page_alloc.c 158 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/div64.h>
  61. #include "internal.h"
  62. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  63. DEFINE_PER_CPU(int, numa_node);
  64. EXPORT_PER_CPU_SYMBOL(numa_node);
  65. #endif
  66. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  67. /*
  68. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  69. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  70. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  71. * defined in <linux/topology.h>.
  72. */
  73. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  74. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  75. #endif
  76. /*
  77. * Array of node states.
  78. */
  79. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  80. [N_POSSIBLE] = NODE_MASK_ALL,
  81. [N_ONLINE] = { { [0] = 1UL } },
  82. #ifndef CONFIG_NUMA
  83. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  84. #ifdef CONFIG_HIGHMEM
  85. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  86. #endif
  87. [N_CPU] = { { [0] = 1UL } },
  88. #endif /* NUMA */
  89. };
  90. EXPORT_SYMBOL(node_states);
  91. unsigned long totalram_pages __read_mostly;
  92. unsigned long totalreserve_pages __read_mostly;
  93. int percpu_pagelist_fraction;
  94. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  95. #ifdef CONFIG_PM_SLEEP
  96. /*
  97. * The following functions are used by the suspend/hibernate code to temporarily
  98. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  99. * while devices are suspended. To avoid races with the suspend/hibernate code,
  100. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  101. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  102. * guaranteed not to run in parallel with that modification).
  103. */
  104. static gfp_t saved_gfp_mask;
  105. void pm_restore_gfp_mask(void)
  106. {
  107. WARN_ON(!mutex_is_locked(&pm_mutex));
  108. if (saved_gfp_mask) {
  109. gfp_allowed_mask = saved_gfp_mask;
  110. saved_gfp_mask = 0;
  111. }
  112. }
  113. void pm_restrict_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. WARN_ON(saved_gfp_mask);
  117. saved_gfp_mask = gfp_allowed_mask;
  118. gfp_allowed_mask &= ~GFP_IOFS;
  119. }
  120. #endif /* CONFIG_PM_SLEEP */
  121. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  122. int pageblock_order __read_mostly;
  123. #endif
  124. static void __free_pages_ok(struct page *page, unsigned int order);
  125. /*
  126. * results with 256, 32 in the lowmem_reserve sysctl:
  127. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  128. * 1G machine -> (16M dma, 784M normal, 224M high)
  129. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  130. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  131. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  132. *
  133. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  134. * don't need any ZONE_NORMAL reservation
  135. */
  136. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  137. #ifdef CONFIG_ZONE_DMA
  138. 256,
  139. #endif
  140. #ifdef CONFIG_ZONE_DMA32
  141. 256,
  142. #endif
  143. #ifdef CONFIG_HIGHMEM
  144. 32,
  145. #endif
  146. 32,
  147. };
  148. EXPORT_SYMBOL(totalram_pages);
  149. static char * const zone_names[MAX_NR_ZONES] = {
  150. #ifdef CONFIG_ZONE_DMA
  151. "DMA",
  152. #endif
  153. #ifdef CONFIG_ZONE_DMA32
  154. "DMA32",
  155. #endif
  156. "Normal",
  157. #ifdef CONFIG_HIGHMEM
  158. "HighMem",
  159. #endif
  160. "Movable",
  161. };
  162. int min_free_kbytes = 1024;
  163. static unsigned long __meminitdata nr_kernel_pages;
  164. static unsigned long __meminitdata nr_all_pages;
  165. static unsigned long __meminitdata dma_reserve;
  166. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  167. /*
  168. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  169. * ranges of memory (RAM) that may be registered with add_active_range().
  170. * Ranges passed to add_active_range() will be merged if possible
  171. * so the number of times add_active_range() can be called is
  172. * related to the number of nodes and the number of holes
  173. */
  174. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  175. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  176. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  177. #else
  178. #if MAX_NUMNODES >= 32
  179. /* If there can be many nodes, allow up to 50 holes per node */
  180. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  181. #else
  182. /* By default, allow up to 256 distinct regions */
  183. #define MAX_ACTIVE_REGIONS 256
  184. #endif
  185. #endif
  186. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  187. static int __meminitdata nr_nodemap_entries;
  188. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  189. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  190. static unsigned long __initdata required_kernelcore;
  191. static unsigned long __initdata required_movablecore;
  192. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  193. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  194. int movable_zone;
  195. EXPORT_SYMBOL(movable_zone);
  196. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  197. #if MAX_NUMNODES > 1
  198. int nr_node_ids __read_mostly = MAX_NUMNODES;
  199. int nr_online_nodes __read_mostly = 1;
  200. EXPORT_SYMBOL(nr_node_ids);
  201. EXPORT_SYMBOL(nr_online_nodes);
  202. #endif
  203. int page_group_by_mobility_disabled __read_mostly;
  204. static void set_pageblock_migratetype(struct page *page, int migratetype)
  205. {
  206. if (unlikely(page_group_by_mobility_disabled))
  207. migratetype = MIGRATE_UNMOVABLE;
  208. set_pageblock_flags_group(page, (unsigned long)migratetype,
  209. PB_migrate, PB_migrate_end);
  210. }
  211. bool oom_killer_disabled __read_mostly;
  212. #ifdef CONFIG_DEBUG_VM
  213. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  214. {
  215. int ret = 0;
  216. unsigned seq;
  217. unsigned long pfn = page_to_pfn(page);
  218. do {
  219. seq = zone_span_seqbegin(zone);
  220. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  221. ret = 1;
  222. else if (pfn < zone->zone_start_pfn)
  223. ret = 1;
  224. } while (zone_span_seqretry(zone, seq));
  225. return ret;
  226. }
  227. static int page_is_consistent(struct zone *zone, struct page *page)
  228. {
  229. if (!pfn_valid_within(page_to_pfn(page)))
  230. return 0;
  231. if (zone != page_zone(page))
  232. return 0;
  233. return 1;
  234. }
  235. /*
  236. * Temporary debugging check for pages not lying within a given zone.
  237. */
  238. static int bad_range(struct zone *zone, struct page *page)
  239. {
  240. if (page_outside_zone_boundaries(zone, page))
  241. return 1;
  242. if (!page_is_consistent(zone, page))
  243. return 1;
  244. return 0;
  245. }
  246. #else
  247. static inline int bad_range(struct zone *zone, struct page *page)
  248. {
  249. return 0;
  250. }
  251. #endif
  252. static void bad_page(struct page *page)
  253. {
  254. static unsigned long resume;
  255. static unsigned long nr_shown;
  256. static unsigned long nr_unshown;
  257. /* Don't complain about poisoned pages */
  258. if (PageHWPoison(page)) {
  259. reset_page_mapcount(page); /* remove PageBuddy */
  260. return;
  261. }
  262. /*
  263. * Allow a burst of 60 reports, then keep quiet for that minute;
  264. * or allow a steady drip of one report per second.
  265. */
  266. if (nr_shown == 60) {
  267. if (time_before(jiffies, resume)) {
  268. nr_unshown++;
  269. goto out;
  270. }
  271. if (nr_unshown) {
  272. printk(KERN_ALERT
  273. "BUG: Bad page state: %lu messages suppressed\n",
  274. nr_unshown);
  275. nr_unshown = 0;
  276. }
  277. nr_shown = 0;
  278. }
  279. if (nr_shown++ == 0)
  280. resume = jiffies + 60 * HZ;
  281. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  282. current->comm, page_to_pfn(page));
  283. dump_page(page);
  284. dump_stack();
  285. out:
  286. /* Leave bad fields for debug, except PageBuddy could make trouble */
  287. reset_page_mapcount(page); /* remove PageBuddy */
  288. add_taint(TAINT_BAD_PAGE);
  289. }
  290. /*
  291. * Higher-order pages are called "compound pages". They are structured thusly:
  292. *
  293. * The first PAGE_SIZE page is called the "head page".
  294. *
  295. * The remaining PAGE_SIZE pages are called "tail pages".
  296. *
  297. * All pages have PG_compound set. All pages have their ->private pointing at
  298. * the head page (even the head page has this).
  299. *
  300. * The first tail page's ->lru.next holds the address of the compound page's
  301. * put_page() function. Its ->lru.prev holds the order of allocation.
  302. * This usage means that zero-order pages may not be compound.
  303. */
  304. static void free_compound_page(struct page *page)
  305. {
  306. __free_pages_ok(page, compound_order(page));
  307. }
  308. void prep_compound_page(struct page *page, unsigned long order)
  309. {
  310. int i;
  311. int nr_pages = 1 << order;
  312. set_compound_page_dtor(page, free_compound_page);
  313. set_compound_order(page, order);
  314. __SetPageHead(page);
  315. for (i = 1; i < nr_pages; i++) {
  316. struct page *p = page + i;
  317. __SetPageTail(p);
  318. p->first_page = page;
  319. }
  320. }
  321. /* update __split_huge_page_refcount if you change this function */
  322. static int destroy_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. int bad = 0;
  327. if (unlikely(compound_order(page) != order) ||
  328. unlikely(!PageHead(page))) {
  329. bad_page(page);
  330. bad++;
  331. }
  332. __ClearPageHead(page);
  333. for (i = 1; i < nr_pages; i++) {
  334. struct page *p = page + i;
  335. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  336. bad_page(page);
  337. bad++;
  338. }
  339. __ClearPageTail(p);
  340. }
  341. return bad;
  342. }
  343. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  344. {
  345. int i;
  346. /*
  347. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  348. * and __GFP_HIGHMEM from hard or soft interrupt context.
  349. */
  350. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  351. for (i = 0; i < (1 << order); i++)
  352. clear_highpage(page + i);
  353. }
  354. static inline void set_page_order(struct page *page, int order)
  355. {
  356. set_page_private(page, order);
  357. __SetPageBuddy(page);
  358. }
  359. static inline void rmv_page_order(struct page *page)
  360. {
  361. __ClearPageBuddy(page);
  362. set_page_private(page, 0);
  363. }
  364. /*
  365. * Locate the struct page for both the matching buddy in our
  366. * pair (buddy1) and the combined O(n+1) page they form (page).
  367. *
  368. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  369. * the following equation:
  370. * B2 = B1 ^ (1 << O)
  371. * For example, if the starting buddy (buddy2) is #8 its order
  372. * 1 buddy is #10:
  373. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  374. *
  375. * 2) Any buddy B will have an order O+1 parent P which
  376. * satisfies the following equation:
  377. * P = B & ~(1 << O)
  378. *
  379. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  380. */
  381. static inline unsigned long
  382. __find_buddy_index(unsigned long page_idx, unsigned int order)
  383. {
  384. return page_idx ^ (1 << order);
  385. }
  386. /*
  387. * This function checks whether a page is free && is the buddy
  388. * we can do coalesce a page and its buddy if
  389. * (a) the buddy is not in a hole &&
  390. * (b) the buddy is in the buddy system &&
  391. * (c) a page and its buddy have the same order &&
  392. * (d) a page and its buddy are in the same zone.
  393. *
  394. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  395. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  396. *
  397. * For recording page's order, we use page_private(page).
  398. */
  399. static inline int page_is_buddy(struct page *page, struct page *buddy,
  400. int order)
  401. {
  402. if (!pfn_valid_within(page_to_pfn(buddy)))
  403. return 0;
  404. if (page_zone_id(page) != page_zone_id(buddy))
  405. return 0;
  406. if (PageBuddy(buddy) && page_order(buddy) == order) {
  407. VM_BUG_ON(page_count(buddy) != 0);
  408. return 1;
  409. }
  410. return 0;
  411. }
  412. /*
  413. * Freeing function for a buddy system allocator.
  414. *
  415. * The concept of a buddy system is to maintain direct-mapped table
  416. * (containing bit values) for memory blocks of various "orders".
  417. * The bottom level table contains the map for the smallest allocatable
  418. * units of memory (here, pages), and each level above it describes
  419. * pairs of units from the levels below, hence, "buddies".
  420. * At a high level, all that happens here is marking the table entry
  421. * at the bottom level available, and propagating the changes upward
  422. * as necessary, plus some accounting needed to play nicely with other
  423. * parts of the VM system.
  424. * At each level, we keep a list of pages, which are heads of continuous
  425. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  426. * order is recorded in page_private(page) field.
  427. * So when we are allocating or freeing one, we can derive the state of the
  428. * other. That is, if we allocate a small block, and both were
  429. * free, the remainder of the region must be split into blocks.
  430. * If a block is freed, and its buddy is also free, then this
  431. * triggers coalescing into a block of larger size.
  432. *
  433. * -- wli
  434. */
  435. static inline void __free_one_page(struct page *page,
  436. struct zone *zone, unsigned int order,
  437. int migratetype)
  438. {
  439. unsigned long page_idx;
  440. unsigned long combined_idx;
  441. unsigned long uninitialized_var(buddy_idx);
  442. struct page *buddy;
  443. if (unlikely(PageCompound(page)))
  444. if (unlikely(destroy_compound_page(page, order)))
  445. return;
  446. VM_BUG_ON(migratetype == -1);
  447. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  448. VM_BUG_ON(page_idx & ((1 << order) - 1));
  449. VM_BUG_ON(bad_range(zone, page));
  450. while (order < MAX_ORDER-1) {
  451. buddy_idx = __find_buddy_index(page_idx, order);
  452. buddy = page + (buddy_idx - page_idx);
  453. if (!page_is_buddy(page, buddy, order))
  454. break;
  455. /* Our buddy is free, merge with it and move up one order. */
  456. list_del(&buddy->lru);
  457. zone->free_area[order].nr_free--;
  458. rmv_page_order(buddy);
  459. combined_idx = buddy_idx & page_idx;
  460. page = page + (combined_idx - page_idx);
  461. page_idx = combined_idx;
  462. order++;
  463. }
  464. set_page_order(page, order);
  465. /*
  466. * If this is not the largest possible page, check if the buddy
  467. * of the next-highest order is free. If it is, it's possible
  468. * that pages are being freed that will coalesce soon. In case,
  469. * that is happening, add the free page to the tail of the list
  470. * so it's less likely to be used soon and more likely to be merged
  471. * as a higher order page
  472. */
  473. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  474. struct page *higher_page, *higher_buddy;
  475. combined_idx = buddy_idx & page_idx;
  476. higher_page = page + (combined_idx - page_idx);
  477. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  478. higher_buddy = page + (buddy_idx - combined_idx);
  479. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  480. list_add_tail(&page->lru,
  481. &zone->free_area[order].free_list[migratetype]);
  482. goto out;
  483. }
  484. }
  485. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  486. out:
  487. zone->free_area[order].nr_free++;
  488. }
  489. /*
  490. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  491. * Page should not be on lru, so no need to fix that up.
  492. * free_pages_check() will verify...
  493. */
  494. static inline void free_page_mlock(struct page *page)
  495. {
  496. __dec_zone_page_state(page, NR_MLOCK);
  497. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  498. }
  499. static inline int free_pages_check(struct page *page)
  500. {
  501. if (unlikely(page_mapcount(page) |
  502. (page->mapping != NULL) |
  503. (atomic_read(&page->_count) != 0) |
  504. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  505. (mem_cgroup_bad_page_check(page)))) {
  506. bad_page(page);
  507. return 1;
  508. }
  509. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  510. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  511. return 0;
  512. }
  513. /*
  514. * Frees a number of pages from the PCP lists
  515. * Assumes all pages on list are in same zone, and of same order.
  516. * count is the number of pages to free.
  517. *
  518. * If the zone was previously in an "all pages pinned" state then look to
  519. * see if this freeing clears that state.
  520. *
  521. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  522. * pinned" detection logic.
  523. */
  524. static void free_pcppages_bulk(struct zone *zone, int count,
  525. struct per_cpu_pages *pcp)
  526. {
  527. int migratetype = 0;
  528. int batch_free = 0;
  529. int to_free = count;
  530. spin_lock(&zone->lock);
  531. zone->all_unreclaimable = 0;
  532. zone->pages_scanned = 0;
  533. while (to_free) {
  534. struct page *page;
  535. struct list_head *list;
  536. /*
  537. * Remove pages from lists in a round-robin fashion. A
  538. * batch_free count is maintained that is incremented when an
  539. * empty list is encountered. This is so more pages are freed
  540. * off fuller lists instead of spinning excessively around empty
  541. * lists
  542. */
  543. do {
  544. batch_free++;
  545. if (++migratetype == MIGRATE_PCPTYPES)
  546. migratetype = 0;
  547. list = &pcp->lists[migratetype];
  548. } while (list_empty(list));
  549. /* This is the only non-empty list. Free them all. */
  550. if (batch_free == MIGRATE_PCPTYPES)
  551. batch_free = to_free;
  552. do {
  553. page = list_entry(list->prev, struct page, lru);
  554. /* must delete as __free_one_page list manipulates */
  555. list_del(&page->lru);
  556. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  557. __free_one_page(page, zone, 0, page_private(page));
  558. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  559. } while (--to_free && --batch_free && !list_empty(list));
  560. }
  561. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  562. spin_unlock(&zone->lock);
  563. }
  564. static void free_one_page(struct zone *zone, struct page *page, int order,
  565. int migratetype)
  566. {
  567. spin_lock(&zone->lock);
  568. zone->all_unreclaimable = 0;
  569. zone->pages_scanned = 0;
  570. __free_one_page(page, zone, order, migratetype);
  571. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  572. spin_unlock(&zone->lock);
  573. }
  574. static bool free_pages_prepare(struct page *page, unsigned int order)
  575. {
  576. int i;
  577. int bad = 0;
  578. trace_mm_page_free_direct(page, order);
  579. kmemcheck_free_shadow(page, order);
  580. if (PageAnon(page))
  581. page->mapping = NULL;
  582. for (i = 0; i < (1 << order); i++)
  583. bad += free_pages_check(page + i);
  584. if (bad)
  585. return false;
  586. if (!PageHighMem(page)) {
  587. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  588. debug_check_no_obj_freed(page_address(page),
  589. PAGE_SIZE << order);
  590. }
  591. arch_free_page(page, order);
  592. kernel_map_pages(page, 1 << order, 0);
  593. return true;
  594. }
  595. static void __free_pages_ok(struct page *page, unsigned int order)
  596. {
  597. unsigned long flags;
  598. int wasMlocked = __TestClearPageMlocked(page);
  599. if (!free_pages_prepare(page, order))
  600. return;
  601. local_irq_save(flags);
  602. if (unlikely(wasMlocked))
  603. free_page_mlock(page);
  604. __count_vm_events(PGFREE, 1 << order);
  605. free_one_page(page_zone(page), page, order,
  606. get_pageblock_migratetype(page));
  607. local_irq_restore(flags);
  608. }
  609. /*
  610. * permit the bootmem allocator to evade page validation on high-order frees
  611. */
  612. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  613. {
  614. if (order == 0) {
  615. __ClearPageReserved(page);
  616. set_page_count(page, 0);
  617. set_page_refcounted(page);
  618. __free_page(page);
  619. } else {
  620. int loop;
  621. prefetchw(page);
  622. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  623. struct page *p = &page[loop];
  624. if (loop + 1 < BITS_PER_LONG)
  625. prefetchw(p + 1);
  626. __ClearPageReserved(p);
  627. set_page_count(p, 0);
  628. }
  629. set_page_refcounted(page);
  630. __free_pages(page, order);
  631. }
  632. }
  633. /*
  634. * The order of subdivision here is critical for the IO subsystem.
  635. * Please do not alter this order without good reasons and regression
  636. * testing. Specifically, as large blocks of memory are subdivided,
  637. * the order in which smaller blocks are delivered depends on the order
  638. * they're subdivided in this function. This is the primary factor
  639. * influencing the order in which pages are delivered to the IO
  640. * subsystem according to empirical testing, and this is also justified
  641. * by considering the behavior of a buddy system containing a single
  642. * large block of memory acted on by a series of small allocations.
  643. * This behavior is a critical factor in sglist merging's success.
  644. *
  645. * -- wli
  646. */
  647. static inline void expand(struct zone *zone, struct page *page,
  648. int low, int high, struct free_area *area,
  649. int migratetype)
  650. {
  651. unsigned long size = 1 << high;
  652. while (high > low) {
  653. area--;
  654. high--;
  655. size >>= 1;
  656. VM_BUG_ON(bad_range(zone, &page[size]));
  657. list_add(&page[size].lru, &area->free_list[migratetype]);
  658. area->nr_free++;
  659. set_page_order(&page[size], high);
  660. }
  661. }
  662. /*
  663. * This page is about to be returned from the page allocator
  664. */
  665. static inline int check_new_page(struct page *page)
  666. {
  667. if (unlikely(page_mapcount(page) |
  668. (page->mapping != NULL) |
  669. (atomic_read(&page->_count) != 0) |
  670. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  671. (mem_cgroup_bad_page_check(page)))) {
  672. bad_page(page);
  673. return 1;
  674. }
  675. return 0;
  676. }
  677. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  678. {
  679. int i;
  680. for (i = 0; i < (1 << order); i++) {
  681. struct page *p = page + i;
  682. if (unlikely(check_new_page(p)))
  683. return 1;
  684. }
  685. set_page_private(page, 0);
  686. set_page_refcounted(page);
  687. arch_alloc_page(page, order);
  688. kernel_map_pages(page, 1 << order, 1);
  689. if (gfp_flags & __GFP_ZERO)
  690. prep_zero_page(page, order, gfp_flags);
  691. if (order && (gfp_flags & __GFP_COMP))
  692. prep_compound_page(page, order);
  693. return 0;
  694. }
  695. /*
  696. * Go through the free lists for the given migratetype and remove
  697. * the smallest available page from the freelists
  698. */
  699. static inline
  700. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  701. int migratetype)
  702. {
  703. unsigned int current_order;
  704. struct free_area * area;
  705. struct page *page;
  706. /* Find a page of the appropriate size in the preferred list */
  707. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  708. area = &(zone->free_area[current_order]);
  709. if (list_empty(&area->free_list[migratetype]))
  710. continue;
  711. page = list_entry(area->free_list[migratetype].next,
  712. struct page, lru);
  713. list_del(&page->lru);
  714. rmv_page_order(page);
  715. area->nr_free--;
  716. expand(zone, page, order, current_order, area, migratetype);
  717. return page;
  718. }
  719. return NULL;
  720. }
  721. /*
  722. * This array describes the order lists are fallen back to when
  723. * the free lists for the desirable migrate type are depleted
  724. */
  725. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  726. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  727. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  728. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  729. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  730. };
  731. /*
  732. * Move the free pages in a range to the free lists of the requested type.
  733. * Note that start_page and end_pages are not aligned on a pageblock
  734. * boundary. If alignment is required, use move_freepages_block()
  735. */
  736. static int move_freepages(struct zone *zone,
  737. struct page *start_page, struct page *end_page,
  738. int migratetype)
  739. {
  740. struct page *page;
  741. unsigned long order;
  742. int pages_moved = 0;
  743. #ifndef CONFIG_HOLES_IN_ZONE
  744. /*
  745. * page_zone is not safe to call in this context when
  746. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  747. * anyway as we check zone boundaries in move_freepages_block().
  748. * Remove at a later date when no bug reports exist related to
  749. * grouping pages by mobility
  750. */
  751. BUG_ON(page_zone(start_page) != page_zone(end_page));
  752. #endif
  753. for (page = start_page; page <= end_page;) {
  754. /* Make sure we are not inadvertently changing nodes */
  755. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  756. if (!pfn_valid_within(page_to_pfn(page))) {
  757. page++;
  758. continue;
  759. }
  760. if (!PageBuddy(page)) {
  761. page++;
  762. continue;
  763. }
  764. order = page_order(page);
  765. list_move(&page->lru,
  766. &zone->free_area[order].free_list[migratetype]);
  767. page += 1 << order;
  768. pages_moved += 1 << order;
  769. }
  770. return pages_moved;
  771. }
  772. static int move_freepages_block(struct zone *zone, struct page *page,
  773. int migratetype)
  774. {
  775. unsigned long start_pfn, end_pfn;
  776. struct page *start_page, *end_page;
  777. start_pfn = page_to_pfn(page);
  778. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  779. start_page = pfn_to_page(start_pfn);
  780. end_page = start_page + pageblock_nr_pages - 1;
  781. end_pfn = start_pfn + pageblock_nr_pages - 1;
  782. /* Do not cross zone boundaries */
  783. if (start_pfn < zone->zone_start_pfn)
  784. start_page = page;
  785. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  786. return 0;
  787. return move_freepages(zone, start_page, end_page, migratetype);
  788. }
  789. static void change_pageblock_range(struct page *pageblock_page,
  790. int start_order, int migratetype)
  791. {
  792. int nr_pageblocks = 1 << (start_order - pageblock_order);
  793. while (nr_pageblocks--) {
  794. set_pageblock_migratetype(pageblock_page, migratetype);
  795. pageblock_page += pageblock_nr_pages;
  796. }
  797. }
  798. /* Remove an element from the buddy allocator from the fallback list */
  799. static inline struct page *
  800. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  801. {
  802. struct free_area * area;
  803. int current_order;
  804. struct page *page;
  805. int migratetype, i;
  806. /* Find the largest possible block of pages in the other list */
  807. for (current_order = MAX_ORDER-1; current_order >= order;
  808. --current_order) {
  809. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  810. migratetype = fallbacks[start_migratetype][i];
  811. /* MIGRATE_RESERVE handled later if necessary */
  812. if (migratetype == MIGRATE_RESERVE)
  813. continue;
  814. area = &(zone->free_area[current_order]);
  815. if (list_empty(&area->free_list[migratetype]))
  816. continue;
  817. page = list_entry(area->free_list[migratetype].next,
  818. struct page, lru);
  819. area->nr_free--;
  820. /*
  821. * If breaking a large block of pages, move all free
  822. * pages to the preferred allocation list. If falling
  823. * back for a reclaimable kernel allocation, be more
  824. * aggressive about taking ownership of free pages
  825. */
  826. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  827. start_migratetype == MIGRATE_RECLAIMABLE ||
  828. page_group_by_mobility_disabled) {
  829. unsigned long pages;
  830. pages = move_freepages_block(zone, page,
  831. start_migratetype);
  832. /* Claim the whole block if over half of it is free */
  833. if (pages >= (1 << (pageblock_order-1)) ||
  834. page_group_by_mobility_disabled)
  835. set_pageblock_migratetype(page,
  836. start_migratetype);
  837. migratetype = start_migratetype;
  838. }
  839. /* Remove the page from the freelists */
  840. list_del(&page->lru);
  841. rmv_page_order(page);
  842. /* Take ownership for orders >= pageblock_order */
  843. if (current_order >= pageblock_order)
  844. change_pageblock_range(page, current_order,
  845. start_migratetype);
  846. expand(zone, page, order, current_order, area, migratetype);
  847. trace_mm_page_alloc_extfrag(page, order, current_order,
  848. start_migratetype, migratetype);
  849. return page;
  850. }
  851. }
  852. return NULL;
  853. }
  854. /*
  855. * Do the hard work of removing an element from the buddy allocator.
  856. * Call me with the zone->lock already held.
  857. */
  858. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  859. int migratetype)
  860. {
  861. struct page *page;
  862. retry_reserve:
  863. page = __rmqueue_smallest(zone, order, migratetype);
  864. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  865. page = __rmqueue_fallback(zone, order, migratetype);
  866. /*
  867. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  868. * is used because __rmqueue_smallest is an inline function
  869. * and we want just one call site
  870. */
  871. if (!page) {
  872. migratetype = MIGRATE_RESERVE;
  873. goto retry_reserve;
  874. }
  875. }
  876. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  877. return page;
  878. }
  879. /*
  880. * Obtain a specified number of elements from the buddy allocator, all under
  881. * a single hold of the lock, for efficiency. Add them to the supplied list.
  882. * Returns the number of new pages which were placed at *list.
  883. */
  884. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  885. unsigned long count, struct list_head *list,
  886. int migratetype, int cold)
  887. {
  888. int i;
  889. spin_lock(&zone->lock);
  890. for (i = 0; i < count; ++i) {
  891. struct page *page = __rmqueue(zone, order, migratetype);
  892. if (unlikely(page == NULL))
  893. break;
  894. /*
  895. * Split buddy pages returned by expand() are received here
  896. * in physical page order. The page is added to the callers and
  897. * list and the list head then moves forward. From the callers
  898. * perspective, the linked list is ordered by page number in
  899. * some conditions. This is useful for IO devices that can
  900. * merge IO requests if the physical pages are ordered
  901. * properly.
  902. */
  903. if (likely(cold == 0))
  904. list_add(&page->lru, list);
  905. else
  906. list_add_tail(&page->lru, list);
  907. set_page_private(page, migratetype);
  908. list = &page->lru;
  909. }
  910. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  911. spin_unlock(&zone->lock);
  912. return i;
  913. }
  914. #ifdef CONFIG_NUMA
  915. /*
  916. * Called from the vmstat counter updater to drain pagesets of this
  917. * currently executing processor on remote nodes after they have
  918. * expired.
  919. *
  920. * Note that this function must be called with the thread pinned to
  921. * a single processor.
  922. */
  923. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  924. {
  925. unsigned long flags;
  926. int to_drain;
  927. local_irq_save(flags);
  928. if (pcp->count >= pcp->batch)
  929. to_drain = pcp->batch;
  930. else
  931. to_drain = pcp->count;
  932. free_pcppages_bulk(zone, to_drain, pcp);
  933. pcp->count -= to_drain;
  934. local_irq_restore(flags);
  935. }
  936. #endif
  937. /*
  938. * Drain pages of the indicated processor.
  939. *
  940. * The processor must either be the current processor and the
  941. * thread pinned to the current processor or a processor that
  942. * is not online.
  943. */
  944. static void drain_pages(unsigned int cpu)
  945. {
  946. unsigned long flags;
  947. struct zone *zone;
  948. for_each_populated_zone(zone) {
  949. struct per_cpu_pageset *pset;
  950. struct per_cpu_pages *pcp;
  951. local_irq_save(flags);
  952. pset = per_cpu_ptr(zone->pageset, cpu);
  953. pcp = &pset->pcp;
  954. if (pcp->count) {
  955. free_pcppages_bulk(zone, pcp->count, pcp);
  956. pcp->count = 0;
  957. }
  958. local_irq_restore(flags);
  959. }
  960. }
  961. /*
  962. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  963. */
  964. void drain_local_pages(void *arg)
  965. {
  966. drain_pages(smp_processor_id());
  967. }
  968. /*
  969. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  970. */
  971. void drain_all_pages(void)
  972. {
  973. on_each_cpu(drain_local_pages, NULL, 1);
  974. }
  975. #ifdef CONFIG_HIBERNATION
  976. void mark_free_pages(struct zone *zone)
  977. {
  978. unsigned long pfn, max_zone_pfn;
  979. unsigned long flags;
  980. int order, t;
  981. struct list_head *curr;
  982. if (!zone->spanned_pages)
  983. return;
  984. spin_lock_irqsave(&zone->lock, flags);
  985. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  986. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  987. if (pfn_valid(pfn)) {
  988. struct page *page = pfn_to_page(pfn);
  989. if (!swsusp_page_is_forbidden(page))
  990. swsusp_unset_page_free(page);
  991. }
  992. for_each_migratetype_order(order, t) {
  993. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  994. unsigned long i;
  995. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  996. for (i = 0; i < (1UL << order); i++)
  997. swsusp_set_page_free(pfn_to_page(pfn + i));
  998. }
  999. }
  1000. spin_unlock_irqrestore(&zone->lock, flags);
  1001. }
  1002. #endif /* CONFIG_PM */
  1003. /*
  1004. * Free a 0-order page
  1005. * cold == 1 ? free a cold page : free a hot page
  1006. */
  1007. void free_hot_cold_page(struct page *page, int cold)
  1008. {
  1009. struct zone *zone = page_zone(page);
  1010. struct per_cpu_pages *pcp;
  1011. unsigned long flags;
  1012. int migratetype;
  1013. int wasMlocked = __TestClearPageMlocked(page);
  1014. if (!free_pages_prepare(page, 0))
  1015. return;
  1016. migratetype = get_pageblock_migratetype(page);
  1017. set_page_private(page, migratetype);
  1018. local_irq_save(flags);
  1019. if (unlikely(wasMlocked))
  1020. free_page_mlock(page);
  1021. __count_vm_event(PGFREE);
  1022. /*
  1023. * We only track unmovable, reclaimable and movable on pcp lists.
  1024. * Free ISOLATE pages back to the allocator because they are being
  1025. * offlined but treat RESERVE as movable pages so we can get those
  1026. * areas back if necessary. Otherwise, we may have to free
  1027. * excessively into the page allocator
  1028. */
  1029. if (migratetype >= MIGRATE_PCPTYPES) {
  1030. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1031. free_one_page(zone, page, 0, migratetype);
  1032. goto out;
  1033. }
  1034. migratetype = MIGRATE_MOVABLE;
  1035. }
  1036. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1037. if (cold)
  1038. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1039. else
  1040. list_add(&page->lru, &pcp->lists[migratetype]);
  1041. pcp->count++;
  1042. if (pcp->count >= pcp->high) {
  1043. free_pcppages_bulk(zone, pcp->batch, pcp);
  1044. pcp->count -= pcp->batch;
  1045. }
  1046. out:
  1047. local_irq_restore(flags);
  1048. }
  1049. /*
  1050. * split_page takes a non-compound higher-order page, and splits it into
  1051. * n (1<<order) sub-pages: page[0..n]
  1052. * Each sub-page must be freed individually.
  1053. *
  1054. * Note: this is probably too low level an operation for use in drivers.
  1055. * Please consult with lkml before using this in your driver.
  1056. */
  1057. void split_page(struct page *page, unsigned int order)
  1058. {
  1059. int i;
  1060. VM_BUG_ON(PageCompound(page));
  1061. VM_BUG_ON(!page_count(page));
  1062. #ifdef CONFIG_KMEMCHECK
  1063. /*
  1064. * Split shadow pages too, because free(page[0]) would
  1065. * otherwise free the whole shadow.
  1066. */
  1067. if (kmemcheck_page_is_tracked(page))
  1068. split_page(virt_to_page(page[0].shadow), order);
  1069. #endif
  1070. for (i = 1; i < (1 << order); i++)
  1071. set_page_refcounted(page + i);
  1072. }
  1073. /*
  1074. * Similar to split_page except the page is already free. As this is only
  1075. * being used for migration, the migratetype of the block also changes.
  1076. * As this is called with interrupts disabled, the caller is responsible
  1077. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1078. * are enabled.
  1079. *
  1080. * Note: this is probably too low level an operation for use in drivers.
  1081. * Please consult with lkml before using this in your driver.
  1082. */
  1083. int split_free_page(struct page *page)
  1084. {
  1085. unsigned int order;
  1086. unsigned long watermark;
  1087. struct zone *zone;
  1088. BUG_ON(!PageBuddy(page));
  1089. zone = page_zone(page);
  1090. order = page_order(page);
  1091. /* Obey watermarks as if the page was being allocated */
  1092. watermark = low_wmark_pages(zone) + (1 << order);
  1093. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1094. return 0;
  1095. /* Remove page from free list */
  1096. list_del(&page->lru);
  1097. zone->free_area[order].nr_free--;
  1098. rmv_page_order(page);
  1099. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1100. /* Split into individual pages */
  1101. set_page_refcounted(page);
  1102. split_page(page, order);
  1103. if (order >= pageblock_order - 1) {
  1104. struct page *endpage = page + (1 << order) - 1;
  1105. for (; page < endpage; page += pageblock_nr_pages)
  1106. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1107. }
  1108. return 1 << order;
  1109. }
  1110. /*
  1111. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1112. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1113. * or two.
  1114. */
  1115. static inline
  1116. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1117. struct zone *zone, int order, gfp_t gfp_flags,
  1118. int migratetype)
  1119. {
  1120. unsigned long flags;
  1121. struct page *page;
  1122. int cold = !!(gfp_flags & __GFP_COLD);
  1123. again:
  1124. if (likely(order == 0)) {
  1125. struct per_cpu_pages *pcp;
  1126. struct list_head *list;
  1127. local_irq_save(flags);
  1128. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1129. list = &pcp->lists[migratetype];
  1130. if (list_empty(list)) {
  1131. pcp->count += rmqueue_bulk(zone, 0,
  1132. pcp->batch, list,
  1133. migratetype, cold);
  1134. if (unlikely(list_empty(list)))
  1135. goto failed;
  1136. }
  1137. if (cold)
  1138. page = list_entry(list->prev, struct page, lru);
  1139. else
  1140. page = list_entry(list->next, struct page, lru);
  1141. list_del(&page->lru);
  1142. pcp->count--;
  1143. } else {
  1144. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1145. /*
  1146. * __GFP_NOFAIL is not to be used in new code.
  1147. *
  1148. * All __GFP_NOFAIL callers should be fixed so that they
  1149. * properly detect and handle allocation failures.
  1150. *
  1151. * We most definitely don't want callers attempting to
  1152. * allocate greater than order-1 page units with
  1153. * __GFP_NOFAIL.
  1154. */
  1155. WARN_ON_ONCE(order > 1);
  1156. }
  1157. spin_lock_irqsave(&zone->lock, flags);
  1158. page = __rmqueue(zone, order, migratetype);
  1159. spin_unlock(&zone->lock);
  1160. if (!page)
  1161. goto failed;
  1162. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1163. }
  1164. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1165. zone_statistics(preferred_zone, zone, gfp_flags);
  1166. local_irq_restore(flags);
  1167. VM_BUG_ON(bad_range(zone, page));
  1168. if (prep_new_page(page, order, gfp_flags))
  1169. goto again;
  1170. return page;
  1171. failed:
  1172. local_irq_restore(flags);
  1173. return NULL;
  1174. }
  1175. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1176. #define ALLOC_WMARK_MIN WMARK_MIN
  1177. #define ALLOC_WMARK_LOW WMARK_LOW
  1178. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1179. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1180. /* Mask to get the watermark bits */
  1181. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1182. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1183. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1184. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1185. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1186. static struct fail_page_alloc_attr {
  1187. struct fault_attr attr;
  1188. u32 ignore_gfp_highmem;
  1189. u32 ignore_gfp_wait;
  1190. u32 min_order;
  1191. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1192. struct dentry *ignore_gfp_highmem_file;
  1193. struct dentry *ignore_gfp_wait_file;
  1194. struct dentry *min_order_file;
  1195. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1196. } fail_page_alloc = {
  1197. .attr = FAULT_ATTR_INITIALIZER,
  1198. .ignore_gfp_wait = 1,
  1199. .ignore_gfp_highmem = 1,
  1200. .min_order = 1,
  1201. };
  1202. static int __init setup_fail_page_alloc(char *str)
  1203. {
  1204. return setup_fault_attr(&fail_page_alloc.attr, str);
  1205. }
  1206. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1207. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1208. {
  1209. if (order < fail_page_alloc.min_order)
  1210. return 0;
  1211. if (gfp_mask & __GFP_NOFAIL)
  1212. return 0;
  1213. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1214. return 0;
  1215. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1216. return 0;
  1217. return should_fail(&fail_page_alloc.attr, 1 << order);
  1218. }
  1219. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1220. static int __init fail_page_alloc_debugfs(void)
  1221. {
  1222. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1223. struct dentry *dir;
  1224. int err;
  1225. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1226. "fail_page_alloc");
  1227. if (err)
  1228. return err;
  1229. dir = fail_page_alloc.attr.dentries.dir;
  1230. fail_page_alloc.ignore_gfp_wait_file =
  1231. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1232. &fail_page_alloc.ignore_gfp_wait);
  1233. fail_page_alloc.ignore_gfp_highmem_file =
  1234. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1235. &fail_page_alloc.ignore_gfp_highmem);
  1236. fail_page_alloc.min_order_file =
  1237. debugfs_create_u32("min-order", mode, dir,
  1238. &fail_page_alloc.min_order);
  1239. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1240. !fail_page_alloc.ignore_gfp_highmem_file ||
  1241. !fail_page_alloc.min_order_file) {
  1242. err = -ENOMEM;
  1243. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1244. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1245. debugfs_remove(fail_page_alloc.min_order_file);
  1246. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1247. }
  1248. return err;
  1249. }
  1250. late_initcall(fail_page_alloc_debugfs);
  1251. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1252. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1253. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1254. {
  1255. return 0;
  1256. }
  1257. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1258. /*
  1259. * Return true if free pages are above 'mark'. This takes into account the order
  1260. * of the allocation.
  1261. */
  1262. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1263. int classzone_idx, int alloc_flags, long free_pages)
  1264. {
  1265. /* free_pages my go negative - that's OK */
  1266. long min = mark;
  1267. int o;
  1268. free_pages -= (1 << order) + 1;
  1269. if (alloc_flags & ALLOC_HIGH)
  1270. min -= min / 2;
  1271. if (alloc_flags & ALLOC_HARDER)
  1272. min -= min / 4;
  1273. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1274. return false;
  1275. for (o = 0; o < order; o++) {
  1276. /* At the next order, this order's pages become unavailable */
  1277. free_pages -= z->free_area[o].nr_free << o;
  1278. /* Require fewer higher order pages to be free */
  1279. min >>= 1;
  1280. if (free_pages <= min)
  1281. return false;
  1282. }
  1283. return true;
  1284. }
  1285. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1286. int classzone_idx, int alloc_flags)
  1287. {
  1288. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1289. zone_page_state(z, NR_FREE_PAGES));
  1290. }
  1291. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1292. int classzone_idx, int alloc_flags)
  1293. {
  1294. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1295. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1296. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1297. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1298. free_pages);
  1299. }
  1300. #ifdef CONFIG_NUMA
  1301. /*
  1302. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1303. * skip over zones that are not allowed by the cpuset, or that have
  1304. * been recently (in last second) found to be nearly full. See further
  1305. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1306. * that have to skip over a lot of full or unallowed zones.
  1307. *
  1308. * If the zonelist cache is present in the passed in zonelist, then
  1309. * returns a pointer to the allowed node mask (either the current
  1310. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1311. *
  1312. * If the zonelist cache is not available for this zonelist, does
  1313. * nothing and returns NULL.
  1314. *
  1315. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1316. * a second since last zap'd) then we zap it out (clear its bits.)
  1317. *
  1318. * We hold off even calling zlc_setup, until after we've checked the
  1319. * first zone in the zonelist, on the theory that most allocations will
  1320. * be satisfied from that first zone, so best to examine that zone as
  1321. * quickly as we can.
  1322. */
  1323. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1324. {
  1325. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1326. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1327. zlc = zonelist->zlcache_ptr;
  1328. if (!zlc)
  1329. return NULL;
  1330. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1331. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1332. zlc->last_full_zap = jiffies;
  1333. }
  1334. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1335. &cpuset_current_mems_allowed :
  1336. &node_states[N_HIGH_MEMORY];
  1337. return allowednodes;
  1338. }
  1339. /*
  1340. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1341. * if it is worth looking at further for free memory:
  1342. * 1) Check that the zone isn't thought to be full (doesn't have its
  1343. * bit set in the zonelist_cache fullzones BITMAP).
  1344. * 2) Check that the zones node (obtained from the zonelist_cache
  1345. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1346. * Return true (non-zero) if zone is worth looking at further, or
  1347. * else return false (zero) if it is not.
  1348. *
  1349. * This check -ignores- the distinction between various watermarks,
  1350. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1351. * found to be full for any variation of these watermarks, it will
  1352. * be considered full for up to one second by all requests, unless
  1353. * we are so low on memory on all allowed nodes that we are forced
  1354. * into the second scan of the zonelist.
  1355. *
  1356. * In the second scan we ignore this zonelist cache and exactly
  1357. * apply the watermarks to all zones, even it is slower to do so.
  1358. * We are low on memory in the second scan, and should leave no stone
  1359. * unturned looking for a free page.
  1360. */
  1361. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1362. nodemask_t *allowednodes)
  1363. {
  1364. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1365. int i; /* index of *z in zonelist zones */
  1366. int n; /* node that zone *z is on */
  1367. zlc = zonelist->zlcache_ptr;
  1368. if (!zlc)
  1369. return 1;
  1370. i = z - zonelist->_zonerefs;
  1371. n = zlc->z_to_n[i];
  1372. /* This zone is worth trying if it is allowed but not full */
  1373. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1374. }
  1375. /*
  1376. * Given 'z' scanning a zonelist, set the corresponding bit in
  1377. * zlc->fullzones, so that subsequent attempts to allocate a page
  1378. * from that zone don't waste time re-examining it.
  1379. */
  1380. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1381. {
  1382. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1383. int i; /* index of *z in zonelist zones */
  1384. zlc = zonelist->zlcache_ptr;
  1385. if (!zlc)
  1386. return;
  1387. i = z - zonelist->_zonerefs;
  1388. set_bit(i, zlc->fullzones);
  1389. }
  1390. #else /* CONFIG_NUMA */
  1391. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1392. {
  1393. return NULL;
  1394. }
  1395. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1396. nodemask_t *allowednodes)
  1397. {
  1398. return 1;
  1399. }
  1400. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1401. {
  1402. }
  1403. #endif /* CONFIG_NUMA */
  1404. /*
  1405. * get_page_from_freelist goes through the zonelist trying to allocate
  1406. * a page.
  1407. */
  1408. static struct page *
  1409. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1410. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1411. struct zone *preferred_zone, int migratetype)
  1412. {
  1413. struct zoneref *z;
  1414. struct page *page = NULL;
  1415. int classzone_idx;
  1416. struct zone *zone;
  1417. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1418. int zlc_active = 0; /* set if using zonelist_cache */
  1419. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1420. classzone_idx = zone_idx(preferred_zone);
  1421. zonelist_scan:
  1422. /*
  1423. * Scan zonelist, looking for a zone with enough free.
  1424. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1425. */
  1426. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1427. high_zoneidx, nodemask) {
  1428. if (NUMA_BUILD && zlc_active &&
  1429. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1430. continue;
  1431. if ((alloc_flags & ALLOC_CPUSET) &&
  1432. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1433. goto try_next_zone;
  1434. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1435. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1436. unsigned long mark;
  1437. int ret;
  1438. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1439. if (zone_watermark_ok(zone, order, mark,
  1440. classzone_idx, alloc_flags))
  1441. goto try_this_zone;
  1442. if (zone_reclaim_mode == 0)
  1443. goto this_zone_full;
  1444. ret = zone_reclaim(zone, gfp_mask, order);
  1445. switch (ret) {
  1446. case ZONE_RECLAIM_NOSCAN:
  1447. /* did not scan */
  1448. goto try_next_zone;
  1449. case ZONE_RECLAIM_FULL:
  1450. /* scanned but unreclaimable */
  1451. goto this_zone_full;
  1452. default:
  1453. /* did we reclaim enough */
  1454. if (!zone_watermark_ok(zone, order, mark,
  1455. classzone_idx, alloc_flags))
  1456. goto this_zone_full;
  1457. }
  1458. }
  1459. try_this_zone:
  1460. page = buffered_rmqueue(preferred_zone, zone, order,
  1461. gfp_mask, migratetype);
  1462. if (page)
  1463. break;
  1464. this_zone_full:
  1465. if (NUMA_BUILD)
  1466. zlc_mark_zone_full(zonelist, z);
  1467. try_next_zone:
  1468. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1469. /*
  1470. * we do zlc_setup after the first zone is tried but only
  1471. * if there are multiple nodes make it worthwhile
  1472. */
  1473. allowednodes = zlc_setup(zonelist, alloc_flags);
  1474. zlc_active = 1;
  1475. did_zlc_setup = 1;
  1476. }
  1477. }
  1478. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1479. /* Disable zlc cache for second zonelist scan */
  1480. zlc_active = 0;
  1481. goto zonelist_scan;
  1482. }
  1483. return page;
  1484. }
  1485. /*
  1486. * Large machines with many possible nodes should not always dump per-node
  1487. * meminfo in irq context.
  1488. */
  1489. static inline bool should_suppress_show_mem(void)
  1490. {
  1491. bool ret = false;
  1492. #if NODES_SHIFT > 8
  1493. ret = in_interrupt();
  1494. #endif
  1495. return ret;
  1496. }
  1497. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1498. DEFAULT_RATELIMIT_INTERVAL,
  1499. DEFAULT_RATELIMIT_BURST);
  1500. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1501. {
  1502. va_list args;
  1503. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1504. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  1505. return;
  1506. /*
  1507. * This documents exceptions given to allocations in certain
  1508. * contexts that are allowed to allocate outside current's set
  1509. * of allowed nodes.
  1510. */
  1511. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1512. if (test_thread_flag(TIF_MEMDIE) ||
  1513. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1514. filter &= ~SHOW_MEM_FILTER_NODES;
  1515. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1516. filter &= ~SHOW_MEM_FILTER_NODES;
  1517. if (fmt) {
  1518. printk(KERN_WARNING);
  1519. va_start(args, fmt);
  1520. vprintk(fmt, args);
  1521. va_end(args);
  1522. }
  1523. pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
  1524. current->comm, order, gfp_mask);
  1525. dump_stack();
  1526. if (!should_suppress_show_mem())
  1527. show_mem(filter);
  1528. }
  1529. static inline int
  1530. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1531. unsigned long pages_reclaimed)
  1532. {
  1533. /* Do not loop if specifically requested */
  1534. if (gfp_mask & __GFP_NORETRY)
  1535. return 0;
  1536. /*
  1537. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1538. * means __GFP_NOFAIL, but that may not be true in other
  1539. * implementations.
  1540. */
  1541. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1542. return 1;
  1543. /*
  1544. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1545. * specified, then we retry until we no longer reclaim any pages
  1546. * (above), or we've reclaimed an order of pages at least as
  1547. * large as the allocation's order. In both cases, if the
  1548. * allocation still fails, we stop retrying.
  1549. */
  1550. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1551. return 1;
  1552. /*
  1553. * Don't let big-order allocations loop unless the caller
  1554. * explicitly requests that.
  1555. */
  1556. if (gfp_mask & __GFP_NOFAIL)
  1557. return 1;
  1558. return 0;
  1559. }
  1560. static inline struct page *
  1561. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1562. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1563. nodemask_t *nodemask, struct zone *preferred_zone,
  1564. int migratetype)
  1565. {
  1566. struct page *page;
  1567. /* Acquire the OOM killer lock for the zones in zonelist */
  1568. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1569. schedule_timeout_uninterruptible(1);
  1570. return NULL;
  1571. }
  1572. /*
  1573. * Go through the zonelist yet one more time, keep very high watermark
  1574. * here, this is only to catch a parallel oom killing, we must fail if
  1575. * we're still under heavy pressure.
  1576. */
  1577. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1578. order, zonelist, high_zoneidx,
  1579. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1580. preferred_zone, migratetype);
  1581. if (page)
  1582. goto out;
  1583. if (!(gfp_mask & __GFP_NOFAIL)) {
  1584. /* The OOM killer will not help higher order allocs */
  1585. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1586. goto out;
  1587. /* The OOM killer does not needlessly kill tasks for lowmem */
  1588. if (high_zoneidx < ZONE_NORMAL)
  1589. goto out;
  1590. /*
  1591. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1592. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1593. * The caller should handle page allocation failure by itself if
  1594. * it specifies __GFP_THISNODE.
  1595. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1596. */
  1597. if (gfp_mask & __GFP_THISNODE)
  1598. goto out;
  1599. }
  1600. /* Exhausted what can be done so it's blamo time */
  1601. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1602. out:
  1603. clear_zonelist_oom(zonelist, gfp_mask);
  1604. return page;
  1605. }
  1606. #ifdef CONFIG_COMPACTION
  1607. /* Try memory compaction for high-order allocations before reclaim */
  1608. static struct page *
  1609. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1610. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1611. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1612. int migratetype, unsigned long *did_some_progress,
  1613. bool sync_migration)
  1614. {
  1615. struct page *page;
  1616. if (!order || compaction_deferred(preferred_zone))
  1617. return NULL;
  1618. current->flags |= PF_MEMALLOC;
  1619. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1620. nodemask, sync_migration);
  1621. current->flags &= ~PF_MEMALLOC;
  1622. if (*did_some_progress != COMPACT_SKIPPED) {
  1623. /* Page migration frees to the PCP lists but we want merging */
  1624. drain_pages(get_cpu());
  1625. put_cpu();
  1626. page = get_page_from_freelist(gfp_mask, nodemask,
  1627. order, zonelist, high_zoneidx,
  1628. alloc_flags, preferred_zone,
  1629. migratetype);
  1630. if (page) {
  1631. preferred_zone->compact_considered = 0;
  1632. preferred_zone->compact_defer_shift = 0;
  1633. count_vm_event(COMPACTSUCCESS);
  1634. return page;
  1635. }
  1636. /*
  1637. * It's bad if compaction run occurs and fails.
  1638. * The most likely reason is that pages exist,
  1639. * but not enough to satisfy watermarks.
  1640. */
  1641. count_vm_event(COMPACTFAIL);
  1642. defer_compaction(preferred_zone);
  1643. cond_resched();
  1644. }
  1645. return NULL;
  1646. }
  1647. #else
  1648. static inline struct page *
  1649. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1650. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1651. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1652. int migratetype, unsigned long *did_some_progress,
  1653. bool sync_migration)
  1654. {
  1655. return NULL;
  1656. }
  1657. #endif /* CONFIG_COMPACTION */
  1658. /* The really slow allocator path where we enter direct reclaim */
  1659. static inline struct page *
  1660. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1661. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1662. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1663. int migratetype, unsigned long *did_some_progress)
  1664. {
  1665. struct page *page = NULL;
  1666. struct reclaim_state reclaim_state;
  1667. bool drained = false;
  1668. cond_resched();
  1669. /* We now go into synchronous reclaim */
  1670. cpuset_memory_pressure_bump();
  1671. current->flags |= PF_MEMALLOC;
  1672. lockdep_set_current_reclaim_state(gfp_mask);
  1673. reclaim_state.reclaimed_slab = 0;
  1674. current->reclaim_state = &reclaim_state;
  1675. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1676. current->reclaim_state = NULL;
  1677. lockdep_clear_current_reclaim_state();
  1678. current->flags &= ~PF_MEMALLOC;
  1679. cond_resched();
  1680. if (unlikely(!(*did_some_progress)))
  1681. return NULL;
  1682. retry:
  1683. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1684. zonelist, high_zoneidx,
  1685. alloc_flags, preferred_zone,
  1686. migratetype);
  1687. /*
  1688. * If an allocation failed after direct reclaim, it could be because
  1689. * pages are pinned on the per-cpu lists. Drain them and try again
  1690. */
  1691. if (!page && !drained) {
  1692. drain_all_pages();
  1693. drained = true;
  1694. goto retry;
  1695. }
  1696. return page;
  1697. }
  1698. /*
  1699. * This is called in the allocator slow-path if the allocation request is of
  1700. * sufficient urgency to ignore watermarks and take other desperate measures
  1701. */
  1702. static inline struct page *
  1703. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1704. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1705. nodemask_t *nodemask, struct zone *preferred_zone,
  1706. int migratetype)
  1707. {
  1708. struct page *page;
  1709. do {
  1710. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1711. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1712. preferred_zone, migratetype);
  1713. if (!page && gfp_mask & __GFP_NOFAIL)
  1714. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1715. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1716. return page;
  1717. }
  1718. static inline
  1719. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1720. enum zone_type high_zoneidx,
  1721. enum zone_type classzone_idx)
  1722. {
  1723. struct zoneref *z;
  1724. struct zone *zone;
  1725. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1726. wakeup_kswapd(zone, order, classzone_idx);
  1727. }
  1728. static inline int
  1729. gfp_to_alloc_flags(gfp_t gfp_mask)
  1730. {
  1731. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1732. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1733. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1734. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1735. /*
  1736. * The caller may dip into page reserves a bit more if the caller
  1737. * cannot run direct reclaim, or if the caller has realtime scheduling
  1738. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1739. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1740. */
  1741. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1742. if (!wait) {
  1743. /*
  1744. * Not worth trying to allocate harder for
  1745. * __GFP_NOMEMALLOC even if it can't schedule.
  1746. */
  1747. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1748. alloc_flags |= ALLOC_HARDER;
  1749. /*
  1750. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1751. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1752. */
  1753. alloc_flags &= ~ALLOC_CPUSET;
  1754. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1755. alloc_flags |= ALLOC_HARDER;
  1756. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1757. if (!in_interrupt() &&
  1758. ((current->flags & PF_MEMALLOC) ||
  1759. unlikely(test_thread_flag(TIF_MEMDIE))))
  1760. alloc_flags |= ALLOC_NO_WATERMARKS;
  1761. }
  1762. return alloc_flags;
  1763. }
  1764. static inline struct page *
  1765. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1766. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1767. nodemask_t *nodemask, struct zone *preferred_zone,
  1768. int migratetype)
  1769. {
  1770. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1771. struct page *page = NULL;
  1772. int alloc_flags;
  1773. unsigned long pages_reclaimed = 0;
  1774. unsigned long did_some_progress;
  1775. bool sync_migration = false;
  1776. /*
  1777. * In the slowpath, we sanity check order to avoid ever trying to
  1778. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1779. * be using allocators in order of preference for an area that is
  1780. * too large.
  1781. */
  1782. if (order >= MAX_ORDER) {
  1783. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1784. return NULL;
  1785. }
  1786. /*
  1787. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1788. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1789. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1790. * using a larger set of nodes after it has established that the
  1791. * allowed per node queues are empty and that nodes are
  1792. * over allocated.
  1793. */
  1794. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1795. goto nopage;
  1796. restart:
  1797. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1798. wake_all_kswapd(order, zonelist, high_zoneidx,
  1799. zone_idx(preferred_zone));
  1800. /*
  1801. * OK, we're below the kswapd watermark and have kicked background
  1802. * reclaim. Now things get more complex, so set up alloc_flags according
  1803. * to how we want to proceed.
  1804. */
  1805. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1806. /*
  1807. * Find the true preferred zone if the allocation is unconstrained by
  1808. * cpusets.
  1809. */
  1810. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1811. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1812. &preferred_zone);
  1813. /* This is the last chance, in general, before the goto nopage. */
  1814. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1815. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1816. preferred_zone, migratetype);
  1817. if (page)
  1818. goto got_pg;
  1819. rebalance:
  1820. /* Allocate without watermarks if the context allows */
  1821. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1822. page = __alloc_pages_high_priority(gfp_mask, order,
  1823. zonelist, high_zoneidx, nodemask,
  1824. preferred_zone, migratetype);
  1825. if (page)
  1826. goto got_pg;
  1827. }
  1828. /* Atomic allocations - we can't balance anything */
  1829. if (!wait)
  1830. goto nopage;
  1831. /* Avoid recursion of direct reclaim */
  1832. if (current->flags & PF_MEMALLOC)
  1833. goto nopage;
  1834. /* Avoid allocations with no watermarks from looping endlessly */
  1835. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1836. goto nopage;
  1837. /*
  1838. * Try direct compaction. The first pass is asynchronous. Subsequent
  1839. * attempts after direct reclaim are synchronous
  1840. */
  1841. page = __alloc_pages_direct_compact(gfp_mask, order,
  1842. zonelist, high_zoneidx,
  1843. nodemask,
  1844. alloc_flags, preferred_zone,
  1845. migratetype, &did_some_progress,
  1846. sync_migration);
  1847. if (page)
  1848. goto got_pg;
  1849. sync_migration = true;
  1850. /* Try direct reclaim and then allocating */
  1851. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1852. zonelist, high_zoneidx,
  1853. nodemask,
  1854. alloc_flags, preferred_zone,
  1855. migratetype, &did_some_progress);
  1856. if (page)
  1857. goto got_pg;
  1858. /*
  1859. * If we failed to make any progress reclaiming, then we are
  1860. * running out of options and have to consider going OOM
  1861. */
  1862. if (!did_some_progress) {
  1863. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1864. if (oom_killer_disabled)
  1865. goto nopage;
  1866. page = __alloc_pages_may_oom(gfp_mask, order,
  1867. zonelist, high_zoneidx,
  1868. nodemask, preferred_zone,
  1869. migratetype);
  1870. if (page)
  1871. goto got_pg;
  1872. if (!(gfp_mask & __GFP_NOFAIL)) {
  1873. /*
  1874. * The oom killer is not called for high-order
  1875. * allocations that may fail, so if no progress
  1876. * is being made, there are no other options and
  1877. * retrying is unlikely to help.
  1878. */
  1879. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1880. goto nopage;
  1881. /*
  1882. * The oom killer is not called for lowmem
  1883. * allocations to prevent needlessly killing
  1884. * innocent tasks.
  1885. */
  1886. if (high_zoneidx < ZONE_NORMAL)
  1887. goto nopage;
  1888. }
  1889. goto restart;
  1890. }
  1891. }
  1892. /* Check if we should retry the allocation */
  1893. pages_reclaimed += did_some_progress;
  1894. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1895. /* Wait for some write requests to complete then retry */
  1896. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1897. goto rebalance;
  1898. } else {
  1899. /*
  1900. * High-order allocations do not necessarily loop after
  1901. * direct reclaim and reclaim/compaction depends on compaction
  1902. * being called after reclaim so call directly if necessary
  1903. */
  1904. page = __alloc_pages_direct_compact(gfp_mask, order,
  1905. zonelist, high_zoneidx,
  1906. nodemask,
  1907. alloc_flags, preferred_zone,
  1908. migratetype, &did_some_progress,
  1909. sync_migration);
  1910. if (page)
  1911. goto got_pg;
  1912. }
  1913. nopage:
  1914. warn_alloc_failed(gfp_mask, order, NULL);
  1915. return page;
  1916. got_pg:
  1917. if (kmemcheck_enabled)
  1918. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1919. return page;
  1920. }
  1921. /*
  1922. * This is the 'heart' of the zoned buddy allocator.
  1923. */
  1924. struct page *
  1925. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1926. struct zonelist *zonelist, nodemask_t *nodemask)
  1927. {
  1928. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1929. struct zone *preferred_zone;
  1930. struct page *page;
  1931. int migratetype = allocflags_to_migratetype(gfp_mask);
  1932. gfp_mask &= gfp_allowed_mask;
  1933. lockdep_trace_alloc(gfp_mask);
  1934. might_sleep_if(gfp_mask & __GFP_WAIT);
  1935. if (should_fail_alloc_page(gfp_mask, order))
  1936. return NULL;
  1937. /*
  1938. * Check the zones suitable for the gfp_mask contain at least one
  1939. * valid zone. It's possible to have an empty zonelist as a result
  1940. * of GFP_THISNODE and a memoryless node
  1941. */
  1942. if (unlikely(!zonelist->_zonerefs->zone))
  1943. return NULL;
  1944. get_mems_allowed();
  1945. /* The preferred zone is used for statistics later */
  1946. first_zones_zonelist(zonelist, high_zoneidx,
  1947. nodemask ? : &cpuset_current_mems_allowed,
  1948. &preferred_zone);
  1949. if (!preferred_zone) {
  1950. put_mems_allowed();
  1951. return NULL;
  1952. }
  1953. /* First allocation attempt */
  1954. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1955. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1956. preferred_zone, migratetype);
  1957. if (unlikely(!page))
  1958. page = __alloc_pages_slowpath(gfp_mask, order,
  1959. zonelist, high_zoneidx, nodemask,
  1960. preferred_zone, migratetype);
  1961. put_mems_allowed();
  1962. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1963. return page;
  1964. }
  1965. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1966. /*
  1967. * Common helper functions.
  1968. */
  1969. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1970. {
  1971. struct page *page;
  1972. /*
  1973. * __get_free_pages() returns a 32-bit address, which cannot represent
  1974. * a highmem page
  1975. */
  1976. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1977. page = alloc_pages(gfp_mask, order);
  1978. if (!page)
  1979. return 0;
  1980. return (unsigned long) page_address(page);
  1981. }
  1982. EXPORT_SYMBOL(__get_free_pages);
  1983. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1984. {
  1985. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1986. }
  1987. EXPORT_SYMBOL(get_zeroed_page);
  1988. void __pagevec_free(struct pagevec *pvec)
  1989. {
  1990. int i = pagevec_count(pvec);
  1991. while (--i >= 0) {
  1992. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1993. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1994. }
  1995. }
  1996. void __free_pages(struct page *page, unsigned int order)
  1997. {
  1998. if (put_page_testzero(page)) {
  1999. if (order == 0)
  2000. free_hot_cold_page(page, 0);
  2001. else
  2002. __free_pages_ok(page, order);
  2003. }
  2004. }
  2005. EXPORT_SYMBOL(__free_pages);
  2006. void free_pages(unsigned long addr, unsigned int order)
  2007. {
  2008. if (addr != 0) {
  2009. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2010. __free_pages(virt_to_page((void *)addr), order);
  2011. }
  2012. }
  2013. EXPORT_SYMBOL(free_pages);
  2014. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2015. {
  2016. if (addr) {
  2017. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2018. unsigned long used = addr + PAGE_ALIGN(size);
  2019. split_page(virt_to_page((void *)addr), order);
  2020. while (used < alloc_end) {
  2021. free_page(used);
  2022. used += PAGE_SIZE;
  2023. }
  2024. }
  2025. return (void *)addr;
  2026. }
  2027. /**
  2028. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2029. * @size: the number of bytes to allocate
  2030. * @gfp_mask: GFP flags for the allocation
  2031. *
  2032. * This function is similar to alloc_pages(), except that it allocates the
  2033. * minimum number of pages to satisfy the request. alloc_pages() can only
  2034. * allocate memory in power-of-two pages.
  2035. *
  2036. * This function is also limited by MAX_ORDER.
  2037. *
  2038. * Memory allocated by this function must be released by free_pages_exact().
  2039. */
  2040. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2041. {
  2042. unsigned int order = get_order(size);
  2043. unsigned long addr;
  2044. addr = __get_free_pages(gfp_mask, order);
  2045. return make_alloc_exact(addr, order, size);
  2046. }
  2047. EXPORT_SYMBOL(alloc_pages_exact);
  2048. /**
  2049. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2050. * pages on a node.
  2051. * @nid: the preferred node ID where memory should be allocated
  2052. * @size: the number of bytes to allocate
  2053. * @gfp_mask: GFP flags for the allocation
  2054. *
  2055. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2056. * back.
  2057. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2058. * but is not exact.
  2059. */
  2060. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2061. {
  2062. unsigned order = get_order(size);
  2063. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2064. if (!p)
  2065. return NULL;
  2066. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2067. }
  2068. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2069. /**
  2070. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2071. * @virt: the value returned by alloc_pages_exact.
  2072. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2073. *
  2074. * Release the memory allocated by a previous call to alloc_pages_exact.
  2075. */
  2076. void free_pages_exact(void *virt, size_t size)
  2077. {
  2078. unsigned long addr = (unsigned long)virt;
  2079. unsigned long end = addr + PAGE_ALIGN(size);
  2080. while (addr < end) {
  2081. free_page(addr);
  2082. addr += PAGE_SIZE;
  2083. }
  2084. }
  2085. EXPORT_SYMBOL(free_pages_exact);
  2086. static unsigned int nr_free_zone_pages(int offset)
  2087. {
  2088. struct zoneref *z;
  2089. struct zone *zone;
  2090. /* Just pick one node, since fallback list is circular */
  2091. unsigned int sum = 0;
  2092. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2093. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2094. unsigned long size = zone->present_pages;
  2095. unsigned long high = high_wmark_pages(zone);
  2096. if (size > high)
  2097. sum += size - high;
  2098. }
  2099. return sum;
  2100. }
  2101. /*
  2102. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2103. */
  2104. unsigned int nr_free_buffer_pages(void)
  2105. {
  2106. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2107. }
  2108. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2109. /*
  2110. * Amount of free RAM allocatable within all zones
  2111. */
  2112. unsigned int nr_free_pagecache_pages(void)
  2113. {
  2114. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2115. }
  2116. static inline void show_node(struct zone *zone)
  2117. {
  2118. if (NUMA_BUILD)
  2119. printk("Node %d ", zone_to_nid(zone));
  2120. }
  2121. void si_meminfo(struct sysinfo *val)
  2122. {
  2123. val->totalram = totalram_pages;
  2124. val->sharedram = 0;
  2125. val->freeram = global_page_state(NR_FREE_PAGES);
  2126. val->bufferram = nr_blockdev_pages();
  2127. val->totalhigh = totalhigh_pages;
  2128. val->freehigh = nr_free_highpages();
  2129. val->mem_unit = PAGE_SIZE;
  2130. }
  2131. EXPORT_SYMBOL(si_meminfo);
  2132. #ifdef CONFIG_NUMA
  2133. void si_meminfo_node(struct sysinfo *val, int nid)
  2134. {
  2135. pg_data_t *pgdat = NODE_DATA(nid);
  2136. val->totalram = pgdat->node_present_pages;
  2137. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2138. #ifdef CONFIG_HIGHMEM
  2139. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2140. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2141. NR_FREE_PAGES);
  2142. #else
  2143. val->totalhigh = 0;
  2144. val->freehigh = 0;
  2145. #endif
  2146. val->mem_unit = PAGE_SIZE;
  2147. }
  2148. #endif
  2149. /*
  2150. * Determine whether the node should be displayed or not, depending on whether
  2151. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2152. */
  2153. bool skip_free_areas_node(unsigned int flags, int nid)
  2154. {
  2155. bool ret = false;
  2156. if (!(flags & SHOW_MEM_FILTER_NODES))
  2157. goto out;
  2158. get_mems_allowed();
  2159. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2160. put_mems_allowed();
  2161. out:
  2162. return ret;
  2163. }
  2164. #define K(x) ((x) << (PAGE_SHIFT-10))
  2165. /*
  2166. * Show free area list (used inside shift_scroll-lock stuff)
  2167. * We also calculate the percentage fragmentation. We do this by counting the
  2168. * memory on each free list with the exception of the first item on the list.
  2169. * Suppresses nodes that are not allowed by current's cpuset if
  2170. * SHOW_MEM_FILTER_NODES is passed.
  2171. */
  2172. void show_free_areas(unsigned int filter)
  2173. {
  2174. int cpu;
  2175. struct zone *zone;
  2176. for_each_populated_zone(zone) {
  2177. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2178. continue;
  2179. show_node(zone);
  2180. printk("%s per-cpu:\n", zone->name);
  2181. for_each_online_cpu(cpu) {
  2182. struct per_cpu_pageset *pageset;
  2183. pageset = per_cpu_ptr(zone->pageset, cpu);
  2184. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2185. cpu, pageset->pcp.high,
  2186. pageset->pcp.batch, pageset->pcp.count);
  2187. }
  2188. }
  2189. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2190. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2191. " unevictable:%lu"
  2192. " dirty:%lu writeback:%lu unstable:%lu\n"
  2193. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2194. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2195. global_page_state(NR_ACTIVE_ANON),
  2196. global_page_state(NR_INACTIVE_ANON),
  2197. global_page_state(NR_ISOLATED_ANON),
  2198. global_page_state(NR_ACTIVE_FILE),
  2199. global_page_state(NR_INACTIVE_FILE),
  2200. global_page_state(NR_ISOLATED_FILE),
  2201. global_page_state(NR_UNEVICTABLE),
  2202. global_page_state(NR_FILE_DIRTY),
  2203. global_page_state(NR_WRITEBACK),
  2204. global_page_state(NR_UNSTABLE_NFS),
  2205. global_page_state(NR_FREE_PAGES),
  2206. global_page_state(NR_SLAB_RECLAIMABLE),
  2207. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2208. global_page_state(NR_FILE_MAPPED),
  2209. global_page_state(NR_SHMEM),
  2210. global_page_state(NR_PAGETABLE),
  2211. global_page_state(NR_BOUNCE));
  2212. for_each_populated_zone(zone) {
  2213. int i;
  2214. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2215. continue;
  2216. show_node(zone);
  2217. printk("%s"
  2218. " free:%lukB"
  2219. " min:%lukB"
  2220. " low:%lukB"
  2221. " high:%lukB"
  2222. " active_anon:%lukB"
  2223. " inactive_anon:%lukB"
  2224. " active_file:%lukB"
  2225. " inactive_file:%lukB"
  2226. " unevictable:%lukB"
  2227. " isolated(anon):%lukB"
  2228. " isolated(file):%lukB"
  2229. " present:%lukB"
  2230. " mlocked:%lukB"
  2231. " dirty:%lukB"
  2232. " writeback:%lukB"
  2233. " mapped:%lukB"
  2234. " shmem:%lukB"
  2235. " slab_reclaimable:%lukB"
  2236. " slab_unreclaimable:%lukB"
  2237. " kernel_stack:%lukB"
  2238. " pagetables:%lukB"
  2239. " unstable:%lukB"
  2240. " bounce:%lukB"
  2241. " writeback_tmp:%lukB"
  2242. " pages_scanned:%lu"
  2243. " all_unreclaimable? %s"
  2244. "\n",
  2245. zone->name,
  2246. K(zone_page_state(zone, NR_FREE_PAGES)),
  2247. K(min_wmark_pages(zone)),
  2248. K(low_wmark_pages(zone)),
  2249. K(high_wmark_pages(zone)),
  2250. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2251. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2252. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2253. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2254. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2255. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2256. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2257. K(zone->present_pages),
  2258. K(zone_page_state(zone, NR_MLOCK)),
  2259. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2260. K(zone_page_state(zone, NR_WRITEBACK)),
  2261. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2262. K(zone_page_state(zone, NR_SHMEM)),
  2263. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2264. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2265. zone_page_state(zone, NR_KERNEL_STACK) *
  2266. THREAD_SIZE / 1024,
  2267. K(zone_page_state(zone, NR_PAGETABLE)),
  2268. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2269. K(zone_page_state(zone, NR_BOUNCE)),
  2270. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2271. zone->pages_scanned,
  2272. (zone->all_unreclaimable ? "yes" : "no")
  2273. );
  2274. printk("lowmem_reserve[]:");
  2275. for (i = 0; i < MAX_NR_ZONES; i++)
  2276. printk(" %lu", zone->lowmem_reserve[i]);
  2277. printk("\n");
  2278. }
  2279. for_each_populated_zone(zone) {
  2280. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2281. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2282. continue;
  2283. show_node(zone);
  2284. printk("%s: ", zone->name);
  2285. spin_lock_irqsave(&zone->lock, flags);
  2286. for (order = 0; order < MAX_ORDER; order++) {
  2287. nr[order] = zone->free_area[order].nr_free;
  2288. total += nr[order] << order;
  2289. }
  2290. spin_unlock_irqrestore(&zone->lock, flags);
  2291. for (order = 0; order < MAX_ORDER; order++)
  2292. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2293. printk("= %lukB\n", K(total));
  2294. }
  2295. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2296. show_swap_cache_info();
  2297. }
  2298. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2299. {
  2300. zoneref->zone = zone;
  2301. zoneref->zone_idx = zone_idx(zone);
  2302. }
  2303. /*
  2304. * Builds allocation fallback zone lists.
  2305. *
  2306. * Add all populated zones of a node to the zonelist.
  2307. */
  2308. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2309. int nr_zones, enum zone_type zone_type)
  2310. {
  2311. struct zone *zone;
  2312. BUG_ON(zone_type >= MAX_NR_ZONES);
  2313. zone_type++;
  2314. do {
  2315. zone_type--;
  2316. zone = pgdat->node_zones + zone_type;
  2317. if (populated_zone(zone)) {
  2318. zoneref_set_zone(zone,
  2319. &zonelist->_zonerefs[nr_zones++]);
  2320. check_highest_zone(zone_type);
  2321. }
  2322. } while (zone_type);
  2323. return nr_zones;
  2324. }
  2325. /*
  2326. * zonelist_order:
  2327. * 0 = automatic detection of better ordering.
  2328. * 1 = order by ([node] distance, -zonetype)
  2329. * 2 = order by (-zonetype, [node] distance)
  2330. *
  2331. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2332. * the same zonelist. So only NUMA can configure this param.
  2333. */
  2334. #define ZONELIST_ORDER_DEFAULT 0
  2335. #define ZONELIST_ORDER_NODE 1
  2336. #define ZONELIST_ORDER_ZONE 2
  2337. /* zonelist order in the kernel.
  2338. * set_zonelist_order() will set this to NODE or ZONE.
  2339. */
  2340. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2341. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2342. #ifdef CONFIG_NUMA
  2343. /* The value user specified ....changed by config */
  2344. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2345. /* string for sysctl */
  2346. #define NUMA_ZONELIST_ORDER_LEN 16
  2347. char numa_zonelist_order[16] = "default";
  2348. /*
  2349. * interface for configure zonelist ordering.
  2350. * command line option "numa_zonelist_order"
  2351. * = "[dD]efault - default, automatic configuration.
  2352. * = "[nN]ode - order by node locality, then by zone within node
  2353. * = "[zZ]one - order by zone, then by locality within zone
  2354. */
  2355. static int __parse_numa_zonelist_order(char *s)
  2356. {
  2357. if (*s == 'd' || *s == 'D') {
  2358. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2359. } else if (*s == 'n' || *s == 'N') {
  2360. user_zonelist_order = ZONELIST_ORDER_NODE;
  2361. } else if (*s == 'z' || *s == 'Z') {
  2362. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2363. } else {
  2364. printk(KERN_WARNING
  2365. "Ignoring invalid numa_zonelist_order value: "
  2366. "%s\n", s);
  2367. return -EINVAL;
  2368. }
  2369. return 0;
  2370. }
  2371. static __init int setup_numa_zonelist_order(char *s)
  2372. {
  2373. int ret;
  2374. if (!s)
  2375. return 0;
  2376. ret = __parse_numa_zonelist_order(s);
  2377. if (ret == 0)
  2378. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2379. return ret;
  2380. }
  2381. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2382. /*
  2383. * sysctl handler for numa_zonelist_order
  2384. */
  2385. int numa_zonelist_order_handler(ctl_table *table, int write,
  2386. void __user *buffer, size_t *length,
  2387. loff_t *ppos)
  2388. {
  2389. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2390. int ret;
  2391. static DEFINE_MUTEX(zl_order_mutex);
  2392. mutex_lock(&zl_order_mutex);
  2393. if (write)
  2394. strcpy(saved_string, (char*)table->data);
  2395. ret = proc_dostring(table, write, buffer, length, ppos);
  2396. if (ret)
  2397. goto out;
  2398. if (write) {
  2399. int oldval = user_zonelist_order;
  2400. if (__parse_numa_zonelist_order((char*)table->data)) {
  2401. /*
  2402. * bogus value. restore saved string
  2403. */
  2404. strncpy((char*)table->data, saved_string,
  2405. NUMA_ZONELIST_ORDER_LEN);
  2406. user_zonelist_order = oldval;
  2407. } else if (oldval != user_zonelist_order) {
  2408. mutex_lock(&zonelists_mutex);
  2409. build_all_zonelists(NULL);
  2410. mutex_unlock(&zonelists_mutex);
  2411. }
  2412. }
  2413. out:
  2414. mutex_unlock(&zl_order_mutex);
  2415. return ret;
  2416. }
  2417. #define MAX_NODE_LOAD (nr_online_nodes)
  2418. static int node_load[MAX_NUMNODES];
  2419. /**
  2420. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2421. * @node: node whose fallback list we're appending
  2422. * @used_node_mask: nodemask_t of already used nodes
  2423. *
  2424. * We use a number of factors to determine which is the next node that should
  2425. * appear on a given node's fallback list. The node should not have appeared
  2426. * already in @node's fallback list, and it should be the next closest node
  2427. * according to the distance array (which contains arbitrary distance values
  2428. * from each node to each node in the system), and should also prefer nodes
  2429. * with no CPUs, since presumably they'll have very little allocation pressure
  2430. * on them otherwise.
  2431. * It returns -1 if no node is found.
  2432. */
  2433. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2434. {
  2435. int n, val;
  2436. int min_val = INT_MAX;
  2437. int best_node = -1;
  2438. const struct cpumask *tmp = cpumask_of_node(0);
  2439. /* Use the local node if we haven't already */
  2440. if (!node_isset(node, *used_node_mask)) {
  2441. node_set(node, *used_node_mask);
  2442. return node;
  2443. }
  2444. for_each_node_state(n, N_HIGH_MEMORY) {
  2445. /* Don't want a node to appear more than once */
  2446. if (node_isset(n, *used_node_mask))
  2447. continue;
  2448. /* Use the distance array to find the distance */
  2449. val = node_distance(node, n);
  2450. /* Penalize nodes under us ("prefer the next node") */
  2451. val += (n < node);
  2452. /* Give preference to headless and unused nodes */
  2453. tmp = cpumask_of_node(n);
  2454. if (!cpumask_empty(tmp))
  2455. val += PENALTY_FOR_NODE_WITH_CPUS;
  2456. /* Slight preference for less loaded node */
  2457. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2458. val += node_load[n];
  2459. if (val < min_val) {
  2460. min_val = val;
  2461. best_node = n;
  2462. }
  2463. }
  2464. if (best_node >= 0)
  2465. node_set(best_node, *used_node_mask);
  2466. return best_node;
  2467. }
  2468. /*
  2469. * Build zonelists ordered by node and zones within node.
  2470. * This results in maximum locality--normal zone overflows into local
  2471. * DMA zone, if any--but risks exhausting DMA zone.
  2472. */
  2473. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2474. {
  2475. int j;
  2476. struct zonelist *zonelist;
  2477. zonelist = &pgdat->node_zonelists[0];
  2478. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2479. ;
  2480. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2481. MAX_NR_ZONES - 1);
  2482. zonelist->_zonerefs[j].zone = NULL;
  2483. zonelist->_zonerefs[j].zone_idx = 0;
  2484. }
  2485. /*
  2486. * Build gfp_thisnode zonelists
  2487. */
  2488. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2489. {
  2490. int j;
  2491. struct zonelist *zonelist;
  2492. zonelist = &pgdat->node_zonelists[1];
  2493. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2494. zonelist->_zonerefs[j].zone = NULL;
  2495. zonelist->_zonerefs[j].zone_idx = 0;
  2496. }
  2497. /*
  2498. * Build zonelists ordered by zone and nodes within zones.
  2499. * This results in conserving DMA zone[s] until all Normal memory is
  2500. * exhausted, but results in overflowing to remote node while memory
  2501. * may still exist in local DMA zone.
  2502. */
  2503. static int node_order[MAX_NUMNODES];
  2504. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2505. {
  2506. int pos, j, node;
  2507. int zone_type; /* needs to be signed */
  2508. struct zone *z;
  2509. struct zonelist *zonelist;
  2510. zonelist = &pgdat->node_zonelists[0];
  2511. pos = 0;
  2512. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2513. for (j = 0; j < nr_nodes; j++) {
  2514. node = node_order[j];
  2515. z = &NODE_DATA(node)->node_zones[zone_type];
  2516. if (populated_zone(z)) {
  2517. zoneref_set_zone(z,
  2518. &zonelist->_zonerefs[pos++]);
  2519. check_highest_zone(zone_type);
  2520. }
  2521. }
  2522. }
  2523. zonelist->_zonerefs[pos].zone = NULL;
  2524. zonelist->_zonerefs[pos].zone_idx = 0;
  2525. }
  2526. static int default_zonelist_order(void)
  2527. {
  2528. int nid, zone_type;
  2529. unsigned long low_kmem_size,total_size;
  2530. struct zone *z;
  2531. int average_size;
  2532. /*
  2533. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2534. * If they are really small and used heavily, the system can fall
  2535. * into OOM very easily.
  2536. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2537. */
  2538. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2539. low_kmem_size = 0;
  2540. total_size = 0;
  2541. for_each_online_node(nid) {
  2542. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2543. z = &NODE_DATA(nid)->node_zones[zone_type];
  2544. if (populated_zone(z)) {
  2545. if (zone_type < ZONE_NORMAL)
  2546. low_kmem_size += z->present_pages;
  2547. total_size += z->present_pages;
  2548. } else if (zone_type == ZONE_NORMAL) {
  2549. /*
  2550. * If any node has only lowmem, then node order
  2551. * is preferred to allow kernel allocations
  2552. * locally; otherwise, they can easily infringe
  2553. * on other nodes when there is an abundance of
  2554. * lowmem available to allocate from.
  2555. */
  2556. return ZONELIST_ORDER_NODE;
  2557. }
  2558. }
  2559. }
  2560. if (!low_kmem_size || /* there are no DMA area. */
  2561. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2562. return ZONELIST_ORDER_NODE;
  2563. /*
  2564. * look into each node's config.
  2565. * If there is a node whose DMA/DMA32 memory is very big area on
  2566. * local memory, NODE_ORDER may be suitable.
  2567. */
  2568. average_size = total_size /
  2569. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2570. for_each_online_node(nid) {
  2571. low_kmem_size = 0;
  2572. total_size = 0;
  2573. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2574. z = &NODE_DATA(nid)->node_zones[zone_type];
  2575. if (populated_zone(z)) {
  2576. if (zone_type < ZONE_NORMAL)
  2577. low_kmem_size += z->present_pages;
  2578. total_size += z->present_pages;
  2579. }
  2580. }
  2581. if (low_kmem_size &&
  2582. total_size > average_size && /* ignore small node */
  2583. low_kmem_size > total_size * 70/100)
  2584. return ZONELIST_ORDER_NODE;
  2585. }
  2586. return ZONELIST_ORDER_ZONE;
  2587. }
  2588. static void set_zonelist_order(void)
  2589. {
  2590. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2591. current_zonelist_order = default_zonelist_order();
  2592. else
  2593. current_zonelist_order = user_zonelist_order;
  2594. }
  2595. static void build_zonelists(pg_data_t *pgdat)
  2596. {
  2597. int j, node, load;
  2598. enum zone_type i;
  2599. nodemask_t used_mask;
  2600. int local_node, prev_node;
  2601. struct zonelist *zonelist;
  2602. int order = current_zonelist_order;
  2603. /* initialize zonelists */
  2604. for (i = 0; i < MAX_ZONELISTS; i++) {
  2605. zonelist = pgdat->node_zonelists + i;
  2606. zonelist->_zonerefs[0].zone = NULL;
  2607. zonelist->_zonerefs[0].zone_idx = 0;
  2608. }
  2609. /* NUMA-aware ordering of nodes */
  2610. local_node = pgdat->node_id;
  2611. load = nr_online_nodes;
  2612. prev_node = local_node;
  2613. nodes_clear(used_mask);
  2614. memset(node_order, 0, sizeof(node_order));
  2615. j = 0;
  2616. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2617. int distance = node_distance(local_node, node);
  2618. /*
  2619. * If another node is sufficiently far away then it is better
  2620. * to reclaim pages in a zone before going off node.
  2621. */
  2622. if (distance > RECLAIM_DISTANCE)
  2623. zone_reclaim_mode = 1;
  2624. /*
  2625. * We don't want to pressure a particular node.
  2626. * So adding penalty to the first node in same
  2627. * distance group to make it round-robin.
  2628. */
  2629. if (distance != node_distance(local_node, prev_node))
  2630. node_load[node] = load;
  2631. prev_node = node;
  2632. load--;
  2633. if (order == ZONELIST_ORDER_NODE)
  2634. build_zonelists_in_node_order(pgdat, node);
  2635. else
  2636. node_order[j++] = node; /* remember order */
  2637. }
  2638. if (order == ZONELIST_ORDER_ZONE) {
  2639. /* calculate node order -- i.e., DMA last! */
  2640. build_zonelists_in_zone_order(pgdat, j);
  2641. }
  2642. build_thisnode_zonelists(pgdat);
  2643. }
  2644. /* Construct the zonelist performance cache - see further mmzone.h */
  2645. static void build_zonelist_cache(pg_data_t *pgdat)
  2646. {
  2647. struct zonelist *zonelist;
  2648. struct zonelist_cache *zlc;
  2649. struct zoneref *z;
  2650. zonelist = &pgdat->node_zonelists[0];
  2651. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2652. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2653. for (z = zonelist->_zonerefs; z->zone; z++)
  2654. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2655. }
  2656. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2657. /*
  2658. * Return node id of node used for "local" allocations.
  2659. * I.e., first node id of first zone in arg node's generic zonelist.
  2660. * Used for initializing percpu 'numa_mem', which is used primarily
  2661. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2662. */
  2663. int local_memory_node(int node)
  2664. {
  2665. struct zone *zone;
  2666. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2667. gfp_zone(GFP_KERNEL),
  2668. NULL,
  2669. &zone);
  2670. return zone->node;
  2671. }
  2672. #endif
  2673. #else /* CONFIG_NUMA */
  2674. static void set_zonelist_order(void)
  2675. {
  2676. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2677. }
  2678. static void build_zonelists(pg_data_t *pgdat)
  2679. {
  2680. int node, local_node;
  2681. enum zone_type j;
  2682. struct zonelist *zonelist;
  2683. local_node = pgdat->node_id;
  2684. zonelist = &pgdat->node_zonelists[0];
  2685. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2686. /*
  2687. * Now we build the zonelist so that it contains the zones
  2688. * of all the other nodes.
  2689. * We don't want to pressure a particular node, so when
  2690. * building the zones for node N, we make sure that the
  2691. * zones coming right after the local ones are those from
  2692. * node N+1 (modulo N)
  2693. */
  2694. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2695. if (!node_online(node))
  2696. continue;
  2697. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2698. MAX_NR_ZONES - 1);
  2699. }
  2700. for (node = 0; node < local_node; node++) {
  2701. if (!node_online(node))
  2702. continue;
  2703. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2704. MAX_NR_ZONES - 1);
  2705. }
  2706. zonelist->_zonerefs[j].zone = NULL;
  2707. zonelist->_zonerefs[j].zone_idx = 0;
  2708. }
  2709. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2710. static void build_zonelist_cache(pg_data_t *pgdat)
  2711. {
  2712. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2713. }
  2714. #endif /* CONFIG_NUMA */
  2715. /*
  2716. * Boot pageset table. One per cpu which is going to be used for all
  2717. * zones and all nodes. The parameters will be set in such a way
  2718. * that an item put on a list will immediately be handed over to
  2719. * the buddy list. This is safe since pageset manipulation is done
  2720. * with interrupts disabled.
  2721. *
  2722. * The boot_pagesets must be kept even after bootup is complete for
  2723. * unused processors and/or zones. They do play a role for bootstrapping
  2724. * hotplugged processors.
  2725. *
  2726. * zoneinfo_show() and maybe other functions do
  2727. * not check if the processor is online before following the pageset pointer.
  2728. * Other parts of the kernel may not check if the zone is available.
  2729. */
  2730. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2731. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2732. static void setup_zone_pageset(struct zone *zone);
  2733. /*
  2734. * Global mutex to protect against size modification of zonelists
  2735. * as well as to serialize pageset setup for the new populated zone.
  2736. */
  2737. DEFINE_MUTEX(zonelists_mutex);
  2738. /* return values int ....just for stop_machine() */
  2739. static __init_refok int __build_all_zonelists(void *data)
  2740. {
  2741. int nid;
  2742. int cpu;
  2743. #ifdef CONFIG_NUMA
  2744. memset(node_load, 0, sizeof(node_load));
  2745. #endif
  2746. for_each_online_node(nid) {
  2747. pg_data_t *pgdat = NODE_DATA(nid);
  2748. build_zonelists(pgdat);
  2749. build_zonelist_cache(pgdat);
  2750. }
  2751. /*
  2752. * Initialize the boot_pagesets that are going to be used
  2753. * for bootstrapping processors. The real pagesets for
  2754. * each zone will be allocated later when the per cpu
  2755. * allocator is available.
  2756. *
  2757. * boot_pagesets are used also for bootstrapping offline
  2758. * cpus if the system is already booted because the pagesets
  2759. * are needed to initialize allocators on a specific cpu too.
  2760. * F.e. the percpu allocator needs the page allocator which
  2761. * needs the percpu allocator in order to allocate its pagesets
  2762. * (a chicken-egg dilemma).
  2763. */
  2764. for_each_possible_cpu(cpu) {
  2765. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2766. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2767. /*
  2768. * We now know the "local memory node" for each node--
  2769. * i.e., the node of the first zone in the generic zonelist.
  2770. * Set up numa_mem percpu variable for on-line cpus. During
  2771. * boot, only the boot cpu should be on-line; we'll init the
  2772. * secondary cpus' numa_mem as they come on-line. During
  2773. * node/memory hotplug, we'll fixup all on-line cpus.
  2774. */
  2775. if (cpu_online(cpu))
  2776. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2777. #endif
  2778. }
  2779. return 0;
  2780. }
  2781. /*
  2782. * Called with zonelists_mutex held always
  2783. * unless system_state == SYSTEM_BOOTING.
  2784. */
  2785. void __ref build_all_zonelists(void *data)
  2786. {
  2787. set_zonelist_order();
  2788. if (system_state == SYSTEM_BOOTING) {
  2789. __build_all_zonelists(NULL);
  2790. mminit_verify_zonelist();
  2791. cpuset_init_current_mems_allowed();
  2792. } else {
  2793. /* we have to stop all cpus to guarantee there is no user
  2794. of zonelist */
  2795. #ifdef CONFIG_MEMORY_HOTPLUG
  2796. if (data)
  2797. setup_zone_pageset((struct zone *)data);
  2798. #endif
  2799. stop_machine(__build_all_zonelists, NULL, NULL);
  2800. /* cpuset refresh routine should be here */
  2801. }
  2802. vm_total_pages = nr_free_pagecache_pages();
  2803. /*
  2804. * Disable grouping by mobility if the number of pages in the
  2805. * system is too low to allow the mechanism to work. It would be
  2806. * more accurate, but expensive to check per-zone. This check is
  2807. * made on memory-hotadd so a system can start with mobility
  2808. * disabled and enable it later
  2809. */
  2810. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2811. page_group_by_mobility_disabled = 1;
  2812. else
  2813. page_group_by_mobility_disabled = 0;
  2814. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2815. "Total pages: %ld\n",
  2816. nr_online_nodes,
  2817. zonelist_order_name[current_zonelist_order],
  2818. page_group_by_mobility_disabled ? "off" : "on",
  2819. vm_total_pages);
  2820. #ifdef CONFIG_NUMA
  2821. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2822. #endif
  2823. }
  2824. /*
  2825. * Helper functions to size the waitqueue hash table.
  2826. * Essentially these want to choose hash table sizes sufficiently
  2827. * large so that collisions trying to wait on pages are rare.
  2828. * But in fact, the number of active page waitqueues on typical
  2829. * systems is ridiculously low, less than 200. So this is even
  2830. * conservative, even though it seems large.
  2831. *
  2832. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2833. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2834. */
  2835. #define PAGES_PER_WAITQUEUE 256
  2836. #ifndef CONFIG_MEMORY_HOTPLUG
  2837. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2838. {
  2839. unsigned long size = 1;
  2840. pages /= PAGES_PER_WAITQUEUE;
  2841. while (size < pages)
  2842. size <<= 1;
  2843. /*
  2844. * Once we have dozens or even hundreds of threads sleeping
  2845. * on IO we've got bigger problems than wait queue collision.
  2846. * Limit the size of the wait table to a reasonable size.
  2847. */
  2848. size = min(size, 4096UL);
  2849. return max(size, 4UL);
  2850. }
  2851. #else
  2852. /*
  2853. * A zone's size might be changed by hot-add, so it is not possible to determine
  2854. * a suitable size for its wait_table. So we use the maximum size now.
  2855. *
  2856. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2857. *
  2858. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2859. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2860. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2861. *
  2862. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2863. * or more by the traditional way. (See above). It equals:
  2864. *
  2865. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2866. * ia64(16K page size) : = ( 8G + 4M)byte.
  2867. * powerpc (64K page size) : = (32G +16M)byte.
  2868. */
  2869. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2870. {
  2871. return 4096UL;
  2872. }
  2873. #endif
  2874. /*
  2875. * This is an integer logarithm so that shifts can be used later
  2876. * to extract the more random high bits from the multiplicative
  2877. * hash function before the remainder is taken.
  2878. */
  2879. static inline unsigned long wait_table_bits(unsigned long size)
  2880. {
  2881. return ffz(~size);
  2882. }
  2883. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2884. /*
  2885. * Check if a pageblock contains reserved pages
  2886. */
  2887. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  2888. {
  2889. unsigned long pfn;
  2890. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2891. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  2892. return 1;
  2893. }
  2894. return 0;
  2895. }
  2896. /*
  2897. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2898. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2899. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2900. * higher will lead to a bigger reserve which will get freed as contiguous
  2901. * blocks as reclaim kicks in
  2902. */
  2903. static void setup_zone_migrate_reserve(struct zone *zone)
  2904. {
  2905. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  2906. struct page *page;
  2907. unsigned long block_migratetype;
  2908. int reserve;
  2909. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2910. start_pfn = zone->zone_start_pfn;
  2911. end_pfn = start_pfn + zone->spanned_pages;
  2912. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2913. pageblock_order;
  2914. /*
  2915. * Reserve blocks are generally in place to help high-order atomic
  2916. * allocations that are short-lived. A min_free_kbytes value that
  2917. * would result in more than 2 reserve blocks for atomic allocations
  2918. * is assumed to be in place to help anti-fragmentation for the
  2919. * future allocation of hugepages at runtime.
  2920. */
  2921. reserve = min(2, reserve);
  2922. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2923. if (!pfn_valid(pfn))
  2924. continue;
  2925. page = pfn_to_page(pfn);
  2926. /* Watch out for overlapping nodes */
  2927. if (page_to_nid(page) != zone_to_nid(zone))
  2928. continue;
  2929. /* Blocks with reserved pages will never free, skip them. */
  2930. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  2931. if (pageblock_is_reserved(pfn, block_end_pfn))
  2932. continue;
  2933. block_migratetype = get_pageblock_migratetype(page);
  2934. /* If this block is reserved, account for it */
  2935. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2936. reserve--;
  2937. continue;
  2938. }
  2939. /* Suitable for reserving if this block is movable */
  2940. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2941. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2942. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2943. reserve--;
  2944. continue;
  2945. }
  2946. /*
  2947. * If the reserve is met and this is a previous reserved block,
  2948. * take it back
  2949. */
  2950. if (block_migratetype == MIGRATE_RESERVE) {
  2951. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2952. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2953. }
  2954. }
  2955. }
  2956. /*
  2957. * Initially all pages are reserved - free ones are freed
  2958. * up by free_all_bootmem() once the early boot process is
  2959. * done. Non-atomic initialization, single-pass.
  2960. */
  2961. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2962. unsigned long start_pfn, enum memmap_context context)
  2963. {
  2964. struct page *page;
  2965. unsigned long end_pfn = start_pfn + size;
  2966. unsigned long pfn;
  2967. struct zone *z;
  2968. if (highest_memmap_pfn < end_pfn - 1)
  2969. highest_memmap_pfn = end_pfn - 1;
  2970. z = &NODE_DATA(nid)->node_zones[zone];
  2971. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2972. /*
  2973. * There can be holes in boot-time mem_map[]s
  2974. * handed to this function. They do not
  2975. * exist on hotplugged memory.
  2976. */
  2977. if (context == MEMMAP_EARLY) {
  2978. if (!early_pfn_valid(pfn))
  2979. continue;
  2980. if (!early_pfn_in_nid(pfn, nid))
  2981. continue;
  2982. }
  2983. page = pfn_to_page(pfn);
  2984. set_page_links(page, zone, nid, pfn);
  2985. mminit_verify_page_links(page, zone, nid, pfn);
  2986. init_page_count(page);
  2987. reset_page_mapcount(page);
  2988. SetPageReserved(page);
  2989. /*
  2990. * Mark the block movable so that blocks are reserved for
  2991. * movable at startup. This will force kernel allocations
  2992. * to reserve their blocks rather than leaking throughout
  2993. * the address space during boot when many long-lived
  2994. * kernel allocations are made. Later some blocks near
  2995. * the start are marked MIGRATE_RESERVE by
  2996. * setup_zone_migrate_reserve()
  2997. *
  2998. * bitmap is created for zone's valid pfn range. but memmap
  2999. * can be created for invalid pages (for alignment)
  3000. * check here not to call set_pageblock_migratetype() against
  3001. * pfn out of zone.
  3002. */
  3003. if ((z->zone_start_pfn <= pfn)
  3004. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3005. && !(pfn & (pageblock_nr_pages - 1)))
  3006. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3007. INIT_LIST_HEAD(&page->lru);
  3008. #ifdef WANT_PAGE_VIRTUAL
  3009. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3010. if (!is_highmem_idx(zone))
  3011. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3012. #endif
  3013. }
  3014. }
  3015. static void __meminit zone_init_free_lists(struct zone *zone)
  3016. {
  3017. int order, t;
  3018. for_each_migratetype_order(order, t) {
  3019. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3020. zone->free_area[order].nr_free = 0;
  3021. }
  3022. }
  3023. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3024. #define memmap_init(size, nid, zone, start_pfn) \
  3025. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3026. #endif
  3027. static int zone_batchsize(struct zone *zone)
  3028. {
  3029. #ifdef CONFIG_MMU
  3030. int batch;
  3031. /*
  3032. * The per-cpu-pages pools are set to around 1000th of the
  3033. * size of the zone. But no more than 1/2 of a meg.
  3034. *
  3035. * OK, so we don't know how big the cache is. So guess.
  3036. */
  3037. batch = zone->present_pages / 1024;
  3038. if (batch * PAGE_SIZE > 512 * 1024)
  3039. batch = (512 * 1024) / PAGE_SIZE;
  3040. batch /= 4; /* We effectively *= 4 below */
  3041. if (batch < 1)
  3042. batch = 1;
  3043. /*
  3044. * Clamp the batch to a 2^n - 1 value. Having a power
  3045. * of 2 value was found to be more likely to have
  3046. * suboptimal cache aliasing properties in some cases.
  3047. *
  3048. * For example if 2 tasks are alternately allocating
  3049. * batches of pages, one task can end up with a lot
  3050. * of pages of one half of the possible page colors
  3051. * and the other with pages of the other colors.
  3052. */
  3053. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3054. return batch;
  3055. #else
  3056. /* The deferral and batching of frees should be suppressed under NOMMU
  3057. * conditions.
  3058. *
  3059. * The problem is that NOMMU needs to be able to allocate large chunks
  3060. * of contiguous memory as there's no hardware page translation to
  3061. * assemble apparent contiguous memory from discontiguous pages.
  3062. *
  3063. * Queueing large contiguous runs of pages for batching, however,
  3064. * causes the pages to actually be freed in smaller chunks. As there
  3065. * can be a significant delay between the individual batches being
  3066. * recycled, this leads to the once large chunks of space being
  3067. * fragmented and becoming unavailable for high-order allocations.
  3068. */
  3069. return 0;
  3070. #endif
  3071. }
  3072. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3073. {
  3074. struct per_cpu_pages *pcp;
  3075. int migratetype;
  3076. memset(p, 0, sizeof(*p));
  3077. pcp = &p->pcp;
  3078. pcp->count = 0;
  3079. pcp->high = 6 * batch;
  3080. pcp->batch = max(1UL, 1 * batch);
  3081. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3082. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3083. }
  3084. /*
  3085. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3086. * to the value high for the pageset p.
  3087. */
  3088. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3089. unsigned long high)
  3090. {
  3091. struct per_cpu_pages *pcp;
  3092. pcp = &p->pcp;
  3093. pcp->high = high;
  3094. pcp->batch = max(1UL, high/4);
  3095. if ((high/4) > (PAGE_SHIFT * 8))
  3096. pcp->batch = PAGE_SHIFT * 8;
  3097. }
  3098. static void setup_zone_pageset(struct zone *zone)
  3099. {
  3100. int cpu;
  3101. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3102. for_each_possible_cpu(cpu) {
  3103. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3104. setup_pageset(pcp, zone_batchsize(zone));
  3105. if (percpu_pagelist_fraction)
  3106. setup_pagelist_highmark(pcp,
  3107. (zone->present_pages /
  3108. percpu_pagelist_fraction));
  3109. }
  3110. }
  3111. /*
  3112. * Allocate per cpu pagesets and initialize them.
  3113. * Before this call only boot pagesets were available.
  3114. */
  3115. void __init setup_per_cpu_pageset(void)
  3116. {
  3117. struct zone *zone;
  3118. for_each_populated_zone(zone)
  3119. setup_zone_pageset(zone);
  3120. }
  3121. static noinline __init_refok
  3122. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3123. {
  3124. int i;
  3125. struct pglist_data *pgdat = zone->zone_pgdat;
  3126. size_t alloc_size;
  3127. /*
  3128. * The per-page waitqueue mechanism uses hashed waitqueues
  3129. * per zone.
  3130. */
  3131. zone->wait_table_hash_nr_entries =
  3132. wait_table_hash_nr_entries(zone_size_pages);
  3133. zone->wait_table_bits =
  3134. wait_table_bits(zone->wait_table_hash_nr_entries);
  3135. alloc_size = zone->wait_table_hash_nr_entries
  3136. * sizeof(wait_queue_head_t);
  3137. if (!slab_is_available()) {
  3138. zone->wait_table = (wait_queue_head_t *)
  3139. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3140. } else {
  3141. /*
  3142. * This case means that a zone whose size was 0 gets new memory
  3143. * via memory hot-add.
  3144. * But it may be the case that a new node was hot-added. In
  3145. * this case vmalloc() will not be able to use this new node's
  3146. * memory - this wait_table must be initialized to use this new
  3147. * node itself as well.
  3148. * To use this new node's memory, further consideration will be
  3149. * necessary.
  3150. */
  3151. zone->wait_table = vmalloc(alloc_size);
  3152. }
  3153. if (!zone->wait_table)
  3154. return -ENOMEM;
  3155. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3156. init_waitqueue_head(zone->wait_table + i);
  3157. return 0;
  3158. }
  3159. static int __zone_pcp_update(void *data)
  3160. {
  3161. struct zone *zone = data;
  3162. int cpu;
  3163. unsigned long batch = zone_batchsize(zone), flags;
  3164. for_each_possible_cpu(cpu) {
  3165. struct per_cpu_pageset *pset;
  3166. struct per_cpu_pages *pcp;
  3167. pset = per_cpu_ptr(zone->pageset, cpu);
  3168. pcp = &pset->pcp;
  3169. local_irq_save(flags);
  3170. free_pcppages_bulk(zone, pcp->count, pcp);
  3171. setup_pageset(pset, batch);
  3172. local_irq_restore(flags);
  3173. }
  3174. return 0;
  3175. }
  3176. void zone_pcp_update(struct zone *zone)
  3177. {
  3178. stop_machine(__zone_pcp_update, zone, NULL);
  3179. }
  3180. static __meminit void zone_pcp_init(struct zone *zone)
  3181. {
  3182. /*
  3183. * per cpu subsystem is not up at this point. The following code
  3184. * relies on the ability of the linker to provide the
  3185. * offset of a (static) per cpu variable into the per cpu area.
  3186. */
  3187. zone->pageset = &boot_pageset;
  3188. if (zone->present_pages)
  3189. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3190. zone->name, zone->present_pages,
  3191. zone_batchsize(zone));
  3192. }
  3193. __meminit int init_currently_empty_zone(struct zone *zone,
  3194. unsigned long zone_start_pfn,
  3195. unsigned long size,
  3196. enum memmap_context context)
  3197. {
  3198. struct pglist_data *pgdat = zone->zone_pgdat;
  3199. int ret;
  3200. ret = zone_wait_table_init(zone, size);
  3201. if (ret)
  3202. return ret;
  3203. pgdat->nr_zones = zone_idx(zone) + 1;
  3204. zone->zone_start_pfn = zone_start_pfn;
  3205. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3206. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3207. pgdat->node_id,
  3208. (unsigned long)zone_idx(zone),
  3209. zone_start_pfn, (zone_start_pfn + size));
  3210. zone_init_free_lists(zone);
  3211. return 0;
  3212. }
  3213. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3214. /*
  3215. * Basic iterator support. Return the first range of PFNs for a node
  3216. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3217. */
  3218. static int __meminit first_active_region_index_in_nid(int nid)
  3219. {
  3220. int i;
  3221. for (i = 0; i < nr_nodemap_entries; i++)
  3222. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3223. return i;
  3224. return -1;
  3225. }
  3226. /*
  3227. * Basic iterator support. Return the next active range of PFNs for a node
  3228. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3229. */
  3230. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3231. {
  3232. for (index = index + 1; index < nr_nodemap_entries; index++)
  3233. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3234. return index;
  3235. return -1;
  3236. }
  3237. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3238. /*
  3239. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3240. * Architectures may implement their own version but if add_active_range()
  3241. * was used and there are no special requirements, this is a convenient
  3242. * alternative
  3243. */
  3244. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3245. {
  3246. int i;
  3247. for (i = 0; i < nr_nodemap_entries; i++) {
  3248. unsigned long start_pfn = early_node_map[i].start_pfn;
  3249. unsigned long end_pfn = early_node_map[i].end_pfn;
  3250. if (start_pfn <= pfn && pfn < end_pfn)
  3251. return early_node_map[i].nid;
  3252. }
  3253. /* This is a memory hole */
  3254. return -1;
  3255. }
  3256. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3257. int __meminit early_pfn_to_nid(unsigned long pfn)
  3258. {
  3259. int nid;
  3260. nid = __early_pfn_to_nid(pfn);
  3261. if (nid >= 0)
  3262. return nid;
  3263. /* just returns 0 */
  3264. return 0;
  3265. }
  3266. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3267. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3268. {
  3269. int nid;
  3270. nid = __early_pfn_to_nid(pfn);
  3271. if (nid >= 0 && nid != node)
  3272. return false;
  3273. return true;
  3274. }
  3275. #endif
  3276. /* Basic iterator support to walk early_node_map[] */
  3277. #define for_each_active_range_index_in_nid(i, nid) \
  3278. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3279. i = next_active_region_index_in_nid(i, nid))
  3280. /**
  3281. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3282. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3283. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3284. *
  3285. * If an architecture guarantees that all ranges registered with
  3286. * add_active_ranges() contain no holes and may be freed, this
  3287. * this function may be used instead of calling free_bootmem() manually.
  3288. */
  3289. void __init free_bootmem_with_active_regions(int nid,
  3290. unsigned long max_low_pfn)
  3291. {
  3292. int i;
  3293. for_each_active_range_index_in_nid(i, nid) {
  3294. unsigned long size_pages = 0;
  3295. unsigned long end_pfn = early_node_map[i].end_pfn;
  3296. if (early_node_map[i].start_pfn >= max_low_pfn)
  3297. continue;
  3298. if (end_pfn > max_low_pfn)
  3299. end_pfn = max_low_pfn;
  3300. size_pages = end_pfn - early_node_map[i].start_pfn;
  3301. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3302. PFN_PHYS(early_node_map[i].start_pfn),
  3303. size_pages << PAGE_SHIFT);
  3304. }
  3305. }
  3306. #ifdef CONFIG_HAVE_MEMBLOCK
  3307. /*
  3308. * Basic iterator support. Return the last range of PFNs for a node
  3309. * Note: nid == MAX_NUMNODES returns last region regardless of node
  3310. */
  3311. static int __meminit last_active_region_index_in_nid(int nid)
  3312. {
  3313. int i;
  3314. for (i = nr_nodemap_entries - 1; i >= 0; i--)
  3315. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3316. return i;
  3317. return -1;
  3318. }
  3319. /*
  3320. * Basic iterator support. Return the previous active range of PFNs for a node
  3321. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3322. */
  3323. static int __meminit previous_active_region_index_in_nid(int index, int nid)
  3324. {
  3325. for (index = index - 1; index >= 0; index--)
  3326. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3327. return index;
  3328. return -1;
  3329. }
  3330. #define for_each_active_range_index_in_nid_reverse(i, nid) \
  3331. for (i = last_active_region_index_in_nid(nid); i != -1; \
  3332. i = previous_active_region_index_in_nid(i, nid))
  3333. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3334. u64 goal, u64 limit)
  3335. {
  3336. int i;
  3337. /* Need to go over early_node_map to find out good range for node */
  3338. for_each_active_range_index_in_nid_reverse(i, nid) {
  3339. u64 addr;
  3340. u64 ei_start, ei_last;
  3341. u64 final_start, final_end;
  3342. ei_last = early_node_map[i].end_pfn;
  3343. ei_last <<= PAGE_SHIFT;
  3344. ei_start = early_node_map[i].start_pfn;
  3345. ei_start <<= PAGE_SHIFT;
  3346. final_start = max(ei_start, goal);
  3347. final_end = min(ei_last, limit);
  3348. if (final_start >= final_end)
  3349. continue;
  3350. addr = memblock_find_in_range(final_start, final_end, size, align);
  3351. if (addr == MEMBLOCK_ERROR)
  3352. continue;
  3353. return addr;
  3354. }
  3355. return MEMBLOCK_ERROR;
  3356. }
  3357. #endif
  3358. int __init add_from_early_node_map(struct range *range, int az,
  3359. int nr_range, int nid)
  3360. {
  3361. int i;
  3362. u64 start, end;
  3363. /* need to go over early_node_map to find out good range for node */
  3364. for_each_active_range_index_in_nid(i, nid) {
  3365. start = early_node_map[i].start_pfn;
  3366. end = early_node_map[i].end_pfn;
  3367. nr_range = add_range(range, az, nr_range, start, end);
  3368. }
  3369. return nr_range;
  3370. }
  3371. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3372. {
  3373. int i;
  3374. int ret;
  3375. for_each_active_range_index_in_nid(i, nid) {
  3376. ret = work_fn(early_node_map[i].start_pfn,
  3377. early_node_map[i].end_pfn, data);
  3378. if (ret)
  3379. break;
  3380. }
  3381. }
  3382. /**
  3383. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3384. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3385. *
  3386. * If an architecture guarantees that all ranges registered with
  3387. * add_active_ranges() contain no holes and may be freed, this
  3388. * function may be used instead of calling memory_present() manually.
  3389. */
  3390. void __init sparse_memory_present_with_active_regions(int nid)
  3391. {
  3392. int i;
  3393. for_each_active_range_index_in_nid(i, nid)
  3394. memory_present(early_node_map[i].nid,
  3395. early_node_map[i].start_pfn,
  3396. early_node_map[i].end_pfn);
  3397. }
  3398. /**
  3399. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3400. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3401. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3402. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3403. *
  3404. * It returns the start and end page frame of a node based on information
  3405. * provided by an arch calling add_active_range(). If called for a node
  3406. * with no available memory, a warning is printed and the start and end
  3407. * PFNs will be 0.
  3408. */
  3409. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3410. unsigned long *start_pfn, unsigned long *end_pfn)
  3411. {
  3412. int i;
  3413. *start_pfn = -1UL;
  3414. *end_pfn = 0;
  3415. for_each_active_range_index_in_nid(i, nid) {
  3416. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3417. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3418. }
  3419. if (*start_pfn == -1UL)
  3420. *start_pfn = 0;
  3421. }
  3422. /*
  3423. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3424. * assumption is made that zones within a node are ordered in monotonic
  3425. * increasing memory addresses so that the "highest" populated zone is used
  3426. */
  3427. static void __init find_usable_zone_for_movable(void)
  3428. {
  3429. int zone_index;
  3430. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3431. if (zone_index == ZONE_MOVABLE)
  3432. continue;
  3433. if (arch_zone_highest_possible_pfn[zone_index] >
  3434. arch_zone_lowest_possible_pfn[zone_index])
  3435. break;
  3436. }
  3437. VM_BUG_ON(zone_index == -1);
  3438. movable_zone = zone_index;
  3439. }
  3440. /*
  3441. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3442. * because it is sized independent of architecture. Unlike the other zones,
  3443. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3444. * in each node depending on the size of each node and how evenly kernelcore
  3445. * is distributed. This helper function adjusts the zone ranges
  3446. * provided by the architecture for a given node by using the end of the
  3447. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3448. * zones within a node are in order of monotonic increases memory addresses
  3449. */
  3450. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3451. unsigned long zone_type,
  3452. unsigned long node_start_pfn,
  3453. unsigned long node_end_pfn,
  3454. unsigned long *zone_start_pfn,
  3455. unsigned long *zone_end_pfn)
  3456. {
  3457. /* Only adjust if ZONE_MOVABLE is on this node */
  3458. if (zone_movable_pfn[nid]) {
  3459. /* Size ZONE_MOVABLE */
  3460. if (zone_type == ZONE_MOVABLE) {
  3461. *zone_start_pfn = zone_movable_pfn[nid];
  3462. *zone_end_pfn = min(node_end_pfn,
  3463. arch_zone_highest_possible_pfn[movable_zone]);
  3464. /* Adjust for ZONE_MOVABLE starting within this range */
  3465. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3466. *zone_end_pfn > zone_movable_pfn[nid]) {
  3467. *zone_end_pfn = zone_movable_pfn[nid];
  3468. /* Check if this whole range is within ZONE_MOVABLE */
  3469. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3470. *zone_start_pfn = *zone_end_pfn;
  3471. }
  3472. }
  3473. /*
  3474. * Return the number of pages a zone spans in a node, including holes
  3475. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3476. */
  3477. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3478. unsigned long zone_type,
  3479. unsigned long *ignored)
  3480. {
  3481. unsigned long node_start_pfn, node_end_pfn;
  3482. unsigned long zone_start_pfn, zone_end_pfn;
  3483. /* Get the start and end of the node and zone */
  3484. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3485. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3486. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3487. adjust_zone_range_for_zone_movable(nid, zone_type,
  3488. node_start_pfn, node_end_pfn,
  3489. &zone_start_pfn, &zone_end_pfn);
  3490. /* Check that this node has pages within the zone's required range */
  3491. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3492. return 0;
  3493. /* Move the zone boundaries inside the node if necessary */
  3494. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3495. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3496. /* Return the spanned pages */
  3497. return zone_end_pfn - zone_start_pfn;
  3498. }
  3499. /*
  3500. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3501. * then all holes in the requested range will be accounted for.
  3502. */
  3503. unsigned long __meminit __absent_pages_in_range(int nid,
  3504. unsigned long range_start_pfn,
  3505. unsigned long range_end_pfn)
  3506. {
  3507. int i = 0;
  3508. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3509. unsigned long start_pfn;
  3510. /* Find the end_pfn of the first active range of pfns in the node */
  3511. i = first_active_region_index_in_nid(nid);
  3512. if (i == -1)
  3513. return 0;
  3514. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3515. /* Account for ranges before physical memory on this node */
  3516. if (early_node_map[i].start_pfn > range_start_pfn)
  3517. hole_pages = prev_end_pfn - range_start_pfn;
  3518. /* Find all holes for the zone within the node */
  3519. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3520. /* No need to continue if prev_end_pfn is outside the zone */
  3521. if (prev_end_pfn >= range_end_pfn)
  3522. break;
  3523. /* Make sure the end of the zone is not within the hole */
  3524. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3525. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3526. /* Update the hole size cound and move on */
  3527. if (start_pfn > range_start_pfn) {
  3528. BUG_ON(prev_end_pfn > start_pfn);
  3529. hole_pages += start_pfn - prev_end_pfn;
  3530. }
  3531. prev_end_pfn = early_node_map[i].end_pfn;
  3532. }
  3533. /* Account for ranges past physical memory on this node */
  3534. if (range_end_pfn > prev_end_pfn)
  3535. hole_pages += range_end_pfn -
  3536. max(range_start_pfn, prev_end_pfn);
  3537. return hole_pages;
  3538. }
  3539. /**
  3540. * absent_pages_in_range - Return number of page frames in holes within a range
  3541. * @start_pfn: The start PFN to start searching for holes
  3542. * @end_pfn: The end PFN to stop searching for holes
  3543. *
  3544. * It returns the number of pages frames in memory holes within a range.
  3545. */
  3546. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3547. unsigned long end_pfn)
  3548. {
  3549. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3550. }
  3551. /* Return the number of page frames in holes in a zone on a node */
  3552. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3553. unsigned long zone_type,
  3554. unsigned long *ignored)
  3555. {
  3556. unsigned long node_start_pfn, node_end_pfn;
  3557. unsigned long zone_start_pfn, zone_end_pfn;
  3558. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3559. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3560. node_start_pfn);
  3561. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3562. node_end_pfn);
  3563. adjust_zone_range_for_zone_movable(nid, zone_type,
  3564. node_start_pfn, node_end_pfn,
  3565. &zone_start_pfn, &zone_end_pfn);
  3566. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3567. }
  3568. #else
  3569. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3570. unsigned long zone_type,
  3571. unsigned long *zones_size)
  3572. {
  3573. return zones_size[zone_type];
  3574. }
  3575. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3576. unsigned long zone_type,
  3577. unsigned long *zholes_size)
  3578. {
  3579. if (!zholes_size)
  3580. return 0;
  3581. return zholes_size[zone_type];
  3582. }
  3583. #endif
  3584. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3585. unsigned long *zones_size, unsigned long *zholes_size)
  3586. {
  3587. unsigned long realtotalpages, totalpages = 0;
  3588. enum zone_type i;
  3589. for (i = 0; i < MAX_NR_ZONES; i++)
  3590. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3591. zones_size);
  3592. pgdat->node_spanned_pages = totalpages;
  3593. realtotalpages = totalpages;
  3594. for (i = 0; i < MAX_NR_ZONES; i++)
  3595. realtotalpages -=
  3596. zone_absent_pages_in_node(pgdat->node_id, i,
  3597. zholes_size);
  3598. pgdat->node_present_pages = realtotalpages;
  3599. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3600. realtotalpages);
  3601. }
  3602. #ifndef CONFIG_SPARSEMEM
  3603. /*
  3604. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3605. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3606. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3607. * round what is now in bits to nearest long in bits, then return it in
  3608. * bytes.
  3609. */
  3610. static unsigned long __init usemap_size(unsigned long zonesize)
  3611. {
  3612. unsigned long usemapsize;
  3613. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3614. usemapsize = usemapsize >> pageblock_order;
  3615. usemapsize *= NR_PAGEBLOCK_BITS;
  3616. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3617. return usemapsize / 8;
  3618. }
  3619. static void __init setup_usemap(struct pglist_data *pgdat,
  3620. struct zone *zone, unsigned long zonesize)
  3621. {
  3622. unsigned long usemapsize = usemap_size(zonesize);
  3623. zone->pageblock_flags = NULL;
  3624. if (usemapsize)
  3625. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3626. usemapsize);
  3627. }
  3628. #else
  3629. static inline void setup_usemap(struct pglist_data *pgdat,
  3630. struct zone *zone, unsigned long zonesize) {}
  3631. #endif /* CONFIG_SPARSEMEM */
  3632. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3633. /* Return a sensible default order for the pageblock size. */
  3634. static inline int pageblock_default_order(void)
  3635. {
  3636. if (HPAGE_SHIFT > PAGE_SHIFT)
  3637. return HUGETLB_PAGE_ORDER;
  3638. return MAX_ORDER-1;
  3639. }
  3640. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3641. static inline void __init set_pageblock_order(unsigned int order)
  3642. {
  3643. /* Check that pageblock_nr_pages has not already been setup */
  3644. if (pageblock_order)
  3645. return;
  3646. /*
  3647. * Assume the largest contiguous order of interest is a huge page.
  3648. * This value may be variable depending on boot parameters on IA64
  3649. */
  3650. pageblock_order = order;
  3651. }
  3652. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3653. /*
  3654. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3655. * and pageblock_default_order() are unused as pageblock_order is set
  3656. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3657. * pageblock_order based on the kernel config
  3658. */
  3659. static inline int pageblock_default_order(unsigned int order)
  3660. {
  3661. return MAX_ORDER-1;
  3662. }
  3663. #define set_pageblock_order(x) do {} while (0)
  3664. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3665. /*
  3666. * Set up the zone data structures:
  3667. * - mark all pages reserved
  3668. * - mark all memory queues empty
  3669. * - clear the memory bitmaps
  3670. */
  3671. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3672. unsigned long *zones_size, unsigned long *zholes_size)
  3673. {
  3674. enum zone_type j;
  3675. int nid = pgdat->node_id;
  3676. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3677. int ret;
  3678. pgdat_resize_init(pgdat);
  3679. pgdat->nr_zones = 0;
  3680. init_waitqueue_head(&pgdat->kswapd_wait);
  3681. pgdat->kswapd_max_order = 0;
  3682. pgdat_page_cgroup_init(pgdat);
  3683. for (j = 0; j < MAX_NR_ZONES; j++) {
  3684. struct zone *zone = pgdat->node_zones + j;
  3685. unsigned long size, realsize, memmap_pages;
  3686. enum lru_list l;
  3687. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3688. realsize = size - zone_absent_pages_in_node(nid, j,
  3689. zholes_size);
  3690. /*
  3691. * Adjust realsize so that it accounts for how much memory
  3692. * is used by this zone for memmap. This affects the watermark
  3693. * and per-cpu initialisations
  3694. */
  3695. memmap_pages =
  3696. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3697. if (realsize >= memmap_pages) {
  3698. realsize -= memmap_pages;
  3699. if (memmap_pages)
  3700. printk(KERN_DEBUG
  3701. " %s zone: %lu pages used for memmap\n",
  3702. zone_names[j], memmap_pages);
  3703. } else
  3704. printk(KERN_WARNING
  3705. " %s zone: %lu pages exceeds realsize %lu\n",
  3706. zone_names[j], memmap_pages, realsize);
  3707. /* Account for reserved pages */
  3708. if (j == 0 && realsize > dma_reserve) {
  3709. realsize -= dma_reserve;
  3710. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3711. zone_names[0], dma_reserve);
  3712. }
  3713. if (!is_highmem_idx(j))
  3714. nr_kernel_pages += realsize;
  3715. nr_all_pages += realsize;
  3716. zone->spanned_pages = size;
  3717. zone->present_pages = realsize;
  3718. #ifdef CONFIG_NUMA
  3719. zone->node = nid;
  3720. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3721. / 100;
  3722. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3723. #endif
  3724. zone->name = zone_names[j];
  3725. spin_lock_init(&zone->lock);
  3726. spin_lock_init(&zone->lru_lock);
  3727. zone_seqlock_init(zone);
  3728. zone->zone_pgdat = pgdat;
  3729. zone_pcp_init(zone);
  3730. for_each_lru(l) {
  3731. INIT_LIST_HEAD(&zone->lru[l].list);
  3732. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3733. }
  3734. zone->reclaim_stat.recent_rotated[0] = 0;
  3735. zone->reclaim_stat.recent_rotated[1] = 0;
  3736. zone->reclaim_stat.recent_scanned[0] = 0;
  3737. zone->reclaim_stat.recent_scanned[1] = 0;
  3738. zap_zone_vm_stats(zone);
  3739. zone->flags = 0;
  3740. if (!size)
  3741. continue;
  3742. set_pageblock_order(pageblock_default_order());
  3743. setup_usemap(pgdat, zone, size);
  3744. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3745. size, MEMMAP_EARLY);
  3746. BUG_ON(ret);
  3747. memmap_init(size, nid, j, zone_start_pfn);
  3748. zone_start_pfn += size;
  3749. }
  3750. }
  3751. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3752. {
  3753. /* Skip empty nodes */
  3754. if (!pgdat->node_spanned_pages)
  3755. return;
  3756. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3757. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3758. if (!pgdat->node_mem_map) {
  3759. unsigned long size, start, end;
  3760. struct page *map;
  3761. /*
  3762. * The zone's endpoints aren't required to be MAX_ORDER
  3763. * aligned but the node_mem_map endpoints must be in order
  3764. * for the buddy allocator to function correctly.
  3765. */
  3766. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3767. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3768. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3769. size = (end - start) * sizeof(struct page);
  3770. map = alloc_remap(pgdat->node_id, size);
  3771. if (!map)
  3772. map = alloc_bootmem_node_nopanic(pgdat, size);
  3773. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3774. }
  3775. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3776. /*
  3777. * With no DISCONTIG, the global mem_map is just set as node 0's
  3778. */
  3779. if (pgdat == NODE_DATA(0)) {
  3780. mem_map = NODE_DATA(0)->node_mem_map;
  3781. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3782. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3783. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3784. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3785. }
  3786. #endif
  3787. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3788. }
  3789. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3790. unsigned long node_start_pfn, unsigned long *zholes_size)
  3791. {
  3792. pg_data_t *pgdat = NODE_DATA(nid);
  3793. pgdat->node_id = nid;
  3794. pgdat->node_start_pfn = node_start_pfn;
  3795. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3796. alloc_node_mem_map(pgdat);
  3797. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3798. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3799. nid, (unsigned long)pgdat,
  3800. (unsigned long)pgdat->node_mem_map);
  3801. #endif
  3802. free_area_init_core(pgdat, zones_size, zholes_size);
  3803. }
  3804. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3805. #if MAX_NUMNODES > 1
  3806. /*
  3807. * Figure out the number of possible node ids.
  3808. */
  3809. static void __init setup_nr_node_ids(void)
  3810. {
  3811. unsigned int node;
  3812. unsigned int highest = 0;
  3813. for_each_node_mask(node, node_possible_map)
  3814. highest = node;
  3815. nr_node_ids = highest + 1;
  3816. }
  3817. #else
  3818. static inline void setup_nr_node_ids(void)
  3819. {
  3820. }
  3821. #endif
  3822. /**
  3823. * add_active_range - Register a range of PFNs backed by physical memory
  3824. * @nid: The node ID the range resides on
  3825. * @start_pfn: The start PFN of the available physical memory
  3826. * @end_pfn: The end PFN of the available physical memory
  3827. *
  3828. * These ranges are stored in an early_node_map[] and later used by
  3829. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3830. * range spans a memory hole, it is up to the architecture to ensure
  3831. * the memory is not freed by the bootmem allocator. If possible
  3832. * the range being registered will be merged with existing ranges.
  3833. */
  3834. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3835. unsigned long end_pfn)
  3836. {
  3837. int i;
  3838. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3839. "Entering add_active_range(%d, %#lx, %#lx) "
  3840. "%d entries of %d used\n",
  3841. nid, start_pfn, end_pfn,
  3842. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3843. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3844. /* Merge with existing active regions if possible */
  3845. for (i = 0; i < nr_nodemap_entries; i++) {
  3846. if (early_node_map[i].nid != nid)
  3847. continue;
  3848. /* Skip if an existing region covers this new one */
  3849. if (start_pfn >= early_node_map[i].start_pfn &&
  3850. end_pfn <= early_node_map[i].end_pfn)
  3851. return;
  3852. /* Merge forward if suitable */
  3853. if (start_pfn <= early_node_map[i].end_pfn &&
  3854. end_pfn > early_node_map[i].end_pfn) {
  3855. early_node_map[i].end_pfn = end_pfn;
  3856. return;
  3857. }
  3858. /* Merge backward if suitable */
  3859. if (start_pfn < early_node_map[i].start_pfn &&
  3860. end_pfn >= early_node_map[i].start_pfn) {
  3861. early_node_map[i].start_pfn = start_pfn;
  3862. return;
  3863. }
  3864. }
  3865. /* Check that early_node_map is large enough */
  3866. if (i >= MAX_ACTIVE_REGIONS) {
  3867. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3868. MAX_ACTIVE_REGIONS);
  3869. return;
  3870. }
  3871. early_node_map[i].nid = nid;
  3872. early_node_map[i].start_pfn = start_pfn;
  3873. early_node_map[i].end_pfn = end_pfn;
  3874. nr_nodemap_entries = i + 1;
  3875. }
  3876. /**
  3877. * remove_active_range - Shrink an existing registered range of PFNs
  3878. * @nid: The node id the range is on that should be shrunk
  3879. * @start_pfn: The new PFN of the range
  3880. * @end_pfn: The new PFN of the range
  3881. *
  3882. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3883. * The map is kept near the end physical page range that has already been
  3884. * registered. This function allows an arch to shrink an existing registered
  3885. * range.
  3886. */
  3887. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3888. unsigned long end_pfn)
  3889. {
  3890. int i, j;
  3891. int removed = 0;
  3892. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3893. nid, start_pfn, end_pfn);
  3894. /* Find the old active region end and shrink */
  3895. for_each_active_range_index_in_nid(i, nid) {
  3896. if (early_node_map[i].start_pfn >= start_pfn &&
  3897. early_node_map[i].end_pfn <= end_pfn) {
  3898. /* clear it */
  3899. early_node_map[i].start_pfn = 0;
  3900. early_node_map[i].end_pfn = 0;
  3901. removed = 1;
  3902. continue;
  3903. }
  3904. if (early_node_map[i].start_pfn < start_pfn &&
  3905. early_node_map[i].end_pfn > start_pfn) {
  3906. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3907. early_node_map[i].end_pfn = start_pfn;
  3908. if (temp_end_pfn > end_pfn)
  3909. add_active_range(nid, end_pfn, temp_end_pfn);
  3910. continue;
  3911. }
  3912. if (early_node_map[i].start_pfn >= start_pfn &&
  3913. early_node_map[i].end_pfn > end_pfn &&
  3914. early_node_map[i].start_pfn < end_pfn) {
  3915. early_node_map[i].start_pfn = end_pfn;
  3916. continue;
  3917. }
  3918. }
  3919. if (!removed)
  3920. return;
  3921. /* remove the blank ones */
  3922. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3923. if (early_node_map[i].nid != nid)
  3924. continue;
  3925. if (early_node_map[i].end_pfn)
  3926. continue;
  3927. /* we found it, get rid of it */
  3928. for (j = i; j < nr_nodemap_entries - 1; j++)
  3929. memcpy(&early_node_map[j], &early_node_map[j+1],
  3930. sizeof(early_node_map[j]));
  3931. j = nr_nodemap_entries - 1;
  3932. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3933. nr_nodemap_entries--;
  3934. }
  3935. }
  3936. /**
  3937. * remove_all_active_ranges - Remove all currently registered regions
  3938. *
  3939. * During discovery, it may be found that a table like SRAT is invalid
  3940. * and an alternative discovery method must be used. This function removes
  3941. * all currently registered regions.
  3942. */
  3943. void __init remove_all_active_ranges(void)
  3944. {
  3945. memset(early_node_map, 0, sizeof(early_node_map));
  3946. nr_nodemap_entries = 0;
  3947. }
  3948. /* Compare two active node_active_regions */
  3949. static int __init cmp_node_active_region(const void *a, const void *b)
  3950. {
  3951. struct node_active_region *arange = (struct node_active_region *)a;
  3952. struct node_active_region *brange = (struct node_active_region *)b;
  3953. /* Done this way to avoid overflows */
  3954. if (arange->start_pfn > brange->start_pfn)
  3955. return 1;
  3956. if (arange->start_pfn < brange->start_pfn)
  3957. return -1;
  3958. return 0;
  3959. }
  3960. /* sort the node_map by start_pfn */
  3961. void __init sort_node_map(void)
  3962. {
  3963. sort(early_node_map, (size_t)nr_nodemap_entries,
  3964. sizeof(struct node_active_region),
  3965. cmp_node_active_region, NULL);
  3966. }
  3967. /* Find the lowest pfn for a node */
  3968. static unsigned long __init find_min_pfn_for_node(int nid)
  3969. {
  3970. int i;
  3971. unsigned long min_pfn = ULONG_MAX;
  3972. /* Assuming a sorted map, the first range found has the starting pfn */
  3973. for_each_active_range_index_in_nid(i, nid)
  3974. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3975. if (min_pfn == ULONG_MAX) {
  3976. printk(KERN_WARNING
  3977. "Could not find start_pfn for node %d\n", nid);
  3978. return 0;
  3979. }
  3980. return min_pfn;
  3981. }
  3982. /**
  3983. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3984. *
  3985. * It returns the minimum PFN based on information provided via
  3986. * add_active_range().
  3987. */
  3988. unsigned long __init find_min_pfn_with_active_regions(void)
  3989. {
  3990. return find_min_pfn_for_node(MAX_NUMNODES);
  3991. }
  3992. /*
  3993. * early_calculate_totalpages()
  3994. * Sum pages in active regions for movable zone.
  3995. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3996. */
  3997. static unsigned long __init early_calculate_totalpages(void)
  3998. {
  3999. int i;
  4000. unsigned long totalpages = 0;
  4001. for (i = 0; i < nr_nodemap_entries; i++) {
  4002. unsigned long pages = early_node_map[i].end_pfn -
  4003. early_node_map[i].start_pfn;
  4004. totalpages += pages;
  4005. if (pages)
  4006. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  4007. }
  4008. return totalpages;
  4009. }
  4010. /*
  4011. * Find the PFN the Movable zone begins in each node. Kernel memory
  4012. * is spread evenly between nodes as long as the nodes have enough
  4013. * memory. When they don't, some nodes will have more kernelcore than
  4014. * others
  4015. */
  4016. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  4017. {
  4018. int i, nid;
  4019. unsigned long usable_startpfn;
  4020. unsigned long kernelcore_node, kernelcore_remaining;
  4021. /* save the state before borrow the nodemask */
  4022. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4023. unsigned long totalpages = early_calculate_totalpages();
  4024. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4025. /*
  4026. * If movablecore was specified, calculate what size of
  4027. * kernelcore that corresponds so that memory usable for
  4028. * any allocation type is evenly spread. If both kernelcore
  4029. * and movablecore are specified, then the value of kernelcore
  4030. * will be used for required_kernelcore if it's greater than
  4031. * what movablecore would have allowed.
  4032. */
  4033. if (required_movablecore) {
  4034. unsigned long corepages;
  4035. /*
  4036. * Round-up so that ZONE_MOVABLE is at least as large as what
  4037. * was requested by the user
  4038. */
  4039. required_movablecore =
  4040. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4041. corepages = totalpages - required_movablecore;
  4042. required_kernelcore = max(required_kernelcore, corepages);
  4043. }
  4044. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4045. if (!required_kernelcore)
  4046. goto out;
  4047. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4048. find_usable_zone_for_movable();
  4049. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4050. restart:
  4051. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4052. kernelcore_node = required_kernelcore / usable_nodes;
  4053. for_each_node_state(nid, N_HIGH_MEMORY) {
  4054. /*
  4055. * Recalculate kernelcore_node if the division per node
  4056. * now exceeds what is necessary to satisfy the requested
  4057. * amount of memory for the kernel
  4058. */
  4059. if (required_kernelcore < kernelcore_node)
  4060. kernelcore_node = required_kernelcore / usable_nodes;
  4061. /*
  4062. * As the map is walked, we track how much memory is usable
  4063. * by the kernel using kernelcore_remaining. When it is
  4064. * 0, the rest of the node is usable by ZONE_MOVABLE
  4065. */
  4066. kernelcore_remaining = kernelcore_node;
  4067. /* Go through each range of PFNs within this node */
  4068. for_each_active_range_index_in_nid(i, nid) {
  4069. unsigned long start_pfn, end_pfn;
  4070. unsigned long size_pages;
  4071. start_pfn = max(early_node_map[i].start_pfn,
  4072. zone_movable_pfn[nid]);
  4073. end_pfn = early_node_map[i].end_pfn;
  4074. if (start_pfn >= end_pfn)
  4075. continue;
  4076. /* Account for what is only usable for kernelcore */
  4077. if (start_pfn < usable_startpfn) {
  4078. unsigned long kernel_pages;
  4079. kernel_pages = min(end_pfn, usable_startpfn)
  4080. - start_pfn;
  4081. kernelcore_remaining -= min(kernel_pages,
  4082. kernelcore_remaining);
  4083. required_kernelcore -= min(kernel_pages,
  4084. required_kernelcore);
  4085. /* Continue if range is now fully accounted */
  4086. if (end_pfn <= usable_startpfn) {
  4087. /*
  4088. * Push zone_movable_pfn to the end so
  4089. * that if we have to rebalance
  4090. * kernelcore across nodes, we will
  4091. * not double account here
  4092. */
  4093. zone_movable_pfn[nid] = end_pfn;
  4094. continue;
  4095. }
  4096. start_pfn = usable_startpfn;
  4097. }
  4098. /*
  4099. * The usable PFN range for ZONE_MOVABLE is from
  4100. * start_pfn->end_pfn. Calculate size_pages as the
  4101. * number of pages used as kernelcore
  4102. */
  4103. size_pages = end_pfn - start_pfn;
  4104. if (size_pages > kernelcore_remaining)
  4105. size_pages = kernelcore_remaining;
  4106. zone_movable_pfn[nid] = start_pfn + size_pages;
  4107. /*
  4108. * Some kernelcore has been met, update counts and
  4109. * break if the kernelcore for this node has been
  4110. * satisified
  4111. */
  4112. required_kernelcore -= min(required_kernelcore,
  4113. size_pages);
  4114. kernelcore_remaining -= size_pages;
  4115. if (!kernelcore_remaining)
  4116. break;
  4117. }
  4118. }
  4119. /*
  4120. * If there is still required_kernelcore, we do another pass with one
  4121. * less node in the count. This will push zone_movable_pfn[nid] further
  4122. * along on the nodes that still have memory until kernelcore is
  4123. * satisified
  4124. */
  4125. usable_nodes--;
  4126. if (usable_nodes && required_kernelcore > usable_nodes)
  4127. goto restart;
  4128. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4129. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4130. zone_movable_pfn[nid] =
  4131. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4132. out:
  4133. /* restore the node_state */
  4134. node_states[N_HIGH_MEMORY] = saved_node_state;
  4135. }
  4136. /* Any regular memory on that node ? */
  4137. static void check_for_regular_memory(pg_data_t *pgdat)
  4138. {
  4139. #ifdef CONFIG_HIGHMEM
  4140. enum zone_type zone_type;
  4141. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4142. struct zone *zone = &pgdat->node_zones[zone_type];
  4143. if (zone->present_pages)
  4144. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4145. }
  4146. #endif
  4147. }
  4148. /**
  4149. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4150. * @max_zone_pfn: an array of max PFNs for each zone
  4151. *
  4152. * This will call free_area_init_node() for each active node in the system.
  4153. * Using the page ranges provided by add_active_range(), the size of each
  4154. * zone in each node and their holes is calculated. If the maximum PFN
  4155. * between two adjacent zones match, it is assumed that the zone is empty.
  4156. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4157. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4158. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4159. * at arch_max_dma_pfn.
  4160. */
  4161. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4162. {
  4163. unsigned long nid;
  4164. int i;
  4165. /* Sort early_node_map as initialisation assumes it is sorted */
  4166. sort_node_map();
  4167. /* Record where the zone boundaries are */
  4168. memset(arch_zone_lowest_possible_pfn, 0,
  4169. sizeof(arch_zone_lowest_possible_pfn));
  4170. memset(arch_zone_highest_possible_pfn, 0,
  4171. sizeof(arch_zone_highest_possible_pfn));
  4172. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4173. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4174. for (i = 1; i < MAX_NR_ZONES; i++) {
  4175. if (i == ZONE_MOVABLE)
  4176. continue;
  4177. arch_zone_lowest_possible_pfn[i] =
  4178. arch_zone_highest_possible_pfn[i-1];
  4179. arch_zone_highest_possible_pfn[i] =
  4180. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4181. }
  4182. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4183. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4184. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4185. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4186. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4187. /* Print out the zone ranges */
  4188. printk("Zone PFN ranges:\n");
  4189. for (i = 0; i < MAX_NR_ZONES; i++) {
  4190. if (i == ZONE_MOVABLE)
  4191. continue;
  4192. printk(" %-8s ", zone_names[i]);
  4193. if (arch_zone_lowest_possible_pfn[i] ==
  4194. arch_zone_highest_possible_pfn[i])
  4195. printk("empty\n");
  4196. else
  4197. printk("%0#10lx -> %0#10lx\n",
  4198. arch_zone_lowest_possible_pfn[i],
  4199. arch_zone_highest_possible_pfn[i]);
  4200. }
  4201. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4202. printk("Movable zone start PFN for each node\n");
  4203. for (i = 0; i < MAX_NUMNODES; i++) {
  4204. if (zone_movable_pfn[i])
  4205. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4206. }
  4207. /* Print out the early_node_map[] */
  4208. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4209. for (i = 0; i < nr_nodemap_entries; i++)
  4210. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4211. early_node_map[i].start_pfn,
  4212. early_node_map[i].end_pfn);
  4213. /* Initialise every node */
  4214. mminit_verify_pageflags_layout();
  4215. setup_nr_node_ids();
  4216. for_each_online_node(nid) {
  4217. pg_data_t *pgdat = NODE_DATA(nid);
  4218. free_area_init_node(nid, NULL,
  4219. find_min_pfn_for_node(nid), NULL);
  4220. /* Any memory on that node */
  4221. if (pgdat->node_present_pages)
  4222. node_set_state(nid, N_HIGH_MEMORY);
  4223. check_for_regular_memory(pgdat);
  4224. }
  4225. }
  4226. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4227. {
  4228. unsigned long long coremem;
  4229. if (!p)
  4230. return -EINVAL;
  4231. coremem = memparse(p, &p);
  4232. *core = coremem >> PAGE_SHIFT;
  4233. /* Paranoid check that UL is enough for the coremem value */
  4234. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4235. return 0;
  4236. }
  4237. /*
  4238. * kernelcore=size sets the amount of memory for use for allocations that
  4239. * cannot be reclaimed or migrated.
  4240. */
  4241. static int __init cmdline_parse_kernelcore(char *p)
  4242. {
  4243. return cmdline_parse_core(p, &required_kernelcore);
  4244. }
  4245. /*
  4246. * movablecore=size sets the amount of memory for use for allocations that
  4247. * can be reclaimed or migrated.
  4248. */
  4249. static int __init cmdline_parse_movablecore(char *p)
  4250. {
  4251. return cmdline_parse_core(p, &required_movablecore);
  4252. }
  4253. early_param("kernelcore", cmdline_parse_kernelcore);
  4254. early_param("movablecore", cmdline_parse_movablecore);
  4255. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4256. /**
  4257. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4258. * @new_dma_reserve: The number of pages to mark reserved
  4259. *
  4260. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4261. * In the DMA zone, a significant percentage may be consumed by kernel image
  4262. * and other unfreeable allocations which can skew the watermarks badly. This
  4263. * function may optionally be used to account for unfreeable pages in the
  4264. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4265. * smaller per-cpu batchsize.
  4266. */
  4267. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4268. {
  4269. dma_reserve = new_dma_reserve;
  4270. }
  4271. void __init free_area_init(unsigned long *zones_size)
  4272. {
  4273. free_area_init_node(0, zones_size,
  4274. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4275. }
  4276. static int page_alloc_cpu_notify(struct notifier_block *self,
  4277. unsigned long action, void *hcpu)
  4278. {
  4279. int cpu = (unsigned long)hcpu;
  4280. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4281. drain_pages(cpu);
  4282. /*
  4283. * Spill the event counters of the dead processor
  4284. * into the current processors event counters.
  4285. * This artificially elevates the count of the current
  4286. * processor.
  4287. */
  4288. vm_events_fold_cpu(cpu);
  4289. /*
  4290. * Zero the differential counters of the dead processor
  4291. * so that the vm statistics are consistent.
  4292. *
  4293. * This is only okay since the processor is dead and cannot
  4294. * race with what we are doing.
  4295. */
  4296. refresh_cpu_vm_stats(cpu);
  4297. }
  4298. return NOTIFY_OK;
  4299. }
  4300. void __init page_alloc_init(void)
  4301. {
  4302. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4303. }
  4304. /*
  4305. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4306. * or min_free_kbytes changes.
  4307. */
  4308. static void calculate_totalreserve_pages(void)
  4309. {
  4310. struct pglist_data *pgdat;
  4311. unsigned long reserve_pages = 0;
  4312. enum zone_type i, j;
  4313. for_each_online_pgdat(pgdat) {
  4314. for (i = 0; i < MAX_NR_ZONES; i++) {
  4315. struct zone *zone = pgdat->node_zones + i;
  4316. unsigned long max = 0;
  4317. /* Find valid and maximum lowmem_reserve in the zone */
  4318. for (j = i; j < MAX_NR_ZONES; j++) {
  4319. if (zone->lowmem_reserve[j] > max)
  4320. max = zone->lowmem_reserve[j];
  4321. }
  4322. /* we treat the high watermark as reserved pages. */
  4323. max += high_wmark_pages(zone);
  4324. if (max > zone->present_pages)
  4325. max = zone->present_pages;
  4326. reserve_pages += max;
  4327. }
  4328. }
  4329. totalreserve_pages = reserve_pages;
  4330. }
  4331. /*
  4332. * setup_per_zone_lowmem_reserve - called whenever
  4333. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4334. * has a correct pages reserved value, so an adequate number of
  4335. * pages are left in the zone after a successful __alloc_pages().
  4336. */
  4337. static void setup_per_zone_lowmem_reserve(void)
  4338. {
  4339. struct pglist_data *pgdat;
  4340. enum zone_type j, idx;
  4341. for_each_online_pgdat(pgdat) {
  4342. for (j = 0; j < MAX_NR_ZONES; j++) {
  4343. struct zone *zone = pgdat->node_zones + j;
  4344. unsigned long present_pages = zone->present_pages;
  4345. zone->lowmem_reserve[j] = 0;
  4346. idx = j;
  4347. while (idx) {
  4348. struct zone *lower_zone;
  4349. idx--;
  4350. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4351. sysctl_lowmem_reserve_ratio[idx] = 1;
  4352. lower_zone = pgdat->node_zones + idx;
  4353. lower_zone->lowmem_reserve[j] = present_pages /
  4354. sysctl_lowmem_reserve_ratio[idx];
  4355. present_pages += lower_zone->present_pages;
  4356. }
  4357. }
  4358. }
  4359. /* update totalreserve_pages */
  4360. calculate_totalreserve_pages();
  4361. }
  4362. /**
  4363. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4364. * or when memory is hot-{added|removed}
  4365. *
  4366. * Ensures that the watermark[min,low,high] values for each zone are set
  4367. * correctly with respect to min_free_kbytes.
  4368. */
  4369. void setup_per_zone_wmarks(void)
  4370. {
  4371. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4372. unsigned long lowmem_pages = 0;
  4373. struct zone *zone;
  4374. unsigned long flags;
  4375. /* Calculate total number of !ZONE_HIGHMEM pages */
  4376. for_each_zone(zone) {
  4377. if (!is_highmem(zone))
  4378. lowmem_pages += zone->present_pages;
  4379. }
  4380. for_each_zone(zone) {
  4381. u64 tmp;
  4382. spin_lock_irqsave(&zone->lock, flags);
  4383. tmp = (u64)pages_min * zone->present_pages;
  4384. do_div(tmp, lowmem_pages);
  4385. if (is_highmem(zone)) {
  4386. /*
  4387. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4388. * need highmem pages, so cap pages_min to a small
  4389. * value here.
  4390. *
  4391. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4392. * deltas controls asynch page reclaim, and so should
  4393. * not be capped for highmem.
  4394. */
  4395. int min_pages;
  4396. min_pages = zone->present_pages / 1024;
  4397. if (min_pages < SWAP_CLUSTER_MAX)
  4398. min_pages = SWAP_CLUSTER_MAX;
  4399. if (min_pages > 128)
  4400. min_pages = 128;
  4401. zone->watermark[WMARK_MIN] = min_pages;
  4402. } else {
  4403. /*
  4404. * If it's a lowmem zone, reserve a number of pages
  4405. * proportionate to the zone's size.
  4406. */
  4407. zone->watermark[WMARK_MIN] = tmp;
  4408. }
  4409. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4410. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4411. setup_zone_migrate_reserve(zone);
  4412. spin_unlock_irqrestore(&zone->lock, flags);
  4413. }
  4414. /* update totalreserve_pages */
  4415. calculate_totalreserve_pages();
  4416. }
  4417. /*
  4418. * The inactive anon list should be small enough that the VM never has to
  4419. * do too much work, but large enough that each inactive page has a chance
  4420. * to be referenced again before it is swapped out.
  4421. *
  4422. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4423. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4424. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4425. * the anonymous pages are kept on the inactive list.
  4426. *
  4427. * total target max
  4428. * memory ratio inactive anon
  4429. * -------------------------------------
  4430. * 10MB 1 5MB
  4431. * 100MB 1 50MB
  4432. * 1GB 3 250MB
  4433. * 10GB 10 0.9GB
  4434. * 100GB 31 3GB
  4435. * 1TB 101 10GB
  4436. * 10TB 320 32GB
  4437. */
  4438. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4439. {
  4440. unsigned int gb, ratio;
  4441. /* Zone size in gigabytes */
  4442. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4443. if (gb)
  4444. ratio = int_sqrt(10 * gb);
  4445. else
  4446. ratio = 1;
  4447. zone->inactive_ratio = ratio;
  4448. }
  4449. static void __meminit setup_per_zone_inactive_ratio(void)
  4450. {
  4451. struct zone *zone;
  4452. for_each_zone(zone)
  4453. calculate_zone_inactive_ratio(zone);
  4454. }
  4455. /*
  4456. * Initialise min_free_kbytes.
  4457. *
  4458. * For small machines we want it small (128k min). For large machines
  4459. * we want it large (64MB max). But it is not linear, because network
  4460. * bandwidth does not increase linearly with machine size. We use
  4461. *
  4462. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4463. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4464. *
  4465. * which yields
  4466. *
  4467. * 16MB: 512k
  4468. * 32MB: 724k
  4469. * 64MB: 1024k
  4470. * 128MB: 1448k
  4471. * 256MB: 2048k
  4472. * 512MB: 2896k
  4473. * 1024MB: 4096k
  4474. * 2048MB: 5792k
  4475. * 4096MB: 8192k
  4476. * 8192MB: 11584k
  4477. * 16384MB: 16384k
  4478. */
  4479. int __meminit init_per_zone_wmark_min(void)
  4480. {
  4481. unsigned long lowmem_kbytes;
  4482. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4483. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4484. if (min_free_kbytes < 128)
  4485. min_free_kbytes = 128;
  4486. if (min_free_kbytes > 65536)
  4487. min_free_kbytes = 65536;
  4488. setup_per_zone_wmarks();
  4489. refresh_zone_stat_thresholds();
  4490. setup_per_zone_lowmem_reserve();
  4491. setup_per_zone_inactive_ratio();
  4492. return 0;
  4493. }
  4494. module_init(init_per_zone_wmark_min)
  4495. /*
  4496. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4497. * that we can call two helper functions whenever min_free_kbytes
  4498. * changes.
  4499. */
  4500. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4501. void __user *buffer, size_t *length, loff_t *ppos)
  4502. {
  4503. proc_dointvec(table, write, buffer, length, ppos);
  4504. if (write)
  4505. setup_per_zone_wmarks();
  4506. return 0;
  4507. }
  4508. #ifdef CONFIG_NUMA
  4509. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4510. void __user *buffer, size_t *length, loff_t *ppos)
  4511. {
  4512. struct zone *zone;
  4513. int rc;
  4514. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4515. if (rc)
  4516. return rc;
  4517. for_each_zone(zone)
  4518. zone->min_unmapped_pages = (zone->present_pages *
  4519. sysctl_min_unmapped_ratio) / 100;
  4520. return 0;
  4521. }
  4522. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4523. void __user *buffer, size_t *length, loff_t *ppos)
  4524. {
  4525. struct zone *zone;
  4526. int rc;
  4527. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4528. if (rc)
  4529. return rc;
  4530. for_each_zone(zone)
  4531. zone->min_slab_pages = (zone->present_pages *
  4532. sysctl_min_slab_ratio) / 100;
  4533. return 0;
  4534. }
  4535. #endif
  4536. /*
  4537. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4538. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4539. * whenever sysctl_lowmem_reserve_ratio changes.
  4540. *
  4541. * The reserve ratio obviously has absolutely no relation with the
  4542. * minimum watermarks. The lowmem reserve ratio can only make sense
  4543. * if in function of the boot time zone sizes.
  4544. */
  4545. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4546. void __user *buffer, size_t *length, loff_t *ppos)
  4547. {
  4548. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4549. setup_per_zone_lowmem_reserve();
  4550. return 0;
  4551. }
  4552. /*
  4553. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4554. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4555. * can have before it gets flushed back to buddy allocator.
  4556. */
  4557. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4558. void __user *buffer, size_t *length, loff_t *ppos)
  4559. {
  4560. struct zone *zone;
  4561. unsigned int cpu;
  4562. int ret;
  4563. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4564. if (!write || (ret == -EINVAL))
  4565. return ret;
  4566. for_each_populated_zone(zone) {
  4567. for_each_possible_cpu(cpu) {
  4568. unsigned long high;
  4569. high = zone->present_pages / percpu_pagelist_fraction;
  4570. setup_pagelist_highmark(
  4571. per_cpu_ptr(zone->pageset, cpu), high);
  4572. }
  4573. }
  4574. return 0;
  4575. }
  4576. int hashdist = HASHDIST_DEFAULT;
  4577. #ifdef CONFIG_NUMA
  4578. static int __init set_hashdist(char *str)
  4579. {
  4580. if (!str)
  4581. return 0;
  4582. hashdist = simple_strtoul(str, &str, 0);
  4583. return 1;
  4584. }
  4585. __setup("hashdist=", set_hashdist);
  4586. #endif
  4587. /*
  4588. * allocate a large system hash table from bootmem
  4589. * - it is assumed that the hash table must contain an exact power-of-2
  4590. * quantity of entries
  4591. * - limit is the number of hash buckets, not the total allocation size
  4592. */
  4593. void *__init alloc_large_system_hash(const char *tablename,
  4594. unsigned long bucketsize,
  4595. unsigned long numentries,
  4596. int scale,
  4597. int flags,
  4598. unsigned int *_hash_shift,
  4599. unsigned int *_hash_mask,
  4600. unsigned long limit)
  4601. {
  4602. unsigned long long max = limit;
  4603. unsigned long log2qty, size;
  4604. void *table = NULL;
  4605. /* allow the kernel cmdline to have a say */
  4606. if (!numentries) {
  4607. /* round applicable memory size up to nearest megabyte */
  4608. numentries = nr_kernel_pages;
  4609. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4610. numentries >>= 20 - PAGE_SHIFT;
  4611. numentries <<= 20 - PAGE_SHIFT;
  4612. /* limit to 1 bucket per 2^scale bytes of low memory */
  4613. if (scale > PAGE_SHIFT)
  4614. numentries >>= (scale - PAGE_SHIFT);
  4615. else
  4616. numentries <<= (PAGE_SHIFT - scale);
  4617. /* Make sure we've got at least a 0-order allocation.. */
  4618. if (unlikely(flags & HASH_SMALL)) {
  4619. /* Makes no sense without HASH_EARLY */
  4620. WARN_ON(!(flags & HASH_EARLY));
  4621. if (!(numentries >> *_hash_shift)) {
  4622. numentries = 1UL << *_hash_shift;
  4623. BUG_ON(!numentries);
  4624. }
  4625. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4626. numentries = PAGE_SIZE / bucketsize;
  4627. }
  4628. numentries = roundup_pow_of_two(numentries);
  4629. /* limit allocation size to 1/16 total memory by default */
  4630. if (max == 0) {
  4631. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4632. do_div(max, bucketsize);
  4633. }
  4634. if (numentries > max)
  4635. numentries = max;
  4636. log2qty = ilog2(numentries);
  4637. do {
  4638. size = bucketsize << log2qty;
  4639. if (flags & HASH_EARLY)
  4640. table = alloc_bootmem_nopanic(size);
  4641. else if (hashdist)
  4642. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4643. else {
  4644. /*
  4645. * If bucketsize is not a power-of-two, we may free
  4646. * some pages at the end of hash table which
  4647. * alloc_pages_exact() automatically does
  4648. */
  4649. if (get_order(size) < MAX_ORDER) {
  4650. table = alloc_pages_exact(size, GFP_ATOMIC);
  4651. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4652. }
  4653. }
  4654. } while (!table && size > PAGE_SIZE && --log2qty);
  4655. if (!table)
  4656. panic("Failed to allocate %s hash table\n", tablename);
  4657. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4658. tablename,
  4659. (1UL << log2qty),
  4660. ilog2(size) - PAGE_SHIFT,
  4661. size);
  4662. if (_hash_shift)
  4663. *_hash_shift = log2qty;
  4664. if (_hash_mask)
  4665. *_hash_mask = (1 << log2qty) - 1;
  4666. return table;
  4667. }
  4668. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4669. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4670. unsigned long pfn)
  4671. {
  4672. #ifdef CONFIG_SPARSEMEM
  4673. return __pfn_to_section(pfn)->pageblock_flags;
  4674. #else
  4675. return zone->pageblock_flags;
  4676. #endif /* CONFIG_SPARSEMEM */
  4677. }
  4678. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4679. {
  4680. #ifdef CONFIG_SPARSEMEM
  4681. pfn &= (PAGES_PER_SECTION-1);
  4682. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4683. #else
  4684. pfn = pfn - zone->zone_start_pfn;
  4685. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4686. #endif /* CONFIG_SPARSEMEM */
  4687. }
  4688. /**
  4689. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4690. * @page: The page within the block of interest
  4691. * @start_bitidx: The first bit of interest to retrieve
  4692. * @end_bitidx: The last bit of interest
  4693. * returns pageblock_bits flags
  4694. */
  4695. unsigned long get_pageblock_flags_group(struct page *page,
  4696. int start_bitidx, int end_bitidx)
  4697. {
  4698. struct zone *zone;
  4699. unsigned long *bitmap;
  4700. unsigned long pfn, bitidx;
  4701. unsigned long flags = 0;
  4702. unsigned long value = 1;
  4703. zone = page_zone(page);
  4704. pfn = page_to_pfn(page);
  4705. bitmap = get_pageblock_bitmap(zone, pfn);
  4706. bitidx = pfn_to_bitidx(zone, pfn);
  4707. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4708. if (test_bit(bitidx + start_bitidx, bitmap))
  4709. flags |= value;
  4710. return flags;
  4711. }
  4712. /**
  4713. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4714. * @page: The page within the block of interest
  4715. * @start_bitidx: The first bit of interest
  4716. * @end_bitidx: The last bit of interest
  4717. * @flags: The flags to set
  4718. */
  4719. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4720. int start_bitidx, int end_bitidx)
  4721. {
  4722. struct zone *zone;
  4723. unsigned long *bitmap;
  4724. unsigned long pfn, bitidx;
  4725. unsigned long value = 1;
  4726. zone = page_zone(page);
  4727. pfn = page_to_pfn(page);
  4728. bitmap = get_pageblock_bitmap(zone, pfn);
  4729. bitidx = pfn_to_bitidx(zone, pfn);
  4730. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4731. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4732. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4733. if (flags & value)
  4734. __set_bit(bitidx + start_bitidx, bitmap);
  4735. else
  4736. __clear_bit(bitidx + start_bitidx, bitmap);
  4737. }
  4738. /*
  4739. * This is designed as sub function...plz see page_isolation.c also.
  4740. * set/clear page block's type to be ISOLATE.
  4741. * page allocater never alloc memory from ISOLATE block.
  4742. */
  4743. static int
  4744. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4745. {
  4746. unsigned long pfn, iter, found;
  4747. /*
  4748. * For avoiding noise data, lru_add_drain_all() should be called
  4749. * If ZONE_MOVABLE, the zone never contains immobile pages
  4750. */
  4751. if (zone_idx(zone) == ZONE_MOVABLE)
  4752. return true;
  4753. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4754. return true;
  4755. pfn = page_to_pfn(page);
  4756. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4757. unsigned long check = pfn + iter;
  4758. if (!pfn_valid_within(check))
  4759. continue;
  4760. page = pfn_to_page(check);
  4761. if (!page_count(page)) {
  4762. if (PageBuddy(page))
  4763. iter += (1 << page_order(page)) - 1;
  4764. continue;
  4765. }
  4766. if (!PageLRU(page))
  4767. found++;
  4768. /*
  4769. * If there are RECLAIMABLE pages, we need to check it.
  4770. * But now, memory offline itself doesn't call shrink_slab()
  4771. * and it still to be fixed.
  4772. */
  4773. /*
  4774. * If the page is not RAM, page_count()should be 0.
  4775. * we don't need more check. This is an _used_ not-movable page.
  4776. *
  4777. * The problematic thing here is PG_reserved pages. PG_reserved
  4778. * is set to both of a memory hole page and a _used_ kernel
  4779. * page at boot.
  4780. */
  4781. if (found > count)
  4782. return false;
  4783. }
  4784. return true;
  4785. }
  4786. bool is_pageblock_removable_nolock(struct page *page)
  4787. {
  4788. struct zone *zone = page_zone(page);
  4789. return __count_immobile_pages(zone, page, 0);
  4790. }
  4791. int set_migratetype_isolate(struct page *page)
  4792. {
  4793. struct zone *zone;
  4794. unsigned long flags, pfn;
  4795. struct memory_isolate_notify arg;
  4796. int notifier_ret;
  4797. int ret = -EBUSY;
  4798. zone = page_zone(page);
  4799. spin_lock_irqsave(&zone->lock, flags);
  4800. pfn = page_to_pfn(page);
  4801. arg.start_pfn = pfn;
  4802. arg.nr_pages = pageblock_nr_pages;
  4803. arg.pages_found = 0;
  4804. /*
  4805. * It may be possible to isolate a pageblock even if the
  4806. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4807. * notifier chain is used by balloon drivers to return the
  4808. * number of pages in a range that are held by the balloon
  4809. * driver to shrink memory. If all the pages are accounted for
  4810. * by balloons, are free, or on the LRU, isolation can continue.
  4811. * Later, for example, when memory hotplug notifier runs, these
  4812. * pages reported as "can be isolated" should be isolated(freed)
  4813. * by the balloon driver through the memory notifier chain.
  4814. */
  4815. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4816. notifier_ret = notifier_to_errno(notifier_ret);
  4817. if (notifier_ret)
  4818. goto out;
  4819. /*
  4820. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4821. * We just check MOVABLE pages.
  4822. */
  4823. if (__count_immobile_pages(zone, page, arg.pages_found))
  4824. ret = 0;
  4825. /*
  4826. * immobile means "not-on-lru" paes. If immobile is larger than
  4827. * removable-by-driver pages reported by notifier, we'll fail.
  4828. */
  4829. out:
  4830. if (!ret) {
  4831. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4832. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4833. }
  4834. spin_unlock_irqrestore(&zone->lock, flags);
  4835. if (!ret)
  4836. drain_all_pages();
  4837. return ret;
  4838. }
  4839. void unset_migratetype_isolate(struct page *page)
  4840. {
  4841. struct zone *zone;
  4842. unsigned long flags;
  4843. zone = page_zone(page);
  4844. spin_lock_irqsave(&zone->lock, flags);
  4845. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4846. goto out;
  4847. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4848. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4849. out:
  4850. spin_unlock_irqrestore(&zone->lock, flags);
  4851. }
  4852. #ifdef CONFIG_MEMORY_HOTREMOVE
  4853. /*
  4854. * All pages in the range must be isolated before calling this.
  4855. */
  4856. void
  4857. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4858. {
  4859. struct page *page;
  4860. struct zone *zone;
  4861. int order, i;
  4862. unsigned long pfn;
  4863. unsigned long flags;
  4864. /* find the first valid pfn */
  4865. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4866. if (pfn_valid(pfn))
  4867. break;
  4868. if (pfn == end_pfn)
  4869. return;
  4870. zone = page_zone(pfn_to_page(pfn));
  4871. spin_lock_irqsave(&zone->lock, flags);
  4872. pfn = start_pfn;
  4873. while (pfn < end_pfn) {
  4874. if (!pfn_valid(pfn)) {
  4875. pfn++;
  4876. continue;
  4877. }
  4878. page = pfn_to_page(pfn);
  4879. BUG_ON(page_count(page));
  4880. BUG_ON(!PageBuddy(page));
  4881. order = page_order(page);
  4882. #ifdef CONFIG_DEBUG_VM
  4883. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4884. pfn, 1 << order, end_pfn);
  4885. #endif
  4886. list_del(&page->lru);
  4887. rmv_page_order(page);
  4888. zone->free_area[order].nr_free--;
  4889. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4890. - (1UL << order));
  4891. for (i = 0; i < (1 << order); i++)
  4892. SetPageReserved((page+i));
  4893. pfn += (1 << order);
  4894. }
  4895. spin_unlock_irqrestore(&zone->lock, flags);
  4896. }
  4897. #endif
  4898. #ifdef CONFIG_MEMORY_FAILURE
  4899. bool is_free_buddy_page(struct page *page)
  4900. {
  4901. struct zone *zone = page_zone(page);
  4902. unsigned long pfn = page_to_pfn(page);
  4903. unsigned long flags;
  4904. int order;
  4905. spin_lock_irqsave(&zone->lock, flags);
  4906. for (order = 0; order < MAX_ORDER; order++) {
  4907. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4908. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4909. break;
  4910. }
  4911. spin_unlock_irqrestore(&zone->lock, flags);
  4912. return order < MAX_ORDER;
  4913. }
  4914. #endif
  4915. static struct trace_print_flags pageflag_names[] = {
  4916. {1UL << PG_locked, "locked" },
  4917. {1UL << PG_error, "error" },
  4918. {1UL << PG_referenced, "referenced" },
  4919. {1UL << PG_uptodate, "uptodate" },
  4920. {1UL << PG_dirty, "dirty" },
  4921. {1UL << PG_lru, "lru" },
  4922. {1UL << PG_active, "active" },
  4923. {1UL << PG_slab, "slab" },
  4924. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4925. {1UL << PG_arch_1, "arch_1" },
  4926. {1UL << PG_reserved, "reserved" },
  4927. {1UL << PG_private, "private" },
  4928. {1UL << PG_private_2, "private_2" },
  4929. {1UL << PG_writeback, "writeback" },
  4930. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4931. {1UL << PG_head, "head" },
  4932. {1UL << PG_tail, "tail" },
  4933. #else
  4934. {1UL << PG_compound, "compound" },
  4935. #endif
  4936. {1UL << PG_swapcache, "swapcache" },
  4937. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4938. {1UL << PG_reclaim, "reclaim" },
  4939. {1UL << PG_swapbacked, "swapbacked" },
  4940. {1UL << PG_unevictable, "unevictable" },
  4941. #ifdef CONFIG_MMU
  4942. {1UL << PG_mlocked, "mlocked" },
  4943. #endif
  4944. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4945. {1UL << PG_uncached, "uncached" },
  4946. #endif
  4947. #ifdef CONFIG_MEMORY_FAILURE
  4948. {1UL << PG_hwpoison, "hwpoison" },
  4949. #endif
  4950. {-1UL, NULL },
  4951. };
  4952. static void dump_page_flags(unsigned long flags)
  4953. {
  4954. const char *delim = "";
  4955. unsigned long mask;
  4956. int i;
  4957. printk(KERN_ALERT "page flags: %#lx(", flags);
  4958. /* remove zone id */
  4959. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4960. for (i = 0; pageflag_names[i].name && flags; i++) {
  4961. mask = pageflag_names[i].mask;
  4962. if ((flags & mask) != mask)
  4963. continue;
  4964. flags &= ~mask;
  4965. printk("%s%s", delim, pageflag_names[i].name);
  4966. delim = "|";
  4967. }
  4968. /* check for left over flags */
  4969. if (flags)
  4970. printk("%s%#lx", delim, flags);
  4971. printk(")\n");
  4972. }
  4973. void dump_page(struct page *page)
  4974. {
  4975. printk(KERN_ALERT
  4976. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4977. page, atomic_read(&page->_count), page_mapcount(page),
  4978. page->mapping, page->index);
  4979. dump_page_flags(page->flags);
  4980. mem_cgroup_print_bad_page(page);
  4981. }