amd_iommu.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/iommu-helper.h>
  24. #include <asm/proto.h>
  25. #include <asm/iommu.h>
  26. #include <asm/amd_iommu_types.h>
  27. #include <asm/amd_iommu.h>
  28. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  29. #define EXIT_LOOP_COUNT 10000000
  30. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  31. /*
  32. * general struct to manage commands send to an IOMMU
  33. */
  34. struct iommu_cmd {
  35. u32 data[4];
  36. };
  37. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  38. struct unity_map_entry *e);
  39. /* returns !0 if the IOMMU is caching non-present entries in its TLB */
  40. static int iommu_has_npcache(struct amd_iommu *iommu)
  41. {
  42. return iommu->cap & IOMMU_CAP_NPCACHE;
  43. }
  44. /****************************************************************************
  45. *
  46. * IOMMU command queuing functions
  47. *
  48. ****************************************************************************/
  49. /*
  50. * Writes the command to the IOMMUs command buffer and informs the
  51. * hardware about the new command. Must be called with iommu->lock held.
  52. */
  53. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  54. {
  55. u32 tail, head;
  56. u8 *target;
  57. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  58. target = iommu->cmd_buf + tail;
  59. memcpy_toio(target, cmd, sizeof(*cmd));
  60. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  61. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  62. if (tail == head)
  63. return -ENOMEM;
  64. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  65. return 0;
  66. }
  67. /*
  68. * General queuing function for commands. Takes iommu->lock and calls
  69. * __iommu_queue_command().
  70. */
  71. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  72. {
  73. unsigned long flags;
  74. int ret;
  75. spin_lock_irqsave(&iommu->lock, flags);
  76. ret = __iommu_queue_command(iommu, cmd);
  77. spin_unlock_irqrestore(&iommu->lock, flags);
  78. return ret;
  79. }
  80. /*
  81. * This function is called whenever we need to ensure that the IOMMU has
  82. * completed execution of all commands we sent. It sends a
  83. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  84. * us about that by writing a value to a physical address we pass with
  85. * the command.
  86. */
  87. static int iommu_completion_wait(struct amd_iommu *iommu)
  88. {
  89. int ret, ready = 0;
  90. unsigned status = 0;
  91. struct iommu_cmd cmd;
  92. unsigned long i = 0;
  93. memset(&cmd, 0, sizeof(cmd));
  94. cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
  95. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  96. iommu->need_sync = 0;
  97. ret = iommu_queue_command(iommu, &cmd);
  98. if (ret)
  99. return ret;
  100. while (!ready && (i < EXIT_LOOP_COUNT)) {
  101. ++i;
  102. /* wait for the bit to become one */
  103. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  104. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  105. }
  106. /* set bit back to zero */
  107. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  108. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  109. if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
  110. printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
  111. return 0;
  112. }
  113. /*
  114. * Command send function for invalidating a device table entry
  115. */
  116. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  117. {
  118. struct iommu_cmd cmd;
  119. BUG_ON(iommu == NULL);
  120. memset(&cmd, 0, sizeof(cmd));
  121. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  122. cmd.data[0] = devid;
  123. iommu->need_sync = 1;
  124. return iommu_queue_command(iommu, &cmd);
  125. }
  126. /*
  127. * Generic command send function for invalidaing TLB entries
  128. */
  129. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  130. u64 address, u16 domid, int pde, int s)
  131. {
  132. struct iommu_cmd cmd;
  133. memset(&cmd, 0, sizeof(cmd));
  134. address &= PAGE_MASK;
  135. CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
  136. cmd.data[1] |= domid;
  137. cmd.data[2] = lower_32_bits(address);
  138. cmd.data[3] = upper_32_bits(address);
  139. if (s) /* size bit - we flush more than one 4kb page */
  140. cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  141. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  142. cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  143. iommu->need_sync = 1;
  144. return iommu_queue_command(iommu, &cmd);
  145. }
  146. /*
  147. * TLB invalidation function which is called from the mapping functions.
  148. * It invalidates a single PTE if the range to flush is within a single
  149. * page. Otherwise it flushes the whole TLB of the IOMMU.
  150. */
  151. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  152. u64 address, size_t size)
  153. {
  154. int s = 0;
  155. unsigned pages = iommu_num_pages(address, size);
  156. address &= PAGE_MASK;
  157. if (pages > 1) {
  158. /*
  159. * If we have to flush more than one page, flush all
  160. * TLB entries for this domain
  161. */
  162. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  163. s = 1;
  164. }
  165. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
  166. return 0;
  167. }
  168. /* Flush the whole IO/TLB for a given protection domain */
  169. static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
  170. {
  171. u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  172. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
  173. }
  174. /****************************************************************************
  175. *
  176. * The functions below are used the create the page table mappings for
  177. * unity mapped regions.
  178. *
  179. ****************************************************************************/
  180. /*
  181. * Generic mapping functions. It maps a physical address into a DMA
  182. * address space. It allocates the page table pages if necessary.
  183. * In the future it can be extended to a generic mapping function
  184. * supporting all features of AMD IOMMU page tables like level skipping
  185. * and full 64 bit address spaces.
  186. */
  187. static int iommu_map(struct protection_domain *dom,
  188. unsigned long bus_addr,
  189. unsigned long phys_addr,
  190. int prot)
  191. {
  192. u64 __pte, *pte, *page;
  193. bus_addr = PAGE_ALIGN(bus_addr);
  194. phys_addr = PAGE_ALIGN(bus_addr);
  195. /* only support 512GB address spaces for now */
  196. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  197. return -EINVAL;
  198. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  199. if (!IOMMU_PTE_PRESENT(*pte)) {
  200. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  201. if (!page)
  202. return -ENOMEM;
  203. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  204. }
  205. pte = IOMMU_PTE_PAGE(*pte);
  206. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  207. if (!IOMMU_PTE_PRESENT(*pte)) {
  208. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  209. if (!page)
  210. return -ENOMEM;
  211. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  212. }
  213. pte = IOMMU_PTE_PAGE(*pte);
  214. pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
  215. if (IOMMU_PTE_PRESENT(*pte))
  216. return -EBUSY;
  217. __pte = phys_addr | IOMMU_PTE_P;
  218. if (prot & IOMMU_PROT_IR)
  219. __pte |= IOMMU_PTE_IR;
  220. if (prot & IOMMU_PROT_IW)
  221. __pte |= IOMMU_PTE_IW;
  222. *pte = __pte;
  223. return 0;
  224. }
  225. /*
  226. * This function checks if a specific unity mapping entry is needed for
  227. * this specific IOMMU.
  228. */
  229. static int iommu_for_unity_map(struct amd_iommu *iommu,
  230. struct unity_map_entry *entry)
  231. {
  232. u16 bdf, i;
  233. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  234. bdf = amd_iommu_alias_table[i];
  235. if (amd_iommu_rlookup_table[bdf] == iommu)
  236. return 1;
  237. }
  238. return 0;
  239. }
  240. /*
  241. * Init the unity mappings for a specific IOMMU in the system
  242. *
  243. * Basically iterates over all unity mapping entries and applies them to
  244. * the default domain DMA of that IOMMU if necessary.
  245. */
  246. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  247. {
  248. struct unity_map_entry *entry;
  249. int ret;
  250. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  251. if (!iommu_for_unity_map(iommu, entry))
  252. continue;
  253. ret = dma_ops_unity_map(iommu->default_dom, entry);
  254. if (ret)
  255. return ret;
  256. }
  257. return 0;
  258. }
  259. /*
  260. * This function actually applies the mapping to the page table of the
  261. * dma_ops domain.
  262. */
  263. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  264. struct unity_map_entry *e)
  265. {
  266. u64 addr;
  267. int ret;
  268. for (addr = e->address_start; addr < e->address_end;
  269. addr += PAGE_SIZE) {
  270. ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
  271. if (ret)
  272. return ret;
  273. /*
  274. * if unity mapping is in aperture range mark the page
  275. * as allocated in the aperture
  276. */
  277. if (addr < dma_dom->aperture_size)
  278. __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
  279. }
  280. return 0;
  281. }
  282. /*
  283. * Inits the unity mappings required for a specific device
  284. */
  285. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  286. u16 devid)
  287. {
  288. struct unity_map_entry *e;
  289. int ret;
  290. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  291. if (!(devid >= e->devid_start && devid <= e->devid_end))
  292. continue;
  293. ret = dma_ops_unity_map(dma_dom, e);
  294. if (ret)
  295. return ret;
  296. }
  297. return 0;
  298. }
  299. /****************************************************************************
  300. *
  301. * The next functions belong to the address allocator for the dma_ops
  302. * interface functions. They work like the allocators in the other IOMMU
  303. * drivers. Its basically a bitmap which marks the allocated pages in
  304. * the aperture. Maybe it could be enhanced in the future to a more
  305. * efficient allocator.
  306. *
  307. ****************************************************************************/
  308. static unsigned long dma_mask_to_pages(unsigned long mask)
  309. {
  310. return (mask >> PAGE_SHIFT) +
  311. (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
  312. }
  313. /*
  314. * The address allocator core function.
  315. *
  316. * called with domain->lock held
  317. */
  318. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  319. struct dma_ops_domain *dom,
  320. unsigned int pages,
  321. unsigned long align_mask)
  322. {
  323. unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
  324. unsigned long address;
  325. unsigned long size = dom->aperture_size >> PAGE_SHIFT;
  326. unsigned long boundary_size;
  327. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  328. PAGE_SIZE) >> PAGE_SHIFT;
  329. limit = limit < size ? limit : size;
  330. if (dom->next_bit >= limit) {
  331. dom->next_bit = 0;
  332. dom->need_flush = true;
  333. }
  334. address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
  335. 0 , boundary_size, align_mask);
  336. if (address == -1) {
  337. address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
  338. 0, boundary_size, align_mask);
  339. dom->need_flush = true;
  340. }
  341. if (likely(address != -1)) {
  342. dom->next_bit = address + pages;
  343. address <<= PAGE_SHIFT;
  344. } else
  345. address = bad_dma_address;
  346. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  347. return address;
  348. }
  349. /*
  350. * The address free function.
  351. *
  352. * called with domain->lock held
  353. */
  354. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  355. unsigned long address,
  356. unsigned int pages)
  357. {
  358. address >>= PAGE_SHIFT;
  359. iommu_area_free(dom->bitmap, address, pages);
  360. }
  361. /****************************************************************************
  362. *
  363. * The next functions belong to the domain allocation. A domain is
  364. * allocated for every IOMMU as the default domain. If device isolation
  365. * is enabled, every device get its own domain. The most important thing
  366. * about domains is the page table mapping the DMA address space they
  367. * contain.
  368. *
  369. ****************************************************************************/
  370. static u16 domain_id_alloc(void)
  371. {
  372. unsigned long flags;
  373. int id;
  374. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  375. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  376. BUG_ON(id == 0);
  377. if (id > 0 && id < MAX_DOMAIN_ID)
  378. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  379. else
  380. id = 0;
  381. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  382. return id;
  383. }
  384. /*
  385. * Used to reserve address ranges in the aperture (e.g. for exclusion
  386. * ranges.
  387. */
  388. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  389. unsigned long start_page,
  390. unsigned int pages)
  391. {
  392. unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
  393. if (start_page + pages > last_page)
  394. pages = last_page - start_page;
  395. set_bit_string(dom->bitmap, start_page, pages);
  396. }
  397. static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
  398. {
  399. int i, j;
  400. u64 *p1, *p2, *p3;
  401. p1 = dma_dom->domain.pt_root;
  402. if (!p1)
  403. return;
  404. for (i = 0; i < 512; ++i) {
  405. if (!IOMMU_PTE_PRESENT(p1[i]))
  406. continue;
  407. p2 = IOMMU_PTE_PAGE(p1[i]);
  408. for (j = 0; j < 512; ++i) {
  409. if (!IOMMU_PTE_PRESENT(p2[j]))
  410. continue;
  411. p3 = IOMMU_PTE_PAGE(p2[j]);
  412. free_page((unsigned long)p3);
  413. }
  414. free_page((unsigned long)p2);
  415. }
  416. free_page((unsigned long)p1);
  417. }
  418. /*
  419. * Free a domain, only used if something went wrong in the
  420. * allocation path and we need to free an already allocated page table
  421. */
  422. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  423. {
  424. if (!dom)
  425. return;
  426. dma_ops_free_pagetable(dom);
  427. kfree(dom->pte_pages);
  428. kfree(dom->bitmap);
  429. kfree(dom);
  430. }
  431. /*
  432. * Allocates a new protection domain usable for the dma_ops functions.
  433. * It also intializes the page table and the address allocator data
  434. * structures required for the dma_ops interface
  435. */
  436. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
  437. unsigned order)
  438. {
  439. struct dma_ops_domain *dma_dom;
  440. unsigned i, num_pte_pages;
  441. u64 *l2_pde;
  442. u64 address;
  443. /*
  444. * Currently the DMA aperture must be between 32 MB and 1GB in size
  445. */
  446. if ((order < 25) || (order > 30))
  447. return NULL;
  448. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  449. if (!dma_dom)
  450. return NULL;
  451. spin_lock_init(&dma_dom->domain.lock);
  452. dma_dom->domain.id = domain_id_alloc();
  453. if (dma_dom->domain.id == 0)
  454. goto free_dma_dom;
  455. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  456. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  457. dma_dom->domain.priv = dma_dom;
  458. if (!dma_dom->domain.pt_root)
  459. goto free_dma_dom;
  460. dma_dom->aperture_size = (1ULL << order);
  461. dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
  462. GFP_KERNEL);
  463. if (!dma_dom->bitmap)
  464. goto free_dma_dom;
  465. /*
  466. * mark the first page as allocated so we never return 0 as
  467. * a valid dma-address. So we can use 0 as error value
  468. */
  469. dma_dom->bitmap[0] = 1;
  470. dma_dom->next_bit = 0;
  471. dma_dom->need_flush = false;
  472. /* Intialize the exclusion range if necessary */
  473. if (iommu->exclusion_start &&
  474. iommu->exclusion_start < dma_dom->aperture_size) {
  475. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  476. int pages = iommu_num_pages(iommu->exclusion_start,
  477. iommu->exclusion_length);
  478. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  479. }
  480. /*
  481. * At the last step, build the page tables so we don't need to
  482. * allocate page table pages in the dma_ops mapping/unmapping
  483. * path.
  484. */
  485. num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
  486. dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
  487. GFP_KERNEL);
  488. if (!dma_dom->pte_pages)
  489. goto free_dma_dom;
  490. l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
  491. if (l2_pde == NULL)
  492. goto free_dma_dom;
  493. dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
  494. for (i = 0; i < num_pte_pages; ++i) {
  495. dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
  496. if (!dma_dom->pte_pages[i])
  497. goto free_dma_dom;
  498. address = virt_to_phys(dma_dom->pte_pages[i]);
  499. l2_pde[i] = IOMMU_L1_PDE(address);
  500. }
  501. return dma_dom;
  502. free_dma_dom:
  503. dma_ops_domain_free(dma_dom);
  504. return NULL;
  505. }
  506. /*
  507. * Find out the protection domain structure for a given PCI device. This
  508. * will give us the pointer to the page table root for example.
  509. */
  510. static struct protection_domain *domain_for_device(u16 devid)
  511. {
  512. struct protection_domain *dom;
  513. unsigned long flags;
  514. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  515. dom = amd_iommu_pd_table[devid];
  516. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  517. return dom;
  518. }
  519. /*
  520. * If a device is not yet associated with a domain, this function does
  521. * assigns it visible for the hardware
  522. */
  523. static void set_device_domain(struct amd_iommu *iommu,
  524. struct protection_domain *domain,
  525. u16 devid)
  526. {
  527. unsigned long flags;
  528. u64 pte_root = virt_to_phys(domain->pt_root);
  529. pte_root |= (domain->mode & 0x07) << 9;
  530. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
  531. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  532. amd_iommu_dev_table[devid].data[0] = pte_root;
  533. amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
  534. amd_iommu_dev_table[devid].data[2] = domain->id;
  535. amd_iommu_pd_table[devid] = domain;
  536. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  537. iommu_queue_inv_dev_entry(iommu, devid);
  538. iommu->need_sync = 1;
  539. }
  540. /*****************************************************************************
  541. *
  542. * The next functions belong to the dma_ops mapping/unmapping code.
  543. *
  544. *****************************************************************************/
  545. /*
  546. * This function checks if the driver got a valid device from the caller to
  547. * avoid dereferencing invalid pointers.
  548. */
  549. static bool check_device(struct device *dev)
  550. {
  551. if (!dev || !dev->dma_mask)
  552. return false;
  553. return true;
  554. }
  555. /*
  556. * In the dma_ops path we only have the struct device. This function
  557. * finds the corresponding IOMMU, the protection domain and the
  558. * requestor id for a given device.
  559. * If the device is not yet associated with a domain this is also done
  560. * in this function.
  561. */
  562. static int get_device_resources(struct device *dev,
  563. struct amd_iommu **iommu,
  564. struct protection_domain **domain,
  565. u16 *bdf)
  566. {
  567. struct dma_ops_domain *dma_dom;
  568. struct pci_dev *pcidev;
  569. u16 _bdf;
  570. *iommu = NULL;
  571. *domain = NULL;
  572. *bdf = 0xffff;
  573. if (dev->bus != &pci_bus_type)
  574. return 0;
  575. pcidev = to_pci_dev(dev);
  576. _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
  577. /* device not translated by any IOMMU in the system? */
  578. if (_bdf > amd_iommu_last_bdf)
  579. return 0;
  580. *bdf = amd_iommu_alias_table[_bdf];
  581. *iommu = amd_iommu_rlookup_table[*bdf];
  582. if (*iommu == NULL)
  583. return 0;
  584. dma_dom = (*iommu)->default_dom;
  585. *domain = domain_for_device(*bdf);
  586. if (*domain == NULL) {
  587. *domain = &dma_dom->domain;
  588. set_device_domain(*iommu, *domain, *bdf);
  589. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  590. "device ", (*domain)->id);
  591. print_devid(_bdf, 1);
  592. }
  593. return 1;
  594. }
  595. /*
  596. * This is the generic map function. It maps one 4kb page at paddr to
  597. * the given address in the DMA address space for the domain.
  598. */
  599. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  600. struct dma_ops_domain *dom,
  601. unsigned long address,
  602. phys_addr_t paddr,
  603. int direction)
  604. {
  605. u64 *pte, __pte;
  606. WARN_ON(address > dom->aperture_size);
  607. paddr &= PAGE_MASK;
  608. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  609. pte += IOMMU_PTE_L0_INDEX(address);
  610. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  611. if (direction == DMA_TO_DEVICE)
  612. __pte |= IOMMU_PTE_IR;
  613. else if (direction == DMA_FROM_DEVICE)
  614. __pte |= IOMMU_PTE_IW;
  615. else if (direction == DMA_BIDIRECTIONAL)
  616. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  617. WARN_ON(*pte);
  618. *pte = __pte;
  619. return (dma_addr_t)address;
  620. }
  621. /*
  622. * The generic unmapping function for on page in the DMA address space.
  623. */
  624. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  625. struct dma_ops_domain *dom,
  626. unsigned long address)
  627. {
  628. u64 *pte;
  629. if (address >= dom->aperture_size)
  630. return;
  631. WARN_ON(address & 0xfffULL || address > dom->aperture_size);
  632. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  633. pte += IOMMU_PTE_L0_INDEX(address);
  634. WARN_ON(!*pte);
  635. *pte = 0ULL;
  636. }
  637. /*
  638. * This function contains common code for mapping of a physically
  639. * contiguous memory region into DMA address space. It is uses by all
  640. * mapping functions provided by this IOMMU driver.
  641. * Must be called with the domain lock held.
  642. */
  643. static dma_addr_t __map_single(struct device *dev,
  644. struct amd_iommu *iommu,
  645. struct dma_ops_domain *dma_dom,
  646. phys_addr_t paddr,
  647. size_t size,
  648. int dir,
  649. bool align)
  650. {
  651. dma_addr_t offset = paddr & ~PAGE_MASK;
  652. dma_addr_t address, start;
  653. unsigned int pages;
  654. unsigned long align_mask = 0;
  655. int i;
  656. pages = iommu_num_pages(paddr, size);
  657. paddr &= PAGE_MASK;
  658. if (align)
  659. align_mask = (1UL << get_order(size)) - 1;
  660. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask);
  661. if (unlikely(address == bad_dma_address))
  662. goto out;
  663. start = address;
  664. for (i = 0; i < pages; ++i) {
  665. dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  666. paddr += PAGE_SIZE;
  667. start += PAGE_SIZE;
  668. }
  669. address += offset;
  670. if (unlikely(dma_dom->need_flush && !iommu_fullflush)) {
  671. iommu_flush_tlb(iommu, dma_dom->domain.id);
  672. dma_dom->need_flush = false;
  673. } else if (unlikely(iommu_has_npcache(iommu)))
  674. iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
  675. out:
  676. return address;
  677. }
  678. /*
  679. * Does the reverse of the __map_single function. Must be called with
  680. * the domain lock held too
  681. */
  682. static void __unmap_single(struct amd_iommu *iommu,
  683. struct dma_ops_domain *dma_dom,
  684. dma_addr_t dma_addr,
  685. size_t size,
  686. int dir)
  687. {
  688. dma_addr_t i, start;
  689. unsigned int pages;
  690. if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
  691. return;
  692. pages = iommu_num_pages(dma_addr, size);
  693. dma_addr &= PAGE_MASK;
  694. start = dma_addr;
  695. for (i = 0; i < pages; ++i) {
  696. dma_ops_domain_unmap(iommu, dma_dom, start);
  697. start += PAGE_SIZE;
  698. }
  699. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  700. if (iommu_fullflush)
  701. iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
  702. }
  703. /*
  704. * The exported map_single function for dma_ops.
  705. */
  706. static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
  707. size_t size, int dir)
  708. {
  709. unsigned long flags;
  710. struct amd_iommu *iommu;
  711. struct protection_domain *domain;
  712. u16 devid;
  713. dma_addr_t addr;
  714. if (!check_device(dev))
  715. return bad_dma_address;
  716. get_device_resources(dev, &iommu, &domain, &devid);
  717. if (iommu == NULL || domain == NULL)
  718. /* device not handled by any AMD IOMMU */
  719. return (dma_addr_t)paddr;
  720. spin_lock_irqsave(&domain->lock, flags);
  721. addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false);
  722. if (addr == bad_dma_address)
  723. goto out;
  724. if (unlikely(iommu->need_sync))
  725. iommu_completion_wait(iommu);
  726. out:
  727. spin_unlock_irqrestore(&domain->lock, flags);
  728. return addr;
  729. }
  730. /*
  731. * The exported unmap_single function for dma_ops.
  732. */
  733. static void unmap_single(struct device *dev, dma_addr_t dma_addr,
  734. size_t size, int dir)
  735. {
  736. unsigned long flags;
  737. struct amd_iommu *iommu;
  738. struct protection_domain *domain;
  739. u16 devid;
  740. if (!check_device(dev) ||
  741. !get_device_resources(dev, &iommu, &domain, &devid))
  742. /* device not handled by any AMD IOMMU */
  743. return;
  744. spin_lock_irqsave(&domain->lock, flags);
  745. __unmap_single(iommu, domain->priv, dma_addr, size, dir);
  746. if (unlikely(iommu->need_sync))
  747. iommu_completion_wait(iommu);
  748. spin_unlock_irqrestore(&domain->lock, flags);
  749. }
  750. /*
  751. * This is a special map_sg function which is used if we should map a
  752. * device which is not handled by an AMD IOMMU in the system.
  753. */
  754. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  755. int nelems, int dir)
  756. {
  757. struct scatterlist *s;
  758. int i;
  759. for_each_sg(sglist, s, nelems, i) {
  760. s->dma_address = (dma_addr_t)sg_phys(s);
  761. s->dma_length = s->length;
  762. }
  763. return nelems;
  764. }
  765. /*
  766. * The exported map_sg function for dma_ops (handles scatter-gather
  767. * lists).
  768. */
  769. static int map_sg(struct device *dev, struct scatterlist *sglist,
  770. int nelems, int dir)
  771. {
  772. unsigned long flags;
  773. struct amd_iommu *iommu;
  774. struct protection_domain *domain;
  775. u16 devid;
  776. int i;
  777. struct scatterlist *s;
  778. phys_addr_t paddr;
  779. int mapped_elems = 0;
  780. if (!check_device(dev))
  781. return 0;
  782. get_device_resources(dev, &iommu, &domain, &devid);
  783. if (!iommu || !domain)
  784. return map_sg_no_iommu(dev, sglist, nelems, dir);
  785. spin_lock_irqsave(&domain->lock, flags);
  786. for_each_sg(sglist, s, nelems, i) {
  787. paddr = sg_phys(s);
  788. s->dma_address = __map_single(dev, iommu, domain->priv,
  789. paddr, s->length, dir, false);
  790. if (s->dma_address) {
  791. s->dma_length = s->length;
  792. mapped_elems++;
  793. } else
  794. goto unmap;
  795. }
  796. if (unlikely(iommu->need_sync))
  797. iommu_completion_wait(iommu);
  798. out:
  799. spin_unlock_irqrestore(&domain->lock, flags);
  800. return mapped_elems;
  801. unmap:
  802. for_each_sg(sglist, s, mapped_elems, i) {
  803. if (s->dma_address)
  804. __unmap_single(iommu, domain->priv, s->dma_address,
  805. s->dma_length, dir);
  806. s->dma_address = s->dma_length = 0;
  807. }
  808. mapped_elems = 0;
  809. goto out;
  810. }
  811. /*
  812. * The exported map_sg function for dma_ops (handles scatter-gather
  813. * lists).
  814. */
  815. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  816. int nelems, int dir)
  817. {
  818. unsigned long flags;
  819. struct amd_iommu *iommu;
  820. struct protection_domain *domain;
  821. struct scatterlist *s;
  822. u16 devid;
  823. int i;
  824. if (!check_device(dev) ||
  825. !get_device_resources(dev, &iommu, &domain, &devid))
  826. return;
  827. spin_lock_irqsave(&domain->lock, flags);
  828. for_each_sg(sglist, s, nelems, i) {
  829. __unmap_single(iommu, domain->priv, s->dma_address,
  830. s->dma_length, dir);
  831. s->dma_address = s->dma_length = 0;
  832. }
  833. if (unlikely(iommu->need_sync))
  834. iommu_completion_wait(iommu);
  835. spin_unlock_irqrestore(&domain->lock, flags);
  836. }
  837. /*
  838. * The exported alloc_coherent function for dma_ops.
  839. */
  840. static void *alloc_coherent(struct device *dev, size_t size,
  841. dma_addr_t *dma_addr, gfp_t flag)
  842. {
  843. unsigned long flags;
  844. void *virt_addr;
  845. struct amd_iommu *iommu;
  846. struct protection_domain *domain;
  847. u16 devid;
  848. phys_addr_t paddr;
  849. if (!check_device(dev))
  850. return NULL;
  851. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  852. if (!virt_addr)
  853. return 0;
  854. memset(virt_addr, 0, size);
  855. paddr = virt_to_phys(virt_addr);
  856. get_device_resources(dev, &iommu, &domain, &devid);
  857. if (!iommu || !domain) {
  858. *dma_addr = (dma_addr_t)paddr;
  859. return virt_addr;
  860. }
  861. spin_lock_irqsave(&domain->lock, flags);
  862. *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
  863. size, DMA_BIDIRECTIONAL, true);
  864. if (*dma_addr == bad_dma_address) {
  865. free_pages((unsigned long)virt_addr, get_order(size));
  866. virt_addr = NULL;
  867. goto out;
  868. }
  869. if (unlikely(iommu->need_sync))
  870. iommu_completion_wait(iommu);
  871. out:
  872. spin_unlock_irqrestore(&domain->lock, flags);
  873. return virt_addr;
  874. }
  875. /*
  876. * The exported free_coherent function for dma_ops.
  877. */
  878. static void free_coherent(struct device *dev, size_t size,
  879. void *virt_addr, dma_addr_t dma_addr)
  880. {
  881. unsigned long flags;
  882. struct amd_iommu *iommu;
  883. struct protection_domain *domain;
  884. u16 devid;
  885. if (!check_device(dev))
  886. return;
  887. get_device_resources(dev, &iommu, &domain, &devid);
  888. if (!iommu || !domain)
  889. goto free_mem;
  890. spin_lock_irqsave(&domain->lock, flags);
  891. __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  892. if (unlikely(iommu->need_sync))
  893. iommu_completion_wait(iommu);
  894. spin_unlock_irqrestore(&domain->lock, flags);
  895. free_mem:
  896. free_pages((unsigned long)virt_addr, get_order(size));
  897. }
  898. /*
  899. * The function for pre-allocating protection domains.
  900. *
  901. * If the driver core informs the DMA layer if a driver grabs a device
  902. * we don't need to preallocate the protection domains anymore.
  903. * For now we have to.
  904. */
  905. void prealloc_protection_domains(void)
  906. {
  907. struct pci_dev *dev = NULL;
  908. struct dma_ops_domain *dma_dom;
  909. struct amd_iommu *iommu;
  910. int order = amd_iommu_aperture_order;
  911. u16 devid;
  912. while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
  913. devid = (dev->bus->number << 8) | dev->devfn;
  914. if (devid > amd_iommu_last_bdf)
  915. continue;
  916. devid = amd_iommu_alias_table[devid];
  917. if (domain_for_device(devid))
  918. continue;
  919. iommu = amd_iommu_rlookup_table[devid];
  920. if (!iommu)
  921. continue;
  922. dma_dom = dma_ops_domain_alloc(iommu, order);
  923. if (!dma_dom)
  924. continue;
  925. init_unity_mappings_for_device(dma_dom, devid);
  926. set_device_domain(iommu, &dma_dom->domain, devid);
  927. printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
  928. dma_dom->domain.id);
  929. print_devid(devid, 1);
  930. }
  931. }
  932. static struct dma_mapping_ops amd_iommu_dma_ops = {
  933. .alloc_coherent = alloc_coherent,
  934. .free_coherent = free_coherent,
  935. .map_single = map_single,
  936. .unmap_single = unmap_single,
  937. .map_sg = map_sg,
  938. .unmap_sg = unmap_sg,
  939. };
  940. /*
  941. * The function which clues the AMD IOMMU driver into dma_ops.
  942. */
  943. int __init amd_iommu_init_dma_ops(void)
  944. {
  945. struct amd_iommu *iommu;
  946. int order = amd_iommu_aperture_order;
  947. int ret;
  948. /*
  949. * first allocate a default protection domain for every IOMMU we
  950. * found in the system. Devices not assigned to any other
  951. * protection domain will be assigned to the default one.
  952. */
  953. list_for_each_entry(iommu, &amd_iommu_list, list) {
  954. iommu->default_dom = dma_ops_domain_alloc(iommu, order);
  955. if (iommu->default_dom == NULL)
  956. return -ENOMEM;
  957. ret = iommu_init_unity_mappings(iommu);
  958. if (ret)
  959. goto free_domains;
  960. }
  961. /*
  962. * If device isolation is enabled, pre-allocate the protection
  963. * domains for each device.
  964. */
  965. if (amd_iommu_isolate)
  966. prealloc_protection_domains();
  967. iommu_detected = 1;
  968. force_iommu = 1;
  969. bad_dma_address = 0;
  970. #ifdef CONFIG_GART_IOMMU
  971. gart_iommu_aperture_disabled = 1;
  972. gart_iommu_aperture = 0;
  973. #endif
  974. /* Make the driver finally visible to the drivers */
  975. dma_ops = &amd_iommu_dma_ops;
  976. return 0;
  977. free_domains:
  978. list_for_each_entry(iommu, &amd_iommu_list, list) {
  979. if (iommu->default_dom)
  980. dma_ops_domain_free(iommu->default_dom);
  981. }
  982. return ret;
  983. }