kvm_main.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_arch_ops *kvm_arch_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  70. { "request_irq", STAT_OFFSET(request_irq_exits) },
  71. { "irq_exits", STAT_OFFSET(irq_exits) },
  72. { "light_exits", STAT_OFFSET(light_exits) },
  73. { "efer_reload", STAT_OFFSET(efer_reload) },
  74. { NULL }
  75. };
  76. static struct dentry *debugfs_dir;
  77. #define MAX_IO_MSRS 256
  78. #define CR0_RESERVED_BITS \
  79. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  80. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  81. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  82. #define CR4_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  84. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  85. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  87. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  88. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  89. #ifdef CONFIG_X86_64
  90. // LDT or TSS descriptor in the GDT. 16 bytes.
  91. struct segment_descriptor_64 {
  92. struct segment_descriptor s;
  93. u32 base_higher;
  94. u32 pad_zero;
  95. };
  96. #endif
  97. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  98. unsigned long arg);
  99. unsigned long segment_base(u16 selector)
  100. {
  101. struct descriptor_table gdt;
  102. struct segment_descriptor *d;
  103. unsigned long table_base;
  104. typedef unsigned long ul;
  105. unsigned long v;
  106. if (selector == 0)
  107. return 0;
  108. asm ("sgdt %0" : "=m"(gdt));
  109. table_base = gdt.base;
  110. if (selector & 4) { /* from ldt */
  111. u16 ldt_selector;
  112. asm ("sldt %0" : "=g"(ldt_selector));
  113. table_base = segment_base(ldt_selector);
  114. }
  115. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  116. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  117. #ifdef CONFIG_X86_64
  118. if (d->system == 0
  119. && (d->type == 2 || d->type == 9 || d->type == 11))
  120. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  121. #endif
  122. return v;
  123. }
  124. EXPORT_SYMBOL_GPL(segment_base);
  125. static inline int valid_vcpu(int n)
  126. {
  127. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  128. }
  129. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  130. {
  131. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  132. return;
  133. vcpu->guest_fpu_loaded = 1;
  134. fx_save(&vcpu->host_fx_image);
  135. fx_restore(&vcpu->guest_fx_image);
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  138. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  139. {
  140. if (!vcpu->guest_fpu_loaded)
  141. return;
  142. vcpu->guest_fpu_loaded = 0;
  143. fx_save(&vcpu->guest_fx_image);
  144. fx_restore(&vcpu->host_fx_image);
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  147. /*
  148. * Switches to specified vcpu, until a matching vcpu_put()
  149. */
  150. static void vcpu_load(struct kvm_vcpu *vcpu)
  151. {
  152. int cpu;
  153. mutex_lock(&vcpu->mutex);
  154. cpu = get_cpu();
  155. preempt_notifier_register(&vcpu->preempt_notifier);
  156. kvm_arch_ops->vcpu_load(vcpu, cpu);
  157. put_cpu();
  158. }
  159. static void vcpu_put(struct kvm_vcpu *vcpu)
  160. {
  161. preempt_disable();
  162. kvm_arch_ops->vcpu_put(vcpu);
  163. preempt_notifier_unregister(&vcpu->preempt_notifier);
  164. preempt_enable();
  165. mutex_unlock(&vcpu->mutex);
  166. }
  167. static void ack_flush(void *_completed)
  168. {
  169. atomic_t *completed = _completed;
  170. atomic_inc(completed);
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu, needed;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. atomic_t completed;
  178. atomic_set(&completed, 0);
  179. cpus_clear(cpus);
  180. needed = 0;
  181. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  182. vcpu = kvm->vcpus[i];
  183. if (!vcpu)
  184. continue;
  185. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  186. continue;
  187. cpu = vcpu->cpu;
  188. if (cpu != -1 && cpu != raw_smp_processor_id())
  189. if (!cpu_isset(cpu, cpus)) {
  190. cpu_set(cpu, cpus);
  191. ++needed;
  192. }
  193. }
  194. /*
  195. * We really want smp_call_function_mask() here. But that's not
  196. * available, so ipi all cpus in parallel and wait for them
  197. * to complete.
  198. */
  199. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  200. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  201. while (atomic_read(&completed) != needed) {
  202. cpu_relax();
  203. barrier();
  204. }
  205. }
  206. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  207. {
  208. struct page *page;
  209. int r;
  210. mutex_init(&vcpu->mutex);
  211. vcpu->cpu = -1;
  212. vcpu->mmu.root_hpa = INVALID_PAGE;
  213. vcpu->kvm = kvm;
  214. vcpu->vcpu_id = id;
  215. init_waitqueue_head(&vcpu->wq);
  216. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  217. if (!page) {
  218. r = -ENOMEM;
  219. goto fail;
  220. }
  221. vcpu->run = page_address(page);
  222. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  223. if (!page) {
  224. r = -ENOMEM;
  225. goto fail_free_run;
  226. }
  227. vcpu->pio_data = page_address(page);
  228. r = kvm_mmu_create(vcpu);
  229. if (r < 0)
  230. goto fail_free_pio_data;
  231. return 0;
  232. fail_free_pio_data:
  233. free_page((unsigned long)vcpu->pio_data);
  234. fail_free_run:
  235. free_page((unsigned long)vcpu->run);
  236. fail:
  237. return -ENOMEM;
  238. }
  239. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  240. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  241. {
  242. kvm_mmu_destroy(vcpu);
  243. kvm_free_apic(vcpu->apic);
  244. free_page((unsigned long)vcpu->pio_data);
  245. free_page((unsigned long)vcpu->run);
  246. }
  247. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  248. static struct kvm *kvm_create_vm(void)
  249. {
  250. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  251. if (!kvm)
  252. return ERR_PTR(-ENOMEM);
  253. kvm_io_bus_init(&kvm->pio_bus);
  254. mutex_init(&kvm->lock);
  255. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  256. kvm_io_bus_init(&kvm->mmio_bus);
  257. spin_lock(&kvm_lock);
  258. list_add(&kvm->vm_list, &vm_list);
  259. spin_unlock(&kvm_lock);
  260. return kvm;
  261. }
  262. /*
  263. * Free any memory in @free but not in @dont.
  264. */
  265. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  266. struct kvm_memory_slot *dont)
  267. {
  268. int i;
  269. if (!dont || free->phys_mem != dont->phys_mem)
  270. if (free->phys_mem) {
  271. for (i = 0; i < free->npages; ++i)
  272. if (free->phys_mem[i])
  273. __free_page(free->phys_mem[i]);
  274. vfree(free->phys_mem);
  275. }
  276. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  277. vfree(free->dirty_bitmap);
  278. free->phys_mem = NULL;
  279. free->npages = 0;
  280. free->dirty_bitmap = NULL;
  281. }
  282. static void kvm_free_physmem(struct kvm *kvm)
  283. {
  284. int i;
  285. for (i = 0; i < kvm->nmemslots; ++i)
  286. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  287. }
  288. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  289. {
  290. int i;
  291. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  292. if (vcpu->pio.guest_pages[i]) {
  293. __free_page(vcpu->pio.guest_pages[i]);
  294. vcpu->pio.guest_pages[i] = NULL;
  295. }
  296. }
  297. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu_load(vcpu);
  300. kvm_mmu_unload(vcpu);
  301. vcpu_put(vcpu);
  302. }
  303. static void kvm_free_vcpus(struct kvm *kvm)
  304. {
  305. unsigned int i;
  306. /*
  307. * Unpin any mmu pages first.
  308. */
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  310. if (kvm->vcpus[i])
  311. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  313. if (kvm->vcpus[i]) {
  314. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  315. kvm->vcpus[i] = NULL;
  316. }
  317. }
  318. }
  319. static void kvm_destroy_vm(struct kvm *kvm)
  320. {
  321. spin_lock(&kvm_lock);
  322. list_del(&kvm->vm_list);
  323. spin_unlock(&kvm_lock);
  324. kvm_io_bus_destroy(&kvm->pio_bus);
  325. kvm_io_bus_destroy(&kvm->mmio_bus);
  326. kfree(kvm->vpic);
  327. kfree(kvm->vioapic);
  328. kvm_free_vcpus(kvm);
  329. kvm_free_physmem(kvm);
  330. kfree(kvm);
  331. }
  332. static int kvm_vm_release(struct inode *inode, struct file *filp)
  333. {
  334. struct kvm *kvm = filp->private_data;
  335. kvm_destroy_vm(kvm);
  336. return 0;
  337. }
  338. static void inject_gp(struct kvm_vcpu *vcpu)
  339. {
  340. kvm_arch_ops->inject_gp(vcpu, 0);
  341. }
  342. /*
  343. * Load the pae pdptrs. Return true is they are all valid.
  344. */
  345. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  346. {
  347. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  348. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  349. int i;
  350. u64 *pdpt;
  351. int ret;
  352. struct page *page;
  353. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  354. mutex_lock(&vcpu->kvm->lock);
  355. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  356. if (!page) {
  357. ret = 0;
  358. goto out;
  359. }
  360. pdpt = kmap_atomic(page, KM_USER0);
  361. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  362. kunmap_atomic(pdpt, KM_USER0);
  363. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  364. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  365. ret = 0;
  366. goto out;
  367. }
  368. }
  369. ret = 1;
  370. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  371. out:
  372. mutex_unlock(&vcpu->kvm->lock);
  373. return ret;
  374. }
  375. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. if (cr0 & CR0_RESERVED_BITS) {
  378. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  379. cr0, vcpu->cr0);
  380. inject_gp(vcpu);
  381. return;
  382. }
  383. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  384. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  385. inject_gp(vcpu);
  386. return;
  387. }
  388. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  389. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  390. "and a clear PE flag\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  395. #ifdef CONFIG_X86_64
  396. if ((vcpu->shadow_efer & EFER_LME)) {
  397. int cs_db, cs_l;
  398. if (!is_pae(vcpu)) {
  399. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  400. "in long mode while PAE is disabled\n");
  401. inject_gp(vcpu);
  402. return;
  403. }
  404. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  405. if (cs_l) {
  406. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  407. "in long mode while CS.L == 1\n");
  408. inject_gp(vcpu);
  409. return;
  410. }
  411. } else
  412. #endif
  413. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  414. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  415. "reserved bits\n");
  416. inject_gp(vcpu);
  417. return;
  418. }
  419. }
  420. kvm_arch_ops->set_cr0(vcpu, cr0);
  421. vcpu->cr0 = cr0;
  422. mutex_lock(&vcpu->kvm->lock);
  423. kvm_mmu_reset_context(vcpu);
  424. mutex_unlock(&vcpu->kvm->lock);
  425. return;
  426. }
  427. EXPORT_SYMBOL_GPL(set_cr0);
  428. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  429. {
  430. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  431. }
  432. EXPORT_SYMBOL_GPL(lmsw);
  433. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  434. {
  435. if (cr4 & CR4_RESERVED_BITS) {
  436. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (is_long_mode(vcpu)) {
  441. if (!(cr4 & X86_CR4_PAE)) {
  442. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  443. "in long mode\n");
  444. inject_gp(vcpu);
  445. return;
  446. }
  447. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  448. && !load_pdptrs(vcpu, vcpu->cr3)) {
  449. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  450. inject_gp(vcpu);
  451. return;
  452. }
  453. if (cr4 & X86_CR4_VMXE) {
  454. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  455. inject_gp(vcpu);
  456. return;
  457. }
  458. kvm_arch_ops->set_cr4(vcpu, cr4);
  459. mutex_lock(&vcpu->kvm->lock);
  460. kvm_mmu_reset_context(vcpu);
  461. mutex_unlock(&vcpu->kvm->lock);
  462. }
  463. EXPORT_SYMBOL_GPL(set_cr4);
  464. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  465. {
  466. if (is_long_mode(vcpu)) {
  467. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  468. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  469. inject_gp(vcpu);
  470. return;
  471. }
  472. } else {
  473. if (is_pae(vcpu)) {
  474. if (cr3 & CR3_PAE_RESERVED_BITS) {
  475. printk(KERN_DEBUG
  476. "set_cr3: #GP, reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  481. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  482. "reserved bits\n");
  483. inject_gp(vcpu);
  484. return;
  485. }
  486. } else {
  487. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  488. printk(KERN_DEBUG
  489. "set_cr3: #GP, reserved bits\n");
  490. inject_gp(vcpu);
  491. return;
  492. }
  493. }
  494. }
  495. mutex_lock(&vcpu->kvm->lock);
  496. /*
  497. * Does the new cr3 value map to physical memory? (Note, we
  498. * catch an invalid cr3 even in real-mode, because it would
  499. * cause trouble later on when we turn on paging anyway.)
  500. *
  501. * A real CPU would silently accept an invalid cr3 and would
  502. * attempt to use it - with largely undefined (and often hard
  503. * to debug) behavior on the guest side.
  504. */
  505. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  506. inject_gp(vcpu);
  507. else {
  508. vcpu->cr3 = cr3;
  509. vcpu->mmu.new_cr3(vcpu);
  510. }
  511. mutex_unlock(&vcpu->kvm->lock);
  512. }
  513. EXPORT_SYMBOL_GPL(set_cr3);
  514. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  515. {
  516. if (cr8 & CR8_RESERVED_BITS) {
  517. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  518. inject_gp(vcpu);
  519. return;
  520. }
  521. if (irqchip_in_kernel(vcpu->kvm))
  522. kvm_lapic_set_tpr(vcpu, cr8);
  523. else
  524. vcpu->cr8 = cr8;
  525. }
  526. EXPORT_SYMBOL_GPL(set_cr8);
  527. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  528. {
  529. if (irqchip_in_kernel(vcpu->kvm))
  530. return kvm_lapic_get_cr8(vcpu);
  531. else
  532. return vcpu->cr8;
  533. }
  534. EXPORT_SYMBOL_GPL(get_cr8);
  535. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  536. {
  537. if (irqchip_in_kernel(vcpu->kvm))
  538. return vcpu->apic_base;
  539. else
  540. return vcpu->apic_base;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  543. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  544. {
  545. /* TODO: reserve bits check */
  546. if (irqchip_in_kernel(vcpu->kvm))
  547. kvm_lapic_set_base(vcpu, data);
  548. else
  549. vcpu->apic_base = data;
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  552. void fx_init(struct kvm_vcpu *vcpu)
  553. {
  554. unsigned after_mxcsr_mask;
  555. /* Initialize guest FPU by resetting ours and saving into guest's */
  556. preempt_disable();
  557. fx_save(&vcpu->host_fx_image);
  558. fpu_init();
  559. fx_save(&vcpu->guest_fx_image);
  560. fx_restore(&vcpu->host_fx_image);
  561. preempt_enable();
  562. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  563. vcpu->guest_fx_image.mxcsr = 0x1f80;
  564. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  565. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  566. }
  567. EXPORT_SYMBOL_GPL(fx_init);
  568. /*
  569. * Allocate some memory and give it an address in the guest physical address
  570. * space.
  571. *
  572. * Discontiguous memory is allowed, mostly for framebuffers.
  573. */
  574. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  575. struct kvm_memory_region *mem)
  576. {
  577. int r;
  578. gfn_t base_gfn;
  579. unsigned long npages;
  580. unsigned long i;
  581. struct kvm_memory_slot *memslot;
  582. struct kvm_memory_slot old, new;
  583. int memory_config_version;
  584. r = -EINVAL;
  585. /* General sanity checks */
  586. if (mem->memory_size & (PAGE_SIZE - 1))
  587. goto out;
  588. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  589. goto out;
  590. if (mem->slot >= KVM_MEMORY_SLOTS)
  591. goto out;
  592. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  593. goto out;
  594. memslot = &kvm->memslots[mem->slot];
  595. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  596. npages = mem->memory_size >> PAGE_SHIFT;
  597. if (!npages)
  598. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  599. raced:
  600. mutex_lock(&kvm->lock);
  601. memory_config_version = kvm->memory_config_version;
  602. new = old = *memslot;
  603. new.base_gfn = base_gfn;
  604. new.npages = npages;
  605. new.flags = mem->flags;
  606. /* Disallow changing a memory slot's size. */
  607. r = -EINVAL;
  608. if (npages && old.npages && npages != old.npages)
  609. goto out_unlock;
  610. /* Check for overlaps */
  611. r = -EEXIST;
  612. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  613. struct kvm_memory_slot *s = &kvm->memslots[i];
  614. if (s == memslot)
  615. continue;
  616. if (!((base_gfn + npages <= s->base_gfn) ||
  617. (base_gfn >= s->base_gfn + s->npages)))
  618. goto out_unlock;
  619. }
  620. /*
  621. * Do memory allocations outside lock. memory_config_version will
  622. * detect any races.
  623. */
  624. mutex_unlock(&kvm->lock);
  625. /* Deallocate if slot is being removed */
  626. if (!npages)
  627. new.phys_mem = NULL;
  628. /* Free page dirty bitmap if unneeded */
  629. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  630. new.dirty_bitmap = NULL;
  631. r = -ENOMEM;
  632. /* Allocate if a slot is being created */
  633. if (npages && !new.phys_mem) {
  634. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  635. if (!new.phys_mem)
  636. goto out_free;
  637. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  638. for (i = 0; i < npages; ++i) {
  639. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  640. | __GFP_ZERO);
  641. if (!new.phys_mem[i])
  642. goto out_free;
  643. set_page_private(new.phys_mem[i],0);
  644. }
  645. }
  646. /* Allocate page dirty bitmap if needed */
  647. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  648. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  649. new.dirty_bitmap = vmalloc(dirty_bytes);
  650. if (!new.dirty_bitmap)
  651. goto out_free;
  652. memset(new.dirty_bitmap, 0, dirty_bytes);
  653. }
  654. mutex_lock(&kvm->lock);
  655. if (memory_config_version != kvm->memory_config_version) {
  656. mutex_unlock(&kvm->lock);
  657. kvm_free_physmem_slot(&new, &old);
  658. goto raced;
  659. }
  660. r = -EAGAIN;
  661. if (kvm->busy)
  662. goto out_unlock;
  663. if (mem->slot >= kvm->nmemslots)
  664. kvm->nmemslots = mem->slot + 1;
  665. *memslot = new;
  666. ++kvm->memory_config_version;
  667. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  668. kvm_flush_remote_tlbs(kvm);
  669. mutex_unlock(&kvm->lock);
  670. kvm_free_physmem_slot(&old, &new);
  671. return 0;
  672. out_unlock:
  673. mutex_unlock(&kvm->lock);
  674. out_free:
  675. kvm_free_physmem_slot(&new, &old);
  676. out:
  677. return r;
  678. }
  679. /*
  680. * Get (and clear) the dirty memory log for a memory slot.
  681. */
  682. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  683. struct kvm_dirty_log *log)
  684. {
  685. struct kvm_memory_slot *memslot;
  686. int r, i;
  687. int n;
  688. unsigned long any = 0;
  689. mutex_lock(&kvm->lock);
  690. /*
  691. * Prevent changes to guest memory configuration even while the lock
  692. * is not taken.
  693. */
  694. ++kvm->busy;
  695. mutex_unlock(&kvm->lock);
  696. r = -EINVAL;
  697. if (log->slot >= KVM_MEMORY_SLOTS)
  698. goto out;
  699. memslot = &kvm->memslots[log->slot];
  700. r = -ENOENT;
  701. if (!memslot->dirty_bitmap)
  702. goto out;
  703. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  704. for (i = 0; !any && i < n/sizeof(long); ++i)
  705. any = memslot->dirty_bitmap[i];
  706. r = -EFAULT;
  707. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  708. goto out;
  709. /* If nothing is dirty, don't bother messing with page tables. */
  710. if (any) {
  711. mutex_lock(&kvm->lock);
  712. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  713. kvm_flush_remote_tlbs(kvm);
  714. memset(memslot->dirty_bitmap, 0, n);
  715. mutex_unlock(&kvm->lock);
  716. }
  717. r = 0;
  718. out:
  719. mutex_lock(&kvm->lock);
  720. --kvm->busy;
  721. mutex_unlock(&kvm->lock);
  722. return r;
  723. }
  724. /*
  725. * Set a new alias region. Aliases map a portion of physical memory into
  726. * another portion. This is useful for memory windows, for example the PC
  727. * VGA region.
  728. */
  729. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  730. struct kvm_memory_alias *alias)
  731. {
  732. int r, n;
  733. struct kvm_mem_alias *p;
  734. r = -EINVAL;
  735. /* General sanity checks */
  736. if (alias->memory_size & (PAGE_SIZE - 1))
  737. goto out;
  738. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  739. goto out;
  740. if (alias->slot >= KVM_ALIAS_SLOTS)
  741. goto out;
  742. if (alias->guest_phys_addr + alias->memory_size
  743. < alias->guest_phys_addr)
  744. goto out;
  745. if (alias->target_phys_addr + alias->memory_size
  746. < alias->target_phys_addr)
  747. goto out;
  748. mutex_lock(&kvm->lock);
  749. p = &kvm->aliases[alias->slot];
  750. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  751. p->npages = alias->memory_size >> PAGE_SHIFT;
  752. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  753. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  754. if (kvm->aliases[n - 1].npages)
  755. break;
  756. kvm->naliases = n;
  757. kvm_mmu_zap_all(kvm);
  758. mutex_unlock(&kvm->lock);
  759. return 0;
  760. out:
  761. return r;
  762. }
  763. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  764. {
  765. int r;
  766. r = 0;
  767. switch (chip->chip_id) {
  768. case KVM_IRQCHIP_PIC_MASTER:
  769. memcpy (&chip->chip.pic,
  770. &pic_irqchip(kvm)->pics[0],
  771. sizeof(struct kvm_pic_state));
  772. break;
  773. case KVM_IRQCHIP_PIC_SLAVE:
  774. memcpy (&chip->chip.pic,
  775. &pic_irqchip(kvm)->pics[1],
  776. sizeof(struct kvm_pic_state));
  777. break;
  778. default:
  779. r = -EINVAL;
  780. break;
  781. }
  782. return r;
  783. }
  784. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  785. {
  786. int r;
  787. r = 0;
  788. switch (chip->chip_id) {
  789. case KVM_IRQCHIP_PIC_MASTER:
  790. memcpy (&pic_irqchip(kvm)->pics[0],
  791. &chip->chip.pic,
  792. sizeof(struct kvm_pic_state));
  793. break;
  794. case KVM_IRQCHIP_PIC_SLAVE:
  795. memcpy (&pic_irqchip(kvm)->pics[1],
  796. &chip->chip.pic,
  797. sizeof(struct kvm_pic_state));
  798. break;
  799. default:
  800. r = -EINVAL;
  801. break;
  802. }
  803. kvm_pic_update_irq(pic_irqchip(kvm));
  804. return r;
  805. }
  806. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  807. {
  808. int i;
  809. struct kvm_mem_alias *alias;
  810. for (i = 0; i < kvm->naliases; ++i) {
  811. alias = &kvm->aliases[i];
  812. if (gfn >= alias->base_gfn
  813. && gfn < alias->base_gfn + alias->npages)
  814. return alias->target_gfn + gfn - alias->base_gfn;
  815. }
  816. return gfn;
  817. }
  818. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  819. {
  820. int i;
  821. for (i = 0; i < kvm->nmemslots; ++i) {
  822. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  823. if (gfn >= memslot->base_gfn
  824. && gfn < memslot->base_gfn + memslot->npages)
  825. return memslot;
  826. }
  827. return NULL;
  828. }
  829. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  830. {
  831. gfn = unalias_gfn(kvm, gfn);
  832. return __gfn_to_memslot(kvm, gfn);
  833. }
  834. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  835. {
  836. struct kvm_memory_slot *slot;
  837. gfn = unalias_gfn(kvm, gfn);
  838. slot = __gfn_to_memslot(kvm, gfn);
  839. if (!slot)
  840. return NULL;
  841. return slot->phys_mem[gfn - slot->base_gfn];
  842. }
  843. EXPORT_SYMBOL_GPL(gfn_to_page);
  844. /* WARNING: Does not work on aliased pages. */
  845. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  846. {
  847. struct kvm_memory_slot *memslot;
  848. memslot = __gfn_to_memslot(kvm, gfn);
  849. if (memslot && memslot->dirty_bitmap) {
  850. unsigned long rel_gfn = gfn - memslot->base_gfn;
  851. /* avoid RMW */
  852. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  853. set_bit(rel_gfn, memslot->dirty_bitmap);
  854. }
  855. }
  856. int emulator_read_std(unsigned long addr,
  857. void *val,
  858. unsigned int bytes,
  859. struct kvm_vcpu *vcpu)
  860. {
  861. void *data = val;
  862. while (bytes) {
  863. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  864. unsigned offset = addr & (PAGE_SIZE-1);
  865. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  866. unsigned long pfn;
  867. struct page *page;
  868. void *page_virt;
  869. if (gpa == UNMAPPED_GVA)
  870. return X86EMUL_PROPAGATE_FAULT;
  871. pfn = gpa >> PAGE_SHIFT;
  872. page = gfn_to_page(vcpu->kvm, pfn);
  873. if (!page)
  874. return X86EMUL_UNHANDLEABLE;
  875. page_virt = kmap_atomic(page, KM_USER0);
  876. memcpy(data, page_virt + offset, tocopy);
  877. kunmap_atomic(page_virt, KM_USER0);
  878. bytes -= tocopy;
  879. data += tocopy;
  880. addr += tocopy;
  881. }
  882. return X86EMUL_CONTINUE;
  883. }
  884. EXPORT_SYMBOL_GPL(emulator_read_std);
  885. static int emulator_write_std(unsigned long addr,
  886. const void *val,
  887. unsigned int bytes,
  888. struct kvm_vcpu *vcpu)
  889. {
  890. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  891. return X86EMUL_UNHANDLEABLE;
  892. }
  893. /*
  894. * Only apic need an MMIO device hook, so shortcut now..
  895. */
  896. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  897. gpa_t addr)
  898. {
  899. struct kvm_io_device *dev;
  900. if (vcpu->apic) {
  901. dev = &vcpu->apic->dev;
  902. if (dev->in_range(dev, addr))
  903. return dev;
  904. }
  905. return NULL;
  906. }
  907. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  908. gpa_t addr)
  909. {
  910. struct kvm_io_device *dev;
  911. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  912. if (dev == NULL)
  913. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  914. return dev;
  915. }
  916. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  917. gpa_t addr)
  918. {
  919. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  920. }
  921. static int emulator_read_emulated(unsigned long addr,
  922. void *val,
  923. unsigned int bytes,
  924. struct kvm_vcpu *vcpu)
  925. {
  926. struct kvm_io_device *mmio_dev;
  927. gpa_t gpa;
  928. if (vcpu->mmio_read_completed) {
  929. memcpy(val, vcpu->mmio_data, bytes);
  930. vcpu->mmio_read_completed = 0;
  931. return X86EMUL_CONTINUE;
  932. } else if (emulator_read_std(addr, val, bytes, vcpu)
  933. == X86EMUL_CONTINUE)
  934. return X86EMUL_CONTINUE;
  935. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  936. if (gpa == UNMAPPED_GVA)
  937. return X86EMUL_PROPAGATE_FAULT;
  938. /*
  939. * Is this MMIO handled locally?
  940. */
  941. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  942. if (mmio_dev) {
  943. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  944. return X86EMUL_CONTINUE;
  945. }
  946. vcpu->mmio_needed = 1;
  947. vcpu->mmio_phys_addr = gpa;
  948. vcpu->mmio_size = bytes;
  949. vcpu->mmio_is_write = 0;
  950. return X86EMUL_UNHANDLEABLE;
  951. }
  952. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  953. const void *val, int bytes)
  954. {
  955. struct page *page;
  956. void *virt;
  957. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  958. return 0;
  959. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  960. if (!page)
  961. return 0;
  962. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  963. virt = kmap_atomic(page, KM_USER0);
  964. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  965. memcpy(virt + offset_in_page(gpa), val, bytes);
  966. kunmap_atomic(virt, KM_USER0);
  967. return 1;
  968. }
  969. static int emulator_write_emulated_onepage(unsigned long addr,
  970. const void *val,
  971. unsigned int bytes,
  972. struct kvm_vcpu *vcpu)
  973. {
  974. struct kvm_io_device *mmio_dev;
  975. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  976. if (gpa == UNMAPPED_GVA) {
  977. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  978. return X86EMUL_PROPAGATE_FAULT;
  979. }
  980. if (emulator_write_phys(vcpu, gpa, val, bytes))
  981. return X86EMUL_CONTINUE;
  982. /*
  983. * Is this MMIO handled locally?
  984. */
  985. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  986. if (mmio_dev) {
  987. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  988. return X86EMUL_CONTINUE;
  989. }
  990. vcpu->mmio_needed = 1;
  991. vcpu->mmio_phys_addr = gpa;
  992. vcpu->mmio_size = bytes;
  993. vcpu->mmio_is_write = 1;
  994. memcpy(vcpu->mmio_data, val, bytes);
  995. return X86EMUL_CONTINUE;
  996. }
  997. int emulator_write_emulated(unsigned long addr,
  998. const void *val,
  999. unsigned int bytes,
  1000. struct kvm_vcpu *vcpu)
  1001. {
  1002. /* Crossing a page boundary? */
  1003. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1004. int rc, now;
  1005. now = -addr & ~PAGE_MASK;
  1006. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1007. if (rc != X86EMUL_CONTINUE)
  1008. return rc;
  1009. addr += now;
  1010. val += now;
  1011. bytes -= now;
  1012. }
  1013. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1014. }
  1015. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1016. static int emulator_cmpxchg_emulated(unsigned long addr,
  1017. const void *old,
  1018. const void *new,
  1019. unsigned int bytes,
  1020. struct kvm_vcpu *vcpu)
  1021. {
  1022. static int reported;
  1023. if (!reported) {
  1024. reported = 1;
  1025. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1026. }
  1027. return emulator_write_emulated(addr, new, bytes, vcpu);
  1028. }
  1029. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1030. {
  1031. return kvm_arch_ops->get_segment_base(vcpu, seg);
  1032. }
  1033. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1034. {
  1035. return X86EMUL_CONTINUE;
  1036. }
  1037. int emulate_clts(struct kvm_vcpu *vcpu)
  1038. {
  1039. unsigned long cr0;
  1040. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  1041. kvm_arch_ops->set_cr0(vcpu, cr0);
  1042. return X86EMUL_CONTINUE;
  1043. }
  1044. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1045. {
  1046. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1047. switch (dr) {
  1048. case 0 ... 3:
  1049. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1050. return X86EMUL_CONTINUE;
  1051. default:
  1052. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1053. return X86EMUL_UNHANDLEABLE;
  1054. }
  1055. }
  1056. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1057. {
  1058. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1059. int exception;
  1060. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1061. if (exception) {
  1062. /* FIXME: better handling */
  1063. return X86EMUL_UNHANDLEABLE;
  1064. }
  1065. return X86EMUL_CONTINUE;
  1066. }
  1067. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1068. {
  1069. static int reported;
  1070. u8 opcodes[4];
  1071. unsigned long rip = ctxt->vcpu->rip;
  1072. unsigned long rip_linear;
  1073. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1074. if (reported)
  1075. return;
  1076. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1077. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1078. " rip %lx %02x %02x %02x %02x\n",
  1079. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1080. reported = 1;
  1081. }
  1082. struct x86_emulate_ops emulate_ops = {
  1083. .read_std = emulator_read_std,
  1084. .write_std = emulator_write_std,
  1085. .read_emulated = emulator_read_emulated,
  1086. .write_emulated = emulator_write_emulated,
  1087. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1088. };
  1089. int emulate_instruction(struct kvm_vcpu *vcpu,
  1090. struct kvm_run *run,
  1091. unsigned long cr2,
  1092. u16 error_code)
  1093. {
  1094. struct x86_emulate_ctxt emulate_ctxt;
  1095. int r;
  1096. int cs_db, cs_l;
  1097. vcpu->mmio_fault_cr2 = cr2;
  1098. kvm_arch_ops->cache_regs(vcpu);
  1099. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1100. emulate_ctxt.vcpu = vcpu;
  1101. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1102. emulate_ctxt.cr2 = cr2;
  1103. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1104. ? X86EMUL_MODE_REAL : cs_l
  1105. ? X86EMUL_MODE_PROT64 : cs_db
  1106. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1107. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1108. emulate_ctxt.cs_base = 0;
  1109. emulate_ctxt.ds_base = 0;
  1110. emulate_ctxt.es_base = 0;
  1111. emulate_ctxt.ss_base = 0;
  1112. } else {
  1113. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1114. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1115. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1116. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1117. }
  1118. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1119. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1120. vcpu->mmio_is_write = 0;
  1121. vcpu->pio.string = 0;
  1122. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1123. if (vcpu->pio.string)
  1124. return EMULATE_DO_MMIO;
  1125. if ((r || vcpu->mmio_is_write) && run) {
  1126. run->exit_reason = KVM_EXIT_MMIO;
  1127. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1128. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1129. run->mmio.len = vcpu->mmio_size;
  1130. run->mmio.is_write = vcpu->mmio_is_write;
  1131. }
  1132. if (r) {
  1133. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1134. return EMULATE_DONE;
  1135. if (!vcpu->mmio_needed) {
  1136. report_emulation_failure(&emulate_ctxt);
  1137. return EMULATE_FAIL;
  1138. }
  1139. return EMULATE_DO_MMIO;
  1140. }
  1141. kvm_arch_ops->decache_regs(vcpu);
  1142. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1143. if (vcpu->mmio_is_write) {
  1144. vcpu->mmio_needed = 0;
  1145. return EMULATE_DO_MMIO;
  1146. }
  1147. return EMULATE_DONE;
  1148. }
  1149. EXPORT_SYMBOL_GPL(emulate_instruction);
  1150. /*
  1151. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1152. */
  1153. static void kvm_vcpu_kernel_halt(struct kvm_vcpu *vcpu)
  1154. {
  1155. DECLARE_WAITQUEUE(wait, current);
  1156. add_wait_queue(&vcpu->wq, &wait);
  1157. /*
  1158. * We will block until either an interrupt or a signal wakes us up
  1159. */
  1160. while(!(irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))
  1161. && !vcpu->irq_summary
  1162. && !signal_pending(current)) {
  1163. set_current_state(TASK_INTERRUPTIBLE);
  1164. vcpu_put(vcpu);
  1165. schedule();
  1166. vcpu_load(vcpu);
  1167. }
  1168. remove_wait_queue(&vcpu->wq, &wait);
  1169. set_current_state(TASK_RUNNING);
  1170. }
  1171. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1172. {
  1173. ++vcpu->stat.halt_exits;
  1174. if (irqchip_in_kernel(vcpu->kvm)) {
  1175. kvm_vcpu_kernel_halt(vcpu);
  1176. return 1;
  1177. } else {
  1178. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1179. return 0;
  1180. }
  1181. }
  1182. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1183. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1184. {
  1185. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1186. kvm_arch_ops->cache_regs(vcpu);
  1187. ret = -KVM_EINVAL;
  1188. #ifdef CONFIG_X86_64
  1189. if (is_long_mode(vcpu)) {
  1190. nr = vcpu->regs[VCPU_REGS_RAX];
  1191. a0 = vcpu->regs[VCPU_REGS_RDI];
  1192. a1 = vcpu->regs[VCPU_REGS_RSI];
  1193. a2 = vcpu->regs[VCPU_REGS_RDX];
  1194. a3 = vcpu->regs[VCPU_REGS_RCX];
  1195. a4 = vcpu->regs[VCPU_REGS_R8];
  1196. a5 = vcpu->regs[VCPU_REGS_R9];
  1197. } else
  1198. #endif
  1199. {
  1200. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1201. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1202. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1203. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1204. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1205. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1206. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1207. }
  1208. switch (nr) {
  1209. default:
  1210. run->hypercall.nr = nr;
  1211. run->hypercall.args[0] = a0;
  1212. run->hypercall.args[1] = a1;
  1213. run->hypercall.args[2] = a2;
  1214. run->hypercall.args[3] = a3;
  1215. run->hypercall.args[4] = a4;
  1216. run->hypercall.args[5] = a5;
  1217. run->hypercall.ret = ret;
  1218. run->hypercall.longmode = is_long_mode(vcpu);
  1219. kvm_arch_ops->decache_regs(vcpu);
  1220. return 0;
  1221. }
  1222. vcpu->regs[VCPU_REGS_RAX] = ret;
  1223. kvm_arch_ops->decache_regs(vcpu);
  1224. return 1;
  1225. }
  1226. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1227. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1228. {
  1229. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1230. }
  1231. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1232. {
  1233. struct descriptor_table dt = { limit, base };
  1234. kvm_arch_ops->set_gdt(vcpu, &dt);
  1235. }
  1236. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1237. {
  1238. struct descriptor_table dt = { limit, base };
  1239. kvm_arch_ops->set_idt(vcpu, &dt);
  1240. }
  1241. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1242. unsigned long *rflags)
  1243. {
  1244. lmsw(vcpu, msw);
  1245. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1246. }
  1247. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1248. {
  1249. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1250. switch (cr) {
  1251. case 0:
  1252. return vcpu->cr0;
  1253. case 2:
  1254. return vcpu->cr2;
  1255. case 3:
  1256. return vcpu->cr3;
  1257. case 4:
  1258. return vcpu->cr4;
  1259. default:
  1260. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1261. return 0;
  1262. }
  1263. }
  1264. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1265. unsigned long *rflags)
  1266. {
  1267. switch (cr) {
  1268. case 0:
  1269. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1270. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1271. break;
  1272. case 2:
  1273. vcpu->cr2 = val;
  1274. break;
  1275. case 3:
  1276. set_cr3(vcpu, val);
  1277. break;
  1278. case 4:
  1279. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1280. break;
  1281. default:
  1282. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1283. }
  1284. }
  1285. /*
  1286. * Register the para guest with the host:
  1287. */
  1288. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1289. {
  1290. struct kvm_vcpu_para_state *para_state;
  1291. hpa_t para_state_hpa, hypercall_hpa;
  1292. struct page *para_state_page;
  1293. unsigned char *hypercall;
  1294. gpa_t hypercall_gpa;
  1295. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1296. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1297. /*
  1298. * Needs to be page aligned:
  1299. */
  1300. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1301. goto err_gp;
  1302. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1303. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1304. if (is_error_hpa(para_state_hpa))
  1305. goto err_gp;
  1306. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1307. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1308. para_state = kmap(para_state_page);
  1309. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1310. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1311. para_state->host_version = KVM_PARA_API_VERSION;
  1312. /*
  1313. * We cannot support guests that try to register themselves
  1314. * with a newer API version than the host supports:
  1315. */
  1316. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1317. para_state->ret = -KVM_EINVAL;
  1318. goto err_kunmap_skip;
  1319. }
  1320. hypercall_gpa = para_state->hypercall_gpa;
  1321. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1322. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1323. if (is_error_hpa(hypercall_hpa)) {
  1324. para_state->ret = -KVM_EINVAL;
  1325. goto err_kunmap_skip;
  1326. }
  1327. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1328. vcpu->para_state_page = para_state_page;
  1329. vcpu->para_state_gpa = para_state_gpa;
  1330. vcpu->hypercall_gpa = hypercall_gpa;
  1331. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1332. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1333. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1334. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1335. kunmap_atomic(hypercall, KM_USER1);
  1336. para_state->ret = 0;
  1337. err_kunmap_skip:
  1338. kunmap(para_state_page);
  1339. return 0;
  1340. err_gp:
  1341. return 1;
  1342. }
  1343. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1344. {
  1345. u64 data;
  1346. switch (msr) {
  1347. case 0xc0010010: /* SYSCFG */
  1348. case 0xc0010015: /* HWCR */
  1349. case MSR_IA32_PLATFORM_ID:
  1350. case MSR_IA32_P5_MC_ADDR:
  1351. case MSR_IA32_P5_MC_TYPE:
  1352. case MSR_IA32_MC0_CTL:
  1353. case MSR_IA32_MCG_STATUS:
  1354. case MSR_IA32_MCG_CAP:
  1355. case MSR_IA32_MC0_MISC:
  1356. case MSR_IA32_MC0_MISC+4:
  1357. case MSR_IA32_MC0_MISC+8:
  1358. case MSR_IA32_MC0_MISC+12:
  1359. case MSR_IA32_MC0_MISC+16:
  1360. case MSR_IA32_UCODE_REV:
  1361. case MSR_IA32_PERF_STATUS:
  1362. case MSR_IA32_EBL_CR_POWERON:
  1363. /* MTRR registers */
  1364. case 0xfe:
  1365. case 0x200 ... 0x2ff:
  1366. data = 0;
  1367. break;
  1368. case 0xcd: /* fsb frequency */
  1369. data = 3;
  1370. break;
  1371. case MSR_IA32_APICBASE:
  1372. data = kvm_get_apic_base(vcpu);
  1373. break;
  1374. case MSR_IA32_MISC_ENABLE:
  1375. data = vcpu->ia32_misc_enable_msr;
  1376. break;
  1377. #ifdef CONFIG_X86_64
  1378. case MSR_EFER:
  1379. data = vcpu->shadow_efer;
  1380. break;
  1381. #endif
  1382. default:
  1383. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1384. return 1;
  1385. }
  1386. *pdata = data;
  1387. return 0;
  1388. }
  1389. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1390. /*
  1391. * Reads an msr value (of 'msr_index') into 'pdata'.
  1392. * Returns 0 on success, non-0 otherwise.
  1393. * Assumes vcpu_load() was already called.
  1394. */
  1395. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1396. {
  1397. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1398. }
  1399. #ifdef CONFIG_X86_64
  1400. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1401. {
  1402. if (efer & EFER_RESERVED_BITS) {
  1403. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1404. efer);
  1405. inject_gp(vcpu);
  1406. return;
  1407. }
  1408. if (is_paging(vcpu)
  1409. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1410. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1411. inject_gp(vcpu);
  1412. return;
  1413. }
  1414. kvm_arch_ops->set_efer(vcpu, efer);
  1415. efer &= ~EFER_LMA;
  1416. efer |= vcpu->shadow_efer & EFER_LMA;
  1417. vcpu->shadow_efer = efer;
  1418. }
  1419. #endif
  1420. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1421. {
  1422. switch (msr) {
  1423. #ifdef CONFIG_X86_64
  1424. case MSR_EFER:
  1425. set_efer(vcpu, data);
  1426. break;
  1427. #endif
  1428. case MSR_IA32_MC0_STATUS:
  1429. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1430. __FUNCTION__, data);
  1431. break;
  1432. case MSR_IA32_MCG_STATUS:
  1433. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1434. __FUNCTION__, data);
  1435. break;
  1436. case MSR_IA32_UCODE_REV:
  1437. case MSR_IA32_UCODE_WRITE:
  1438. case 0x200 ... 0x2ff: /* MTRRs */
  1439. break;
  1440. case MSR_IA32_APICBASE:
  1441. kvm_set_apic_base(vcpu, data);
  1442. break;
  1443. case MSR_IA32_MISC_ENABLE:
  1444. vcpu->ia32_misc_enable_msr = data;
  1445. break;
  1446. /*
  1447. * This is the 'probe whether the host is KVM' logic:
  1448. */
  1449. case MSR_KVM_API_MAGIC:
  1450. return vcpu_register_para(vcpu, data);
  1451. default:
  1452. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1453. return 1;
  1454. }
  1455. return 0;
  1456. }
  1457. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1458. /*
  1459. * Writes msr value into into the appropriate "register".
  1460. * Returns 0 on success, non-0 otherwise.
  1461. * Assumes vcpu_load() was already called.
  1462. */
  1463. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1464. {
  1465. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1466. }
  1467. void kvm_resched(struct kvm_vcpu *vcpu)
  1468. {
  1469. if (!need_resched())
  1470. return;
  1471. cond_resched();
  1472. }
  1473. EXPORT_SYMBOL_GPL(kvm_resched);
  1474. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1475. {
  1476. int i;
  1477. u32 function;
  1478. struct kvm_cpuid_entry *e, *best;
  1479. kvm_arch_ops->cache_regs(vcpu);
  1480. function = vcpu->regs[VCPU_REGS_RAX];
  1481. vcpu->regs[VCPU_REGS_RAX] = 0;
  1482. vcpu->regs[VCPU_REGS_RBX] = 0;
  1483. vcpu->regs[VCPU_REGS_RCX] = 0;
  1484. vcpu->regs[VCPU_REGS_RDX] = 0;
  1485. best = NULL;
  1486. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1487. e = &vcpu->cpuid_entries[i];
  1488. if (e->function == function) {
  1489. best = e;
  1490. break;
  1491. }
  1492. /*
  1493. * Both basic or both extended?
  1494. */
  1495. if (((e->function ^ function) & 0x80000000) == 0)
  1496. if (!best || e->function > best->function)
  1497. best = e;
  1498. }
  1499. if (best) {
  1500. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1501. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1502. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1503. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1504. }
  1505. kvm_arch_ops->decache_regs(vcpu);
  1506. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1507. }
  1508. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1509. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1510. {
  1511. void *p = vcpu->pio_data;
  1512. void *q;
  1513. unsigned bytes;
  1514. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1515. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1516. PAGE_KERNEL);
  1517. if (!q) {
  1518. free_pio_guest_pages(vcpu);
  1519. return -ENOMEM;
  1520. }
  1521. q += vcpu->pio.guest_page_offset;
  1522. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1523. if (vcpu->pio.in)
  1524. memcpy(q, p, bytes);
  1525. else
  1526. memcpy(p, q, bytes);
  1527. q -= vcpu->pio.guest_page_offset;
  1528. vunmap(q);
  1529. free_pio_guest_pages(vcpu);
  1530. return 0;
  1531. }
  1532. static int complete_pio(struct kvm_vcpu *vcpu)
  1533. {
  1534. struct kvm_pio_request *io = &vcpu->pio;
  1535. long delta;
  1536. int r;
  1537. kvm_arch_ops->cache_regs(vcpu);
  1538. if (!io->string) {
  1539. if (io->in)
  1540. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1541. io->size);
  1542. } else {
  1543. if (io->in) {
  1544. r = pio_copy_data(vcpu);
  1545. if (r) {
  1546. kvm_arch_ops->cache_regs(vcpu);
  1547. return r;
  1548. }
  1549. }
  1550. delta = 1;
  1551. if (io->rep) {
  1552. delta *= io->cur_count;
  1553. /*
  1554. * The size of the register should really depend on
  1555. * current address size.
  1556. */
  1557. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1558. }
  1559. if (io->down)
  1560. delta = -delta;
  1561. delta *= io->size;
  1562. if (io->in)
  1563. vcpu->regs[VCPU_REGS_RDI] += delta;
  1564. else
  1565. vcpu->regs[VCPU_REGS_RSI] += delta;
  1566. }
  1567. kvm_arch_ops->decache_regs(vcpu);
  1568. io->count -= io->cur_count;
  1569. io->cur_count = 0;
  1570. if (!io->count)
  1571. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1572. return 0;
  1573. }
  1574. static void kernel_pio(struct kvm_io_device *pio_dev,
  1575. struct kvm_vcpu *vcpu,
  1576. void *pd)
  1577. {
  1578. /* TODO: String I/O for in kernel device */
  1579. mutex_lock(&vcpu->kvm->lock);
  1580. if (vcpu->pio.in)
  1581. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1582. vcpu->pio.size,
  1583. pd);
  1584. else
  1585. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1586. vcpu->pio.size,
  1587. pd);
  1588. mutex_unlock(&vcpu->kvm->lock);
  1589. }
  1590. static void pio_string_write(struct kvm_io_device *pio_dev,
  1591. struct kvm_vcpu *vcpu)
  1592. {
  1593. struct kvm_pio_request *io = &vcpu->pio;
  1594. void *pd = vcpu->pio_data;
  1595. int i;
  1596. mutex_lock(&vcpu->kvm->lock);
  1597. for (i = 0; i < io->cur_count; i++) {
  1598. kvm_iodevice_write(pio_dev, io->port,
  1599. io->size,
  1600. pd);
  1601. pd += io->size;
  1602. }
  1603. mutex_unlock(&vcpu->kvm->lock);
  1604. }
  1605. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1606. int size, unsigned port)
  1607. {
  1608. struct kvm_io_device *pio_dev;
  1609. vcpu->run->exit_reason = KVM_EXIT_IO;
  1610. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1611. vcpu->run->io.size = vcpu->pio.size = size;
  1612. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1613. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1614. vcpu->run->io.port = vcpu->pio.port = port;
  1615. vcpu->pio.in = in;
  1616. vcpu->pio.string = 0;
  1617. vcpu->pio.down = 0;
  1618. vcpu->pio.guest_page_offset = 0;
  1619. vcpu->pio.rep = 0;
  1620. kvm_arch_ops->cache_regs(vcpu);
  1621. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1622. kvm_arch_ops->decache_regs(vcpu);
  1623. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1624. if (pio_dev) {
  1625. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1626. complete_pio(vcpu);
  1627. return 1;
  1628. }
  1629. return 0;
  1630. }
  1631. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1632. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1633. int size, unsigned long count, int down,
  1634. gva_t address, int rep, unsigned port)
  1635. {
  1636. unsigned now, in_page;
  1637. int i, ret = 0;
  1638. int nr_pages = 1;
  1639. struct page *page;
  1640. struct kvm_io_device *pio_dev;
  1641. vcpu->run->exit_reason = KVM_EXIT_IO;
  1642. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1643. vcpu->run->io.size = vcpu->pio.size = size;
  1644. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1645. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1646. vcpu->run->io.port = vcpu->pio.port = port;
  1647. vcpu->pio.in = in;
  1648. vcpu->pio.string = 1;
  1649. vcpu->pio.down = down;
  1650. vcpu->pio.guest_page_offset = offset_in_page(address);
  1651. vcpu->pio.rep = rep;
  1652. if (!count) {
  1653. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1654. return 1;
  1655. }
  1656. if (!down)
  1657. in_page = PAGE_SIZE - offset_in_page(address);
  1658. else
  1659. in_page = offset_in_page(address) + size;
  1660. now = min(count, (unsigned long)in_page / size);
  1661. if (!now) {
  1662. /*
  1663. * String I/O straddles page boundary. Pin two guest pages
  1664. * so that we satisfy atomicity constraints. Do just one
  1665. * transaction to avoid complexity.
  1666. */
  1667. nr_pages = 2;
  1668. now = 1;
  1669. }
  1670. if (down) {
  1671. /*
  1672. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1673. */
  1674. pr_unimpl(vcpu, "guest string pio down\n");
  1675. inject_gp(vcpu);
  1676. return 1;
  1677. }
  1678. vcpu->run->io.count = now;
  1679. vcpu->pio.cur_count = now;
  1680. for (i = 0; i < nr_pages; ++i) {
  1681. mutex_lock(&vcpu->kvm->lock);
  1682. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1683. if (page)
  1684. get_page(page);
  1685. vcpu->pio.guest_pages[i] = page;
  1686. mutex_unlock(&vcpu->kvm->lock);
  1687. if (!page) {
  1688. inject_gp(vcpu);
  1689. free_pio_guest_pages(vcpu);
  1690. return 1;
  1691. }
  1692. }
  1693. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1694. if (!vcpu->pio.in) {
  1695. /* string PIO write */
  1696. ret = pio_copy_data(vcpu);
  1697. if (ret >= 0 && pio_dev) {
  1698. pio_string_write(pio_dev, vcpu);
  1699. complete_pio(vcpu);
  1700. if (vcpu->pio.count == 0)
  1701. ret = 1;
  1702. }
  1703. } else if (pio_dev)
  1704. pr_unimpl(vcpu, "no string pio read support yet, "
  1705. "port %x size %d count %ld\n",
  1706. port, size, count);
  1707. return ret;
  1708. }
  1709. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1710. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1711. {
  1712. int r;
  1713. sigset_t sigsaved;
  1714. vcpu_load(vcpu);
  1715. if (vcpu->sigset_active)
  1716. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1717. /* re-sync apic's tpr */
  1718. set_cr8(vcpu, kvm_run->cr8);
  1719. if (vcpu->pio.cur_count) {
  1720. r = complete_pio(vcpu);
  1721. if (r)
  1722. goto out;
  1723. }
  1724. if (vcpu->mmio_needed) {
  1725. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1726. vcpu->mmio_read_completed = 1;
  1727. vcpu->mmio_needed = 0;
  1728. r = emulate_instruction(vcpu, kvm_run,
  1729. vcpu->mmio_fault_cr2, 0);
  1730. if (r == EMULATE_DO_MMIO) {
  1731. /*
  1732. * Read-modify-write. Back to userspace.
  1733. */
  1734. r = 0;
  1735. goto out;
  1736. }
  1737. }
  1738. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1739. kvm_arch_ops->cache_regs(vcpu);
  1740. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1741. kvm_arch_ops->decache_regs(vcpu);
  1742. }
  1743. r = kvm_arch_ops->run(vcpu, kvm_run);
  1744. out:
  1745. if (vcpu->sigset_active)
  1746. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1747. vcpu_put(vcpu);
  1748. return r;
  1749. }
  1750. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1751. struct kvm_regs *regs)
  1752. {
  1753. vcpu_load(vcpu);
  1754. kvm_arch_ops->cache_regs(vcpu);
  1755. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1756. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1757. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1758. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1759. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1760. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1761. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1762. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1763. #ifdef CONFIG_X86_64
  1764. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1765. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1766. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1767. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1768. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1769. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1770. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1771. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1772. #endif
  1773. regs->rip = vcpu->rip;
  1774. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1775. /*
  1776. * Don't leak debug flags in case they were set for guest debugging
  1777. */
  1778. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1779. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1780. vcpu_put(vcpu);
  1781. return 0;
  1782. }
  1783. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1784. struct kvm_regs *regs)
  1785. {
  1786. vcpu_load(vcpu);
  1787. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1788. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1789. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1790. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1791. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1792. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1793. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1794. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1795. #ifdef CONFIG_X86_64
  1796. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1797. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1798. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1799. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1800. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1801. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1802. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1803. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1804. #endif
  1805. vcpu->rip = regs->rip;
  1806. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1807. kvm_arch_ops->decache_regs(vcpu);
  1808. vcpu_put(vcpu);
  1809. return 0;
  1810. }
  1811. static void get_segment(struct kvm_vcpu *vcpu,
  1812. struct kvm_segment *var, int seg)
  1813. {
  1814. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1815. }
  1816. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1817. struct kvm_sregs *sregs)
  1818. {
  1819. struct descriptor_table dt;
  1820. vcpu_load(vcpu);
  1821. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1822. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1823. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1824. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1825. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1826. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1827. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1828. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1829. kvm_arch_ops->get_idt(vcpu, &dt);
  1830. sregs->idt.limit = dt.limit;
  1831. sregs->idt.base = dt.base;
  1832. kvm_arch_ops->get_gdt(vcpu, &dt);
  1833. sregs->gdt.limit = dt.limit;
  1834. sregs->gdt.base = dt.base;
  1835. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1836. sregs->cr0 = vcpu->cr0;
  1837. sregs->cr2 = vcpu->cr2;
  1838. sregs->cr3 = vcpu->cr3;
  1839. sregs->cr4 = vcpu->cr4;
  1840. sregs->cr8 = get_cr8(vcpu);
  1841. sregs->efer = vcpu->shadow_efer;
  1842. sregs->apic_base = kvm_get_apic_base(vcpu);
  1843. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1844. sizeof sregs->interrupt_bitmap);
  1845. vcpu_put(vcpu);
  1846. return 0;
  1847. }
  1848. static void set_segment(struct kvm_vcpu *vcpu,
  1849. struct kvm_segment *var, int seg)
  1850. {
  1851. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1852. }
  1853. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1854. struct kvm_sregs *sregs)
  1855. {
  1856. int mmu_reset_needed = 0;
  1857. int i;
  1858. struct descriptor_table dt;
  1859. vcpu_load(vcpu);
  1860. dt.limit = sregs->idt.limit;
  1861. dt.base = sregs->idt.base;
  1862. kvm_arch_ops->set_idt(vcpu, &dt);
  1863. dt.limit = sregs->gdt.limit;
  1864. dt.base = sregs->gdt.base;
  1865. kvm_arch_ops->set_gdt(vcpu, &dt);
  1866. vcpu->cr2 = sregs->cr2;
  1867. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1868. vcpu->cr3 = sregs->cr3;
  1869. set_cr8(vcpu, sregs->cr8);
  1870. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1871. #ifdef CONFIG_X86_64
  1872. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1873. #endif
  1874. kvm_set_apic_base(vcpu, sregs->apic_base);
  1875. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1876. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1877. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1878. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1879. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1880. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1881. load_pdptrs(vcpu, vcpu->cr3);
  1882. if (mmu_reset_needed)
  1883. kvm_mmu_reset_context(vcpu);
  1884. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1885. sizeof vcpu->irq_pending);
  1886. vcpu->irq_summary = 0;
  1887. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1888. if (vcpu->irq_pending[i])
  1889. __set_bit(i, &vcpu->irq_summary);
  1890. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1891. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1892. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1893. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1894. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1895. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1896. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1897. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1898. vcpu_put(vcpu);
  1899. return 0;
  1900. }
  1901. /*
  1902. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1903. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1904. *
  1905. * This list is modified at module load time to reflect the
  1906. * capabilities of the host cpu.
  1907. */
  1908. static u32 msrs_to_save[] = {
  1909. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1910. MSR_K6_STAR,
  1911. #ifdef CONFIG_X86_64
  1912. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1913. #endif
  1914. MSR_IA32_TIME_STAMP_COUNTER,
  1915. };
  1916. static unsigned num_msrs_to_save;
  1917. static u32 emulated_msrs[] = {
  1918. MSR_IA32_MISC_ENABLE,
  1919. };
  1920. static __init void kvm_init_msr_list(void)
  1921. {
  1922. u32 dummy[2];
  1923. unsigned i, j;
  1924. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1925. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1926. continue;
  1927. if (j < i)
  1928. msrs_to_save[j] = msrs_to_save[i];
  1929. j++;
  1930. }
  1931. num_msrs_to_save = j;
  1932. }
  1933. /*
  1934. * Adapt set_msr() to msr_io()'s calling convention
  1935. */
  1936. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1937. {
  1938. return kvm_set_msr(vcpu, index, *data);
  1939. }
  1940. /*
  1941. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1942. *
  1943. * @return number of msrs set successfully.
  1944. */
  1945. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1946. struct kvm_msr_entry *entries,
  1947. int (*do_msr)(struct kvm_vcpu *vcpu,
  1948. unsigned index, u64 *data))
  1949. {
  1950. int i;
  1951. vcpu_load(vcpu);
  1952. for (i = 0; i < msrs->nmsrs; ++i)
  1953. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1954. break;
  1955. vcpu_put(vcpu);
  1956. return i;
  1957. }
  1958. /*
  1959. * Read or write a bunch of msrs. Parameters are user addresses.
  1960. *
  1961. * @return number of msrs set successfully.
  1962. */
  1963. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1964. int (*do_msr)(struct kvm_vcpu *vcpu,
  1965. unsigned index, u64 *data),
  1966. int writeback)
  1967. {
  1968. struct kvm_msrs msrs;
  1969. struct kvm_msr_entry *entries;
  1970. int r, n;
  1971. unsigned size;
  1972. r = -EFAULT;
  1973. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1974. goto out;
  1975. r = -E2BIG;
  1976. if (msrs.nmsrs >= MAX_IO_MSRS)
  1977. goto out;
  1978. r = -ENOMEM;
  1979. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1980. entries = vmalloc(size);
  1981. if (!entries)
  1982. goto out;
  1983. r = -EFAULT;
  1984. if (copy_from_user(entries, user_msrs->entries, size))
  1985. goto out_free;
  1986. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1987. if (r < 0)
  1988. goto out_free;
  1989. r = -EFAULT;
  1990. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1991. goto out_free;
  1992. r = n;
  1993. out_free:
  1994. vfree(entries);
  1995. out:
  1996. return r;
  1997. }
  1998. /*
  1999. * Translate a guest virtual address to a guest physical address.
  2000. */
  2001. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2002. struct kvm_translation *tr)
  2003. {
  2004. unsigned long vaddr = tr->linear_address;
  2005. gpa_t gpa;
  2006. vcpu_load(vcpu);
  2007. mutex_lock(&vcpu->kvm->lock);
  2008. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2009. tr->physical_address = gpa;
  2010. tr->valid = gpa != UNMAPPED_GVA;
  2011. tr->writeable = 1;
  2012. tr->usermode = 0;
  2013. mutex_unlock(&vcpu->kvm->lock);
  2014. vcpu_put(vcpu);
  2015. return 0;
  2016. }
  2017. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2018. struct kvm_interrupt *irq)
  2019. {
  2020. if (irq->irq < 0 || irq->irq >= 256)
  2021. return -EINVAL;
  2022. if (irqchip_in_kernel(vcpu->kvm))
  2023. return -ENXIO;
  2024. vcpu_load(vcpu);
  2025. set_bit(irq->irq, vcpu->irq_pending);
  2026. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2027. vcpu_put(vcpu);
  2028. return 0;
  2029. }
  2030. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2031. struct kvm_debug_guest *dbg)
  2032. {
  2033. int r;
  2034. vcpu_load(vcpu);
  2035. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  2036. vcpu_put(vcpu);
  2037. return r;
  2038. }
  2039. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2040. unsigned long address,
  2041. int *type)
  2042. {
  2043. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2044. unsigned long pgoff;
  2045. struct page *page;
  2046. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2047. if (pgoff == 0)
  2048. page = virt_to_page(vcpu->run);
  2049. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2050. page = virt_to_page(vcpu->pio_data);
  2051. else
  2052. return NOPAGE_SIGBUS;
  2053. get_page(page);
  2054. if (type != NULL)
  2055. *type = VM_FAULT_MINOR;
  2056. return page;
  2057. }
  2058. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2059. .nopage = kvm_vcpu_nopage,
  2060. };
  2061. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2062. {
  2063. vma->vm_ops = &kvm_vcpu_vm_ops;
  2064. return 0;
  2065. }
  2066. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2067. {
  2068. struct kvm_vcpu *vcpu = filp->private_data;
  2069. fput(vcpu->kvm->filp);
  2070. return 0;
  2071. }
  2072. static struct file_operations kvm_vcpu_fops = {
  2073. .release = kvm_vcpu_release,
  2074. .unlocked_ioctl = kvm_vcpu_ioctl,
  2075. .compat_ioctl = kvm_vcpu_ioctl,
  2076. .mmap = kvm_vcpu_mmap,
  2077. };
  2078. /*
  2079. * Allocates an inode for the vcpu.
  2080. */
  2081. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2082. {
  2083. int fd, r;
  2084. struct inode *inode;
  2085. struct file *file;
  2086. r = anon_inode_getfd(&fd, &inode, &file,
  2087. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2088. if (r)
  2089. return r;
  2090. atomic_inc(&vcpu->kvm->filp->f_count);
  2091. return fd;
  2092. }
  2093. /*
  2094. * Creates some virtual cpus. Good luck creating more than one.
  2095. */
  2096. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2097. {
  2098. int r;
  2099. struct kvm_vcpu *vcpu;
  2100. if (!valid_vcpu(n))
  2101. return -EINVAL;
  2102. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  2103. if (IS_ERR(vcpu))
  2104. return PTR_ERR(vcpu);
  2105. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2106. /* We do fxsave: this must be aligned. */
  2107. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2108. vcpu_load(vcpu);
  2109. r = kvm_mmu_setup(vcpu);
  2110. vcpu_put(vcpu);
  2111. if (r < 0)
  2112. goto free_vcpu;
  2113. mutex_lock(&kvm->lock);
  2114. if (kvm->vcpus[n]) {
  2115. r = -EEXIST;
  2116. mutex_unlock(&kvm->lock);
  2117. goto mmu_unload;
  2118. }
  2119. kvm->vcpus[n] = vcpu;
  2120. mutex_unlock(&kvm->lock);
  2121. /* Now it's all set up, let userspace reach it */
  2122. r = create_vcpu_fd(vcpu);
  2123. if (r < 0)
  2124. goto unlink;
  2125. return r;
  2126. unlink:
  2127. mutex_lock(&kvm->lock);
  2128. kvm->vcpus[n] = NULL;
  2129. mutex_unlock(&kvm->lock);
  2130. mmu_unload:
  2131. vcpu_load(vcpu);
  2132. kvm_mmu_unload(vcpu);
  2133. vcpu_put(vcpu);
  2134. free_vcpu:
  2135. kvm_arch_ops->vcpu_free(vcpu);
  2136. return r;
  2137. }
  2138. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2139. {
  2140. u64 efer;
  2141. int i;
  2142. struct kvm_cpuid_entry *e, *entry;
  2143. rdmsrl(MSR_EFER, efer);
  2144. entry = NULL;
  2145. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2146. e = &vcpu->cpuid_entries[i];
  2147. if (e->function == 0x80000001) {
  2148. entry = e;
  2149. break;
  2150. }
  2151. }
  2152. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2153. entry->edx &= ~(1 << 20);
  2154. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2155. }
  2156. }
  2157. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2158. struct kvm_cpuid *cpuid,
  2159. struct kvm_cpuid_entry __user *entries)
  2160. {
  2161. int r;
  2162. r = -E2BIG;
  2163. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2164. goto out;
  2165. r = -EFAULT;
  2166. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2167. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2168. goto out;
  2169. vcpu->cpuid_nent = cpuid->nent;
  2170. cpuid_fix_nx_cap(vcpu);
  2171. return 0;
  2172. out:
  2173. return r;
  2174. }
  2175. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2176. {
  2177. if (sigset) {
  2178. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2179. vcpu->sigset_active = 1;
  2180. vcpu->sigset = *sigset;
  2181. } else
  2182. vcpu->sigset_active = 0;
  2183. return 0;
  2184. }
  2185. /*
  2186. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2187. * we have asm/x86/processor.h
  2188. */
  2189. struct fxsave {
  2190. u16 cwd;
  2191. u16 swd;
  2192. u16 twd;
  2193. u16 fop;
  2194. u64 rip;
  2195. u64 rdp;
  2196. u32 mxcsr;
  2197. u32 mxcsr_mask;
  2198. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2199. #ifdef CONFIG_X86_64
  2200. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2201. #else
  2202. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2203. #endif
  2204. };
  2205. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2206. {
  2207. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2208. vcpu_load(vcpu);
  2209. memcpy(fpu->fpr, fxsave->st_space, 128);
  2210. fpu->fcw = fxsave->cwd;
  2211. fpu->fsw = fxsave->swd;
  2212. fpu->ftwx = fxsave->twd;
  2213. fpu->last_opcode = fxsave->fop;
  2214. fpu->last_ip = fxsave->rip;
  2215. fpu->last_dp = fxsave->rdp;
  2216. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2217. vcpu_put(vcpu);
  2218. return 0;
  2219. }
  2220. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2221. {
  2222. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2223. vcpu_load(vcpu);
  2224. memcpy(fxsave->st_space, fpu->fpr, 128);
  2225. fxsave->cwd = fpu->fcw;
  2226. fxsave->swd = fpu->fsw;
  2227. fxsave->twd = fpu->ftwx;
  2228. fxsave->fop = fpu->last_opcode;
  2229. fxsave->rip = fpu->last_ip;
  2230. fxsave->rdp = fpu->last_dp;
  2231. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2232. vcpu_put(vcpu);
  2233. return 0;
  2234. }
  2235. static long kvm_vcpu_ioctl(struct file *filp,
  2236. unsigned int ioctl, unsigned long arg)
  2237. {
  2238. struct kvm_vcpu *vcpu = filp->private_data;
  2239. void __user *argp = (void __user *)arg;
  2240. int r = -EINVAL;
  2241. switch (ioctl) {
  2242. case KVM_RUN:
  2243. r = -EINVAL;
  2244. if (arg)
  2245. goto out;
  2246. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2247. break;
  2248. case KVM_GET_REGS: {
  2249. struct kvm_regs kvm_regs;
  2250. memset(&kvm_regs, 0, sizeof kvm_regs);
  2251. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2252. if (r)
  2253. goto out;
  2254. r = -EFAULT;
  2255. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2256. goto out;
  2257. r = 0;
  2258. break;
  2259. }
  2260. case KVM_SET_REGS: {
  2261. struct kvm_regs kvm_regs;
  2262. r = -EFAULT;
  2263. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2264. goto out;
  2265. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2266. if (r)
  2267. goto out;
  2268. r = 0;
  2269. break;
  2270. }
  2271. case KVM_GET_SREGS: {
  2272. struct kvm_sregs kvm_sregs;
  2273. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2274. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2275. if (r)
  2276. goto out;
  2277. r = -EFAULT;
  2278. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2279. goto out;
  2280. r = 0;
  2281. break;
  2282. }
  2283. case KVM_SET_SREGS: {
  2284. struct kvm_sregs kvm_sregs;
  2285. r = -EFAULT;
  2286. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2287. goto out;
  2288. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2289. if (r)
  2290. goto out;
  2291. r = 0;
  2292. break;
  2293. }
  2294. case KVM_TRANSLATE: {
  2295. struct kvm_translation tr;
  2296. r = -EFAULT;
  2297. if (copy_from_user(&tr, argp, sizeof tr))
  2298. goto out;
  2299. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2300. if (r)
  2301. goto out;
  2302. r = -EFAULT;
  2303. if (copy_to_user(argp, &tr, sizeof tr))
  2304. goto out;
  2305. r = 0;
  2306. break;
  2307. }
  2308. case KVM_INTERRUPT: {
  2309. struct kvm_interrupt irq;
  2310. r = -EFAULT;
  2311. if (copy_from_user(&irq, argp, sizeof irq))
  2312. goto out;
  2313. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2314. if (r)
  2315. goto out;
  2316. r = 0;
  2317. break;
  2318. }
  2319. case KVM_DEBUG_GUEST: {
  2320. struct kvm_debug_guest dbg;
  2321. r = -EFAULT;
  2322. if (copy_from_user(&dbg, argp, sizeof dbg))
  2323. goto out;
  2324. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2325. if (r)
  2326. goto out;
  2327. r = 0;
  2328. break;
  2329. }
  2330. case KVM_GET_MSRS:
  2331. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2332. break;
  2333. case KVM_SET_MSRS:
  2334. r = msr_io(vcpu, argp, do_set_msr, 0);
  2335. break;
  2336. case KVM_SET_CPUID: {
  2337. struct kvm_cpuid __user *cpuid_arg = argp;
  2338. struct kvm_cpuid cpuid;
  2339. r = -EFAULT;
  2340. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2341. goto out;
  2342. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2343. if (r)
  2344. goto out;
  2345. break;
  2346. }
  2347. case KVM_SET_SIGNAL_MASK: {
  2348. struct kvm_signal_mask __user *sigmask_arg = argp;
  2349. struct kvm_signal_mask kvm_sigmask;
  2350. sigset_t sigset, *p;
  2351. p = NULL;
  2352. if (argp) {
  2353. r = -EFAULT;
  2354. if (copy_from_user(&kvm_sigmask, argp,
  2355. sizeof kvm_sigmask))
  2356. goto out;
  2357. r = -EINVAL;
  2358. if (kvm_sigmask.len != sizeof sigset)
  2359. goto out;
  2360. r = -EFAULT;
  2361. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2362. sizeof sigset))
  2363. goto out;
  2364. p = &sigset;
  2365. }
  2366. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2367. break;
  2368. }
  2369. case KVM_GET_FPU: {
  2370. struct kvm_fpu fpu;
  2371. memset(&fpu, 0, sizeof fpu);
  2372. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2373. if (r)
  2374. goto out;
  2375. r = -EFAULT;
  2376. if (copy_to_user(argp, &fpu, sizeof fpu))
  2377. goto out;
  2378. r = 0;
  2379. break;
  2380. }
  2381. case KVM_SET_FPU: {
  2382. struct kvm_fpu fpu;
  2383. r = -EFAULT;
  2384. if (copy_from_user(&fpu, argp, sizeof fpu))
  2385. goto out;
  2386. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2387. if (r)
  2388. goto out;
  2389. r = 0;
  2390. break;
  2391. }
  2392. default:
  2393. ;
  2394. }
  2395. out:
  2396. return r;
  2397. }
  2398. static long kvm_vm_ioctl(struct file *filp,
  2399. unsigned int ioctl, unsigned long arg)
  2400. {
  2401. struct kvm *kvm = filp->private_data;
  2402. void __user *argp = (void __user *)arg;
  2403. int r = -EINVAL;
  2404. switch (ioctl) {
  2405. case KVM_CREATE_VCPU:
  2406. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2407. if (r < 0)
  2408. goto out;
  2409. break;
  2410. case KVM_SET_MEMORY_REGION: {
  2411. struct kvm_memory_region kvm_mem;
  2412. r = -EFAULT;
  2413. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2414. goto out;
  2415. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2416. if (r)
  2417. goto out;
  2418. break;
  2419. }
  2420. case KVM_GET_DIRTY_LOG: {
  2421. struct kvm_dirty_log log;
  2422. r = -EFAULT;
  2423. if (copy_from_user(&log, argp, sizeof log))
  2424. goto out;
  2425. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2426. if (r)
  2427. goto out;
  2428. break;
  2429. }
  2430. case KVM_SET_MEMORY_ALIAS: {
  2431. struct kvm_memory_alias alias;
  2432. r = -EFAULT;
  2433. if (copy_from_user(&alias, argp, sizeof alias))
  2434. goto out;
  2435. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2436. if (r)
  2437. goto out;
  2438. break;
  2439. }
  2440. case KVM_CREATE_IRQCHIP:
  2441. r = -ENOMEM;
  2442. kvm->vpic = kvm_create_pic(kvm);
  2443. if (kvm->vpic) {
  2444. r = kvm_ioapic_init(kvm);
  2445. if (r) {
  2446. kfree(kvm->vpic);
  2447. kvm->vpic = NULL;
  2448. goto out;
  2449. }
  2450. }
  2451. else
  2452. goto out;
  2453. break;
  2454. case KVM_IRQ_LINE: {
  2455. struct kvm_irq_level irq_event;
  2456. r = -EFAULT;
  2457. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2458. goto out;
  2459. if (irqchip_in_kernel(kvm)) {
  2460. mutex_lock(&kvm->lock);
  2461. if (irq_event.irq < 16)
  2462. kvm_pic_set_irq(pic_irqchip(kvm),
  2463. irq_event.irq,
  2464. irq_event.level);
  2465. kvm_ioapic_set_irq(kvm->vioapic,
  2466. irq_event.irq,
  2467. irq_event.level);
  2468. mutex_unlock(&kvm->lock);
  2469. r = 0;
  2470. }
  2471. break;
  2472. }
  2473. case KVM_GET_IRQCHIP: {
  2474. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2475. struct kvm_irqchip chip;
  2476. r = -EFAULT;
  2477. if (copy_from_user(&chip, argp, sizeof chip))
  2478. goto out;
  2479. r = -ENXIO;
  2480. if (!irqchip_in_kernel(kvm))
  2481. goto out;
  2482. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2483. if (r)
  2484. goto out;
  2485. r = -EFAULT;
  2486. if (copy_to_user(argp, &chip, sizeof chip))
  2487. goto out;
  2488. r = 0;
  2489. break;
  2490. }
  2491. case KVM_SET_IRQCHIP: {
  2492. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2493. struct kvm_irqchip chip;
  2494. r = -EFAULT;
  2495. if (copy_from_user(&chip, argp, sizeof chip))
  2496. goto out;
  2497. r = -ENXIO;
  2498. if (!irqchip_in_kernel(kvm))
  2499. goto out;
  2500. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2501. if (r)
  2502. goto out;
  2503. r = 0;
  2504. break;
  2505. }
  2506. default:
  2507. ;
  2508. }
  2509. out:
  2510. return r;
  2511. }
  2512. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2513. unsigned long address,
  2514. int *type)
  2515. {
  2516. struct kvm *kvm = vma->vm_file->private_data;
  2517. unsigned long pgoff;
  2518. struct page *page;
  2519. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2520. page = gfn_to_page(kvm, pgoff);
  2521. if (!page)
  2522. return NOPAGE_SIGBUS;
  2523. get_page(page);
  2524. if (type != NULL)
  2525. *type = VM_FAULT_MINOR;
  2526. return page;
  2527. }
  2528. static struct vm_operations_struct kvm_vm_vm_ops = {
  2529. .nopage = kvm_vm_nopage,
  2530. };
  2531. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2532. {
  2533. vma->vm_ops = &kvm_vm_vm_ops;
  2534. return 0;
  2535. }
  2536. static struct file_operations kvm_vm_fops = {
  2537. .release = kvm_vm_release,
  2538. .unlocked_ioctl = kvm_vm_ioctl,
  2539. .compat_ioctl = kvm_vm_ioctl,
  2540. .mmap = kvm_vm_mmap,
  2541. };
  2542. static int kvm_dev_ioctl_create_vm(void)
  2543. {
  2544. int fd, r;
  2545. struct inode *inode;
  2546. struct file *file;
  2547. struct kvm *kvm;
  2548. kvm = kvm_create_vm();
  2549. if (IS_ERR(kvm))
  2550. return PTR_ERR(kvm);
  2551. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2552. if (r) {
  2553. kvm_destroy_vm(kvm);
  2554. return r;
  2555. }
  2556. kvm->filp = file;
  2557. return fd;
  2558. }
  2559. static long kvm_dev_ioctl(struct file *filp,
  2560. unsigned int ioctl, unsigned long arg)
  2561. {
  2562. void __user *argp = (void __user *)arg;
  2563. long r = -EINVAL;
  2564. switch (ioctl) {
  2565. case KVM_GET_API_VERSION:
  2566. r = -EINVAL;
  2567. if (arg)
  2568. goto out;
  2569. r = KVM_API_VERSION;
  2570. break;
  2571. case KVM_CREATE_VM:
  2572. r = -EINVAL;
  2573. if (arg)
  2574. goto out;
  2575. r = kvm_dev_ioctl_create_vm();
  2576. break;
  2577. case KVM_GET_MSR_INDEX_LIST: {
  2578. struct kvm_msr_list __user *user_msr_list = argp;
  2579. struct kvm_msr_list msr_list;
  2580. unsigned n;
  2581. r = -EFAULT;
  2582. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2583. goto out;
  2584. n = msr_list.nmsrs;
  2585. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2586. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2587. goto out;
  2588. r = -E2BIG;
  2589. if (n < num_msrs_to_save)
  2590. goto out;
  2591. r = -EFAULT;
  2592. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2593. num_msrs_to_save * sizeof(u32)))
  2594. goto out;
  2595. if (copy_to_user(user_msr_list->indices
  2596. + num_msrs_to_save * sizeof(u32),
  2597. &emulated_msrs,
  2598. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2599. goto out;
  2600. r = 0;
  2601. break;
  2602. }
  2603. case KVM_CHECK_EXTENSION: {
  2604. int ext = (long)argp;
  2605. switch (ext) {
  2606. case KVM_CAP_IRQCHIP:
  2607. case KVM_CAP_HLT:
  2608. r = 1;
  2609. break;
  2610. default:
  2611. r = 0;
  2612. break;
  2613. }
  2614. break;
  2615. }
  2616. case KVM_GET_VCPU_MMAP_SIZE:
  2617. r = -EINVAL;
  2618. if (arg)
  2619. goto out;
  2620. r = 2 * PAGE_SIZE;
  2621. break;
  2622. default:
  2623. ;
  2624. }
  2625. out:
  2626. return r;
  2627. }
  2628. static struct file_operations kvm_chardev_ops = {
  2629. .unlocked_ioctl = kvm_dev_ioctl,
  2630. .compat_ioctl = kvm_dev_ioctl,
  2631. };
  2632. static struct miscdevice kvm_dev = {
  2633. KVM_MINOR,
  2634. "kvm",
  2635. &kvm_chardev_ops,
  2636. };
  2637. /*
  2638. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2639. * cached on it.
  2640. */
  2641. static void decache_vcpus_on_cpu(int cpu)
  2642. {
  2643. struct kvm *vm;
  2644. struct kvm_vcpu *vcpu;
  2645. int i;
  2646. spin_lock(&kvm_lock);
  2647. list_for_each_entry(vm, &vm_list, vm_list)
  2648. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2649. vcpu = vm->vcpus[i];
  2650. if (!vcpu)
  2651. continue;
  2652. /*
  2653. * If the vcpu is locked, then it is running on some
  2654. * other cpu and therefore it is not cached on the
  2655. * cpu in question.
  2656. *
  2657. * If it's not locked, check the last cpu it executed
  2658. * on.
  2659. */
  2660. if (mutex_trylock(&vcpu->mutex)) {
  2661. if (vcpu->cpu == cpu) {
  2662. kvm_arch_ops->vcpu_decache(vcpu);
  2663. vcpu->cpu = -1;
  2664. }
  2665. mutex_unlock(&vcpu->mutex);
  2666. }
  2667. }
  2668. spin_unlock(&kvm_lock);
  2669. }
  2670. static void hardware_enable(void *junk)
  2671. {
  2672. int cpu = raw_smp_processor_id();
  2673. if (cpu_isset(cpu, cpus_hardware_enabled))
  2674. return;
  2675. cpu_set(cpu, cpus_hardware_enabled);
  2676. kvm_arch_ops->hardware_enable(NULL);
  2677. }
  2678. static void hardware_disable(void *junk)
  2679. {
  2680. int cpu = raw_smp_processor_id();
  2681. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2682. return;
  2683. cpu_clear(cpu, cpus_hardware_enabled);
  2684. decache_vcpus_on_cpu(cpu);
  2685. kvm_arch_ops->hardware_disable(NULL);
  2686. }
  2687. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2688. void *v)
  2689. {
  2690. int cpu = (long)v;
  2691. switch (val) {
  2692. case CPU_DYING:
  2693. case CPU_DYING_FROZEN:
  2694. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2695. cpu);
  2696. hardware_disable(NULL);
  2697. break;
  2698. case CPU_UP_CANCELED:
  2699. case CPU_UP_CANCELED_FROZEN:
  2700. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2701. cpu);
  2702. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2703. break;
  2704. case CPU_ONLINE:
  2705. case CPU_ONLINE_FROZEN:
  2706. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2707. cpu);
  2708. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2709. break;
  2710. }
  2711. return NOTIFY_OK;
  2712. }
  2713. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2714. void *v)
  2715. {
  2716. if (val == SYS_RESTART) {
  2717. /*
  2718. * Some (well, at least mine) BIOSes hang on reboot if
  2719. * in vmx root mode.
  2720. */
  2721. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2722. on_each_cpu(hardware_disable, NULL, 0, 1);
  2723. }
  2724. return NOTIFY_OK;
  2725. }
  2726. static struct notifier_block kvm_reboot_notifier = {
  2727. .notifier_call = kvm_reboot,
  2728. .priority = 0,
  2729. };
  2730. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2731. {
  2732. memset(bus, 0, sizeof(*bus));
  2733. }
  2734. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2735. {
  2736. int i;
  2737. for (i = 0; i < bus->dev_count; i++) {
  2738. struct kvm_io_device *pos = bus->devs[i];
  2739. kvm_iodevice_destructor(pos);
  2740. }
  2741. }
  2742. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2743. {
  2744. int i;
  2745. for (i = 0; i < bus->dev_count; i++) {
  2746. struct kvm_io_device *pos = bus->devs[i];
  2747. if (pos->in_range(pos, addr))
  2748. return pos;
  2749. }
  2750. return NULL;
  2751. }
  2752. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2753. {
  2754. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2755. bus->devs[bus->dev_count++] = dev;
  2756. }
  2757. static struct notifier_block kvm_cpu_notifier = {
  2758. .notifier_call = kvm_cpu_hotplug,
  2759. .priority = 20, /* must be > scheduler priority */
  2760. };
  2761. static u64 stat_get(void *_offset)
  2762. {
  2763. unsigned offset = (long)_offset;
  2764. u64 total = 0;
  2765. struct kvm *kvm;
  2766. struct kvm_vcpu *vcpu;
  2767. int i;
  2768. spin_lock(&kvm_lock);
  2769. list_for_each_entry(kvm, &vm_list, vm_list)
  2770. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2771. vcpu = kvm->vcpus[i];
  2772. if (vcpu)
  2773. total += *(u32 *)((void *)vcpu + offset);
  2774. }
  2775. spin_unlock(&kvm_lock);
  2776. return total;
  2777. }
  2778. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2779. static __init void kvm_init_debug(void)
  2780. {
  2781. struct kvm_stats_debugfs_item *p;
  2782. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2783. for (p = debugfs_entries; p->name; ++p)
  2784. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2785. (void *)(long)p->offset,
  2786. &stat_fops);
  2787. }
  2788. static void kvm_exit_debug(void)
  2789. {
  2790. struct kvm_stats_debugfs_item *p;
  2791. for (p = debugfs_entries; p->name; ++p)
  2792. debugfs_remove(p->dentry);
  2793. debugfs_remove(debugfs_dir);
  2794. }
  2795. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2796. {
  2797. hardware_disable(NULL);
  2798. return 0;
  2799. }
  2800. static int kvm_resume(struct sys_device *dev)
  2801. {
  2802. hardware_enable(NULL);
  2803. return 0;
  2804. }
  2805. static struct sysdev_class kvm_sysdev_class = {
  2806. set_kset_name("kvm"),
  2807. .suspend = kvm_suspend,
  2808. .resume = kvm_resume,
  2809. };
  2810. static struct sys_device kvm_sysdev = {
  2811. .id = 0,
  2812. .cls = &kvm_sysdev_class,
  2813. };
  2814. hpa_t bad_page_address;
  2815. static inline
  2816. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2817. {
  2818. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2819. }
  2820. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2821. {
  2822. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2823. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2824. }
  2825. static void kvm_sched_out(struct preempt_notifier *pn,
  2826. struct task_struct *next)
  2827. {
  2828. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2829. kvm_arch_ops->vcpu_put(vcpu);
  2830. }
  2831. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2832. struct module *module)
  2833. {
  2834. int r;
  2835. int cpu;
  2836. if (kvm_arch_ops) {
  2837. printk(KERN_ERR "kvm: already loaded the other module\n");
  2838. return -EEXIST;
  2839. }
  2840. if (!ops->cpu_has_kvm_support()) {
  2841. printk(KERN_ERR "kvm: no hardware support\n");
  2842. return -EOPNOTSUPP;
  2843. }
  2844. if (ops->disabled_by_bios()) {
  2845. printk(KERN_ERR "kvm: disabled by bios\n");
  2846. return -EOPNOTSUPP;
  2847. }
  2848. kvm_arch_ops = ops;
  2849. r = kvm_arch_ops->hardware_setup();
  2850. if (r < 0)
  2851. goto out;
  2852. for_each_online_cpu(cpu) {
  2853. smp_call_function_single(cpu,
  2854. kvm_arch_ops->check_processor_compatibility,
  2855. &r, 0, 1);
  2856. if (r < 0)
  2857. goto out_free_0;
  2858. }
  2859. on_each_cpu(hardware_enable, NULL, 0, 1);
  2860. r = register_cpu_notifier(&kvm_cpu_notifier);
  2861. if (r)
  2862. goto out_free_1;
  2863. register_reboot_notifier(&kvm_reboot_notifier);
  2864. r = sysdev_class_register(&kvm_sysdev_class);
  2865. if (r)
  2866. goto out_free_2;
  2867. r = sysdev_register(&kvm_sysdev);
  2868. if (r)
  2869. goto out_free_3;
  2870. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2871. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2872. __alignof__(struct kvm_vcpu), 0, 0);
  2873. if (!kvm_vcpu_cache) {
  2874. r = -ENOMEM;
  2875. goto out_free_4;
  2876. }
  2877. kvm_chardev_ops.owner = module;
  2878. r = misc_register(&kvm_dev);
  2879. if (r) {
  2880. printk (KERN_ERR "kvm: misc device register failed\n");
  2881. goto out_free;
  2882. }
  2883. kvm_preempt_ops.sched_in = kvm_sched_in;
  2884. kvm_preempt_ops.sched_out = kvm_sched_out;
  2885. return r;
  2886. out_free:
  2887. kmem_cache_destroy(kvm_vcpu_cache);
  2888. out_free_4:
  2889. sysdev_unregister(&kvm_sysdev);
  2890. out_free_3:
  2891. sysdev_class_unregister(&kvm_sysdev_class);
  2892. out_free_2:
  2893. unregister_reboot_notifier(&kvm_reboot_notifier);
  2894. unregister_cpu_notifier(&kvm_cpu_notifier);
  2895. out_free_1:
  2896. on_each_cpu(hardware_disable, NULL, 0, 1);
  2897. out_free_0:
  2898. kvm_arch_ops->hardware_unsetup();
  2899. out:
  2900. kvm_arch_ops = NULL;
  2901. return r;
  2902. }
  2903. void kvm_exit_arch(void)
  2904. {
  2905. misc_deregister(&kvm_dev);
  2906. kmem_cache_destroy(kvm_vcpu_cache);
  2907. sysdev_unregister(&kvm_sysdev);
  2908. sysdev_class_unregister(&kvm_sysdev_class);
  2909. unregister_reboot_notifier(&kvm_reboot_notifier);
  2910. unregister_cpu_notifier(&kvm_cpu_notifier);
  2911. on_each_cpu(hardware_disable, NULL, 0, 1);
  2912. kvm_arch_ops->hardware_unsetup();
  2913. kvm_arch_ops = NULL;
  2914. }
  2915. static __init int kvm_init(void)
  2916. {
  2917. static struct page *bad_page;
  2918. int r;
  2919. r = kvm_mmu_module_init();
  2920. if (r)
  2921. goto out4;
  2922. kvm_init_debug();
  2923. kvm_init_msr_list();
  2924. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2925. r = -ENOMEM;
  2926. goto out;
  2927. }
  2928. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2929. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2930. return 0;
  2931. out:
  2932. kvm_exit_debug();
  2933. kvm_mmu_module_exit();
  2934. out4:
  2935. return r;
  2936. }
  2937. static __exit void kvm_exit(void)
  2938. {
  2939. kvm_exit_debug();
  2940. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2941. kvm_mmu_module_exit();
  2942. }
  2943. module_init(kvm_init)
  2944. module_exit(kvm_exit)
  2945. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2946. EXPORT_SYMBOL_GPL(kvm_exit_arch);