pid.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #define pid_hashfn(nr, ns) \
  39. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  40. static struct hlist_head *pid_hash;
  41. static int pidhash_shift;
  42. struct pid init_struct_pid = INIT_STRUCT_PID;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. #define BITS_PER_PAGE (PAGE_SIZE*8)
  48. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. };
  73. EXPORT_SYMBOL_GPL(init_pid_ns);
  74. int is_container_init(struct task_struct *tsk)
  75. {
  76. int ret = 0;
  77. struct pid *pid;
  78. rcu_read_lock();
  79. pid = task_pid(tsk);
  80. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  81. ret = 1;
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. EXPORT_SYMBOL(is_container_init);
  86. /*
  87. * Note: disable interrupts while the pidmap_lock is held as an
  88. * interrupt might come in and do read_lock(&tasklist_lock).
  89. *
  90. * If we don't disable interrupts there is a nasty deadlock between
  91. * detach_pid()->free_pid() and another cpu that does
  92. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  93. * read_lock(&tasklist_lock);
  94. *
  95. * After we clean up the tasklist_lock and know there are no
  96. * irq handlers that take it we can leave the interrupts enabled.
  97. * For now it is easier to be safe than to prove it can't happen.
  98. */
  99. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  100. static void free_pidmap(struct upid *upid)
  101. {
  102. int nr = upid->nr;
  103. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  104. int offset = nr & BITS_PER_PAGE_MASK;
  105. clear_bit(offset, map->page);
  106. atomic_inc(&map->nr_free);
  107. }
  108. static int alloc_pidmap(struct pid_namespace *pid_ns)
  109. {
  110. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  111. struct pidmap *map;
  112. pid = last + 1;
  113. if (pid >= pid_max)
  114. pid = RESERVED_PIDS;
  115. offset = pid & BITS_PER_PAGE_MASK;
  116. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  117. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  118. for (i = 0; i <= max_scan; ++i) {
  119. if (unlikely(!map->page)) {
  120. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  121. /*
  122. * Free the page if someone raced with us
  123. * installing it:
  124. */
  125. spin_lock_irq(&pidmap_lock);
  126. if (map->page)
  127. kfree(page);
  128. else
  129. map->page = page;
  130. spin_unlock_irq(&pidmap_lock);
  131. if (unlikely(!map->page))
  132. break;
  133. }
  134. if (likely(atomic_read(&map->nr_free))) {
  135. do {
  136. if (!test_and_set_bit(offset, map->page)) {
  137. atomic_dec(&map->nr_free);
  138. pid_ns->last_pid = pid;
  139. return pid;
  140. }
  141. offset = find_next_offset(map, offset);
  142. pid = mk_pid(pid_ns, map, offset);
  143. /*
  144. * find_next_offset() found a bit, the pid from it
  145. * is in-bounds, and if we fell back to the last
  146. * bitmap block and the final block was the same
  147. * as the starting point, pid is before last_pid.
  148. */
  149. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  150. (i != max_scan || pid < last ||
  151. !((last+1) & BITS_PER_PAGE_MASK)));
  152. }
  153. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  154. ++map;
  155. offset = 0;
  156. } else {
  157. map = &pid_ns->pidmap[0];
  158. offset = RESERVED_PIDS;
  159. if (unlikely(last == offset))
  160. break;
  161. }
  162. pid = mk_pid(pid_ns, map, offset);
  163. }
  164. return -1;
  165. }
  166. int next_pidmap(struct pid_namespace *pid_ns, int last)
  167. {
  168. int offset;
  169. struct pidmap *map, *end;
  170. offset = (last + 1) & BITS_PER_PAGE_MASK;
  171. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  172. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  173. for (; map < end; map++, offset = 0) {
  174. if (unlikely(!map->page))
  175. continue;
  176. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  177. if (offset < BITS_PER_PAGE)
  178. return mk_pid(pid_ns, map, offset);
  179. }
  180. return -1;
  181. }
  182. void put_pid(struct pid *pid)
  183. {
  184. struct pid_namespace *ns;
  185. if (!pid)
  186. return;
  187. ns = pid->numbers[pid->level].ns;
  188. if ((atomic_read(&pid->count) == 1) ||
  189. atomic_dec_and_test(&pid->count)) {
  190. kmem_cache_free(ns->pid_cachep, pid);
  191. put_pid_ns(ns);
  192. }
  193. }
  194. EXPORT_SYMBOL_GPL(put_pid);
  195. static void delayed_put_pid(struct rcu_head *rhp)
  196. {
  197. struct pid *pid = container_of(rhp, struct pid, rcu);
  198. put_pid(pid);
  199. }
  200. void free_pid(struct pid *pid)
  201. {
  202. /* We can be called with write_lock_irq(&tasklist_lock) held */
  203. int i;
  204. unsigned long flags;
  205. spin_lock_irqsave(&pidmap_lock, flags);
  206. for (i = 0; i <= pid->level; i++)
  207. hlist_del_rcu(&pid->numbers[i].pid_chain);
  208. spin_unlock_irqrestore(&pidmap_lock, flags);
  209. for (i = 0; i <= pid->level; i++)
  210. free_pidmap(pid->numbers + i);
  211. call_rcu(&pid->rcu, delayed_put_pid);
  212. }
  213. struct pid *alloc_pid(struct pid_namespace *ns)
  214. {
  215. struct pid *pid;
  216. enum pid_type type;
  217. int i, nr;
  218. struct pid_namespace *tmp;
  219. struct upid *upid;
  220. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  221. if (!pid)
  222. goto out;
  223. tmp = ns;
  224. for (i = ns->level; i >= 0; i--) {
  225. nr = alloc_pidmap(tmp);
  226. if (nr < 0)
  227. goto out_free;
  228. pid->numbers[i].nr = nr;
  229. pid->numbers[i].ns = tmp;
  230. tmp = tmp->parent;
  231. }
  232. get_pid_ns(ns);
  233. pid->level = ns->level;
  234. atomic_set(&pid->count, 1);
  235. for (type = 0; type < PIDTYPE_MAX; ++type)
  236. INIT_HLIST_HEAD(&pid->tasks[type]);
  237. spin_lock_irq(&pidmap_lock);
  238. for (i = ns->level; i >= 0; i--) {
  239. upid = &pid->numbers[i];
  240. hlist_add_head_rcu(&upid->pid_chain,
  241. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  242. }
  243. spin_unlock_irq(&pidmap_lock);
  244. out:
  245. return pid;
  246. out_free:
  247. while (++i <= ns->level)
  248. free_pidmap(pid->numbers + i);
  249. kmem_cache_free(ns->pid_cachep, pid);
  250. pid = NULL;
  251. goto out;
  252. }
  253. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  254. {
  255. struct hlist_node *elem;
  256. struct upid *pnr;
  257. hlist_for_each_entry_rcu(pnr, elem,
  258. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  259. if (pnr->nr == nr && pnr->ns == ns)
  260. return container_of(pnr, struct pid,
  261. numbers[ns->level]);
  262. return NULL;
  263. }
  264. EXPORT_SYMBOL_GPL(find_pid_ns);
  265. struct pid *find_vpid(int nr)
  266. {
  267. return find_pid_ns(nr, current->nsproxy->pid_ns);
  268. }
  269. EXPORT_SYMBOL_GPL(find_vpid);
  270. struct pid *find_pid(int nr)
  271. {
  272. return find_pid_ns(nr, &init_pid_ns);
  273. }
  274. EXPORT_SYMBOL_GPL(find_pid);
  275. /*
  276. * attach_pid() must be called with the tasklist_lock write-held.
  277. */
  278. void attach_pid(struct task_struct *task, enum pid_type type,
  279. struct pid *pid)
  280. {
  281. struct pid_link *link;
  282. link = &task->pids[type];
  283. link->pid = pid;
  284. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  285. }
  286. static void __change_pid(struct task_struct *task, enum pid_type type,
  287. struct pid *new)
  288. {
  289. struct pid_link *link;
  290. struct pid *pid;
  291. int tmp;
  292. link = &task->pids[type];
  293. pid = link->pid;
  294. hlist_del_rcu(&link->node);
  295. link->pid = new;
  296. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  297. if (!hlist_empty(&pid->tasks[tmp]))
  298. return;
  299. free_pid(pid);
  300. }
  301. void detach_pid(struct task_struct *task, enum pid_type type)
  302. {
  303. __change_pid(task, type, NULL);
  304. }
  305. void change_pid(struct task_struct *task, enum pid_type type,
  306. struct pid *pid)
  307. {
  308. __change_pid(task, type, pid);
  309. attach_pid(task, type, pid);
  310. }
  311. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  312. void transfer_pid(struct task_struct *old, struct task_struct *new,
  313. enum pid_type type)
  314. {
  315. new->pids[type].pid = old->pids[type].pid;
  316. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  317. }
  318. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  319. {
  320. struct task_struct *result = NULL;
  321. if (pid) {
  322. struct hlist_node *first;
  323. first = rcu_dereference(pid->tasks[type].first);
  324. if (first)
  325. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  326. }
  327. return result;
  328. }
  329. EXPORT_SYMBOL(pid_task);
  330. /*
  331. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  332. */
  333. struct task_struct *find_task_by_pid_type_ns(int type, int nr,
  334. struct pid_namespace *ns)
  335. {
  336. return pid_task(find_pid_ns(nr, ns), type);
  337. }
  338. EXPORT_SYMBOL(find_task_by_pid_type_ns);
  339. struct task_struct *find_task_by_vpid(pid_t vnr)
  340. {
  341. return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
  342. current->nsproxy->pid_ns);
  343. }
  344. EXPORT_SYMBOL(find_task_by_vpid);
  345. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  346. {
  347. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
  348. }
  349. EXPORT_SYMBOL(find_task_by_pid_ns);
  350. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  351. {
  352. struct pid *pid;
  353. rcu_read_lock();
  354. pid = get_pid(task->pids[type].pid);
  355. rcu_read_unlock();
  356. return pid;
  357. }
  358. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  359. {
  360. struct task_struct *result;
  361. rcu_read_lock();
  362. result = pid_task(pid, type);
  363. if (result)
  364. get_task_struct(result);
  365. rcu_read_unlock();
  366. return result;
  367. }
  368. struct pid *find_get_pid(pid_t nr)
  369. {
  370. struct pid *pid;
  371. rcu_read_lock();
  372. pid = get_pid(find_vpid(nr));
  373. rcu_read_unlock();
  374. return pid;
  375. }
  376. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  377. {
  378. struct upid *upid;
  379. pid_t nr = 0;
  380. if (pid && ns->level <= pid->level) {
  381. upid = &pid->numbers[ns->level];
  382. if (upid->ns == ns)
  383. nr = upid->nr;
  384. }
  385. return nr;
  386. }
  387. pid_t pid_vnr(struct pid *pid)
  388. {
  389. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  390. }
  391. EXPORT_SYMBOL_GPL(pid_vnr);
  392. pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  393. {
  394. return pid_nr_ns(task_pid(tsk), ns);
  395. }
  396. EXPORT_SYMBOL(task_pid_nr_ns);
  397. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  398. {
  399. return pid_nr_ns(task_tgid(tsk), ns);
  400. }
  401. EXPORT_SYMBOL(task_tgid_nr_ns);
  402. pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  403. {
  404. return pid_nr_ns(task_pgrp(tsk), ns);
  405. }
  406. EXPORT_SYMBOL(task_pgrp_nr_ns);
  407. pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  408. {
  409. return pid_nr_ns(task_session(tsk), ns);
  410. }
  411. EXPORT_SYMBOL(task_session_nr_ns);
  412. /*
  413. * Used by proc to find the first pid that is greater then or equal to nr.
  414. *
  415. * If there is a pid at nr this function is exactly the same as find_pid.
  416. */
  417. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  418. {
  419. struct pid *pid;
  420. do {
  421. pid = find_pid_ns(nr, ns);
  422. if (pid)
  423. break;
  424. nr = next_pidmap(ns, nr);
  425. } while (nr > 0);
  426. return pid;
  427. }
  428. EXPORT_SYMBOL_GPL(find_get_pid);
  429. /*
  430. * The pid hash table is scaled according to the amount of memory in the
  431. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  432. * more.
  433. */
  434. void __init pidhash_init(void)
  435. {
  436. int i, pidhash_size;
  437. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  438. pidhash_shift = max(4, fls(megabytes * 4));
  439. pidhash_shift = min(12, pidhash_shift);
  440. pidhash_size = 1 << pidhash_shift;
  441. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  442. pidhash_size, pidhash_shift,
  443. pidhash_size * sizeof(struct hlist_head));
  444. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  445. if (!pid_hash)
  446. panic("Could not alloc pidhash!\n");
  447. for (i = 0; i < pidhash_size; i++)
  448. INIT_HLIST_HEAD(&pid_hash[i]);
  449. }
  450. void __init pidmap_init(void)
  451. {
  452. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  453. /* Reserve PID 0. We never call free_pidmap(0) */
  454. set_bit(0, init_pid_ns.pidmap[0].page);
  455. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  456. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  457. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  458. }