spi-sirf.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * SPI bus driver for CSR SiRFprimaII
  3. *
  4. * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
  5. *
  6. * Licensed under GPLv2 or later.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/clk.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/io.h>
  14. #include <linux/of.h>
  15. #include <linux/bitops.h>
  16. #include <linux/err.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/of_gpio.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/spi/spi_bitbang.h>
  21. #include <linux/dmaengine.h>
  22. #include <linux/dma-direction.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/sirfsoc_dma.h>
  25. #define DRIVER_NAME "sirfsoc_spi"
  26. #define SIRFSOC_SPI_CTRL 0x0000
  27. #define SIRFSOC_SPI_CMD 0x0004
  28. #define SIRFSOC_SPI_TX_RX_EN 0x0008
  29. #define SIRFSOC_SPI_INT_EN 0x000C
  30. #define SIRFSOC_SPI_INT_STATUS 0x0010
  31. #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
  32. #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
  33. #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
  34. #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
  35. #define SIRFSOC_SPI_TXFIFO_OP 0x0110
  36. #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
  37. #define SIRFSOC_SPI_TXFIFO_DATA 0x0118
  38. #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
  39. #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
  40. #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
  41. #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
  42. #define SIRFSOC_SPI_RXFIFO_OP 0x0130
  43. #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
  44. #define SIRFSOC_SPI_RXFIFO_DATA 0x0138
  45. #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
  46. /* SPI CTRL register defines */
  47. #define SIRFSOC_SPI_SLV_MODE BIT(16)
  48. #define SIRFSOC_SPI_CMD_MODE BIT(17)
  49. #define SIRFSOC_SPI_CS_IO_OUT BIT(18)
  50. #define SIRFSOC_SPI_CS_IO_MODE BIT(19)
  51. #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
  52. #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
  53. #define SIRFSOC_SPI_TRAN_MSB BIT(22)
  54. #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
  55. #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
  56. #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
  57. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
  58. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
  59. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
  60. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
  61. #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
  62. #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
  63. #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
  64. /* Interrupt Enable */
  65. #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
  66. #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
  67. #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
  68. #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
  69. #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
  70. #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
  71. #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
  72. #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
  73. #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
  74. #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
  75. #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
  76. #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
  77. /* Interrupt status */
  78. #define SIRFSOC_SPI_RX_DONE BIT(0)
  79. #define SIRFSOC_SPI_TX_DONE BIT(1)
  80. #define SIRFSOC_SPI_RX_OFLOW BIT(2)
  81. #define SIRFSOC_SPI_TX_UFLOW BIT(3)
  82. #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
  83. #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
  84. #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
  85. #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
  86. #define SIRFSOC_SPI_FRM_END BIT(10)
  87. /* TX RX enable */
  88. #define SIRFSOC_SPI_RX_EN BIT(0)
  89. #define SIRFSOC_SPI_TX_EN BIT(1)
  90. #define SIRFSOC_SPI_CMD_TX_EN BIT(2)
  91. #define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
  92. #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
  93. /* FIFO OPs */
  94. #define SIRFSOC_SPI_FIFO_RESET BIT(0)
  95. #define SIRFSOC_SPI_FIFO_START BIT(1)
  96. /* FIFO CTRL */
  97. #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
  98. #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
  99. #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
  100. /* FIFO Status */
  101. #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
  102. #define SIRFSOC_SPI_FIFO_FULL BIT(8)
  103. #define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
  104. /* 256 bytes rx/tx FIFO */
  105. #define SIRFSOC_SPI_FIFO_SIZE 256
  106. #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
  107. #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
  108. #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
  109. #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
  110. #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
  111. /*
  112. * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
  113. * due to the limitation of dma controller
  114. */
  115. #define ALIGNED(x) (!((u32)x & 0x3))
  116. #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
  117. ALIGNED(x->len * sspi->word_width) && (x->len * sspi->word_width < \
  118. 2 * PAGE_SIZE))
  119. struct sirfsoc_spi {
  120. struct spi_bitbang bitbang;
  121. struct completion rx_done;
  122. struct completion tx_done;
  123. void __iomem *base;
  124. u32 ctrl_freq; /* SPI controller clock speed */
  125. struct clk *clk;
  126. /* rx & tx bufs from the spi_transfer */
  127. const void *tx;
  128. void *rx;
  129. /* place received word into rx buffer */
  130. void (*rx_word) (struct sirfsoc_spi *);
  131. /* get word from tx buffer for sending */
  132. void (*tx_word) (struct sirfsoc_spi *);
  133. /* number of words left to be tranmitted/received */
  134. unsigned int left_tx_cnt;
  135. unsigned int left_rx_cnt;
  136. /* rx & tx DMA channels */
  137. struct dma_chan *rx_chan;
  138. struct dma_chan *tx_chan;
  139. dma_addr_t src_start;
  140. dma_addr_t dst_start;
  141. void *dummypage;
  142. int word_width; /* in bytes */
  143. int chipselect[0];
  144. };
  145. static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
  146. {
  147. u32 data;
  148. u8 *rx = sspi->rx;
  149. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  150. if (rx) {
  151. *rx++ = (u8) data;
  152. sspi->rx = rx;
  153. }
  154. sspi->left_rx_cnt--;
  155. }
  156. static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
  157. {
  158. u32 data = 0;
  159. const u8 *tx = sspi->tx;
  160. if (tx) {
  161. data = *tx++;
  162. sspi->tx = tx;
  163. }
  164. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  165. sspi->left_tx_cnt--;
  166. }
  167. static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
  168. {
  169. u32 data;
  170. u16 *rx = sspi->rx;
  171. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  172. if (rx) {
  173. *rx++ = (u16) data;
  174. sspi->rx = rx;
  175. }
  176. sspi->left_rx_cnt--;
  177. }
  178. static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
  179. {
  180. u32 data = 0;
  181. const u16 *tx = sspi->tx;
  182. if (tx) {
  183. data = *tx++;
  184. sspi->tx = tx;
  185. }
  186. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  187. sspi->left_tx_cnt--;
  188. }
  189. static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
  190. {
  191. u32 data;
  192. u32 *rx = sspi->rx;
  193. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  194. if (rx) {
  195. *rx++ = (u32) data;
  196. sspi->rx = rx;
  197. }
  198. sspi->left_rx_cnt--;
  199. }
  200. static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
  201. {
  202. u32 data = 0;
  203. const u32 *tx = sspi->tx;
  204. if (tx) {
  205. data = *tx++;
  206. sspi->tx = tx;
  207. }
  208. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  209. sspi->left_tx_cnt--;
  210. }
  211. static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
  212. {
  213. struct sirfsoc_spi *sspi = dev_id;
  214. u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
  215. writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
  216. /* Error Conditions */
  217. if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
  218. spi_stat & SIRFSOC_SPI_TX_UFLOW) {
  219. complete(&sspi->rx_done);
  220. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  221. }
  222. if (spi_stat & (SIRFSOC_SPI_FRM_END
  223. | SIRFSOC_SPI_RXFIFO_THD_REACH))
  224. while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
  225. & SIRFSOC_SPI_FIFO_EMPTY)) &&
  226. sspi->left_rx_cnt)
  227. sspi->rx_word(sspi);
  228. if (spi_stat & (SIRFSOC_SPI_FIFO_EMPTY
  229. | SIRFSOC_SPI_TXFIFO_THD_REACH))
  230. while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
  231. & SIRFSOC_SPI_FIFO_FULL)) &&
  232. sspi->left_tx_cnt)
  233. sspi->tx_word(sspi);
  234. /* Received all words */
  235. if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
  236. complete(&sspi->rx_done);
  237. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  238. }
  239. return IRQ_HANDLED;
  240. }
  241. static void spi_sirfsoc_dma_fini_callback(void *data)
  242. {
  243. struct completion *dma_complete = data;
  244. complete(dma_complete);
  245. }
  246. static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
  247. {
  248. struct sirfsoc_spi *sspi;
  249. int timeout = t->len * 10;
  250. sspi = spi_master_get_devdata(spi->master);
  251. sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
  252. sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
  253. sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
  254. INIT_COMPLETION(sspi->rx_done);
  255. INIT_COMPLETION(sspi->tx_done);
  256. writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
  257. if (t->len == 1) {
  258. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  259. SIRFSOC_SPI_ENA_AUTO_CLR,
  260. sspi->base + SIRFSOC_SPI_CTRL);
  261. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  262. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  263. } else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
  264. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  265. SIRFSOC_SPI_MUL_DAT_MODE |
  266. SIRFSOC_SPI_ENA_AUTO_CLR,
  267. sspi->base + SIRFSOC_SPI_CTRL);
  268. writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  269. writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  270. } else {
  271. writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
  272. sspi->base + SIRFSOC_SPI_CTRL);
  273. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  274. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  275. }
  276. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  277. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  278. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  279. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  280. if (IS_DMA_VALID(t)) {
  281. struct dma_async_tx_descriptor *rx_desc, *tx_desc;
  282. unsigned int size = t->len * sspi->word_width;
  283. sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
  284. rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
  285. sspi->dst_start, size, DMA_DEV_TO_MEM,
  286. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  287. rx_desc->callback = spi_sirfsoc_dma_fini_callback;
  288. rx_desc->callback_param = &sspi->rx_done;
  289. sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
  290. tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
  291. sspi->src_start, size, DMA_MEM_TO_DEV,
  292. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  293. tx_desc->callback = spi_sirfsoc_dma_fini_callback;
  294. tx_desc->callback_param = &sspi->tx_done;
  295. dmaengine_submit(tx_desc);
  296. dmaengine_submit(rx_desc);
  297. dma_async_issue_pending(sspi->tx_chan);
  298. dma_async_issue_pending(sspi->rx_chan);
  299. } else {
  300. /* Send the first word to trigger the whole tx/rx process */
  301. sspi->tx_word(sspi);
  302. writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
  303. SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
  304. SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
  305. SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
  306. }
  307. writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  308. if (!IS_DMA_VALID(t)) { /* for PIO */
  309. if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
  310. dev_err(&spi->dev, "transfer timeout\n");
  311. } else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
  312. dev_err(&spi->dev, "transfer timeout\n");
  313. dmaengine_terminate_all(sspi->rx_chan);
  314. } else
  315. sspi->left_rx_cnt = 0;
  316. /*
  317. * we only wait tx-done event if transferring by DMA. for PIO,
  318. * we get rx data by writing tx data, so if rx is done, tx has
  319. * done earlier
  320. */
  321. if (IS_DMA_VALID(t)) {
  322. if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
  323. dev_err(&spi->dev, "transfer timeout\n");
  324. dmaengine_terminate_all(sspi->tx_chan);
  325. }
  326. }
  327. if (IS_DMA_VALID(t)) {
  328. dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
  329. dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
  330. }
  331. /* TX, RX FIFO stop */
  332. writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  333. writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  334. writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  335. writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
  336. return t->len - sspi->left_rx_cnt;
  337. }
  338. static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
  339. {
  340. struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
  341. if (sspi->chipselect[spi->chip_select] == 0) {
  342. u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
  343. switch (value) {
  344. case BITBANG_CS_ACTIVE:
  345. if (spi->mode & SPI_CS_HIGH)
  346. regval |= SIRFSOC_SPI_CS_IO_OUT;
  347. else
  348. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  349. break;
  350. case BITBANG_CS_INACTIVE:
  351. if (spi->mode & SPI_CS_HIGH)
  352. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  353. else
  354. regval |= SIRFSOC_SPI_CS_IO_OUT;
  355. break;
  356. }
  357. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  358. } else {
  359. int gpio = sspi->chipselect[spi->chip_select];
  360. gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
  361. }
  362. }
  363. static int
  364. spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
  365. {
  366. struct sirfsoc_spi *sspi;
  367. u8 bits_per_word = 0;
  368. int hz = 0;
  369. u32 regval;
  370. u32 txfifo_ctrl, rxfifo_ctrl;
  371. u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
  372. sspi = spi_master_get_devdata(spi->master);
  373. bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
  374. hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
  375. regval = (sspi->ctrl_freq / (2 * hz)) - 1;
  376. if (regval > 0xFFFF || regval < 0) {
  377. dev_err(&spi->dev, "Speed %d not supported\n", hz);
  378. return -EINVAL;
  379. }
  380. switch (bits_per_word) {
  381. case 8:
  382. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
  383. sspi->rx_word = spi_sirfsoc_rx_word_u8;
  384. sspi->tx_word = spi_sirfsoc_tx_word_u8;
  385. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  386. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  387. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  388. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  389. sspi->word_width = 1;
  390. break;
  391. case 12:
  392. case 16:
  393. regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
  394. SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
  395. sspi->rx_word = spi_sirfsoc_rx_word_u16;
  396. sspi->tx_word = spi_sirfsoc_tx_word_u16;
  397. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  398. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  399. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  400. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  401. sspi->word_width = 2;
  402. break;
  403. case 32:
  404. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
  405. sspi->rx_word = spi_sirfsoc_rx_word_u32;
  406. sspi->tx_word = spi_sirfsoc_tx_word_u32;
  407. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  408. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  409. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  410. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  411. sspi->word_width = 4;
  412. break;
  413. default:
  414. BUG();
  415. }
  416. if (!(spi->mode & SPI_CS_HIGH))
  417. regval |= SIRFSOC_SPI_CS_IDLE_STAT;
  418. if (!(spi->mode & SPI_LSB_FIRST))
  419. regval |= SIRFSOC_SPI_TRAN_MSB;
  420. if (spi->mode & SPI_CPOL)
  421. regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
  422. /*
  423. * Data should be driven at least 1/2 cycle before the fetch edge to make
  424. * sure that data gets stable at the fetch edge.
  425. */
  426. if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
  427. (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
  428. regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
  429. else
  430. regval |= SIRFSOC_SPI_DRV_POS_EDGE;
  431. writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
  432. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  433. SIRFSOC_SPI_FIFO_HC(2),
  434. sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
  435. writel(SIRFSOC_SPI_FIFO_SC(2) |
  436. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  437. SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
  438. sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
  439. writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
  440. writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
  441. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  442. if (IS_DMA_VALID(t)) {
  443. /* Enable DMA mode for RX, TX */
  444. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
  445. writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
  446. } else {
  447. /* Enable IO mode for RX, TX */
  448. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
  449. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
  450. }
  451. return 0;
  452. }
  453. static int spi_sirfsoc_setup(struct spi_device *spi)
  454. {
  455. struct sirfsoc_spi *sspi;
  456. if (!spi->max_speed_hz)
  457. return -EINVAL;
  458. sspi = spi_master_get_devdata(spi->master);
  459. if (!spi->bits_per_word)
  460. spi->bits_per_word = 8;
  461. return spi_sirfsoc_setup_transfer(spi, NULL);
  462. }
  463. static int spi_sirfsoc_probe(struct platform_device *pdev)
  464. {
  465. struct sirfsoc_spi *sspi;
  466. struct spi_master *master;
  467. struct resource *mem_res;
  468. int num_cs, cs_gpio, irq;
  469. u32 rx_dma_ch, tx_dma_ch;
  470. dma_cap_mask_t dma_cap_mask;
  471. int i;
  472. int ret;
  473. ret = of_property_read_u32(pdev->dev.of_node,
  474. "sirf,spi-num-chipselects", &num_cs);
  475. if (ret < 0) {
  476. dev_err(&pdev->dev, "Unable to get chip select number\n");
  477. goto err_cs;
  478. }
  479. ret = of_property_read_u32(pdev->dev.of_node,
  480. "sirf,spi-dma-rx-channel", &rx_dma_ch);
  481. if (ret < 0) {
  482. dev_err(&pdev->dev, "Unable to get rx dma channel\n");
  483. goto err_cs;
  484. }
  485. ret = of_property_read_u32(pdev->dev.of_node,
  486. "sirf,spi-dma-tx-channel", &tx_dma_ch);
  487. if (ret < 0) {
  488. dev_err(&pdev->dev, "Unable to get tx dma channel\n");
  489. goto err_cs;
  490. }
  491. master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
  492. if (!master) {
  493. dev_err(&pdev->dev, "Unable to allocate SPI master\n");
  494. return -ENOMEM;
  495. }
  496. platform_set_drvdata(pdev, master);
  497. sspi = spi_master_get_devdata(master);
  498. master->num_chipselect = num_cs;
  499. for (i = 0; i < master->num_chipselect; i++) {
  500. cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
  501. if (cs_gpio < 0) {
  502. dev_err(&pdev->dev, "can't get cs gpio from DT\n");
  503. ret = -ENODEV;
  504. goto free_master;
  505. }
  506. sspi->chipselect[i] = cs_gpio;
  507. if (cs_gpio == 0)
  508. continue; /* use cs from spi controller */
  509. ret = gpio_request(cs_gpio, DRIVER_NAME);
  510. if (ret) {
  511. while (i > 0) {
  512. i--;
  513. if (sspi->chipselect[i] > 0)
  514. gpio_free(sspi->chipselect[i]);
  515. }
  516. dev_err(&pdev->dev, "fail to request cs gpios\n");
  517. goto free_master;
  518. }
  519. }
  520. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  521. sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
  522. if (IS_ERR(sspi->base)) {
  523. ret = PTR_ERR(sspi->base);
  524. goto free_master;
  525. }
  526. irq = platform_get_irq(pdev, 0);
  527. if (irq < 0) {
  528. ret = -ENXIO;
  529. goto free_master;
  530. }
  531. ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
  532. DRIVER_NAME, sspi);
  533. if (ret)
  534. goto free_master;
  535. sspi->bitbang.master = spi_master_get(master);
  536. sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
  537. sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
  538. sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
  539. sspi->bitbang.master->setup = spi_sirfsoc_setup;
  540. master->bus_num = pdev->id;
  541. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
  542. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
  543. SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
  544. sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
  545. /* request DMA channels */
  546. dma_cap_zero(dma_cap_mask);
  547. dma_cap_set(DMA_INTERLEAVE, dma_cap_mask);
  548. sspi->rx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
  549. (void *)rx_dma_ch);
  550. if (!sspi->rx_chan) {
  551. dev_err(&pdev->dev, "can not allocate rx dma channel\n");
  552. ret = -ENODEV;
  553. goto free_master;
  554. }
  555. sspi->tx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
  556. (void *)tx_dma_ch);
  557. if (!sspi->tx_chan) {
  558. dev_err(&pdev->dev, "can not allocate tx dma channel\n");
  559. ret = -ENODEV;
  560. goto free_rx_dma;
  561. }
  562. sspi->clk = clk_get(&pdev->dev, NULL);
  563. if (IS_ERR(sspi->clk)) {
  564. ret = PTR_ERR(sspi->clk);
  565. goto free_tx_dma;
  566. }
  567. clk_prepare_enable(sspi->clk);
  568. sspi->ctrl_freq = clk_get_rate(sspi->clk);
  569. init_completion(&sspi->rx_done);
  570. init_completion(&sspi->tx_done);
  571. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  572. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  573. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  574. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  575. /* We are not using dummy delay between command and data */
  576. writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
  577. sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
  578. if (!sspi->dummypage) {
  579. ret = -ENOMEM;
  580. goto free_clk;
  581. }
  582. ret = spi_bitbang_start(&sspi->bitbang);
  583. if (ret)
  584. goto free_dummypage;
  585. dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
  586. return 0;
  587. free_dummypage:
  588. kfree(sspi->dummypage);
  589. free_clk:
  590. clk_disable_unprepare(sspi->clk);
  591. clk_put(sspi->clk);
  592. free_tx_dma:
  593. dma_release_channel(sspi->tx_chan);
  594. free_rx_dma:
  595. dma_release_channel(sspi->rx_chan);
  596. free_master:
  597. spi_master_put(master);
  598. err_cs:
  599. return ret;
  600. }
  601. static int spi_sirfsoc_remove(struct platform_device *pdev)
  602. {
  603. struct spi_master *master;
  604. struct sirfsoc_spi *sspi;
  605. int i;
  606. master = platform_get_drvdata(pdev);
  607. sspi = spi_master_get_devdata(master);
  608. spi_bitbang_stop(&sspi->bitbang);
  609. for (i = 0; i < master->num_chipselect; i++) {
  610. if (sspi->chipselect[i] > 0)
  611. gpio_free(sspi->chipselect[i]);
  612. }
  613. kfree(sspi->dummypage);
  614. clk_disable_unprepare(sspi->clk);
  615. clk_put(sspi->clk);
  616. dma_release_channel(sspi->rx_chan);
  617. dma_release_channel(sspi->tx_chan);
  618. spi_master_put(master);
  619. return 0;
  620. }
  621. #ifdef CONFIG_PM
  622. static int spi_sirfsoc_suspend(struct device *dev)
  623. {
  624. struct platform_device *pdev = to_platform_device(dev);
  625. struct spi_master *master = platform_get_drvdata(pdev);
  626. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  627. clk_disable(sspi->clk);
  628. return 0;
  629. }
  630. static int spi_sirfsoc_resume(struct device *dev)
  631. {
  632. struct platform_device *pdev = to_platform_device(dev);
  633. struct spi_master *master = platform_get_drvdata(pdev);
  634. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  635. clk_enable(sspi->clk);
  636. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  637. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  638. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  639. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  640. return 0;
  641. }
  642. static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
  643. .suspend = spi_sirfsoc_suspend,
  644. .resume = spi_sirfsoc_resume,
  645. };
  646. #endif
  647. static const struct of_device_id spi_sirfsoc_of_match[] = {
  648. { .compatible = "sirf,prima2-spi", },
  649. { .compatible = "sirf,marco-spi", },
  650. {}
  651. };
  652. MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
  653. static struct platform_driver spi_sirfsoc_driver = {
  654. .driver = {
  655. .name = DRIVER_NAME,
  656. .owner = THIS_MODULE,
  657. #ifdef CONFIG_PM
  658. .pm = &spi_sirfsoc_pm_ops,
  659. #endif
  660. .of_match_table = spi_sirfsoc_of_match,
  661. },
  662. .probe = spi_sirfsoc_probe,
  663. .remove = spi_sirfsoc_remove,
  664. };
  665. module_platform_driver(spi_sirfsoc_driver);
  666. MODULE_DESCRIPTION("SiRF SoC SPI master driver");
  667. MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
  668. "Barry Song <Baohua.Song@csr.com>");
  669. MODULE_LICENSE("GPL v2");