af9013.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. *
  6. * Thanks to Afatech who kindly provided information.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/string.h>
  29. #include <linux/slab.h>
  30. #include <linux/firmware.h>
  31. #include "dvb_frontend.h"
  32. #include "af9013_priv.h"
  33. #include "af9013.h"
  34. int af9013_debug;
  35. struct af9013_state {
  36. struct i2c_adapter *i2c;
  37. struct dvb_frontend frontend;
  38. struct af9013_config config;
  39. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  40. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  41. u16 signal_strength;
  42. u32 ber;
  43. u32 ucblocks;
  44. u16 snr;
  45. u32 frequency;
  46. unsigned long next_statistics_check;
  47. };
  48. static u8 regmask[8] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
  49. static int af9013_write_regs(struct af9013_state *state, u8 mbox, u16 reg,
  50. u8 *val, u8 len)
  51. {
  52. u8 buf[3+len];
  53. struct i2c_msg msg = {
  54. .addr = state->config.demod_address,
  55. .flags = 0,
  56. .len = sizeof(buf),
  57. .buf = buf };
  58. buf[0] = reg >> 8;
  59. buf[1] = reg & 0xff;
  60. buf[2] = mbox;
  61. memcpy(&buf[3], val, len);
  62. if (i2c_transfer(state->i2c, &msg, 1) != 1) {
  63. warn("I2C write failed reg:%04x len:%d", reg, len);
  64. return -EREMOTEIO;
  65. }
  66. return 0;
  67. }
  68. static int af9013_write_ofdm_regs(struct af9013_state *state, u16 reg, u8 *val,
  69. u8 len)
  70. {
  71. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(0 << 6)|(0 << 7);
  72. return af9013_write_regs(state, mbox, reg, val, len);
  73. }
  74. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  75. u8 len)
  76. {
  77. u8 mbox = (1 << 0)|(1 << 1)|((len - 1) << 2)|(1 << 6)|(1 << 7);
  78. return af9013_write_regs(state, mbox, reg, val, len);
  79. }
  80. /* write single register */
  81. static int af9013_write_reg(struct af9013_state *state, u16 reg, u8 val)
  82. {
  83. return af9013_write_ofdm_regs(state, reg, &val, 1);
  84. }
  85. /* read single register */
  86. static int af9013_read_reg(struct af9013_state *state, u16 reg, u8 *val)
  87. {
  88. u8 obuf[3] = { reg >> 8, reg & 0xff, 0 };
  89. u8 ibuf[1];
  90. struct i2c_msg msg[2] = {
  91. {
  92. .addr = state->config.demod_address,
  93. .flags = 0,
  94. .len = sizeof(obuf),
  95. .buf = obuf
  96. }, {
  97. .addr = state->config.demod_address,
  98. .flags = I2C_M_RD,
  99. .len = sizeof(ibuf),
  100. .buf = ibuf
  101. }
  102. };
  103. if (i2c_transfer(state->i2c, msg, 2) != 2) {
  104. warn("I2C read failed reg:%04x", reg);
  105. return -EREMOTEIO;
  106. }
  107. *val = ibuf[0];
  108. return 0;
  109. }
  110. static int af9013_write_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  111. u8 len, u8 val)
  112. {
  113. int ret;
  114. u8 tmp, mask;
  115. ret = af9013_read_reg(state, reg, &tmp);
  116. if (ret)
  117. return ret;
  118. mask = regmask[len - 1] << pos;
  119. tmp = (tmp & ~mask) | ((val << pos) & mask);
  120. return af9013_write_reg(state, reg, tmp);
  121. }
  122. static int af9013_read_reg_bits(struct af9013_state *state, u16 reg, u8 pos,
  123. u8 len, u8 *val)
  124. {
  125. int ret;
  126. u8 tmp;
  127. ret = af9013_read_reg(state, reg, &tmp);
  128. if (ret)
  129. return ret;
  130. *val = (tmp >> pos) & regmask[len - 1];
  131. return 0;
  132. }
  133. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  134. {
  135. int ret;
  136. u8 pos;
  137. u16 addr;
  138. deb_info("%s: gpio:%d gpioval:%02x\n", __func__, gpio, gpioval);
  139. /* GPIO0 & GPIO1 0xd735
  140. GPIO2 & GPIO3 0xd736 */
  141. switch (gpio) {
  142. case 0:
  143. case 1:
  144. addr = 0xd735;
  145. break;
  146. case 2:
  147. case 3:
  148. addr = 0xd736;
  149. break;
  150. default:
  151. err("invalid gpio:%d\n", gpio);
  152. ret = -EINVAL;
  153. goto error;
  154. };
  155. switch (gpio) {
  156. case 0:
  157. case 2:
  158. pos = 0;
  159. break;
  160. case 1:
  161. case 3:
  162. default:
  163. pos = 4;
  164. break;
  165. };
  166. ret = af9013_write_reg_bits(state, addr, pos, 4, gpioval);
  167. error:
  168. return ret;
  169. }
  170. static u32 af913_div(u32 a, u32 b, u32 x)
  171. {
  172. u32 r = 0, c = 0, i;
  173. deb_info("%s: a:%d b:%d x:%d\n", __func__, a, b, x);
  174. if (a > b) {
  175. c = a / b;
  176. a = a - c * b;
  177. }
  178. for (i = 0; i < x; i++) {
  179. if (a >= b) {
  180. r += 1;
  181. a -= b;
  182. }
  183. a <<= 1;
  184. r <<= 1;
  185. }
  186. r = (c << (u32)x) + r;
  187. deb_info("%s: a:%d b:%d x:%d r:%d r:%x\n", __func__, a, b, x, r, r);
  188. return r;
  189. }
  190. static int af9013_set_coeff(struct af9013_state *state, fe_bandwidth_t bw)
  191. {
  192. int ret, i, j, found;
  193. deb_info("%s: adc_clock:%d bw:%d\n", __func__,
  194. state->config.adc_clock, bw);
  195. /* lookup coeff from table */
  196. for (i = 0, found = 0; i < ARRAY_SIZE(coeff_table); i++) {
  197. if (coeff_table[i].adc_clock == state->config.adc_clock &&
  198. coeff_table[i].bw == bw) {
  199. found = 1;
  200. break;
  201. }
  202. }
  203. if (!found) {
  204. err("invalid bw or clock");
  205. ret = -EINVAL;
  206. goto error;
  207. }
  208. deb_info("%s: coeff: ", __func__);
  209. debug_dump(coeff_table[i].val, sizeof(coeff_table[i].val), deb_info);
  210. /* program */
  211. for (j = 0; j < sizeof(coeff_table[i].val); j++) {
  212. ret = af9013_write_reg(state, 0xae00 + j,
  213. coeff_table[i].val[j]);
  214. if (ret)
  215. break;
  216. }
  217. error:
  218. return ret;
  219. }
  220. static int af9013_set_adc_ctrl(struct af9013_state *state)
  221. {
  222. int ret;
  223. u8 buf[3], tmp, i;
  224. u32 adc_cw;
  225. deb_info("%s: adc_clock:%d\n", __func__, state->config.adc_clock);
  226. /* adc frequency type */
  227. switch (state->config.adc_clock) {
  228. case 28800: /* 28.800 MHz */
  229. tmp = 0;
  230. break;
  231. case 20480: /* 20.480 MHz */
  232. tmp = 1;
  233. break;
  234. case 28000: /* 28.000 MHz */
  235. tmp = 2;
  236. break;
  237. case 25000: /* 25.000 MHz */
  238. tmp = 3;
  239. break;
  240. default:
  241. err("invalid xtal");
  242. return -EINVAL;
  243. }
  244. adc_cw = af913_div(state->config.adc_clock*1000, 1000000ul, 19ul);
  245. buf[0] = (u8) ((adc_cw & 0x000000ff));
  246. buf[1] = (u8) ((adc_cw & 0x0000ff00) >> 8);
  247. buf[2] = (u8) ((adc_cw & 0x00ff0000) >> 16);
  248. deb_info("%s: adc_cw:", __func__);
  249. debug_dump(buf, sizeof(buf), deb_info);
  250. /* program */
  251. for (i = 0; i < sizeof(buf); i++) {
  252. ret = af9013_write_reg(state, 0xd180 + i, buf[i]);
  253. if (ret)
  254. goto error;
  255. }
  256. ret = af9013_write_reg_bits(state, 0x9bd2, 0, 4, tmp);
  257. error:
  258. return ret;
  259. }
  260. static int af9013_set_freq_ctrl(struct af9013_state *state,
  261. struct dvb_frontend *fe)
  262. {
  263. int ret;
  264. u16 addr;
  265. u8 buf[3], i, j;
  266. u32 adc_freq, freq_cw;
  267. s8 bfs_spec_inv;
  268. int if_sample_freq;
  269. for (j = 0; j < 3; j++) {
  270. if (j == 0) {
  271. addr = 0xd140; /* fcw normal */
  272. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  273. } else if (j == 1) {
  274. addr = 0x9be7; /* fcw dummy ram */
  275. bfs_spec_inv = state->config.rf_spec_inv ? -1 : 1;
  276. } else {
  277. addr = 0x9bea; /* fcw inverted */
  278. bfs_spec_inv = state->config.rf_spec_inv ? 1 : -1;
  279. }
  280. adc_freq = state->config.adc_clock * 1000;
  281. /* get used IF frequency */
  282. if (fe->ops.tuner_ops.get_if_frequency)
  283. fe->ops.tuner_ops.get_if_frequency(fe, &if_sample_freq);
  284. else
  285. if_sample_freq = state->config.tuner_if * 1000;
  286. while (if_sample_freq > (adc_freq / 2))
  287. if_sample_freq = if_sample_freq - adc_freq;
  288. if (if_sample_freq >= 0)
  289. bfs_spec_inv = bfs_spec_inv * (-1);
  290. else
  291. if_sample_freq = if_sample_freq * (-1);
  292. freq_cw = af913_div(if_sample_freq, adc_freq, 23ul);
  293. if (bfs_spec_inv == -1)
  294. freq_cw = 0x00800000 - freq_cw;
  295. buf[0] = (u8) ((freq_cw & 0x000000ff));
  296. buf[1] = (u8) ((freq_cw & 0x0000ff00) >> 8);
  297. buf[2] = (u8) ((freq_cw & 0x007f0000) >> 16);
  298. deb_info("%s: freq_cw:", __func__);
  299. debug_dump(buf, sizeof(buf), deb_info);
  300. /* program */
  301. for (i = 0; i < sizeof(buf); i++) {
  302. ret = af9013_write_reg(state, addr++, buf[i]);
  303. if (ret)
  304. goto error;
  305. }
  306. }
  307. error:
  308. return ret;
  309. }
  310. static int af9013_set_ofdm_params(struct af9013_state *state,
  311. struct dvb_ofdm_parameters *params, u8 *auto_mode)
  312. {
  313. int ret;
  314. u8 i, buf[3] = {0, 0, 0};
  315. *auto_mode = 0; /* set if parameters are requested to auto set */
  316. /* Try auto-detect transmission parameters in case of AUTO requested or
  317. garbage parameters given by application for compatibility.
  318. MPlayer seems to provide garbage parameters currently. */
  319. switch (params->transmission_mode) {
  320. case TRANSMISSION_MODE_AUTO:
  321. *auto_mode = 1;
  322. case TRANSMISSION_MODE_2K:
  323. break;
  324. case TRANSMISSION_MODE_8K:
  325. buf[0] |= (1 << 0);
  326. break;
  327. default:
  328. deb_info("%s: invalid transmission_mode\n", __func__);
  329. *auto_mode = 1;
  330. }
  331. switch (params->guard_interval) {
  332. case GUARD_INTERVAL_AUTO:
  333. *auto_mode = 1;
  334. case GUARD_INTERVAL_1_32:
  335. break;
  336. case GUARD_INTERVAL_1_16:
  337. buf[0] |= (1 << 2);
  338. break;
  339. case GUARD_INTERVAL_1_8:
  340. buf[0] |= (2 << 2);
  341. break;
  342. case GUARD_INTERVAL_1_4:
  343. buf[0] |= (3 << 2);
  344. break;
  345. default:
  346. deb_info("%s: invalid guard_interval\n", __func__);
  347. *auto_mode = 1;
  348. }
  349. switch (params->hierarchy_information) {
  350. case HIERARCHY_AUTO:
  351. *auto_mode = 1;
  352. case HIERARCHY_NONE:
  353. break;
  354. case HIERARCHY_1:
  355. buf[0] |= (1 << 4);
  356. break;
  357. case HIERARCHY_2:
  358. buf[0] |= (2 << 4);
  359. break;
  360. case HIERARCHY_4:
  361. buf[0] |= (3 << 4);
  362. break;
  363. default:
  364. deb_info("%s: invalid hierarchy_information\n", __func__);
  365. *auto_mode = 1;
  366. };
  367. switch (params->constellation) {
  368. case QAM_AUTO:
  369. *auto_mode = 1;
  370. case QPSK:
  371. break;
  372. case QAM_16:
  373. buf[1] |= (1 << 6);
  374. break;
  375. case QAM_64:
  376. buf[1] |= (2 << 6);
  377. break;
  378. default:
  379. deb_info("%s: invalid constellation\n", __func__);
  380. *auto_mode = 1;
  381. }
  382. /* Use HP. How and which case we can switch to LP? */
  383. buf[1] |= (1 << 4);
  384. switch (params->code_rate_HP) {
  385. case FEC_AUTO:
  386. *auto_mode = 1;
  387. case FEC_1_2:
  388. break;
  389. case FEC_2_3:
  390. buf[2] |= (1 << 0);
  391. break;
  392. case FEC_3_4:
  393. buf[2] |= (2 << 0);
  394. break;
  395. case FEC_5_6:
  396. buf[2] |= (3 << 0);
  397. break;
  398. case FEC_7_8:
  399. buf[2] |= (4 << 0);
  400. break;
  401. default:
  402. deb_info("%s: invalid code_rate_HP\n", __func__);
  403. *auto_mode = 1;
  404. }
  405. switch (params->code_rate_LP) {
  406. case FEC_AUTO:
  407. /* if HIERARCHY_NONE and FEC_NONE then LP FEC is set to FEC_AUTO
  408. by dvb_frontend.c for compatibility */
  409. if (params->hierarchy_information != HIERARCHY_NONE)
  410. *auto_mode = 1;
  411. case FEC_1_2:
  412. break;
  413. case FEC_2_3:
  414. buf[2] |= (1 << 3);
  415. break;
  416. case FEC_3_4:
  417. buf[2] |= (2 << 3);
  418. break;
  419. case FEC_5_6:
  420. buf[2] |= (3 << 3);
  421. break;
  422. case FEC_7_8:
  423. buf[2] |= (4 << 3);
  424. break;
  425. case FEC_NONE:
  426. if (params->hierarchy_information == HIERARCHY_AUTO)
  427. break;
  428. default:
  429. deb_info("%s: invalid code_rate_LP\n", __func__);
  430. *auto_mode = 1;
  431. }
  432. switch (params->bandwidth) {
  433. case BANDWIDTH_6_MHZ:
  434. break;
  435. case BANDWIDTH_7_MHZ:
  436. buf[1] |= (1 << 2);
  437. break;
  438. case BANDWIDTH_8_MHZ:
  439. buf[1] |= (2 << 2);
  440. break;
  441. default:
  442. deb_info("%s: invalid bandwidth\n", __func__);
  443. buf[1] |= (2 << 2); /* cannot auto-detect BW, try 8 MHz */
  444. }
  445. /* program */
  446. for (i = 0; i < sizeof(buf); i++) {
  447. ret = af9013_write_reg(state, 0xd3c0 + i, buf[i]);
  448. if (ret)
  449. break;
  450. }
  451. return ret;
  452. }
  453. static int af9013_reset(struct af9013_state *state, u8 sleep)
  454. {
  455. int ret;
  456. u8 tmp, i;
  457. deb_info("%s\n", __func__);
  458. /* enable OFDM reset */
  459. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 1);
  460. if (ret)
  461. goto error;
  462. /* start reset mechanism */
  463. ret = af9013_write_reg(state, 0xaeff, 1);
  464. if (ret)
  465. goto error;
  466. /* reset is done when bit 1 is set */
  467. for (i = 0; i < 150; i++) {
  468. ret = af9013_read_reg_bits(state, 0xd417, 1, 1, &tmp);
  469. if (ret)
  470. goto error;
  471. if (tmp)
  472. break; /* reset done */
  473. msleep(10);
  474. }
  475. if (!tmp)
  476. return -ETIMEDOUT;
  477. /* don't clear reset when going to sleep */
  478. if (!sleep) {
  479. /* clear OFDM reset */
  480. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  481. if (ret)
  482. goto error;
  483. /* disable OFDM reset */
  484. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  485. }
  486. error:
  487. return ret;
  488. }
  489. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  490. {
  491. int ret;
  492. deb_info("%s: onoff:%d\n", __func__, onoff);
  493. if (onoff) {
  494. /* power on */
  495. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 0);
  496. if (ret)
  497. goto error;
  498. ret = af9013_write_reg_bits(state, 0xd417, 1, 1, 0);
  499. if (ret)
  500. goto error;
  501. ret = af9013_write_reg_bits(state, 0xd417, 4, 1, 0);
  502. } else {
  503. /* power off */
  504. ret = af9013_reset(state, 1);
  505. if (ret)
  506. goto error;
  507. ret = af9013_write_reg_bits(state, 0xd73a, 3, 1, 1);
  508. }
  509. error:
  510. return ret;
  511. }
  512. static int af9013_lock_led(struct af9013_state *state, u8 onoff)
  513. {
  514. deb_info("%s: onoff:%d\n", __func__, onoff);
  515. return af9013_write_reg_bits(state, 0xd730, 0, 1, onoff);
  516. }
  517. static int af9013_set_frontend(struct dvb_frontend *fe,
  518. struct dvb_frontend_parameters *params)
  519. {
  520. struct af9013_state *state = fe->demodulator_priv;
  521. int ret;
  522. u8 auto_mode; /* auto set TPS */
  523. deb_info("%s: freq:%d bw:%d\n", __func__, params->frequency,
  524. params->u.ofdm.bandwidth);
  525. state->frequency = params->frequency;
  526. /* program tuner */
  527. if (fe->ops.tuner_ops.set_params)
  528. fe->ops.tuner_ops.set_params(fe, params);
  529. /* program CFOE coefficients */
  530. ret = af9013_set_coeff(state, params->u.ofdm.bandwidth);
  531. if (ret)
  532. goto error;
  533. /* program frequency control */
  534. ret = af9013_set_freq_ctrl(state, fe);
  535. if (ret)
  536. goto error;
  537. /* clear TPS lock flag (inverted flag) */
  538. ret = af9013_write_reg_bits(state, 0xd330, 3, 1, 1);
  539. if (ret)
  540. goto error;
  541. /* clear MPEG2 lock flag */
  542. ret = af9013_write_reg_bits(state, 0xd507, 6, 1, 0);
  543. if (ret)
  544. goto error;
  545. /* empty channel function */
  546. ret = af9013_write_reg_bits(state, 0x9bfe, 0, 1, 0);
  547. if (ret)
  548. goto error;
  549. /* empty DVB-T channel function */
  550. ret = af9013_write_reg_bits(state, 0x9bc2, 0, 1, 0);
  551. if (ret)
  552. goto error;
  553. /* program TPS and bandwidth, check if auto mode needed */
  554. ret = af9013_set_ofdm_params(state, &params->u.ofdm, &auto_mode);
  555. if (ret)
  556. goto error;
  557. if (auto_mode) {
  558. /* clear easy mode flag */
  559. ret = af9013_write_reg(state, 0xaefd, 0);
  560. deb_info("%s: auto TPS\n", __func__);
  561. } else {
  562. /* set easy mode flag */
  563. ret = af9013_write_reg(state, 0xaefd, 1);
  564. if (ret)
  565. goto error;
  566. ret = af9013_write_reg(state, 0xaefe, 0);
  567. deb_info("%s: manual TPS\n", __func__);
  568. }
  569. if (ret)
  570. goto error;
  571. /* everything is set, lets try to receive channel - OFSM GO! */
  572. ret = af9013_write_reg(state, 0xffff, 0);
  573. if (ret)
  574. goto error;
  575. error:
  576. return ret;
  577. }
  578. static int af9013_get_frontend(struct dvb_frontend *fe,
  579. struct dvb_frontend_parameters *p)
  580. {
  581. struct af9013_state *state = fe->demodulator_priv;
  582. int ret;
  583. u8 i, buf[3];
  584. deb_info("%s\n", __func__);
  585. /* read TPS registers */
  586. for (i = 0; i < 3; i++) {
  587. ret = af9013_read_reg(state, 0xd3c0 + i, &buf[i]);
  588. if (ret)
  589. goto error;
  590. }
  591. switch ((buf[1] >> 6) & 3) {
  592. case 0:
  593. p->u.ofdm.constellation = QPSK;
  594. break;
  595. case 1:
  596. p->u.ofdm.constellation = QAM_16;
  597. break;
  598. case 2:
  599. p->u.ofdm.constellation = QAM_64;
  600. break;
  601. }
  602. switch ((buf[0] >> 0) & 3) {
  603. case 0:
  604. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
  605. break;
  606. case 1:
  607. p->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
  608. }
  609. switch ((buf[0] >> 2) & 3) {
  610. case 0:
  611. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
  612. break;
  613. case 1:
  614. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
  615. break;
  616. case 2:
  617. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
  618. break;
  619. case 3:
  620. p->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
  621. break;
  622. }
  623. switch ((buf[0] >> 4) & 7) {
  624. case 0:
  625. p->u.ofdm.hierarchy_information = HIERARCHY_NONE;
  626. break;
  627. case 1:
  628. p->u.ofdm.hierarchy_information = HIERARCHY_1;
  629. break;
  630. case 2:
  631. p->u.ofdm.hierarchy_information = HIERARCHY_2;
  632. break;
  633. case 3:
  634. p->u.ofdm.hierarchy_information = HIERARCHY_4;
  635. break;
  636. }
  637. switch ((buf[2] >> 0) & 7) {
  638. case 0:
  639. p->u.ofdm.code_rate_HP = FEC_1_2;
  640. break;
  641. case 1:
  642. p->u.ofdm.code_rate_HP = FEC_2_3;
  643. break;
  644. case 2:
  645. p->u.ofdm.code_rate_HP = FEC_3_4;
  646. break;
  647. case 3:
  648. p->u.ofdm.code_rate_HP = FEC_5_6;
  649. break;
  650. case 4:
  651. p->u.ofdm.code_rate_HP = FEC_7_8;
  652. break;
  653. }
  654. switch ((buf[2] >> 3) & 7) {
  655. case 0:
  656. p->u.ofdm.code_rate_LP = FEC_1_2;
  657. break;
  658. case 1:
  659. p->u.ofdm.code_rate_LP = FEC_2_3;
  660. break;
  661. case 2:
  662. p->u.ofdm.code_rate_LP = FEC_3_4;
  663. break;
  664. case 3:
  665. p->u.ofdm.code_rate_LP = FEC_5_6;
  666. break;
  667. case 4:
  668. p->u.ofdm.code_rate_LP = FEC_7_8;
  669. break;
  670. }
  671. switch ((buf[1] >> 2) & 3) {
  672. case 0:
  673. p->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
  674. break;
  675. case 1:
  676. p->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
  677. break;
  678. case 2:
  679. p->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
  680. break;
  681. }
  682. p->inversion = INVERSION_AUTO;
  683. p->frequency = state->frequency;
  684. error:
  685. return ret;
  686. }
  687. static int af9013_update_ber_unc(struct dvb_frontend *fe)
  688. {
  689. struct af9013_state *state = fe->demodulator_priv;
  690. int ret;
  691. u8 buf[3], i;
  692. u32 error_bit_count = 0;
  693. u32 total_bit_count = 0;
  694. u32 abort_packet_count = 0;
  695. state->ber = 0;
  696. /* check if error bit count is ready */
  697. ret = af9013_read_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  698. if (ret)
  699. goto error;
  700. if (!buf[0])
  701. goto exit;
  702. /* get RSD packet abort count */
  703. for (i = 0; i < 2; i++) {
  704. ret = af9013_read_reg(state, 0xd38a + i, &buf[i]);
  705. if (ret)
  706. goto error;
  707. }
  708. abort_packet_count = (buf[1] << 8) + buf[0];
  709. /* get error bit count */
  710. for (i = 0; i < 3; i++) {
  711. ret = af9013_read_reg(state, 0xd387 + i, &buf[i]);
  712. if (ret)
  713. goto error;
  714. }
  715. error_bit_count = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  716. error_bit_count = error_bit_count - abort_packet_count * 8 * 8;
  717. /* get used RSD counting period (10000 RSD packets used) */
  718. for (i = 0; i < 2; i++) {
  719. ret = af9013_read_reg(state, 0xd385 + i, &buf[i]);
  720. if (ret)
  721. goto error;
  722. }
  723. total_bit_count = (buf[1] << 8) + buf[0];
  724. total_bit_count = total_bit_count - abort_packet_count;
  725. total_bit_count = total_bit_count * 204 * 8;
  726. if (total_bit_count)
  727. state->ber = error_bit_count * 1000000000 / total_bit_count;
  728. state->ucblocks += abort_packet_count;
  729. deb_info("%s: err bits:%d total bits:%d abort count:%d\n", __func__,
  730. error_bit_count, total_bit_count, abort_packet_count);
  731. /* set BER counting range */
  732. ret = af9013_write_reg(state, 0xd385, 10000 & 0xff);
  733. if (ret)
  734. goto error;
  735. ret = af9013_write_reg(state, 0xd386, 10000 >> 8);
  736. if (ret)
  737. goto error;
  738. /* reset and start BER counter */
  739. ret = af9013_write_reg_bits(state, 0xd391, 4, 1, 1);
  740. if (ret)
  741. goto error;
  742. exit:
  743. error:
  744. return ret;
  745. }
  746. static int af9013_update_snr(struct dvb_frontend *fe)
  747. {
  748. struct af9013_state *state = fe->demodulator_priv;
  749. int ret;
  750. u8 buf[3], i, len;
  751. u32 quant = 0;
  752. struct snr_table *uninitialized_var(snr_table);
  753. /* check if quantizer ready (for snr) */
  754. ret = af9013_read_reg_bits(state, 0xd2e1, 3, 1, &buf[0]);
  755. if (ret)
  756. goto error;
  757. if (buf[0]) {
  758. /* quantizer ready - read it */
  759. for (i = 0; i < 3; i++) {
  760. ret = af9013_read_reg(state, 0xd2e3 + i, &buf[i]);
  761. if (ret)
  762. goto error;
  763. }
  764. quant = (buf[2] << 16) + (buf[1] << 8) + buf[0];
  765. /* read current constellation */
  766. ret = af9013_read_reg(state, 0xd3c1, &buf[0]);
  767. if (ret)
  768. goto error;
  769. switch ((buf[0] >> 6) & 3) {
  770. case 0:
  771. len = ARRAY_SIZE(qpsk_snr_table);
  772. snr_table = qpsk_snr_table;
  773. break;
  774. case 1:
  775. len = ARRAY_SIZE(qam16_snr_table);
  776. snr_table = qam16_snr_table;
  777. break;
  778. case 2:
  779. len = ARRAY_SIZE(qam64_snr_table);
  780. snr_table = qam64_snr_table;
  781. break;
  782. default:
  783. len = 0;
  784. break;
  785. }
  786. if (len) {
  787. for (i = 0; i < len; i++) {
  788. if (quant < snr_table[i].val) {
  789. state->snr = snr_table[i].snr * 10;
  790. break;
  791. }
  792. }
  793. }
  794. /* set quantizer super frame count */
  795. ret = af9013_write_reg(state, 0xd2e2, 1);
  796. if (ret)
  797. goto error;
  798. /* check quantizer availability */
  799. for (i = 0; i < 10; i++) {
  800. msleep(10);
  801. ret = af9013_read_reg_bits(state, 0xd2e6, 0, 1,
  802. &buf[0]);
  803. if (ret)
  804. goto error;
  805. if (!buf[0])
  806. break;
  807. }
  808. /* reset quantizer */
  809. ret = af9013_write_reg_bits(state, 0xd2e1, 3, 1, 1);
  810. if (ret)
  811. goto error;
  812. }
  813. error:
  814. return ret;
  815. }
  816. static int af9013_update_signal_strength(struct dvb_frontend *fe)
  817. {
  818. struct af9013_state *state = fe->demodulator_priv;
  819. int ret = 0;
  820. u8 rf_gain, if_gain;
  821. int signal_strength;
  822. deb_info("%s\n", __func__);
  823. if (state->signal_strength_en) {
  824. ret = af9013_read_reg(state, 0xd07c, &rf_gain);
  825. if (ret)
  826. goto error;
  827. ret = af9013_read_reg(state, 0xd07d, &if_gain);
  828. if (ret)
  829. goto error;
  830. signal_strength = (0xffff / \
  831. (9 * (state->rf_50 + state->if_50) - \
  832. 11 * (state->rf_80 + state->if_80))) * \
  833. (10 * (rf_gain + if_gain) - \
  834. 11 * (state->rf_80 + state->if_80));
  835. if (signal_strength < 0)
  836. signal_strength = 0;
  837. else if (signal_strength > 0xffff)
  838. signal_strength = 0xffff;
  839. state->signal_strength = signal_strength;
  840. } else {
  841. state->signal_strength = 0;
  842. }
  843. error:
  844. return ret;
  845. }
  846. static int af9013_update_statistics(struct dvb_frontend *fe)
  847. {
  848. struct af9013_state *state = fe->demodulator_priv;
  849. int ret;
  850. if (time_before(jiffies, state->next_statistics_check))
  851. return 0;
  852. /* set minimum statistic update interval */
  853. state->next_statistics_check = jiffies + msecs_to_jiffies(1200);
  854. ret = af9013_update_signal_strength(fe);
  855. if (ret)
  856. goto error;
  857. ret = af9013_update_snr(fe);
  858. if (ret)
  859. goto error;
  860. ret = af9013_update_ber_unc(fe);
  861. if (ret)
  862. goto error;
  863. error:
  864. return ret;
  865. }
  866. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  867. struct dvb_frontend_tune_settings *fesettings)
  868. {
  869. fesettings->min_delay_ms = 800;
  870. fesettings->step_size = 0;
  871. fesettings->max_drift = 0;
  872. return 0;
  873. }
  874. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  875. {
  876. struct af9013_state *state = fe->demodulator_priv;
  877. int ret = 0;
  878. u8 tmp;
  879. *status = 0;
  880. /* MPEG2 lock */
  881. ret = af9013_read_reg_bits(state, 0xd507, 6, 1, &tmp);
  882. if (ret)
  883. goto error;
  884. if (tmp)
  885. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  886. FE_HAS_SYNC | FE_HAS_LOCK;
  887. if (!*status) {
  888. /* TPS lock */
  889. ret = af9013_read_reg_bits(state, 0xd330, 3, 1, &tmp);
  890. if (ret)
  891. goto error;
  892. if (tmp)
  893. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  894. FE_HAS_VITERBI;
  895. }
  896. if (!*status) {
  897. /* CFO lock */
  898. ret = af9013_read_reg_bits(state, 0xd333, 7, 1, &tmp);
  899. if (ret)
  900. goto error;
  901. if (tmp)
  902. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  903. }
  904. if (!*status) {
  905. /* SFOE lock */
  906. ret = af9013_read_reg_bits(state, 0xd334, 6, 1, &tmp);
  907. if (ret)
  908. goto error;
  909. if (tmp)
  910. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER;
  911. }
  912. if (!*status) {
  913. /* AGC lock */
  914. ret = af9013_read_reg_bits(state, 0xd1a0, 6, 1, &tmp);
  915. if (ret)
  916. goto error;
  917. if (tmp)
  918. *status |= FE_HAS_SIGNAL;
  919. }
  920. ret = af9013_update_statistics(fe);
  921. error:
  922. return ret;
  923. }
  924. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  925. {
  926. struct af9013_state *state = fe->demodulator_priv;
  927. int ret;
  928. ret = af9013_update_statistics(fe);
  929. *ber = state->ber;
  930. return ret;
  931. }
  932. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  933. {
  934. struct af9013_state *state = fe->demodulator_priv;
  935. int ret;
  936. ret = af9013_update_statistics(fe);
  937. *strength = state->signal_strength;
  938. return ret;
  939. }
  940. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  941. {
  942. struct af9013_state *state = fe->demodulator_priv;
  943. int ret;
  944. ret = af9013_update_statistics(fe);
  945. *snr = state->snr;
  946. return ret;
  947. }
  948. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  949. {
  950. struct af9013_state *state = fe->demodulator_priv;
  951. int ret;
  952. ret = af9013_update_statistics(fe);
  953. *ucblocks = state->ucblocks;
  954. return ret;
  955. }
  956. static int af9013_sleep(struct dvb_frontend *fe)
  957. {
  958. struct af9013_state *state = fe->demodulator_priv;
  959. int ret;
  960. deb_info("%s\n", __func__);
  961. ret = af9013_lock_led(state, 0);
  962. if (ret)
  963. goto error;
  964. ret = af9013_power_ctrl(state, 0);
  965. error:
  966. return ret;
  967. }
  968. static int af9013_init(struct dvb_frontend *fe)
  969. {
  970. struct af9013_state *state = fe->demodulator_priv;
  971. int ret, i, len;
  972. u8 tmp0, tmp1;
  973. struct regdesc *init;
  974. deb_info("%s\n", __func__);
  975. /* reset OFDM */
  976. ret = af9013_reset(state, 0);
  977. if (ret)
  978. goto error;
  979. /* power on */
  980. ret = af9013_power_ctrl(state, 1);
  981. if (ret)
  982. goto error;
  983. /* enable ADC */
  984. ret = af9013_write_reg(state, 0xd73a, 0xa4);
  985. if (ret)
  986. goto error;
  987. /* write API version to firmware */
  988. for (i = 0; i < sizeof(state->config.api_version); i++) {
  989. ret = af9013_write_reg(state, 0x9bf2 + i,
  990. state->config.api_version[i]);
  991. if (ret)
  992. goto error;
  993. }
  994. /* program ADC control */
  995. ret = af9013_set_adc_ctrl(state);
  996. if (ret)
  997. goto error;
  998. /* set I2C master clock */
  999. ret = af9013_write_reg(state, 0xd416, 0x14);
  1000. if (ret)
  1001. goto error;
  1002. /* set 16 embx */
  1003. ret = af9013_write_reg_bits(state, 0xd700, 1, 1, 1);
  1004. if (ret)
  1005. goto error;
  1006. /* set no trigger */
  1007. ret = af9013_write_reg_bits(state, 0xd700, 2, 1, 0);
  1008. if (ret)
  1009. goto error;
  1010. /* set read-update bit for constellation */
  1011. ret = af9013_write_reg_bits(state, 0xd371, 1, 1, 1);
  1012. if (ret)
  1013. goto error;
  1014. /* enable FEC monitor */
  1015. ret = af9013_write_reg_bits(state, 0xd392, 1, 1, 1);
  1016. if (ret)
  1017. goto error;
  1018. /* load OFSM settings */
  1019. deb_info("%s: load ofsm settings\n", __func__);
  1020. len = ARRAY_SIZE(ofsm_init);
  1021. init = ofsm_init;
  1022. for (i = 0; i < len; i++) {
  1023. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1024. init[i].len, init[i].val);
  1025. if (ret)
  1026. goto error;
  1027. }
  1028. /* load tuner specific settings */
  1029. deb_info("%s: load tuner specific settings\n", __func__);
  1030. switch (state->config.tuner) {
  1031. case AF9013_TUNER_MXL5003D:
  1032. len = ARRAY_SIZE(tuner_init_mxl5003d);
  1033. init = tuner_init_mxl5003d;
  1034. break;
  1035. case AF9013_TUNER_MXL5005D:
  1036. case AF9013_TUNER_MXL5005R:
  1037. case AF9013_TUNER_MXL5007T:
  1038. len = ARRAY_SIZE(tuner_init_mxl5005);
  1039. init = tuner_init_mxl5005;
  1040. break;
  1041. case AF9013_TUNER_ENV77H11D5:
  1042. len = ARRAY_SIZE(tuner_init_env77h11d5);
  1043. init = tuner_init_env77h11d5;
  1044. break;
  1045. case AF9013_TUNER_MT2060:
  1046. len = ARRAY_SIZE(tuner_init_mt2060);
  1047. init = tuner_init_mt2060;
  1048. break;
  1049. case AF9013_TUNER_MC44S803:
  1050. len = ARRAY_SIZE(tuner_init_mc44s803);
  1051. init = tuner_init_mc44s803;
  1052. break;
  1053. case AF9013_TUNER_QT1010:
  1054. case AF9013_TUNER_QT1010A:
  1055. len = ARRAY_SIZE(tuner_init_qt1010);
  1056. init = tuner_init_qt1010;
  1057. break;
  1058. case AF9013_TUNER_MT2060_2:
  1059. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1060. init = tuner_init_mt2060_2;
  1061. break;
  1062. case AF9013_TUNER_TDA18271:
  1063. case AF9013_TUNER_TDA18218:
  1064. len = ARRAY_SIZE(tuner_init_tda18271);
  1065. init = tuner_init_tda18271;
  1066. break;
  1067. case AF9013_TUNER_UNKNOWN:
  1068. default:
  1069. len = ARRAY_SIZE(tuner_init_unknown);
  1070. init = tuner_init_unknown;
  1071. break;
  1072. }
  1073. for (i = 0; i < len; i++) {
  1074. ret = af9013_write_reg_bits(state, init[i].addr, init[i].pos,
  1075. init[i].len, init[i].val);
  1076. if (ret)
  1077. goto error;
  1078. }
  1079. /* set TS mode */
  1080. deb_info("%s: setting ts mode\n", __func__);
  1081. tmp0 = 0; /* parallel mode */
  1082. tmp1 = 0; /* serial mode */
  1083. switch (state->config.output_mode) {
  1084. case AF9013_OUTPUT_MODE_PARALLEL:
  1085. tmp0 = 1;
  1086. break;
  1087. case AF9013_OUTPUT_MODE_SERIAL:
  1088. tmp1 = 1;
  1089. break;
  1090. case AF9013_OUTPUT_MODE_USB:
  1091. /* usb mode for AF9015 */
  1092. default:
  1093. break;
  1094. }
  1095. ret = af9013_write_reg_bits(state, 0xd500, 1, 1, tmp0); /* parallel */
  1096. if (ret)
  1097. goto error;
  1098. ret = af9013_write_reg_bits(state, 0xd500, 2, 1, tmp1); /* serial */
  1099. if (ret)
  1100. goto error;
  1101. /* enable lock led */
  1102. ret = af9013_lock_led(state, 1);
  1103. if (ret)
  1104. goto error;
  1105. /* read values needed for signal strength calculation */
  1106. ret = af9013_read_reg_bits(state, 0x9bee, 0, 1,
  1107. &state->signal_strength_en);
  1108. if (ret)
  1109. goto error;
  1110. if (state->signal_strength_en) {
  1111. ret = af9013_read_reg(state, 0x9bbd, &state->rf_50);
  1112. if (ret)
  1113. goto error;
  1114. ret = af9013_read_reg(state, 0x9bd0, &state->rf_80);
  1115. if (ret)
  1116. goto error;
  1117. ret = af9013_read_reg(state, 0x9be2, &state->if_50);
  1118. if (ret)
  1119. goto error;
  1120. ret = af9013_read_reg(state, 0x9be4, &state->if_80);
  1121. if (ret)
  1122. goto error;
  1123. }
  1124. error:
  1125. return ret;
  1126. }
  1127. static struct dvb_frontend_ops af9013_ops;
  1128. static int af9013_download_firmware(struct af9013_state *state)
  1129. {
  1130. int i, len, remaining, ret;
  1131. const struct firmware *fw;
  1132. u16 checksum = 0;
  1133. u8 val;
  1134. u8 fw_params[4];
  1135. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1136. msleep(100);
  1137. /* check whether firmware is already running */
  1138. ret = af9013_read_reg(state, 0x98be, &val);
  1139. if (ret)
  1140. goto error;
  1141. else
  1142. deb_info("%s: firmware status:%02x\n", __func__, val);
  1143. if (val == 0x0c) /* fw is running, no need for download */
  1144. goto exit;
  1145. info("found a '%s' in cold state, will try to load a firmware",
  1146. af9013_ops.info.name);
  1147. /* request the firmware, this will block and timeout */
  1148. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1149. if (ret) {
  1150. err("did not find the firmware file. (%s) "
  1151. "Please see linux/Documentation/dvb/ for more details" \
  1152. " on firmware-problems. (%d)",
  1153. fw_file, ret);
  1154. goto error;
  1155. }
  1156. info("downloading firmware from file '%s'", fw_file);
  1157. /* calc checksum */
  1158. for (i = 0; i < fw->size; i++)
  1159. checksum += fw->data[i];
  1160. fw_params[0] = checksum >> 8;
  1161. fw_params[1] = checksum & 0xff;
  1162. fw_params[2] = fw->size >> 8;
  1163. fw_params[3] = fw->size & 0xff;
  1164. /* write fw checksum & size */
  1165. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1166. fw_params, sizeof(fw_params));
  1167. if (ret)
  1168. goto error_release;
  1169. #define FW_ADDR 0x5100 /* firmware start address */
  1170. #define LEN_MAX 16 /* max packet size */
  1171. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1172. len = remaining;
  1173. if (len > LEN_MAX)
  1174. len = LEN_MAX;
  1175. ret = af9013_write_ofsm_regs(state,
  1176. FW_ADDR + fw->size - remaining,
  1177. (u8 *) &fw->data[fw->size - remaining], len);
  1178. if (ret) {
  1179. err("firmware download failed:%d", ret);
  1180. goto error_release;
  1181. }
  1182. }
  1183. /* request boot firmware */
  1184. ret = af9013_write_reg(state, 0xe205, 1);
  1185. if (ret)
  1186. goto error_release;
  1187. for (i = 0; i < 15; i++) {
  1188. msleep(100);
  1189. /* check firmware status */
  1190. ret = af9013_read_reg(state, 0x98be, &val);
  1191. if (ret)
  1192. goto error_release;
  1193. deb_info("%s: firmware status:%02x\n", __func__, val);
  1194. if (val == 0x0c || val == 0x04) /* success or fail */
  1195. break;
  1196. }
  1197. if (val == 0x04) {
  1198. err("firmware did not run");
  1199. ret = -1;
  1200. } else if (val != 0x0c) {
  1201. err("firmware boot timeout");
  1202. ret = -1;
  1203. }
  1204. error_release:
  1205. release_firmware(fw);
  1206. error:
  1207. exit:
  1208. if (!ret)
  1209. info("found a '%s' in warm state.", af9013_ops.info.name);
  1210. return ret;
  1211. }
  1212. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1213. {
  1214. int ret;
  1215. struct af9013_state *state = fe->demodulator_priv;
  1216. deb_info("%s: enable:%d\n", __func__, enable);
  1217. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB)
  1218. ret = af9013_write_reg_bits(state, 0xd417, 3, 1, enable);
  1219. else
  1220. ret = af9013_write_reg_bits(state, 0xd607, 2, 1, enable);
  1221. return ret;
  1222. }
  1223. static void af9013_release(struct dvb_frontend *fe)
  1224. {
  1225. struct af9013_state *state = fe->demodulator_priv;
  1226. kfree(state);
  1227. }
  1228. static struct dvb_frontend_ops af9013_ops;
  1229. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1230. struct i2c_adapter *i2c)
  1231. {
  1232. int ret;
  1233. struct af9013_state *state = NULL;
  1234. u8 buf[4], i;
  1235. /* allocate memory for the internal state */
  1236. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1237. if (state == NULL)
  1238. goto error;
  1239. /* setup the state */
  1240. state->i2c = i2c;
  1241. memcpy(&state->config, config, sizeof(struct af9013_config));
  1242. /* download firmware */
  1243. if (state->config.output_mode != AF9013_OUTPUT_MODE_USB) {
  1244. ret = af9013_download_firmware(state);
  1245. if (ret)
  1246. goto error;
  1247. }
  1248. /* firmware version */
  1249. for (i = 0; i < 4; i++) {
  1250. ret = af9013_read_reg(state, 0x5103 + i, &buf[i]);
  1251. if (ret)
  1252. goto error;
  1253. }
  1254. info("firmware version:%d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
  1255. /* chip version */
  1256. ret = af9013_read_reg_bits(state, 0xd733, 4, 4, &buf[2]);
  1257. if (ret)
  1258. goto error;
  1259. /* ROM version */
  1260. for (i = 0; i < 2; i++) {
  1261. ret = af9013_read_reg(state, 0x116b + i, &buf[i]);
  1262. if (ret)
  1263. goto error;
  1264. }
  1265. deb_info("%s: chip version:%d ROM version:%d.%d\n", __func__,
  1266. buf[2], buf[0], buf[1]);
  1267. /* settings for mp2if */
  1268. if (state->config.output_mode == AF9013_OUTPUT_MODE_USB) {
  1269. /* AF9015 split PSB to 1.5k + 0.5k */
  1270. ret = af9013_write_reg_bits(state, 0xd50b, 2, 1, 1);
  1271. } else {
  1272. /* AF9013 change the output bit to data7 */
  1273. ret = af9013_write_reg_bits(state, 0xd500, 3, 1, 1);
  1274. if (ret)
  1275. goto error;
  1276. /* AF9013 set mpeg to full speed */
  1277. ret = af9013_write_reg_bits(state, 0xd502, 4, 1, 1);
  1278. }
  1279. if (ret)
  1280. goto error;
  1281. ret = af9013_write_reg_bits(state, 0xd520, 4, 1, 1);
  1282. if (ret)
  1283. goto error;
  1284. /* set GPIOs */
  1285. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1286. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1287. if (ret)
  1288. goto error;
  1289. }
  1290. /* create dvb_frontend */
  1291. memcpy(&state->frontend.ops, &af9013_ops,
  1292. sizeof(struct dvb_frontend_ops));
  1293. state->frontend.demodulator_priv = state;
  1294. return &state->frontend;
  1295. error:
  1296. kfree(state);
  1297. return NULL;
  1298. }
  1299. EXPORT_SYMBOL(af9013_attach);
  1300. static struct dvb_frontend_ops af9013_ops = {
  1301. .info = {
  1302. .name = "Afatech AF9013 DVB-T",
  1303. .type = FE_OFDM,
  1304. .frequency_min = 174000000,
  1305. .frequency_max = 862000000,
  1306. .frequency_stepsize = 250000,
  1307. .frequency_tolerance = 0,
  1308. .caps =
  1309. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  1310. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  1311. FE_CAN_QPSK | FE_CAN_QAM_16 |
  1312. FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  1313. FE_CAN_TRANSMISSION_MODE_AUTO |
  1314. FE_CAN_GUARD_INTERVAL_AUTO |
  1315. FE_CAN_HIERARCHY_AUTO |
  1316. FE_CAN_RECOVER |
  1317. FE_CAN_MUTE_TS
  1318. },
  1319. .release = af9013_release,
  1320. .init = af9013_init,
  1321. .sleep = af9013_sleep,
  1322. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1323. .set_frontend = af9013_set_frontend,
  1324. .get_frontend = af9013_get_frontend,
  1325. .get_tune_settings = af9013_get_tune_settings,
  1326. .read_status = af9013_read_status,
  1327. .read_ber = af9013_read_ber,
  1328. .read_signal_strength = af9013_read_signal_strength,
  1329. .read_snr = af9013_read_snr,
  1330. .read_ucblocks = af9013_read_ucblocks,
  1331. };
  1332. module_param_named(debug, af9013_debug, int, 0644);
  1333. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  1334. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1335. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1336. MODULE_LICENSE("GPL");