group */
  6479. if (!se)
  6480. return;
  6481. if (!parent)
  6482. se->cfs_rq = &rq->cfs;
  6483. else
  6484. se->cfs_rq = parent->my_q;
  6485. se->my_q = cfs_rq;
  6486. se->load.weight = tg->shares;
  6487. se->load.inv_weight = 0;
  6488. se->parent = parent;
  6489. }
  6490. #endif
  6491. #ifdef CONFIG_RT_GROUP_SCHED
  6492. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6493. struct sched_rt_entity *rt_se, int cpu, int add,
  6494. struct sched_rt_entity *parent)
  6495. {
  6496. struct rq *rq = cpu_rq(cpu);
  6497. tg->rt_rq[cpu] = rt_rq;
  6498. init_rt_rq(rt_rq, rq);
  6499. rt_rq->tg = tg;
  6500. rt_rq->rt_se = rt_se;
  6501. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6502. if (add)
  6503. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6504. tg->rt_se[cpu] = rt_se;
  6505. if (!rt_se)
  6506. return;
  6507. if (!parent)
  6508. rt_se->rt_rq = &rq->rt;
  6509. else
  6510. rt_se->rt_rq = parent->my_q;
  6511. rt_se->rt_rq = &rq->rt;
  6512. rt_se->my_q = rt_rq;
  6513. rt_se->parent = parent;
  6514. INIT_LIST_HEAD(&rt_se->run_list);
  6515. }
  6516. #endif
  6517. void __init sched_init(void)
  6518. {
  6519. int i, j;
  6520. unsigned long alloc_size = 0, ptr;
  6521. #ifdef CONFIG_FAIR_GROUP_SCHED
  6522. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6523. #endif
  6524. #ifdef CONFIG_RT_GROUP_SCHED
  6525. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6526. #endif
  6527. #ifdef CONFIG_USER_SCHED
  6528. alloc_size *= 2;
  6529. #endif
  6530. /*
  6531. * As sched_init() is called before page_alloc is setup,
  6532. * we use alloc_bootmem().
  6533. */
  6534. if (alloc_size) {
  6535. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6536. #ifdef CONFIG_FAIR_GROUP_SCHED
  6537. init_task_group.se = (struct sched_entity **)ptr;
  6538. ptr += nr_cpu_ids * sizeof(void **);
  6539. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6540. ptr += nr_cpu_ids * sizeof(void **);
  6541. #ifdef CONFIG_USER_SCHED
  6542. root_task_group.se = (struct sched_entity **)ptr;
  6543. ptr += nr_cpu_ids * sizeof(void **);
  6544. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6545. ptr += nr_cpu_ids * sizeof(void **);
  6546. #endif /* CONFIG_USER_SCHED */
  6547. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6548. #ifdef CONFIG_RT_GROUP_SCHED
  6549. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6550. ptr += nr_cpu_ids * sizeof(void **);
  6551. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6552. ptr += nr_cpu_ids * sizeof(void **);
  6553. #ifdef CONFIG_USER_SCHED
  6554. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6555. ptr += nr_cpu_ids * sizeof(void **);
  6556. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6557. ptr += nr_cpu_ids * sizeof(void **);
  6558. #endif /* CONFIG_USER_SCHED */
  6559. #endif /* CONFIG_RT_GROUP_SCHED */
  6560. }
  6561. #ifdef CONFIG_SMP
  6562. init_defrootdomain();
  6563. #endif
  6564. init_rt_bandwidth(&def_rt_bandwidth,
  6565. global_rt_period(), global_rt_runtime());
  6566. #ifdef CONFIG_RT_GROUP_SCHED
  6567. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6568. global_rt_period(), global_rt_runtime());
  6569. #ifdef CONFIG_USER_SCHED
  6570. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6571. global_rt_period(), RUNTIME_INF);
  6572. #endif /* CONFIG_USER_SCHED */
  6573. #endif /* CONFIG_RT_GROUP_SCHED */
  6574. #ifdef CONFIG_GROUP_SCHED
  6575. list_add(&init_task_group.list, &task_groups);
  6576. INIT_LIST_HEAD(&init_task_group.children);
  6577. #ifdef CONFIG_USER_SCHED
  6578. INIT_LIST_HEAD(&root_task_group.children);
  6579. init_task_group.parent = &root_task_group;
  6580. list_add(&init_task_group.siblings, &root_task_group.children);
  6581. #endif /* CONFIG_USER_SCHED */
  6582. #endif /* CONFIG_GROUP_SCHED */
  6583. for_each_possible_cpu(i) {
  6584. struct rq *rq;
  6585. rq = cpu_rq(i);
  6586. spin_lock_init(&rq->lock);
  6587. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6588. rq->nr_running = 0;
  6589. init_cfs_rq(&rq->cfs, rq);
  6590. init_rt_rq(&rq->rt, rq);
  6591. #ifdef CONFIG_FAIR_GROUP_SCHED
  6592. init_task_group.shares = init_task_group_load;
  6593. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6594. #ifdef CONFIG_CGROUP_SCHED
  6595. /*
  6596. * How much cpu bandwidth does init_task_group get?
  6597. *
  6598. * In case of task-groups formed thr' the cgroup filesystem, it
  6599. * gets 100% of the cpu resources in the system. This overall
  6600. * system cpu resource is divided among the tasks of
  6601. * init_task_group and its child task-groups in a fair manner,
  6602. * based on each entity's (task or task-group's) weight
  6603. * (se->load.weight).
  6604. *
  6605. * In other words, if init_task_group has 10 tasks of weight
  6606. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6607. * then A0's share of the cpu resource is:
  6608. *
  6609. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6610. *
  6611. * We achieve this by letting init_task_group's tasks sit
  6612. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6613. */
  6614. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6615. #elif defined CONFIG_USER_SCHED
  6616. root_task_group.shares = NICE_0_LOAD;
  6617. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6618. /*
  6619. * In case of task-groups formed thr' the user id of tasks,
  6620. * init_task_group represents tasks belonging to root user.
  6621. * Hence it forms a sibling of all subsequent groups formed.
  6622. * In this case, init_task_group gets only a fraction of overall
  6623. * system cpu resource, based on the weight assigned to root
  6624. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6625. * by letting tasks of init_task_group sit in a separate cfs_rq
  6626. * (init_cfs_rq) and having one entity represent this group of
  6627. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6628. */
  6629. init_tg_cfs_entry(&init_task_group,
  6630. &per_cpu(init_cfs_rq, i),
  6631. &per_cpu(init_sched_entity, i), i, 1,
  6632. root_task_group.se[i]);
  6633. #endif
  6634. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6635. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6636. #ifdef CONFIG_RT_GROUP_SCHED
  6637. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6638. #ifdef CONFIG_CGROUP_SCHED
  6639. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6640. #elif defined CONFIG_USER_SCHED
  6641. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6642. init_tg_rt_entry(&init_task_group,
  6643. &per_cpu(init_rt_rq, i),
  6644. &per_cpu(init_sched_rt_entity, i), i, 1,
  6645. root_task_group.rt_se[i]);
  6646. #endif
  6647. #endif
  6648. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6649. rq->cpu_load[j] = 0;
  6650. #ifdef CONFIG_SMP
  6651. rq->sd = NULL;
  6652. rq->rd = NULL;
  6653. rq->active_balance = 0;
  6654. rq->next_balance = jiffies;
  6655. rq->push_cpu = 0;
  6656. rq->cpu = i;
  6657. rq->migration_thread = NULL;
  6658. INIT_LIST_HEAD(&rq->migration_queue);
  6659. rq_attach_root(rq, &def_root_domain);
  6660. #endif
  6661. init_rq_hrtick(rq);
  6662. atomic_set(&rq->nr_iowait, 0);
  6663. }
  6664. set_load_weight(&init_task);
  6665. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6666. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6667. #endif
  6668. #ifdef CONFIG_SMP
  6669. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6670. #endif
  6671. #ifdef CONFIG_RT_MUTEXES
  6672. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6673. #endif
  6674. /*
  6675. * The boot idle thread does lazy MMU switching as well:
  6676. */
  6677. atomic_inc(&init_mm.mm_count);
  6678. enter_lazy_tlb(&init_mm, current);
  6679. /*
  6680. * Make us the idle thread. Technically, schedule() should not be
  6681. * called from this thread, however somewhere below it might be,
  6682. * but because we are the idle thread, we just pick up running again
  6683. * when this runqueue becomes "idle".
  6684. */
  6685. init_idle(current, smp_processor_id());
  6686. /*
  6687. * During early bootup we pretend to be a normal task:
  6688. */
  6689. current->sched_class = &fair_sched_class;
  6690. scheduler_running = 1;
  6691. }
  6692. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6693. void __might_sleep(char *file, int line)
  6694. {
  6695. #ifdef in_atomic
  6696. static unsigned long prev_jiffy; /* ratelimiting */
  6697. if ((in_atomic() || irqs_disabled()) &&
  6698. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6699. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6700. return;
  6701. prev_jiffy = jiffies;
  6702. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6703. " context at %s:%d\n", file, line);
  6704. printk("in_atomic():%d, irqs_disabled():%d\n",
  6705. in_atomic(), irqs_disabled());
  6706. debug_show_held_locks(current);
  6707. if (irqs_disabled())
  6708. print_irqtrace_events(current);
  6709. dump_stack();
  6710. }
  6711. #endif
  6712. }
  6713. EXPORT_SYMBOL(__might_sleep);
  6714. #endif
  6715. #ifdef CONFIG_MAGIC_SYSRQ
  6716. static void normalize_task(struct rq *rq, struct task_struct *p)
  6717. {
  6718. int on_rq;
  6719. update_rq_clock(rq);
  6720. on_rq = p->se.on_rq;
  6721. if (on_rq)
  6722. deactivate_task(rq, p, 0);
  6723. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6724. if (on_rq) {
  6725. activate_task(rq, p, 0);
  6726. resched_task(rq->curr);
  6727. }
  6728. }
  6729. void normalize_rt_tasks(void)
  6730. {
  6731. struct task_struct *g, *p;
  6732. unsigned long flags;
  6733. struct rq *rq;
  6734. read_lock_irqsave(&tasklist_lock, flags);
  6735. do_each_thread(g, p) {
  6736. /*
  6737. * Only normalize user tasks:
  6738. */
  6739. if (!p->mm)
  6740. continue;
  6741. p->se.exec_start = 0;
  6742. #ifdef CONFIG_SCHEDSTATS
  6743. p->se.wait_start = 0;
  6744. p->se.sleep_start = 0;
  6745. p->se.block_start = 0;
  6746. #endif
  6747. if (!rt_task(p)) {
  6748. /*
  6749. * Renice negative nice level userspace
  6750. * tasks back to 0:
  6751. */
  6752. if (TASK_NICE(p) < 0 && p->mm)
  6753. set_user_nice(p, 0);
  6754. continue;
  6755. }
  6756. spin_lock(&p->pi_lock);
  6757. rq = __task_rq_lock(p);
  6758. normalize_task(rq, p);
  6759. __task_rq_unlock(rq);
  6760. spin_unlock(&p->pi_lock);
  6761. } while_each_thread(g, p);
  6762. read_unlock_irqrestore(&tasklist_lock, flags);
  6763. }
  6764. #endif /* CONFIG_MAGIC_SYSRQ */
  6765. #ifdef CONFIG_IA64
  6766. /*
  6767. * These functions are only useful for the IA64 MCA handling.
  6768. *
  6769. * They can only be called when the whole system has been
  6770. * stopped - every CPU needs to be quiescent, and no scheduling
  6771. * activity can take place. Using them for anything else would
  6772. * be a serious bug, and as a result, they aren't even visible
  6773. * under any other configuration.
  6774. */
  6775. /**
  6776. * curr_task - return the current task for a given cpu.
  6777. * @cpu: the processor in question.
  6778. *
  6779. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6780. */
  6781. struct task_struct *curr_task(int cpu)
  6782. {
  6783. return cpu_curr(cpu);
  6784. }
  6785. /**
  6786. * set_curr_task - set the current task for a given cpu.
  6787. * @cpu: the processor in question.
  6788. * @p: the task pointer to set.
  6789. *
  6790. * Description: This function must only be used when non-maskable interrupts
  6791. * are serviced on a separate stack. It allows the architecture to switch the
  6792. * notion of the current task on a cpu in a non-blocking manner. This function
  6793. * must be called with all CPU's synchronized, and interrupts disabled, the
  6794. * and caller must save the original value of the current task (see
  6795. * curr_task() above) and restore that value before reenabling interrupts and
  6796. * re-starting the system.
  6797. *
  6798. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6799. */
  6800. void set_curr_task(int cpu, struct task_struct *p)
  6801. {
  6802. cpu_curr(cpu) = p;
  6803. }
  6804. #endif
  6805. #ifdef CONFIG_FAIR_GROUP_SCHED
  6806. static void free_fair_sched_group(struct task_group *tg)
  6807. {
  6808. int i;
  6809. for_each_possible_cpu(i) {
  6810. if (tg->cfs_rq)
  6811. kfree(tg->cfs_rq[i]);
  6812. if (tg->se)
  6813. kfree(tg->se[i]);
  6814. }
  6815. kfree(tg->cfs_rq);
  6816. kfree(tg->se);
  6817. }
  6818. static
  6819. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6820. {
  6821. struct cfs_rq *cfs_rq;
  6822. struct sched_entity *se, *parent_se;
  6823. struct rq *rq;
  6824. int i;
  6825. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6826. if (!tg->cfs_rq)
  6827. goto err;
  6828. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6829. if (!tg->se)
  6830. goto err;
  6831. tg->shares = NICE_0_LOAD;
  6832. for_each_possible_cpu(i) {
  6833. rq = cpu_rq(i);
  6834. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6835. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6836. if (!cfs_rq)
  6837. goto err;
  6838. se = kmalloc_node(sizeof(struct sched_entity),
  6839. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6840. if (!se)
  6841. goto err;
  6842. parent_se = parent ? parent->se[i] : NULL;
  6843. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6844. }
  6845. return 1;
  6846. err:
  6847. return 0;
  6848. }
  6849. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6850. {
  6851. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6852. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6853. }
  6854. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6855. {
  6856. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6857. }
  6858. #else /* !CONFG_FAIR_GROUP_SCHED */
  6859. static inline void free_fair_sched_group(struct task_group *tg)
  6860. {
  6861. }
  6862. static inline
  6863. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6864. {
  6865. return 1;
  6866. }
  6867. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6868. {
  6869. }
  6870. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6871. {
  6872. }
  6873. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6874. #ifdef CONFIG_RT_GROUP_SCHED
  6875. static void free_rt_sched_group(struct task_group *tg)
  6876. {
  6877. int i;
  6878. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6879. for_each_possible_cpu(i) {
  6880. if (tg->rt_rq)
  6881. kfree(tg->rt_rq[i]);
  6882. if (tg->rt_se)
  6883. kfree(tg->rt_se[i]);
  6884. }
  6885. kfree(tg->rt_rq);
  6886. kfree(tg->rt_se);
  6887. }
  6888. static
  6889. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6890. {
  6891. struct rt_rq *rt_rq;
  6892. struct sched_rt_entity *rt_se, *parent_se;
  6893. struct rq *rq;
  6894. int i;
  6895. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6896. if (!tg->rt_rq)
  6897. goto err;
  6898. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6899. if (!tg->rt_se)
  6900. goto err;
  6901. init_rt_bandwidth(&tg->rt_bandwidth,
  6902. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6903. for_each_possible_cpu(i) {
  6904. rq = cpu_rq(i);
  6905. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6906. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6907. if (!rt_rq)
  6908. goto err;
  6909. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6910. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6911. if (!rt_se)
  6912. goto err;
  6913. parent_se = parent ? parent->rt_se[i] : NULL;
  6914. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6915. }
  6916. return 1;
  6917. err:
  6918. return 0;
  6919. }
  6920. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6921. {
  6922. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6923. &cpu_rq(cpu)->leaf_rt_rq_list);
  6924. }
  6925. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6926. {
  6927. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6928. }
  6929. #else /* !CONFIG_RT_GROUP_SCHED */
  6930. static inline void free_rt_sched_group(struct task_group *tg)
  6931. {
  6932. }
  6933. static inline
  6934. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6935. {
  6936. return 1;
  6937. }
  6938. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6939. {
  6940. }
  6941. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6942. {
  6943. }
  6944. #endif /* CONFIG_RT_GROUP_SCHED */
  6945. #ifdef CONFIG_GROUP_SCHED
  6946. static void free_sched_group(struct task_group *tg)
  6947. {
  6948. free_fair_sched_group(tg);
  6949. free_rt_sched_group(tg);
  6950. kfree(tg);
  6951. }
  6952. /* allocate runqueue etc for a new task group */
  6953. struct task_group *sched_create_group(struct task_group *parent)
  6954. {
  6955. struct task_group *tg;
  6956. unsigned long flags;
  6957. int i;
  6958. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6959. if (!tg)
  6960. return ERR_PTR(-ENOMEM);
  6961. if (!alloc_fair_sched_group(tg, parent))
  6962. goto err;
  6963. if (!alloc_rt_sched_group(tg, parent))
  6964. goto err;
  6965. spin_lock_irqsave(&task_group_lock, flags);
  6966. for_each_possible_cpu(i) {
  6967. register_fair_sched_group(tg, i);
  6968. register_rt_sched_group(tg, i);
  6969. }
  6970. list_add_rcu(&tg->list, &task_groups);
  6971. WARN_ON(!parent); /* root should already exist */
  6972. tg->parent = parent;
  6973. list_add_rcu(&tg->siblings, &parent->children);
  6974. INIT_LIST_HEAD(&tg->children);
  6975. spin_unlock_irqrestore(&task_group_lock, flags);
  6976. return tg;
  6977. err:
  6978. free_sched_group(tg);
  6979. return ERR_PTR(-ENOMEM);
  6980. }
  6981. /* rcu callback to free various structures associated with a task group */
  6982. static void free_sched_group_rcu(struct rcu_head *rhp)
  6983. {
  6984. /* now it should be safe to free those cfs_rqs */
  6985. free_sched_group(container_of(rhp, struct task_group, rcu));
  6986. }
  6987. /* Destroy runqueue etc associated with a task group */
  6988. void sched_destroy_group(struct task_group *tg)
  6989. {
  6990. unsigned long flags;
  6991. int i;
  6992. spin_lock_irqsave(&task_group_lock, flags);
  6993. for_each_possible_cpu(i) {
  6994. unregister_fair_sched_group(tg, i);
  6995. unregister_rt_sched_group(tg, i);
  6996. }
  6997. list_del_rcu(&tg->list);
  6998. list_del_rcu(&tg->siblings);
  6999. spin_unlock_irqrestore(&task_group_lock, flags);
  7000. /* wait for possible concurrent references to cfs_rqs complete */
  7001. call_rcu(&tg->rcu, free_sched_group_rcu);
  7002. }
  7003. /* change task's runqueue when it moves between groups.
  7004. * The caller of this function should have put the task in its new group
  7005. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7006. * reflect its new group.
  7007. */
  7008. void sched_move_task(struct task_struct *tsk)
  7009. {
  7010. int on_rq, running;
  7011. unsigned long flags;
  7012. struct rq *rq;
  7013. rq = task_rq_lock(tsk, &flags);
  7014. update_rq_clock(rq);
  7015. running = task_current(rq, tsk);
  7016. on_rq = tsk->se.on_rq;
  7017. if (on_rq)
  7018. dequeue_task(rq, tsk, 0);
  7019. if (unlikely(running))
  7020. tsk->sched_class->put_prev_task(rq, tsk);
  7021. set_task_rq(tsk, task_cpu(tsk));
  7022. #ifdef CONFIG_FAIR_GROUP_SCHED
  7023. if (tsk->sched_class->moved_group)
  7024. tsk->sched_class->moved_group(tsk);
  7025. #endif
  7026. if (unlikely(running))
  7027. tsk->sched_class->set_curr_task(rq);
  7028. if (on_rq)
  7029. enqueue_task(rq, tsk, 0);
  7030. task_rq_unlock(rq, &flags);
  7031. }
  7032. #endif /* CONFIG_GROUP_SCHED */
  7033. #ifdef CONFIG_FAIR_GROUP_SCHED
  7034. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7035. {
  7036. struct cfs_rq *cfs_rq = se->cfs_rq;
  7037. struct rq *rq = cfs_rq->rq;
  7038. int on_rq;
  7039. spin_lock_irq(&rq->lock);
  7040. on_rq = se->on_rq;
  7041. if (on_rq)
  7042. dequeue_entity(cfs_rq, se, 0);
  7043. se->load.weight = shares;
  7044. se->load.inv_weight = 0;
  7045. if (on_rq)
  7046. enqueue_entity(cfs_rq, se, 0);
  7047. spin_unlock_irq(&rq->lock);
  7048. }
  7049. static DEFINE_MUTEX(shares_mutex);
  7050. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7051. {
  7052. int i;
  7053. unsigned long flags;
  7054. /*
  7055. * We can't change the weight of the root cgroup.
  7056. */
  7057. if (!tg->se[0])
  7058. return -EINVAL;
  7059. if (shares < MIN_SHARES)
  7060. shares = MIN_SHARES;
  7061. else if (shares > MAX_SHARES)
  7062. shares = MAX_SHARES;
  7063. mutex_lock(&shares_mutex);
  7064. if (tg->shares == shares)
  7065. goto done;
  7066. spin_lock_irqsave(&task_group_lock, flags);
  7067. for_each_possible_cpu(i)
  7068. unregister_fair_sched_group(tg, i);
  7069. list_del_rcu(&tg->siblings);
  7070. spin_unlock_irqrestore(&task_group_lock, flags);
  7071. /* wait for any ongoing reference to this group to finish */
  7072. synchronize_sched();
  7073. /*
  7074. * Now we are free to modify the group's share on each cpu
  7075. * w/o tripping rebalance_share or load_balance_fair.
  7076. */
  7077. tg->shares = shares;
  7078. for_each_possible_cpu(i)
  7079. set_se_shares(tg->se[i], shares);
  7080. /*
  7081. * Enable load balance activity on this group, by inserting it back on
  7082. * each cpu's rq->leaf_cfs_rq_list.
  7083. */
  7084. spin_lock_irqsave(&task_group_lock, flags);
  7085. for_each_possible_cpu(i)
  7086. register_fair_sched_group(tg, i);
  7087. list_add_rcu(&tg->siblings, &tg->parent->children);
  7088. spin_unlock_irqrestore(&task_group_lock, flags);
  7089. done:
  7090. mutex_unlock(&shares_mutex);
  7091. return 0;
  7092. }
  7093. unsigned long sched_group_shares(struct task_group *tg)
  7094. {
  7095. return tg->shares;
  7096. }
  7097. #endif
  7098. #ifdef CONFIG_RT_GROUP_SCHED
  7099. /*
  7100. * Ensure that the real time constraints are schedulable.
  7101. */
  7102. static DEFINE_MUTEX(rt_constraints_mutex);
  7103. static unsigned long to_ratio(u64 period, u64 runtime)
  7104. {
  7105. if (runtime == RUNTIME_INF)
  7106. return 1ULL << 16;
  7107. return div64_u64(runtime << 16, period);
  7108. }
  7109. #ifdef CONFIG_CGROUP_SCHED
  7110. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7111. {
  7112. struct task_group *tgi, *parent = tg->parent;
  7113. unsigned long total = 0;
  7114. if (!parent) {
  7115. if (global_rt_period() < period)
  7116. return 0;
  7117. return to_ratio(period, runtime) <
  7118. to_ratio(global_rt_period(), global_rt_runtime());
  7119. }
  7120. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7121. return 0;
  7122. rcu_read_lock();
  7123. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7124. if (tgi == tg)
  7125. continue;
  7126. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7127. tgi->rt_bandwidth.rt_runtime);
  7128. }
  7129. rcu_read_unlock();
  7130. return total + to_ratio(period, runtime) <
  7131. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7132. parent->rt_bandwidth.rt_runtime);
  7133. }
  7134. #elif defined CONFIG_USER_SCHED
  7135. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7136. {
  7137. struct task_group *tgi;
  7138. unsigned long total = 0;
  7139. unsigned long global_ratio =
  7140. to_ratio(global_rt_period(), global_rt_runtime());
  7141. rcu_read_lock();
  7142. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7143. if (tgi == tg)
  7144. continue;
  7145. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7146. tgi->rt_bandwidth.rt_runtime);
  7147. }
  7148. rcu_read_unlock();
  7149. return total + to_ratio(period, runtime) < global_ratio;
  7150. }
  7151. #endif
  7152. /* Must be called with tasklist_lock held */
  7153. static inline int tg_has_rt_tasks(struct task_group *tg)
  7154. {
  7155. struct task_struct *g, *p;
  7156. do_each_thread(g, p) {
  7157. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7158. return 1;
  7159. } while_each_thread(g, p);
  7160. return 0;
  7161. }
  7162. static int tg_set_bandwidth(struct task_group *tg,
  7163. u64 rt_period, u64 rt_runtime)
  7164. {
  7165. int i, err = 0;
  7166. mutex_lock(&rt_constraints_mutex);
  7167. read_lock(&tasklist_lock);
  7168. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7169. err = -EBUSY;
  7170. goto unlock;
  7171. }
  7172. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7173. err = -EINVAL;
  7174. goto unlock;
  7175. }
  7176. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7177. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7178. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7179. for_each_possible_cpu(i) {
  7180. struct rt_rq *rt_rq = tg->rt_rq[i];
  7181. spin_lock(&rt_rq->rt_runtime_lock);
  7182. rt_rq->rt_runtime = rt_runtime;
  7183. spin_unlock(&rt_rq->rt_runtime_lock);
  7184. }
  7185. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7186. unlock:
  7187. read_unlock(&tasklist_lock);
  7188. mutex_unlock(&rt_constraints_mutex);
  7189. return err;
  7190. }
  7191. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7192. {
  7193. u64 rt_runtime, rt_period;
  7194. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7195. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7196. if (rt_runtime_us < 0)
  7197. rt_runtime = RUNTIME_INF;
  7198. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7199. }
  7200. long sched_group_rt_runtime(struct task_group *tg)
  7201. {
  7202. u64 rt_runtime_us;
  7203. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7204. return -1;
  7205. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7206. do_div(rt_runtime_us, NSEC_PER_USEC);
  7207. return rt_runtime_us;
  7208. }
  7209. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7210. {
  7211. u64 rt_runtime, rt_period;
  7212. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7213. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7214. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7215. }
  7216. long sched_group_rt_period(struct task_group *tg)
  7217. {
  7218. u64 rt_period_us;
  7219. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7220. do_div(rt_period_us, NSEC_PER_USEC);
  7221. return rt_period_us;
  7222. }
  7223. static int sched_rt_global_constraints(void)
  7224. {
  7225. int ret = 0;
  7226. mutex_lock(&rt_constraints_mutex);
  7227. if (!__rt_schedulable(NULL, 1, 0))
  7228. ret = -EINVAL;
  7229. mutex_unlock(&rt_constraints_mutex);
  7230. return ret;
  7231. }
  7232. #else /* !CONFIG_RT_GROUP_SCHED */
  7233. static int sched_rt_global_constraints(void)
  7234. {
  7235. unsigned long flags;
  7236. int i;
  7237. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7238. for_each_possible_cpu(i) {
  7239. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7240. spin_lock(&rt_rq->rt_runtime_lock);
  7241. rt_rq->rt_runtime = global_rt_runtime();
  7242. spin_unlock(&rt_rq->rt_runtime_lock);
  7243. }
  7244. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7245. return 0;
  7246. }
  7247. #endif /* CONFIG_RT_GROUP_SCHED */
  7248. int sched_rt_handler(struct ctl_table *table, int write,
  7249. struct file *filp, void __user *buffer, size_t *lenp,
  7250. loff_t *ppos)
  7251. {
  7252. int ret;
  7253. int old_period, old_runtime;
  7254. static DEFINE_MUTEX(mutex);
  7255. mutex_lock(&mutex);
  7256. old_period = sysctl_sched_rt_period;
  7257. old_runtime = sysctl_sched_rt_runtime;
  7258. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7259. if (!ret && write) {
  7260. ret = sched_rt_global_constraints();
  7261. if (ret) {
  7262. sysctl_sched_rt_period = old_period;
  7263. sysctl_sched_rt_runtime = old_runtime;
  7264. } else {
  7265. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7266. def_rt_bandwidth.rt_period =
  7267. ns_to_ktime(global_rt_period());
  7268. }
  7269. }
  7270. mutex_unlock(&mutex);
  7271. return ret;
  7272. }
  7273. #ifdef CONFIG_CGROUP_SCHED
  7274. /* return corresponding task_group object of a cgroup */
  7275. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7276. {
  7277. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7278. struct task_group, css);
  7279. }
  7280. static struct cgroup_subsys_state *
  7281. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7282. {
  7283. struct task_group *tg, *parent;
  7284. if (!cgrp->parent) {
  7285. /* This is early initialization for the top cgroup */
  7286. init_task_group.css.cgroup = cgrp;
  7287. return &init_task_group.css;
  7288. }
  7289. parent = cgroup_tg(cgrp->parent);
  7290. tg = sched_create_group(parent);
  7291. if (IS_ERR(tg))
  7292. return ERR_PTR(-ENOMEM);
  7293. /* Bind the cgroup to task_group object we just created */
  7294. tg->css.cgroup = cgrp;
  7295. return &tg->css;
  7296. }
  7297. static void
  7298. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7299. {
  7300. struct task_group *tg = cgroup_tg(cgrp);
  7301. sched_destroy_group(tg);
  7302. }
  7303. static int
  7304. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7305. struct task_struct *tsk)
  7306. {
  7307. #ifdef CONFIG_RT_GROUP_SCHED
  7308. /* Don't accept realtime tasks when there is no way for them to run */
  7309. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7310. return -EINVAL;
  7311. #else
  7312. /* We don't support RT-tasks being in separate groups */
  7313. if (tsk->sched_class != &fair_sched_class)
  7314. return -EINVAL;
  7315. #endif
  7316. return 0;
  7317. }
  7318. static void
  7319. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7320. struct cgroup *old_cont, struct task_struct *tsk)
  7321. {
  7322. sched_move_task(tsk);
  7323. }
  7324. #ifdef CONFIG_FAIR_GROUP_SCHED
  7325. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7326. u64 shareval)
  7327. {
  7328. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7329. }
  7330. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7331. {
  7332. struct task_group *tg = cgroup_tg(cgrp);
  7333. return (u64) tg->shares;
  7334. }
  7335. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7336. #ifdef CONFIG_RT_GROUP_SCHED
  7337. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7338. s64 val)
  7339. {
  7340. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7341. }
  7342. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7343. {
  7344. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7345. }
  7346. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7347. u64 rt_period_us)
  7348. {
  7349. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7350. }
  7351. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7352. {
  7353. return sched_group_rt_period(cgroup_tg(cgrp));
  7354. }
  7355. #endif /* CONFIG_RT_GROUP_SCHED */
  7356. static struct cftype cpu_files[] = {
  7357. #ifdef CONFIG_FAIR_GROUP_SCHED
  7358. {
  7359. .name = "shares",
  7360. .read_u64 = cpu_shares_read_u64,
  7361. .write_u64 = cpu_shares_write_u64,
  7362. },
  7363. #endif
  7364. #ifdef CONFIG_RT_GROUP_SCHED
  7365. {
  7366. .name = "rt_runtime_us",
  7367. .read_s64 = cpu_rt_runtime_read,
  7368. .write_s64 = cpu_rt_runtime_write,
  7369. },
  7370. {
  7371. .name = "rt_period_us",
  7372. .read_u64 = cpu_rt_period_read_uint,
  7373. .write_u64 = cpu_rt_period_write_uint,
  7374. },
  7375. #endif
  7376. };
  7377. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7378. {
  7379. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7380. }
  7381. struct cgroup_subsys cpu_cgroup_subsys = {
  7382. .name = "cpu",
  7383. .create = cpu_cgroup_create,
  7384. .destroy = cpu_cgroup_destroy,
  7385. .can_attach = cpu_cgroup_can_attach,
  7386. .attach = cpu_cgroup_attach,
  7387. .populate = cpu_cgroup_populate,
  7388. .subsys_id = cpu_cgroup_subsys_id,
  7389. .early_init = 1,
  7390. };
  7391. #endif /* CONFIG_CGROUP_SCHED */
  7392. #ifdef CONFIG_CGROUP_CPUACCT
  7393. /*
  7394. * CPU accounting code for task groups.
  7395. *
  7396. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7397. * (balbir@in.ibm.com).
  7398. */
  7399. /* track cpu usage of a group of tasks */
  7400. struct cpuacct {
  7401. struct cgroup_subsys_state css;
  7402. /* cpuusage holds pointer to a u64-type object on every cpu */
  7403. u64 *cpuusage;
  7404. };
  7405. struct cgroup_subsys cpuacct_subsys;
  7406. /* return cpu accounting group corresponding to this container */
  7407. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7408. {
  7409. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7410. struct cpuacct, css);
  7411. }
  7412. /* return cpu accounting group to which this task belongs */
  7413. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7414. {
  7415. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7416. struct cpuacct, css);
  7417. }
  7418. /* create a new cpu accounting group */
  7419. static struct cgroup_subsys_state *cpuacct_create(
  7420. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7421. {
  7422. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7423. if (!ca)
  7424. return ERR_PTR(-ENOMEM);
  7425. ca->cpuusage = alloc_percpu(u64);
  7426. if (!ca->cpuusage) {
  7427. kfree(ca);
  7428. return ERR_PTR(-ENOMEM);
  7429. }
  7430. return &ca->css;
  7431. }
  7432. /* destroy an existing cpu accounting group */
  7433. static void
  7434. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7435. {
  7436. struct cpuacct *ca = cgroup_ca(cgrp);
  7437. free_percpu(ca->cpuusage);
  7438. kfree(ca);
  7439. }
  7440. /* return total cpu usage (in nanoseconds) of a group */
  7441. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7442. {
  7443. struct cpuacct *ca = cgroup_ca(cgrp);
  7444. u64 totalcpuusage = 0;
  7445. int i;
  7446. for_each_possible_cpu(i) {
  7447. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7448. /*
  7449. * Take rq->lock to make 64-bit addition safe on 32-bit
  7450. * platforms.
  7451. */
  7452. spin_lock_irq(&cpu_rq(i)->lock);
  7453. totalcpuusage += *cpuusage;
  7454. spin_unlock_irq(&cpu_rq(i)->lock);
  7455. }
  7456. return totalcpuusage;
  7457. }
  7458. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7459. u64 reset)
  7460. {
  7461. struct cpuacct *ca = cgroup_ca(cgrp);
  7462. int err = 0;
  7463. int i;
  7464. if (reset) {
  7465. err = -EINVAL;
  7466. goto out;
  7467. }
  7468. for_each_possible_cpu(i) {
  7469. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7470. spin_lock_irq(&cpu_rq(i)->lock);
  7471. *cpuusage = 0;
  7472. spin_unlock_irq(&cpu_rq(i)->lock);
  7473. }
  7474. out:
  7475. return err;
  7476. }
  7477. static struct cftype files[] = {
  7478. {
  7479. .name = "usage",
  7480. .read_u64 = cpuusage_read,
  7481. .write_u64 = cpuusage_write,
  7482. },
  7483. };
  7484. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7485. {
  7486. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7487. }
  7488. /*
  7489. * charge this task's execution time to its accounting group.
  7490. *
  7491. * called with rq->lock held.
  7492. */
  7493. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7494. {
  7495. struct cpuacct *ca;
  7496. if (!cpuacct_subsys.active)
  7497. return;
  7498. ca = task_ca(tsk);
  7499. if (ca) {
  7500. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7501. *cpuusage += cputime;
  7502. }
  7503. }
  7504. struct cgroup_subsys cpuacct_subsys = {
  7505. .name = "cpuacct",
  7506. .create = cpuacct_create,
  7507. .destroy = cpuacct_destroy,
  7508. .populate = cpuacct_populate,
  7509. .subsys_id = cpuacct_subsys_id,
  7510. };
  7511. #endif /* CONFIG_CGROUP_CPUACCT */