sched.c 229 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include <asm/mutex.h>
  77. #include "sched_cpupri.h"
  78. #include "workqueue_sched.h"
  79. #include "sched_autogroup.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. /*
  83. * Convert user-nice values [ -20 ... 0 ... 19 ]
  84. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  85. * and back.
  86. */
  87. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  88. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  89. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  90. /*
  91. * 'User priority' is the nice value converted to something we
  92. * can work with better when scaling various scheduler parameters,
  93. * it's a [ 0 ... 39 ] range.
  94. */
  95. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  96. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  97. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  98. /*
  99. * Helpers for converting nanosecond timing to jiffy resolution
  100. */
  101. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  102. #define NICE_0_LOAD SCHED_LOAD_SCALE
  103. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  104. /*
  105. * These are the 'tuning knobs' of the scheduler:
  106. *
  107. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  108. * Timeslices get refilled after they expire.
  109. */
  110. #define DEF_TIMESLICE (100 * HZ / 1000)
  111. /*
  112. * single value that denotes runtime == period, ie unlimited time.
  113. */
  114. #define RUNTIME_INF ((u64)~0ULL)
  115. static inline int rt_policy(int policy)
  116. {
  117. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  118. return 1;
  119. return 0;
  120. }
  121. static inline int task_has_rt_policy(struct task_struct *p)
  122. {
  123. return rt_policy(p->policy);
  124. }
  125. /*
  126. * This is the priority-queue data structure of the RT scheduling class:
  127. */
  128. struct rt_prio_array {
  129. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  130. struct list_head queue[MAX_RT_PRIO];
  131. };
  132. struct rt_bandwidth {
  133. /* nests inside the rq lock: */
  134. raw_spinlock_t rt_runtime_lock;
  135. ktime_t rt_period;
  136. u64 rt_runtime;
  137. struct hrtimer rt_period_timer;
  138. };
  139. static struct rt_bandwidth def_rt_bandwidth;
  140. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  141. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  142. {
  143. struct rt_bandwidth *rt_b =
  144. container_of(timer, struct rt_bandwidth, rt_period_timer);
  145. ktime_t now;
  146. int overrun;
  147. int idle = 0;
  148. for (;;) {
  149. now = hrtimer_cb_get_time(timer);
  150. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  151. if (!overrun)
  152. break;
  153. idle = do_sched_rt_period_timer(rt_b, overrun);
  154. }
  155. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  156. }
  157. static
  158. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  159. {
  160. rt_b->rt_period = ns_to_ktime(period);
  161. rt_b->rt_runtime = runtime;
  162. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  163. hrtimer_init(&rt_b->rt_period_timer,
  164. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  165. rt_b->rt_period_timer.function = sched_rt_period_timer;
  166. }
  167. static inline int rt_bandwidth_enabled(void)
  168. {
  169. return sysctl_sched_rt_runtime >= 0;
  170. }
  171. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  172. {
  173. ktime_t now;
  174. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  175. return;
  176. if (hrtimer_active(&rt_b->rt_period_timer))
  177. return;
  178. raw_spin_lock(&rt_b->rt_runtime_lock);
  179. for (;;) {
  180. unsigned long delta;
  181. ktime_t soft, hard;
  182. if (hrtimer_active(&rt_b->rt_period_timer))
  183. break;
  184. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  185. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  186. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  187. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  188. delta = ktime_to_ns(ktime_sub(hard, soft));
  189. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  190. HRTIMER_MODE_ABS_PINNED, 0);
  191. }
  192. raw_spin_unlock(&rt_b->rt_runtime_lock);
  193. }
  194. #ifdef CONFIG_RT_GROUP_SCHED
  195. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  196. {
  197. hrtimer_cancel(&rt_b->rt_period_timer);
  198. }
  199. #endif
  200. /*
  201. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  202. * detach_destroy_domains and partition_sched_domains.
  203. */
  204. static DEFINE_MUTEX(sched_domains_mutex);
  205. #ifdef CONFIG_CGROUP_SCHED
  206. #include <linux/cgroup.h>
  207. struct cfs_rq;
  208. static LIST_HEAD(task_groups);
  209. /* task group related information */
  210. struct task_group {
  211. struct cgroup_subsys_state css;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. /* schedulable entities of this group on each cpu */
  214. struct sched_entity **se;
  215. /* runqueue "owned" by this group on each cpu */
  216. struct cfs_rq **cfs_rq;
  217. unsigned long shares;
  218. atomic_t load_weight;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. #ifdef CONFIG_SCHED_AUTOGROUP
  231. struct autogroup *autogroup;
  232. #endif
  233. };
  234. /* task_group_lock serializes the addition/removal of task groups */
  235. static DEFINE_SPINLOCK(task_group_lock);
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  238. /*
  239. * A weight of 0 or 1 can cause arithmetics problems.
  240. * A weight of a cfs_rq is the sum of weights of which entities
  241. * are queued on this cfs_rq, so a weight of a entity should not be
  242. * too large, so as the shares value of a task group.
  243. * (The default weight is 1024 - so there's no practical
  244. * limitation from this.)
  245. */
  246. #define MIN_SHARES 2
  247. #define MAX_SHARES (1UL << 18)
  248. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  249. #endif
  250. /* Default task group.
  251. * Every task in system belong to this group at bootup.
  252. */
  253. struct task_group root_task_group;
  254. #endif /* CONFIG_CGROUP_SCHED */
  255. /* CFS-related fields in a runqueue */
  256. struct cfs_rq {
  257. struct load_weight load;
  258. unsigned long nr_running;
  259. u64 exec_clock;
  260. u64 min_vruntime;
  261. struct rb_root tasks_timeline;
  262. struct rb_node *rb_leftmost;
  263. struct list_head tasks;
  264. struct list_head *balance_iterator;
  265. /*
  266. * 'curr' points to currently running entity on this cfs_rq.
  267. * It is set to NULL otherwise (i.e when none are currently running).
  268. */
  269. struct sched_entity *curr, *next, *last, *skip;
  270. unsigned int nr_spread_over;
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  273. /*
  274. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  275. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  276. * (like users, containers etc.)
  277. *
  278. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  279. * list is used during load balance.
  280. */
  281. int on_list;
  282. struct list_head leaf_cfs_rq_list;
  283. struct task_group *tg; /* group that "owns" this runqueue */
  284. #ifdef CONFIG_SMP
  285. /*
  286. * the part of load.weight contributed by tasks
  287. */
  288. unsigned long task_weight;
  289. /*
  290. * h_load = weight * f(tg)
  291. *
  292. * Where f(tg) is the recursive weight fraction assigned to
  293. * this group.
  294. */
  295. unsigned long h_load;
  296. /*
  297. * Maintaining per-cpu shares distribution for group scheduling
  298. *
  299. * load_stamp is the last time we updated the load average
  300. * load_last is the last time we updated the load average and saw load
  301. * load_unacc_exec_time is currently unaccounted execution time
  302. */
  303. u64 load_avg;
  304. u64 load_period;
  305. u64 load_stamp, load_last, load_unacc_exec_time;
  306. unsigned long load_contribution;
  307. #endif
  308. #endif
  309. };
  310. /* Real-Time classes' related field in a runqueue: */
  311. struct rt_rq {
  312. struct rt_prio_array active;
  313. unsigned long rt_nr_running;
  314. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  315. struct {
  316. int curr; /* highest queued rt task prio */
  317. #ifdef CONFIG_SMP
  318. int next; /* next highest */
  319. #endif
  320. } highest_prio;
  321. #endif
  322. #ifdef CONFIG_SMP
  323. unsigned long rt_nr_migratory;
  324. unsigned long rt_nr_total;
  325. int overloaded;
  326. struct plist_head pushable_tasks;
  327. #endif
  328. int rt_throttled;
  329. u64 rt_time;
  330. u64 rt_runtime;
  331. /* Nests inside the rq lock: */
  332. raw_spinlock_t rt_runtime_lock;
  333. #ifdef CONFIG_RT_GROUP_SCHED
  334. unsigned long rt_nr_boosted;
  335. struct rq *rq;
  336. struct list_head leaf_rt_rq_list;
  337. struct task_group *tg;
  338. #endif
  339. };
  340. #ifdef CONFIG_SMP
  341. /*
  342. * We add the notion of a root-domain which will be used to define per-domain
  343. * variables. Each exclusive cpuset essentially defines an island domain by
  344. * fully partitioning the member cpus from any other cpuset. Whenever a new
  345. * exclusive cpuset is created, we also create and attach a new root-domain
  346. * object.
  347. *
  348. */
  349. struct root_domain {
  350. atomic_t refcount;
  351. cpumask_var_t span;
  352. cpumask_var_t online;
  353. /*
  354. * The "RT overload" flag: it gets set if a CPU has more than
  355. * one runnable RT task.
  356. */
  357. cpumask_var_t rto_mask;
  358. atomic_t rto_count;
  359. struct cpupri cpupri;
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif /* CONFIG_SMP */
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. unsigned long last_load_update_tick;
  385. #ifdef CONFIG_NO_HZ
  386. u64 nohz_stamp;
  387. unsigned char nohz_balance_kick;
  388. #endif
  389. unsigned int skip_clock_update;
  390. /* capture load from *all* tasks on this cpu: */
  391. struct load_weight load;
  392. unsigned long nr_load_updates;
  393. u64 nr_switches;
  394. struct cfs_rq cfs;
  395. struct rt_rq rt;
  396. #ifdef CONFIG_FAIR_GROUP_SCHED
  397. /* list of leaf cfs_rq on this cpu: */
  398. struct list_head leaf_cfs_rq_list;
  399. #endif
  400. #ifdef CONFIG_RT_GROUP_SCHED
  401. struct list_head leaf_rt_rq_list;
  402. #endif
  403. /*
  404. * This is part of a global counter where only the total sum
  405. * over all CPUs matters. A task can increase this counter on
  406. * one CPU and if it got migrated afterwards it may decrease
  407. * it on another CPU. Always updated under the runqueue lock:
  408. */
  409. unsigned long nr_uninterruptible;
  410. struct task_struct *curr, *idle, *stop;
  411. unsigned long next_balance;
  412. struct mm_struct *prev_mm;
  413. u64 clock;
  414. u64 clock_task;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  436. u64 prev_irq_time;
  437. #endif
  438. /* calc_load related fields */
  439. unsigned long calc_load_update;
  440. long calc_load_active;
  441. #ifdef CONFIG_SCHED_HRTICK
  442. #ifdef CONFIG_SMP
  443. int hrtick_csd_pending;
  444. struct call_single_data hrtick_csd;
  445. #endif
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. unsigned long long rq_cpu_time;
  452. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_count;
  455. /* schedule() stats */
  456. unsigned int sched_switch;
  457. unsigned int sched_count;
  458. unsigned int sched_goidle;
  459. /* try_to_wake_up() stats */
  460. unsigned int ttwu_count;
  461. unsigned int ttwu_local;
  462. #endif
  463. };
  464. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  465. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  466. static inline int cpu_of(struct rq *rq)
  467. {
  468. #ifdef CONFIG_SMP
  469. return rq->cpu;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. #define rcu_dereference_check_sched_domain(p) \
  475. rcu_dereference_check((p), \
  476. rcu_read_lock_sched_held() || \
  477. lockdep_is_held(&sched_domains_mutex))
  478. /*
  479. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  480. * See detach_destroy_domains: synchronize_sched for details.
  481. *
  482. * The domain tree of any CPU may only be accessed from within
  483. * preempt-disabled sections.
  484. */
  485. #define for_each_domain(cpu, __sd) \
  486. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  487. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  488. #define this_rq() (&__get_cpu_var(runqueues))
  489. #define task_rq(p) cpu_rq(task_cpu(p))
  490. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  491. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  492. #ifdef CONFIG_CGROUP_SCHED
  493. /*
  494. * Return the group to which this tasks belongs.
  495. *
  496. * We use task_subsys_state_check() and extend the RCU verification
  497. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  498. * holds that lock for each task it moves into the cgroup. Therefore
  499. * by holding that lock, we pin the task to the current cgroup.
  500. */
  501. static inline struct task_group *task_group(struct task_struct *p)
  502. {
  503. struct task_group *tg;
  504. struct cgroup_subsys_state *css;
  505. if (p->flags & PF_EXITING)
  506. return &root_task_group;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&task_rq(p)->lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. cmp = strstrip(buf);
  609. if (strncmp(cmp, "NO_", 3) == 0) {
  610. neg = 1;
  611. cmp += 3;
  612. }
  613. for (i = 0; sched_feat_names[i]; i++) {
  614. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * period over which we average the RT time consumption, measured
  654. * in ms.
  655. *
  656. * default: 1s
  657. */
  658. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  659. /*
  660. * period over which we measure -rt task cpu usage in us.
  661. * default: 1s
  662. */
  663. unsigned int sysctl_sched_rt_period = 1000000;
  664. static __read_mostly int scheduler_running;
  665. /*
  666. * part of the period that we allow rt tasks to run in us.
  667. * default: 0.95s
  668. */
  669. int sysctl_sched_rt_runtime = 950000;
  670. static inline u64 global_rt_period(void)
  671. {
  672. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  673. }
  674. static inline u64 global_rt_runtime(void)
  675. {
  676. if (sysctl_sched_rt_runtime < 0)
  677. return RUNTIME_INF;
  678. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  679. }
  680. #ifndef prepare_arch_switch
  681. # define prepare_arch_switch(next) do { } while (0)
  682. #endif
  683. #ifndef finish_arch_switch
  684. # define finish_arch_switch(prev) do { } while (0)
  685. #endif
  686. static inline int task_current(struct rq *rq, struct task_struct *p)
  687. {
  688. return rq->curr == p;
  689. }
  690. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  691. static inline int task_running(struct rq *rq, struct task_struct *p)
  692. {
  693. return task_current(rq, p);
  694. }
  695. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  696. {
  697. }
  698. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  699. {
  700. #ifdef CONFIG_DEBUG_SPINLOCK
  701. /* this is a valid case when another task releases the spinlock */
  702. rq->lock.owner = current;
  703. #endif
  704. /*
  705. * If we are tracking spinlock dependencies then we have to
  706. * fix up the runqueue lock - which gets 'carried over' from
  707. * prev into current:
  708. */
  709. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  710. raw_spin_unlock_irq(&rq->lock);
  711. }
  712. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  713. static inline int task_running(struct rq *rq, struct task_struct *p)
  714. {
  715. #ifdef CONFIG_SMP
  716. return p->oncpu;
  717. #else
  718. return task_current(rq, p);
  719. #endif
  720. }
  721. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  722. {
  723. #ifdef CONFIG_SMP
  724. /*
  725. * We can optimise this out completely for !SMP, because the
  726. * SMP rebalancing from interrupt is the only thing that cares
  727. * here.
  728. */
  729. next->oncpu = 1;
  730. #endif
  731. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  732. raw_spin_unlock_irq(&rq->lock);
  733. #else
  734. raw_spin_unlock(&rq->lock);
  735. #endif
  736. }
  737. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  738. {
  739. #ifdef CONFIG_SMP
  740. /*
  741. * After ->oncpu is cleared, the task can be moved to a different CPU.
  742. * We must ensure this doesn't happen until the switch is completely
  743. * finished.
  744. */
  745. smp_wmb();
  746. prev->oncpu = 0;
  747. #endif
  748. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  749. local_irq_enable();
  750. #endif
  751. }
  752. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  753. /*
  754. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  755. * against ttwu().
  756. */
  757. static inline int task_is_waking(struct task_struct *p)
  758. {
  759. return unlikely(p->state == TASK_WAKING);
  760. }
  761. /*
  762. * __task_rq_lock - lock the runqueue a given task resides on.
  763. * Must be called interrupts disabled.
  764. */
  765. static inline struct rq *__task_rq_lock(struct task_struct *p)
  766. __acquires(rq->lock)
  767. {
  768. struct rq *rq;
  769. for (;;) {
  770. rq = task_rq(p);
  771. raw_spin_lock(&rq->lock);
  772. if (likely(rq == task_rq(p)))
  773. return rq;
  774. raw_spin_unlock(&rq->lock);
  775. }
  776. }
  777. /*
  778. * task_rq_lock - lock the runqueue a given task resides on and disable
  779. * interrupts. Note the ordering: we can safely lookup the task_rq without
  780. * explicitly disabling preemption.
  781. */
  782. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  783. __acquires(rq->lock)
  784. {
  785. struct rq *rq;
  786. for (;;) {
  787. local_irq_save(*flags);
  788. rq = task_rq(p);
  789. raw_spin_lock(&rq->lock);
  790. if (likely(rq == task_rq(p)))
  791. return rq;
  792. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. }
  795. static void __task_rq_unlock(struct rq *rq)
  796. __releases(rq->lock)
  797. {
  798. raw_spin_unlock(&rq->lock);
  799. }
  800. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  801. __releases(rq->lock)
  802. {
  803. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. /*
  806. * this_rq_lock - lock this runqueue and disable interrupts.
  807. */
  808. static struct rq *this_rq_lock(void)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. local_irq_disable();
  813. rq = this_rq();
  814. raw_spin_lock(&rq->lock);
  815. return rq;
  816. }
  817. #ifdef CONFIG_SCHED_HRTICK
  818. /*
  819. * Use HR-timers to deliver accurate preemption points.
  820. *
  821. * Its all a bit involved since we cannot program an hrt while holding the
  822. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  823. * reschedule event.
  824. *
  825. * When we get rescheduled we reprogram the hrtick_timer outside of the
  826. * rq->lock.
  827. */
  828. /*
  829. * Use hrtick when:
  830. * - enabled by features
  831. * - hrtimer is actually high res
  832. */
  833. static inline int hrtick_enabled(struct rq *rq)
  834. {
  835. if (!sched_feat(HRTICK))
  836. return 0;
  837. if (!cpu_active(cpu_of(rq)))
  838. return 0;
  839. return hrtimer_is_hres_active(&rq->hrtick_timer);
  840. }
  841. static void hrtick_clear(struct rq *rq)
  842. {
  843. if (hrtimer_active(&rq->hrtick_timer))
  844. hrtimer_cancel(&rq->hrtick_timer);
  845. }
  846. /*
  847. * High-resolution timer tick.
  848. * Runs from hardirq context with interrupts disabled.
  849. */
  850. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  851. {
  852. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  853. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  854. raw_spin_lock(&rq->lock);
  855. update_rq_clock(rq);
  856. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  857. raw_spin_unlock(&rq->lock);
  858. return HRTIMER_NORESTART;
  859. }
  860. #ifdef CONFIG_SMP
  861. /*
  862. * called from hardirq (IPI) context
  863. */
  864. static void __hrtick_start(void *arg)
  865. {
  866. struct rq *rq = arg;
  867. raw_spin_lock(&rq->lock);
  868. hrtimer_restart(&rq->hrtick_timer);
  869. rq->hrtick_csd_pending = 0;
  870. raw_spin_unlock(&rq->lock);
  871. }
  872. /*
  873. * Called to set the hrtick timer state.
  874. *
  875. * called with rq->lock held and irqs disabled
  876. */
  877. static void hrtick_start(struct rq *rq, u64 delay)
  878. {
  879. struct hrtimer *timer = &rq->hrtick_timer;
  880. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  881. hrtimer_set_expires(timer, time);
  882. if (rq == this_rq()) {
  883. hrtimer_restart(timer);
  884. } else if (!rq->hrtick_csd_pending) {
  885. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  886. rq->hrtick_csd_pending = 1;
  887. }
  888. }
  889. static int
  890. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  891. {
  892. int cpu = (int)(long)hcpu;
  893. switch (action) {
  894. case CPU_UP_CANCELED:
  895. case CPU_UP_CANCELED_FROZEN:
  896. case CPU_DOWN_PREPARE:
  897. case CPU_DOWN_PREPARE_FROZEN:
  898. case CPU_DEAD:
  899. case CPU_DEAD_FROZEN:
  900. hrtick_clear(cpu_rq(cpu));
  901. return NOTIFY_OK;
  902. }
  903. return NOTIFY_DONE;
  904. }
  905. static __init void init_hrtick(void)
  906. {
  907. hotcpu_notifier(hotplug_hrtick, 0);
  908. }
  909. #else
  910. /*
  911. * Called to set the hrtick timer state.
  912. *
  913. * called with rq->lock held and irqs disabled
  914. */
  915. static void hrtick_start(struct rq *rq, u64 delay)
  916. {
  917. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  918. HRTIMER_MODE_REL_PINNED, 0);
  919. }
  920. static inline void init_hrtick(void)
  921. {
  922. }
  923. #endif /* CONFIG_SMP */
  924. static void init_rq_hrtick(struct rq *rq)
  925. {
  926. #ifdef CONFIG_SMP
  927. rq->hrtick_csd_pending = 0;
  928. rq->hrtick_csd.flags = 0;
  929. rq->hrtick_csd.func = __hrtick_start;
  930. rq->hrtick_csd.info = rq;
  931. #endif
  932. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  933. rq->hrtick_timer.function = hrtick;
  934. }
  935. #else /* CONFIG_SCHED_HRTICK */
  936. static inline void hrtick_clear(struct rq *rq)
  937. {
  938. }
  939. static inline void init_rq_hrtick(struct rq *rq)
  940. {
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SCHED_HRTICK */
  946. /*
  947. * resched_task - mark a task 'to be rescheduled now'.
  948. *
  949. * On UP this means the setting of the need_resched flag, on SMP it
  950. * might also involve a cross-CPU call to trigger the scheduler on
  951. * the target CPU.
  952. */
  953. #ifdef CONFIG_SMP
  954. #ifndef tsk_is_polling
  955. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  956. #endif
  957. static void resched_task(struct task_struct *p)
  958. {
  959. int cpu;
  960. assert_raw_spin_locked(&task_rq(p)->lock);
  961. if (test_tsk_need_resched(p))
  962. return;
  963. set_tsk_need_resched(p);
  964. cpu = task_cpu(p);
  965. if (cpu == smp_processor_id())
  966. return;
  967. /* NEED_RESCHED must be visible before we test polling */
  968. smp_mb();
  969. if (!tsk_is_polling(p))
  970. smp_send_reschedule(cpu);
  971. }
  972. static void resched_cpu(int cpu)
  973. {
  974. struct rq *rq = cpu_rq(cpu);
  975. unsigned long flags;
  976. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  977. return;
  978. resched_task(cpu_curr(cpu));
  979. raw_spin_unlock_irqrestore(&rq->lock, flags);
  980. }
  981. #ifdef CONFIG_NO_HZ
  982. /*
  983. * In the semi idle case, use the nearest busy cpu for migrating timers
  984. * from an idle cpu. This is good for power-savings.
  985. *
  986. * We don't do similar optimization for completely idle system, as
  987. * selecting an idle cpu will add more delays to the timers than intended
  988. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  989. */
  990. int get_nohz_timer_target(void)
  991. {
  992. int cpu = smp_processor_id();
  993. int i;
  994. struct sched_domain *sd;
  995. for_each_domain(cpu, sd) {
  996. for_each_cpu(i, sched_domain_span(sd))
  997. if (!idle_cpu(i))
  998. return i;
  999. }
  1000. return cpu;
  1001. }
  1002. /*
  1003. * When add_timer_on() enqueues a timer into the timer wheel of an
  1004. * idle CPU then this timer might expire before the next timer event
  1005. * which is scheduled to wake up that CPU. In case of a completely
  1006. * idle system the next event might even be infinite time into the
  1007. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1008. * leaves the inner idle loop so the newly added timer is taken into
  1009. * account when the CPU goes back to idle and evaluates the timer
  1010. * wheel for the next timer event.
  1011. */
  1012. void wake_up_idle_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /*
  1018. * This is safe, as this function is called with the timer
  1019. * wheel base lock of (cpu) held. When the CPU is on the way
  1020. * to idle and has not yet set rq->curr to idle then it will
  1021. * be serialized on the timer wheel base lock and take the new
  1022. * timer into account automatically.
  1023. */
  1024. if (rq->curr != rq->idle)
  1025. return;
  1026. /*
  1027. * We can set TIF_RESCHED on the idle task of the other CPU
  1028. * lockless. The worst case is that the other CPU runs the
  1029. * idle task through an additional NOOP schedule()
  1030. */
  1031. set_tsk_need_resched(rq->idle);
  1032. /* NEED_RESCHED must be visible before we test polling */
  1033. smp_mb();
  1034. if (!tsk_is_polling(rq->idle))
  1035. smp_send_reschedule(cpu);
  1036. }
  1037. #endif /* CONFIG_NO_HZ */
  1038. static u64 sched_avg_period(void)
  1039. {
  1040. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1041. }
  1042. static void sched_avg_update(struct rq *rq)
  1043. {
  1044. s64 period = sched_avg_period();
  1045. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1046. /*
  1047. * Inline assembly required to prevent the compiler
  1048. * optimising this loop into a divmod call.
  1049. * See __iter_div_u64_rem() for another example of this.
  1050. */
  1051. asm("" : "+rm" (rq->age_stamp));
  1052. rq->age_stamp += period;
  1053. rq->rt_avg /= 2;
  1054. }
  1055. }
  1056. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1057. {
  1058. rq->rt_avg += rt_delta;
  1059. sched_avg_update(rq);
  1060. }
  1061. #else /* !CONFIG_SMP */
  1062. static void resched_task(struct task_struct *p)
  1063. {
  1064. assert_raw_spin_locked(&task_rq(p)->lock);
  1065. set_tsk_need_resched(p);
  1066. }
  1067. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1068. {
  1069. }
  1070. static void sched_avg_update(struct rq *rq)
  1071. {
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1121. {
  1122. lw->weight = w;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1175. enum cpuacct_stat_index {
  1176. CPUACCT_STAT_USER, /* ... user mode */
  1177. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1178. CPUACCT_STAT_NSTATS,
  1179. };
  1180. #ifdef CONFIG_CGROUP_CPUACCT
  1181. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1182. static void cpuacct_update_stats(struct task_struct *tsk,
  1183. enum cpuacct_stat_index idx, cputime_t val);
  1184. #else
  1185. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1186. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val) {}
  1188. #endif
  1189. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1190. {
  1191. update_load_add(&rq->load, load);
  1192. }
  1193. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_sub(&rq->load, load);
  1196. }
  1197. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1198. typedef int (*tg_visitor)(struct task_group *, void *);
  1199. /*
  1200. * Iterate the full tree, calling @down when first entering a node and @up when
  1201. * leaving it for the final time.
  1202. */
  1203. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1204. {
  1205. struct task_group *parent, *child;
  1206. int ret;
  1207. rcu_read_lock();
  1208. parent = &root_task_group;
  1209. down:
  1210. ret = (*down)(parent, data);
  1211. if (ret)
  1212. goto out_unlock;
  1213. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1214. parent = child;
  1215. goto down;
  1216. up:
  1217. continue;
  1218. }
  1219. ret = (*up)(parent, data);
  1220. if (ret)
  1221. goto out_unlock;
  1222. child = parent;
  1223. parent = parent->parent;
  1224. if (parent)
  1225. goto up;
  1226. out_unlock:
  1227. rcu_read_unlock();
  1228. return ret;
  1229. }
  1230. static int tg_nop(struct task_group *tg, void *data)
  1231. {
  1232. return 0;
  1233. }
  1234. #endif
  1235. #ifdef CONFIG_SMP
  1236. /* Used instead of source_load when we know the type == 0 */
  1237. static unsigned long weighted_cpuload(const int cpu)
  1238. {
  1239. return cpu_rq(cpu)->load.weight;
  1240. }
  1241. /*
  1242. * Return a low guess at the load of a migration-source cpu weighted
  1243. * according to the scheduling class and "nice" value.
  1244. *
  1245. * We want to under-estimate the load of migration sources, to
  1246. * balance conservatively.
  1247. */
  1248. static unsigned long source_load(int cpu, int type)
  1249. {
  1250. struct rq *rq = cpu_rq(cpu);
  1251. unsigned long total = weighted_cpuload(cpu);
  1252. if (type == 0 || !sched_feat(LB_BIAS))
  1253. return total;
  1254. return min(rq->cpu_load[type-1], total);
  1255. }
  1256. /*
  1257. * Return a high guess at the load of a migration-target cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. */
  1260. static unsigned long target_load(int cpu, int type)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long total = weighted_cpuload(cpu);
  1264. if (type == 0 || !sched_feat(LB_BIAS))
  1265. return total;
  1266. return max(rq->cpu_load[type-1], total);
  1267. }
  1268. static unsigned long power_of(int cpu)
  1269. {
  1270. return cpu_rq(cpu)->cpu_power;
  1271. }
  1272. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1273. static unsigned long cpu_avg_load_per_task(int cpu)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1277. if (nr_running)
  1278. rq->avg_load_per_task = rq->load.weight / nr_running;
  1279. else
  1280. rq->avg_load_per_task = 0;
  1281. return rq->avg_load_per_task;
  1282. }
  1283. #ifdef CONFIG_FAIR_GROUP_SCHED
  1284. /*
  1285. * Compute the cpu's hierarchical load factor for each task group.
  1286. * This needs to be done in a top-down fashion because the load of a child
  1287. * group is a fraction of its parents load.
  1288. */
  1289. static int tg_load_down(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long load;
  1292. long cpu = (long)data;
  1293. if (!tg->parent) {
  1294. load = cpu_rq(cpu)->load.weight;
  1295. } else {
  1296. load = tg->parent->cfs_rq[cpu]->h_load;
  1297. load *= tg->se[cpu]->load.weight;
  1298. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1299. }
  1300. tg->cfs_rq[cpu]->h_load = load;
  1301. return 0;
  1302. }
  1303. static void update_h_load(long cpu)
  1304. {
  1305. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1306. }
  1307. #endif
  1308. #ifdef CONFIG_PREEMPT
  1309. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1310. /*
  1311. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1312. * way at the expense of forcing extra atomic operations in all
  1313. * invocations. This assures that the double_lock is acquired using the
  1314. * same underlying policy as the spinlock_t on this architecture, which
  1315. * reduces latency compared to the unfair variant below. However, it
  1316. * also adds more overhead and therefore may reduce throughput.
  1317. */
  1318. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1319. __releases(this_rq->lock)
  1320. __acquires(busiest->lock)
  1321. __acquires(this_rq->lock)
  1322. {
  1323. raw_spin_unlock(&this_rq->lock);
  1324. double_rq_lock(this_rq, busiest);
  1325. return 1;
  1326. }
  1327. #else
  1328. /*
  1329. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1330. * latency by eliminating extra atomic operations when the locks are
  1331. * already in proper order on entry. This favors lower cpu-ids and will
  1332. * grant the double lock to lower cpus over higher ids under contention,
  1333. * regardless of entry order into the function.
  1334. */
  1335. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1336. __releases(this_rq->lock)
  1337. __acquires(busiest->lock)
  1338. __acquires(this_rq->lock)
  1339. {
  1340. int ret = 0;
  1341. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1342. if (busiest < this_rq) {
  1343. raw_spin_unlock(&this_rq->lock);
  1344. raw_spin_lock(&busiest->lock);
  1345. raw_spin_lock_nested(&this_rq->lock,
  1346. SINGLE_DEPTH_NESTING);
  1347. ret = 1;
  1348. } else
  1349. raw_spin_lock_nested(&busiest->lock,
  1350. SINGLE_DEPTH_NESTING);
  1351. }
  1352. return ret;
  1353. }
  1354. #endif /* CONFIG_PREEMPT */
  1355. /*
  1356. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1357. */
  1358. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1359. {
  1360. if (unlikely(!irqs_disabled())) {
  1361. /* printk() doesn't work good under rq->lock */
  1362. raw_spin_unlock(&this_rq->lock);
  1363. BUG_ON(1);
  1364. }
  1365. return _double_lock_balance(this_rq, busiest);
  1366. }
  1367. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1368. __releases(busiest->lock)
  1369. {
  1370. raw_spin_unlock(&busiest->lock);
  1371. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1372. }
  1373. /*
  1374. * double_rq_lock - safely lock two runqueues
  1375. *
  1376. * Note this does not disable interrupts like task_rq_lock,
  1377. * you need to do so manually before calling.
  1378. */
  1379. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1380. __acquires(rq1->lock)
  1381. __acquires(rq2->lock)
  1382. {
  1383. BUG_ON(!irqs_disabled());
  1384. if (rq1 == rq2) {
  1385. raw_spin_lock(&rq1->lock);
  1386. __acquire(rq2->lock); /* Fake it out ;) */
  1387. } else {
  1388. if (rq1 < rq2) {
  1389. raw_spin_lock(&rq1->lock);
  1390. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1391. } else {
  1392. raw_spin_lock(&rq2->lock);
  1393. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1394. }
  1395. }
  1396. }
  1397. /*
  1398. * double_rq_unlock - safely unlock two runqueues
  1399. *
  1400. * Note this does not restore interrupts like task_rq_unlock,
  1401. * you need to do so manually after calling.
  1402. */
  1403. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1404. __releases(rq1->lock)
  1405. __releases(rq2->lock)
  1406. {
  1407. raw_spin_unlock(&rq1->lock);
  1408. if (rq1 != rq2)
  1409. raw_spin_unlock(&rq2->lock);
  1410. else
  1411. __release(rq2->lock);
  1412. }
  1413. #else /* CONFIG_SMP */
  1414. /*
  1415. * double_rq_lock - safely lock two runqueues
  1416. *
  1417. * Note this does not disable interrupts like task_rq_lock,
  1418. * you need to do so manually before calling.
  1419. */
  1420. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1421. __acquires(rq1->lock)
  1422. __acquires(rq2->lock)
  1423. {
  1424. BUG_ON(!irqs_disabled());
  1425. BUG_ON(rq1 != rq2);
  1426. raw_spin_lock(&rq1->lock);
  1427. __acquire(rq2->lock); /* Fake it out ;) */
  1428. }
  1429. /*
  1430. * double_rq_unlock - safely unlock two runqueues
  1431. *
  1432. * Note this does not restore interrupts like task_rq_unlock,
  1433. * you need to do so manually after calling.
  1434. */
  1435. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1436. __releases(rq1->lock)
  1437. __releases(rq2->lock)
  1438. {
  1439. BUG_ON(rq1 != rq2);
  1440. raw_spin_unlock(&rq1->lock);
  1441. __release(rq2->lock);
  1442. }
  1443. #endif
  1444. static void calc_load_account_idle(struct rq *this_rq);
  1445. static void update_sysctl(void);
  1446. static int get_update_sysctl_factor(void);
  1447. static void update_cpu_load(struct rq *this_rq);
  1448. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1449. {
  1450. set_task_rq(p, cpu);
  1451. #ifdef CONFIG_SMP
  1452. /*
  1453. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1454. * successfuly executed on another CPU. We must ensure that updates of
  1455. * per-task data have been completed by this moment.
  1456. */
  1457. smp_wmb();
  1458. task_thread_info(p)->cpu = cpu;
  1459. #endif
  1460. }
  1461. static const struct sched_class rt_sched_class;
  1462. #define sched_class_highest (&stop_sched_class)
  1463. #define for_each_class(class) \
  1464. for (class = sched_class_highest; class; class = class->next)
  1465. #include "sched_stats.h"
  1466. static void inc_nr_running(struct rq *rq)
  1467. {
  1468. rq->nr_running++;
  1469. }
  1470. static void dec_nr_running(struct rq *rq)
  1471. {
  1472. rq->nr_running--;
  1473. }
  1474. static void set_load_weight(struct task_struct *p)
  1475. {
  1476. /*
  1477. * SCHED_IDLE tasks get minimal weight:
  1478. */
  1479. if (p->policy == SCHED_IDLE) {
  1480. p->se.load.weight = WEIGHT_IDLEPRIO;
  1481. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1482. return;
  1483. }
  1484. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1485. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1486. }
  1487. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1488. {
  1489. update_rq_clock(rq);
  1490. sched_info_queued(p);
  1491. p->sched_class->enqueue_task(rq, p, flags);
  1492. p->se.on_rq = 1;
  1493. }
  1494. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1495. {
  1496. update_rq_clock(rq);
  1497. sched_info_dequeued(p);
  1498. p->sched_class->dequeue_task(rq, p, flags);
  1499. p->se.on_rq = 0;
  1500. }
  1501. /*
  1502. * activate_task - move a task to the runqueue.
  1503. */
  1504. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1505. {
  1506. if (task_contributes_to_load(p))
  1507. rq->nr_uninterruptible--;
  1508. enqueue_task(rq, p, flags);
  1509. inc_nr_running(rq);
  1510. }
  1511. /*
  1512. * deactivate_task - remove a task from the runqueue.
  1513. */
  1514. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1515. {
  1516. if (task_contributes_to_load(p))
  1517. rq->nr_uninterruptible++;
  1518. dequeue_task(rq, p, flags);
  1519. dec_nr_running(rq);
  1520. }
  1521. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1522. /*
  1523. * There are no locks covering percpu hardirq/softirq time.
  1524. * They are only modified in account_system_vtime, on corresponding CPU
  1525. * with interrupts disabled. So, writes are safe.
  1526. * They are read and saved off onto struct rq in update_rq_clock().
  1527. * This may result in other CPU reading this CPU's irq time and can
  1528. * race with irq/account_system_vtime on this CPU. We would either get old
  1529. * or new value with a side effect of accounting a slice of irq time to wrong
  1530. * task when irq is in progress while we read rq->clock. That is a worthy
  1531. * compromise in place of having locks on each irq in account_system_time.
  1532. */
  1533. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1534. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1535. static DEFINE_PER_CPU(u64, irq_start_time);
  1536. static int sched_clock_irqtime;
  1537. void enable_sched_clock_irqtime(void)
  1538. {
  1539. sched_clock_irqtime = 1;
  1540. }
  1541. void disable_sched_clock_irqtime(void)
  1542. {
  1543. sched_clock_irqtime = 0;
  1544. }
  1545. #ifndef CONFIG_64BIT
  1546. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1547. static inline void irq_time_write_begin(void)
  1548. {
  1549. __this_cpu_inc(irq_time_seq.sequence);
  1550. smp_wmb();
  1551. }
  1552. static inline void irq_time_write_end(void)
  1553. {
  1554. smp_wmb();
  1555. __this_cpu_inc(irq_time_seq.sequence);
  1556. }
  1557. static inline u64 irq_time_read(int cpu)
  1558. {
  1559. u64 irq_time;
  1560. unsigned seq;
  1561. do {
  1562. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1563. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1564. per_cpu(cpu_hardirq_time, cpu);
  1565. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1566. return irq_time;
  1567. }
  1568. #else /* CONFIG_64BIT */
  1569. static inline void irq_time_write_begin(void)
  1570. {
  1571. }
  1572. static inline void irq_time_write_end(void)
  1573. {
  1574. }
  1575. static inline u64 irq_time_read(int cpu)
  1576. {
  1577. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1578. }
  1579. #endif /* CONFIG_64BIT */
  1580. /*
  1581. * Called before incrementing preempt_count on {soft,}irq_enter
  1582. * and before decrementing preempt_count on {soft,}irq_exit.
  1583. */
  1584. void account_system_vtime(struct task_struct *curr)
  1585. {
  1586. unsigned long flags;
  1587. s64 delta;
  1588. int cpu;
  1589. if (!sched_clock_irqtime)
  1590. return;
  1591. local_irq_save(flags);
  1592. cpu = smp_processor_id();
  1593. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1594. __this_cpu_add(irq_start_time, delta);
  1595. irq_time_write_begin();
  1596. /*
  1597. * We do not account for softirq time from ksoftirqd here.
  1598. * We want to continue accounting softirq time to ksoftirqd thread
  1599. * in that case, so as not to confuse scheduler with a special task
  1600. * that do not consume any time, but still wants to run.
  1601. */
  1602. if (hardirq_count())
  1603. __this_cpu_add(cpu_hardirq_time, delta);
  1604. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1605. __this_cpu_add(cpu_softirq_time, delta);
  1606. irq_time_write_end();
  1607. local_irq_restore(flags);
  1608. }
  1609. EXPORT_SYMBOL_GPL(account_system_vtime);
  1610. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1611. {
  1612. s64 irq_delta;
  1613. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1614. /*
  1615. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1616. * this case when a previous update_rq_clock() happened inside a
  1617. * {soft,}irq region.
  1618. *
  1619. * When this happens, we stop ->clock_task and only update the
  1620. * prev_irq_time stamp to account for the part that fit, so that a next
  1621. * update will consume the rest. This ensures ->clock_task is
  1622. * monotonic.
  1623. *
  1624. * It does however cause some slight miss-attribution of {soft,}irq
  1625. * time, a more accurate solution would be to update the irq_time using
  1626. * the current rq->clock timestamp, except that would require using
  1627. * atomic ops.
  1628. */
  1629. if (irq_delta > delta)
  1630. irq_delta = delta;
  1631. rq->prev_irq_time += irq_delta;
  1632. delta -= irq_delta;
  1633. rq->clock_task += delta;
  1634. if (irq_delta && sched_feat(NONIRQ_POWER))
  1635. sched_rt_avg_update(rq, irq_delta);
  1636. }
  1637. static int irqtime_account_hi_update(void)
  1638. {
  1639. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1640. unsigned long flags;
  1641. u64 latest_ns;
  1642. int ret = 0;
  1643. local_irq_save(flags);
  1644. latest_ns = this_cpu_read(cpu_hardirq_time);
  1645. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1646. ret = 1;
  1647. local_irq_restore(flags);
  1648. return ret;
  1649. }
  1650. static int irqtime_account_si_update(void)
  1651. {
  1652. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1653. unsigned long flags;
  1654. u64 latest_ns;
  1655. int ret = 0;
  1656. local_irq_save(flags);
  1657. latest_ns = this_cpu_read(cpu_softirq_time);
  1658. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1659. ret = 1;
  1660. local_irq_restore(flags);
  1661. return ret;
  1662. }
  1663. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1664. #define sched_clock_irqtime (0)
  1665. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1666. {
  1667. rq->clock_task += delta;
  1668. }
  1669. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1670. #include "sched_idletask.c"
  1671. #include "sched_fair.c"
  1672. #include "sched_rt.c"
  1673. #include "sched_autogroup.c"
  1674. #include "sched_stoptask.c"
  1675. #ifdef CONFIG_SCHED_DEBUG
  1676. # include "sched_debug.c"
  1677. #endif
  1678. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1679. {
  1680. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1681. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1682. if (stop) {
  1683. /*
  1684. * Make it appear like a SCHED_FIFO task, its something
  1685. * userspace knows about and won't get confused about.
  1686. *
  1687. * Also, it will make PI more or less work without too
  1688. * much confusion -- but then, stop work should not
  1689. * rely on PI working anyway.
  1690. */
  1691. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1692. stop->sched_class = &stop_sched_class;
  1693. }
  1694. cpu_rq(cpu)->stop = stop;
  1695. if (old_stop) {
  1696. /*
  1697. * Reset it back to a normal scheduling class so that
  1698. * it can die in pieces.
  1699. */
  1700. old_stop->sched_class = &rt_sched_class;
  1701. }
  1702. }
  1703. /*
  1704. * __normal_prio - return the priority that is based on the static prio
  1705. */
  1706. static inline int __normal_prio(struct task_struct *p)
  1707. {
  1708. return p->static_prio;
  1709. }
  1710. /*
  1711. * Calculate the expected normal priority: i.e. priority
  1712. * without taking RT-inheritance into account. Might be
  1713. * boosted by interactivity modifiers. Changes upon fork,
  1714. * setprio syscalls, and whenever the interactivity
  1715. * estimator recalculates.
  1716. */
  1717. static inline int normal_prio(struct task_struct *p)
  1718. {
  1719. int prio;
  1720. if (task_has_rt_policy(p))
  1721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1722. else
  1723. prio = __normal_prio(p);
  1724. return prio;
  1725. }
  1726. /*
  1727. * Calculate the current priority, i.e. the priority
  1728. * taken into account by the scheduler. This value might
  1729. * be boosted by RT tasks, or might be boosted by
  1730. * interactivity modifiers. Will be RT if the task got
  1731. * RT-boosted. If not then it returns p->normal_prio.
  1732. */
  1733. static int effective_prio(struct task_struct *p)
  1734. {
  1735. p->normal_prio = normal_prio(p);
  1736. /*
  1737. * If we are RT tasks or we were boosted to RT priority,
  1738. * keep the priority unchanged. Otherwise, update priority
  1739. * to the normal priority:
  1740. */
  1741. if (!rt_prio(p->prio))
  1742. return p->normal_prio;
  1743. return p->prio;
  1744. }
  1745. /**
  1746. * task_curr - is this task currently executing on a CPU?
  1747. * @p: the task in question.
  1748. */
  1749. inline int task_curr(const struct task_struct *p)
  1750. {
  1751. return cpu_curr(task_cpu(p)) == p;
  1752. }
  1753. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1754. const struct sched_class *prev_class,
  1755. int oldprio)
  1756. {
  1757. if (prev_class != p->sched_class) {
  1758. if (prev_class->switched_from)
  1759. prev_class->switched_from(rq, p);
  1760. p->sched_class->switched_to(rq, p);
  1761. } else if (oldprio != p->prio)
  1762. p->sched_class->prio_changed(rq, p, oldprio);
  1763. }
  1764. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1765. {
  1766. const struct sched_class *class;
  1767. if (p->sched_class == rq->curr->sched_class) {
  1768. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1769. } else {
  1770. for_each_class(class) {
  1771. if (class == rq->curr->sched_class)
  1772. break;
  1773. if (class == p->sched_class) {
  1774. resched_task(rq->curr);
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. /*
  1780. * A queue event has occurred, and we're going to schedule. In
  1781. * this case, we can save a useless back to back clock update.
  1782. */
  1783. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1784. rq->skip_clock_update = 1;
  1785. }
  1786. #ifdef CONFIG_SMP
  1787. /*
  1788. * Is this task likely cache-hot:
  1789. */
  1790. static int
  1791. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1792. {
  1793. s64 delta;
  1794. if (p->sched_class != &fair_sched_class)
  1795. return 0;
  1796. if (unlikely(p->policy == SCHED_IDLE))
  1797. return 0;
  1798. /*
  1799. * Buddy candidates are cache hot:
  1800. */
  1801. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1802. (&p->se == cfs_rq_of(&p->se)->next ||
  1803. &p->se == cfs_rq_of(&p->se)->last))
  1804. return 1;
  1805. if (sysctl_sched_migration_cost == -1)
  1806. return 1;
  1807. if (sysctl_sched_migration_cost == 0)
  1808. return 0;
  1809. delta = now - p->se.exec_start;
  1810. return delta < (s64)sysctl_sched_migration_cost;
  1811. }
  1812. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1813. {
  1814. #ifdef CONFIG_SCHED_DEBUG
  1815. /*
  1816. * We should never call set_task_cpu() on a blocked task,
  1817. * ttwu() will sort out the placement.
  1818. */
  1819. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1820. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1821. #endif
  1822. trace_sched_migrate_task(p, new_cpu);
  1823. if (task_cpu(p) != new_cpu) {
  1824. p->se.nr_migrations++;
  1825. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1826. }
  1827. __set_task_cpu(p, new_cpu);
  1828. }
  1829. struct migration_arg {
  1830. struct task_struct *task;
  1831. int dest_cpu;
  1832. };
  1833. static int migration_cpu_stop(void *data);
  1834. /*
  1835. * The task's runqueue lock must be held.
  1836. * Returns true if you have to wait for migration thread.
  1837. */
  1838. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1839. {
  1840. /*
  1841. * If the task is not on a runqueue (and not running), then
  1842. * the next wake-up will properly place the task.
  1843. */
  1844. return p->se.on_rq || task_running(rq, p);
  1845. }
  1846. /*
  1847. * wait_task_inactive - wait for a thread to unschedule.
  1848. *
  1849. * If @match_state is nonzero, it's the @p->state value just checked and
  1850. * not expected to change. If it changes, i.e. @p might have woken up,
  1851. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1852. * we return a positive number (its total switch count). If a second call
  1853. * a short while later returns the same number, the caller can be sure that
  1854. * @p has remained unscheduled the whole time.
  1855. *
  1856. * The caller must ensure that the task *will* unschedule sometime soon,
  1857. * else this function might spin for a *long* time. This function can't
  1858. * be called with interrupts off, or it may introduce deadlock with
  1859. * smp_call_function() if an IPI is sent by the same process we are
  1860. * waiting to become inactive.
  1861. */
  1862. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1863. {
  1864. unsigned long flags;
  1865. int running, on_rq;
  1866. unsigned long ncsw;
  1867. struct rq *rq;
  1868. for (;;) {
  1869. /*
  1870. * We do the initial early heuristics without holding
  1871. * any task-queue locks at all. We'll only try to get
  1872. * the runqueue lock when things look like they will
  1873. * work out!
  1874. */
  1875. rq = task_rq(p);
  1876. /*
  1877. * If the task is actively running on another CPU
  1878. * still, just relax and busy-wait without holding
  1879. * any locks.
  1880. *
  1881. * NOTE! Since we don't hold any locks, it's not
  1882. * even sure that "rq" stays as the right runqueue!
  1883. * But we don't care, since "task_running()" will
  1884. * return false if the runqueue has changed and p
  1885. * is actually now running somewhere else!
  1886. */
  1887. while (task_running(rq, p)) {
  1888. if (match_state && unlikely(p->state != match_state))
  1889. return 0;
  1890. cpu_relax();
  1891. }
  1892. /*
  1893. * Ok, time to look more closely! We need the rq
  1894. * lock now, to be *sure*. If we're wrong, we'll
  1895. * just go back and repeat.
  1896. */
  1897. rq = task_rq_lock(p, &flags);
  1898. trace_sched_wait_task(p);
  1899. running = task_running(rq, p);
  1900. on_rq = p->se.on_rq;
  1901. ncsw = 0;
  1902. if (!match_state || p->state == match_state)
  1903. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1904. task_rq_unlock(rq, &flags);
  1905. /*
  1906. * If it changed from the expected state, bail out now.
  1907. */
  1908. if (unlikely(!ncsw))
  1909. break;
  1910. /*
  1911. * Was it really running after all now that we
  1912. * checked with the proper locks actually held?
  1913. *
  1914. * Oops. Go back and try again..
  1915. */
  1916. if (unlikely(running)) {
  1917. cpu_relax();
  1918. continue;
  1919. }
  1920. /*
  1921. * It's not enough that it's not actively running,
  1922. * it must be off the runqueue _entirely_, and not
  1923. * preempted!
  1924. *
  1925. * So if it was still runnable (but just not actively
  1926. * running right now), it's preempted, and we should
  1927. * yield - it could be a while.
  1928. */
  1929. if (unlikely(on_rq)) {
  1930. schedule_timeout_uninterruptible(1);
  1931. continue;
  1932. }
  1933. /*
  1934. * Ahh, all good. It wasn't running, and it wasn't
  1935. * runnable, which means that it will never become
  1936. * running in the future either. We're all done!
  1937. */
  1938. break;
  1939. }
  1940. return ncsw;
  1941. }
  1942. /***
  1943. * kick_process - kick a running thread to enter/exit the kernel
  1944. * @p: the to-be-kicked thread
  1945. *
  1946. * Cause a process which is running on another CPU to enter
  1947. * kernel-mode, without any delay. (to get signals handled.)
  1948. *
  1949. * NOTE: this function doesnt have to take the runqueue lock,
  1950. * because all it wants to ensure is that the remote task enters
  1951. * the kernel. If the IPI races and the task has been migrated
  1952. * to another CPU then no harm is done and the purpose has been
  1953. * achieved as well.
  1954. */
  1955. void kick_process(struct task_struct *p)
  1956. {
  1957. int cpu;
  1958. preempt_disable();
  1959. cpu = task_cpu(p);
  1960. if ((cpu != smp_processor_id()) && task_curr(p))
  1961. smp_send_reschedule(cpu);
  1962. preempt_enable();
  1963. }
  1964. EXPORT_SYMBOL_GPL(kick_process);
  1965. #endif /* CONFIG_SMP */
  1966. /**
  1967. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1968. * @p: the task to evaluate
  1969. * @func: the function to be called
  1970. * @info: the function call argument
  1971. *
  1972. * Calls the function @func when the task is currently running. This might
  1973. * be on the current CPU, which just calls the function directly
  1974. */
  1975. void task_oncpu_function_call(struct task_struct *p,
  1976. void (*func) (void *info), void *info)
  1977. {
  1978. int cpu;
  1979. preempt_disable();
  1980. cpu = task_cpu(p);
  1981. if (task_curr(p))
  1982. smp_call_function_single(cpu, func, info, 1);
  1983. preempt_enable();
  1984. }
  1985. #ifdef CONFIG_SMP
  1986. /*
  1987. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1988. */
  1989. static int select_fallback_rq(int cpu, struct task_struct *p)
  1990. {
  1991. int dest_cpu;
  1992. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1993. /* Look for allowed, online CPU in same node. */
  1994. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1995. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1996. return dest_cpu;
  1997. /* Any allowed, online CPU? */
  1998. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1999. if (dest_cpu < nr_cpu_ids)
  2000. return dest_cpu;
  2001. /* No more Mr. Nice Guy. */
  2002. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2003. /*
  2004. * Don't tell them about moving exiting tasks or
  2005. * kernel threads (both mm NULL), since they never
  2006. * leave kernel.
  2007. */
  2008. if (p->mm && printk_ratelimit()) {
  2009. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2010. task_pid_nr(p), p->comm, cpu);
  2011. }
  2012. return dest_cpu;
  2013. }
  2014. /*
  2015. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2016. */
  2017. static inline
  2018. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2019. {
  2020. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2021. /*
  2022. * In order not to call set_task_cpu() on a blocking task we need
  2023. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2024. * cpu.
  2025. *
  2026. * Since this is common to all placement strategies, this lives here.
  2027. *
  2028. * [ this allows ->select_task() to simply return task_cpu(p) and
  2029. * not worry about this generic constraint ]
  2030. */
  2031. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2032. !cpu_online(cpu)))
  2033. cpu = select_fallback_rq(task_cpu(p), p);
  2034. return cpu;
  2035. }
  2036. static void update_avg(u64 *avg, u64 sample)
  2037. {
  2038. s64 diff = sample - *avg;
  2039. *avg += diff >> 3;
  2040. }
  2041. #endif
  2042. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2043. bool is_sync, bool is_migrate, bool is_local,
  2044. unsigned long en_flags)
  2045. {
  2046. schedstat_inc(p, se.statistics.nr_wakeups);
  2047. if (is_sync)
  2048. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2049. if (is_migrate)
  2050. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2051. if (is_local)
  2052. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2053. else
  2054. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2055. activate_task(rq, p, en_flags);
  2056. }
  2057. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2058. int wake_flags, bool success)
  2059. {
  2060. trace_sched_wakeup(p, success);
  2061. check_preempt_curr(rq, p, wake_flags);
  2062. p->state = TASK_RUNNING;
  2063. #ifdef CONFIG_SMP
  2064. if (p->sched_class->task_woken)
  2065. p->sched_class->task_woken(rq, p);
  2066. if (unlikely(rq->idle_stamp)) {
  2067. u64 delta = rq->clock - rq->idle_stamp;
  2068. u64 max = 2*sysctl_sched_migration_cost;
  2069. if (delta > max)
  2070. rq->avg_idle = max;
  2071. else
  2072. update_avg(&rq->avg_idle, delta);
  2073. rq->idle_stamp = 0;
  2074. }
  2075. #endif
  2076. /* if a worker is waking up, notify workqueue */
  2077. if ((p->flags & PF_WQ_WORKER) && success)
  2078. wq_worker_waking_up(p, cpu_of(rq));
  2079. }
  2080. /**
  2081. * try_to_wake_up - wake up a thread
  2082. * @p: the thread to be awakened
  2083. * @state: the mask of task states that can be woken
  2084. * @wake_flags: wake modifier flags (WF_*)
  2085. *
  2086. * Put it on the run-queue if it's not already there. The "current"
  2087. * thread is always on the run-queue (except when the actual
  2088. * re-schedule is in progress), and as such you're allowed to do
  2089. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2090. * runnable without the overhead of this.
  2091. *
  2092. * Returns %true if @p was woken up, %false if it was already running
  2093. * or @state didn't match @p's state.
  2094. */
  2095. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2096. int wake_flags)
  2097. {
  2098. int cpu, orig_cpu, this_cpu, success = 0;
  2099. unsigned long flags;
  2100. unsigned long en_flags = ENQUEUE_WAKEUP;
  2101. struct rq *rq;
  2102. this_cpu = get_cpu();
  2103. smp_wmb();
  2104. rq = task_rq_lock(p, &flags);
  2105. if (!(p->state & state))
  2106. goto out;
  2107. if (p->se.on_rq)
  2108. goto out_running;
  2109. cpu = task_cpu(p);
  2110. orig_cpu = cpu;
  2111. #ifdef CONFIG_SMP
  2112. if (unlikely(task_running(rq, p)))
  2113. goto out_activate;
  2114. /*
  2115. * In order to handle concurrent wakeups and release the rq->lock
  2116. * we put the task in TASK_WAKING state.
  2117. *
  2118. * First fix up the nr_uninterruptible count:
  2119. */
  2120. if (task_contributes_to_load(p)) {
  2121. if (likely(cpu_online(orig_cpu)))
  2122. rq->nr_uninterruptible--;
  2123. else
  2124. this_rq()->nr_uninterruptible--;
  2125. }
  2126. p->state = TASK_WAKING;
  2127. if (p->sched_class->task_waking) {
  2128. p->sched_class->task_waking(rq, p);
  2129. en_flags |= ENQUEUE_WAKING;
  2130. }
  2131. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2132. if (cpu != orig_cpu)
  2133. set_task_cpu(p, cpu);
  2134. __task_rq_unlock(rq);
  2135. rq = cpu_rq(cpu);
  2136. raw_spin_lock(&rq->lock);
  2137. /*
  2138. * We migrated the task without holding either rq->lock, however
  2139. * since the task is not on the task list itself, nobody else
  2140. * will try and migrate the task, hence the rq should match the
  2141. * cpu we just moved it to.
  2142. */
  2143. WARN_ON(task_cpu(p) != cpu);
  2144. WARN_ON(p->state != TASK_WAKING);
  2145. #ifdef CONFIG_SCHEDSTATS
  2146. schedstat_inc(rq, ttwu_count);
  2147. if (cpu == this_cpu)
  2148. schedstat_inc(rq, ttwu_local);
  2149. else {
  2150. struct sched_domain *sd;
  2151. for_each_domain(this_cpu, sd) {
  2152. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2153. schedstat_inc(sd, ttwu_wake_remote);
  2154. break;
  2155. }
  2156. }
  2157. }
  2158. #endif /* CONFIG_SCHEDSTATS */
  2159. out_activate:
  2160. #endif /* CONFIG_SMP */
  2161. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2162. cpu == this_cpu, en_flags);
  2163. success = 1;
  2164. out_running:
  2165. ttwu_post_activation(p, rq, wake_flags, success);
  2166. out:
  2167. task_rq_unlock(rq, &flags);
  2168. put_cpu();
  2169. return success;
  2170. }
  2171. /**
  2172. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2173. * @p: the thread to be awakened
  2174. *
  2175. * Put @p on the run-queue if it's not already there. The caller must
  2176. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2177. * the current task. this_rq() stays locked over invocation.
  2178. */
  2179. static void try_to_wake_up_local(struct task_struct *p)
  2180. {
  2181. struct rq *rq = task_rq(p);
  2182. bool success = false;
  2183. BUG_ON(rq != this_rq());
  2184. BUG_ON(p == current);
  2185. lockdep_assert_held(&rq->lock);
  2186. if (!(p->state & TASK_NORMAL))
  2187. return;
  2188. if (!p->se.on_rq) {
  2189. if (likely(!task_running(rq, p))) {
  2190. schedstat_inc(rq, ttwu_count);
  2191. schedstat_inc(rq, ttwu_local);
  2192. }
  2193. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2194. success = true;
  2195. }
  2196. ttwu_post_activation(p, rq, 0, success);
  2197. }
  2198. /**
  2199. * wake_up_process - Wake up a specific process
  2200. * @p: The process to be woken up.
  2201. *
  2202. * Attempt to wake up the nominated process and move it to the set of runnable
  2203. * processes. Returns 1 if the process was woken up, 0 if it was already
  2204. * running.
  2205. *
  2206. * It may be assumed that this function implies a write memory barrier before
  2207. * changing the task state if and only if any tasks are woken up.
  2208. */
  2209. int wake_up_process(struct task_struct *p)
  2210. {
  2211. return try_to_wake_up(p, TASK_ALL, 0);
  2212. }
  2213. EXPORT_SYMBOL(wake_up_process);
  2214. int wake_up_state(struct task_struct *p, unsigned int state)
  2215. {
  2216. return try_to_wake_up(p, state, 0);
  2217. }
  2218. /*
  2219. * Perform scheduler related setup for a newly forked process p.
  2220. * p is forked by current.
  2221. *
  2222. * __sched_fork() is basic setup used by init_idle() too:
  2223. */
  2224. static void __sched_fork(struct task_struct *p)
  2225. {
  2226. p->se.exec_start = 0;
  2227. p->se.sum_exec_runtime = 0;
  2228. p->se.prev_sum_exec_runtime = 0;
  2229. p->se.nr_migrations = 0;
  2230. p->se.vruntime = 0;
  2231. #ifdef CONFIG_SCHEDSTATS
  2232. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2233. #endif
  2234. INIT_LIST_HEAD(&p->rt.run_list);
  2235. p->se.on_rq = 0;
  2236. INIT_LIST_HEAD(&p->se.group_node);
  2237. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2238. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2239. #endif
  2240. }
  2241. /*
  2242. * fork()/clone()-time setup:
  2243. */
  2244. void sched_fork(struct task_struct *p, int clone_flags)
  2245. {
  2246. int cpu = get_cpu();
  2247. __sched_fork(p);
  2248. /*
  2249. * We mark the process as running here. This guarantees that
  2250. * nobody will actually run it, and a signal or other external
  2251. * event cannot wake it up and insert it on the runqueue either.
  2252. */
  2253. p->state = TASK_RUNNING;
  2254. /*
  2255. * Revert to default priority/policy on fork if requested.
  2256. */
  2257. if (unlikely(p->sched_reset_on_fork)) {
  2258. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2259. p->policy = SCHED_NORMAL;
  2260. p->normal_prio = p->static_prio;
  2261. }
  2262. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2263. p->static_prio = NICE_TO_PRIO(0);
  2264. p->normal_prio = p->static_prio;
  2265. set_load_weight(p);
  2266. }
  2267. /*
  2268. * We don't need the reset flag anymore after the fork. It has
  2269. * fulfilled its duty:
  2270. */
  2271. p->sched_reset_on_fork = 0;
  2272. }
  2273. /*
  2274. * Make sure we do not leak PI boosting priority to the child.
  2275. */
  2276. p->prio = current->normal_prio;
  2277. if (!rt_prio(p->prio))
  2278. p->sched_class = &fair_sched_class;
  2279. if (p->sched_class->task_fork)
  2280. p->sched_class->task_fork(p);
  2281. /*
  2282. * The child is not yet in the pid-hash so no cgroup attach races,
  2283. * and the cgroup is pinned to this child due to cgroup_fork()
  2284. * is ran before sched_fork().
  2285. *
  2286. * Silence PROVE_RCU.
  2287. */
  2288. rcu_read_lock();
  2289. set_task_cpu(p, cpu);
  2290. rcu_read_unlock();
  2291. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2292. if (likely(sched_info_on()))
  2293. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2294. #endif
  2295. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2296. p->oncpu = 0;
  2297. #endif
  2298. #ifdef CONFIG_PREEMPT
  2299. /* Want to start with kernel preemption disabled. */
  2300. task_thread_info(p)->preempt_count = 1;
  2301. #endif
  2302. #ifdef CONFIG_SMP
  2303. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2304. #endif
  2305. put_cpu();
  2306. }
  2307. /*
  2308. * wake_up_new_task - wake up a newly created task for the first time.
  2309. *
  2310. * This function will do some initial scheduler statistics housekeeping
  2311. * that must be done for every newly created context, then puts the task
  2312. * on the runqueue and wakes it.
  2313. */
  2314. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2315. {
  2316. unsigned long flags;
  2317. struct rq *rq;
  2318. int cpu __maybe_unused = get_cpu();
  2319. #ifdef CONFIG_SMP
  2320. rq = task_rq_lock(p, &flags);
  2321. p->state = TASK_WAKING;
  2322. /*
  2323. * Fork balancing, do it here and not earlier because:
  2324. * - cpus_allowed can change in the fork path
  2325. * - any previously selected cpu might disappear through hotplug
  2326. *
  2327. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2328. * without people poking at ->cpus_allowed.
  2329. */
  2330. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2331. set_task_cpu(p, cpu);
  2332. p->state = TASK_RUNNING;
  2333. task_rq_unlock(rq, &flags);
  2334. #endif
  2335. rq = task_rq_lock(p, &flags);
  2336. activate_task(rq, p, 0);
  2337. trace_sched_wakeup_new(p, 1);
  2338. check_preempt_curr(rq, p, WF_FORK);
  2339. #ifdef CONFIG_SMP
  2340. if (p->sched_class->task_woken)
  2341. p->sched_class->task_woken(rq, p);
  2342. #endif
  2343. task_rq_unlock(rq, &flags);
  2344. put_cpu();
  2345. }
  2346. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2347. /**
  2348. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2349. * @notifier: notifier struct to register
  2350. */
  2351. void preempt_notifier_register(struct preempt_notifier *notifier)
  2352. {
  2353. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2354. }
  2355. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2356. /**
  2357. * preempt_notifier_unregister - no longer interested in preemption notifications
  2358. * @notifier: notifier struct to unregister
  2359. *
  2360. * This is safe to call from within a preemption notifier.
  2361. */
  2362. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2363. {
  2364. hlist_del(&notifier->link);
  2365. }
  2366. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2367. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2368. {
  2369. struct preempt_notifier *notifier;
  2370. struct hlist_node *node;
  2371. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2372. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2373. }
  2374. static void
  2375. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2376. struct task_struct *next)
  2377. {
  2378. struct preempt_notifier *notifier;
  2379. struct hlist_node *node;
  2380. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2381. notifier->ops->sched_out(notifier, next);
  2382. }
  2383. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2384. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2385. {
  2386. }
  2387. static void
  2388. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2389. struct task_struct *next)
  2390. {
  2391. }
  2392. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2393. /**
  2394. * prepare_task_switch - prepare to switch tasks
  2395. * @rq: the runqueue preparing to switch
  2396. * @prev: the current task that is being switched out
  2397. * @next: the task we are going to switch to.
  2398. *
  2399. * This is called with the rq lock held and interrupts off. It must
  2400. * be paired with a subsequent finish_task_switch after the context
  2401. * switch.
  2402. *
  2403. * prepare_task_switch sets up locking and calls architecture specific
  2404. * hooks.
  2405. */
  2406. static inline void
  2407. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2408. struct task_struct *next)
  2409. {
  2410. fire_sched_out_preempt_notifiers(prev, next);
  2411. prepare_lock_switch(rq, next);
  2412. prepare_arch_switch(next);
  2413. }
  2414. /**
  2415. * finish_task_switch - clean up after a task-switch
  2416. * @rq: runqueue associated with task-switch
  2417. * @prev: the thread we just switched away from.
  2418. *
  2419. * finish_task_switch must be called after the context switch, paired
  2420. * with a prepare_task_switch call before the context switch.
  2421. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2422. * and do any other architecture-specific cleanup actions.
  2423. *
  2424. * Note that we may have delayed dropping an mm in context_switch(). If
  2425. * so, we finish that here outside of the runqueue lock. (Doing it
  2426. * with the lock held can cause deadlocks; see schedule() for
  2427. * details.)
  2428. */
  2429. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2430. __releases(rq->lock)
  2431. {
  2432. struct mm_struct *mm = rq->prev_mm;
  2433. long prev_state;
  2434. rq->prev_mm = NULL;
  2435. /*
  2436. * A task struct has one reference for the use as "current".
  2437. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2438. * schedule one last time. The schedule call will never return, and
  2439. * the scheduled task must drop that reference.
  2440. * The test for TASK_DEAD must occur while the runqueue locks are
  2441. * still held, otherwise prev could be scheduled on another cpu, die
  2442. * there before we look at prev->state, and then the reference would
  2443. * be dropped twice.
  2444. * Manfred Spraul <manfred@colorfullife.com>
  2445. */
  2446. prev_state = prev->state;
  2447. finish_arch_switch(prev);
  2448. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2449. local_irq_disable();
  2450. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2451. perf_event_task_sched_in(current);
  2452. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2453. local_irq_enable();
  2454. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2455. finish_lock_switch(rq, prev);
  2456. fire_sched_in_preempt_notifiers(current);
  2457. if (mm)
  2458. mmdrop(mm);
  2459. if (unlikely(prev_state == TASK_DEAD)) {
  2460. /*
  2461. * Remove function-return probe instances associated with this
  2462. * task and put them back on the free list.
  2463. */
  2464. kprobe_flush_task(prev);
  2465. put_task_struct(prev);
  2466. }
  2467. }
  2468. #ifdef CONFIG_SMP
  2469. /* assumes rq->lock is held */
  2470. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2471. {
  2472. if (prev->sched_class->pre_schedule)
  2473. prev->sched_class->pre_schedule(rq, prev);
  2474. }
  2475. /* rq->lock is NOT held, but preemption is disabled */
  2476. static inline void post_schedule(struct rq *rq)
  2477. {
  2478. if (rq->post_schedule) {
  2479. unsigned long flags;
  2480. raw_spin_lock_irqsave(&rq->lock, flags);
  2481. if (rq->curr->sched_class->post_schedule)
  2482. rq->curr->sched_class->post_schedule(rq);
  2483. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2484. rq->post_schedule = 0;
  2485. }
  2486. }
  2487. #else
  2488. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2489. {
  2490. }
  2491. static inline void post_schedule(struct rq *rq)
  2492. {
  2493. }
  2494. #endif
  2495. /**
  2496. * schedule_tail - first thing a freshly forked thread must call.
  2497. * @prev: the thread we just switched away from.
  2498. */
  2499. asmlinkage void schedule_tail(struct task_struct *prev)
  2500. __releases(rq->lock)
  2501. {
  2502. struct rq *rq = this_rq();
  2503. finish_task_switch(rq, prev);
  2504. /*
  2505. * FIXME: do we need to worry about rq being invalidated by the
  2506. * task_switch?
  2507. */
  2508. post_schedule(rq);
  2509. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2510. /* In this case, finish_task_switch does not reenable preemption */
  2511. preempt_enable();
  2512. #endif
  2513. if (current->set_child_tid)
  2514. put_user(task_pid_vnr(current), current->set_child_tid);
  2515. }
  2516. /*
  2517. * context_switch - switch to the new MM and the new
  2518. * thread's register state.
  2519. */
  2520. static inline void
  2521. context_switch(struct rq *rq, struct task_struct *prev,
  2522. struct task_struct *next)
  2523. {
  2524. struct mm_struct *mm, *oldmm;
  2525. prepare_task_switch(rq, prev, next);
  2526. trace_sched_switch(prev, next);
  2527. mm = next->mm;
  2528. oldmm = prev->active_mm;
  2529. /*
  2530. * For paravirt, this is coupled with an exit in switch_to to
  2531. * combine the page table reload and the switch backend into
  2532. * one hypercall.
  2533. */
  2534. arch_start_context_switch(prev);
  2535. if (!mm) {
  2536. next->active_mm = oldmm;
  2537. atomic_inc(&oldmm->mm_count);
  2538. enter_lazy_tlb(oldmm, next);
  2539. } else
  2540. switch_mm(oldmm, mm, next);
  2541. if (!prev->mm) {
  2542. prev->active_mm = NULL;
  2543. rq->prev_mm = oldmm;
  2544. }
  2545. /*
  2546. * Since the runqueue lock will be released by the next
  2547. * task (which is an invalid locking op but in the case
  2548. * of the scheduler it's an obvious special-case), so we
  2549. * do an early lockdep release here:
  2550. */
  2551. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2552. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2553. #endif
  2554. /* Here we just switch the register state and the stack. */
  2555. switch_to(prev, next, prev);
  2556. barrier();
  2557. /*
  2558. * this_rq must be evaluated again because prev may have moved
  2559. * CPUs since it called schedule(), thus the 'rq' on its stack
  2560. * frame will be invalid.
  2561. */
  2562. finish_task_switch(this_rq(), prev);
  2563. }
  2564. /*
  2565. * nr_running, nr_uninterruptible and nr_context_switches:
  2566. *
  2567. * externally visible scheduler statistics: current number of runnable
  2568. * threads, current number of uninterruptible-sleeping threads, total
  2569. * number of context switches performed since bootup.
  2570. */
  2571. unsigned long nr_running(void)
  2572. {
  2573. unsigned long i, sum = 0;
  2574. for_each_online_cpu(i)
  2575. sum += cpu_rq(i)->nr_running;
  2576. return sum;
  2577. }
  2578. unsigned long nr_uninterruptible(void)
  2579. {
  2580. unsigned long i, sum = 0;
  2581. for_each_possible_cpu(i)
  2582. sum += cpu_rq(i)->nr_uninterruptible;
  2583. /*
  2584. * Since we read the counters lockless, it might be slightly
  2585. * inaccurate. Do not allow it to go below zero though:
  2586. */
  2587. if (unlikely((long)sum < 0))
  2588. sum = 0;
  2589. return sum;
  2590. }
  2591. unsigned long long nr_context_switches(void)
  2592. {
  2593. int i;
  2594. unsigned long long sum = 0;
  2595. for_each_possible_cpu(i)
  2596. sum += cpu_rq(i)->nr_switches;
  2597. return sum;
  2598. }
  2599. unsigned long nr_iowait(void)
  2600. {
  2601. unsigned long i, sum = 0;
  2602. for_each_possible_cpu(i)
  2603. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2604. return sum;
  2605. }
  2606. unsigned long nr_iowait_cpu(int cpu)
  2607. {
  2608. struct rq *this = cpu_rq(cpu);
  2609. return atomic_read(&this->nr_iowait);
  2610. }
  2611. unsigned long this_cpu_load(void)
  2612. {
  2613. struct rq *this = this_rq();
  2614. return this->cpu_load[0];
  2615. }
  2616. /* Variables and functions for calc_load */
  2617. static atomic_long_t calc_load_tasks;
  2618. static unsigned long calc_load_update;
  2619. unsigned long avenrun[3];
  2620. EXPORT_SYMBOL(avenrun);
  2621. static long calc_load_fold_active(struct rq *this_rq)
  2622. {
  2623. long nr_active, delta = 0;
  2624. nr_active = this_rq->nr_running;
  2625. nr_active += (long) this_rq->nr_uninterruptible;
  2626. if (nr_active != this_rq->calc_load_active) {
  2627. delta = nr_active - this_rq->calc_load_active;
  2628. this_rq->calc_load_active = nr_active;
  2629. }
  2630. return delta;
  2631. }
  2632. static unsigned long
  2633. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2634. {
  2635. load *= exp;
  2636. load += active * (FIXED_1 - exp);
  2637. load += 1UL << (FSHIFT - 1);
  2638. return load >> FSHIFT;
  2639. }
  2640. #ifdef CONFIG_NO_HZ
  2641. /*
  2642. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2643. *
  2644. * When making the ILB scale, we should try to pull this in as well.
  2645. */
  2646. static atomic_long_t calc_load_tasks_idle;
  2647. static void calc_load_account_idle(struct rq *this_rq)
  2648. {
  2649. long delta;
  2650. delta = calc_load_fold_active(this_rq);
  2651. if (delta)
  2652. atomic_long_add(delta, &calc_load_tasks_idle);
  2653. }
  2654. static long calc_load_fold_idle(void)
  2655. {
  2656. long delta = 0;
  2657. /*
  2658. * Its got a race, we don't care...
  2659. */
  2660. if (atomic_long_read(&calc_load_tasks_idle))
  2661. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2662. return delta;
  2663. }
  2664. /**
  2665. * fixed_power_int - compute: x^n, in O(log n) time
  2666. *
  2667. * @x: base of the power
  2668. * @frac_bits: fractional bits of @x
  2669. * @n: power to raise @x to.
  2670. *
  2671. * By exploiting the relation between the definition of the natural power
  2672. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2673. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2674. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2675. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2676. * of course trivially computable in O(log_2 n), the length of our binary
  2677. * vector.
  2678. */
  2679. static unsigned long
  2680. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2681. {
  2682. unsigned long result = 1UL << frac_bits;
  2683. if (n) for (;;) {
  2684. if (n & 1) {
  2685. result *= x;
  2686. result += 1UL << (frac_bits - 1);
  2687. result >>= frac_bits;
  2688. }
  2689. n >>= 1;
  2690. if (!n)
  2691. break;
  2692. x *= x;
  2693. x += 1UL << (frac_bits - 1);
  2694. x >>= frac_bits;
  2695. }
  2696. return result;
  2697. }
  2698. /*
  2699. * a1 = a0 * e + a * (1 - e)
  2700. *
  2701. * a2 = a1 * e + a * (1 - e)
  2702. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2703. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2704. *
  2705. * a3 = a2 * e + a * (1 - e)
  2706. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2707. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2708. *
  2709. * ...
  2710. *
  2711. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2712. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2713. * = a0 * e^n + a * (1 - e^n)
  2714. *
  2715. * [1] application of the geometric series:
  2716. *
  2717. * n 1 - x^(n+1)
  2718. * S_n := \Sum x^i = -------------
  2719. * i=0 1 - x
  2720. */
  2721. static unsigned long
  2722. calc_load_n(unsigned long load, unsigned long exp,
  2723. unsigned long active, unsigned int n)
  2724. {
  2725. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2726. }
  2727. /*
  2728. * NO_HZ can leave us missing all per-cpu ticks calling
  2729. * calc_load_account_active(), but since an idle CPU folds its delta into
  2730. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2731. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2732. *
  2733. * Once we've updated the global active value, we need to apply the exponential
  2734. * weights adjusted to the number of cycles missed.
  2735. */
  2736. static void calc_global_nohz(unsigned long ticks)
  2737. {
  2738. long delta, active, n;
  2739. if (time_before(jiffies, calc_load_update))
  2740. return;
  2741. /*
  2742. * If we crossed a calc_load_update boundary, make sure to fold
  2743. * any pending idle changes, the respective CPUs might have
  2744. * missed the tick driven calc_load_account_active() update
  2745. * due to NO_HZ.
  2746. */
  2747. delta = calc_load_fold_idle();
  2748. if (delta)
  2749. atomic_long_add(delta, &calc_load_tasks);
  2750. /*
  2751. * If we were idle for multiple load cycles, apply them.
  2752. */
  2753. if (ticks >= LOAD_FREQ) {
  2754. n = ticks / LOAD_FREQ;
  2755. active = atomic_long_read(&calc_load_tasks);
  2756. active = active > 0 ? active * FIXED_1 : 0;
  2757. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2758. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2759. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2760. calc_load_update += n * LOAD_FREQ;
  2761. }
  2762. /*
  2763. * Its possible the remainder of the above division also crosses
  2764. * a LOAD_FREQ period, the regular check in calc_global_load()
  2765. * which comes after this will take care of that.
  2766. *
  2767. * Consider us being 11 ticks before a cycle completion, and us
  2768. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2769. * age us 4 cycles, and the test in calc_global_load() will
  2770. * pick up the final one.
  2771. */
  2772. }
  2773. #else
  2774. static void calc_load_account_idle(struct rq *this_rq)
  2775. {
  2776. }
  2777. static inline long calc_load_fold_idle(void)
  2778. {
  2779. return 0;
  2780. }
  2781. static void calc_global_nohz(unsigned long ticks)
  2782. {
  2783. }
  2784. #endif
  2785. /**
  2786. * get_avenrun - get the load average array
  2787. * @loads: pointer to dest load array
  2788. * @offset: offset to add
  2789. * @shift: shift count to shift the result left
  2790. *
  2791. * These values are estimates at best, so no need for locking.
  2792. */
  2793. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2794. {
  2795. loads[0] = (avenrun[0] + offset) << shift;
  2796. loads[1] = (avenrun[1] + offset) << shift;
  2797. loads[2] = (avenrun[2] + offset) << shift;
  2798. }
  2799. /*
  2800. * calc_load - update the avenrun load estimates 10 ticks after the
  2801. * CPUs have updated calc_load_tasks.
  2802. */
  2803. void calc_global_load(unsigned long ticks)
  2804. {
  2805. long active;
  2806. calc_global_nohz(ticks);
  2807. if (time_before(jiffies, calc_load_update + 10))
  2808. return;
  2809. active = atomic_long_read(&calc_load_tasks);
  2810. active = active > 0 ? active * FIXED_1 : 0;
  2811. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2812. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2813. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2814. calc_load_update += LOAD_FREQ;
  2815. }
  2816. /*
  2817. * Called from update_cpu_load() to periodically update this CPU's
  2818. * active count.
  2819. */
  2820. static void calc_load_account_active(struct rq *this_rq)
  2821. {
  2822. long delta;
  2823. if (time_before(jiffies, this_rq->calc_load_update))
  2824. return;
  2825. delta = calc_load_fold_active(this_rq);
  2826. delta += calc_load_fold_idle();
  2827. if (delta)
  2828. atomic_long_add(delta, &calc_load_tasks);
  2829. this_rq->calc_load_update += LOAD_FREQ;
  2830. }
  2831. /*
  2832. * The exact cpuload at various idx values, calculated at every tick would be
  2833. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2834. *
  2835. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2836. * on nth tick when cpu may be busy, then we have:
  2837. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2838. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2839. *
  2840. * decay_load_missed() below does efficient calculation of
  2841. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2842. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2843. *
  2844. * The calculation is approximated on a 128 point scale.
  2845. * degrade_zero_ticks is the number of ticks after which load at any
  2846. * particular idx is approximated to be zero.
  2847. * degrade_factor is a precomputed table, a row for each load idx.
  2848. * Each column corresponds to degradation factor for a power of two ticks,
  2849. * based on 128 point scale.
  2850. * Example:
  2851. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2852. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2853. *
  2854. * With this power of 2 load factors, we can degrade the load n times
  2855. * by looking at 1 bits in n and doing as many mult/shift instead of
  2856. * n mult/shifts needed by the exact degradation.
  2857. */
  2858. #define DEGRADE_SHIFT 7
  2859. static const unsigned char
  2860. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2861. static const unsigned char
  2862. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2863. {0, 0, 0, 0, 0, 0, 0, 0},
  2864. {64, 32, 8, 0, 0, 0, 0, 0},
  2865. {96, 72, 40, 12, 1, 0, 0},
  2866. {112, 98, 75, 43, 15, 1, 0},
  2867. {120, 112, 98, 76, 45, 16, 2} };
  2868. /*
  2869. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2870. * would be when CPU is idle and so we just decay the old load without
  2871. * adding any new load.
  2872. */
  2873. static unsigned long
  2874. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2875. {
  2876. int j = 0;
  2877. if (!missed_updates)
  2878. return load;
  2879. if (missed_updates >= degrade_zero_ticks[idx])
  2880. return 0;
  2881. if (idx == 1)
  2882. return load >> missed_updates;
  2883. while (missed_updates) {
  2884. if (missed_updates % 2)
  2885. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2886. missed_updates >>= 1;
  2887. j++;
  2888. }
  2889. return load;
  2890. }
  2891. /*
  2892. * Update rq->cpu_load[] statistics. This function is usually called every
  2893. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2894. * every tick. We fix it up based on jiffies.
  2895. */
  2896. static void update_cpu_load(struct rq *this_rq)
  2897. {
  2898. unsigned long this_load = this_rq->load.weight;
  2899. unsigned long curr_jiffies = jiffies;
  2900. unsigned long pending_updates;
  2901. int i, scale;
  2902. this_rq->nr_load_updates++;
  2903. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2904. if (curr_jiffies == this_rq->last_load_update_tick)
  2905. return;
  2906. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2907. this_rq->last_load_update_tick = curr_jiffies;
  2908. /* Update our load: */
  2909. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2910. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2911. unsigned long old_load, new_load;
  2912. /* scale is effectively 1 << i now, and >> i divides by scale */
  2913. old_load = this_rq->cpu_load[i];
  2914. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2915. new_load = this_load;
  2916. /*
  2917. * Round up the averaging division if load is increasing. This
  2918. * prevents us from getting stuck on 9 if the load is 10, for
  2919. * example.
  2920. */
  2921. if (new_load > old_load)
  2922. new_load += scale - 1;
  2923. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2924. }
  2925. sched_avg_update(this_rq);
  2926. }
  2927. static void update_cpu_load_active(struct rq *this_rq)
  2928. {
  2929. update_cpu_load(this_rq);
  2930. calc_load_account_active(this_rq);
  2931. }
  2932. #ifdef CONFIG_SMP
  2933. /*
  2934. * sched_exec - execve() is a valuable balancing opportunity, because at
  2935. * this point the task has the smallest effective memory and cache footprint.
  2936. */
  2937. void sched_exec(void)
  2938. {
  2939. struct task_struct *p = current;
  2940. unsigned long flags;
  2941. struct rq *rq;
  2942. int dest_cpu;
  2943. rq = task_rq_lock(p, &flags);
  2944. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2945. if (dest_cpu == smp_processor_id())
  2946. goto unlock;
  2947. /*
  2948. * select_task_rq() can race against ->cpus_allowed
  2949. */
  2950. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2951. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2952. struct migration_arg arg = { p, dest_cpu };
  2953. task_rq_unlock(rq, &flags);
  2954. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2955. return;
  2956. }
  2957. unlock:
  2958. task_rq_unlock(rq, &flags);
  2959. }
  2960. #endif
  2961. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2962. EXPORT_PER_CPU_SYMBOL(kstat);
  2963. /*
  2964. * Return any ns on the sched_clock that have not yet been accounted in
  2965. * @p in case that task is currently running.
  2966. *
  2967. * Called with task_rq_lock() held on @rq.
  2968. */
  2969. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2970. {
  2971. u64 ns = 0;
  2972. if (task_current(rq, p)) {
  2973. update_rq_clock(rq);
  2974. ns = rq->clock_task - p->se.exec_start;
  2975. if ((s64)ns < 0)
  2976. ns = 0;
  2977. }
  2978. return ns;
  2979. }
  2980. unsigned long long task_delta_exec(struct task_struct *p)
  2981. {
  2982. unsigned long flags;
  2983. struct rq *rq;
  2984. u64 ns = 0;
  2985. rq = task_rq_lock(p, &flags);
  2986. ns = do_task_delta_exec(p, rq);
  2987. task_rq_unlock(rq, &flags);
  2988. return ns;
  2989. }
  2990. /*
  2991. * Return accounted runtime for the task.
  2992. * In case the task is currently running, return the runtime plus current's
  2993. * pending runtime that have not been accounted yet.
  2994. */
  2995. unsigned long long task_sched_runtime(struct task_struct *p)
  2996. {
  2997. unsigned long flags;
  2998. struct rq *rq;
  2999. u64 ns = 0;
  3000. rq = task_rq_lock(p, &flags);
  3001. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3002. task_rq_unlock(rq, &flags);
  3003. return ns;
  3004. }
  3005. /*
  3006. * Return sum_exec_runtime for the thread group.
  3007. * In case the task is currently running, return the sum plus current's
  3008. * pending runtime that have not been accounted yet.
  3009. *
  3010. * Note that the thread group might have other running tasks as well,
  3011. * so the return value not includes other pending runtime that other
  3012. * running tasks might have.
  3013. */
  3014. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3015. {
  3016. struct task_cputime totals;
  3017. unsigned long flags;
  3018. struct rq *rq;
  3019. u64 ns;
  3020. rq = task_rq_lock(p, &flags);
  3021. thread_group_cputime(p, &totals);
  3022. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3023. task_rq_unlock(rq, &flags);
  3024. return ns;
  3025. }
  3026. /*
  3027. * Account user cpu time to a process.
  3028. * @p: the process that the cpu time gets accounted to
  3029. * @cputime: the cpu time spent in user space since the last update
  3030. * @cputime_scaled: cputime scaled by cpu frequency
  3031. */
  3032. void account_user_time(struct task_struct *p, cputime_t cputime,
  3033. cputime_t cputime_scaled)
  3034. {
  3035. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3036. cputime64_t tmp;
  3037. /* Add user time to process. */
  3038. p->utime = cputime_add(p->utime, cputime);
  3039. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3040. account_group_user_time(p, cputime);
  3041. /* Add user time to cpustat. */
  3042. tmp = cputime_to_cputime64(cputime);
  3043. if (TASK_NICE(p) > 0)
  3044. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3045. else
  3046. cpustat->user = cputime64_add(cpustat->user, tmp);
  3047. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3048. /* Account for user time used */
  3049. acct_update_integrals(p);
  3050. }
  3051. /*
  3052. * Account guest cpu time to a process.
  3053. * @p: the process that the cpu time gets accounted to
  3054. * @cputime: the cpu time spent in virtual machine since the last update
  3055. * @cputime_scaled: cputime scaled by cpu frequency
  3056. */
  3057. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3058. cputime_t cputime_scaled)
  3059. {
  3060. cputime64_t tmp;
  3061. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3062. tmp = cputime_to_cputime64(cputime);
  3063. /* Add guest time to process. */
  3064. p->utime = cputime_add(p->utime, cputime);
  3065. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3066. account_group_user_time(p, cputime);
  3067. p->gtime = cputime_add(p->gtime, cputime);
  3068. /* Add guest time to cpustat. */
  3069. if (TASK_NICE(p) > 0) {
  3070. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3071. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3072. } else {
  3073. cpustat->user = cputime64_add(cpustat->user, tmp);
  3074. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3075. }
  3076. }
  3077. /*
  3078. * Account system cpu time to a process and desired cpustat field
  3079. * @p: the process that the cpu time gets accounted to
  3080. * @cputime: the cpu time spent in kernel space since the last update
  3081. * @cputime_scaled: cputime scaled by cpu frequency
  3082. * @target_cputime64: pointer to cpustat field that has to be updated
  3083. */
  3084. static inline
  3085. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3086. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3087. {
  3088. cputime64_t tmp = cputime_to_cputime64(cputime);
  3089. /* Add system time to process. */
  3090. p->stime = cputime_add(p->stime, cputime);
  3091. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3092. account_group_system_time(p, cputime);
  3093. /* Add system time to cpustat. */
  3094. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3095. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3096. /* Account for system time used */
  3097. acct_update_integrals(p);
  3098. }
  3099. /*
  3100. * Account system cpu time to a process.
  3101. * @p: the process that the cpu time gets accounted to
  3102. * @hardirq_offset: the offset to subtract from hardirq_count()
  3103. * @cputime: the cpu time spent in kernel space since the last update
  3104. * @cputime_scaled: cputime scaled by cpu frequency
  3105. */
  3106. void account_system_time(struct task_struct *p, int hardirq_offset,
  3107. cputime_t cputime, cputime_t cputime_scaled)
  3108. {
  3109. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3110. cputime64_t *target_cputime64;
  3111. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3112. account_guest_time(p, cputime, cputime_scaled);
  3113. return;
  3114. }
  3115. if (hardirq_count() - hardirq_offset)
  3116. target_cputime64 = &cpustat->irq;
  3117. else if (in_serving_softirq())
  3118. target_cputime64 = &cpustat->softirq;
  3119. else
  3120. target_cputime64 = &cpustat->system;
  3121. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3122. }
  3123. /*
  3124. * Account for involuntary wait time.
  3125. * @cputime: the cpu time spent in involuntary wait
  3126. */
  3127. void account_steal_time(cputime_t cputime)
  3128. {
  3129. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3130. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3131. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3132. }
  3133. /*
  3134. * Account for idle time.
  3135. * @cputime: the cpu time spent in idle wait
  3136. */
  3137. void account_idle_time(cputime_t cputime)
  3138. {
  3139. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3140. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3141. struct rq *rq = this_rq();
  3142. if (atomic_read(&rq->nr_iowait) > 0)
  3143. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3144. else
  3145. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3146. }
  3147. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3148. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3149. /*
  3150. * Account a tick to a process and cpustat
  3151. * @p: the process that the cpu time gets accounted to
  3152. * @user_tick: is the tick from userspace
  3153. * @rq: the pointer to rq
  3154. *
  3155. * Tick demultiplexing follows the order
  3156. * - pending hardirq update
  3157. * - pending softirq update
  3158. * - user_time
  3159. * - idle_time
  3160. * - system time
  3161. * - check for guest_time
  3162. * - else account as system_time
  3163. *
  3164. * Check for hardirq is done both for system and user time as there is
  3165. * no timer going off while we are on hardirq and hence we may never get an
  3166. * opportunity to update it solely in system time.
  3167. * p->stime and friends are only updated on system time and not on irq
  3168. * softirq as those do not count in task exec_runtime any more.
  3169. */
  3170. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3171. struct rq *rq)
  3172. {
  3173. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3174. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3175. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3176. if (irqtime_account_hi_update()) {
  3177. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3178. } else if (irqtime_account_si_update()) {
  3179. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3180. } else if (this_cpu_ksoftirqd() == p) {
  3181. /*
  3182. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3183. * So, we have to handle it separately here.
  3184. * Also, p->stime needs to be updated for ksoftirqd.
  3185. */
  3186. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3187. &cpustat->softirq);
  3188. } else if (user_tick) {
  3189. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3190. } else if (p == rq->idle) {
  3191. account_idle_time(cputime_one_jiffy);
  3192. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3193. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3194. } else {
  3195. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3196. &cpustat->system);
  3197. }
  3198. }
  3199. static void irqtime_account_idle_ticks(int ticks)
  3200. {
  3201. int i;
  3202. struct rq *rq = this_rq();
  3203. for (i = 0; i < ticks; i++)
  3204. irqtime_account_process_tick(current, 0, rq);
  3205. }
  3206. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3207. static void irqtime_account_idle_ticks(int ticks) {}
  3208. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3209. struct rq *rq) {}
  3210. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3211. /*
  3212. * Account a single tick of cpu time.
  3213. * @p: the process that the cpu time gets accounted to
  3214. * @user_tick: indicates if the tick is a user or a system tick
  3215. */
  3216. void account_process_tick(struct task_struct *p, int user_tick)
  3217. {
  3218. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3219. struct rq *rq = this_rq();
  3220. if (sched_clock_irqtime) {
  3221. irqtime_account_process_tick(p, user_tick, rq);
  3222. return;
  3223. }
  3224. if (user_tick)
  3225. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3226. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3227. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3228. one_jiffy_scaled);
  3229. else
  3230. account_idle_time(cputime_one_jiffy);
  3231. }
  3232. /*
  3233. * Account multiple ticks of steal time.
  3234. * @p: the process from which the cpu time has been stolen
  3235. * @ticks: number of stolen ticks
  3236. */
  3237. void account_steal_ticks(unsigned long ticks)
  3238. {
  3239. account_steal_time(jiffies_to_cputime(ticks));
  3240. }
  3241. /*
  3242. * Account multiple ticks of idle time.
  3243. * @ticks: number of stolen ticks
  3244. */
  3245. void account_idle_ticks(unsigned long ticks)
  3246. {
  3247. if (sched_clock_irqtime) {
  3248. irqtime_account_idle_ticks(ticks);
  3249. return;
  3250. }
  3251. account_idle_time(jiffies_to_cputime(ticks));
  3252. }
  3253. #endif
  3254. /*
  3255. * Use precise platform statistics if available:
  3256. */
  3257. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3258. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3259. {
  3260. *ut = p->utime;
  3261. *st = p->stime;
  3262. }
  3263. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3264. {
  3265. struct task_cputime cputime;
  3266. thread_group_cputime(p, &cputime);
  3267. *ut = cputime.utime;
  3268. *st = cputime.stime;
  3269. }
  3270. #else
  3271. #ifndef nsecs_to_cputime
  3272. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3273. #endif
  3274. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3275. {
  3276. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3277. /*
  3278. * Use CFS's precise accounting:
  3279. */
  3280. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3281. if (total) {
  3282. u64 temp = rtime;
  3283. temp *= utime;
  3284. do_div(temp, total);
  3285. utime = (cputime_t)temp;
  3286. } else
  3287. utime = rtime;
  3288. /*
  3289. * Compare with previous values, to keep monotonicity:
  3290. */
  3291. p->prev_utime = max(p->prev_utime, utime);
  3292. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3293. *ut = p->prev_utime;
  3294. *st = p->prev_stime;
  3295. }
  3296. /*
  3297. * Must be called with siglock held.
  3298. */
  3299. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3300. {
  3301. struct signal_struct *sig = p->signal;
  3302. struct task_cputime cputime;
  3303. cputime_t rtime, utime, total;
  3304. thread_group_cputime(p, &cputime);
  3305. total = cputime_add(cputime.utime, cputime.stime);
  3306. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3307. if (total) {
  3308. u64 temp = rtime;
  3309. temp *= cputime.utime;
  3310. do_div(temp, total);
  3311. utime = (cputime_t)temp;
  3312. } else
  3313. utime = rtime;
  3314. sig->prev_utime = max(sig->prev_utime, utime);
  3315. sig->prev_stime = max(sig->prev_stime,
  3316. cputime_sub(rtime, sig->prev_utime));
  3317. *ut = sig->prev_utime;
  3318. *st = sig->prev_stime;
  3319. }
  3320. #endif
  3321. /*
  3322. * This function gets called by the timer code, with HZ frequency.
  3323. * We call it with interrupts disabled.
  3324. *
  3325. * It also gets called by the fork code, when changing the parent's
  3326. * timeslices.
  3327. */
  3328. void scheduler_tick(void)
  3329. {
  3330. int cpu = smp_processor_id();
  3331. struct rq *rq = cpu_rq(cpu);
  3332. struct task_struct *curr = rq->curr;
  3333. sched_clock_tick();
  3334. raw_spin_lock(&rq->lock);
  3335. update_rq_clock(rq);
  3336. update_cpu_load_active(rq);
  3337. curr->sched_class->task_tick(rq, curr, 0);
  3338. raw_spin_unlock(&rq->lock);
  3339. perf_event_task_tick();
  3340. #ifdef CONFIG_SMP
  3341. rq->idle_at_tick = idle_cpu(cpu);
  3342. trigger_load_balance(rq, cpu);
  3343. #endif
  3344. }
  3345. notrace unsigned long get_parent_ip(unsigned long addr)
  3346. {
  3347. if (in_lock_functions(addr)) {
  3348. addr = CALLER_ADDR2;
  3349. if (in_lock_functions(addr))
  3350. addr = CALLER_ADDR3;
  3351. }
  3352. return addr;
  3353. }
  3354. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3355. defined(CONFIG_PREEMPT_TRACER))
  3356. void __kprobes add_preempt_count(int val)
  3357. {
  3358. #ifdef CONFIG_DEBUG_PREEMPT
  3359. /*
  3360. * Underflow?
  3361. */
  3362. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3363. return;
  3364. #endif
  3365. preempt_count() += val;
  3366. #ifdef CONFIG_DEBUG_PREEMPT
  3367. /*
  3368. * Spinlock count overflowing soon?
  3369. */
  3370. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3371. PREEMPT_MASK - 10);
  3372. #endif
  3373. if (preempt_count() == val)
  3374. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3375. }
  3376. EXPORT_SYMBOL(add_preempt_count);
  3377. void __kprobes sub_preempt_count(int val)
  3378. {
  3379. #ifdef CONFIG_DEBUG_PREEMPT
  3380. /*
  3381. * Underflow?
  3382. */
  3383. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3384. return;
  3385. /*
  3386. * Is the spinlock portion underflowing?
  3387. */
  3388. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3389. !(preempt_count() & PREEMPT_MASK)))
  3390. return;
  3391. #endif
  3392. if (preempt_count() == val)
  3393. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3394. preempt_count() -= val;
  3395. }
  3396. EXPORT_SYMBOL(sub_preempt_count);
  3397. #endif
  3398. /*
  3399. * Print scheduling while atomic bug:
  3400. */
  3401. static noinline void __schedule_bug(struct task_struct *prev)
  3402. {
  3403. struct pt_regs *regs = get_irq_regs();
  3404. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3405. prev->comm, prev->pid, preempt_count());
  3406. debug_show_held_locks(prev);
  3407. print_modules();
  3408. if (irqs_disabled())
  3409. print_irqtrace_events(prev);
  3410. if (regs)
  3411. show_regs(regs);
  3412. else
  3413. dump_stack();
  3414. }
  3415. /*
  3416. * Various schedule()-time debugging checks and statistics:
  3417. */
  3418. static inline void schedule_debug(struct task_struct *prev)
  3419. {
  3420. /*
  3421. * Test if we are atomic. Since do_exit() needs to call into
  3422. * schedule() atomically, we ignore that path for now.
  3423. * Otherwise, whine if we are scheduling when we should not be.
  3424. */
  3425. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3426. __schedule_bug(prev);
  3427. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3428. schedstat_inc(this_rq(), sched_count);
  3429. #ifdef CONFIG_SCHEDSTATS
  3430. if (unlikely(prev->lock_depth >= 0)) {
  3431. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3432. schedstat_inc(prev, sched_info.bkl_count);
  3433. }
  3434. #endif
  3435. }
  3436. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3437. {
  3438. if (prev->se.on_rq)
  3439. update_rq_clock(rq);
  3440. prev->sched_class->put_prev_task(rq, prev);
  3441. }
  3442. /*
  3443. * Pick up the highest-prio task:
  3444. */
  3445. static inline struct task_struct *
  3446. pick_next_task(struct rq *rq)
  3447. {
  3448. const struct sched_class *class;
  3449. struct task_struct *p;
  3450. /*
  3451. * Optimization: we know that if all tasks are in
  3452. * the fair class we can call that function directly:
  3453. */
  3454. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3455. p = fair_sched_class.pick_next_task(rq);
  3456. if (likely(p))
  3457. return p;
  3458. }
  3459. for_each_class(class) {
  3460. p = class->pick_next_task(rq);
  3461. if (p)
  3462. return p;
  3463. }
  3464. BUG(); /* the idle class will always have a runnable task */
  3465. }
  3466. /*
  3467. * schedule() is the main scheduler function.
  3468. */
  3469. asmlinkage void __sched schedule(void)
  3470. {
  3471. struct task_struct *prev, *next;
  3472. unsigned long *switch_count;
  3473. struct rq *rq;
  3474. int cpu;
  3475. need_resched:
  3476. preempt_disable();
  3477. cpu = smp_processor_id();
  3478. rq = cpu_rq(cpu);
  3479. rcu_note_context_switch(cpu);
  3480. prev = rq->curr;
  3481. release_kernel_lock(prev);
  3482. need_resched_nonpreemptible:
  3483. schedule_debug(prev);
  3484. if (sched_feat(HRTICK))
  3485. hrtick_clear(rq);
  3486. raw_spin_lock_irq(&rq->lock);
  3487. switch_count = &prev->nivcsw;
  3488. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3489. if (unlikely(signal_pending_state(prev->state, prev))) {
  3490. prev->state = TASK_RUNNING;
  3491. } else {
  3492. /*
  3493. * If a worker is going to sleep, notify and
  3494. * ask workqueue whether it wants to wake up a
  3495. * task to maintain concurrency. If so, wake
  3496. * up the task.
  3497. */
  3498. if (prev->flags & PF_WQ_WORKER) {
  3499. struct task_struct *to_wakeup;
  3500. to_wakeup = wq_worker_sleeping(prev, cpu);
  3501. if (to_wakeup)
  3502. try_to_wake_up_local(to_wakeup);
  3503. }
  3504. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3505. }
  3506. switch_count = &prev->nvcsw;
  3507. }
  3508. pre_schedule(rq, prev);
  3509. if (unlikely(!rq->nr_running))
  3510. idle_balance(cpu, rq);
  3511. put_prev_task(rq, prev);
  3512. next = pick_next_task(rq);
  3513. clear_tsk_need_resched(prev);
  3514. rq->skip_clock_update = 0;
  3515. if (likely(prev != next)) {
  3516. sched_info_switch(prev, next);
  3517. perf_event_task_sched_out(prev, next);
  3518. rq->nr_switches++;
  3519. rq->curr = next;
  3520. ++*switch_count;
  3521. context_switch(rq, prev, next); /* unlocks the rq */
  3522. /*
  3523. * The context switch have flipped the stack from under us
  3524. * and restored the local variables which were saved when
  3525. * this task called schedule() in the past. prev == current
  3526. * is still correct, but it can be moved to another cpu/rq.
  3527. */
  3528. cpu = smp_processor_id();
  3529. rq = cpu_rq(cpu);
  3530. } else
  3531. raw_spin_unlock_irq(&rq->lock);
  3532. post_schedule(rq);
  3533. if (unlikely(reacquire_kernel_lock(prev)))
  3534. goto need_resched_nonpreemptible;
  3535. preempt_enable_no_resched();
  3536. if (need_resched())
  3537. goto need_resched;
  3538. }
  3539. EXPORT_SYMBOL(schedule);
  3540. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3541. /*
  3542. * Look out! "owner" is an entirely speculative pointer
  3543. * access and not reliable.
  3544. */
  3545. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3546. {
  3547. unsigned int cpu;
  3548. struct rq *rq;
  3549. if (!sched_feat(OWNER_SPIN))
  3550. return 0;
  3551. #ifdef CONFIG_DEBUG_PAGEALLOC
  3552. /*
  3553. * Need to access the cpu field knowing that
  3554. * DEBUG_PAGEALLOC could have unmapped it if
  3555. * the mutex owner just released it and exited.
  3556. */
  3557. if (probe_kernel_address(&owner->cpu, cpu))
  3558. return 0;
  3559. #else
  3560. cpu = owner->cpu;
  3561. #endif
  3562. /*
  3563. * Even if the access succeeded (likely case),
  3564. * the cpu field may no longer be valid.
  3565. */
  3566. if (cpu >= nr_cpumask_bits)
  3567. return 0;
  3568. /*
  3569. * We need to validate that we can do a
  3570. * get_cpu() and that we have the percpu area.
  3571. */
  3572. if (!cpu_online(cpu))
  3573. return 0;
  3574. rq = cpu_rq(cpu);
  3575. for (;;) {
  3576. /*
  3577. * Owner changed, break to re-assess state.
  3578. */
  3579. if (lock->owner != owner) {
  3580. /*
  3581. * If the lock has switched to a different owner,
  3582. * we likely have heavy contention. Return 0 to quit
  3583. * optimistic spinning and not contend further:
  3584. */
  3585. if (lock->owner)
  3586. return 0;
  3587. break;
  3588. }
  3589. /*
  3590. * Is that owner really running on that cpu?
  3591. */
  3592. if (task_thread_info(rq->curr) != owner || need_resched())
  3593. return 0;
  3594. arch_mutex_cpu_relax();
  3595. }
  3596. return 1;
  3597. }
  3598. #endif
  3599. #ifdef CONFIG_PREEMPT
  3600. /*
  3601. * this is the entry point to schedule() from in-kernel preemption
  3602. * off of preempt_enable. Kernel preemptions off return from interrupt
  3603. * occur there and call schedule directly.
  3604. */
  3605. asmlinkage void __sched notrace preempt_schedule(void)
  3606. {
  3607. struct thread_info *ti = current_thread_info();
  3608. /*
  3609. * If there is a non-zero preempt_count or interrupts are disabled,
  3610. * we do not want to preempt the current task. Just return..
  3611. */
  3612. if (likely(ti->preempt_count || irqs_disabled()))
  3613. return;
  3614. do {
  3615. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3616. schedule();
  3617. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3618. /*
  3619. * Check again in case we missed a preemption opportunity
  3620. * between schedule and now.
  3621. */
  3622. barrier();
  3623. } while (need_resched());
  3624. }
  3625. EXPORT_SYMBOL(preempt_schedule);
  3626. /*
  3627. * this is the entry point to schedule() from kernel preemption
  3628. * off of irq context.
  3629. * Note, that this is called and return with irqs disabled. This will
  3630. * protect us against recursive calling from irq.
  3631. */
  3632. asmlinkage void __sched preempt_schedule_irq(void)
  3633. {
  3634. struct thread_info *ti = current_thread_info();
  3635. /* Catch callers which need to be fixed */
  3636. BUG_ON(ti->preempt_count || !irqs_disabled());
  3637. do {
  3638. add_preempt_count(PREEMPT_ACTIVE);
  3639. local_irq_enable();
  3640. schedule();
  3641. local_irq_disable();
  3642. sub_preempt_count(PREEMPT_ACTIVE);
  3643. /*
  3644. * Check again in case we missed a preemption opportunity
  3645. * between schedule and now.
  3646. */
  3647. barrier();
  3648. } while (need_resched());
  3649. }
  3650. #endif /* CONFIG_PREEMPT */
  3651. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3652. void *key)
  3653. {
  3654. return try_to_wake_up(curr->private, mode, wake_flags);
  3655. }
  3656. EXPORT_SYMBOL(default_wake_function);
  3657. /*
  3658. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3659. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3660. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3661. *
  3662. * There are circumstances in which we can try to wake a task which has already
  3663. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3664. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3665. */
  3666. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3667. int nr_exclusive, int wake_flags, void *key)
  3668. {
  3669. wait_queue_t *curr, *next;
  3670. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3671. unsigned flags = curr->flags;
  3672. if (curr->func(curr, mode, wake_flags, key) &&
  3673. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3674. break;
  3675. }
  3676. }
  3677. /**
  3678. * __wake_up - wake up threads blocked on a waitqueue.
  3679. * @q: the waitqueue
  3680. * @mode: which threads
  3681. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3682. * @key: is directly passed to the wakeup function
  3683. *
  3684. * It may be assumed that this function implies a write memory barrier before
  3685. * changing the task state if and only if any tasks are woken up.
  3686. */
  3687. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3688. int nr_exclusive, void *key)
  3689. {
  3690. unsigned long flags;
  3691. spin_lock_irqsave(&q->lock, flags);
  3692. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3693. spin_unlock_irqrestore(&q->lock, flags);
  3694. }
  3695. EXPORT_SYMBOL(__wake_up);
  3696. /*
  3697. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3698. */
  3699. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3700. {
  3701. __wake_up_common(q, mode, 1, 0, NULL);
  3702. }
  3703. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3704. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3705. {
  3706. __wake_up_common(q, mode, 1, 0, key);
  3707. }
  3708. /**
  3709. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3710. * @q: the waitqueue
  3711. * @mode: which threads
  3712. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3713. * @key: opaque value to be passed to wakeup targets
  3714. *
  3715. * The sync wakeup differs that the waker knows that it will schedule
  3716. * away soon, so while the target thread will be woken up, it will not
  3717. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3718. * with each other. This can prevent needless bouncing between CPUs.
  3719. *
  3720. * On UP it can prevent extra preemption.
  3721. *
  3722. * It may be assumed that this function implies a write memory barrier before
  3723. * changing the task state if and only if any tasks are woken up.
  3724. */
  3725. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3726. int nr_exclusive, void *key)
  3727. {
  3728. unsigned long flags;
  3729. int wake_flags = WF_SYNC;
  3730. if (unlikely(!q))
  3731. return;
  3732. if (unlikely(!nr_exclusive))
  3733. wake_flags = 0;
  3734. spin_lock_irqsave(&q->lock, flags);
  3735. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3736. spin_unlock_irqrestore(&q->lock, flags);
  3737. }
  3738. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3739. /*
  3740. * __wake_up_sync - see __wake_up_sync_key()
  3741. */
  3742. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3743. {
  3744. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3745. }
  3746. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3747. /**
  3748. * complete: - signals a single thread waiting on this completion
  3749. * @x: holds the state of this particular completion
  3750. *
  3751. * This will wake up a single thread waiting on this completion. Threads will be
  3752. * awakened in the same order in which they were queued.
  3753. *
  3754. * See also complete_all(), wait_for_completion() and related routines.
  3755. *
  3756. * It may be assumed that this function implies a write memory barrier before
  3757. * changing the task state if and only if any tasks are woken up.
  3758. */
  3759. void complete(struct completion *x)
  3760. {
  3761. unsigned long flags;
  3762. spin_lock_irqsave(&x->wait.lock, flags);
  3763. x->done++;
  3764. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3765. spin_unlock_irqrestore(&x->wait.lock, flags);
  3766. }
  3767. EXPORT_SYMBOL(complete);
  3768. /**
  3769. * complete_all: - signals all threads waiting on this completion
  3770. * @x: holds the state of this particular completion
  3771. *
  3772. * This will wake up all threads waiting on this particular completion event.
  3773. *
  3774. * It may be assumed that this function implies a write memory barrier before
  3775. * changing the task state if and only if any tasks are woken up.
  3776. */
  3777. void complete_all(struct completion *x)
  3778. {
  3779. unsigned long flags;
  3780. spin_lock_irqsave(&x->wait.lock, flags);
  3781. x->done += UINT_MAX/2;
  3782. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3783. spin_unlock_irqrestore(&x->wait.lock, flags);
  3784. }
  3785. EXPORT_SYMBOL(complete_all);
  3786. static inline long __sched
  3787. do_wait_for_common(struct completion *x, long timeout, int state)
  3788. {
  3789. if (!x->done) {
  3790. DECLARE_WAITQUEUE(wait, current);
  3791. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3792. do {
  3793. if (signal_pending_state(state, current)) {
  3794. timeout = -ERESTARTSYS;
  3795. break;
  3796. }
  3797. __set_current_state(state);
  3798. spin_unlock_irq(&x->wait.lock);
  3799. timeout = schedule_timeout(timeout);
  3800. spin_lock_irq(&x->wait.lock);
  3801. } while (!x->done && timeout);
  3802. __remove_wait_queue(&x->wait, &wait);
  3803. if (!x->done)
  3804. return timeout;
  3805. }
  3806. x->done--;
  3807. return timeout ?: 1;
  3808. }
  3809. static long __sched
  3810. wait_for_common(struct completion *x, long timeout, int state)
  3811. {
  3812. might_sleep();
  3813. spin_lock_irq(&x->wait.lock);
  3814. timeout = do_wait_for_common(x, timeout, state);
  3815. spin_unlock_irq(&x->wait.lock);
  3816. return timeout;
  3817. }
  3818. /**
  3819. * wait_for_completion: - waits for completion of a task
  3820. * @x: holds the state of this particular completion
  3821. *
  3822. * This waits to be signaled for completion of a specific task. It is NOT
  3823. * interruptible and there is no timeout.
  3824. *
  3825. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3826. * and interrupt capability. Also see complete().
  3827. */
  3828. void __sched wait_for_completion(struct completion *x)
  3829. {
  3830. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3831. }
  3832. EXPORT_SYMBOL(wait_for_completion);
  3833. /**
  3834. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3835. * @x: holds the state of this particular completion
  3836. * @timeout: timeout value in jiffies
  3837. *
  3838. * This waits for either a completion of a specific task to be signaled or for a
  3839. * specified timeout to expire. The timeout is in jiffies. It is not
  3840. * interruptible.
  3841. */
  3842. unsigned long __sched
  3843. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3844. {
  3845. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3846. }
  3847. EXPORT_SYMBOL(wait_for_completion_timeout);
  3848. /**
  3849. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3850. * @x: holds the state of this particular completion
  3851. *
  3852. * This waits for completion of a specific task to be signaled. It is
  3853. * interruptible.
  3854. */
  3855. int __sched wait_for_completion_interruptible(struct completion *x)
  3856. {
  3857. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3858. if (t == -ERESTARTSYS)
  3859. return t;
  3860. return 0;
  3861. }
  3862. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3863. /**
  3864. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3865. * @x: holds the state of this particular completion
  3866. * @timeout: timeout value in jiffies
  3867. *
  3868. * This waits for either a completion of a specific task to be signaled or for a
  3869. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3870. */
  3871. long __sched
  3872. wait_for_completion_interruptible_timeout(struct completion *x,
  3873. unsigned long timeout)
  3874. {
  3875. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3876. }
  3877. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3878. /**
  3879. * wait_for_completion_killable: - waits for completion of a task (killable)
  3880. * @x: holds the state of this particular completion
  3881. *
  3882. * This waits to be signaled for completion of a specific task. It can be
  3883. * interrupted by a kill signal.
  3884. */
  3885. int __sched wait_for_completion_killable(struct completion *x)
  3886. {
  3887. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3888. if (t == -ERESTARTSYS)
  3889. return t;
  3890. return 0;
  3891. }
  3892. EXPORT_SYMBOL(wait_for_completion_killable);
  3893. /**
  3894. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3895. * @x: holds the state of this particular completion
  3896. * @timeout: timeout value in jiffies
  3897. *
  3898. * This waits for either a completion of a specific task to be
  3899. * signaled or for a specified timeout to expire. It can be
  3900. * interrupted by a kill signal. The timeout is in jiffies.
  3901. */
  3902. long __sched
  3903. wait_for_completion_killable_timeout(struct completion *x,
  3904. unsigned long timeout)
  3905. {
  3906. return wait_for_common(x, timeout, TASK_KILLABLE);
  3907. }
  3908. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3909. /**
  3910. * try_wait_for_completion - try to decrement a completion without blocking
  3911. * @x: completion structure
  3912. *
  3913. * Returns: 0 if a decrement cannot be done without blocking
  3914. * 1 if a decrement succeeded.
  3915. *
  3916. * If a completion is being used as a counting completion,
  3917. * attempt to decrement the counter without blocking. This
  3918. * enables us to avoid waiting if the resource the completion
  3919. * is protecting is not available.
  3920. */
  3921. bool try_wait_for_completion(struct completion *x)
  3922. {
  3923. unsigned long flags;
  3924. int ret = 1;
  3925. spin_lock_irqsave(&x->wait.lock, flags);
  3926. if (!x->done)
  3927. ret = 0;
  3928. else
  3929. x->done--;
  3930. spin_unlock_irqrestore(&x->wait.lock, flags);
  3931. return ret;
  3932. }
  3933. EXPORT_SYMBOL(try_wait_for_completion);
  3934. /**
  3935. * completion_done - Test to see if a completion has any waiters
  3936. * @x: completion structure
  3937. *
  3938. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3939. * 1 if there are no waiters.
  3940. *
  3941. */
  3942. bool completion_done(struct completion *x)
  3943. {
  3944. unsigned long flags;
  3945. int ret = 1;
  3946. spin_lock_irqsave(&x->wait.lock, flags);
  3947. if (!x->done)
  3948. ret = 0;
  3949. spin_unlock_irqrestore(&x->wait.lock, flags);
  3950. return ret;
  3951. }
  3952. EXPORT_SYMBOL(completion_done);
  3953. static long __sched
  3954. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3955. {
  3956. unsigned long flags;
  3957. wait_queue_t wait;
  3958. init_waitqueue_entry(&wait, current);
  3959. __set_current_state(state);
  3960. spin_lock_irqsave(&q->lock, flags);
  3961. __add_wait_queue(q, &wait);
  3962. spin_unlock(&q->lock);
  3963. timeout = schedule_timeout(timeout);
  3964. spin_lock_irq(&q->lock);
  3965. __remove_wait_queue(q, &wait);
  3966. spin_unlock_irqrestore(&q->lock, flags);
  3967. return timeout;
  3968. }
  3969. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3970. {
  3971. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3972. }
  3973. EXPORT_SYMBOL(interruptible_sleep_on);
  3974. long __sched
  3975. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3976. {
  3977. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3978. }
  3979. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3980. void __sched sleep_on(wait_queue_head_t *q)
  3981. {
  3982. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3983. }
  3984. EXPORT_SYMBOL(sleep_on);
  3985. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3986. {
  3987. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3988. }
  3989. EXPORT_SYMBOL(sleep_on_timeout);
  3990. #ifdef CONFIG_RT_MUTEXES
  3991. /*
  3992. * rt_mutex_setprio - set the current priority of a task
  3993. * @p: task
  3994. * @prio: prio value (kernel-internal form)
  3995. *
  3996. * This function changes the 'effective' priority of a task. It does
  3997. * not touch ->normal_prio like __setscheduler().
  3998. *
  3999. * Used by the rt_mutex code to implement priority inheritance logic.
  4000. */
  4001. void rt_mutex_setprio(struct task_struct *p, int prio)
  4002. {
  4003. unsigned long flags;
  4004. int oldprio, on_rq, running;
  4005. struct rq *rq;
  4006. const struct sched_class *prev_class;
  4007. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4008. rq = task_rq_lock(p, &flags);
  4009. trace_sched_pi_setprio(p, prio);
  4010. oldprio = p->prio;
  4011. prev_class = p->sched_class;
  4012. on_rq = p->se.on_rq;
  4013. running = task_current(rq, p);
  4014. if (on_rq)
  4015. dequeue_task(rq, p, 0);
  4016. if (running)
  4017. p->sched_class->put_prev_task(rq, p);
  4018. if (rt_prio(prio))
  4019. p->sched_class = &rt_sched_class;
  4020. else
  4021. p->sched_class = &fair_sched_class;
  4022. p->prio = prio;
  4023. if (running)
  4024. p->sched_class->set_curr_task(rq);
  4025. if (on_rq)
  4026. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4027. check_class_changed(rq, p, prev_class, oldprio);
  4028. task_rq_unlock(rq, &flags);
  4029. }
  4030. #endif
  4031. void set_user_nice(struct task_struct *p, long nice)
  4032. {
  4033. int old_prio, delta, on_rq;
  4034. unsigned long flags;
  4035. struct rq *rq;
  4036. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4037. return;
  4038. /*
  4039. * We have to be careful, if called from sys_setpriority(),
  4040. * the task might be in the middle of scheduling on another CPU.
  4041. */
  4042. rq = task_rq_lock(p, &flags);
  4043. /*
  4044. * The RT priorities are set via sched_setscheduler(), but we still
  4045. * allow the 'normal' nice value to be set - but as expected
  4046. * it wont have any effect on scheduling until the task is
  4047. * SCHED_FIFO/SCHED_RR:
  4048. */
  4049. if (task_has_rt_policy(p)) {
  4050. p->static_prio = NICE_TO_PRIO(nice);
  4051. goto out_unlock;
  4052. }
  4053. on_rq = p->se.on_rq;
  4054. if (on_rq)
  4055. dequeue_task(rq, p, 0);
  4056. p->static_prio = NICE_TO_PRIO(nice);
  4057. set_load_weight(p);
  4058. old_prio = p->prio;
  4059. p->prio = effective_prio(p);
  4060. delta = p->prio - old_prio;
  4061. if (on_rq) {
  4062. enqueue_task(rq, p, 0);
  4063. /*
  4064. * If the task increased its priority or is running and
  4065. * lowered its priority, then reschedule its CPU:
  4066. */
  4067. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4068. resched_task(rq->curr);
  4069. }
  4070. out_unlock:
  4071. task_rq_unlock(rq, &flags);
  4072. }
  4073. EXPORT_SYMBOL(set_user_nice);
  4074. /*
  4075. * can_nice - check if a task can reduce its nice value
  4076. * @p: task
  4077. * @nice: nice value
  4078. */
  4079. int can_nice(const struct task_struct *p, const int nice)
  4080. {
  4081. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4082. int nice_rlim = 20 - nice;
  4083. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4084. capable(CAP_SYS_NICE));
  4085. }
  4086. #ifdef __ARCH_WANT_SYS_NICE
  4087. /*
  4088. * sys_nice - change the priority of the current process.
  4089. * @increment: priority increment
  4090. *
  4091. * sys_setpriority is a more generic, but much slower function that
  4092. * does similar things.
  4093. */
  4094. SYSCALL_DEFINE1(nice, int, increment)
  4095. {
  4096. long nice, retval;
  4097. /*
  4098. * Setpriority might change our priority at the same moment.
  4099. * We don't have to worry. Conceptually one call occurs first
  4100. * and we have a single winner.
  4101. */
  4102. if (increment < -40)
  4103. increment = -40;
  4104. if (increment > 40)
  4105. increment = 40;
  4106. nice = TASK_NICE(current) + increment;
  4107. if (nice < -20)
  4108. nice = -20;
  4109. if (nice > 19)
  4110. nice = 19;
  4111. if (increment < 0 && !can_nice(current, nice))
  4112. return -EPERM;
  4113. retval = security_task_setnice(current, nice);
  4114. if (retval)
  4115. return retval;
  4116. set_user_nice(current, nice);
  4117. return 0;
  4118. }
  4119. #endif
  4120. /**
  4121. * task_prio - return the priority value of a given task.
  4122. * @p: the task in question.
  4123. *
  4124. * This is the priority value as seen by users in /proc.
  4125. * RT tasks are offset by -200. Normal tasks are centered
  4126. * around 0, value goes from -16 to +15.
  4127. */
  4128. int task_prio(const struct task_struct *p)
  4129. {
  4130. return p->prio - MAX_RT_PRIO;
  4131. }
  4132. /**
  4133. * task_nice - return the nice value of a given task.
  4134. * @p: the task in question.
  4135. */
  4136. int task_nice(const struct task_struct *p)
  4137. {
  4138. return TASK_NICE(p);
  4139. }
  4140. EXPORT_SYMBOL(task_nice);
  4141. /**
  4142. * idle_cpu - is a given cpu idle currently?
  4143. * @cpu: the processor in question.
  4144. */
  4145. int idle_cpu(int cpu)
  4146. {
  4147. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4148. }
  4149. /**
  4150. * idle_task - return the idle task for a given cpu.
  4151. * @cpu: the processor in question.
  4152. */
  4153. struct task_struct *idle_task(int cpu)
  4154. {
  4155. return cpu_rq(cpu)->idle;
  4156. }
  4157. /**
  4158. * find_process_by_pid - find a process with a matching PID value.
  4159. * @pid: the pid in question.
  4160. */
  4161. static struct task_struct *find_process_by_pid(pid_t pid)
  4162. {
  4163. return pid ? find_task_by_vpid(pid) : current;
  4164. }
  4165. /* Actually do priority change: must hold rq lock. */
  4166. static void
  4167. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4168. {
  4169. BUG_ON(p->se.on_rq);
  4170. p->policy = policy;
  4171. p->rt_priority = prio;
  4172. p->normal_prio = normal_prio(p);
  4173. /* we are holding p->pi_lock already */
  4174. p->prio = rt_mutex_getprio(p);
  4175. if (rt_prio(p->prio))
  4176. p->sched_class = &rt_sched_class;
  4177. else
  4178. p->sched_class = &fair_sched_class;
  4179. set_load_weight(p);
  4180. }
  4181. /*
  4182. * check the target process has a UID that matches the current process's
  4183. */
  4184. static bool check_same_owner(struct task_struct *p)
  4185. {
  4186. const struct cred *cred = current_cred(), *pcred;
  4187. bool match;
  4188. rcu_read_lock();
  4189. pcred = __task_cred(p);
  4190. match = (cred->euid == pcred->euid ||
  4191. cred->euid == pcred->uid);
  4192. rcu_read_unlock();
  4193. return match;
  4194. }
  4195. static int __sched_setscheduler(struct task_struct *p, int policy,
  4196. const struct sched_param *param, bool user)
  4197. {
  4198. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4199. unsigned long flags;
  4200. const struct sched_class *prev_class;
  4201. struct rq *rq;
  4202. int reset_on_fork;
  4203. /* may grab non-irq protected spin_locks */
  4204. BUG_ON(in_interrupt());
  4205. recheck:
  4206. /* double check policy once rq lock held */
  4207. if (policy < 0) {
  4208. reset_on_fork = p->sched_reset_on_fork;
  4209. policy = oldpolicy = p->policy;
  4210. } else {
  4211. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4212. policy &= ~SCHED_RESET_ON_FORK;
  4213. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4214. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4215. policy != SCHED_IDLE)
  4216. return -EINVAL;
  4217. }
  4218. /*
  4219. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4220. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4221. * SCHED_BATCH and SCHED_IDLE is 0.
  4222. */
  4223. if (param->sched_priority < 0 ||
  4224. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4225. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4226. return -EINVAL;
  4227. if (rt_policy(policy) != (param->sched_priority != 0))
  4228. return -EINVAL;
  4229. /*
  4230. * Allow unprivileged RT tasks to decrease priority:
  4231. */
  4232. if (user && !capable(CAP_SYS_NICE)) {
  4233. if (rt_policy(policy)) {
  4234. unsigned long rlim_rtprio =
  4235. task_rlimit(p, RLIMIT_RTPRIO);
  4236. /* can't set/change the rt policy */
  4237. if (policy != p->policy && !rlim_rtprio)
  4238. return -EPERM;
  4239. /* can't increase priority */
  4240. if (param->sched_priority > p->rt_priority &&
  4241. param->sched_priority > rlim_rtprio)
  4242. return -EPERM;
  4243. }
  4244. /*
  4245. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4246. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4247. */
  4248. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4249. if (!can_nice(p, TASK_NICE(p)))
  4250. return -EPERM;
  4251. }
  4252. /* can't change other user's priorities */
  4253. if (!check_same_owner(p))
  4254. return -EPERM;
  4255. /* Normal users shall not reset the sched_reset_on_fork flag */
  4256. if (p->sched_reset_on_fork && !reset_on_fork)
  4257. return -EPERM;
  4258. }
  4259. if (user) {
  4260. retval = security_task_setscheduler(p);
  4261. if (retval)
  4262. return retval;
  4263. }
  4264. /*
  4265. * make sure no PI-waiters arrive (or leave) while we are
  4266. * changing the priority of the task:
  4267. */
  4268. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4269. /*
  4270. * To be able to change p->policy safely, the apropriate
  4271. * runqueue lock must be held.
  4272. */
  4273. rq = __task_rq_lock(p);
  4274. /*
  4275. * Changing the policy of the stop threads its a very bad idea
  4276. */
  4277. if (p == rq->stop) {
  4278. __task_rq_unlock(rq);
  4279. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4280. return -EINVAL;
  4281. }
  4282. #ifdef CONFIG_RT_GROUP_SCHED
  4283. if (user) {
  4284. /*
  4285. * Do not allow realtime tasks into groups that have no runtime
  4286. * assigned.
  4287. */
  4288. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4289. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4290. !task_group_is_autogroup(task_group(p))) {
  4291. __task_rq_unlock(rq);
  4292. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4293. return -EPERM;
  4294. }
  4295. }
  4296. #endif
  4297. /* recheck policy now with rq lock held */
  4298. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4299. policy = oldpolicy = -1;
  4300. __task_rq_unlock(rq);
  4301. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4302. goto recheck;
  4303. }
  4304. on_rq = p->se.on_rq;
  4305. running = task_current(rq, p);
  4306. if (on_rq)
  4307. deactivate_task(rq, p, 0);
  4308. if (running)
  4309. p->sched_class->put_prev_task(rq, p);
  4310. p->sched_reset_on_fork = reset_on_fork;
  4311. oldprio = p->prio;
  4312. prev_class = p->sched_class;
  4313. __setscheduler(rq, p, policy, param->sched_priority);
  4314. if (running)
  4315. p->sched_class->set_curr_task(rq);
  4316. if (on_rq)
  4317. activate_task(rq, p, 0);
  4318. check_class_changed(rq, p, prev_class, oldprio);
  4319. __task_rq_unlock(rq);
  4320. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4321. rt_mutex_adjust_pi(p);
  4322. return 0;
  4323. }
  4324. /**
  4325. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4326. * @p: the task in question.
  4327. * @policy: new policy.
  4328. * @param: structure containing the new RT priority.
  4329. *
  4330. * NOTE that the task may be already dead.
  4331. */
  4332. int sched_setscheduler(struct task_struct *p, int policy,
  4333. const struct sched_param *param)
  4334. {
  4335. return __sched_setscheduler(p, policy, param, true);
  4336. }
  4337. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4338. /**
  4339. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4340. * @p: the task in question.
  4341. * @policy: new policy.
  4342. * @param: structure containing the new RT priority.
  4343. *
  4344. * Just like sched_setscheduler, only don't bother checking if the
  4345. * current context has permission. For example, this is needed in
  4346. * stop_machine(): we create temporary high priority worker threads,
  4347. * but our caller might not have that capability.
  4348. */
  4349. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4350. const struct sched_param *param)
  4351. {
  4352. return __sched_setscheduler(p, policy, param, false);
  4353. }
  4354. static int
  4355. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4356. {
  4357. struct sched_param lparam;
  4358. struct task_struct *p;
  4359. int retval;
  4360. if (!param || pid < 0)
  4361. return -EINVAL;
  4362. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4363. return -EFAULT;
  4364. rcu_read_lock();
  4365. retval = -ESRCH;
  4366. p = find_process_by_pid(pid);
  4367. if (p != NULL)
  4368. retval = sched_setscheduler(p, policy, &lparam);
  4369. rcu_read_unlock();
  4370. return retval;
  4371. }
  4372. /**
  4373. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4374. * @pid: the pid in question.
  4375. * @policy: new policy.
  4376. * @param: structure containing the new RT priority.
  4377. */
  4378. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4379. struct sched_param __user *, param)
  4380. {
  4381. /* negative values for policy are not valid */
  4382. if (policy < 0)
  4383. return -EINVAL;
  4384. return do_sched_setscheduler(pid, policy, param);
  4385. }
  4386. /**
  4387. * sys_sched_setparam - set/change the RT priority of a thread
  4388. * @pid: the pid in question.
  4389. * @param: structure containing the new RT priority.
  4390. */
  4391. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4392. {
  4393. return do_sched_setscheduler(pid, -1, param);
  4394. }
  4395. /**
  4396. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4397. * @pid: the pid in question.
  4398. */
  4399. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4400. {
  4401. struct task_struct *p;
  4402. int retval;
  4403. if (pid < 0)
  4404. return -EINVAL;
  4405. retval = -ESRCH;
  4406. rcu_read_lock();
  4407. p = find_process_by_pid(pid);
  4408. if (p) {
  4409. retval = security_task_getscheduler(p);
  4410. if (!retval)
  4411. retval = p->policy
  4412. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4413. }
  4414. rcu_read_unlock();
  4415. return retval;
  4416. }
  4417. /**
  4418. * sys_sched_getparam - get the RT priority of a thread
  4419. * @pid: the pid in question.
  4420. * @param: structure containing the RT priority.
  4421. */
  4422. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4423. {
  4424. struct sched_param lp;
  4425. struct task_struct *p;
  4426. int retval;
  4427. if (!param || pid < 0)
  4428. return -EINVAL;
  4429. rcu_read_lock();
  4430. p = find_process_by_pid(pid);
  4431. retval = -ESRCH;
  4432. if (!p)
  4433. goto out_unlock;
  4434. retval = security_task_getscheduler(p);
  4435. if (retval)
  4436. goto out_unlock;
  4437. lp.sched_priority = p->rt_priority;
  4438. rcu_read_unlock();
  4439. /*
  4440. * This one might sleep, we cannot do it with a spinlock held ...
  4441. */
  4442. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4443. return retval;
  4444. out_unlock:
  4445. rcu_read_unlock();
  4446. return retval;
  4447. }
  4448. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4449. {
  4450. cpumask_var_t cpus_allowed, new_mask;
  4451. struct task_struct *p;
  4452. int retval;
  4453. get_online_cpus();
  4454. rcu_read_lock();
  4455. p = find_process_by_pid(pid);
  4456. if (!p) {
  4457. rcu_read_unlock();
  4458. put_online_cpus();
  4459. return -ESRCH;
  4460. }
  4461. /* Prevent p going away */
  4462. get_task_struct(p);
  4463. rcu_read_unlock();
  4464. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4465. retval = -ENOMEM;
  4466. goto out_put_task;
  4467. }
  4468. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4469. retval = -ENOMEM;
  4470. goto out_free_cpus_allowed;
  4471. }
  4472. retval = -EPERM;
  4473. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4474. goto out_unlock;
  4475. retval = security_task_setscheduler(p);
  4476. if (retval)
  4477. goto out_unlock;
  4478. cpuset_cpus_allowed(p, cpus_allowed);
  4479. cpumask_and(new_mask, in_mask, cpus_allowed);
  4480. again:
  4481. retval = set_cpus_allowed_ptr(p, new_mask);
  4482. if (!retval) {
  4483. cpuset_cpus_allowed(p, cpus_allowed);
  4484. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4485. /*
  4486. * We must have raced with a concurrent cpuset
  4487. * update. Just reset the cpus_allowed to the
  4488. * cpuset's cpus_allowed
  4489. */
  4490. cpumask_copy(new_mask, cpus_allowed);
  4491. goto again;
  4492. }
  4493. }
  4494. out_unlock:
  4495. free_cpumask_var(new_mask);
  4496. out_free_cpus_allowed:
  4497. free_cpumask_var(cpus_allowed);
  4498. out_put_task:
  4499. put_task_struct(p);
  4500. put_online_cpus();
  4501. return retval;
  4502. }
  4503. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4504. struct cpumask *new_mask)
  4505. {
  4506. if (len < cpumask_size())
  4507. cpumask_clear(new_mask);
  4508. else if (len > cpumask_size())
  4509. len = cpumask_size();
  4510. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4511. }
  4512. /**
  4513. * sys_sched_setaffinity - set the cpu affinity of a process
  4514. * @pid: pid of the process
  4515. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4516. * @user_mask_ptr: user-space pointer to the new cpu mask
  4517. */
  4518. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4519. unsigned long __user *, user_mask_ptr)
  4520. {
  4521. cpumask_var_t new_mask;
  4522. int retval;
  4523. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4524. return -ENOMEM;
  4525. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4526. if (retval == 0)
  4527. retval = sched_setaffinity(pid, new_mask);
  4528. free_cpumask_var(new_mask);
  4529. return retval;
  4530. }
  4531. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4532. {
  4533. struct task_struct *p;
  4534. unsigned long flags;
  4535. struct rq *rq;
  4536. int retval;
  4537. get_online_cpus();
  4538. rcu_read_lock();
  4539. retval = -ESRCH;
  4540. p = find_process_by_pid(pid);
  4541. if (!p)
  4542. goto out_unlock;
  4543. retval = security_task_getscheduler(p);
  4544. if (retval)
  4545. goto out_unlock;
  4546. rq = task_rq_lock(p, &flags);
  4547. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4548. task_rq_unlock(rq, &flags);
  4549. out_unlock:
  4550. rcu_read_unlock();
  4551. put_online_cpus();
  4552. return retval;
  4553. }
  4554. /**
  4555. * sys_sched_getaffinity - get the cpu affinity of a process
  4556. * @pid: pid of the process
  4557. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4558. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4559. */
  4560. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4561. unsigned long __user *, user_mask_ptr)
  4562. {
  4563. int ret;
  4564. cpumask_var_t mask;
  4565. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4566. return -EINVAL;
  4567. if (len & (sizeof(unsigned long)-1))
  4568. return -EINVAL;
  4569. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4570. return -ENOMEM;
  4571. ret = sched_getaffinity(pid, mask);
  4572. if (ret == 0) {
  4573. size_t retlen = min_t(size_t, len, cpumask_size());
  4574. if (copy_to_user(user_mask_ptr, mask, retlen))
  4575. ret = -EFAULT;
  4576. else
  4577. ret = retlen;
  4578. }
  4579. free_cpumask_var(mask);
  4580. return ret;
  4581. }
  4582. /**
  4583. * sys_sched_yield - yield the current processor to other threads.
  4584. *
  4585. * This function yields the current CPU to other tasks. If there are no
  4586. * other threads running on this CPU then this function will return.
  4587. */
  4588. SYSCALL_DEFINE0(sched_yield)
  4589. {
  4590. struct rq *rq = this_rq_lock();
  4591. schedstat_inc(rq, yld_count);
  4592. current->sched_class->yield_task(rq);
  4593. /*
  4594. * Since we are going to call schedule() anyway, there's
  4595. * no need to preempt or enable interrupts:
  4596. */
  4597. __release(rq->lock);
  4598. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4599. do_raw_spin_unlock(&rq->lock);
  4600. preempt_enable_no_resched();
  4601. schedule();
  4602. return 0;
  4603. }
  4604. static inline int should_resched(void)
  4605. {
  4606. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4607. }
  4608. static void __cond_resched(void)
  4609. {
  4610. add_preempt_count(PREEMPT_ACTIVE);
  4611. schedule();
  4612. sub_preempt_count(PREEMPT_ACTIVE);
  4613. }
  4614. int __sched _cond_resched(void)
  4615. {
  4616. if (should_resched()) {
  4617. __cond_resched();
  4618. return 1;
  4619. }
  4620. return 0;
  4621. }
  4622. EXPORT_SYMBOL(_cond_resched);
  4623. /*
  4624. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4625. * call schedule, and on return reacquire the lock.
  4626. *
  4627. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4628. * operations here to prevent schedule() from being called twice (once via
  4629. * spin_unlock(), once by hand).
  4630. */
  4631. int __cond_resched_lock(spinlock_t *lock)
  4632. {
  4633. int resched = should_resched();
  4634. int ret = 0;
  4635. lockdep_assert_held(lock);
  4636. if (spin_needbreak(lock) || resched) {
  4637. spin_unlock(lock);
  4638. if (resched)
  4639. __cond_resched();
  4640. else
  4641. cpu_relax();
  4642. ret = 1;
  4643. spin_lock(lock);
  4644. }
  4645. return ret;
  4646. }
  4647. EXPORT_SYMBOL(__cond_resched_lock);
  4648. int __sched __cond_resched_softirq(void)
  4649. {
  4650. BUG_ON(!in_softirq());
  4651. if (should_resched()) {
  4652. local_bh_enable();
  4653. __cond_resched();
  4654. local_bh_disable();
  4655. return 1;
  4656. }
  4657. return 0;
  4658. }
  4659. EXPORT_SYMBOL(__cond_resched_softirq);
  4660. /**
  4661. * yield - yield the current processor to other threads.
  4662. *
  4663. * This is a shortcut for kernel-space yielding - it marks the
  4664. * thread runnable and calls sys_sched_yield().
  4665. */
  4666. void __sched yield(void)
  4667. {
  4668. set_current_state(TASK_RUNNING);
  4669. sys_sched_yield();
  4670. }
  4671. EXPORT_SYMBOL(yield);
  4672. /**
  4673. * yield_to - yield the current processor to another thread in
  4674. * your thread group, or accelerate that thread toward the
  4675. * processor it's on.
  4676. *
  4677. * It's the caller's job to ensure that the target task struct
  4678. * can't go away on us before we can do any checks.
  4679. *
  4680. * Returns true if we indeed boosted the target task.
  4681. */
  4682. bool __sched yield_to(struct task_struct *p, bool preempt)
  4683. {
  4684. struct task_struct *curr = current;
  4685. struct rq *rq, *p_rq;
  4686. unsigned long flags;
  4687. bool yielded = 0;
  4688. local_irq_save(flags);
  4689. rq = this_rq();
  4690. again:
  4691. p_rq = task_rq(p);
  4692. double_rq_lock(rq, p_rq);
  4693. while (task_rq(p) != p_rq) {
  4694. double_rq_unlock(rq, p_rq);
  4695. goto again;
  4696. }
  4697. if (!curr->sched_class->yield_to_task)
  4698. goto out;
  4699. if (curr->sched_class != p->sched_class)
  4700. goto out;
  4701. if (task_running(p_rq, p) || p->state)
  4702. goto out;
  4703. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4704. if (yielded) {
  4705. schedstat_inc(rq, yld_count);
  4706. /*
  4707. * Make p's CPU reschedule; pick_next_entity takes care of
  4708. * fairness.
  4709. */
  4710. if (preempt && rq != p_rq)
  4711. resched_task(p_rq->curr);
  4712. }
  4713. out:
  4714. double_rq_unlock(rq, p_rq);
  4715. local_irq_restore(flags);
  4716. if (yielded)
  4717. schedule();
  4718. return yielded;
  4719. }
  4720. EXPORT_SYMBOL_GPL(yield_to);
  4721. /*
  4722. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4723. * that process accounting knows that this is a task in IO wait state.
  4724. */
  4725. void __sched io_schedule(void)
  4726. {
  4727. struct rq *rq = raw_rq();
  4728. delayacct_blkio_start();
  4729. atomic_inc(&rq->nr_iowait);
  4730. current->in_iowait = 1;
  4731. schedule();
  4732. current->in_iowait = 0;
  4733. atomic_dec(&rq->nr_iowait);
  4734. delayacct_blkio_end();
  4735. }
  4736. EXPORT_SYMBOL(io_schedule);
  4737. long __sched io_schedule_timeout(long timeout)
  4738. {
  4739. struct rq *rq = raw_rq();
  4740. long ret;
  4741. delayacct_blkio_start();
  4742. atomic_inc(&rq->nr_iowait);
  4743. current->in_iowait = 1;
  4744. ret = schedule_timeout(timeout);
  4745. current->in_iowait = 0;
  4746. atomic_dec(&rq->nr_iowait);
  4747. delayacct_blkio_end();
  4748. return ret;
  4749. }
  4750. /**
  4751. * sys_sched_get_priority_max - return maximum RT priority.
  4752. * @policy: scheduling class.
  4753. *
  4754. * this syscall returns the maximum rt_priority that can be used
  4755. * by a given scheduling class.
  4756. */
  4757. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4758. {
  4759. int ret = -EINVAL;
  4760. switch (policy) {
  4761. case SCHED_FIFO:
  4762. case SCHED_RR:
  4763. ret = MAX_USER_RT_PRIO-1;
  4764. break;
  4765. case SCHED_NORMAL:
  4766. case SCHED_BATCH:
  4767. case SCHED_IDLE:
  4768. ret = 0;
  4769. break;
  4770. }
  4771. return ret;
  4772. }
  4773. /**
  4774. * sys_sched_get_priority_min - return minimum RT priority.
  4775. * @policy: scheduling class.
  4776. *
  4777. * this syscall returns the minimum rt_priority that can be used
  4778. * by a given scheduling class.
  4779. */
  4780. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4781. {
  4782. int ret = -EINVAL;
  4783. switch (policy) {
  4784. case SCHED_FIFO:
  4785. case SCHED_RR:
  4786. ret = 1;
  4787. break;
  4788. case SCHED_NORMAL:
  4789. case SCHED_BATCH:
  4790. case SCHED_IDLE:
  4791. ret = 0;
  4792. }
  4793. return ret;
  4794. }
  4795. /**
  4796. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4797. * @pid: pid of the process.
  4798. * @interval: userspace pointer to the timeslice value.
  4799. *
  4800. * this syscall writes the default timeslice value of a given process
  4801. * into the user-space timespec buffer. A value of '0' means infinity.
  4802. */
  4803. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4804. struct timespec __user *, interval)
  4805. {
  4806. struct task_struct *p;
  4807. unsigned int time_slice;
  4808. unsigned long flags;
  4809. struct rq *rq;
  4810. int retval;
  4811. struct timespec t;
  4812. if (pid < 0)
  4813. return -EINVAL;
  4814. retval = -ESRCH;
  4815. rcu_read_lock();
  4816. p = find_process_by_pid(pid);
  4817. if (!p)
  4818. goto out_unlock;
  4819. retval = security_task_getscheduler(p);
  4820. if (retval)
  4821. goto out_unlock;
  4822. rq = task_rq_lock(p, &flags);
  4823. time_slice = p->sched_class->get_rr_interval(rq, p);
  4824. task_rq_unlock(rq, &flags);
  4825. rcu_read_unlock();
  4826. jiffies_to_timespec(time_slice, &t);
  4827. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4828. return retval;
  4829. out_unlock:
  4830. rcu_read_unlock();
  4831. return retval;
  4832. }
  4833. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4834. void sched_show_task(struct task_struct *p)
  4835. {
  4836. unsigned long free = 0;
  4837. unsigned state;
  4838. state = p->state ? __ffs(p->state) + 1 : 0;
  4839. printk(KERN_INFO "%-15.15s %c", p->comm,
  4840. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4841. #if BITS_PER_LONG == 32
  4842. if (state == TASK_RUNNING)
  4843. printk(KERN_CONT " running ");
  4844. else
  4845. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4846. #else
  4847. if (state == TASK_RUNNING)
  4848. printk(KERN_CONT " running task ");
  4849. else
  4850. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4851. #endif
  4852. #ifdef CONFIG_DEBUG_STACK_USAGE
  4853. free = stack_not_used(p);
  4854. #endif
  4855. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4856. task_pid_nr(p), task_pid_nr(p->real_parent),
  4857. (unsigned long)task_thread_info(p)->flags);
  4858. show_stack(p, NULL);
  4859. }
  4860. void show_state_filter(unsigned long state_filter)
  4861. {
  4862. struct task_struct *g, *p;
  4863. #if BITS_PER_LONG == 32
  4864. printk(KERN_INFO
  4865. " task PC stack pid father\n");
  4866. #else
  4867. printk(KERN_INFO
  4868. " task PC stack pid father\n");
  4869. #endif
  4870. read_lock(&tasklist_lock);
  4871. do_each_thread(g, p) {
  4872. /*
  4873. * reset the NMI-timeout, listing all files on a slow
  4874. * console might take alot of time:
  4875. */
  4876. touch_nmi_watchdog();
  4877. if (!state_filter || (p->state & state_filter))
  4878. sched_show_task(p);
  4879. } while_each_thread(g, p);
  4880. touch_all_softlockup_watchdogs();
  4881. #ifdef CONFIG_SCHED_DEBUG
  4882. sysrq_sched_debug_show();
  4883. #endif
  4884. read_unlock(&tasklist_lock);
  4885. /*
  4886. * Only show locks if all tasks are dumped:
  4887. */
  4888. if (!state_filter)
  4889. debug_show_all_locks();
  4890. }
  4891. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4892. {
  4893. idle->sched_class = &idle_sched_class;
  4894. }
  4895. /**
  4896. * init_idle - set up an idle thread for a given CPU
  4897. * @idle: task in question
  4898. * @cpu: cpu the idle task belongs to
  4899. *
  4900. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4901. * flag, to make booting more robust.
  4902. */
  4903. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4904. {
  4905. struct rq *rq = cpu_rq(cpu);
  4906. unsigned long flags;
  4907. raw_spin_lock_irqsave(&rq->lock, flags);
  4908. __sched_fork(idle);
  4909. idle->state = TASK_RUNNING;
  4910. idle->se.exec_start = sched_clock();
  4911. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4912. /*
  4913. * We're having a chicken and egg problem, even though we are
  4914. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4915. * lockdep check in task_group() will fail.
  4916. *
  4917. * Similar case to sched_fork(). / Alternatively we could
  4918. * use task_rq_lock() here and obtain the other rq->lock.
  4919. *
  4920. * Silence PROVE_RCU
  4921. */
  4922. rcu_read_lock();
  4923. __set_task_cpu(idle, cpu);
  4924. rcu_read_unlock();
  4925. rq->curr = rq->idle = idle;
  4926. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4927. idle->oncpu = 1;
  4928. #endif
  4929. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4930. /* Set the preempt count _outside_ the spinlocks! */
  4931. #if defined(CONFIG_PREEMPT)
  4932. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4933. #else
  4934. task_thread_info(idle)->preempt_count = 0;
  4935. #endif
  4936. /*
  4937. * The idle tasks have their own, simple scheduling class:
  4938. */
  4939. idle->sched_class = &idle_sched_class;
  4940. ftrace_graph_init_task(idle);
  4941. }
  4942. /*
  4943. * In a system that switches off the HZ timer nohz_cpu_mask
  4944. * indicates which cpus entered this state. This is used
  4945. * in the rcu update to wait only for active cpus. For system
  4946. * which do not switch off the HZ timer nohz_cpu_mask should
  4947. * always be CPU_BITS_NONE.
  4948. */
  4949. cpumask_var_t nohz_cpu_mask;
  4950. /*
  4951. * Increase the granularity value when there are more CPUs,
  4952. * because with more CPUs the 'effective latency' as visible
  4953. * to users decreases. But the relationship is not linear,
  4954. * so pick a second-best guess by going with the log2 of the
  4955. * number of CPUs.
  4956. *
  4957. * This idea comes from the SD scheduler of Con Kolivas:
  4958. */
  4959. static int get_update_sysctl_factor(void)
  4960. {
  4961. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4962. unsigned int factor;
  4963. switch (sysctl_sched_tunable_scaling) {
  4964. case SCHED_TUNABLESCALING_NONE:
  4965. factor = 1;
  4966. break;
  4967. case SCHED_TUNABLESCALING_LINEAR:
  4968. factor = cpus;
  4969. break;
  4970. case SCHED_TUNABLESCALING_LOG:
  4971. default:
  4972. factor = 1 + ilog2(cpus);
  4973. break;
  4974. }
  4975. return factor;
  4976. }
  4977. static void update_sysctl(void)
  4978. {
  4979. unsigned int factor = get_update_sysctl_factor();
  4980. #define SET_SYSCTL(name) \
  4981. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4982. SET_SYSCTL(sched_min_granularity);
  4983. SET_SYSCTL(sched_latency);
  4984. SET_SYSCTL(sched_wakeup_granularity);
  4985. #undef SET_SYSCTL
  4986. }
  4987. static inline void sched_init_granularity(void)
  4988. {
  4989. update_sysctl();
  4990. }
  4991. #ifdef CONFIG_SMP
  4992. /*
  4993. * This is how migration works:
  4994. *
  4995. * 1) we invoke migration_cpu_stop() on the target CPU using
  4996. * stop_one_cpu().
  4997. * 2) stopper starts to run (implicitly forcing the migrated thread
  4998. * off the CPU)
  4999. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5000. * 4) if it's in the wrong runqueue then the migration thread removes
  5001. * it and puts it into the right queue.
  5002. * 5) stopper completes and stop_one_cpu() returns and the migration
  5003. * is done.
  5004. */
  5005. /*
  5006. * Change a given task's CPU affinity. Migrate the thread to a
  5007. * proper CPU and schedule it away if the CPU it's executing on
  5008. * is removed from the allowed bitmask.
  5009. *
  5010. * NOTE: the caller must have a valid reference to the task, the
  5011. * task must not exit() & deallocate itself prematurely. The
  5012. * call is not atomic; no spinlocks may be held.
  5013. */
  5014. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5015. {
  5016. unsigned long flags;
  5017. struct rq *rq;
  5018. unsigned int dest_cpu;
  5019. int ret = 0;
  5020. /*
  5021. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  5022. * drop the rq->lock and still rely on ->cpus_allowed.
  5023. */
  5024. again:
  5025. while (task_is_waking(p))
  5026. cpu_relax();
  5027. rq = task_rq_lock(p, &flags);
  5028. if (task_is_waking(p)) {
  5029. task_rq_unlock(rq, &flags);
  5030. goto again;
  5031. }
  5032. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5033. ret = -EINVAL;
  5034. goto out;
  5035. }
  5036. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5037. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5038. ret = -EINVAL;
  5039. goto out;
  5040. }
  5041. if (p->sched_class->set_cpus_allowed)
  5042. p->sched_class->set_cpus_allowed(p, new_mask);
  5043. else {
  5044. cpumask_copy(&p->cpus_allowed, new_mask);
  5045. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5046. }
  5047. /* Can the task run on the task's current CPU? If so, we're done */
  5048. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5049. goto out;
  5050. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5051. if (migrate_task(p, rq)) {
  5052. struct migration_arg arg = { p, dest_cpu };
  5053. /* Need help from migration thread: drop lock and wait. */
  5054. task_rq_unlock(rq, &flags);
  5055. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5056. tlb_migrate_finish(p->mm);
  5057. return 0;
  5058. }
  5059. out:
  5060. task_rq_unlock(rq, &flags);
  5061. return ret;
  5062. }
  5063. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5064. /*
  5065. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5066. * this because either it can't run here any more (set_cpus_allowed()
  5067. * away from this CPU, or CPU going down), or because we're
  5068. * attempting to rebalance this task on exec (sched_exec).
  5069. *
  5070. * So we race with normal scheduler movements, but that's OK, as long
  5071. * as the task is no longer on this CPU.
  5072. *
  5073. * Returns non-zero if task was successfully migrated.
  5074. */
  5075. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5076. {
  5077. struct rq *rq_dest, *rq_src;
  5078. int ret = 0;
  5079. if (unlikely(!cpu_active(dest_cpu)))
  5080. return ret;
  5081. rq_src = cpu_rq(src_cpu);
  5082. rq_dest = cpu_rq(dest_cpu);
  5083. double_rq_lock(rq_src, rq_dest);
  5084. /* Already moved. */
  5085. if (task_cpu(p) != src_cpu)
  5086. goto done;
  5087. /* Affinity changed (again). */
  5088. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5089. goto fail;
  5090. /*
  5091. * If we're not on a rq, the next wake-up will ensure we're
  5092. * placed properly.
  5093. */
  5094. if (p->se.on_rq) {
  5095. deactivate_task(rq_src, p, 0);
  5096. set_task_cpu(p, dest_cpu);
  5097. activate_task(rq_dest, p, 0);
  5098. check_preempt_curr(rq_dest, p, 0);
  5099. }
  5100. done:
  5101. ret = 1;
  5102. fail:
  5103. double_rq_unlock(rq_src, rq_dest);
  5104. return ret;
  5105. }
  5106. /*
  5107. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5108. * and performs thread migration by bumping thread off CPU then
  5109. * 'pushing' onto another runqueue.
  5110. */
  5111. static int migration_cpu_stop(void *data)
  5112. {
  5113. struct migration_arg *arg = data;
  5114. /*
  5115. * The original target cpu might have gone down and we might
  5116. * be on another cpu but it doesn't matter.
  5117. */
  5118. local_irq_disable();
  5119. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5120. local_irq_enable();
  5121. return 0;
  5122. }
  5123. #ifdef CONFIG_HOTPLUG_CPU
  5124. /*
  5125. * Ensures that the idle task is using init_mm right before its cpu goes
  5126. * offline.
  5127. */
  5128. void idle_task_exit(void)
  5129. {
  5130. struct mm_struct *mm = current->active_mm;
  5131. BUG_ON(cpu_online(smp_processor_id()));
  5132. if (mm != &init_mm)
  5133. switch_mm(mm, &init_mm, current);
  5134. mmdrop(mm);
  5135. }
  5136. /*
  5137. * While a dead CPU has no uninterruptible tasks queued at this point,
  5138. * it might still have a nonzero ->nr_uninterruptible counter, because
  5139. * for performance reasons the counter is not stricly tracking tasks to
  5140. * their home CPUs. So we just add the counter to another CPU's counter,
  5141. * to keep the global sum constant after CPU-down:
  5142. */
  5143. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5144. {
  5145. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5146. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5147. rq_src->nr_uninterruptible = 0;
  5148. }
  5149. /*
  5150. * remove the tasks which were accounted by rq from calc_load_tasks.
  5151. */
  5152. static void calc_global_load_remove(struct rq *rq)
  5153. {
  5154. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5155. rq->calc_load_active = 0;
  5156. }
  5157. /*
  5158. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5159. * try_to_wake_up()->select_task_rq().
  5160. *
  5161. * Called with rq->lock held even though we'er in stop_machine() and
  5162. * there's no concurrency possible, we hold the required locks anyway
  5163. * because of lock validation efforts.
  5164. */
  5165. static void migrate_tasks(unsigned int dead_cpu)
  5166. {
  5167. struct rq *rq = cpu_rq(dead_cpu);
  5168. struct task_struct *next, *stop = rq->stop;
  5169. int dest_cpu;
  5170. /*
  5171. * Fudge the rq selection such that the below task selection loop
  5172. * doesn't get stuck on the currently eligible stop task.
  5173. *
  5174. * We're currently inside stop_machine() and the rq is either stuck
  5175. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5176. * either way we should never end up calling schedule() until we're
  5177. * done here.
  5178. */
  5179. rq->stop = NULL;
  5180. for ( ; ; ) {
  5181. /*
  5182. * There's this thread running, bail when that's the only
  5183. * remaining thread.
  5184. */
  5185. if (rq->nr_running == 1)
  5186. break;
  5187. next = pick_next_task(rq);
  5188. BUG_ON(!next);
  5189. next->sched_class->put_prev_task(rq, next);
  5190. /* Find suitable destination for @next, with force if needed. */
  5191. dest_cpu = select_fallback_rq(dead_cpu, next);
  5192. raw_spin_unlock(&rq->lock);
  5193. __migrate_task(next, dead_cpu, dest_cpu);
  5194. raw_spin_lock(&rq->lock);
  5195. }
  5196. rq->stop = stop;
  5197. }
  5198. #endif /* CONFIG_HOTPLUG_CPU */
  5199. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5200. static struct ctl_table sd_ctl_dir[] = {
  5201. {
  5202. .procname = "sched_domain",
  5203. .mode = 0555,
  5204. },
  5205. {}
  5206. };
  5207. static struct ctl_table sd_ctl_root[] = {
  5208. {
  5209. .procname = "kernel",
  5210. .mode = 0555,
  5211. .child = sd_ctl_dir,
  5212. },
  5213. {}
  5214. };
  5215. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5216. {
  5217. struct ctl_table *entry =
  5218. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5219. return entry;
  5220. }
  5221. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5222. {
  5223. struct ctl_table *entry;
  5224. /*
  5225. * In the intermediate directories, both the child directory and
  5226. * procname are dynamically allocated and could fail but the mode
  5227. * will always be set. In the lowest directory the names are
  5228. * static strings and all have proc handlers.
  5229. */
  5230. for (entry = *tablep; entry->mode; entry++) {
  5231. if (entry->child)
  5232. sd_free_ctl_entry(&entry->child);
  5233. if (entry->proc_handler == NULL)
  5234. kfree(entry->procname);
  5235. }
  5236. kfree(*tablep);
  5237. *tablep = NULL;
  5238. }
  5239. static void
  5240. set_table_entry(struct ctl_table *entry,
  5241. const char *procname, void *data, int maxlen,
  5242. mode_t mode, proc_handler *proc_handler)
  5243. {
  5244. entry->procname = procname;
  5245. entry->data = data;
  5246. entry->maxlen = maxlen;
  5247. entry->mode = mode;
  5248. entry->proc_handler = proc_handler;
  5249. }
  5250. static struct ctl_table *
  5251. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5252. {
  5253. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5254. if (table == NULL)
  5255. return NULL;
  5256. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5257. sizeof(long), 0644, proc_doulongvec_minmax);
  5258. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5259. sizeof(long), 0644, proc_doulongvec_minmax);
  5260. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5261. sizeof(int), 0644, proc_dointvec_minmax);
  5262. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5263. sizeof(int), 0644, proc_dointvec_minmax);
  5264. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5265. sizeof(int), 0644, proc_dointvec_minmax);
  5266. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5267. sizeof(int), 0644, proc_dointvec_minmax);
  5268. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5269. sizeof(int), 0644, proc_dointvec_minmax);
  5270. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5271. sizeof(int), 0644, proc_dointvec_minmax);
  5272. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5273. sizeof(int), 0644, proc_dointvec_minmax);
  5274. set_table_entry(&table[9], "cache_nice_tries",
  5275. &sd->cache_nice_tries,
  5276. sizeof(int), 0644, proc_dointvec_minmax);
  5277. set_table_entry(&table[10], "flags", &sd->flags,
  5278. sizeof(int), 0644, proc_dointvec_minmax);
  5279. set_table_entry(&table[11], "name", sd->name,
  5280. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5281. /* &table[12] is terminator */
  5282. return table;
  5283. }
  5284. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5285. {
  5286. struct ctl_table *entry, *table;
  5287. struct sched_domain *sd;
  5288. int domain_num = 0, i;
  5289. char buf[32];
  5290. for_each_domain(cpu, sd)
  5291. domain_num++;
  5292. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5293. if (table == NULL)
  5294. return NULL;
  5295. i = 0;
  5296. for_each_domain(cpu, sd) {
  5297. snprintf(buf, 32, "domain%d", i);
  5298. entry->procname = kstrdup(buf, GFP_KERNEL);
  5299. entry->mode = 0555;
  5300. entry->child = sd_alloc_ctl_domain_table(sd);
  5301. entry++;
  5302. i++;
  5303. }
  5304. return table;
  5305. }
  5306. static struct ctl_table_header *sd_sysctl_header;
  5307. static void register_sched_domain_sysctl(void)
  5308. {
  5309. int i, cpu_num = num_possible_cpus();
  5310. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5311. char buf[32];
  5312. WARN_ON(sd_ctl_dir[0].child);
  5313. sd_ctl_dir[0].child = entry;
  5314. if (entry == NULL)
  5315. return;
  5316. for_each_possible_cpu(i) {
  5317. snprintf(buf, 32, "cpu%d", i);
  5318. entry->procname = kstrdup(buf, GFP_KERNEL);
  5319. entry->mode = 0555;
  5320. entry->child = sd_alloc_ctl_cpu_table(i);
  5321. entry++;
  5322. }
  5323. WARN_ON(sd_sysctl_header);
  5324. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5325. }
  5326. /* may be called multiple times per register */
  5327. static void unregister_sched_domain_sysctl(void)
  5328. {
  5329. if (sd_sysctl_header)
  5330. unregister_sysctl_table(sd_sysctl_header);
  5331. sd_sysctl_header = NULL;
  5332. if (sd_ctl_dir[0].child)
  5333. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5334. }
  5335. #else
  5336. static void register_sched_domain_sysctl(void)
  5337. {
  5338. }
  5339. static void unregister_sched_domain_sysctl(void)
  5340. {
  5341. }
  5342. #endif
  5343. static void set_rq_online(struct rq *rq)
  5344. {
  5345. if (!rq->online) {
  5346. const struct sched_class *class;
  5347. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5348. rq->online = 1;
  5349. for_each_class(class) {
  5350. if (class->rq_online)
  5351. class->rq_online(rq);
  5352. }
  5353. }
  5354. }
  5355. static void set_rq_offline(struct rq *rq)
  5356. {
  5357. if (rq->online) {
  5358. const struct sched_class *class;
  5359. for_each_class(class) {
  5360. if (class->rq_offline)
  5361. class->rq_offline(rq);
  5362. }
  5363. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5364. rq->online = 0;
  5365. }
  5366. }
  5367. /*
  5368. * migration_call - callback that gets triggered when a CPU is added.
  5369. * Here we can start up the necessary migration thread for the new CPU.
  5370. */
  5371. static int __cpuinit
  5372. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5373. {
  5374. int cpu = (long)hcpu;
  5375. unsigned long flags;
  5376. struct rq *rq = cpu_rq(cpu);
  5377. switch (action & ~CPU_TASKS_FROZEN) {
  5378. case CPU_UP_PREPARE:
  5379. rq->calc_load_update = calc_load_update;
  5380. break;
  5381. case CPU_ONLINE:
  5382. /* Update our root-domain */
  5383. raw_spin_lock_irqsave(&rq->lock, flags);
  5384. if (rq->rd) {
  5385. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5386. set_rq_online(rq);
  5387. }
  5388. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5389. break;
  5390. #ifdef CONFIG_HOTPLUG_CPU
  5391. case CPU_DYING:
  5392. /* Update our root-domain */
  5393. raw_spin_lock_irqsave(&rq->lock, flags);
  5394. if (rq->rd) {
  5395. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5396. set_rq_offline(rq);
  5397. }
  5398. migrate_tasks(cpu);
  5399. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5400. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5401. migrate_nr_uninterruptible(rq);
  5402. calc_global_load_remove(rq);
  5403. break;
  5404. #endif
  5405. }
  5406. return NOTIFY_OK;
  5407. }
  5408. /*
  5409. * Register at high priority so that task migration (migrate_all_tasks)
  5410. * happens before everything else. This has to be lower priority than
  5411. * the notifier in the perf_event subsystem, though.
  5412. */
  5413. static struct notifier_block __cpuinitdata migration_notifier = {
  5414. .notifier_call = migration_call,
  5415. .priority = CPU_PRI_MIGRATION,
  5416. };
  5417. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5418. unsigned long action, void *hcpu)
  5419. {
  5420. switch (action & ~CPU_TASKS_FROZEN) {
  5421. case CPU_ONLINE:
  5422. case CPU_DOWN_FAILED:
  5423. set_cpu_active((long)hcpu, true);
  5424. return NOTIFY_OK;
  5425. default:
  5426. return NOTIFY_DONE;
  5427. }
  5428. }
  5429. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5430. unsigned long action, void *hcpu)
  5431. {
  5432. switch (action & ~CPU_TASKS_FROZEN) {
  5433. case CPU_DOWN_PREPARE:
  5434. set_cpu_active((long)hcpu, false);
  5435. return NOTIFY_OK;
  5436. default:
  5437. return NOTIFY_DONE;
  5438. }
  5439. }
  5440. static int __init migration_init(void)
  5441. {
  5442. void *cpu = (void *)(long)smp_processor_id();
  5443. int err;
  5444. /* Initialize migration for the boot CPU */
  5445. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5446. BUG_ON(err == NOTIFY_BAD);
  5447. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5448. register_cpu_notifier(&migration_notifier);
  5449. /* Register cpu active notifiers */
  5450. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5451. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5452. return 0;
  5453. }
  5454. early_initcall(migration_init);
  5455. #endif
  5456. #ifdef CONFIG_SMP
  5457. #ifdef CONFIG_SCHED_DEBUG
  5458. static __read_mostly int sched_domain_debug_enabled;
  5459. static int __init sched_domain_debug_setup(char *str)
  5460. {
  5461. sched_domain_debug_enabled = 1;
  5462. return 0;
  5463. }
  5464. early_param("sched_debug", sched_domain_debug_setup);
  5465. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5466. struct cpumask *groupmask)
  5467. {
  5468. struct sched_group *group = sd->groups;
  5469. char str[256];
  5470. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5471. cpumask_clear(groupmask);
  5472. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5473. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5474. printk("does not load-balance\n");
  5475. if (sd->parent)
  5476. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5477. " has parent");
  5478. return -1;
  5479. }
  5480. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5481. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5482. printk(KERN_ERR "ERROR: domain->span does not contain "
  5483. "CPU%d\n", cpu);
  5484. }
  5485. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5486. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5487. " CPU%d\n", cpu);
  5488. }
  5489. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5490. do {
  5491. if (!group) {
  5492. printk("\n");
  5493. printk(KERN_ERR "ERROR: group is NULL\n");
  5494. break;
  5495. }
  5496. if (!group->cpu_power) {
  5497. printk(KERN_CONT "\n");
  5498. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5499. "set\n");
  5500. break;
  5501. }
  5502. if (!cpumask_weight(sched_group_cpus(group))) {
  5503. printk(KERN_CONT "\n");
  5504. printk(KERN_ERR "ERROR: empty group\n");
  5505. break;
  5506. }
  5507. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5508. printk(KERN_CONT "\n");
  5509. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5510. break;
  5511. }
  5512. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5513. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5514. printk(KERN_CONT " %s", str);
  5515. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5516. printk(KERN_CONT " (cpu_power = %d)",
  5517. group->cpu_power);
  5518. }
  5519. group = group->next;
  5520. } while (group != sd->groups);
  5521. printk(KERN_CONT "\n");
  5522. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5523. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5524. if (sd->parent &&
  5525. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5526. printk(KERN_ERR "ERROR: parent span is not a superset "
  5527. "of domain->span\n");
  5528. return 0;
  5529. }
  5530. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5531. {
  5532. cpumask_var_t groupmask;
  5533. int level = 0;
  5534. if (!sched_domain_debug_enabled)
  5535. return;
  5536. if (!sd) {
  5537. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5538. return;
  5539. }
  5540. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5541. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5542. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5543. return;
  5544. }
  5545. for (;;) {
  5546. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5547. break;
  5548. level++;
  5549. sd = sd->parent;
  5550. if (!sd)
  5551. break;
  5552. }
  5553. free_cpumask_var(groupmask);
  5554. }
  5555. #else /* !CONFIG_SCHED_DEBUG */
  5556. # define sched_domain_debug(sd, cpu) do { } while (0)
  5557. #endif /* CONFIG_SCHED_DEBUG */
  5558. static int sd_degenerate(struct sched_domain *sd)
  5559. {
  5560. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5561. return 1;
  5562. /* Following flags need at least 2 groups */
  5563. if (sd->flags & (SD_LOAD_BALANCE |
  5564. SD_BALANCE_NEWIDLE |
  5565. SD_BALANCE_FORK |
  5566. SD_BALANCE_EXEC |
  5567. SD_SHARE_CPUPOWER |
  5568. SD_SHARE_PKG_RESOURCES)) {
  5569. if (sd->groups != sd->groups->next)
  5570. return 0;
  5571. }
  5572. /* Following flags don't use groups */
  5573. if (sd->flags & (SD_WAKE_AFFINE))
  5574. return 0;
  5575. return 1;
  5576. }
  5577. static int
  5578. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5579. {
  5580. unsigned long cflags = sd->flags, pflags = parent->flags;
  5581. if (sd_degenerate(parent))
  5582. return 1;
  5583. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5584. return 0;
  5585. /* Flags needing groups don't count if only 1 group in parent */
  5586. if (parent->groups == parent->groups->next) {
  5587. pflags &= ~(SD_LOAD_BALANCE |
  5588. SD_BALANCE_NEWIDLE |
  5589. SD_BALANCE_FORK |
  5590. SD_BALANCE_EXEC |
  5591. SD_SHARE_CPUPOWER |
  5592. SD_SHARE_PKG_RESOURCES);
  5593. if (nr_node_ids == 1)
  5594. pflags &= ~SD_SERIALIZE;
  5595. }
  5596. if (~cflags & pflags)
  5597. return 0;
  5598. return 1;
  5599. }
  5600. static void free_rootdomain(struct root_domain *rd)
  5601. {
  5602. synchronize_sched();
  5603. cpupri_cleanup(&rd->cpupri);
  5604. free_cpumask_var(rd->rto_mask);
  5605. free_cpumask_var(rd->online);
  5606. free_cpumask_var(rd->span);
  5607. kfree(rd);
  5608. }
  5609. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5610. {
  5611. struct root_domain *old_rd = NULL;
  5612. unsigned long flags;
  5613. raw_spin_lock_irqsave(&rq->lock, flags);
  5614. if (rq->rd) {
  5615. old_rd = rq->rd;
  5616. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5617. set_rq_offline(rq);
  5618. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5619. /*
  5620. * If we dont want to free the old_rt yet then
  5621. * set old_rd to NULL to skip the freeing later
  5622. * in this function:
  5623. */
  5624. if (!atomic_dec_and_test(&old_rd->refcount))
  5625. old_rd = NULL;
  5626. }
  5627. atomic_inc(&rd->refcount);
  5628. rq->rd = rd;
  5629. cpumask_set_cpu(rq->cpu, rd->span);
  5630. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5631. set_rq_online(rq);
  5632. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5633. if (old_rd)
  5634. free_rootdomain(old_rd);
  5635. }
  5636. static int init_rootdomain(struct root_domain *rd)
  5637. {
  5638. memset(rd, 0, sizeof(*rd));
  5639. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5640. goto out;
  5641. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5642. goto free_span;
  5643. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5644. goto free_online;
  5645. if (cpupri_init(&rd->cpupri) != 0)
  5646. goto free_rto_mask;
  5647. return 0;
  5648. free_rto_mask:
  5649. free_cpumask_var(rd->rto_mask);
  5650. free_online:
  5651. free_cpumask_var(rd->online);
  5652. free_span:
  5653. free_cpumask_var(rd->span);
  5654. out:
  5655. return -ENOMEM;
  5656. }
  5657. static void init_defrootdomain(void)
  5658. {
  5659. init_rootdomain(&def_root_domain);
  5660. atomic_set(&def_root_domain.refcount, 1);
  5661. }
  5662. static struct root_domain *alloc_rootdomain(void)
  5663. {
  5664. struct root_domain *rd;
  5665. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5666. if (!rd)
  5667. return NULL;
  5668. if (init_rootdomain(rd) != 0) {
  5669. kfree(rd);
  5670. return NULL;
  5671. }
  5672. return rd;
  5673. }
  5674. /*
  5675. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5676. * hold the hotplug lock.
  5677. */
  5678. static void
  5679. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5680. {
  5681. struct rq *rq = cpu_rq(cpu);
  5682. struct sched_domain *tmp;
  5683. for (tmp = sd; tmp; tmp = tmp->parent)
  5684. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5685. /* Remove the sched domains which do not contribute to scheduling. */
  5686. for (tmp = sd; tmp; ) {
  5687. struct sched_domain *parent = tmp->parent;
  5688. if (!parent)
  5689. break;
  5690. if (sd_parent_degenerate(tmp, parent)) {
  5691. tmp->parent = parent->parent;
  5692. if (parent->parent)
  5693. parent->parent->child = tmp;
  5694. } else
  5695. tmp = tmp->parent;
  5696. }
  5697. if (sd && sd_degenerate(sd)) {
  5698. sd = sd->parent;
  5699. if (sd)
  5700. sd->child = NULL;
  5701. }
  5702. sched_domain_debug(sd, cpu);
  5703. rq_attach_root(rq, rd);
  5704. rcu_assign_pointer(rq->sd, sd);
  5705. }
  5706. /* cpus with isolated domains */
  5707. static cpumask_var_t cpu_isolated_map;
  5708. /* Setup the mask of cpus configured for isolated domains */
  5709. static int __init isolated_cpu_setup(char *str)
  5710. {
  5711. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5712. cpulist_parse(str, cpu_isolated_map);
  5713. return 1;
  5714. }
  5715. __setup("isolcpus=", isolated_cpu_setup);
  5716. /*
  5717. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5718. * to a function which identifies what group(along with sched group) a CPU
  5719. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5720. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5721. *
  5722. * init_sched_build_groups will build a circular linked list of the groups
  5723. * covered by the given span, and will set each group's ->cpumask correctly,
  5724. * and ->cpu_power to 0.
  5725. */
  5726. static void
  5727. init_sched_build_groups(const struct cpumask *span,
  5728. const struct cpumask *cpu_map,
  5729. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5730. struct sched_group **sg,
  5731. struct cpumask *tmpmask),
  5732. struct cpumask *covered, struct cpumask *tmpmask)
  5733. {
  5734. struct sched_group *first = NULL, *last = NULL;
  5735. int i;
  5736. cpumask_clear(covered);
  5737. for_each_cpu(i, span) {
  5738. struct sched_group *sg;
  5739. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5740. int j;
  5741. if (cpumask_test_cpu(i, covered))
  5742. continue;
  5743. cpumask_clear(sched_group_cpus(sg));
  5744. sg->cpu_power = 0;
  5745. for_each_cpu(j, span) {
  5746. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5747. continue;
  5748. cpumask_set_cpu(j, covered);
  5749. cpumask_set_cpu(j, sched_group_cpus(sg));
  5750. }
  5751. if (!first)
  5752. first = sg;
  5753. if (last)
  5754. last->next = sg;
  5755. last = sg;
  5756. }
  5757. last->next = first;
  5758. }
  5759. #define SD_NODES_PER_DOMAIN 16
  5760. #ifdef CONFIG_NUMA
  5761. /**
  5762. * find_next_best_node - find the next node to include in a sched_domain
  5763. * @node: node whose sched_domain we're building
  5764. * @used_nodes: nodes already in the sched_domain
  5765. *
  5766. * Find the next node to include in a given scheduling domain. Simply
  5767. * finds the closest node not already in the @used_nodes map.
  5768. *
  5769. * Should use nodemask_t.
  5770. */
  5771. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5772. {
  5773. int i, n, val, min_val, best_node = 0;
  5774. min_val = INT_MAX;
  5775. for (i = 0; i < nr_node_ids; i++) {
  5776. /* Start at @node */
  5777. n = (node + i) % nr_node_ids;
  5778. if (!nr_cpus_node(n))
  5779. continue;
  5780. /* Skip already used nodes */
  5781. if (node_isset(n, *used_nodes))
  5782. continue;
  5783. /* Simple min distance search */
  5784. val = node_distance(node, n);
  5785. if (val < min_val) {
  5786. min_val = val;
  5787. best_node = n;
  5788. }
  5789. }
  5790. node_set(best_node, *used_nodes);
  5791. return best_node;
  5792. }
  5793. /**
  5794. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5795. * @node: node whose cpumask we're constructing
  5796. * @span: resulting cpumask
  5797. *
  5798. * Given a node, construct a good cpumask for its sched_domain to span. It
  5799. * should be one that prevents unnecessary balancing, but also spreads tasks
  5800. * out optimally.
  5801. */
  5802. static void sched_domain_node_span(int node, struct cpumask *span)
  5803. {
  5804. nodemask_t used_nodes;
  5805. int i;
  5806. cpumask_clear(span);
  5807. nodes_clear(used_nodes);
  5808. cpumask_or(span, span, cpumask_of_node(node));
  5809. node_set(node, used_nodes);
  5810. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5811. int next_node = find_next_best_node(node, &used_nodes);
  5812. cpumask_or(span, span, cpumask_of_node(next_node));
  5813. }
  5814. }
  5815. #endif /* CONFIG_NUMA */
  5816. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5817. /*
  5818. * The cpus mask in sched_group and sched_domain hangs off the end.
  5819. *
  5820. * ( See the the comments in include/linux/sched.h:struct sched_group
  5821. * and struct sched_domain. )
  5822. */
  5823. struct static_sched_group {
  5824. struct sched_group sg;
  5825. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5826. };
  5827. struct static_sched_domain {
  5828. struct sched_domain sd;
  5829. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5830. };
  5831. struct s_data {
  5832. #ifdef CONFIG_NUMA
  5833. int sd_allnodes;
  5834. cpumask_var_t domainspan;
  5835. cpumask_var_t covered;
  5836. cpumask_var_t notcovered;
  5837. #endif
  5838. cpumask_var_t nodemask;
  5839. cpumask_var_t this_sibling_map;
  5840. cpumask_var_t this_core_map;
  5841. cpumask_var_t this_book_map;
  5842. cpumask_var_t send_covered;
  5843. cpumask_var_t tmpmask;
  5844. struct sched_group **sched_group_nodes;
  5845. struct root_domain *rd;
  5846. };
  5847. enum s_alloc {
  5848. sa_sched_groups = 0,
  5849. sa_rootdomain,
  5850. sa_tmpmask,
  5851. sa_send_covered,
  5852. sa_this_book_map,
  5853. sa_this_core_map,
  5854. sa_this_sibling_map,
  5855. sa_nodemask,
  5856. sa_sched_group_nodes,
  5857. #ifdef CONFIG_NUMA
  5858. sa_notcovered,
  5859. sa_covered,
  5860. sa_domainspan,
  5861. #endif
  5862. sa_none,
  5863. };
  5864. /*
  5865. * SMT sched-domains:
  5866. */
  5867. #ifdef CONFIG_SCHED_SMT
  5868. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5869. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5870. static int
  5871. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5872. struct sched_group **sg, struct cpumask *unused)
  5873. {
  5874. if (sg)
  5875. *sg = &per_cpu(sched_groups, cpu).sg;
  5876. return cpu;
  5877. }
  5878. #endif /* CONFIG_SCHED_SMT */
  5879. /*
  5880. * multi-core sched-domains:
  5881. */
  5882. #ifdef CONFIG_SCHED_MC
  5883. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5884. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5885. static int
  5886. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5887. struct sched_group **sg, struct cpumask *mask)
  5888. {
  5889. int group;
  5890. #ifdef CONFIG_SCHED_SMT
  5891. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5892. group = cpumask_first(mask);
  5893. #else
  5894. group = cpu;
  5895. #endif
  5896. if (sg)
  5897. *sg = &per_cpu(sched_group_core, group).sg;
  5898. return group;
  5899. }
  5900. #endif /* CONFIG_SCHED_MC */
  5901. /*
  5902. * book sched-domains:
  5903. */
  5904. #ifdef CONFIG_SCHED_BOOK
  5905. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5906. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5907. static int
  5908. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5909. struct sched_group **sg, struct cpumask *mask)
  5910. {
  5911. int group = cpu;
  5912. #ifdef CONFIG_SCHED_MC
  5913. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5914. group = cpumask_first(mask);
  5915. #elif defined(CONFIG_SCHED_SMT)
  5916. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5917. group = cpumask_first(mask);
  5918. #endif
  5919. if (sg)
  5920. *sg = &per_cpu(sched_group_book, group).sg;
  5921. return group;
  5922. }
  5923. #endif /* CONFIG_SCHED_BOOK */
  5924. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5925. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5926. static int
  5927. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5928. struct sched_group **sg, struct cpumask *mask)
  5929. {
  5930. int group;
  5931. #ifdef CONFIG_SCHED_BOOK
  5932. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5933. group = cpumask_first(mask);
  5934. #elif defined(CONFIG_SCHED_MC)
  5935. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5936. group = cpumask_first(mask);
  5937. #elif defined(CONFIG_SCHED_SMT)
  5938. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5939. group = cpumask_first(mask);
  5940. #else
  5941. group = cpu;
  5942. #endif
  5943. if (sg)
  5944. *sg = &per_cpu(sched_group_phys, group).sg;
  5945. return group;
  5946. }
  5947. #ifdef CONFIG_NUMA
  5948. /*
  5949. * The init_sched_build_groups can't handle what we want to do with node
  5950. * groups, so roll our own. Now each node has its own list of groups which
  5951. * gets dynamically allocated.
  5952. */
  5953. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5954. static struct sched_group ***sched_group_nodes_bycpu;
  5955. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5956. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5957. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5958. struct sched_group **sg,
  5959. struct cpumask *nodemask)
  5960. {
  5961. int group;
  5962. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5963. group = cpumask_first(nodemask);
  5964. if (sg)
  5965. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5966. return group;
  5967. }
  5968. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5969. {
  5970. struct sched_group *sg = group_head;
  5971. int j;
  5972. if (!sg)
  5973. return;
  5974. do {
  5975. for_each_cpu(j, sched_group_cpus(sg)) {
  5976. struct sched_domain *sd;
  5977. sd = &per_cpu(phys_domains, j).sd;
  5978. if (j != group_first_cpu(sd->groups)) {
  5979. /*
  5980. * Only add "power" once for each
  5981. * physical package.
  5982. */
  5983. continue;
  5984. }
  5985. sg->cpu_power += sd->groups->cpu_power;
  5986. }
  5987. sg = sg->next;
  5988. } while (sg != group_head);
  5989. }
  5990. static int build_numa_sched_groups(struct s_data *d,
  5991. const struct cpumask *cpu_map, int num)
  5992. {
  5993. struct sched_domain *sd;
  5994. struct sched_group *sg, *prev;
  5995. int n, j;
  5996. cpumask_clear(d->covered);
  5997. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5998. if (cpumask_empty(d->nodemask)) {
  5999. d->sched_group_nodes[num] = NULL;
  6000. goto out;
  6001. }
  6002. sched_domain_node_span(num, d->domainspan);
  6003. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6004. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6005. GFP_KERNEL, num);
  6006. if (!sg) {
  6007. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6008. num);
  6009. return -ENOMEM;
  6010. }
  6011. d->sched_group_nodes[num] = sg;
  6012. for_each_cpu(j, d->nodemask) {
  6013. sd = &per_cpu(node_domains, j).sd;
  6014. sd->groups = sg;
  6015. }
  6016. sg->cpu_power = 0;
  6017. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6018. sg->next = sg;
  6019. cpumask_or(d->covered, d->covered, d->nodemask);
  6020. prev = sg;
  6021. for (j = 0; j < nr_node_ids; j++) {
  6022. n = (num + j) % nr_node_ids;
  6023. cpumask_complement(d->notcovered, d->covered);
  6024. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6025. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6026. if (cpumask_empty(d->tmpmask))
  6027. break;
  6028. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6029. if (cpumask_empty(d->tmpmask))
  6030. continue;
  6031. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6032. GFP_KERNEL, num);
  6033. if (!sg) {
  6034. printk(KERN_WARNING
  6035. "Can not alloc domain group for node %d\n", j);
  6036. return -ENOMEM;
  6037. }
  6038. sg->cpu_power = 0;
  6039. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6040. sg->next = prev->next;
  6041. cpumask_or(d->covered, d->covered, d->tmpmask);
  6042. prev->next = sg;
  6043. prev = sg;
  6044. }
  6045. out:
  6046. return 0;
  6047. }
  6048. #endif /* CONFIG_NUMA */
  6049. #ifdef CONFIG_NUMA
  6050. /* Free memory allocated for various sched_group structures */
  6051. static void free_sched_groups(const struct cpumask *cpu_map,
  6052. struct cpumask *nodemask)
  6053. {
  6054. int cpu, i;
  6055. for_each_cpu(cpu, cpu_map) {
  6056. struct sched_group **sched_group_nodes
  6057. = sched_group_nodes_bycpu[cpu];
  6058. if (!sched_group_nodes)
  6059. continue;
  6060. for (i = 0; i < nr_node_ids; i++) {
  6061. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6062. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6063. if (cpumask_empty(nodemask))
  6064. continue;
  6065. if (sg == NULL)
  6066. continue;
  6067. sg = sg->next;
  6068. next_sg:
  6069. oldsg = sg;
  6070. sg = sg->next;
  6071. kfree(oldsg);
  6072. if (oldsg != sched_group_nodes[i])
  6073. goto next_sg;
  6074. }
  6075. kfree(sched_group_nodes);
  6076. sched_group_nodes_bycpu[cpu] = NULL;
  6077. }
  6078. }
  6079. #else /* !CONFIG_NUMA */
  6080. static void free_sched_groups(const struct cpumask *cpu_map,
  6081. struct cpumask *nodemask)
  6082. {
  6083. }
  6084. #endif /* CONFIG_NUMA */
  6085. /*
  6086. * Initialize sched groups cpu_power.
  6087. *
  6088. * cpu_power indicates the capacity of sched group, which is used while
  6089. * distributing the load between different sched groups in a sched domain.
  6090. * Typically cpu_power for all the groups in a sched domain will be same unless
  6091. * there are asymmetries in the topology. If there are asymmetries, group
  6092. * having more cpu_power will pickup more load compared to the group having
  6093. * less cpu_power.
  6094. */
  6095. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6096. {
  6097. struct sched_domain *child;
  6098. struct sched_group *group;
  6099. long power;
  6100. int weight;
  6101. WARN_ON(!sd || !sd->groups);
  6102. if (cpu != group_first_cpu(sd->groups))
  6103. return;
  6104. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6105. child = sd->child;
  6106. sd->groups->cpu_power = 0;
  6107. if (!child) {
  6108. power = SCHED_LOAD_SCALE;
  6109. weight = cpumask_weight(sched_domain_span(sd));
  6110. /*
  6111. * SMT siblings share the power of a single core.
  6112. * Usually multiple threads get a better yield out of
  6113. * that one core than a single thread would have,
  6114. * reflect that in sd->smt_gain.
  6115. */
  6116. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6117. power *= sd->smt_gain;
  6118. power /= weight;
  6119. power >>= SCHED_LOAD_SHIFT;
  6120. }
  6121. sd->groups->cpu_power += power;
  6122. return;
  6123. }
  6124. /*
  6125. * Add cpu_power of each child group to this groups cpu_power.
  6126. */
  6127. group = child->groups;
  6128. do {
  6129. sd->groups->cpu_power += group->cpu_power;
  6130. group = group->next;
  6131. } while (group != child->groups);
  6132. }
  6133. /*
  6134. * Initializers for schedule domains
  6135. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6136. */
  6137. #ifdef CONFIG_SCHED_DEBUG
  6138. # define SD_INIT_NAME(sd, type) sd->name = #type
  6139. #else
  6140. # define SD_INIT_NAME(sd, type) do { } while (0)
  6141. #endif
  6142. #define SD_INIT(sd, type) sd_init_##type(sd)
  6143. #define SD_INIT_FUNC(type) \
  6144. static noinline void sd_init_##type(struct sched_domain *sd) \
  6145. { \
  6146. memset(sd, 0, sizeof(*sd)); \
  6147. *sd = SD_##type##_INIT; \
  6148. sd->level = SD_LV_##type; \
  6149. SD_INIT_NAME(sd, type); \
  6150. }
  6151. SD_INIT_FUNC(CPU)
  6152. #ifdef CONFIG_NUMA
  6153. SD_INIT_FUNC(ALLNODES)
  6154. SD_INIT_FUNC(NODE)
  6155. #endif
  6156. #ifdef CONFIG_SCHED_SMT
  6157. SD_INIT_FUNC(SIBLING)
  6158. #endif
  6159. #ifdef CONFIG_SCHED_MC
  6160. SD_INIT_FUNC(MC)
  6161. #endif
  6162. #ifdef CONFIG_SCHED_BOOK
  6163. SD_INIT_FUNC(BOOK)
  6164. #endif
  6165. static int default_relax_domain_level = -1;
  6166. static int __init setup_relax_domain_level(char *str)
  6167. {
  6168. unsigned long val;
  6169. val = simple_strtoul(str, NULL, 0);
  6170. if (val < SD_LV_MAX)
  6171. default_relax_domain_level = val;
  6172. return 1;
  6173. }
  6174. __setup("relax_domain_level=", setup_relax_domain_level);
  6175. static void set_domain_attribute(struct sched_domain *sd,
  6176. struct sched_domain_attr *attr)
  6177. {
  6178. int request;
  6179. if (!attr || attr->relax_domain_level < 0) {
  6180. if (default_relax_domain_level < 0)
  6181. return;
  6182. else
  6183. request = default_relax_domain_level;
  6184. } else
  6185. request = attr->relax_domain_level;
  6186. if (request < sd->level) {
  6187. /* turn off idle balance on this domain */
  6188. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6189. } else {
  6190. /* turn on idle balance on this domain */
  6191. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6192. }
  6193. }
  6194. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6195. const struct cpumask *cpu_map)
  6196. {
  6197. switch (what) {
  6198. case sa_sched_groups:
  6199. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6200. d->sched_group_nodes = NULL;
  6201. case sa_rootdomain:
  6202. free_rootdomain(d->rd); /* fall through */
  6203. case sa_tmpmask:
  6204. free_cpumask_var(d->tmpmask); /* fall through */
  6205. case sa_send_covered:
  6206. free_cpumask_var(d->send_covered); /* fall through */
  6207. case sa_this_book_map:
  6208. free_cpumask_var(d->this_book_map); /* fall through */
  6209. case sa_this_core_map:
  6210. free_cpumask_var(d->this_core_map); /* fall through */
  6211. case sa_this_sibling_map:
  6212. free_cpumask_var(d->this_sibling_map); /* fall through */
  6213. case sa_nodemask:
  6214. free_cpumask_var(d->nodemask); /* fall through */
  6215. case sa_sched_group_nodes:
  6216. #ifdef CONFIG_NUMA
  6217. kfree(d->sched_group_nodes); /* fall through */
  6218. case sa_notcovered:
  6219. free_cpumask_var(d->notcovered); /* fall through */
  6220. case sa_covered:
  6221. free_cpumask_var(d->covered); /* fall through */
  6222. case sa_domainspan:
  6223. free_cpumask_var(d->domainspan); /* fall through */
  6224. #endif
  6225. case sa_none:
  6226. break;
  6227. }
  6228. }
  6229. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6230. const struct cpumask *cpu_map)
  6231. {
  6232. #ifdef CONFIG_NUMA
  6233. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6234. return sa_none;
  6235. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6236. return sa_domainspan;
  6237. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6238. return sa_covered;
  6239. /* Allocate the per-node list of sched groups */
  6240. d->sched_group_nodes = kcalloc(nr_node_ids,
  6241. sizeof(struct sched_group *), GFP_KERNEL);
  6242. if (!d->sched_group_nodes) {
  6243. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6244. return sa_notcovered;
  6245. }
  6246. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6247. #endif
  6248. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6249. return sa_sched_group_nodes;
  6250. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6251. return sa_nodemask;
  6252. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6253. return sa_this_sibling_map;
  6254. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6255. return sa_this_core_map;
  6256. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6257. return sa_this_book_map;
  6258. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6259. return sa_send_covered;
  6260. d->rd = alloc_rootdomain();
  6261. if (!d->rd) {
  6262. printk(KERN_WARNING "Cannot alloc root domain\n");
  6263. return sa_tmpmask;
  6264. }
  6265. return sa_rootdomain;
  6266. }
  6267. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6268. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6269. {
  6270. struct sched_domain *sd = NULL;
  6271. #ifdef CONFIG_NUMA
  6272. struct sched_domain *parent;
  6273. d->sd_allnodes = 0;
  6274. if (cpumask_weight(cpu_map) >
  6275. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6276. sd = &per_cpu(allnodes_domains, i).sd;
  6277. SD_INIT(sd, ALLNODES);
  6278. set_domain_attribute(sd, attr);
  6279. cpumask_copy(sched_domain_span(sd), cpu_map);
  6280. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6281. d->sd_allnodes = 1;
  6282. }
  6283. parent = sd;
  6284. sd = &per_cpu(node_domains, i).sd;
  6285. SD_INIT(sd, NODE);
  6286. set_domain_attribute(sd, attr);
  6287. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6288. sd->parent = parent;
  6289. if (parent)
  6290. parent->child = sd;
  6291. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6292. #endif
  6293. return sd;
  6294. }
  6295. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6296. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6297. struct sched_domain *parent, int i)
  6298. {
  6299. struct sched_domain *sd;
  6300. sd = &per_cpu(phys_domains, i).sd;
  6301. SD_INIT(sd, CPU);
  6302. set_domain_attribute(sd, attr);
  6303. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6304. sd->parent = parent;
  6305. if (parent)
  6306. parent->child = sd;
  6307. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6308. return sd;
  6309. }
  6310. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6311. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6312. struct sched_domain *parent, int i)
  6313. {
  6314. struct sched_domain *sd = parent;
  6315. #ifdef CONFIG_SCHED_BOOK
  6316. sd = &per_cpu(book_domains, i).sd;
  6317. SD_INIT(sd, BOOK);
  6318. set_domain_attribute(sd, attr);
  6319. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6320. sd->parent = parent;
  6321. parent->child = sd;
  6322. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6323. #endif
  6324. return sd;
  6325. }
  6326. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6327. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6328. struct sched_domain *parent, int i)
  6329. {
  6330. struct sched_domain *sd = parent;
  6331. #ifdef CONFIG_SCHED_MC
  6332. sd = &per_cpu(core_domains, i).sd;
  6333. SD_INIT(sd, MC);
  6334. set_domain_attribute(sd, attr);
  6335. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6336. sd->parent = parent;
  6337. parent->child = sd;
  6338. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6339. #endif
  6340. return sd;
  6341. }
  6342. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6343. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6344. struct sched_domain *parent, int i)
  6345. {
  6346. struct sched_domain *sd = parent;
  6347. #ifdef CONFIG_SCHED_SMT
  6348. sd = &per_cpu(cpu_domains, i).sd;
  6349. SD_INIT(sd, SIBLING);
  6350. set_domain_attribute(sd, attr);
  6351. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6352. sd->parent = parent;
  6353. parent->child = sd;
  6354. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6355. #endif
  6356. return sd;
  6357. }
  6358. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6359. const struct cpumask *cpu_map, int cpu)
  6360. {
  6361. switch (l) {
  6362. #ifdef CONFIG_SCHED_SMT
  6363. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6364. cpumask_and(d->this_sibling_map, cpu_map,
  6365. topology_thread_cpumask(cpu));
  6366. if (cpu == cpumask_first(d->this_sibling_map))
  6367. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6368. &cpu_to_cpu_group,
  6369. d->send_covered, d->tmpmask);
  6370. break;
  6371. #endif
  6372. #ifdef CONFIG_SCHED_MC
  6373. case SD_LV_MC: /* set up multi-core groups */
  6374. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6375. if (cpu == cpumask_first(d->this_core_map))
  6376. init_sched_build_groups(d->this_core_map, cpu_map,
  6377. &cpu_to_core_group,
  6378. d->send_covered, d->tmpmask);
  6379. break;
  6380. #endif
  6381. #ifdef CONFIG_SCHED_BOOK
  6382. case SD_LV_BOOK: /* set up book groups */
  6383. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6384. if (cpu == cpumask_first(d->this_book_map))
  6385. init_sched_build_groups(d->this_book_map, cpu_map,
  6386. &cpu_to_book_group,
  6387. d->send_covered, d->tmpmask);
  6388. break;
  6389. #endif
  6390. case SD_LV_CPU: /* set up physical groups */
  6391. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6392. if (!cpumask_empty(d->nodemask))
  6393. init_sched_build_groups(d->nodemask, cpu_map,
  6394. &cpu_to_phys_group,
  6395. d->send_covered, d->tmpmask);
  6396. break;
  6397. #ifdef CONFIG_NUMA
  6398. case SD_LV_ALLNODES:
  6399. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6400. d->send_covered, d->tmpmask);
  6401. break;
  6402. #endif
  6403. default:
  6404. break;
  6405. }
  6406. }
  6407. /*
  6408. * Build sched domains for a given set of cpus and attach the sched domains
  6409. * to the individual cpus
  6410. */
  6411. static int __build_sched_domains(const struct cpumask *cpu_map,
  6412. struct sched_domain_attr *attr)
  6413. {
  6414. enum s_alloc alloc_state = sa_none;
  6415. struct s_data d;
  6416. struct sched_domain *sd;
  6417. int i;
  6418. #ifdef CONFIG_NUMA
  6419. d.sd_allnodes = 0;
  6420. #endif
  6421. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6422. if (alloc_state != sa_rootdomain)
  6423. goto error;
  6424. alloc_state = sa_sched_groups;
  6425. /*
  6426. * Set up domains for cpus specified by the cpu_map.
  6427. */
  6428. for_each_cpu(i, cpu_map) {
  6429. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6430. cpu_map);
  6431. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6432. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6433. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6434. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6435. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6436. }
  6437. for_each_cpu(i, cpu_map) {
  6438. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6439. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6440. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6441. }
  6442. /* Set up physical groups */
  6443. for (i = 0; i < nr_node_ids; i++)
  6444. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6445. #ifdef CONFIG_NUMA
  6446. /* Set up node groups */
  6447. if (d.sd_allnodes)
  6448. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6449. for (i = 0; i < nr_node_ids; i++)
  6450. if (build_numa_sched_groups(&d, cpu_map, i))
  6451. goto error;
  6452. #endif
  6453. /* Calculate CPU power for physical packages and nodes */
  6454. #ifdef CONFIG_SCHED_SMT
  6455. for_each_cpu(i, cpu_map) {
  6456. sd = &per_cpu(cpu_domains, i).sd;
  6457. init_sched_groups_power(i, sd);
  6458. }
  6459. #endif
  6460. #ifdef CONFIG_SCHED_MC
  6461. for_each_cpu(i, cpu_map) {
  6462. sd = &per_cpu(core_domains, i).sd;
  6463. init_sched_groups_power(i, sd);
  6464. }
  6465. #endif
  6466. #ifdef CONFIG_SCHED_BOOK
  6467. for_each_cpu(i, cpu_map) {
  6468. sd = &per_cpu(book_domains, i).sd;
  6469. init_sched_groups_power(i, sd);
  6470. }
  6471. #endif
  6472. for_each_cpu(i, cpu_map) {
  6473. sd = &per_cpu(phys_domains, i).sd;
  6474. init_sched_groups_power(i, sd);
  6475. }
  6476. #ifdef CONFIG_NUMA
  6477. for (i = 0; i < nr_node_ids; i++)
  6478. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6479. if (d.sd_allnodes) {
  6480. struct sched_group *sg;
  6481. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6482. d.tmpmask);
  6483. init_numa_sched_groups_power(sg);
  6484. }
  6485. #endif
  6486. /* Attach the domains */
  6487. for_each_cpu(i, cpu_map) {
  6488. #ifdef CONFIG_SCHED_SMT
  6489. sd = &per_cpu(cpu_domains, i).sd;
  6490. #elif defined(CONFIG_SCHED_MC)
  6491. sd = &per_cpu(core_domains, i).sd;
  6492. #elif defined(CONFIG_SCHED_BOOK)
  6493. sd = &per_cpu(book_domains, i).sd;
  6494. #else
  6495. sd = &per_cpu(phys_domains, i).sd;
  6496. #endif
  6497. cpu_attach_domain(sd, d.rd, i);
  6498. }
  6499. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6500. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6501. return 0;
  6502. error:
  6503. __free_domain_allocs(&d, alloc_state, cpu_map);
  6504. return -ENOMEM;
  6505. }
  6506. static int build_sched_domains(const struct cpumask *cpu_map)
  6507. {
  6508. return __build_sched_domains(cpu_map, NULL);
  6509. }
  6510. static cpumask_var_t *doms_cur; /* current sched domains */
  6511. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6512. static struct sched_domain_attr *dattr_cur;
  6513. /* attribues of custom domains in 'doms_cur' */
  6514. /*
  6515. * Special case: If a kmalloc of a doms_cur partition (array of
  6516. * cpumask) fails, then fallback to a single sched domain,
  6517. * as determined by the single cpumask fallback_doms.
  6518. */
  6519. static cpumask_var_t fallback_doms;
  6520. /*
  6521. * arch_update_cpu_topology lets virtualized architectures update the
  6522. * cpu core maps. It is supposed to return 1 if the topology changed
  6523. * or 0 if it stayed the same.
  6524. */
  6525. int __attribute__((weak)) arch_update_cpu_topology(void)
  6526. {
  6527. return 0;
  6528. }
  6529. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6530. {
  6531. int i;
  6532. cpumask_var_t *doms;
  6533. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6534. if (!doms)
  6535. return NULL;
  6536. for (i = 0; i < ndoms; i++) {
  6537. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6538. free_sched_domains(doms, i);
  6539. return NULL;
  6540. }
  6541. }
  6542. return doms;
  6543. }
  6544. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6545. {
  6546. unsigned int i;
  6547. for (i = 0; i < ndoms; i++)
  6548. free_cpumask_var(doms[i]);
  6549. kfree(doms);
  6550. }
  6551. /*
  6552. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6553. * For now this just excludes isolated cpus, but could be used to
  6554. * exclude other special cases in the future.
  6555. */
  6556. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6557. {
  6558. int err;
  6559. arch_update_cpu_topology();
  6560. ndoms_cur = 1;
  6561. doms_cur = alloc_sched_domains(ndoms_cur);
  6562. if (!doms_cur)
  6563. doms_cur = &fallback_doms;
  6564. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6565. dattr_cur = NULL;
  6566. err = build_sched_domains(doms_cur[0]);
  6567. register_sched_domain_sysctl();
  6568. return err;
  6569. }
  6570. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6571. struct cpumask *tmpmask)
  6572. {
  6573. free_sched_groups(cpu_map, tmpmask);
  6574. }
  6575. /*
  6576. * Detach sched domains from a group of cpus specified in cpu_map
  6577. * These cpus will now be attached to the NULL domain
  6578. */
  6579. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6580. {
  6581. /* Save because hotplug lock held. */
  6582. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6583. int i;
  6584. for_each_cpu(i, cpu_map)
  6585. cpu_attach_domain(NULL, &def_root_domain, i);
  6586. synchronize_sched();
  6587. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6588. }
  6589. /* handle null as "default" */
  6590. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6591. struct sched_domain_attr *new, int idx_new)
  6592. {
  6593. struct sched_domain_attr tmp;
  6594. /* fast path */
  6595. if (!new && !cur)
  6596. return 1;
  6597. tmp = SD_ATTR_INIT;
  6598. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6599. new ? (new + idx_new) : &tmp,
  6600. sizeof(struct sched_domain_attr));
  6601. }
  6602. /*
  6603. * Partition sched domains as specified by the 'ndoms_new'
  6604. * cpumasks in the array doms_new[] of cpumasks. This compares
  6605. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6606. * It destroys each deleted domain and builds each new domain.
  6607. *
  6608. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6609. * The masks don't intersect (don't overlap.) We should setup one
  6610. * sched domain for each mask. CPUs not in any of the cpumasks will
  6611. * not be load balanced. If the same cpumask appears both in the
  6612. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6613. * it as it is.
  6614. *
  6615. * The passed in 'doms_new' should be allocated using
  6616. * alloc_sched_domains. This routine takes ownership of it and will
  6617. * free_sched_domains it when done with it. If the caller failed the
  6618. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6619. * and partition_sched_domains() will fallback to the single partition
  6620. * 'fallback_doms', it also forces the domains to be rebuilt.
  6621. *
  6622. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6623. * ndoms_new == 0 is a special case for destroying existing domains,
  6624. * and it will not create the default domain.
  6625. *
  6626. * Call with hotplug lock held
  6627. */
  6628. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6629. struct sched_domain_attr *dattr_new)
  6630. {
  6631. int i, j, n;
  6632. int new_topology;
  6633. mutex_lock(&sched_domains_mutex);
  6634. /* always unregister in case we don't destroy any domains */
  6635. unregister_sched_domain_sysctl();
  6636. /* Let architecture update cpu core mappings. */
  6637. new_topology = arch_update_cpu_topology();
  6638. n = doms_new ? ndoms_new : 0;
  6639. /* Destroy deleted domains */
  6640. for (i = 0; i < ndoms_cur; i++) {
  6641. for (j = 0; j < n && !new_topology; j++) {
  6642. if (cpumask_equal(doms_cur[i], doms_new[j])
  6643. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6644. goto match1;
  6645. }
  6646. /* no match - a current sched domain not in new doms_new[] */
  6647. detach_destroy_domains(doms_cur[i]);
  6648. match1:
  6649. ;
  6650. }
  6651. if (doms_new == NULL) {
  6652. ndoms_cur = 0;
  6653. doms_new = &fallback_doms;
  6654. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6655. WARN_ON_ONCE(dattr_new);
  6656. }
  6657. /* Build new domains */
  6658. for (i = 0; i < ndoms_new; i++) {
  6659. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6660. if (cpumask_equal(doms_new[i], doms_cur[j])
  6661. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6662. goto match2;
  6663. }
  6664. /* no match - add a new doms_new */
  6665. __build_sched_domains(doms_new[i],
  6666. dattr_new ? dattr_new + i : NULL);
  6667. match2:
  6668. ;
  6669. }
  6670. /* Remember the new sched domains */
  6671. if (doms_cur != &fallback_doms)
  6672. free_sched_domains(doms_cur, ndoms_cur);
  6673. kfree(dattr_cur); /* kfree(NULL) is safe */
  6674. doms_cur = doms_new;
  6675. dattr_cur = dattr_new;
  6676. ndoms_cur = ndoms_new;
  6677. register_sched_domain_sysctl();
  6678. mutex_unlock(&sched_domains_mutex);
  6679. }
  6680. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6681. static void arch_reinit_sched_domains(void)
  6682. {
  6683. get_online_cpus();
  6684. /* Destroy domains first to force the rebuild */
  6685. partition_sched_domains(0, NULL, NULL);
  6686. rebuild_sched_domains();
  6687. put_online_cpus();
  6688. }
  6689. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6690. {
  6691. unsigned int level = 0;
  6692. if (sscanf(buf, "%u", &level) != 1)
  6693. return -EINVAL;
  6694. /*
  6695. * level is always be positive so don't check for
  6696. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6697. * What happens on 0 or 1 byte write,
  6698. * need to check for count as well?
  6699. */
  6700. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6701. return -EINVAL;
  6702. if (smt)
  6703. sched_smt_power_savings = level;
  6704. else
  6705. sched_mc_power_savings = level;
  6706. arch_reinit_sched_domains();
  6707. return count;
  6708. }
  6709. #ifdef CONFIG_SCHED_MC
  6710. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6711. struct sysdev_class_attribute *attr,
  6712. char *page)
  6713. {
  6714. return sprintf(page, "%u\n", sched_mc_power_savings);
  6715. }
  6716. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6717. struct sysdev_class_attribute *attr,
  6718. const char *buf, size_t count)
  6719. {
  6720. return sched_power_savings_store(buf, count, 0);
  6721. }
  6722. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6723. sched_mc_power_savings_show,
  6724. sched_mc_power_savings_store);
  6725. #endif
  6726. #ifdef CONFIG_SCHED_SMT
  6727. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6728. struct sysdev_class_attribute *attr,
  6729. char *page)
  6730. {
  6731. return sprintf(page, "%u\n", sched_smt_power_savings);
  6732. }
  6733. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6734. struct sysdev_class_attribute *attr,
  6735. const char *buf, size_t count)
  6736. {
  6737. return sched_power_savings_store(buf, count, 1);
  6738. }
  6739. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6740. sched_smt_power_savings_show,
  6741. sched_smt_power_savings_store);
  6742. #endif
  6743. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6744. {
  6745. int err = 0;
  6746. #ifdef CONFIG_SCHED_SMT
  6747. if (smt_capable())
  6748. err = sysfs_create_file(&cls->kset.kobj,
  6749. &attr_sched_smt_power_savings.attr);
  6750. #endif
  6751. #ifdef CONFIG_SCHED_MC
  6752. if (!err && mc_capable())
  6753. err = sysfs_create_file(&cls->kset.kobj,
  6754. &attr_sched_mc_power_savings.attr);
  6755. #endif
  6756. return err;
  6757. }
  6758. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6759. /*
  6760. * Update cpusets according to cpu_active mask. If cpusets are
  6761. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6762. * around partition_sched_domains().
  6763. */
  6764. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6765. void *hcpu)
  6766. {
  6767. switch (action & ~CPU_TASKS_FROZEN) {
  6768. case CPU_ONLINE:
  6769. case CPU_DOWN_FAILED:
  6770. cpuset_update_active_cpus();
  6771. return NOTIFY_OK;
  6772. default:
  6773. return NOTIFY_DONE;
  6774. }
  6775. }
  6776. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6777. void *hcpu)
  6778. {
  6779. switch (action & ~CPU_TASKS_FROZEN) {
  6780. case CPU_DOWN_PREPARE:
  6781. cpuset_update_active_cpus();
  6782. return NOTIFY_OK;
  6783. default:
  6784. return NOTIFY_DONE;
  6785. }
  6786. }
  6787. static int update_runtime(struct notifier_block *nfb,
  6788. unsigned long action, void *hcpu)
  6789. {
  6790. int cpu = (int)(long)hcpu;
  6791. switch (action) {
  6792. case CPU_DOWN_PREPARE:
  6793. case CPU_DOWN_PREPARE_FROZEN:
  6794. disable_runtime(cpu_rq(cpu));
  6795. return NOTIFY_OK;
  6796. case CPU_DOWN_FAILED:
  6797. case CPU_DOWN_FAILED_FROZEN:
  6798. case CPU_ONLINE:
  6799. case CPU_ONLINE_FROZEN:
  6800. enable_runtime(cpu_rq(cpu));
  6801. return NOTIFY_OK;
  6802. default:
  6803. return NOTIFY_DONE;
  6804. }
  6805. }
  6806. void __init sched_init_smp(void)
  6807. {
  6808. cpumask_var_t non_isolated_cpus;
  6809. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6810. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6811. #if defined(CONFIG_NUMA)
  6812. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6813. GFP_KERNEL);
  6814. BUG_ON(sched_group_nodes_bycpu == NULL);
  6815. #endif
  6816. get_online_cpus();
  6817. mutex_lock(&sched_domains_mutex);
  6818. arch_init_sched_domains(cpu_active_mask);
  6819. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6820. if (cpumask_empty(non_isolated_cpus))
  6821. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6822. mutex_unlock(&sched_domains_mutex);
  6823. put_online_cpus();
  6824. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6825. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6826. /* RT runtime code needs to handle some hotplug events */
  6827. hotcpu_notifier(update_runtime, 0);
  6828. init_hrtick();
  6829. /* Move init over to a non-isolated CPU */
  6830. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6831. BUG();
  6832. sched_init_granularity();
  6833. free_cpumask_var(non_isolated_cpus);
  6834. init_sched_rt_class();
  6835. }
  6836. #else
  6837. void __init sched_init_smp(void)
  6838. {
  6839. sched_init_granularity();
  6840. }
  6841. #endif /* CONFIG_SMP */
  6842. const_debug unsigned int sysctl_timer_migration = 1;
  6843. int in_sched_functions(unsigned long addr)
  6844. {
  6845. return in_lock_functions(addr) ||
  6846. (addr >= (unsigned long)__sched_text_start
  6847. && addr < (unsigned long)__sched_text_end);
  6848. }
  6849. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6850. {
  6851. cfs_rq->tasks_timeline = RB_ROOT;
  6852. INIT_LIST_HEAD(&cfs_rq->tasks);
  6853. #ifdef CONFIG_FAIR_GROUP_SCHED
  6854. cfs_rq->rq = rq;
  6855. /* allow initial update_cfs_load() to truncate */
  6856. #ifdef CONFIG_SMP
  6857. cfs_rq->load_stamp = 1;
  6858. #endif
  6859. #endif
  6860. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6861. }
  6862. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6863. {
  6864. struct rt_prio_array *array;
  6865. int i;
  6866. array = &rt_rq->active;
  6867. for (i = 0; i < MAX_RT_PRIO; i++) {
  6868. INIT_LIST_HEAD(array->queue + i);
  6869. __clear_bit(i, array->bitmap);
  6870. }
  6871. /* delimiter for bitsearch: */
  6872. __set_bit(MAX_RT_PRIO, array->bitmap);
  6873. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6874. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6875. #ifdef CONFIG_SMP
  6876. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6877. #endif
  6878. #endif
  6879. #ifdef CONFIG_SMP
  6880. rt_rq->rt_nr_migratory = 0;
  6881. rt_rq->overloaded = 0;
  6882. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6883. #endif
  6884. rt_rq->rt_time = 0;
  6885. rt_rq->rt_throttled = 0;
  6886. rt_rq->rt_runtime = 0;
  6887. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6888. #ifdef CONFIG_RT_GROUP_SCHED
  6889. rt_rq->rt_nr_boosted = 0;
  6890. rt_rq->rq = rq;
  6891. #endif
  6892. }
  6893. #ifdef CONFIG_FAIR_GROUP_SCHED
  6894. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6895. struct sched_entity *se, int cpu,
  6896. struct sched_entity *parent)
  6897. {
  6898. struct rq *rq = cpu_rq(cpu);
  6899. tg->cfs_rq[cpu] = cfs_rq;
  6900. init_cfs_rq(cfs_rq, rq);
  6901. cfs_rq->tg = tg;
  6902. tg->se[cpu] = se;
  6903. /* se could be NULL for root_task_group */
  6904. if (!se)
  6905. return;
  6906. if (!parent)
  6907. se->cfs_rq = &rq->cfs;
  6908. else
  6909. se->cfs_rq = parent->my_q;
  6910. se->my_q = cfs_rq;
  6911. update_load_set(&se->load, 0);
  6912. se->parent = parent;
  6913. }
  6914. #endif
  6915. #ifdef CONFIG_RT_GROUP_SCHED
  6916. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6917. struct sched_rt_entity *rt_se, int cpu,
  6918. struct sched_rt_entity *parent)
  6919. {
  6920. struct rq *rq = cpu_rq(cpu);
  6921. tg->rt_rq[cpu] = rt_rq;
  6922. init_rt_rq(rt_rq, rq);
  6923. rt_rq->tg = tg;
  6924. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6925. tg->rt_se[cpu] = rt_se;
  6926. if (!rt_se)
  6927. return;
  6928. if (!parent)
  6929. rt_se->rt_rq = &rq->rt;
  6930. else
  6931. rt_se->rt_rq = parent->my_q;
  6932. rt_se->my_q = rt_rq;
  6933. rt_se->parent = parent;
  6934. INIT_LIST_HEAD(&rt_se->run_list);
  6935. }
  6936. #endif
  6937. void __init sched_init(void)
  6938. {
  6939. int i, j;
  6940. unsigned long alloc_size = 0, ptr;
  6941. #ifdef CONFIG_FAIR_GROUP_SCHED
  6942. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6943. #endif
  6944. #ifdef CONFIG_RT_GROUP_SCHED
  6945. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6946. #endif
  6947. #ifdef CONFIG_CPUMASK_OFFSTACK
  6948. alloc_size += num_possible_cpus() * cpumask_size();
  6949. #endif
  6950. if (alloc_size) {
  6951. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6952. #ifdef CONFIG_FAIR_GROUP_SCHED
  6953. root_task_group.se = (struct sched_entity **)ptr;
  6954. ptr += nr_cpu_ids * sizeof(void **);
  6955. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6956. ptr += nr_cpu_ids * sizeof(void **);
  6957. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6958. #ifdef CONFIG_RT_GROUP_SCHED
  6959. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6960. ptr += nr_cpu_ids * sizeof(void **);
  6961. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6962. ptr += nr_cpu_ids * sizeof(void **);
  6963. #endif /* CONFIG_RT_GROUP_SCHED */
  6964. #ifdef CONFIG_CPUMASK_OFFSTACK
  6965. for_each_possible_cpu(i) {
  6966. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6967. ptr += cpumask_size();
  6968. }
  6969. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6970. }
  6971. #ifdef CONFIG_SMP
  6972. init_defrootdomain();
  6973. #endif
  6974. init_rt_bandwidth(&def_rt_bandwidth,
  6975. global_rt_period(), global_rt_runtime());
  6976. #ifdef CONFIG_RT_GROUP_SCHED
  6977. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6978. global_rt_period(), global_rt_runtime());
  6979. #endif /* CONFIG_RT_GROUP_SCHED */
  6980. #ifdef CONFIG_CGROUP_SCHED
  6981. list_add(&root_task_group.list, &task_groups);
  6982. INIT_LIST_HEAD(&root_task_group.children);
  6983. autogroup_init(&init_task);
  6984. #endif /* CONFIG_CGROUP_SCHED */
  6985. for_each_possible_cpu(i) {
  6986. struct rq *rq;
  6987. rq = cpu_rq(i);
  6988. raw_spin_lock_init(&rq->lock);
  6989. rq->nr_running = 0;
  6990. rq->calc_load_active = 0;
  6991. rq->calc_load_update = jiffies + LOAD_FREQ;
  6992. init_cfs_rq(&rq->cfs, rq);
  6993. init_rt_rq(&rq->rt, rq);
  6994. #ifdef CONFIG_FAIR_GROUP_SCHED
  6995. root_task_group.shares = root_task_group_load;
  6996. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6997. /*
  6998. * How much cpu bandwidth does root_task_group get?
  6999. *
  7000. * In case of task-groups formed thr' the cgroup filesystem, it
  7001. * gets 100% of the cpu resources in the system. This overall
  7002. * system cpu resource is divided among the tasks of
  7003. * root_task_group and its child task-groups in a fair manner,
  7004. * based on each entity's (task or task-group's) weight
  7005. * (se->load.weight).
  7006. *
  7007. * In other words, if root_task_group has 10 tasks of weight
  7008. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7009. * then A0's share of the cpu resource is:
  7010. *
  7011. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7012. *
  7013. * We achieve this by letting root_task_group's tasks sit
  7014. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7015. */
  7016. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7017. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7018. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7019. #ifdef CONFIG_RT_GROUP_SCHED
  7020. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7021. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7022. #endif
  7023. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7024. rq->cpu_load[j] = 0;
  7025. rq->last_load_update_tick = jiffies;
  7026. #ifdef CONFIG_SMP
  7027. rq->sd = NULL;
  7028. rq->rd = NULL;
  7029. rq->cpu_power = SCHED_LOAD_SCALE;
  7030. rq->post_schedule = 0;
  7031. rq->active_balance = 0;
  7032. rq->next_balance = jiffies;
  7033. rq->push_cpu = 0;
  7034. rq->cpu = i;
  7035. rq->online = 0;
  7036. rq->idle_stamp = 0;
  7037. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7038. rq_attach_root(rq, &def_root_domain);
  7039. #ifdef CONFIG_NO_HZ
  7040. rq->nohz_balance_kick = 0;
  7041. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7042. #endif
  7043. #endif
  7044. init_rq_hrtick(rq);
  7045. atomic_set(&rq->nr_iowait, 0);
  7046. }
  7047. set_load_weight(&init_task);
  7048. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7049. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7050. #endif
  7051. #ifdef CONFIG_SMP
  7052. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7053. #endif
  7054. #ifdef CONFIG_RT_MUTEXES
  7055. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7056. #endif
  7057. /*
  7058. * The boot idle thread does lazy MMU switching as well:
  7059. */
  7060. atomic_inc(&init_mm.mm_count);
  7061. enter_lazy_tlb(&init_mm, current);
  7062. /*
  7063. * Make us the idle thread. Technically, schedule() should not be
  7064. * called from this thread, however somewhere below it might be,
  7065. * but because we are the idle thread, we just pick up running again
  7066. * when this runqueue becomes "idle".
  7067. */
  7068. init_idle(current, smp_processor_id());
  7069. calc_load_update = jiffies + LOAD_FREQ;
  7070. /*
  7071. * During early bootup we pretend to be a normal task:
  7072. */
  7073. current->sched_class = &fair_sched_class;
  7074. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7075. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7076. #ifdef CONFIG_SMP
  7077. #ifdef CONFIG_NO_HZ
  7078. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7079. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7080. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7081. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7082. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7083. #endif
  7084. /* May be allocated at isolcpus cmdline parse time */
  7085. if (cpu_isolated_map == NULL)
  7086. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7087. #endif /* SMP */
  7088. scheduler_running = 1;
  7089. }
  7090. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7091. static inline int preempt_count_equals(int preempt_offset)
  7092. {
  7093. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7094. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  7095. }
  7096. void __might_sleep(const char *file, int line, int preempt_offset)
  7097. {
  7098. #ifdef in_atomic
  7099. static unsigned long prev_jiffy; /* ratelimiting */
  7100. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7101. system_state != SYSTEM_RUNNING || oops_in_progress)
  7102. return;
  7103. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7104. return;
  7105. prev_jiffy = jiffies;
  7106. printk(KERN_ERR
  7107. "BUG: sleeping function called from invalid context at %s:%d\n",
  7108. file, line);
  7109. printk(KERN_ERR
  7110. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7111. in_atomic(), irqs_disabled(),
  7112. current->pid, current->comm);
  7113. debug_show_held_locks(current);
  7114. if (irqs_disabled())
  7115. print_irqtrace_events(current);
  7116. dump_stack();
  7117. #endif
  7118. }
  7119. EXPORT_SYMBOL(__might_sleep);
  7120. #endif
  7121. #ifdef CONFIG_MAGIC_SYSRQ
  7122. static void normalize_task(struct rq *rq, struct task_struct *p)
  7123. {
  7124. const struct sched_class *prev_class = p->sched_class;
  7125. int old_prio = p->prio;
  7126. int on_rq;
  7127. on_rq = p->se.on_rq;
  7128. if (on_rq)
  7129. deactivate_task(rq, p, 0);
  7130. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7131. if (on_rq) {
  7132. activate_task(rq, p, 0);
  7133. resched_task(rq->curr);
  7134. }
  7135. check_class_changed(rq, p, prev_class, old_prio);
  7136. }
  7137. void normalize_rt_tasks(void)
  7138. {
  7139. struct task_struct *g, *p;
  7140. unsigned long flags;
  7141. struct rq *rq;
  7142. read_lock_irqsave(&tasklist_lock, flags);
  7143. do_each_thread(g, p) {
  7144. /*
  7145. * Only normalize user tasks:
  7146. */
  7147. if (!p->mm)
  7148. continue;
  7149. p->se.exec_start = 0;
  7150. #ifdef CONFIG_SCHEDSTATS
  7151. p->se.statistics.wait_start = 0;
  7152. p->se.statistics.sleep_start = 0;
  7153. p->se.statistics.block_start = 0;
  7154. #endif
  7155. if (!rt_task(p)) {
  7156. /*
  7157. * Renice negative nice level userspace
  7158. * tasks back to 0:
  7159. */
  7160. if (TASK_NICE(p) < 0 && p->mm)
  7161. set_user_nice(p, 0);
  7162. continue;
  7163. }
  7164. raw_spin_lock(&p->pi_lock);
  7165. rq = __task_rq_lock(p);
  7166. normalize_task(rq, p);
  7167. __task_rq_unlock(rq);
  7168. raw_spin_unlock(&p->pi_lock);
  7169. } while_each_thread(g, p);
  7170. read_unlock_irqrestore(&tasklist_lock, flags);
  7171. }
  7172. #endif /* CONFIG_MAGIC_SYSRQ */
  7173. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7174. /*
  7175. * These functions are only useful for the IA64 MCA handling, or kdb.
  7176. *
  7177. * They can only be called when the whole system has been
  7178. * stopped - every CPU needs to be quiescent, and no scheduling
  7179. * activity can take place. Using them for anything else would
  7180. * be a serious bug, and as a result, they aren't even visible
  7181. * under any other configuration.
  7182. */
  7183. /**
  7184. * curr_task - return the current task for a given cpu.
  7185. * @cpu: the processor in question.
  7186. *
  7187. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7188. */
  7189. struct task_struct *curr_task(int cpu)
  7190. {
  7191. return cpu_curr(cpu);
  7192. }
  7193. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7194. #ifdef CONFIG_IA64
  7195. /**
  7196. * set_curr_task - set the current task for a given cpu.
  7197. * @cpu: the processor in question.
  7198. * @p: the task pointer to set.
  7199. *
  7200. * Description: This function must only be used when non-maskable interrupts
  7201. * are serviced on a separate stack. It allows the architecture to switch the
  7202. * notion of the current task on a cpu in a non-blocking manner. This function
  7203. * must be called with all CPU's synchronized, and interrupts disabled, the
  7204. * and caller must save the original value of the current task (see
  7205. * curr_task() above) and restore that value before reenabling interrupts and
  7206. * re-starting the system.
  7207. *
  7208. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7209. */
  7210. void set_curr_task(int cpu, struct task_struct *p)
  7211. {
  7212. cpu_curr(cpu) = p;
  7213. }
  7214. #endif
  7215. #ifdef CONFIG_FAIR_GROUP_SCHED
  7216. static void free_fair_sched_group(struct task_group *tg)
  7217. {
  7218. int i;
  7219. for_each_possible_cpu(i) {
  7220. if (tg->cfs_rq)
  7221. kfree(tg->cfs_rq[i]);
  7222. if (tg->se)
  7223. kfree(tg->se[i]);
  7224. }
  7225. kfree(tg->cfs_rq);
  7226. kfree(tg->se);
  7227. }
  7228. static
  7229. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7230. {
  7231. struct cfs_rq *cfs_rq;
  7232. struct sched_entity *se;
  7233. struct rq *rq;
  7234. int i;
  7235. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7236. if (!tg->cfs_rq)
  7237. goto err;
  7238. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7239. if (!tg->se)
  7240. goto err;
  7241. tg->shares = NICE_0_LOAD;
  7242. for_each_possible_cpu(i) {
  7243. rq = cpu_rq(i);
  7244. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7245. GFP_KERNEL, cpu_to_node(i));
  7246. if (!cfs_rq)
  7247. goto err;
  7248. se = kzalloc_node(sizeof(struct sched_entity),
  7249. GFP_KERNEL, cpu_to_node(i));
  7250. if (!se)
  7251. goto err_free_rq;
  7252. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7253. }
  7254. return 1;
  7255. err_free_rq:
  7256. kfree(cfs_rq);
  7257. err:
  7258. return 0;
  7259. }
  7260. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7261. {
  7262. struct rq *rq = cpu_rq(cpu);
  7263. unsigned long flags;
  7264. /*
  7265. * Only empty task groups can be destroyed; so we can speculatively
  7266. * check on_list without danger of it being re-added.
  7267. */
  7268. if (!tg->cfs_rq[cpu]->on_list)
  7269. return;
  7270. raw_spin_lock_irqsave(&rq->lock, flags);
  7271. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7272. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7273. }
  7274. #else /* !CONFG_FAIR_GROUP_SCHED */
  7275. static inline void free_fair_sched_group(struct task_group *tg)
  7276. {
  7277. }
  7278. static inline
  7279. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7280. {
  7281. return 1;
  7282. }
  7283. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7284. {
  7285. }
  7286. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7287. #ifdef CONFIG_RT_GROUP_SCHED
  7288. static void free_rt_sched_group(struct task_group *tg)
  7289. {
  7290. int i;
  7291. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7292. for_each_possible_cpu(i) {
  7293. if (tg->rt_rq)
  7294. kfree(tg->rt_rq[i]);
  7295. if (tg->rt_se)
  7296. kfree(tg->rt_se[i]);
  7297. }
  7298. kfree(tg->rt_rq);
  7299. kfree(tg->rt_se);
  7300. }
  7301. static
  7302. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7303. {
  7304. struct rt_rq *rt_rq;
  7305. struct sched_rt_entity *rt_se;
  7306. struct rq *rq;
  7307. int i;
  7308. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7309. if (!tg->rt_rq)
  7310. goto err;
  7311. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7312. if (!tg->rt_se)
  7313. goto err;
  7314. init_rt_bandwidth(&tg->rt_bandwidth,
  7315. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7316. for_each_possible_cpu(i) {
  7317. rq = cpu_rq(i);
  7318. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7319. GFP_KERNEL, cpu_to_node(i));
  7320. if (!rt_rq)
  7321. goto err;
  7322. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7323. GFP_KERNEL, cpu_to_node(i));
  7324. if (!rt_se)
  7325. goto err_free_rq;
  7326. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7327. }
  7328. return 1;
  7329. err_free_rq:
  7330. kfree(rt_rq);
  7331. err:
  7332. return 0;
  7333. }
  7334. #else /* !CONFIG_RT_GROUP_SCHED */
  7335. static inline void free_rt_sched_group(struct task_group *tg)
  7336. {
  7337. }
  7338. static inline
  7339. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7340. {
  7341. return 1;
  7342. }
  7343. #endif /* CONFIG_RT_GROUP_SCHED */
  7344. #ifdef CONFIG_CGROUP_SCHED
  7345. static void free_sched_group(struct task_group *tg)
  7346. {
  7347. free_fair_sched_group(tg);
  7348. free_rt_sched_group(tg);
  7349. autogroup_free(tg);
  7350. kfree(tg);
  7351. }
  7352. /* allocate runqueue etc for a new task group */
  7353. struct task_group *sched_create_group(struct task_group *parent)
  7354. {
  7355. struct task_group *tg;
  7356. unsigned long flags;
  7357. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7358. if (!tg)
  7359. return ERR_PTR(-ENOMEM);
  7360. if (!alloc_fair_sched_group(tg, parent))
  7361. goto err;
  7362. if (!alloc_rt_sched_group(tg, parent))
  7363. goto err;
  7364. spin_lock_irqsave(&task_group_lock, flags);
  7365. list_add_rcu(&tg->list, &task_groups);
  7366. WARN_ON(!parent); /* root should already exist */
  7367. tg->parent = parent;
  7368. INIT_LIST_HEAD(&tg->children);
  7369. list_add_rcu(&tg->siblings, &parent->children);
  7370. spin_unlock_irqrestore(&task_group_lock, flags);
  7371. return tg;
  7372. err:
  7373. free_sched_group(tg);
  7374. return ERR_PTR(-ENOMEM);
  7375. }
  7376. /* rcu callback to free various structures associated with a task group */
  7377. static void free_sched_group_rcu(struct rcu_head *rhp)
  7378. {
  7379. /* now it should be safe to free those cfs_rqs */
  7380. free_sched_group(container_of(rhp, struct task_group, rcu));
  7381. }
  7382. /* Destroy runqueue etc associated with a task group */
  7383. void sched_destroy_group(struct task_group *tg)
  7384. {
  7385. unsigned long flags;
  7386. int i;
  7387. /* end participation in shares distribution */
  7388. for_each_possible_cpu(i)
  7389. unregister_fair_sched_group(tg, i);
  7390. spin_lock_irqsave(&task_group_lock, flags);
  7391. list_del_rcu(&tg->list);
  7392. list_del_rcu(&tg->siblings);
  7393. spin_unlock_irqrestore(&task_group_lock, flags);
  7394. /* wait for possible concurrent references to cfs_rqs complete */
  7395. call_rcu(&tg->rcu, free_sched_group_rcu);
  7396. }
  7397. /* change task's runqueue when it moves between groups.
  7398. * The caller of this function should have put the task in its new group
  7399. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7400. * reflect its new group.
  7401. */
  7402. void sched_move_task(struct task_struct *tsk)
  7403. {
  7404. int on_rq, running;
  7405. unsigned long flags;
  7406. struct rq *rq;
  7407. rq = task_rq_lock(tsk, &flags);
  7408. running = task_current(rq, tsk);
  7409. on_rq = tsk->se.on_rq;
  7410. if (on_rq)
  7411. dequeue_task(rq, tsk, 0);
  7412. if (unlikely(running))
  7413. tsk->sched_class->put_prev_task(rq, tsk);
  7414. #ifdef CONFIG_FAIR_GROUP_SCHED
  7415. if (tsk->sched_class->task_move_group)
  7416. tsk->sched_class->task_move_group(tsk, on_rq);
  7417. else
  7418. #endif
  7419. set_task_rq(tsk, task_cpu(tsk));
  7420. if (unlikely(running))
  7421. tsk->sched_class->set_curr_task(rq);
  7422. if (on_rq)
  7423. enqueue_task(rq, tsk, 0);
  7424. task_rq_unlock(rq, &flags);
  7425. }
  7426. #endif /* CONFIG_CGROUP_SCHED */
  7427. #ifdef CONFIG_FAIR_GROUP_SCHED
  7428. static DEFINE_MUTEX(shares_mutex);
  7429. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7430. {
  7431. int i;
  7432. unsigned long flags;
  7433. /*
  7434. * We can't change the weight of the root cgroup.
  7435. */
  7436. if (!tg->se[0])
  7437. return -EINVAL;
  7438. if (shares < MIN_SHARES)
  7439. shares = MIN_SHARES;
  7440. else if (shares > MAX_SHARES)
  7441. shares = MAX_SHARES;
  7442. mutex_lock(&shares_mutex);
  7443. if (tg->shares == shares)
  7444. goto done;
  7445. tg->shares = shares;
  7446. for_each_possible_cpu(i) {
  7447. struct rq *rq = cpu_rq(i);
  7448. struct sched_entity *se;
  7449. se = tg->se[i];
  7450. /* Propagate contribution to hierarchy */
  7451. raw_spin_lock_irqsave(&rq->lock, flags);
  7452. for_each_sched_entity(se)
  7453. update_cfs_shares(group_cfs_rq(se));
  7454. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7455. }
  7456. done:
  7457. mutex_unlock(&shares_mutex);
  7458. return 0;
  7459. }
  7460. unsigned long sched_group_shares(struct task_group *tg)
  7461. {
  7462. return tg->shares;
  7463. }
  7464. #endif
  7465. #ifdef CONFIG_RT_GROUP_SCHED
  7466. /*
  7467. * Ensure that the real time constraints are schedulable.
  7468. */
  7469. static DEFINE_MUTEX(rt_constraints_mutex);
  7470. static unsigned long to_ratio(u64 period, u64 runtime)
  7471. {
  7472. if (runtime == RUNTIME_INF)
  7473. return 1ULL << 20;
  7474. return div64_u64(runtime << 20, period);
  7475. }
  7476. /* Must be called with tasklist_lock held */
  7477. static inline int tg_has_rt_tasks(struct task_group *tg)
  7478. {
  7479. struct task_struct *g, *p;
  7480. do_each_thread(g, p) {
  7481. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7482. return 1;
  7483. } while_each_thread(g, p);
  7484. return 0;
  7485. }
  7486. struct rt_schedulable_data {
  7487. struct task_group *tg;
  7488. u64 rt_period;
  7489. u64 rt_runtime;
  7490. };
  7491. static int tg_schedulable(struct task_group *tg, void *data)
  7492. {
  7493. struct rt_schedulable_data *d = data;
  7494. struct task_group *child;
  7495. unsigned long total, sum = 0;
  7496. u64 period, runtime;
  7497. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7498. runtime = tg->rt_bandwidth.rt_runtime;
  7499. if (tg == d->tg) {
  7500. period = d->rt_period;
  7501. runtime = d->rt_runtime;
  7502. }
  7503. /*
  7504. * Cannot have more runtime than the period.
  7505. */
  7506. if (runtime > period && runtime != RUNTIME_INF)
  7507. return -EINVAL;
  7508. /*
  7509. * Ensure we don't starve existing RT tasks.
  7510. */
  7511. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7512. return -EBUSY;
  7513. total = to_ratio(period, runtime);
  7514. /*
  7515. * Nobody can have more than the global setting allows.
  7516. */
  7517. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7518. return -EINVAL;
  7519. /*
  7520. * The sum of our children's runtime should not exceed our own.
  7521. */
  7522. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7523. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7524. runtime = child->rt_bandwidth.rt_runtime;
  7525. if (child == d->tg) {
  7526. period = d->rt_period;
  7527. runtime = d->rt_runtime;
  7528. }
  7529. sum += to_ratio(period, runtime);
  7530. }
  7531. if (sum > total)
  7532. return -EINVAL;
  7533. return 0;
  7534. }
  7535. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7536. {
  7537. struct rt_schedulable_data data = {
  7538. .tg = tg,
  7539. .rt_period = period,
  7540. .rt_runtime = runtime,
  7541. };
  7542. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7543. }
  7544. static int tg_set_bandwidth(struct task_group *tg,
  7545. u64 rt_period, u64 rt_runtime)
  7546. {
  7547. int i, err = 0;
  7548. mutex_lock(&rt_constraints_mutex);
  7549. read_lock(&tasklist_lock);
  7550. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7551. if (err)
  7552. goto unlock;
  7553. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7554. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7555. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7556. for_each_possible_cpu(i) {
  7557. struct rt_rq *rt_rq = tg->rt_rq[i];
  7558. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7559. rt_rq->rt_runtime = rt_runtime;
  7560. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7561. }
  7562. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7563. unlock:
  7564. read_unlock(&tasklist_lock);
  7565. mutex_unlock(&rt_constraints_mutex);
  7566. return err;
  7567. }
  7568. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7569. {
  7570. u64 rt_runtime, rt_period;
  7571. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7572. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7573. if (rt_runtime_us < 0)
  7574. rt_runtime = RUNTIME_INF;
  7575. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7576. }
  7577. long sched_group_rt_runtime(struct task_group *tg)
  7578. {
  7579. u64 rt_runtime_us;
  7580. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7581. return -1;
  7582. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7583. do_div(rt_runtime_us, NSEC_PER_USEC);
  7584. return rt_runtime_us;
  7585. }
  7586. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7587. {
  7588. u64 rt_runtime, rt_period;
  7589. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7590. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7591. if (rt_period == 0)
  7592. return -EINVAL;
  7593. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7594. }
  7595. long sched_group_rt_period(struct task_group *tg)
  7596. {
  7597. u64 rt_period_us;
  7598. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7599. do_div(rt_period_us, NSEC_PER_USEC);
  7600. return rt_period_us;
  7601. }
  7602. static int sched_rt_global_constraints(void)
  7603. {
  7604. u64 runtime, period;
  7605. int ret = 0;
  7606. if (sysctl_sched_rt_period <= 0)
  7607. return -EINVAL;
  7608. runtime = global_rt_runtime();
  7609. period = global_rt_period();
  7610. /*
  7611. * Sanity check on the sysctl variables.
  7612. */
  7613. if (runtime > period && runtime != RUNTIME_INF)
  7614. return -EINVAL;
  7615. mutex_lock(&rt_constraints_mutex);
  7616. read_lock(&tasklist_lock);
  7617. ret = __rt_schedulable(NULL, 0, 0);
  7618. read_unlock(&tasklist_lock);
  7619. mutex_unlock(&rt_constraints_mutex);
  7620. return ret;
  7621. }
  7622. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7623. {
  7624. /* Don't accept realtime tasks when there is no way for them to run */
  7625. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7626. return 0;
  7627. return 1;
  7628. }
  7629. #else /* !CONFIG_RT_GROUP_SCHED */
  7630. static int sched_rt_global_constraints(void)
  7631. {
  7632. unsigned long flags;
  7633. int i;
  7634. if (sysctl_sched_rt_period <= 0)
  7635. return -EINVAL;
  7636. /*
  7637. * There's always some RT tasks in the root group
  7638. * -- migration, kstopmachine etc..
  7639. */
  7640. if (sysctl_sched_rt_runtime == 0)
  7641. return -EBUSY;
  7642. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7643. for_each_possible_cpu(i) {
  7644. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7645. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7646. rt_rq->rt_runtime = global_rt_runtime();
  7647. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7648. }
  7649. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7650. return 0;
  7651. }
  7652. #endif /* CONFIG_RT_GROUP_SCHED */
  7653. int sched_rt_handler(struct ctl_table *table, int write,
  7654. void __user *buffer, size_t *lenp,
  7655. loff_t *ppos)
  7656. {
  7657. int ret;
  7658. int old_period, old_runtime;
  7659. static DEFINE_MUTEX(mutex);
  7660. mutex_lock(&mutex);
  7661. old_period = sysctl_sched_rt_period;
  7662. old_runtime = sysctl_sched_rt_runtime;
  7663. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7664. if (!ret && write) {
  7665. ret = sched_rt_global_constraints();
  7666. if (ret) {
  7667. sysctl_sched_rt_period = old_period;
  7668. sysctl_sched_rt_runtime = old_runtime;
  7669. } else {
  7670. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7671. def_rt_bandwidth.rt_period =
  7672. ns_to_ktime(global_rt_period());
  7673. }
  7674. }
  7675. mutex_unlock(&mutex);
  7676. return ret;
  7677. }
  7678. #ifdef CONFIG_CGROUP_SCHED
  7679. /* return corresponding task_group object of a cgroup */
  7680. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7681. {
  7682. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7683. struct task_group, css);
  7684. }
  7685. static struct cgroup_subsys_state *
  7686. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7687. {
  7688. struct task_group *tg, *parent;
  7689. if (!cgrp->parent) {
  7690. /* This is early initialization for the top cgroup */
  7691. return &root_task_group.css;
  7692. }
  7693. parent = cgroup_tg(cgrp->parent);
  7694. tg = sched_create_group(parent);
  7695. if (IS_ERR(tg))
  7696. return ERR_PTR(-ENOMEM);
  7697. return &tg->css;
  7698. }
  7699. static void
  7700. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7701. {
  7702. struct task_group *tg = cgroup_tg(cgrp);
  7703. sched_destroy_group(tg);
  7704. }
  7705. static int
  7706. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7707. {
  7708. #ifdef CONFIG_RT_GROUP_SCHED
  7709. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7710. return -EINVAL;
  7711. #else
  7712. /* We don't support RT-tasks being in separate groups */
  7713. if (tsk->sched_class != &fair_sched_class)
  7714. return -EINVAL;
  7715. #endif
  7716. return 0;
  7717. }
  7718. static int
  7719. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7720. struct task_struct *tsk, bool threadgroup)
  7721. {
  7722. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7723. if (retval)
  7724. return retval;
  7725. if (threadgroup) {
  7726. struct task_struct *c;
  7727. rcu_read_lock();
  7728. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7729. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7730. if (retval) {
  7731. rcu_read_unlock();
  7732. return retval;
  7733. }
  7734. }
  7735. rcu_read_unlock();
  7736. }
  7737. return 0;
  7738. }
  7739. static void
  7740. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7741. struct cgroup *old_cont, struct task_struct *tsk,
  7742. bool threadgroup)
  7743. {
  7744. sched_move_task(tsk);
  7745. if (threadgroup) {
  7746. struct task_struct *c;
  7747. rcu_read_lock();
  7748. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7749. sched_move_task(c);
  7750. }
  7751. rcu_read_unlock();
  7752. }
  7753. }
  7754. static void
  7755. cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
  7756. {
  7757. /*
  7758. * cgroup_exit() is called in the copy_process() failure path.
  7759. * Ignore this case since the task hasn't ran yet, this avoids
  7760. * trying to poke a half freed task state from generic code.
  7761. */
  7762. if (!(task->flags & PF_EXITING))
  7763. return;
  7764. sched_move_task(task);
  7765. }
  7766. #ifdef CONFIG_FAIR_GROUP_SCHED
  7767. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7768. u64 shareval)
  7769. {
  7770. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7771. }
  7772. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7773. {
  7774. struct task_group *tg = cgroup_tg(cgrp);
  7775. return (u64) tg->shares;
  7776. }
  7777. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7778. #ifdef CONFIG_RT_GROUP_SCHED
  7779. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7780. s64 val)
  7781. {
  7782. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7783. }
  7784. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7785. {
  7786. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7787. }
  7788. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7789. u64 rt_period_us)
  7790. {
  7791. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7792. }
  7793. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7794. {
  7795. return sched_group_rt_period(cgroup_tg(cgrp));
  7796. }
  7797. #endif /* CONFIG_RT_GROUP_SCHED */
  7798. static struct cftype cpu_files[] = {
  7799. #ifdef CONFIG_FAIR_GROUP_SCHED
  7800. {
  7801. .name = "shares",
  7802. .read_u64 = cpu_shares_read_u64,
  7803. .write_u64 = cpu_shares_write_u64,
  7804. },
  7805. #endif
  7806. #ifdef CONFIG_RT_GROUP_SCHED
  7807. {
  7808. .name = "rt_runtime_us",
  7809. .read_s64 = cpu_rt_runtime_read,
  7810. .write_s64 = cpu_rt_runtime_write,
  7811. },
  7812. {
  7813. .name = "rt_period_us",
  7814. .read_u64 = cpu_rt_period_read_uint,
  7815. .write_u64 = cpu_rt_period_write_uint,
  7816. },
  7817. #endif
  7818. };
  7819. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7820. {
  7821. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7822. }
  7823. struct cgroup_subsys cpu_cgroup_subsys = {
  7824. .name = "cpu",
  7825. .create = cpu_cgroup_create,
  7826. .destroy = cpu_cgroup_destroy,
  7827. .can_attach = cpu_cgroup_can_attach,
  7828. .attach = cpu_cgroup_attach,
  7829. .exit = cpu_cgroup_exit,
  7830. .populate = cpu_cgroup_populate,
  7831. .subsys_id = cpu_cgroup_subsys_id,
  7832. .early_init = 1,
  7833. };
  7834. #endif /* CONFIG_CGROUP_SCHED */
  7835. #ifdef CONFIG_CGROUP_CPUACCT
  7836. /*
  7837. * CPU accounting code for task groups.
  7838. *
  7839. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7840. * (balbir@in.ibm.com).
  7841. */
  7842. /* track cpu usage of a group of tasks and its child groups */
  7843. struct cpuacct {
  7844. struct cgroup_subsys_state css;
  7845. /* cpuusage holds pointer to a u64-type object on every cpu */
  7846. u64 __percpu *cpuusage;
  7847. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7848. struct cpuacct *parent;
  7849. };
  7850. struct cgroup_subsys cpuacct_subsys;
  7851. /* return cpu accounting group corresponding to this container */
  7852. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7853. {
  7854. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7855. struct cpuacct, css);
  7856. }
  7857. /* return cpu accounting group to which this task belongs */
  7858. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7859. {
  7860. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7861. struct cpuacct, css);
  7862. }
  7863. /* create a new cpu accounting group */
  7864. static struct cgroup_subsys_state *cpuacct_create(
  7865. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7866. {
  7867. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7868. int i;
  7869. if (!ca)
  7870. goto out;
  7871. ca->cpuusage = alloc_percpu(u64);
  7872. if (!ca->cpuusage)
  7873. goto out_free_ca;
  7874. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7875. if (percpu_counter_init(&ca->cpustat[i], 0))
  7876. goto out_free_counters;
  7877. if (cgrp->parent)
  7878. ca->parent = cgroup_ca(cgrp->parent);
  7879. return &ca->css;
  7880. out_free_counters:
  7881. while (--i >= 0)
  7882. percpu_counter_destroy(&ca->cpustat[i]);
  7883. free_percpu(ca->cpuusage);
  7884. out_free_ca:
  7885. kfree(ca);
  7886. out:
  7887. return ERR_PTR(-ENOMEM);
  7888. }
  7889. /* destroy an existing cpu accounting group */
  7890. static void
  7891. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7892. {
  7893. struct cpuacct *ca = cgroup_ca(cgrp);
  7894. int i;
  7895. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7896. percpu_counter_destroy(&ca->cpustat[i]);
  7897. free_percpu(ca->cpuusage);
  7898. kfree(ca);
  7899. }
  7900. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7901. {
  7902. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7903. u64 data;
  7904. #ifndef CONFIG_64BIT
  7905. /*
  7906. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7907. */
  7908. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7909. data = *cpuusage;
  7910. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7911. #else
  7912. data = *cpuusage;
  7913. #endif
  7914. return data;
  7915. }
  7916. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7917. {
  7918. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7919. #ifndef CONFIG_64BIT
  7920. /*
  7921. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7922. */
  7923. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7924. *cpuusage = val;
  7925. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7926. #else
  7927. *cpuusage = val;
  7928. #endif
  7929. }
  7930. /* return total cpu usage (in nanoseconds) of a group */
  7931. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7932. {
  7933. struct cpuacct *ca = cgroup_ca(cgrp);
  7934. u64 totalcpuusage = 0;
  7935. int i;
  7936. for_each_present_cpu(i)
  7937. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7938. return totalcpuusage;
  7939. }
  7940. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7941. u64 reset)
  7942. {
  7943. struct cpuacct *ca = cgroup_ca(cgrp);
  7944. int err = 0;
  7945. int i;
  7946. if (reset) {
  7947. err = -EINVAL;
  7948. goto out;
  7949. }
  7950. for_each_present_cpu(i)
  7951. cpuacct_cpuusage_write(ca, i, 0);
  7952. out:
  7953. return err;
  7954. }
  7955. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7956. struct seq_file *m)
  7957. {
  7958. struct cpuacct *ca = cgroup_ca(cgroup);
  7959. u64 percpu;
  7960. int i;
  7961. for_each_present_cpu(i) {
  7962. percpu = cpuacct_cpuusage_read(ca, i);
  7963. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7964. }
  7965. seq_printf(m, "\n");
  7966. return 0;
  7967. }
  7968. static const char *cpuacct_stat_desc[] = {
  7969. [CPUACCT_STAT_USER] = "user",
  7970. [CPUACCT_STAT_SYSTEM] = "system",
  7971. };
  7972. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7973. struct cgroup_map_cb *cb)
  7974. {
  7975. struct cpuacct *ca = cgroup_ca(cgrp);
  7976. int i;
  7977. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7978. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7979. val = cputime64_to_clock_t(val);
  7980. cb->fill(cb, cpuacct_stat_desc[i], val);
  7981. }
  7982. return 0;
  7983. }
  7984. static struct cftype files[] = {
  7985. {
  7986. .name = "usage",
  7987. .read_u64 = cpuusage_read,
  7988. .write_u64 = cpuusage_write,
  7989. },
  7990. {
  7991. .name = "usage_percpu",
  7992. .read_seq_string = cpuacct_percpu_seq_read,
  7993. },
  7994. {
  7995. .name = "stat",
  7996. .read_map = cpuacct_stats_show,
  7997. },
  7998. };
  7999. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8000. {
  8001. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8002. }
  8003. /*
  8004. * charge this task's execution time to its accounting group.
  8005. *
  8006. * called with rq->lock held.
  8007. */
  8008. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8009. {
  8010. struct cpuacct *ca;
  8011. int cpu;
  8012. if (unlikely(!cpuacct_subsys.active))
  8013. return;
  8014. cpu = task_cpu(tsk);
  8015. rcu_read_lock();
  8016. ca = task_ca(tsk);
  8017. for (; ca; ca = ca->parent) {
  8018. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8019. *cpuusage += cputime;
  8020. }
  8021. rcu_read_unlock();
  8022. }
  8023. /*
  8024. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8025. * in cputime_t units. As a result, cpuacct_update_stats calls
  8026. * percpu_counter_add with values large enough to always overflow the
  8027. * per cpu batch limit causing bad SMP scalability.
  8028. *
  8029. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8030. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8031. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8032. */
  8033. #ifdef CONFIG_SMP
  8034. #define CPUACCT_BATCH \
  8035. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8036. #else
  8037. #define CPUACCT_BATCH 0
  8038. #endif
  8039. /*
  8040. * Charge the system/user time to the task's accounting group.
  8041. */
  8042. static void cpuacct_update_stats(struct task_struct *tsk,
  8043. enum cpuacct_stat_index idx, cputime_t val)
  8044. {
  8045. struct cpuacct *ca;
  8046. int batch = CPUACCT_BATCH;
  8047. if (unlikely(!cpuacct_subsys.active))
  8048. return;
  8049. rcu_read_lock();
  8050. ca = task_ca(tsk);
  8051. do {
  8052. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8053. ca = ca->parent;
  8054. } while (ca);
  8055. rcu_read_unlock();
  8056. }
  8057. struct cgroup_subsys cpuacct_subsys = {
  8058. .name = "cpuacct",
  8059. .create = cpuacct_create,
  8060. .destroy = cpuacct_destroy,
  8061. .populate = cpuacct_populate,
  8062. .subsys_id = cpuacct_subsys_id,
  8063. };
  8064. #endif /* CONFIG_CGROUP_CPUACCT */