disk-io.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  237. char *result = NULL;
  238. unsigned long len;
  239. unsigned long cur_len;
  240. unsigned long offset = BTRFS_CSUM_SIZE;
  241. char *kaddr;
  242. unsigned long map_start;
  243. unsigned long map_len;
  244. int err;
  245. u32 crc = ~(u32)0;
  246. unsigned long inline_result;
  247. len = buf->len - offset;
  248. while (len > 0) {
  249. err = map_private_extent_buffer(buf, offset, 32,
  250. &kaddr, &map_start, &map_len);
  251. if (err)
  252. return 1;
  253. cur_len = min(len, map_len - (offset - map_start));
  254. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  255. crc, cur_len);
  256. len -= cur_len;
  257. offset += cur_len;
  258. }
  259. if (csum_size > sizeof(inline_result)) {
  260. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  261. if (!result)
  262. return 1;
  263. } else {
  264. result = (char *)&inline_result;
  265. }
  266. btrfs_csum_final(crc, result);
  267. if (verify) {
  268. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  269. u32 val;
  270. u32 found = 0;
  271. memcpy(&found, result, csum_size);
  272. read_extent_buffer(buf, &val, 0, csum_size);
  273. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  274. "failed on %llu wanted %X found %X "
  275. "level %d\n",
  276. root->fs_info->sb->s_id,
  277. (unsigned long long)buf->start, val, found,
  278. btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state, GFP_NOFS);
  305. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  335. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  336. while (1) {
  337. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  338. btree_get_extent, mirror_num);
  339. if (!ret &&
  340. !verify_parent_transid(io_tree, eb, parent_transid))
  341. return ret;
  342. /*
  343. * This buffer's crc is fine, but its contents are corrupted, so
  344. * there is no reason to read the other copies, they won't be
  345. * any less wrong.
  346. */
  347. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  348. return ret;
  349. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  350. eb->start, eb->len);
  351. if (num_copies == 1)
  352. return ret;
  353. mirror_num++;
  354. if (mirror_num > num_copies)
  355. return ret;
  356. }
  357. return -EIO;
  358. }
  359. /*
  360. * checksum a dirty tree block before IO. This has extra checks to make sure
  361. * we only fill in the checksum field in the first page of a multi-page block
  362. */
  363. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  364. {
  365. struct extent_io_tree *tree;
  366. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  367. u64 found_start;
  368. unsigned long len;
  369. struct extent_buffer *eb;
  370. int ret;
  371. tree = &BTRFS_I(page->mapping->host)->io_tree;
  372. if (page->private == EXTENT_PAGE_PRIVATE) {
  373. WARN_ON(1);
  374. goto out;
  375. }
  376. if (!page->private) {
  377. WARN_ON(1);
  378. goto out;
  379. }
  380. len = page->private >> 2;
  381. WARN_ON(len == 0);
  382. eb = alloc_extent_buffer(tree, start, len, page);
  383. if (eb == NULL) {
  384. WARN_ON(1);
  385. goto out;
  386. }
  387. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  388. btrfs_header_generation(eb));
  389. BUG_ON(ret);
  390. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  391. found_start = btrfs_header_bytenr(eb);
  392. if (found_start != start) {
  393. WARN_ON(1);
  394. goto err;
  395. }
  396. if (eb->first_page != page) {
  397. WARN_ON(1);
  398. goto err;
  399. }
  400. if (!PageUptodate(page)) {
  401. WARN_ON(1);
  402. goto err;
  403. }
  404. csum_tree_block(root, eb, 0);
  405. err:
  406. free_extent_buffer(eb);
  407. out:
  408. return 0;
  409. }
  410. static int check_tree_block_fsid(struct btrfs_root *root,
  411. struct extent_buffer *eb)
  412. {
  413. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  414. u8 fsid[BTRFS_UUID_SIZE];
  415. int ret = 1;
  416. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  417. BTRFS_FSID_SIZE);
  418. while (fs_devices) {
  419. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  420. ret = 0;
  421. break;
  422. }
  423. fs_devices = fs_devices->seed;
  424. }
  425. return ret;
  426. }
  427. #define CORRUPT(reason, eb, root, slot) \
  428. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  429. "root=%llu, slot=%d\n", reason, \
  430. (unsigned long long)btrfs_header_bytenr(eb), \
  431. (unsigned long long)root->objectid, slot)
  432. static noinline int check_leaf(struct btrfs_root *root,
  433. struct extent_buffer *leaf)
  434. {
  435. struct btrfs_key key;
  436. struct btrfs_key leaf_key;
  437. u32 nritems = btrfs_header_nritems(leaf);
  438. int slot;
  439. if (nritems == 0)
  440. return 0;
  441. /* Check the 0 item */
  442. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  443. BTRFS_LEAF_DATA_SIZE(root)) {
  444. CORRUPT("invalid item offset size pair", leaf, root, 0);
  445. return -EIO;
  446. }
  447. /*
  448. * Check to make sure each items keys are in the correct order and their
  449. * offsets make sense. We only have to loop through nritems-1 because
  450. * we check the current slot against the next slot, which verifies the
  451. * next slot's offset+size makes sense and that the current's slot
  452. * offset is correct.
  453. */
  454. for (slot = 0; slot < nritems - 1; slot++) {
  455. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  456. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  457. /* Make sure the keys are in the right order */
  458. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  459. CORRUPT("bad key order", leaf, root, slot);
  460. return -EIO;
  461. }
  462. /*
  463. * Make sure the offset and ends are right, remember that the
  464. * item data starts at the end of the leaf and grows towards the
  465. * front.
  466. */
  467. if (btrfs_item_offset_nr(leaf, slot) !=
  468. btrfs_item_end_nr(leaf, slot + 1)) {
  469. CORRUPT("slot offset bad", leaf, root, slot);
  470. return -EIO;
  471. }
  472. /*
  473. * Check to make sure that we don't point outside of the leaf,
  474. * just incase all the items are consistent to eachother, but
  475. * all point outside of the leaf.
  476. */
  477. if (btrfs_item_end_nr(leaf, slot) >
  478. BTRFS_LEAF_DATA_SIZE(root)) {
  479. CORRUPT("slot end outside of leaf", leaf, root, slot);
  480. return -EIO;
  481. }
  482. }
  483. return 0;
  484. }
  485. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  486. struct extent_state *state)
  487. {
  488. struct extent_io_tree *tree;
  489. u64 found_start;
  490. int found_level;
  491. unsigned long len;
  492. struct extent_buffer *eb;
  493. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  494. int ret = 0;
  495. tree = &BTRFS_I(page->mapping->host)->io_tree;
  496. if (page->private == EXTENT_PAGE_PRIVATE)
  497. goto out;
  498. if (!page->private)
  499. goto out;
  500. len = page->private >> 2;
  501. WARN_ON(len == 0);
  502. eb = alloc_extent_buffer(tree, start, len, page);
  503. if (eb == NULL) {
  504. ret = -EIO;
  505. goto out;
  506. }
  507. found_start = btrfs_header_bytenr(eb);
  508. if (found_start != start) {
  509. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  510. "%llu %llu\n",
  511. (unsigned long long)found_start,
  512. (unsigned long long)eb->start);
  513. ret = -EIO;
  514. goto err;
  515. }
  516. if (eb->first_page != page) {
  517. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  518. eb->first_page->index, page->index);
  519. WARN_ON(1);
  520. ret = -EIO;
  521. goto err;
  522. }
  523. if (check_tree_block_fsid(root, eb)) {
  524. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  525. (unsigned long long)eb->start);
  526. ret = -EIO;
  527. goto err;
  528. }
  529. found_level = btrfs_header_level(eb);
  530. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  531. eb, found_level);
  532. ret = csum_tree_block(root, eb, 1);
  533. if (ret) {
  534. ret = -EIO;
  535. goto err;
  536. }
  537. /*
  538. * If this is a leaf block and it is corrupt, set the corrupt bit so
  539. * that we don't try and read the other copies of this block, just
  540. * return -EIO.
  541. */
  542. if (found_level == 0 && check_leaf(root, eb)) {
  543. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  544. ret = -EIO;
  545. }
  546. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  547. end = eb->start + end - 1;
  548. err:
  549. free_extent_buffer(eb);
  550. out:
  551. return ret;
  552. }
  553. static void end_workqueue_bio(struct bio *bio, int err)
  554. {
  555. struct end_io_wq *end_io_wq = bio->bi_private;
  556. struct btrfs_fs_info *fs_info;
  557. fs_info = end_io_wq->info;
  558. end_io_wq->error = err;
  559. end_io_wq->work.func = end_workqueue_fn;
  560. end_io_wq->work.flags = 0;
  561. if (bio->bi_rw & REQ_WRITE) {
  562. if (end_io_wq->metadata == 1)
  563. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  564. &end_io_wq->work);
  565. else if (end_io_wq->metadata == 2)
  566. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  567. &end_io_wq->work);
  568. else
  569. btrfs_queue_worker(&fs_info->endio_write_workers,
  570. &end_io_wq->work);
  571. } else {
  572. if (end_io_wq->metadata)
  573. btrfs_queue_worker(&fs_info->endio_meta_workers,
  574. &end_io_wq->work);
  575. else
  576. btrfs_queue_worker(&fs_info->endio_workers,
  577. &end_io_wq->work);
  578. }
  579. }
  580. /*
  581. * For the metadata arg you want
  582. *
  583. * 0 - if data
  584. * 1 - if normal metadta
  585. * 2 - if writing to the free space cache area
  586. */
  587. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  588. int metadata)
  589. {
  590. struct end_io_wq *end_io_wq;
  591. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  592. if (!end_io_wq)
  593. return -ENOMEM;
  594. end_io_wq->private = bio->bi_private;
  595. end_io_wq->end_io = bio->bi_end_io;
  596. end_io_wq->info = info;
  597. end_io_wq->error = 0;
  598. end_io_wq->bio = bio;
  599. end_io_wq->metadata = metadata;
  600. bio->bi_private = end_io_wq;
  601. bio->bi_end_io = end_workqueue_bio;
  602. return 0;
  603. }
  604. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  605. {
  606. unsigned long limit = min_t(unsigned long,
  607. info->workers.max_workers,
  608. info->fs_devices->open_devices);
  609. return 256 * limit;
  610. }
  611. static void run_one_async_start(struct btrfs_work *work)
  612. {
  613. struct async_submit_bio *async;
  614. async = container_of(work, struct async_submit_bio, work);
  615. async->submit_bio_start(async->inode, async->rw, async->bio,
  616. async->mirror_num, async->bio_flags,
  617. async->bio_offset);
  618. }
  619. static void run_one_async_done(struct btrfs_work *work)
  620. {
  621. struct btrfs_fs_info *fs_info;
  622. struct async_submit_bio *async;
  623. int limit;
  624. async = container_of(work, struct async_submit_bio, work);
  625. fs_info = BTRFS_I(async->inode)->root->fs_info;
  626. limit = btrfs_async_submit_limit(fs_info);
  627. limit = limit * 2 / 3;
  628. atomic_dec(&fs_info->nr_async_submits);
  629. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  630. waitqueue_active(&fs_info->async_submit_wait))
  631. wake_up(&fs_info->async_submit_wait);
  632. async->submit_bio_done(async->inode, async->rw, async->bio,
  633. async->mirror_num, async->bio_flags,
  634. async->bio_offset);
  635. }
  636. static void run_one_async_free(struct btrfs_work *work)
  637. {
  638. struct async_submit_bio *async;
  639. async = container_of(work, struct async_submit_bio, work);
  640. kfree(async);
  641. }
  642. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  643. int rw, struct bio *bio, int mirror_num,
  644. unsigned long bio_flags,
  645. u64 bio_offset,
  646. extent_submit_bio_hook_t *submit_bio_start,
  647. extent_submit_bio_hook_t *submit_bio_done)
  648. {
  649. struct async_submit_bio *async;
  650. async = kmalloc(sizeof(*async), GFP_NOFS);
  651. if (!async)
  652. return -ENOMEM;
  653. async->inode = inode;
  654. async->rw = rw;
  655. async->bio = bio;
  656. async->mirror_num = mirror_num;
  657. async->submit_bio_start = submit_bio_start;
  658. async->submit_bio_done = submit_bio_done;
  659. async->work.func = run_one_async_start;
  660. async->work.ordered_func = run_one_async_done;
  661. async->work.ordered_free = run_one_async_free;
  662. async->work.flags = 0;
  663. async->bio_flags = bio_flags;
  664. async->bio_offset = bio_offset;
  665. atomic_inc(&fs_info->nr_async_submits);
  666. if (rw & REQ_SYNC)
  667. btrfs_set_work_high_prio(&async->work);
  668. btrfs_queue_worker(&fs_info->workers, &async->work);
  669. while (atomic_read(&fs_info->async_submit_draining) &&
  670. atomic_read(&fs_info->nr_async_submits)) {
  671. wait_event(fs_info->async_submit_wait,
  672. (atomic_read(&fs_info->nr_async_submits) == 0));
  673. }
  674. return 0;
  675. }
  676. static int btree_csum_one_bio(struct bio *bio)
  677. {
  678. struct bio_vec *bvec = bio->bi_io_vec;
  679. int bio_index = 0;
  680. struct btrfs_root *root;
  681. WARN_ON(bio->bi_vcnt <= 0);
  682. while (bio_index < bio->bi_vcnt) {
  683. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  684. csum_dirty_buffer(root, bvec->bv_page);
  685. bio_index++;
  686. bvec++;
  687. }
  688. return 0;
  689. }
  690. static int __btree_submit_bio_start(struct inode *inode, int rw,
  691. struct bio *bio, int mirror_num,
  692. unsigned long bio_flags,
  693. u64 bio_offset)
  694. {
  695. /*
  696. * when we're called for a write, we're already in the async
  697. * submission context. Just jump into btrfs_map_bio
  698. */
  699. btree_csum_one_bio(bio);
  700. return 0;
  701. }
  702. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  703. int mirror_num, unsigned long bio_flags,
  704. u64 bio_offset)
  705. {
  706. /*
  707. * when we're called for a write, we're already in the async
  708. * submission context. Just jump into btrfs_map_bio
  709. */
  710. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  711. }
  712. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  713. int mirror_num, unsigned long bio_flags,
  714. u64 bio_offset)
  715. {
  716. int ret;
  717. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  718. bio, 1);
  719. BUG_ON(ret);
  720. if (!(rw & REQ_WRITE)) {
  721. /*
  722. * called for a read, do the setup so that checksum validation
  723. * can happen in the async kernel threads
  724. */
  725. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  726. mirror_num, 0);
  727. }
  728. /*
  729. * kthread helpers are used to submit writes so that checksumming
  730. * can happen in parallel across all CPUs
  731. */
  732. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  733. inode, rw, bio, mirror_num, 0,
  734. bio_offset,
  735. __btree_submit_bio_start,
  736. __btree_submit_bio_done);
  737. }
  738. #ifdef CONFIG_MIGRATION
  739. static int btree_migratepage(struct address_space *mapping,
  740. struct page *newpage, struct page *page)
  741. {
  742. /*
  743. * we can't safely write a btree page from here,
  744. * we haven't done the locking hook
  745. */
  746. if (PageDirty(page))
  747. return -EAGAIN;
  748. /*
  749. * Buffers may be managed in a filesystem specific way.
  750. * We must have no buffers or drop them.
  751. */
  752. if (page_has_private(page) &&
  753. !try_to_release_page(page, GFP_KERNEL))
  754. return -EAGAIN;
  755. return migrate_page(mapping, newpage, page);
  756. }
  757. #endif
  758. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  759. {
  760. struct extent_io_tree *tree;
  761. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  762. struct extent_buffer *eb;
  763. int was_dirty;
  764. tree = &BTRFS_I(page->mapping->host)->io_tree;
  765. if (!(current->flags & PF_MEMALLOC)) {
  766. return extent_write_full_page(tree, page,
  767. btree_get_extent, wbc);
  768. }
  769. redirty_page_for_writepage(wbc, page);
  770. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  771. WARN_ON(!eb);
  772. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  773. if (!was_dirty) {
  774. spin_lock(&root->fs_info->delalloc_lock);
  775. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  776. spin_unlock(&root->fs_info->delalloc_lock);
  777. }
  778. free_extent_buffer(eb);
  779. unlock_page(page);
  780. return 0;
  781. }
  782. static int btree_writepages(struct address_space *mapping,
  783. struct writeback_control *wbc)
  784. {
  785. struct extent_io_tree *tree;
  786. tree = &BTRFS_I(mapping->host)->io_tree;
  787. if (wbc->sync_mode == WB_SYNC_NONE) {
  788. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  789. u64 num_dirty;
  790. unsigned long thresh = 32 * 1024 * 1024;
  791. if (wbc->for_kupdate)
  792. return 0;
  793. /* this is a bit racy, but that's ok */
  794. num_dirty = root->fs_info->dirty_metadata_bytes;
  795. if (num_dirty < thresh)
  796. return 0;
  797. }
  798. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  799. }
  800. static int btree_readpage(struct file *file, struct page *page)
  801. {
  802. struct extent_io_tree *tree;
  803. tree = &BTRFS_I(page->mapping->host)->io_tree;
  804. return extent_read_full_page(tree, page, btree_get_extent);
  805. }
  806. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  807. {
  808. struct extent_io_tree *tree;
  809. struct extent_map_tree *map;
  810. int ret;
  811. if (PageWriteback(page) || PageDirty(page))
  812. return 0;
  813. tree = &BTRFS_I(page->mapping->host)->io_tree;
  814. map = &BTRFS_I(page->mapping->host)->extent_tree;
  815. ret = try_release_extent_state(map, tree, page, gfp_flags);
  816. if (!ret)
  817. return 0;
  818. ret = try_release_extent_buffer(tree, page);
  819. if (ret == 1) {
  820. ClearPagePrivate(page);
  821. set_page_private(page, 0);
  822. page_cache_release(page);
  823. }
  824. return ret;
  825. }
  826. static void btree_invalidatepage(struct page *page, unsigned long offset)
  827. {
  828. struct extent_io_tree *tree;
  829. tree = &BTRFS_I(page->mapping->host)->io_tree;
  830. extent_invalidatepage(tree, page, offset);
  831. btree_releasepage(page, GFP_NOFS);
  832. if (PagePrivate(page)) {
  833. printk(KERN_WARNING "btrfs warning page private not zero "
  834. "on page %llu\n", (unsigned long long)page_offset(page));
  835. ClearPagePrivate(page);
  836. set_page_private(page, 0);
  837. page_cache_release(page);
  838. }
  839. }
  840. static const struct address_space_operations btree_aops = {
  841. .readpage = btree_readpage,
  842. .writepage = btree_writepage,
  843. .writepages = btree_writepages,
  844. .releasepage = btree_releasepage,
  845. .invalidatepage = btree_invalidatepage,
  846. #ifdef CONFIG_MIGRATION
  847. .migratepage = btree_migratepage,
  848. #endif
  849. };
  850. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  851. u64 parent_transid)
  852. {
  853. struct extent_buffer *buf = NULL;
  854. struct inode *btree_inode = root->fs_info->btree_inode;
  855. int ret = 0;
  856. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  857. if (!buf)
  858. return 0;
  859. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  860. buf, 0, 0, btree_get_extent, 0);
  861. free_extent_buffer(buf);
  862. return ret;
  863. }
  864. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  865. u64 bytenr, u32 blocksize)
  866. {
  867. struct inode *btree_inode = root->fs_info->btree_inode;
  868. struct extent_buffer *eb;
  869. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  870. bytenr, blocksize);
  871. return eb;
  872. }
  873. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  874. u64 bytenr, u32 blocksize)
  875. {
  876. struct inode *btree_inode = root->fs_info->btree_inode;
  877. struct extent_buffer *eb;
  878. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  879. bytenr, blocksize, NULL);
  880. return eb;
  881. }
  882. int btrfs_write_tree_block(struct extent_buffer *buf)
  883. {
  884. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  885. buf->start + buf->len - 1);
  886. }
  887. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  888. {
  889. return filemap_fdatawait_range(buf->first_page->mapping,
  890. buf->start, buf->start + buf->len - 1);
  891. }
  892. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  893. u32 blocksize, u64 parent_transid)
  894. {
  895. struct extent_buffer *buf = NULL;
  896. int ret;
  897. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  898. if (!buf)
  899. return NULL;
  900. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  901. if (ret == 0)
  902. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  903. return buf;
  904. }
  905. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  906. struct extent_buffer *buf)
  907. {
  908. struct inode *btree_inode = root->fs_info->btree_inode;
  909. if (btrfs_header_generation(buf) ==
  910. root->fs_info->running_transaction->transid) {
  911. btrfs_assert_tree_locked(buf);
  912. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  913. spin_lock(&root->fs_info->delalloc_lock);
  914. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  915. root->fs_info->dirty_metadata_bytes -= buf->len;
  916. else
  917. WARN_ON(1);
  918. spin_unlock(&root->fs_info->delalloc_lock);
  919. }
  920. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  921. btrfs_set_lock_blocking(buf);
  922. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  923. buf);
  924. }
  925. return 0;
  926. }
  927. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  928. u32 stripesize, struct btrfs_root *root,
  929. struct btrfs_fs_info *fs_info,
  930. u64 objectid)
  931. {
  932. root->node = NULL;
  933. root->commit_root = NULL;
  934. root->sectorsize = sectorsize;
  935. root->nodesize = nodesize;
  936. root->leafsize = leafsize;
  937. root->stripesize = stripesize;
  938. root->ref_cows = 0;
  939. root->track_dirty = 0;
  940. root->in_radix = 0;
  941. root->orphan_item_inserted = 0;
  942. root->orphan_cleanup_state = 0;
  943. root->fs_info = fs_info;
  944. root->objectid = objectid;
  945. root->last_trans = 0;
  946. root->highest_objectid = 0;
  947. root->name = NULL;
  948. root->inode_tree = RB_ROOT;
  949. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  950. root->block_rsv = NULL;
  951. root->orphan_block_rsv = NULL;
  952. INIT_LIST_HEAD(&root->dirty_list);
  953. INIT_LIST_HEAD(&root->orphan_list);
  954. INIT_LIST_HEAD(&root->root_list);
  955. spin_lock_init(&root->orphan_lock);
  956. spin_lock_init(&root->inode_lock);
  957. spin_lock_init(&root->accounting_lock);
  958. mutex_init(&root->objectid_mutex);
  959. mutex_init(&root->log_mutex);
  960. init_waitqueue_head(&root->log_writer_wait);
  961. init_waitqueue_head(&root->log_commit_wait[0]);
  962. init_waitqueue_head(&root->log_commit_wait[1]);
  963. atomic_set(&root->log_commit[0], 0);
  964. atomic_set(&root->log_commit[1], 0);
  965. atomic_set(&root->log_writers, 0);
  966. root->log_batch = 0;
  967. root->log_transid = 0;
  968. root->last_log_commit = 0;
  969. extent_io_tree_init(&root->dirty_log_pages,
  970. fs_info->btree_inode->i_mapping);
  971. memset(&root->root_key, 0, sizeof(root->root_key));
  972. memset(&root->root_item, 0, sizeof(root->root_item));
  973. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  974. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  975. root->defrag_trans_start = fs_info->generation;
  976. init_completion(&root->kobj_unregister);
  977. root->defrag_running = 0;
  978. root->root_key.objectid = objectid;
  979. root->anon_dev = 0;
  980. return 0;
  981. }
  982. static int find_and_setup_root(struct btrfs_root *tree_root,
  983. struct btrfs_fs_info *fs_info,
  984. u64 objectid,
  985. struct btrfs_root *root)
  986. {
  987. int ret;
  988. u32 blocksize;
  989. u64 generation;
  990. __setup_root(tree_root->nodesize, tree_root->leafsize,
  991. tree_root->sectorsize, tree_root->stripesize,
  992. root, fs_info, objectid);
  993. ret = btrfs_find_last_root(tree_root, objectid,
  994. &root->root_item, &root->root_key);
  995. if (ret > 0)
  996. return -ENOENT;
  997. BUG_ON(ret);
  998. generation = btrfs_root_generation(&root->root_item);
  999. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1000. root->commit_root = NULL;
  1001. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1002. blocksize, generation);
  1003. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1004. free_extent_buffer(root->node);
  1005. root->node = NULL;
  1006. return -EIO;
  1007. }
  1008. root->commit_root = btrfs_root_node(root);
  1009. return 0;
  1010. }
  1011. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1012. struct btrfs_fs_info *fs_info)
  1013. {
  1014. struct btrfs_root *root;
  1015. struct btrfs_root *tree_root = fs_info->tree_root;
  1016. struct extent_buffer *leaf;
  1017. root = kzalloc(sizeof(*root), GFP_NOFS);
  1018. if (!root)
  1019. return ERR_PTR(-ENOMEM);
  1020. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1021. tree_root->sectorsize, tree_root->stripesize,
  1022. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1023. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1024. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1025. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1026. /*
  1027. * log trees do not get reference counted because they go away
  1028. * before a real commit is actually done. They do store pointers
  1029. * to file data extents, and those reference counts still get
  1030. * updated (along with back refs to the log tree).
  1031. */
  1032. root->ref_cows = 0;
  1033. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1034. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1035. if (IS_ERR(leaf)) {
  1036. kfree(root);
  1037. return ERR_CAST(leaf);
  1038. }
  1039. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1040. btrfs_set_header_bytenr(leaf, leaf->start);
  1041. btrfs_set_header_generation(leaf, trans->transid);
  1042. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1043. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1044. root->node = leaf;
  1045. write_extent_buffer(root->node, root->fs_info->fsid,
  1046. (unsigned long)btrfs_header_fsid(root->node),
  1047. BTRFS_FSID_SIZE);
  1048. btrfs_mark_buffer_dirty(root->node);
  1049. btrfs_tree_unlock(root->node);
  1050. return root;
  1051. }
  1052. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1053. struct btrfs_fs_info *fs_info)
  1054. {
  1055. struct btrfs_root *log_root;
  1056. log_root = alloc_log_tree(trans, fs_info);
  1057. if (IS_ERR(log_root))
  1058. return PTR_ERR(log_root);
  1059. WARN_ON(fs_info->log_root_tree);
  1060. fs_info->log_root_tree = log_root;
  1061. return 0;
  1062. }
  1063. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1064. struct btrfs_root *root)
  1065. {
  1066. struct btrfs_root *log_root;
  1067. struct btrfs_inode_item *inode_item;
  1068. log_root = alloc_log_tree(trans, root->fs_info);
  1069. if (IS_ERR(log_root))
  1070. return PTR_ERR(log_root);
  1071. log_root->last_trans = trans->transid;
  1072. log_root->root_key.offset = root->root_key.objectid;
  1073. inode_item = &log_root->root_item.inode;
  1074. inode_item->generation = cpu_to_le64(1);
  1075. inode_item->size = cpu_to_le64(3);
  1076. inode_item->nlink = cpu_to_le32(1);
  1077. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1078. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1079. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1080. WARN_ON(root->log_root);
  1081. root->log_root = log_root;
  1082. root->log_transid = 0;
  1083. root->last_log_commit = 0;
  1084. return 0;
  1085. }
  1086. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1087. struct btrfs_key *location)
  1088. {
  1089. struct btrfs_root *root;
  1090. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1091. struct btrfs_path *path;
  1092. struct extent_buffer *l;
  1093. u64 generation;
  1094. u32 blocksize;
  1095. int ret = 0;
  1096. root = kzalloc(sizeof(*root), GFP_NOFS);
  1097. if (!root)
  1098. return ERR_PTR(-ENOMEM);
  1099. if (location->offset == (u64)-1) {
  1100. ret = find_and_setup_root(tree_root, fs_info,
  1101. location->objectid, root);
  1102. if (ret) {
  1103. kfree(root);
  1104. return ERR_PTR(ret);
  1105. }
  1106. goto out;
  1107. }
  1108. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1109. tree_root->sectorsize, tree_root->stripesize,
  1110. root, fs_info, location->objectid);
  1111. path = btrfs_alloc_path();
  1112. if (!path) {
  1113. kfree(root);
  1114. return ERR_PTR(-ENOMEM);
  1115. }
  1116. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1117. if (ret == 0) {
  1118. l = path->nodes[0];
  1119. read_extent_buffer(l, &root->root_item,
  1120. btrfs_item_ptr_offset(l, path->slots[0]),
  1121. sizeof(root->root_item));
  1122. memcpy(&root->root_key, location, sizeof(*location));
  1123. }
  1124. btrfs_free_path(path);
  1125. if (ret) {
  1126. kfree(root);
  1127. if (ret > 0)
  1128. ret = -ENOENT;
  1129. return ERR_PTR(ret);
  1130. }
  1131. generation = btrfs_root_generation(&root->root_item);
  1132. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1133. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1134. blocksize, generation);
  1135. root->commit_root = btrfs_root_node(root);
  1136. BUG_ON(!root->node);
  1137. out:
  1138. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1139. root->ref_cows = 1;
  1140. btrfs_check_and_init_root_item(&root->root_item);
  1141. }
  1142. return root;
  1143. }
  1144. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1145. struct btrfs_key *location)
  1146. {
  1147. struct btrfs_root *root;
  1148. int ret;
  1149. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1150. return fs_info->tree_root;
  1151. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1152. return fs_info->extent_root;
  1153. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1154. return fs_info->chunk_root;
  1155. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1156. return fs_info->dev_root;
  1157. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1158. return fs_info->csum_root;
  1159. again:
  1160. spin_lock(&fs_info->fs_roots_radix_lock);
  1161. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1162. (unsigned long)location->objectid);
  1163. spin_unlock(&fs_info->fs_roots_radix_lock);
  1164. if (root)
  1165. return root;
  1166. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1167. if (IS_ERR(root))
  1168. return root;
  1169. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1170. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1171. GFP_NOFS);
  1172. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1173. ret = -ENOMEM;
  1174. goto fail;
  1175. }
  1176. btrfs_init_free_ino_ctl(root);
  1177. mutex_init(&root->fs_commit_mutex);
  1178. spin_lock_init(&root->cache_lock);
  1179. init_waitqueue_head(&root->cache_wait);
  1180. ret = get_anon_bdev(&root->anon_dev);
  1181. if (ret)
  1182. goto fail;
  1183. if (btrfs_root_refs(&root->root_item) == 0) {
  1184. ret = -ENOENT;
  1185. goto fail;
  1186. }
  1187. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1188. if (ret < 0)
  1189. goto fail;
  1190. if (ret == 0)
  1191. root->orphan_item_inserted = 1;
  1192. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1193. if (ret)
  1194. goto fail;
  1195. spin_lock(&fs_info->fs_roots_radix_lock);
  1196. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1197. (unsigned long)root->root_key.objectid,
  1198. root);
  1199. if (ret == 0)
  1200. root->in_radix = 1;
  1201. spin_unlock(&fs_info->fs_roots_radix_lock);
  1202. radix_tree_preload_end();
  1203. if (ret) {
  1204. if (ret == -EEXIST) {
  1205. free_fs_root(root);
  1206. goto again;
  1207. }
  1208. goto fail;
  1209. }
  1210. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1211. root->root_key.objectid);
  1212. WARN_ON(ret);
  1213. return root;
  1214. fail:
  1215. free_fs_root(root);
  1216. return ERR_PTR(ret);
  1217. }
  1218. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1219. {
  1220. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1221. int ret = 0;
  1222. struct btrfs_device *device;
  1223. struct backing_dev_info *bdi;
  1224. rcu_read_lock();
  1225. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1226. if (!device->bdev)
  1227. continue;
  1228. bdi = blk_get_backing_dev_info(device->bdev);
  1229. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1230. ret = 1;
  1231. break;
  1232. }
  1233. }
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. /*
  1238. * If this fails, caller must call bdi_destroy() to get rid of the
  1239. * bdi again.
  1240. */
  1241. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1242. {
  1243. int err;
  1244. bdi->capabilities = BDI_CAP_MAP_COPY;
  1245. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1246. if (err)
  1247. return err;
  1248. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1249. bdi->congested_fn = btrfs_congested_fn;
  1250. bdi->congested_data = info;
  1251. return 0;
  1252. }
  1253. static int bio_ready_for_csum(struct bio *bio)
  1254. {
  1255. u64 length = 0;
  1256. u64 buf_len = 0;
  1257. u64 start = 0;
  1258. struct page *page;
  1259. struct extent_io_tree *io_tree = NULL;
  1260. struct bio_vec *bvec;
  1261. int i;
  1262. int ret;
  1263. bio_for_each_segment(bvec, bio, i) {
  1264. page = bvec->bv_page;
  1265. if (page->private == EXTENT_PAGE_PRIVATE) {
  1266. length += bvec->bv_len;
  1267. continue;
  1268. }
  1269. if (!page->private) {
  1270. length += bvec->bv_len;
  1271. continue;
  1272. }
  1273. length = bvec->bv_len;
  1274. buf_len = page->private >> 2;
  1275. start = page_offset(page) + bvec->bv_offset;
  1276. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1277. }
  1278. /* are we fully contained in this bio? */
  1279. if (buf_len <= length)
  1280. return 1;
  1281. ret = extent_range_uptodate(io_tree, start + length,
  1282. start + buf_len - 1);
  1283. return ret;
  1284. }
  1285. /*
  1286. * called by the kthread helper functions to finally call the bio end_io
  1287. * functions. This is where read checksum verification actually happens
  1288. */
  1289. static void end_workqueue_fn(struct btrfs_work *work)
  1290. {
  1291. struct bio *bio;
  1292. struct end_io_wq *end_io_wq;
  1293. struct btrfs_fs_info *fs_info;
  1294. int error;
  1295. end_io_wq = container_of(work, struct end_io_wq, work);
  1296. bio = end_io_wq->bio;
  1297. fs_info = end_io_wq->info;
  1298. /* metadata bio reads are special because the whole tree block must
  1299. * be checksummed at once. This makes sure the entire block is in
  1300. * ram and up to date before trying to verify things. For
  1301. * blocksize <= pagesize, it is basically a noop
  1302. */
  1303. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1304. !bio_ready_for_csum(bio)) {
  1305. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1306. &end_io_wq->work);
  1307. return;
  1308. }
  1309. error = end_io_wq->error;
  1310. bio->bi_private = end_io_wq->private;
  1311. bio->bi_end_io = end_io_wq->end_io;
  1312. kfree(end_io_wq);
  1313. bio_endio(bio, error);
  1314. }
  1315. static int cleaner_kthread(void *arg)
  1316. {
  1317. struct btrfs_root *root = arg;
  1318. do {
  1319. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1320. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1321. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1322. btrfs_run_delayed_iputs(root);
  1323. btrfs_clean_old_snapshots(root);
  1324. mutex_unlock(&root->fs_info->cleaner_mutex);
  1325. btrfs_run_defrag_inodes(root->fs_info);
  1326. }
  1327. if (freezing(current)) {
  1328. refrigerator();
  1329. } else {
  1330. set_current_state(TASK_INTERRUPTIBLE);
  1331. if (!kthread_should_stop())
  1332. schedule();
  1333. __set_current_state(TASK_RUNNING);
  1334. }
  1335. } while (!kthread_should_stop());
  1336. return 0;
  1337. }
  1338. static int transaction_kthread(void *arg)
  1339. {
  1340. struct btrfs_root *root = arg;
  1341. struct btrfs_trans_handle *trans;
  1342. struct btrfs_transaction *cur;
  1343. u64 transid;
  1344. unsigned long now;
  1345. unsigned long delay;
  1346. int ret;
  1347. do {
  1348. delay = HZ * 30;
  1349. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1350. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1351. spin_lock(&root->fs_info->trans_lock);
  1352. cur = root->fs_info->running_transaction;
  1353. if (!cur) {
  1354. spin_unlock(&root->fs_info->trans_lock);
  1355. goto sleep;
  1356. }
  1357. now = get_seconds();
  1358. if (!cur->blocked &&
  1359. (now < cur->start_time || now - cur->start_time < 30)) {
  1360. spin_unlock(&root->fs_info->trans_lock);
  1361. delay = HZ * 5;
  1362. goto sleep;
  1363. }
  1364. transid = cur->transid;
  1365. spin_unlock(&root->fs_info->trans_lock);
  1366. trans = btrfs_join_transaction(root);
  1367. BUG_ON(IS_ERR(trans));
  1368. if (transid == trans->transid) {
  1369. ret = btrfs_commit_transaction(trans, root);
  1370. BUG_ON(ret);
  1371. } else {
  1372. btrfs_end_transaction(trans, root);
  1373. }
  1374. sleep:
  1375. wake_up_process(root->fs_info->cleaner_kthread);
  1376. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1377. if (freezing(current)) {
  1378. refrigerator();
  1379. } else {
  1380. set_current_state(TASK_INTERRUPTIBLE);
  1381. if (!kthread_should_stop() &&
  1382. !btrfs_transaction_blocked(root->fs_info))
  1383. schedule_timeout(delay);
  1384. __set_current_state(TASK_RUNNING);
  1385. }
  1386. } while (!kthread_should_stop());
  1387. return 0;
  1388. }
  1389. /*
  1390. * this will find the highest generation in the array of
  1391. * root backups. The index of the highest array is returned,
  1392. * or -1 if we can't find anything.
  1393. *
  1394. * We check to make sure the array is valid by comparing the
  1395. * generation of the latest root in the array with the generation
  1396. * in the super block. If they don't match we pitch it.
  1397. */
  1398. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1399. {
  1400. u64 cur;
  1401. int newest_index = -1;
  1402. struct btrfs_root_backup *root_backup;
  1403. int i;
  1404. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1405. root_backup = info->super_copy->super_roots + i;
  1406. cur = btrfs_backup_tree_root_gen(root_backup);
  1407. if (cur == newest_gen)
  1408. newest_index = i;
  1409. }
  1410. /* check to see if we actually wrapped around */
  1411. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1412. root_backup = info->super_copy->super_roots;
  1413. cur = btrfs_backup_tree_root_gen(root_backup);
  1414. if (cur == newest_gen)
  1415. newest_index = 0;
  1416. }
  1417. return newest_index;
  1418. }
  1419. /*
  1420. * find the oldest backup so we know where to store new entries
  1421. * in the backup array. This will set the backup_root_index
  1422. * field in the fs_info struct
  1423. */
  1424. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1425. u64 newest_gen)
  1426. {
  1427. int newest_index = -1;
  1428. newest_index = find_newest_super_backup(info, newest_gen);
  1429. /* if there was garbage in there, just move along */
  1430. if (newest_index == -1) {
  1431. info->backup_root_index = 0;
  1432. } else {
  1433. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1434. }
  1435. }
  1436. /*
  1437. * copy all the root pointers into the super backup array.
  1438. * this will bump the backup pointer by one when it is
  1439. * done
  1440. */
  1441. static void backup_super_roots(struct btrfs_fs_info *info)
  1442. {
  1443. int next_backup;
  1444. struct btrfs_root_backup *root_backup;
  1445. int last_backup;
  1446. next_backup = info->backup_root_index;
  1447. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1448. BTRFS_NUM_BACKUP_ROOTS;
  1449. /*
  1450. * just overwrite the last backup if we're at the same generation
  1451. * this happens only at umount
  1452. */
  1453. root_backup = info->super_for_commit->super_roots + last_backup;
  1454. if (btrfs_backup_tree_root_gen(root_backup) ==
  1455. btrfs_header_generation(info->tree_root->node))
  1456. next_backup = last_backup;
  1457. root_backup = info->super_for_commit->super_roots + next_backup;
  1458. /*
  1459. * make sure all of our padding and empty slots get zero filled
  1460. * regardless of which ones we use today
  1461. */
  1462. memset(root_backup, 0, sizeof(*root_backup));
  1463. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1464. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1465. btrfs_set_backup_tree_root_gen(root_backup,
  1466. btrfs_header_generation(info->tree_root->node));
  1467. btrfs_set_backup_tree_root_level(root_backup,
  1468. btrfs_header_level(info->tree_root->node));
  1469. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1470. btrfs_set_backup_chunk_root_gen(root_backup,
  1471. btrfs_header_generation(info->chunk_root->node));
  1472. btrfs_set_backup_chunk_root_level(root_backup,
  1473. btrfs_header_level(info->chunk_root->node));
  1474. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1475. btrfs_set_backup_extent_root_gen(root_backup,
  1476. btrfs_header_generation(info->extent_root->node));
  1477. btrfs_set_backup_extent_root_level(root_backup,
  1478. btrfs_header_level(info->extent_root->node));
  1479. btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start);
  1480. btrfs_set_backup_fs_root_gen(root_backup,
  1481. btrfs_header_generation(info->fs_root->node));
  1482. btrfs_set_backup_fs_root_level(root_backup,
  1483. btrfs_header_level(info->fs_root->node));
  1484. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1485. btrfs_set_backup_dev_root_gen(root_backup,
  1486. btrfs_header_generation(info->dev_root->node));
  1487. btrfs_set_backup_dev_root_level(root_backup,
  1488. btrfs_header_level(info->dev_root->node));
  1489. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1490. btrfs_set_backup_csum_root_gen(root_backup,
  1491. btrfs_header_generation(info->csum_root->node));
  1492. btrfs_set_backup_csum_root_level(root_backup,
  1493. btrfs_header_level(info->csum_root->node));
  1494. btrfs_set_backup_total_bytes(root_backup,
  1495. btrfs_super_total_bytes(info->super_copy));
  1496. btrfs_set_backup_bytes_used(root_backup,
  1497. btrfs_super_bytes_used(info->super_copy));
  1498. btrfs_set_backup_num_devices(root_backup,
  1499. btrfs_super_num_devices(info->super_copy));
  1500. /*
  1501. * if we don't copy this out to the super_copy, it won't get remembered
  1502. * for the next commit
  1503. */
  1504. memcpy(&info->super_copy->super_roots,
  1505. &info->super_for_commit->super_roots,
  1506. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1507. }
  1508. /*
  1509. * this copies info out of the root backup array and back into
  1510. * the in-memory super block. It is meant to help iterate through
  1511. * the array, so you send it the number of backups you've already
  1512. * tried and the last backup index you used.
  1513. *
  1514. * this returns -1 when it has tried all the backups
  1515. */
  1516. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1517. struct btrfs_super_block *super,
  1518. int *num_backups_tried, int *backup_index)
  1519. {
  1520. struct btrfs_root_backup *root_backup;
  1521. int newest = *backup_index;
  1522. if (*num_backups_tried == 0) {
  1523. u64 gen = btrfs_super_generation(super);
  1524. newest = find_newest_super_backup(info, gen);
  1525. if (newest == -1)
  1526. return -1;
  1527. *backup_index = newest;
  1528. *num_backups_tried = 1;
  1529. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1530. /* we've tried all the backups, all done */
  1531. return -1;
  1532. } else {
  1533. /* jump to the next oldest backup */
  1534. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1535. BTRFS_NUM_BACKUP_ROOTS;
  1536. *backup_index = newest;
  1537. *num_backups_tried += 1;
  1538. }
  1539. root_backup = super->super_roots + newest;
  1540. btrfs_set_super_generation(super,
  1541. btrfs_backup_tree_root_gen(root_backup));
  1542. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1543. btrfs_set_super_root_level(super,
  1544. btrfs_backup_tree_root_level(root_backup));
  1545. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1546. /*
  1547. * fixme: the total bytes and num_devices need to match or we should
  1548. * need a fsck
  1549. */
  1550. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1551. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1552. return 0;
  1553. }
  1554. /* helper to cleanup tree roots */
  1555. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1556. {
  1557. free_extent_buffer(info->tree_root->node);
  1558. free_extent_buffer(info->tree_root->commit_root);
  1559. free_extent_buffer(info->dev_root->node);
  1560. free_extent_buffer(info->dev_root->commit_root);
  1561. free_extent_buffer(info->extent_root->node);
  1562. free_extent_buffer(info->extent_root->commit_root);
  1563. free_extent_buffer(info->csum_root->node);
  1564. free_extent_buffer(info->csum_root->commit_root);
  1565. info->tree_root->node = NULL;
  1566. info->tree_root->commit_root = NULL;
  1567. info->dev_root->node = NULL;
  1568. info->dev_root->commit_root = NULL;
  1569. info->extent_root->node = NULL;
  1570. info->extent_root->commit_root = NULL;
  1571. info->csum_root->node = NULL;
  1572. info->csum_root->commit_root = NULL;
  1573. if (chunk_root) {
  1574. free_extent_buffer(info->chunk_root->node);
  1575. free_extent_buffer(info->chunk_root->commit_root);
  1576. info->chunk_root->node = NULL;
  1577. info->chunk_root->commit_root = NULL;
  1578. }
  1579. }
  1580. struct btrfs_root *open_ctree(struct super_block *sb,
  1581. struct btrfs_fs_devices *fs_devices,
  1582. char *options)
  1583. {
  1584. u32 sectorsize;
  1585. u32 nodesize;
  1586. u32 leafsize;
  1587. u32 blocksize;
  1588. u32 stripesize;
  1589. u64 generation;
  1590. u64 features;
  1591. struct btrfs_key location;
  1592. struct buffer_head *bh;
  1593. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1594. GFP_NOFS);
  1595. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1596. GFP_NOFS);
  1597. struct btrfs_root *tree_root = btrfs_sb(sb);
  1598. struct btrfs_fs_info *fs_info = NULL;
  1599. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1600. GFP_NOFS);
  1601. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1602. GFP_NOFS);
  1603. struct btrfs_root *log_tree_root;
  1604. int ret;
  1605. int err = -EINVAL;
  1606. int num_backups_tried = 0;
  1607. int backup_index = 0;
  1608. struct btrfs_super_block *disk_super;
  1609. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1610. !chunk_root || !dev_root || !csum_root) {
  1611. err = -ENOMEM;
  1612. goto fail;
  1613. }
  1614. fs_info = tree_root->fs_info;
  1615. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1616. if (ret) {
  1617. err = ret;
  1618. goto fail;
  1619. }
  1620. ret = setup_bdi(fs_info, &fs_info->bdi);
  1621. if (ret) {
  1622. err = ret;
  1623. goto fail_srcu;
  1624. }
  1625. fs_info->btree_inode = new_inode(sb);
  1626. if (!fs_info->btree_inode) {
  1627. err = -ENOMEM;
  1628. goto fail_bdi;
  1629. }
  1630. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1631. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1632. INIT_LIST_HEAD(&fs_info->trans_list);
  1633. INIT_LIST_HEAD(&fs_info->dead_roots);
  1634. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1635. INIT_LIST_HEAD(&fs_info->hashers);
  1636. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1637. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1638. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1639. spin_lock_init(&fs_info->delalloc_lock);
  1640. spin_lock_init(&fs_info->trans_lock);
  1641. spin_lock_init(&fs_info->ref_cache_lock);
  1642. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1643. spin_lock_init(&fs_info->delayed_iput_lock);
  1644. spin_lock_init(&fs_info->defrag_inodes_lock);
  1645. spin_lock_init(&fs_info->free_chunk_lock);
  1646. mutex_init(&fs_info->reloc_mutex);
  1647. init_completion(&fs_info->kobj_unregister);
  1648. fs_info->tree_root = tree_root;
  1649. fs_info->extent_root = extent_root;
  1650. fs_info->csum_root = csum_root;
  1651. fs_info->chunk_root = chunk_root;
  1652. fs_info->dev_root = dev_root;
  1653. fs_info->fs_devices = fs_devices;
  1654. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1655. INIT_LIST_HEAD(&fs_info->space_info);
  1656. btrfs_mapping_init(&fs_info->mapping_tree);
  1657. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1658. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1659. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1660. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1661. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1662. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1663. atomic_set(&fs_info->nr_async_submits, 0);
  1664. atomic_set(&fs_info->async_delalloc_pages, 0);
  1665. atomic_set(&fs_info->async_submit_draining, 0);
  1666. atomic_set(&fs_info->nr_async_bios, 0);
  1667. atomic_set(&fs_info->defrag_running, 0);
  1668. fs_info->sb = sb;
  1669. fs_info->max_inline = 8192 * 1024;
  1670. fs_info->metadata_ratio = 0;
  1671. fs_info->defrag_inodes = RB_ROOT;
  1672. fs_info->trans_no_join = 0;
  1673. fs_info->free_chunk_space = 0;
  1674. fs_info->thread_pool_size = min_t(unsigned long,
  1675. num_online_cpus() + 2, 8);
  1676. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1677. spin_lock_init(&fs_info->ordered_extent_lock);
  1678. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1679. GFP_NOFS);
  1680. if (!fs_info->delayed_root) {
  1681. err = -ENOMEM;
  1682. goto fail_iput;
  1683. }
  1684. btrfs_init_delayed_root(fs_info->delayed_root);
  1685. mutex_init(&fs_info->scrub_lock);
  1686. atomic_set(&fs_info->scrubs_running, 0);
  1687. atomic_set(&fs_info->scrub_pause_req, 0);
  1688. atomic_set(&fs_info->scrubs_paused, 0);
  1689. atomic_set(&fs_info->scrub_cancel_req, 0);
  1690. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1691. init_rwsem(&fs_info->scrub_super_lock);
  1692. fs_info->scrub_workers_refcnt = 0;
  1693. sb->s_blocksize = 4096;
  1694. sb->s_blocksize_bits = blksize_bits(4096);
  1695. sb->s_bdi = &fs_info->bdi;
  1696. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1697. fs_info->btree_inode->i_nlink = 1;
  1698. /*
  1699. * we set the i_size on the btree inode to the max possible int.
  1700. * the real end of the address space is determined by all of
  1701. * the devices in the system
  1702. */
  1703. fs_info->btree_inode->i_size = OFFSET_MAX;
  1704. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1705. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1706. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1707. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1708. fs_info->btree_inode->i_mapping);
  1709. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1710. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1711. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1712. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1713. sizeof(struct btrfs_key));
  1714. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1715. insert_inode_hash(fs_info->btree_inode);
  1716. spin_lock_init(&fs_info->block_group_cache_lock);
  1717. fs_info->block_group_cache_tree = RB_ROOT;
  1718. extent_io_tree_init(&fs_info->freed_extents[0],
  1719. fs_info->btree_inode->i_mapping);
  1720. extent_io_tree_init(&fs_info->freed_extents[1],
  1721. fs_info->btree_inode->i_mapping);
  1722. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1723. fs_info->do_barriers = 1;
  1724. mutex_init(&fs_info->ordered_operations_mutex);
  1725. mutex_init(&fs_info->tree_log_mutex);
  1726. mutex_init(&fs_info->chunk_mutex);
  1727. mutex_init(&fs_info->transaction_kthread_mutex);
  1728. mutex_init(&fs_info->cleaner_mutex);
  1729. mutex_init(&fs_info->volume_mutex);
  1730. init_rwsem(&fs_info->extent_commit_sem);
  1731. init_rwsem(&fs_info->cleanup_work_sem);
  1732. init_rwsem(&fs_info->subvol_sem);
  1733. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1734. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1735. init_waitqueue_head(&fs_info->transaction_throttle);
  1736. init_waitqueue_head(&fs_info->transaction_wait);
  1737. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1738. init_waitqueue_head(&fs_info->async_submit_wait);
  1739. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1740. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1741. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1742. if (!bh) {
  1743. err = -EINVAL;
  1744. goto fail_alloc;
  1745. }
  1746. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1747. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1748. sizeof(*fs_info->super_for_commit));
  1749. brelse(bh);
  1750. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1751. disk_super = fs_info->super_copy;
  1752. if (!btrfs_super_root(disk_super))
  1753. goto fail_alloc;
  1754. /* check FS state, whether FS is broken. */
  1755. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1756. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1757. /*
  1758. * run through our array of backup supers and setup
  1759. * our ring pointer to the oldest one
  1760. */
  1761. generation = btrfs_super_generation(disk_super);
  1762. find_oldest_super_backup(fs_info, generation);
  1763. /*
  1764. * In the long term, we'll store the compression type in the super
  1765. * block, and it'll be used for per file compression control.
  1766. */
  1767. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1768. ret = btrfs_parse_options(tree_root, options);
  1769. if (ret) {
  1770. err = ret;
  1771. goto fail_alloc;
  1772. }
  1773. features = btrfs_super_incompat_flags(disk_super) &
  1774. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1775. if (features) {
  1776. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1777. "unsupported optional features (%Lx).\n",
  1778. (unsigned long long)features);
  1779. err = -EINVAL;
  1780. goto fail_alloc;
  1781. }
  1782. features = btrfs_super_incompat_flags(disk_super);
  1783. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1784. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1785. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1786. btrfs_set_super_incompat_flags(disk_super, features);
  1787. features = btrfs_super_compat_ro_flags(disk_super) &
  1788. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1789. if (!(sb->s_flags & MS_RDONLY) && features) {
  1790. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1791. "unsupported option features (%Lx).\n",
  1792. (unsigned long long)features);
  1793. err = -EINVAL;
  1794. goto fail_alloc;
  1795. }
  1796. btrfs_init_workers(&fs_info->generic_worker,
  1797. "genwork", 1, NULL);
  1798. btrfs_init_workers(&fs_info->workers, "worker",
  1799. fs_info->thread_pool_size,
  1800. &fs_info->generic_worker);
  1801. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1802. fs_info->thread_pool_size,
  1803. &fs_info->generic_worker);
  1804. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1805. min_t(u64, fs_devices->num_devices,
  1806. fs_info->thread_pool_size),
  1807. &fs_info->generic_worker);
  1808. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1809. 2, &fs_info->generic_worker);
  1810. /* a higher idle thresh on the submit workers makes it much more
  1811. * likely that bios will be send down in a sane order to the
  1812. * devices
  1813. */
  1814. fs_info->submit_workers.idle_thresh = 64;
  1815. fs_info->workers.idle_thresh = 16;
  1816. fs_info->workers.ordered = 1;
  1817. fs_info->delalloc_workers.idle_thresh = 2;
  1818. fs_info->delalloc_workers.ordered = 1;
  1819. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1820. &fs_info->generic_worker);
  1821. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1822. fs_info->thread_pool_size,
  1823. &fs_info->generic_worker);
  1824. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1825. fs_info->thread_pool_size,
  1826. &fs_info->generic_worker);
  1827. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1828. "endio-meta-write", fs_info->thread_pool_size,
  1829. &fs_info->generic_worker);
  1830. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1831. fs_info->thread_pool_size,
  1832. &fs_info->generic_worker);
  1833. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1834. 1, &fs_info->generic_worker);
  1835. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1836. fs_info->thread_pool_size,
  1837. &fs_info->generic_worker);
  1838. /*
  1839. * endios are largely parallel and should have a very
  1840. * low idle thresh
  1841. */
  1842. fs_info->endio_workers.idle_thresh = 4;
  1843. fs_info->endio_meta_workers.idle_thresh = 4;
  1844. fs_info->endio_write_workers.idle_thresh = 2;
  1845. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1846. btrfs_start_workers(&fs_info->workers, 1);
  1847. btrfs_start_workers(&fs_info->generic_worker, 1);
  1848. btrfs_start_workers(&fs_info->submit_workers, 1);
  1849. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1850. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1851. btrfs_start_workers(&fs_info->endio_workers, 1);
  1852. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1853. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1854. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1855. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1856. btrfs_start_workers(&fs_info->delayed_workers, 1);
  1857. btrfs_start_workers(&fs_info->caching_workers, 1);
  1858. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1859. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1860. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1861. nodesize = btrfs_super_nodesize(disk_super);
  1862. leafsize = btrfs_super_leafsize(disk_super);
  1863. sectorsize = btrfs_super_sectorsize(disk_super);
  1864. stripesize = btrfs_super_stripesize(disk_super);
  1865. tree_root->nodesize = nodesize;
  1866. tree_root->leafsize = leafsize;
  1867. tree_root->sectorsize = sectorsize;
  1868. tree_root->stripesize = stripesize;
  1869. sb->s_blocksize = sectorsize;
  1870. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1871. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1872. sizeof(disk_super->magic))) {
  1873. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1874. goto fail_sb_buffer;
  1875. }
  1876. mutex_lock(&fs_info->chunk_mutex);
  1877. ret = btrfs_read_sys_array(tree_root);
  1878. mutex_unlock(&fs_info->chunk_mutex);
  1879. if (ret) {
  1880. printk(KERN_WARNING "btrfs: failed to read the system "
  1881. "array on %s\n", sb->s_id);
  1882. goto fail_sb_buffer;
  1883. }
  1884. blocksize = btrfs_level_size(tree_root,
  1885. btrfs_super_chunk_root_level(disk_super));
  1886. generation = btrfs_super_chunk_root_generation(disk_super);
  1887. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1888. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1889. chunk_root->node = read_tree_block(chunk_root,
  1890. btrfs_super_chunk_root(disk_super),
  1891. blocksize, generation);
  1892. BUG_ON(!chunk_root->node);
  1893. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1894. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1895. sb->s_id);
  1896. goto fail_tree_roots;
  1897. }
  1898. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1899. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1900. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1901. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1902. BTRFS_UUID_SIZE);
  1903. mutex_lock(&fs_info->chunk_mutex);
  1904. ret = btrfs_read_chunk_tree(chunk_root);
  1905. mutex_unlock(&fs_info->chunk_mutex);
  1906. if (ret) {
  1907. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1908. sb->s_id);
  1909. goto fail_tree_roots;
  1910. }
  1911. btrfs_close_extra_devices(fs_devices);
  1912. retry_root_backup:
  1913. blocksize = btrfs_level_size(tree_root,
  1914. btrfs_super_root_level(disk_super));
  1915. generation = btrfs_super_generation(disk_super);
  1916. tree_root->node = read_tree_block(tree_root,
  1917. btrfs_super_root(disk_super),
  1918. blocksize, generation);
  1919. if (!tree_root->node ||
  1920. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1921. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1922. sb->s_id);
  1923. goto recovery_tree_root;
  1924. }
  1925. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1926. tree_root->commit_root = btrfs_root_node(tree_root);
  1927. ret = find_and_setup_root(tree_root, fs_info,
  1928. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1929. if (ret)
  1930. goto recovery_tree_root;
  1931. extent_root->track_dirty = 1;
  1932. ret = find_and_setup_root(tree_root, fs_info,
  1933. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1934. if (ret)
  1935. goto recovery_tree_root;
  1936. dev_root->track_dirty = 1;
  1937. ret = find_and_setup_root(tree_root, fs_info,
  1938. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1939. if (ret)
  1940. goto recovery_tree_root;
  1941. csum_root->track_dirty = 1;
  1942. fs_info->generation = generation;
  1943. fs_info->last_trans_committed = generation;
  1944. fs_info->data_alloc_profile = (u64)-1;
  1945. fs_info->metadata_alloc_profile = (u64)-1;
  1946. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1947. ret = btrfs_init_space_info(fs_info);
  1948. if (ret) {
  1949. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1950. goto fail_block_groups;
  1951. }
  1952. ret = btrfs_read_block_groups(extent_root);
  1953. if (ret) {
  1954. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1955. goto fail_block_groups;
  1956. }
  1957. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1958. "btrfs-cleaner");
  1959. if (IS_ERR(fs_info->cleaner_kthread))
  1960. goto fail_block_groups;
  1961. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1962. tree_root,
  1963. "btrfs-transaction");
  1964. if (IS_ERR(fs_info->transaction_kthread))
  1965. goto fail_cleaner;
  1966. if (!btrfs_test_opt(tree_root, SSD) &&
  1967. !btrfs_test_opt(tree_root, NOSSD) &&
  1968. !fs_info->fs_devices->rotating) {
  1969. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1970. "mode\n");
  1971. btrfs_set_opt(fs_info->mount_opt, SSD);
  1972. }
  1973. /* do not make disk changes in broken FS */
  1974. if (btrfs_super_log_root(disk_super) != 0 &&
  1975. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1976. u64 bytenr = btrfs_super_log_root(disk_super);
  1977. if (fs_devices->rw_devices == 0) {
  1978. printk(KERN_WARNING "Btrfs log replay required "
  1979. "on RO media\n");
  1980. err = -EIO;
  1981. goto fail_trans_kthread;
  1982. }
  1983. blocksize =
  1984. btrfs_level_size(tree_root,
  1985. btrfs_super_log_root_level(disk_super));
  1986. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1987. if (!log_tree_root) {
  1988. err = -ENOMEM;
  1989. goto fail_trans_kthread;
  1990. }
  1991. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1992. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1993. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1994. blocksize,
  1995. generation + 1);
  1996. ret = btrfs_recover_log_trees(log_tree_root);
  1997. BUG_ON(ret);
  1998. if (sb->s_flags & MS_RDONLY) {
  1999. ret = btrfs_commit_super(tree_root);
  2000. BUG_ON(ret);
  2001. }
  2002. }
  2003. ret = btrfs_find_orphan_roots(tree_root);
  2004. BUG_ON(ret);
  2005. if (!(sb->s_flags & MS_RDONLY)) {
  2006. ret = btrfs_cleanup_fs_roots(fs_info);
  2007. BUG_ON(ret);
  2008. ret = btrfs_recover_relocation(tree_root);
  2009. if (ret < 0) {
  2010. printk(KERN_WARNING
  2011. "btrfs: failed to recover relocation\n");
  2012. err = -EINVAL;
  2013. goto fail_trans_kthread;
  2014. }
  2015. }
  2016. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2017. location.type = BTRFS_ROOT_ITEM_KEY;
  2018. location.offset = (u64)-1;
  2019. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2020. if (!fs_info->fs_root)
  2021. goto fail_trans_kthread;
  2022. if (IS_ERR(fs_info->fs_root)) {
  2023. err = PTR_ERR(fs_info->fs_root);
  2024. goto fail_trans_kthread;
  2025. }
  2026. if (!(sb->s_flags & MS_RDONLY)) {
  2027. down_read(&fs_info->cleanup_work_sem);
  2028. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2029. if (!err)
  2030. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2031. up_read(&fs_info->cleanup_work_sem);
  2032. if (err) {
  2033. close_ctree(tree_root);
  2034. return ERR_PTR(err);
  2035. }
  2036. }
  2037. return tree_root;
  2038. fail_trans_kthread:
  2039. kthread_stop(fs_info->transaction_kthread);
  2040. fail_cleaner:
  2041. kthread_stop(fs_info->cleaner_kthread);
  2042. /*
  2043. * make sure we're done with the btree inode before we stop our
  2044. * kthreads
  2045. */
  2046. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2047. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2048. fail_block_groups:
  2049. btrfs_free_block_groups(fs_info);
  2050. fail_tree_roots:
  2051. free_root_pointers(fs_info, 1);
  2052. fail_sb_buffer:
  2053. btrfs_stop_workers(&fs_info->generic_worker);
  2054. btrfs_stop_workers(&fs_info->fixup_workers);
  2055. btrfs_stop_workers(&fs_info->delalloc_workers);
  2056. btrfs_stop_workers(&fs_info->workers);
  2057. btrfs_stop_workers(&fs_info->endio_workers);
  2058. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2059. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2060. btrfs_stop_workers(&fs_info->endio_write_workers);
  2061. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2062. btrfs_stop_workers(&fs_info->submit_workers);
  2063. btrfs_stop_workers(&fs_info->delayed_workers);
  2064. btrfs_stop_workers(&fs_info->caching_workers);
  2065. fail_alloc:
  2066. fail_iput:
  2067. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2068. iput(fs_info->btree_inode);
  2069. btrfs_close_devices(fs_info->fs_devices);
  2070. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2071. fail_bdi:
  2072. bdi_destroy(&fs_info->bdi);
  2073. fail_srcu:
  2074. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2075. fail:
  2076. free_fs_info(fs_info);
  2077. return ERR_PTR(err);
  2078. recovery_tree_root:
  2079. if (!btrfs_test_opt(tree_root, RECOVERY))
  2080. goto fail_tree_roots;
  2081. free_root_pointers(fs_info, 0);
  2082. /* don't use the log in recovery mode, it won't be valid */
  2083. btrfs_set_super_log_root(disk_super, 0);
  2084. /* we can't trust the free space cache either */
  2085. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2086. ret = next_root_backup(fs_info, fs_info->super_copy,
  2087. &num_backups_tried, &backup_index);
  2088. if (ret == -1)
  2089. goto fail_block_groups;
  2090. goto retry_root_backup;
  2091. }
  2092. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2093. {
  2094. char b[BDEVNAME_SIZE];
  2095. if (uptodate) {
  2096. set_buffer_uptodate(bh);
  2097. } else {
  2098. printk_ratelimited(KERN_WARNING "lost page write due to "
  2099. "I/O error on %s\n",
  2100. bdevname(bh->b_bdev, b));
  2101. /* note, we dont' set_buffer_write_io_error because we have
  2102. * our own ways of dealing with the IO errors
  2103. */
  2104. clear_buffer_uptodate(bh);
  2105. }
  2106. unlock_buffer(bh);
  2107. put_bh(bh);
  2108. }
  2109. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2110. {
  2111. struct buffer_head *bh;
  2112. struct buffer_head *latest = NULL;
  2113. struct btrfs_super_block *super;
  2114. int i;
  2115. u64 transid = 0;
  2116. u64 bytenr;
  2117. /* we would like to check all the supers, but that would make
  2118. * a btrfs mount succeed after a mkfs from a different FS.
  2119. * So, we need to add a special mount option to scan for
  2120. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2121. */
  2122. for (i = 0; i < 1; i++) {
  2123. bytenr = btrfs_sb_offset(i);
  2124. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2125. break;
  2126. bh = __bread(bdev, bytenr / 4096, 4096);
  2127. if (!bh)
  2128. continue;
  2129. super = (struct btrfs_super_block *)bh->b_data;
  2130. if (btrfs_super_bytenr(super) != bytenr ||
  2131. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2132. sizeof(super->magic))) {
  2133. brelse(bh);
  2134. continue;
  2135. }
  2136. if (!latest || btrfs_super_generation(super) > transid) {
  2137. brelse(latest);
  2138. latest = bh;
  2139. transid = btrfs_super_generation(super);
  2140. } else {
  2141. brelse(bh);
  2142. }
  2143. }
  2144. return latest;
  2145. }
  2146. /*
  2147. * this should be called twice, once with wait == 0 and
  2148. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2149. * we write are pinned.
  2150. *
  2151. * They are released when wait == 1 is done.
  2152. * max_mirrors must be the same for both runs, and it indicates how
  2153. * many supers on this one device should be written.
  2154. *
  2155. * max_mirrors == 0 means to write them all.
  2156. */
  2157. static int write_dev_supers(struct btrfs_device *device,
  2158. struct btrfs_super_block *sb,
  2159. int do_barriers, int wait, int max_mirrors)
  2160. {
  2161. struct buffer_head *bh;
  2162. int i;
  2163. int ret;
  2164. int errors = 0;
  2165. u32 crc;
  2166. u64 bytenr;
  2167. int last_barrier = 0;
  2168. if (max_mirrors == 0)
  2169. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2170. /* make sure only the last submit_bh does a barrier */
  2171. if (do_barriers) {
  2172. for (i = 0; i < max_mirrors; i++) {
  2173. bytenr = btrfs_sb_offset(i);
  2174. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2175. device->total_bytes)
  2176. break;
  2177. last_barrier = i;
  2178. }
  2179. }
  2180. for (i = 0; i < max_mirrors; i++) {
  2181. bytenr = btrfs_sb_offset(i);
  2182. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2183. break;
  2184. if (wait) {
  2185. bh = __find_get_block(device->bdev, bytenr / 4096,
  2186. BTRFS_SUPER_INFO_SIZE);
  2187. BUG_ON(!bh);
  2188. wait_on_buffer(bh);
  2189. if (!buffer_uptodate(bh))
  2190. errors++;
  2191. /* drop our reference */
  2192. brelse(bh);
  2193. /* drop the reference from the wait == 0 run */
  2194. brelse(bh);
  2195. continue;
  2196. } else {
  2197. btrfs_set_super_bytenr(sb, bytenr);
  2198. crc = ~(u32)0;
  2199. crc = btrfs_csum_data(NULL, (char *)sb +
  2200. BTRFS_CSUM_SIZE, crc,
  2201. BTRFS_SUPER_INFO_SIZE -
  2202. BTRFS_CSUM_SIZE);
  2203. btrfs_csum_final(crc, sb->csum);
  2204. /*
  2205. * one reference for us, and we leave it for the
  2206. * caller
  2207. */
  2208. bh = __getblk(device->bdev, bytenr / 4096,
  2209. BTRFS_SUPER_INFO_SIZE);
  2210. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2211. /* one reference for submit_bh */
  2212. get_bh(bh);
  2213. set_buffer_uptodate(bh);
  2214. lock_buffer(bh);
  2215. bh->b_end_io = btrfs_end_buffer_write_sync;
  2216. }
  2217. if (i == last_barrier && do_barriers)
  2218. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  2219. else
  2220. ret = submit_bh(WRITE_SYNC, bh);
  2221. if (ret)
  2222. errors++;
  2223. }
  2224. return errors < i ? 0 : -1;
  2225. }
  2226. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2227. {
  2228. struct list_head *head;
  2229. struct btrfs_device *dev;
  2230. struct btrfs_super_block *sb;
  2231. struct btrfs_dev_item *dev_item;
  2232. int ret;
  2233. int do_barriers;
  2234. int max_errors;
  2235. int total_errors = 0;
  2236. u64 flags;
  2237. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2238. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2239. backup_super_roots(root->fs_info);
  2240. sb = root->fs_info->super_for_commit;
  2241. dev_item = &sb->dev_item;
  2242. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2243. head = &root->fs_info->fs_devices->devices;
  2244. list_for_each_entry_rcu(dev, head, dev_list) {
  2245. if (!dev->bdev) {
  2246. total_errors++;
  2247. continue;
  2248. }
  2249. if (!dev->in_fs_metadata || !dev->writeable)
  2250. continue;
  2251. btrfs_set_stack_device_generation(dev_item, 0);
  2252. btrfs_set_stack_device_type(dev_item, dev->type);
  2253. btrfs_set_stack_device_id(dev_item, dev->devid);
  2254. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2255. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2256. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2257. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2258. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2259. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2260. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2261. flags = btrfs_super_flags(sb);
  2262. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2263. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2264. if (ret)
  2265. total_errors++;
  2266. }
  2267. if (total_errors > max_errors) {
  2268. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2269. total_errors);
  2270. BUG();
  2271. }
  2272. total_errors = 0;
  2273. list_for_each_entry_rcu(dev, head, dev_list) {
  2274. if (!dev->bdev)
  2275. continue;
  2276. if (!dev->in_fs_metadata || !dev->writeable)
  2277. continue;
  2278. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2279. if (ret)
  2280. total_errors++;
  2281. }
  2282. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2283. if (total_errors > max_errors) {
  2284. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2285. total_errors);
  2286. BUG();
  2287. }
  2288. return 0;
  2289. }
  2290. int write_ctree_super(struct btrfs_trans_handle *trans,
  2291. struct btrfs_root *root, int max_mirrors)
  2292. {
  2293. int ret;
  2294. ret = write_all_supers(root, max_mirrors);
  2295. return ret;
  2296. }
  2297. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2298. {
  2299. spin_lock(&fs_info->fs_roots_radix_lock);
  2300. radix_tree_delete(&fs_info->fs_roots_radix,
  2301. (unsigned long)root->root_key.objectid);
  2302. spin_unlock(&fs_info->fs_roots_radix_lock);
  2303. if (btrfs_root_refs(&root->root_item) == 0)
  2304. synchronize_srcu(&fs_info->subvol_srcu);
  2305. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2306. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2307. free_fs_root(root);
  2308. return 0;
  2309. }
  2310. static void free_fs_root(struct btrfs_root *root)
  2311. {
  2312. iput(root->cache_inode);
  2313. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2314. if (root->anon_dev)
  2315. free_anon_bdev(root->anon_dev);
  2316. free_extent_buffer(root->node);
  2317. free_extent_buffer(root->commit_root);
  2318. kfree(root->free_ino_ctl);
  2319. kfree(root->free_ino_pinned);
  2320. kfree(root->name);
  2321. kfree(root);
  2322. }
  2323. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2324. {
  2325. int ret;
  2326. struct btrfs_root *gang[8];
  2327. int i;
  2328. while (!list_empty(&fs_info->dead_roots)) {
  2329. gang[0] = list_entry(fs_info->dead_roots.next,
  2330. struct btrfs_root, root_list);
  2331. list_del(&gang[0]->root_list);
  2332. if (gang[0]->in_radix) {
  2333. btrfs_free_fs_root(fs_info, gang[0]);
  2334. } else {
  2335. free_extent_buffer(gang[0]->node);
  2336. free_extent_buffer(gang[0]->commit_root);
  2337. kfree(gang[0]);
  2338. }
  2339. }
  2340. while (1) {
  2341. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2342. (void **)gang, 0,
  2343. ARRAY_SIZE(gang));
  2344. if (!ret)
  2345. break;
  2346. for (i = 0; i < ret; i++)
  2347. btrfs_free_fs_root(fs_info, gang[i]);
  2348. }
  2349. return 0;
  2350. }
  2351. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2352. {
  2353. u64 root_objectid = 0;
  2354. struct btrfs_root *gang[8];
  2355. int i;
  2356. int ret;
  2357. while (1) {
  2358. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2359. (void **)gang, root_objectid,
  2360. ARRAY_SIZE(gang));
  2361. if (!ret)
  2362. break;
  2363. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2364. for (i = 0; i < ret; i++) {
  2365. int err;
  2366. root_objectid = gang[i]->root_key.objectid;
  2367. err = btrfs_orphan_cleanup(gang[i]);
  2368. if (err)
  2369. return err;
  2370. }
  2371. root_objectid++;
  2372. }
  2373. return 0;
  2374. }
  2375. int btrfs_commit_super(struct btrfs_root *root)
  2376. {
  2377. struct btrfs_trans_handle *trans;
  2378. int ret;
  2379. mutex_lock(&root->fs_info->cleaner_mutex);
  2380. btrfs_run_delayed_iputs(root);
  2381. btrfs_clean_old_snapshots(root);
  2382. mutex_unlock(&root->fs_info->cleaner_mutex);
  2383. /* wait until ongoing cleanup work done */
  2384. down_write(&root->fs_info->cleanup_work_sem);
  2385. up_write(&root->fs_info->cleanup_work_sem);
  2386. trans = btrfs_join_transaction(root);
  2387. if (IS_ERR(trans))
  2388. return PTR_ERR(trans);
  2389. ret = btrfs_commit_transaction(trans, root);
  2390. BUG_ON(ret);
  2391. /* run commit again to drop the original snapshot */
  2392. trans = btrfs_join_transaction(root);
  2393. if (IS_ERR(trans))
  2394. return PTR_ERR(trans);
  2395. btrfs_commit_transaction(trans, root);
  2396. ret = btrfs_write_and_wait_transaction(NULL, root);
  2397. BUG_ON(ret);
  2398. ret = write_ctree_super(NULL, root, 0);
  2399. return ret;
  2400. }
  2401. int close_ctree(struct btrfs_root *root)
  2402. {
  2403. struct btrfs_fs_info *fs_info = root->fs_info;
  2404. int ret;
  2405. fs_info->closing = 1;
  2406. smp_mb();
  2407. btrfs_scrub_cancel(root);
  2408. /* wait for any defraggers to finish */
  2409. wait_event(fs_info->transaction_wait,
  2410. (atomic_read(&fs_info->defrag_running) == 0));
  2411. /* clear out the rbtree of defraggable inodes */
  2412. btrfs_run_defrag_inodes(root->fs_info);
  2413. /*
  2414. * Here come 2 situations when btrfs is broken to flip readonly:
  2415. *
  2416. * 1. when btrfs flips readonly somewhere else before
  2417. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2418. * and btrfs will skip to write sb directly to keep
  2419. * ERROR state on disk.
  2420. *
  2421. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2422. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2423. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2424. * btrfs will cleanup all FS resources first and write sb then.
  2425. */
  2426. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2427. ret = btrfs_commit_super(root);
  2428. if (ret)
  2429. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2430. }
  2431. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2432. ret = btrfs_error_commit_super(root);
  2433. if (ret)
  2434. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2435. }
  2436. btrfs_put_block_group_cache(fs_info);
  2437. kthread_stop(root->fs_info->transaction_kthread);
  2438. kthread_stop(root->fs_info->cleaner_kthread);
  2439. fs_info->closing = 2;
  2440. smp_mb();
  2441. if (fs_info->delalloc_bytes) {
  2442. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2443. (unsigned long long)fs_info->delalloc_bytes);
  2444. }
  2445. if (fs_info->total_ref_cache_size) {
  2446. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2447. (unsigned long long)fs_info->total_ref_cache_size);
  2448. }
  2449. free_extent_buffer(fs_info->extent_root->node);
  2450. free_extent_buffer(fs_info->extent_root->commit_root);
  2451. free_extent_buffer(fs_info->tree_root->node);
  2452. free_extent_buffer(fs_info->tree_root->commit_root);
  2453. free_extent_buffer(root->fs_info->chunk_root->node);
  2454. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2455. free_extent_buffer(root->fs_info->dev_root->node);
  2456. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2457. free_extent_buffer(root->fs_info->csum_root->node);
  2458. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2459. btrfs_free_block_groups(root->fs_info);
  2460. del_fs_roots(fs_info);
  2461. iput(fs_info->btree_inode);
  2462. btrfs_stop_workers(&fs_info->generic_worker);
  2463. btrfs_stop_workers(&fs_info->fixup_workers);
  2464. btrfs_stop_workers(&fs_info->delalloc_workers);
  2465. btrfs_stop_workers(&fs_info->workers);
  2466. btrfs_stop_workers(&fs_info->endio_workers);
  2467. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2468. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2469. btrfs_stop_workers(&fs_info->endio_write_workers);
  2470. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2471. btrfs_stop_workers(&fs_info->submit_workers);
  2472. btrfs_stop_workers(&fs_info->delayed_workers);
  2473. btrfs_stop_workers(&fs_info->caching_workers);
  2474. btrfs_close_devices(fs_info->fs_devices);
  2475. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2476. bdi_destroy(&fs_info->bdi);
  2477. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2478. free_fs_info(fs_info);
  2479. return 0;
  2480. }
  2481. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2482. {
  2483. int ret;
  2484. struct inode *btree_inode = buf->first_page->mapping->host;
  2485. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2486. NULL);
  2487. if (!ret)
  2488. return ret;
  2489. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2490. parent_transid);
  2491. return !ret;
  2492. }
  2493. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2494. {
  2495. struct inode *btree_inode = buf->first_page->mapping->host;
  2496. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2497. buf);
  2498. }
  2499. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2500. {
  2501. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2502. u64 transid = btrfs_header_generation(buf);
  2503. struct inode *btree_inode = root->fs_info->btree_inode;
  2504. int was_dirty;
  2505. btrfs_assert_tree_locked(buf);
  2506. if (transid != root->fs_info->generation) {
  2507. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2508. "found %llu running %llu\n",
  2509. (unsigned long long)buf->start,
  2510. (unsigned long long)transid,
  2511. (unsigned long long)root->fs_info->generation);
  2512. WARN_ON(1);
  2513. }
  2514. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2515. buf);
  2516. if (!was_dirty) {
  2517. spin_lock(&root->fs_info->delalloc_lock);
  2518. root->fs_info->dirty_metadata_bytes += buf->len;
  2519. spin_unlock(&root->fs_info->delalloc_lock);
  2520. }
  2521. }
  2522. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2523. {
  2524. /*
  2525. * looks as though older kernels can get into trouble with
  2526. * this code, they end up stuck in balance_dirty_pages forever
  2527. */
  2528. u64 num_dirty;
  2529. unsigned long thresh = 32 * 1024 * 1024;
  2530. if (current->flags & PF_MEMALLOC)
  2531. return;
  2532. btrfs_balance_delayed_items(root);
  2533. num_dirty = root->fs_info->dirty_metadata_bytes;
  2534. if (num_dirty > thresh) {
  2535. balance_dirty_pages_ratelimited_nr(
  2536. root->fs_info->btree_inode->i_mapping, 1);
  2537. }
  2538. return;
  2539. }
  2540. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2541. {
  2542. /*
  2543. * looks as though older kernels can get into trouble with
  2544. * this code, they end up stuck in balance_dirty_pages forever
  2545. */
  2546. u64 num_dirty;
  2547. unsigned long thresh = 32 * 1024 * 1024;
  2548. if (current->flags & PF_MEMALLOC)
  2549. return;
  2550. num_dirty = root->fs_info->dirty_metadata_bytes;
  2551. if (num_dirty > thresh) {
  2552. balance_dirty_pages_ratelimited_nr(
  2553. root->fs_info->btree_inode->i_mapping, 1);
  2554. }
  2555. return;
  2556. }
  2557. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2558. {
  2559. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2560. int ret;
  2561. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2562. if (ret == 0)
  2563. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2564. return ret;
  2565. }
  2566. static int btree_lock_page_hook(struct page *page, void *data,
  2567. void (*flush_fn)(void *))
  2568. {
  2569. struct inode *inode = page->mapping->host;
  2570. struct btrfs_root *root = BTRFS_I(inode)->root;
  2571. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2572. struct extent_buffer *eb;
  2573. unsigned long len;
  2574. u64 bytenr = page_offset(page);
  2575. if (page->private == EXTENT_PAGE_PRIVATE)
  2576. goto out;
  2577. len = page->private >> 2;
  2578. eb = find_extent_buffer(io_tree, bytenr, len);
  2579. if (!eb)
  2580. goto out;
  2581. if (!btrfs_try_tree_write_lock(eb)) {
  2582. flush_fn(data);
  2583. btrfs_tree_lock(eb);
  2584. }
  2585. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2586. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2587. spin_lock(&root->fs_info->delalloc_lock);
  2588. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2589. root->fs_info->dirty_metadata_bytes -= eb->len;
  2590. else
  2591. WARN_ON(1);
  2592. spin_unlock(&root->fs_info->delalloc_lock);
  2593. }
  2594. btrfs_tree_unlock(eb);
  2595. free_extent_buffer(eb);
  2596. out:
  2597. if (!trylock_page(page)) {
  2598. flush_fn(data);
  2599. lock_page(page);
  2600. }
  2601. return 0;
  2602. }
  2603. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2604. int read_only)
  2605. {
  2606. if (read_only)
  2607. return;
  2608. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2609. printk(KERN_WARNING "warning: mount fs with errors, "
  2610. "running btrfsck is recommended\n");
  2611. }
  2612. int btrfs_error_commit_super(struct btrfs_root *root)
  2613. {
  2614. int ret;
  2615. mutex_lock(&root->fs_info->cleaner_mutex);
  2616. btrfs_run_delayed_iputs(root);
  2617. mutex_unlock(&root->fs_info->cleaner_mutex);
  2618. down_write(&root->fs_info->cleanup_work_sem);
  2619. up_write(&root->fs_info->cleanup_work_sem);
  2620. /* cleanup FS via transaction */
  2621. btrfs_cleanup_transaction(root);
  2622. ret = write_ctree_super(NULL, root, 0);
  2623. return ret;
  2624. }
  2625. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2626. {
  2627. struct btrfs_inode *btrfs_inode;
  2628. struct list_head splice;
  2629. INIT_LIST_HEAD(&splice);
  2630. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2631. spin_lock(&root->fs_info->ordered_extent_lock);
  2632. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2633. while (!list_empty(&splice)) {
  2634. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2635. ordered_operations);
  2636. list_del_init(&btrfs_inode->ordered_operations);
  2637. btrfs_invalidate_inodes(btrfs_inode->root);
  2638. }
  2639. spin_unlock(&root->fs_info->ordered_extent_lock);
  2640. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2641. return 0;
  2642. }
  2643. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2644. {
  2645. struct list_head splice;
  2646. struct btrfs_ordered_extent *ordered;
  2647. struct inode *inode;
  2648. INIT_LIST_HEAD(&splice);
  2649. spin_lock(&root->fs_info->ordered_extent_lock);
  2650. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2651. while (!list_empty(&splice)) {
  2652. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2653. root_extent_list);
  2654. list_del_init(&ordered->root_extent_list);
  2655. atomic_inc(&ordered->refs);
  2656. /* the inode may be getting freed (in sys_unlink path). */
  2657. inode = igrab(ordered->inode);
  2658. spin_unlock(&root->fs_info->ordered_extent_lock);
  2659. if (inode)
  2660. iput(inode);
  2661. atomic_set(&ordered->refs, 1);
  2662. btrfs_put_ordered_extent(ordered);
  2663. spin_lock(&root->fs_info->ordered_extent_lock);
  2664. }
  2665. spin_unlock(&root->fs_info->ordered_extent_lock);
  2666. return 0;
  2667. }
  2668. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2669. struct btrfs_root *root)
  2670. {
  2671. struct rb_node *node;
  2672. struct btrfs_delayed_ref_root *delayed_refs;
  2673. struct btrfs_delayed_ref_node *ref;
  2674. int ret = 0;
  2675. delayed_refs = &trans->delayed_refs;
  2676. spin_lock(&delayed_refs->lock);
  2677. if (delayed_refs->num_entries == 0) {
  2678. spin_unlock(&delayed_refs->lock);
  2679. printk(KERN_INFO "delayed_refs has NO entry\n");
  2680. return ret;
  2681. }
  2682. node = rb_first(&delayed_refs->root);
  2683. while (node) {
  2684. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2685. node = rb_next(node);
  2686. ref->in_tree = 0;
  2687. rb_erase(&ref->rb_node, &delayed_refs->root);
  2688. delayed_refs->num_entries--;
  2689. atomic_set(&ref->refs, 1);
  2690. if (btrfs_delayed_ref_is_head(ref)) {
  2691. struct btrfs_delayed_ref_head *head;
  2692. head = btrfs_delayed_node_to_head(ref);
  2693. mutex_lock(&head->mutex);
  2694. kfree(head->extent_op);
  2695. delayed_refs->num_heads--;
  2696. if (list_empty(&head->cluster))
  2697. delayed_refs->num_heads_ready--;
  2698. list_del_init(&head->cluster);
  2699. mutex_unlock(&head->mutex);
  2700. }
  2701. spin_unlock(&delayed_refs->lock);
  2702. btrfs_put_delayed_ref(ref);
  2703. cond_resched();
  2704. spin_lock(&delayed_refs->lock);
  2705. }
  2706. spin_unlock(&delayed_refs->lock);
  2707. return ret;
  2708. }
  2709. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2710. {
  2711. struct btrfs_pending_snapshot *snapshot;
  2712. struct list_head splice;
  2713. INIT_LIST_HEAD(&splice);
  2714. list_splice_init(&t->pending_snapshots, &splice);
  2715. while (!list_empty(&splice)) {
  2716. snapshot = list_entry(splice.next,
  2717. struct btrfs_pending_snapshot,
  2718. list);
  2719. list_del_init(&snapshot->list);
  2720. kfree(snapshot);
  2721. }
  2722. return 0;
  2723. }
  2724. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2725. {
  2726. struct btrfs_inode *btrfs_inode;
  2727. struct list_head splice;
  2728. INIT_LIST_HEAD(&splice);
  2729. spin_lock(&root->fs_info->delalloc_lock);
  2730. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2731. while (!list_empty(&splice)) {
  2732. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2733. delalloc_inodes);
  2734. list_del_init(&btrfs_inode->delalloc_inodes);
  2735. btrfs_invalidate_inodes(btrfs_inode->root);
  2736. }
  2737. spin_unlock(&root->fs_info->delalloc_lock);
  2738. return 0;
  2739. }
  2740. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2741. struct extent_io_tree *dirty_pages,
  2742. int mark)
  2743. {
  2744. int ret;
  2745. struct page *page;
  2746. struct inode *btree_inode = root->fs_info->btree_inode;
  2747. struct extent_buffer *eb;
  2748. u64 start = 0;
  2749. u64 end;
  2750. u64 offset;
  2751. unsigned long index;
  2752. while (1) {
  2753. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2754. mark);
  2755. if (ret)
  2756. break;
  2757. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2758. while (start <= end) {
  2759. index = start >> PAGE_CACHE_SHIFT;
  2760. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2761. page = find_get_page(btree_inode->i_mapping, index);
  2762. if (!page)
  2763. continue;
  2764. offset = page_offset(page);
  2765. spin_lock(&dirty_pages->buffer_lock);
  2766. eb = radix_tree_lookup(
  2767. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2768. offset >> PAGE_CACHE_SHIFT);
  2769. spin_unlock(&dirty_pages->buffer_lock);
  2770. if (eb) {
  2771. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2772. &eb->bflags);
  2773. atomic_set(&eb->refs, 1);
  2774. }
  2775. if (PageWriteback(page))
  2776. end_page_writeback(page);
  2777. lock_page(page);
  2778. if (PageDirty(page)) {
  2779. clear_page_dirty_for_io(page);
  2780. spin_lock_irq(&page->mapping->tree_lock);
  2781. radix_tree_tag_clear(&page->mapping->page_tree,
  2782. page_index(page),
  2783. PAGECACHE_TAG_DIRTY);
  2784. spin_unlock_irq(&page->mapping->tree_lock);
  2785. }
  2786. page->mapping->a_ops->invalidatepage(page, 0);
  2787. unlock_page(page);
  2788. }
  2789. }
  2790. return ret;
  2791. }
  2792. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2793. struct extent_io_tree *pinned_extents)
  2794. {
  2795. struct extent_io_tree *unpin;
  2796. u64 start;
  2797. u64 end;
  2798. int ret;
  2799. unpin = pinned_extents;
  2800. while (1) {
  2801. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2802. EXTENT_DIRTY);
  2803. if (ret)
  2804. break;
  2805. /* opt_discard */
  2806. if (btrfs_test_opt(root, DISCARD))
  2807. ret = btrfs_error_discard_extent(root, start,
  2808. end + 1 - start,
  2809. NULL);
  2810. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2811. btrfs_error_unpin_extent_range(root, start, end);
  2812. cond_resched();
  2813. }
  2814. return 0;
  2815. }
  2816. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2817. {
  2818. struct btrfs_transaction *t;
  2819. LIST_HEAD(list);
  2820. WARN_ON(1);
  2821. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2822. spin_lock(&root->fs_info->trans_lock);
  2823. list_splice_init(&root->fs_info->trans_list, &list);
  2824. root->fs_info->trans_no_join = 1;
  2825. spin_unlock(&root->fs_info->trans_lock);
  2826. while (!list_empty(&list)) {
  2827. t = list_entry(list.next, struct btrfs_transaction, list);
  2828. if (!t)
  2829. break;
  2830. btrfs_destroy_ordered_operations(root);
  2831. btrfs_destroy_ordered_extents(root);
  2832. btrfs_destroy_delayed_refs(t, root);
  2833. btrfs_block_rsv_release(root,
  2834. &root->fs_info->trans_block_rsv,
  2835. t->dirty_pages.dirty_bytes);
  2836. /* FIXME: cleanup wait for commit */
  2837. t->in_commit = 1;
  2838. t->blocked = 1;
  2839. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2840. wake_up(&root->fs_info->transaction_blocked_wait);
  2841. t->blocked = 0;
  2842. if (waitqueue_active(&root->fs_info->transaction_wait))
  2843. wake_up(&root->fs_info->transaction_wait);
  2844. t->commit_done = 1;
  2845. if (waitqueue_active(&t->commit_wait))
  2846. wake_up(&t->commit_wait);
  2847. btrfs_destroy_pending_snapshots(t);
  2848. btrfs_destroy_delalloc_inodes(root);
  2849. spin_lock(&root->fs_info->trans_lock);
  2850. root->fs_info->running_transaction = NULL;
  2851. spin_unlock(&root->fs_info->trans_lock);
  2852. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2853. EXTENT_DIRTY);
  2854. btrfs_destroy_pinned_extent(root,
  2855. root->fs_info->pinned_extents);
  2856. atomic_set(&t->use_count, 0);
  2857. list_del_init(&t->list);
  2858. memset(t, 0, sizeof(*t));
  2859. kmem_cache_free(btrfs_transaction_cachep, t);
  2860. }
  2861. spin_lock(&root->fs_info->trans_lock);
  2862. root->fs_info->trans_no_join = 0;
  2863. spin_unlock(&root->fs_info->trans_lock);
  2864. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2865. return 0;
  2866. }
  2867. static struct extent_io_ops btree_extent_io_ops = {
  2868. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2869. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2870. .submit_bio_hook = btree_submit_bio_hook,
  2871. /* note we're sharing with inode.c for the merge bio hook */
  2872. .merge_bio_hook = btrfs_merge_bio_hook,
  2873. };