kvm_main.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. bool kvm_is_mmio_pfn(pfn_t pfn)
  87. {
  88. if (is_error_pfn(pfn))
  89. return false;
  90. if (pfn_valid(pfn)) {
  91. int reserved;
  92. struct page *tail = pfn_to_page(pfn);
  93. struct page *head = compound_trans_head(tail);
  94. reserved = PageReserved(head);
  95. if (head != tail) {
  96. /*
  97. * "head" is not a dangling pointer
  98. * (compound_trans_head takes care of that)
  99. * but the hugepage may have been splitted
  100. * from under us (and we may not hold a
  101. * reference count on the head page so it can
  102. * be reused before we run PageReferenced), so
  103. * we've to check PageTail before returning
  104. * what we just read.
  105. */
  106. smp_rmb();
  107. if (PageTail(tail))
  108. return reserved;
  109. }
  110. return PageReserved(tail);
  111. }
  112. return true;
  113. }
  114. /*
  115. * Switches to specified vcpu, until a matching vcpu_put()
  116. */
  117. void vcpu_load(struct kvm_vcpu *vcpu)
  118. {
  119. int cpu;
  120. mutex_lock(&vcpu->mutex);
  121. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  122. /* The thread running this VCPU changed. */
  123. struct pid *oldpid = vcpu->pid;
  124. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  125. rcu_assign_pointer(vcpu->pid, newpid);
  126. synchronize_rcu();
  127. put_pid(oldpid);
  128. }
  129. cpu = get_cpu();
  130. preempt_notifier_register(&vcpu->preempt_notifier);
  131. kvm_arch_vcpu_load(vcpu, cpu);
  132. put_cpu();
  133. }
  134. void vcpu_put(struct kvm_vcpu *vcpu)
  135. {
  136. preempt_disable();
  137. kvm_arch_vcpu_put(vcpu);
  138. preempt_notifier_unregister(&vcpu->preempt_notifier);
  139. preempt_enable();
  140. mutex_unlock(&vcpu->mutex);
  141. }
  142. static void ack_flush(void *_completed)
  143. {
  144. }
  145. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  146. {
  147. int i, cpu, me;
  148. cpumask_var_t cpus;
  149. bool called = true;
  150. struct kvm_vcpu *vcpu;
  151. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  152. me = get_cpu();
  153. kvm_for_each_vcpu(i, vcpu, kvm) {
  154. kvm_make_request(req, vcpu);
  155. cpu = vcpu->cpu;
  156. /* Set ->requests bit before we read ->mode */
  157. smp_mb();
  158. if (cpus != NULL && cpu != -1 && cpu != me &&
  159. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  160. cpumask_set_cpu(cpu, cpus);
  161. }
  162. if (unlikely(cpus == NULL))
  163. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  164. else if (!cpumask_empty(cpus))
  165. smp_call_function_many(cpus, ack_flush, NULL, 1);
  166. else
  167. called = false;
  168. put_cpu();
  169. free_cpumask_var(cpus);
  170. return called;
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. long dirty_count = kvm->tlbs_dirty;
  175. smp_mb();
  176. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  177. ++kvm->stat.remote_tlb_flush;
  178. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  179. }
  180. void kvm_reload_remote_mmus(struct kvm *kvm)
  181. {
  182. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  183. }
  184. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  185. {
  186. struct page *page;
  187. int r;
  188. mutex_init(&vcpu->mutex);
  189. vcpu->cpu = -1;
  190. vcpu->kvm = kvm;
  191. vcpu->vcpu_id = id;
  192. vcpu->pid = NULL;
  193. init_waitqueue_head(&vcpu->wq);
  194. kvm_async_pf_vcpu_init(vcpu);
  195. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  196. if (!page) {
  197. r = -ENOMEM;
  198. goto fail;
  199. }
  200. vcpu->run = page_address(page);
  201. kvm_vcpu_set_in_spin_loop(vcpu, false);
  202. kvm_vcpu_set_dy_eligible(vcpu, false);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. srcu_read_unlock(&kvm->srcu, idx);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  289. need_tlb_flush |= kvm->tlbs_dirty;
  290. /* we've to flush the tlb before the pages can be freed */
  291. if (need_tlb_flush)
  292. kvm_flush_remote_tlbs(kvm);
  293. spin_unlock(&kvm->mmu_lock);
  294. srcu_read_unlock(&kvm->srcu, idx);
  295. }
  296. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  297. struct mm_struct *mm,
  298. unsigned long start,
  299. unsigned long end)
  300. {
  301. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  302. spin_lock(&kvm->mmu_lock);
  303. /*
  304. * This sequence increase will notify the kvm page fault that
  305. * the page that is going to be mapped in the spte could have
  306. * been freed.
  307. */
  308. kvm->mmu_notifier_seq++;
  309. smp_wmb();
  310. /*
  311. * The above sequence increase must be visible before the
  312. * below count decrease, which is ensured by the smp_wmb above
  313. * in conjunction with the smp_rmb in mmu_notifier_retry().
  314. */
  315. kvm->mmu_notifier_count--;
  316. spin_unlock(&kvm->mmu_lock);
  317. BUG_ON(kvm->mmu_notifier_count < 0);
  318. }
  319. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  320. struct mm_struct *mm,
  321. unsigned long address)
  322. {
  323. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  324. int young, idx;
  325. idx = srcu_read_lock(&kvm->srcu);
  326. spin_lock(&kvm->mmu_lock);
  327. young = kvm_age_hva(kvm, address);
  328. if (young)
  329. kvm_flush_remote_tlbs(kvm);
  330. spin_unlock(&kvm->mmu_lock);
  331. srcu_read_unlock(&kvm->srcu, idx);
  332. return young;
  333. }
  334. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  335. struct mm_struct *mm,
  336. unsigned long address)
  337. {
  338. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  339. int young, idx;
  340. idx = srcu_read_lock(&kvm->srcu);
  341. spin_lock(&kvm->mmu_lock);
  342. young = kvm_test_age_hva(kvm, address);
  343. spin_unlock(&kvm->mmu_lock);
  344. srcu_read_unlock(&kvm->srcu, idx);
  345. return young;
  346. }
  347. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  348. struct mm_struct *mm)
  349. {
  350. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  351. int idx;
  352. idx = srcu_read_lock(&kvm->srcu);
  353. kvm_arch_flush_shadow(kvm);
  354. srcu_read_unlock(&kvm->srcu, idx);
  355. }
  356. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  357. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  358. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  359. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  360. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  361. .test_young = kvm_mmu_notifier_test_young,
  362. .change_pte = kvm_mmu_notifier_change_pte,
  363. .release = kvm_mmu_notifier_release,
  364. };
  365. static int kvm_init_mmu_notifier(struct kvm *kvm)
  366. {
  367. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  368. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  369. }
  370. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  371. static int kvm_init_mmu_notifier(struct kvm *kvm)
  372. {
  373. return 0;
  374. }
  375. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  376. static void kvm_init_memslots_id(struct kvm *kvm)
  377. {
  378. int i;
  379. struct kvm_memslots *slots = kvm->memslots;
  380. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  381. slots->id_to_index[i] = slots->memslots[i].id = i;
  382. }
  383. static struct kvm *kvm_create_vm(unsigned long type)
  384. {
  385. int r, i;
  386. struct kvm *kvm = kvm_arch_alloc_vm();
  387. if (!kvm)
  388. return ERR_PTR(-ENOMEM);
  389. r = kvm_arch_init_vm(kvm, type);
  390. if (r)
  391. goto out_err_nodisable;
  392. r = hardware_enable_all();
  393. if (r)
  394. goto out_err_nodisable;
  395. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  396. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  397. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  398. #endif
  399. r = -ENOMEM;
  400. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  401. if (!kvm->memslots)
  402. goto out_err_nosrcu;
  403. kvm_init_memslots_id(kvm);
  404. if (init_srcu_struct(&kvm->srcu))
  405. goto out_err_nosrcu;
  406. for (i = 0; i < KVM_NR_BUSES; i++) {
  407. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  408. GFP_KERNEL);
  409. if (!kvm->buses[i])
  410. goto out_err;
  411. }
  412. spin_lock_init(&kvm->mmu_lock);
  413. kvm->mm = current->mm;
  414. atomic_inc(&kvm->mm->mm_count);
  415. kvm_eventfd_init(kvm);
  416. mutex_init(&kvm->lock);
  417. mutex_init(&kvm->irq_lock);
  418. mutex_init(&kvm->slots_lock);
  419. atomic_set(&kvm->users_count, 1);
  420. r = kvm_init_mmu_notifier(kvm);
  421. if (r)
  422. goto out_err;
  423. raw_spin_lock(&kvm_lock);
  424. list_add(&kvm->vm_list, &vm_list);
  425. raw_spin_unlock(&kvm_lock);
  426. return kvm;
  427. out_err:
  428. cleanup_srcu_struct(&kvm->srcu);
  429. out_err_nosrcu:
  430. hardware_disable_all();
  431. out_err_nodisable:
  432. for (i = 0; i < KVM_NR_BUSES; i++)
  433. kfree(kvm->buses[i]);
  434. kfree(kvm->memslots);
  435. kvm_arch_free_vm(kvm);
  436. return ERR_PTR(r);
  437. }
  438. /*
  439. * Avoid using vmalloc for a small buffer.
  440. * Should not be used when the size is statically known.
  441. */
  442. void *kvm_kvzalloc(unsigned long size)
  443. {
  444. if (size > PAGE_SIZE)
  445. return vzalloc(size);
  446. else
  447. return kzalloc(size, GFP_KERNEL);
  448. }
  449. void kvm_kvfree(const void *addr)
  450. {
  451. if (is_vmalloc_addr(addr))
  452. vfree(addr);
  453. else
  454. kfree(addr);
  455. }
  456. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  457. {
  458. if (!memslot->dirty_bitmap)
  459. return;
  460. kvm_kvfree(memslot->dirty_bitmap);
  461. memslot->dirty_bitmap = NULL;
  462. }
  463. /*
  464. * Free any memory in @free but not in @dont.
  465. */
  466. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  467. struct kvm_memory_slot *dont)
  468. {
  469. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  470. kvm_destroy_dirty_bitmap(free);
  471. kvm_arch_free_memslot(free, dont);
  472. free->npages = 0;
  473. }
  474. void kvm_free_physmem(struct kvm *kvm)
  475. {
  476. struct kvm_memslots *slots = kvm->memslots;
  477. struct kvm_memory_slot *memslot;
  478. kvm_for_each_memslot(memslot, slots)
  479. kvm_free_physmem_slot(memslot, NULL);
  480. kfree(kvm->memslots);
  481. }
  482. static void kvm_destroy_vm(struct kvm *kvm)
  483. {
  484. int i;
  485. struct mm_struct *mm = kvm->mm;
  486. kvm_arch_sync_events(kvm);
  487. raw_spin_lock(&kvm_lock);
  488. list_del(&kvm->vm_list);
  489. raw_spin_unlock(&kvm_lock);
  490. kvm_free_irq_routing(kvm);
  491. for (i = 0; i < KVM_NR_BUSES; i++)
  492. kvm_io_bus_destroy(kvm->buses[i]);
  493. kvm_coalesced_mmio_free(kvm);
  494. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  495. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  496. #else
  497. kvm_arch_flush_shadow(kvm);
  498. #endif
  499. kvm_arch_destroy_vm(kvm);
  500. kvm_free_physmem(kvm);
  501. cleanup_srcu_struct(&kvm->srcu);
  502. kvm_arch_free_vm(kvm);
  503. hardware_disable_all();
  504. mmdrop(mm);
  505. }
  506. void kvm_get_kvm(struct kvm *kvm)
  507. {
  508. atomic_inc(&kvm->users_count);
  509. }
  510. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  511. void kvm_put_kvm(struct kvm *kvm)
  512. {
  513. if (atomic_dec_and_test(&kvm->users_count))
  514. kvm_destroy_vm(kvm);
  515. }
  516. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  517. static int kvm_vm_release(struct inode *inode, struct file *filp)
  518. {
  519. struct kvm *kvm = filp->private_data;
  520. kvm_irqfd_release(kvm);
  521. kvm_put_kvm(kvm);
  522. return 0;
  523. }
  524. /*
  525. * Allocation size is twice as large as the actual dirty bitmap size.
  526. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  527. */
  528. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  529. {
  530. #ifndef CONFIG_S390
  531. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  532. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  533. if (!memslot->dirty_bitmap)
  534. return -ENOMEM;
  535. #endif /* !CONFIG_S390 */
  536. return 0;
  537. }
  538. static int cmp_memslot(const void *slot1, const void *slot2)
  539. {
  540. struct kvm_memory_slot *s1, *s2;
  541. s1 = (struct kvm_memory_slot *)slot1;
  542. s2 = (struct kvm_memory_slot *)slot2;
  543. if (s1->npages < s2->npages)
  544. return 1;
  545. if (s1->npages > s2->npages)
  546. return -1;
  547. return 0;
  548. }
  549. /*
  550. * Sort the memslots base on its size, so the larger slots
  551. * will get better fit.
  552. */
  553. static void sort_memslots(struct kvm_memslots *slots)
  554. {
  555. int i;
  556. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  557. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  558. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  559. slots->id_to_index[slots->memslots[i].id] = i;
  560. }
  561. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  562. {
  563. if (new) {
  564. int id = new->id;
  565. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  566. unsigned long npages = old->npages;
  567. *old = *new;
  568. if (new->npages != npages)
  569. sort_memslots(slots);
  570. }
  571. slots->generation++;
  572. }
  573. /*
  574. * Allocate some memory and give it an address in the guest physical address
  575. * space.
  576. *
  577. * Discontiguous memory is allowed, mostly for framebuffers.
  578. *
  579. * Must be called holding mmap_sem for write.
  580. */
  581. int __kvm_set_memory_region(struct kvm *kvm,
  582. struct kvm_userspace_memory_region *mem,
  583. int user_alloc)
  584. {
  585. int r;
  586. gfn_t base_gfn;
  587. unsigned long npages;
  588. unsigned long i;
  589. struct kvm_memory_slot *memslot;
  590. struct kvm_memory_slot old, new;
  591. struct kvm_memslots *slots, *old_memslots;
  592. r = -EINVAL;
  593. /* General sanity checks */
  594. if (mem->memory_size & (PAGE_SIZE - 1))
  595. goto out;
  596. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  597. goto out;
  598. /* We can read the guest memory with __xxx_user() later on. */
  599. if (user_alloc &&
  600. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  601. !access_ok(VERIFY_WRITE,
  602. (void __user *)(unsigned long)mem->userspace_addr,
  603. mem->memory_size)))
  604. goto out;
  605. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  606. goto out;
  607. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  608. goto out;
  609. memslot = id_to_memslot(kvm->memslots, mem->slot);
  610. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  611. npages = mem->memory_size >> PAGE_SHIFT;
  612. r = -EINVAL;
  613. if (npages > KVM_MEM_MAX_NR_PAGES)
  614. goto out;
  615. if (!npages)
  616. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  617. new = old = *memslot;
  618. new.id = mem->slot;
  619. new.base_gfn = base_gfn;
  620. new.npages = npages;
  621. new.flags = mem->flags;
  622. /* Disallow changing a memory slot's size. */
  623. r = -EINVAL;
  624. if (npages && old.npages && npages != old.npages)
  625. goto out_free;
  626. /* Check for overlaps */
  627. r = -EEXIST;
  628. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  629. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  630. if (s == memslot || !s->npages)
  631. continue;
  632. if (!((base_gfn + npages <= s->base_gfn) ||
  633. (base_gfn >= s->base_gfn + s->npages)))
  634. goto out_free;
  635. }
  636. /* Free page dirty bitmap if unneeded */
  637. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  638. new.dirty_bitmap = NULL;
  639. r = -ENOMEM;
  640. /* Allocate if a slot is being created */
  641. if (npages && !old.npages) {
  642. new.user_alloc = user_alloc;
  643. new.userspace_addr = mem->userspace_addr;
  644. if (kvm_arch_create_memslot(&new, npages))
  645. goto out_free;
  646. }
  647. /* Allocate page dirty bitmap if needed */
  648. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  649. if (kvm_create_dirty_bitmap(&new) < 0)
  650. goto out_free;
  651. /* destroy any largepage mappings for dirty tracking */
  652. }
  653. if (!npages) {
  654. struct kvm_memory_slot *slot;
  655. r = -ENOMEM;
  656. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  657. GFP_KERNEL);
  658. if (!slots)
  659. goto out_free;
  660. slot = id_to_memslot(slots, mem->slot);
  661. slot->flags |= KVM_MEMSLOT_INVALID;
  662. update_memslots(slots, NULL);
  663. old_memslots = kvm->memslots;
  664. rcu_assign_pointer(kvm->memslots, slots);
  665. synchronize_srcu_expedited(&kvm->srcu);
  666. /* From this point no new shadow pages pointing to a deleted
  667. * memslot will be created.
  668. *
  669. * validation of sp->gfn happens in:
  670. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  671. * - kvm_is_visible_gfn (mmu_check_roots)
  672. */
  673. kvm_arch_flush_shadow(kvm);
  674. kfree(old_memslots);
  675. }
  676. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  677. if (r)
  678. goto out_free;
  679. /* map/unmap the pages in iommu page table */
  680. if (npages) {
  681. r = kvm_iommu_map_pages(kvm, &new);
  682. if (r)
  683. goto out_free;
  684. } else
  685. kvm_iommu_unmap_pages(kvm, &old);
  686. r = -ENOMEM;
  687. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  688. GFP_KERNEL);
  689. if (!slots)
  690. goto out_free;
  691. /* actual memory is freed via old in kvm_free_physmem_slot below */
  692. if (!npages) {
  693. new.dirty_bitmap = NULL;
  694. memset(&new.arch, 0, sizeof(new.arch));
  695. }
  696. update_memslots(slots, &new);
  697. old_memslots = kvm->memslots;
  698. rcu_assign_pointer(kvm->memslots, slots);
  699. synchronize_srcu_expedited(&kvm->srcu);
  700. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  701. /*
  702. * If the new memory slot is created, we need to clear all
  703. * mmio sptes.
  704. */
  705. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  706. kvm_arch_flush_shadow(kvm);
  707. kvm_free_physmem_slot(&old, &new);
  708. kfree(old_memslots);
  709. return 0;
  710. out_free:
  711. kvm_free_physmem_slot(&new, &old);
  712. out:
  713. return r;
  714. }
  715. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  716. int kvm_set_memory_region(struct kvm *kvm,
  717. struct kvm_userspace_memory_region *mem,
  718. int user_alloc)
  719. {
  720. int r;
  721. mutex_lock(&kvm->slots_lock);
  722. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  723. mutex_unlock(&kvm->slots_lock);
  724. return r;
  725. }
  726. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  727. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  728. struct
  729. kvm_userspace_memory_region *mem,
  730. int user_alloc)
  731. {
  732. if (mem->slot >= KVM_MEMORY_SLOTS)
  733. return -EINVAL;
  734. return kvm_set_memory_region(kvm, mem, user_alloc);
  735. }
  736. int kvm_get_dirty_log(struct kvm *kvm,
  737. struct kvm_dirty_log *log, int *is_dirty)
  738. {
  739. struct kvm_memory_slot *memslot;
  740. int r, i;
  741. unsigned long n;
  742. unsigned long any = 0;
  743. r = -EINVAL;
  744. if (log->slot >= KVM_MEMORY_SLOTS)
  745. goto out;
  746. memslot = id_to_memslot(kvm->memslots, log->slot);
  747. r = -ENOENT;
  748. if (!memslot->dirty_bitmap)
  749. goto out;
  750. n = kvm_dirty_bitmap_bytes(memslot);
  751. for (i = 0; !any && i < n/sizeof(long); ++i)
  752. any = memslot->dirty_bitmap[i];
  753. r = -EFAULT;
  754. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  755. goto out;
  756. if (any)
  757. *is_dirty = 1;
  758. r = 0;
  759. out:
  760. return r;
  761. }
  762. bool kvm_largepages_enabled(void)
  763. {
  764. return largepages_enabled;
  765. }
  766. void kvm_disable_largepages(void)
  767. {
  768. largepages_enabled = false;
  769. }
  770. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  771. int is_error_page(struct page *page)
  772. {
  773. return IS_ERR(page);
  774. }
  775. EXPORT_SYMBOL_GPL(is_error_page);
  776. int is_error_pfn(pfn_t pfn)
  777. {
  778. return IS_ERR_VALUE(pfn);
  779. }
  780. EXPORT_SYMBOL_GPL(is_error_pfn);
  781. static pfn_t get_bad_pfn(void)
  782. {
  783. return -ENOENT;
  784. }
  785. static pfn_t get_hwpoison_pfn(void)
  786. {
  787. return -EHWPOISON;
  788. }
  789. int is_hwpoison_pfn(pfn_t pfn)
  790. {
  791. return pfn == -EHWPOISON;
  792. }
  793. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  794. int is_noslot_pfn(pfn_t pfn)
  795. {
  796. return pfn == -ENOENT;
  797. }
  798. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  799. int is_invalid_pfn(pfn_t pfn)
  800. {
  801. return !is_noslot_pfn(pfn) && is_error_pfn(pfn);
  802. }
  803. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  804. struct page *get_bad_page(void)
  805. {
  806. return ERR_PTR(-ENOENT);
  807. }
  808. static inline unsigned long bad_hva(void)
  809. {
  810. return PAGE_OFFSET;
  811. }
  812. int kvm_is_error_hva(unsigned long addr)
  813. {
  814. return addr == bad_hva();
  815. }
  816. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  817. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  818. {
  819. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  820. }
  821. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  822. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  823. {
  824. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  825. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  826. memslot->flags & KVM_MEMSLOT_INVALID)
  827. return 0;
  828. return 1;
  829. }
  830. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  831. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  832. {
  833. struct vm_area_struct *vma;
  834. unsigned long addr, size;
  835. size = PAGE_SIZE;
  836. addr = gfn_to_hva(kvm, gfn);
  837. if (kvm_is_error_hva(addr))
  838. return PAGE_SIZE;
  839. down_read(&current->mm->mmap_sem);
  840. vma = find_vma(current->mm, addr);
  841. if (!vma)
  842. goto out;
  843. size = vma_kernel_pagesize(vma);
  844. out:
  845. up_read(&current->mm->mmap_sem);
  846. return size;
  847. }
  848. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  849. gfn_t *nr_pages)
  850. {
  851. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  852. return bad_hva();
  853. if (nr_pages)
  854. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  855. return gfn_to_hva_memslot(slot, gfn);
  856. }
  857. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  858. {
  859. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  860. }
  861. EXPORT_SYMBOL_GPL(gfn_to_hva);
  862. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  863. unsigned long start, int write, struct page **page)
  864. {
  865. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  866. if (write)
  867. flags |= FOLL_WRITE;
  868. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  869. }
  870. static inline int check_user_page_hwpoison(unsigned long addr)
  871. {
  872. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  873. rc = __get_user_pages(current, current->mm, addr, 1,
  874. flags, NULL, NULL, NULL);
  875. return rc == -EHWPOISON;
  876. }
  877. static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  878. bool write_fault, bool *writable)
  879. {
  880. struct page *page[1];
  881. int npages = 0;
  882. pfn_t pfn;
  883. /* we can do it either atomically or asynchronously, not both */
  884. BUG_ON(atomic && async);
  885. BUG_ON(!write_fault && !writable);
  886. if (writable)
  887. *writable = true;
  888. if (atomic || async)
  889. npages = __get_user_pages_fast(addr, 1, 1, page);
  890. if (unlikely(npages != 1) && !atomic) {
  891. might_sleep();
  892. if (writable)
  893. *writable = write_fault;
  894. if (async) {
  895. down_read(&current->mm->mmap_sem);
  896. npages = get_user_page_nowait(current, current->mm,
  897. addr, write_fault, page);
  898. up_read(&current->mm->mmap_sem);
  899. } else
  900. npages = get_user_pages_fast(addr, 1, write_fault,
  901. page);
  902. /* map read fault as writable if possible */
  903. if (unlikely(!write_fault) && npages == 1) {
  904. struct page *wpage[1];
  905. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  906. if (npages == 1) {
  907. *writable = true;
  908. put_page(page[0]);
  909. page[0] = wpage[0];
  910. }
  911. npages = 1;
  912. }
  913. }
  914. if (unlikely(npages != 1)) {
  915. struct vm_area_struct *vma;
  916. if (atomic)
  917. return KVM_PFN_ERR_FAULT;
  918. down_read(&current->mm->mmap_sem);
  919. if (npages == -EHWPOISON ||
  920. (!async && check_user_page_hwpoison(addr))) {
  921. up_read(&current->mm->mmap_sem);
  922. return get_hwpoison_pfn();
  923. }
  924. vma = find_vma_intersection(current->mm, addr, addr+1);
  925. if (vma == NULL)
  926. pfn = KVM_PFN_ERR_FAULT;
  927. else if ((vma->vm_flags & VM_PFNMAP)) {
  928. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  929. vma->vm_pgoff;
  930. BUG_ON(!kvm_is_mmio_pfn(pfn));
  931. } else {
  932. if (async && (vma->vm_flags & VM_WRITE))
  933. *async = true;
  934. pfn = KVM_PFN_ERR_FAULT;
  935. }
  936. up_read(&current->mm->mmap_sem);
  937. } else
  938. pfn = page_to_pfn(page[0]);
  939. return pfn;
  940. }
  941. pfn_t hva_to_pfn_atomic(unsigned long addr)
  942. {
  943. return hva_to_pfn(addr, true, NULL, true, NULL);
  944. }
  945. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  946. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  947. bool write_fault, bool *writable)
  948. {
  949. unsigned long addr;
  950. if (async)
  951. *async = false;
  952. addr = gfn_to_hva(kvm, gfn);
  953. if (kvm_is_error_hva(addr))
  954. return get_bad_pfn();
  955. return hva_to_pfn(addr, atomic, async, write_fault, writable);
  956. }
  957. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  958. {
  959. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  960. }
  961. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  962. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  963. bool write_fault, bool *writable)
  964. {
  965. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  966. }
  967. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  968. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  969. {
  970. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  971. }
  972. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  973. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  974. bool *writable)
  975. {
  976. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  977. }
  978. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  979. pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  980. {
  981. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  982. return hva_to_pfn(addr, false, NULL, true, NULL);
  983. }
  984. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  985. int nr_pages)
  986. {
  987. unsigned long addr;
  988. gfn_t entry;
  989. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  990. if (kvm_is_error_hva(addr))
  991. return -1;
  992. if (entry < nr_pages)
  993. return 0;
  994. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  995. }
  996. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  997. static struct page *kvm_pfn_to_page(pfn_t pfn)
  998. {
  999. WARN_ON(kvm_is_mmio_pfn(pfn));
  1000. if (is_error_pfn(pfn) || kvm_is_mmio_pfn(pfn))
  1001. return get_bad_page();
  1002. return pfn_to_page(pfn);
  1003. }
  1004. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1005. {
  1006. pfn_t pfn;
  1007. pfn = gfn_to_pfn(kvm, gfn);
  1008. return kvm_pfn_to_page(pfn);
  1009. }
  1010. EXPORT_SYMBOL_GPL(gfn_to_page);
  1011. void kvm_release_page_clean(struct page *page)
  1012. {
  1013. if (!is_error_page(page))
  1014. kvm_release_pfn_clean(page_to_pfn(page));
  1015. }
  1016. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1017. void kvm_release_pfn_clean(pfn_t pfn)
  1018. {
  1019. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
  1020. put_page(pfn_to_page(pfn));
  1021. }
  1022. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1023. void kvm_release_page_dirty(struct page *page)
  1024. {
  1025. WARN_ON(is_error_page(page));
  1026. kvm_release_pfn_dirty(page_to_pfn(page));
  1027. }
  1028. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1029. void kvm_release_pfn_dirty(pfn_t pfn)
  1030. {
  1031. kvm_set_pfn_dirty(pfn);
  1032. kvm_release_pfn_clean(pfn);
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1035. void kvm_set_page_dirty(struct page *page)
  1036. {
  1037. kvm_set_pfn_dirty(page_to_pfn(page));
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1040. void kvm_set_pfn_dirty(pfn_t pfn)
  1041. {
  1042. if (!kvm_is_mmio_pfn(pfn)) {
  1043. struct page *page = pfn_to_page(pfn);
  1044. if (!PageReserved(page))
  1045. SetPageDirty(page);
  1046. }
  1047. }
  1048. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1049. void kvm_set_pfn_accessed(pfn_t pfn)
  1050. {
  1051. if (!kvm_is_mmio_pfn(pfn))
  1052. mark_page_accessed(pfn_to_page(pfn));
  1053. }
  1054. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1055. void kvm_get_pfn(pfn_t pfn)
  1056. {
  1057. if (!kvm_is_mmio_pfn(pfn))
  1058. get_page(pfn_to_page(pfn));
  1059. }
  1060. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1061. static int next_segment(unsigned long len, int offset)
  1062. {
  1063. if (len > PAGE_SIZE - offset)
  1064. return PAGE_SIZE - offset;
  1065. else
  1066. return len;
  1067. }
  1068. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1069. int len)
  1070. {
  1071. int r;
  1072. unsigned long addr;
  1073. addr = gfn_to_hva(kvm, gfn);
  1074. if (kvm_is_error_hva(addr))
  1075. return -EFAULT;
  1076. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1077. if (r)
  1078. return -EFAULT;
  1079. return 0;
  1080. }
  1081. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1082. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1083. {
  1084. gfn_t gfn = gpa >> PAGE_SHIFT;
  1085. int seg;
  1086. int offset = offset_in_page(gpa);
  1087. int ret;
  1088. while ((seg = next_segment(len, offset)) != 0) {
  1089. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1090. if (ret < 0)
  1091. return ret;
  1092. offset = 0;
  1093. len -= seg;
  1094. data += seg;
  1095. ++gfn;
  1096. }
  1097. return 0;
  1098. }
  1099. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1100. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1101. unsigned long len)
  1102. {
  1103. int r;
  1104. unsigned long addr;
  1105. gfn_t gfn = gpa >> PAGE_SHIFT;
  1106. int offset = offset_in_page(gpa);
  1107. addr = gfn_to_hva(kvm, gfn);
  1108. if (kvm_is_error_hva(addr))
  1109. return -EFAULT;
  1110. pagefault_disable();
  1111. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1112. pagefault_enable();
  1113. if (r)
  1114. return -EFAULT;
  1115. return 0;
  1116. }
  1117. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1118. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1119. int offset, int len)
  1120. {
  1121. int r;
  1122. unsigned long addr;
  1123. addr = gfn_to_hva(kvm, gfn);
  1124. if (kvm_is_error_hva(addr))
  1125. return -EFAULT;
  1126. r = __copy_to_user((void __user *)addr + offset, data, len);
  1127. if (r)
  1128. return -EFAULT;
  1129. mark_page_dirty(kvm, gfn);
  1130. return 0;
  1131. }
  1132. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1133. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1134. unsigned long len)
  1135. {
  1136. gfn_t gfn = gpa >> PAGE_SHIFT;
  1137. int seg;
  1138. int offset = offset_in_page(gpa);
  1139. int ret;
  1140. while ((seg = next_segment(len, offset)) != 0) {
  1141. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1142. if (ret < 0)
  1143. return ret;
  1144. offset = 0;
  1145. len -= seg;
  1146. data += seg;
  1147. ++gfn;
  1148. }
  1149. return 0;
  1150. }
  1151. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1152. gpa_t gpa)
  1153. {
  1154. struct kvm_memslots *slots = kvm_memslots(kvm);
  1155. int offset = offset_in_page(gpa);
  1156. gfn_t gfn = gpa >> PAGE_SHIFT;
  1157. ghc->gpa = gpa;
  1158. ghc->generation = slots->generation;
  1159. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1160. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1161. if (!kvm_is_error_hva(ghc->hva))
  1162. ghc->hva += offset;
  1163. else
  1164. return -EFAULT;
  1165. return 0;
  1166. }
  1167. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1168. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1169. void *data, unsigned long len)
  1170. {
  1171. struct kvm_memslots *slots = kvm_memslots(kvm);
  1172. int r;
  1173. if (slots->generation != ghc->generation)
  1174. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1175. if (kvm_is_error_hva(ghc->hva))
  1176. return -EFAULT;
  1177. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1178. if (r)
  1179. return -EFAULT;
  1180. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1181. return 0;
  1182. }
  1183. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1184. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1185. void *data, unsigned long len)
  1186. {
  1187. struct kvm_memslots *slots = kvm_memslots(kvm);
  1188. int r;
  1189. if (slots->generation != ghc->generation)
  1190. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1191. if (kvm_is_error_hva(ghc->hva))
  1192. return -EFAULT;
  1193. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1194. if (r)
  1195. return -EFAULT;
  1196. return 0;
  1197. }
  1198. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1199. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1200. {
  1201. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1202. offset, len);
  1203. }
  1204. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1205. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1206. {
  1207. gfn_t gfn = gpa >> PAGE_SHIFT;
  1208. int seg;
  1209. int offset = offset_in_page(gpa);
  1210. int ret;
  1211. while ((seg = next_segment(len, offset)) != 0) {
  1212. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1213. if (ret < 0)
  1214. return ret;
  1215. offset = 0;
  1216. len -= seg;
  1217. ++gfn;
  1218. }
  1219. return 0;
  1220. }
  1221. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1222. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1223. gfn_t gfn)
  1224. {
  1225. if (memslot && memslot->dirty_bitmap) {
  1226. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1227. /* TODO: introduce set_bit_le() and use it */
  1228. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1229. }
  1230. }
  1231. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1232. {
  1233. struct kvm_memory_slot *memslot;
  1234. memslot = gfn_to_memslot(kvm, gfn);
  1235. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1236. }
  1237. /*
  1238. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1239. */
  1240. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1241. {
  1242. DEFINE_WAIT(wait);
  1243. for (;;) {
  1244. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1245. if (kvm_arch_vcpu_runnable(vcpu)) {
  1246. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1247. break;
  1248. }
  1249. if (kvm_cpu_has_pending_timer(vcpu))
  1250. break;
  1251. if (signal_pending(current))
  1252. break;
  1253. schedule();
  1254. }
  1255. finish_wait(&vcpu->wq, &wait);
  1256. }
  1257. #ifndef CONFIG_S390
  1258. /*
  1259. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1260. */
  1261. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1262. {
  1263. int me;
  1264. int cpu = vcpu->cpu;
  1265. wait_queue_head_t *wqp;
  1266. wqp = kvm_arch_vcpu_wq(vcpu);
  1267. if (waitqueue_active(wqp)) {
  1268. wake_up_interruptible(wqp);
  1269. ++vcpu->stat.halt_wakeup;
  1270. }
  1271. me = get_cpu();
  1272. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1273. if (kvm_arch_vcpu_should_kick(vcpu))
  1274. smp_send_reschedule(cpu);
  1275. put_cpu();
  1276. }
  1277. #endif /* !CONFIG_S390 */
  1278. void kvm_resched(struct kvm_vcpu *vcpu)
  1279. {
  1280. if (!need_resched())
  1281. return;
  1282. cond_resched();
  1283. }
  1284. EXPORT_SYMBOL_GPL(kvm_resched);
  1285. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1286. {
  1287. struct pid *pid;
  1288. struct task_struct *task = NULL;
  1289. rcu_read_lock();
  1290. pid = rcu_dereference(target->pid);
  1291. if (pid)
  1292. task = get_pid_task(target->pid, PIDTYPE_PID);
  1293. rcu_read_unlock();
  1294. if (!task)
  1295. return false;
  1296. if (task->flags & PF_VCPU) {
  1297. put_task_struct(task);
  1298. return false;
  1299. }
  1300. if (yield_to(task, 1)) {
  1301. put_task_struct(task);
  1302. return true;
  1303. }
  1304. put_task_struct(task);
  1305. return false;
  1306. }
  1307. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1308. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1309. /*
  1310. * Helper that checks whether a VCPU is eligible for directed yield.
  1311. * Most eligible candidate to yield is decided by following heuristics:
  1312. *
  1313. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1314. * (preempted lock holder), indicated by @in_spin_loop.
  1315. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1316. *
  1317. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1318. * chance last time (mostly it has become eligible now since we have probably
  1319. * yielded to lockholder in last iteration. This is done by toggling
  1320. * @dy_eligible each time a VCPU checked for eligibility.)
  1321. *
  1322. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1323. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1324. * burning. Giving priority for a potential lock-holder increases lock
  1325. * progress.
  1326. *
  1327. * Since algorithm is based on heuristics, accessing another VCPU data without
  1328. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1329. * and continue with next VCPU and so on.
  1330. */
  1331. bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1332. {
  1333. bool eligible;
  1334. eligible = !vcpu->spin_loop.in_spin_loop ||
  1335. (vcpu->spin_loop.in_spin_loop &&
  1336. vcpu->spin_loop.dy_eligible);
  1337. if (vcpu->spin_loop.in_spin_loop)
  1338. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1339. return eligible;
  1340. }
  1341. #endif
  1342. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1343. {
  1344. struct kvm *kvm = me->kvm;
  1345. struct kvm_vcpu *vcpu;
  1346. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1347. int yielded = 0;
  1348. int pass;
  1349. int i;
  1350. kvm_vcpu_set_in_spin_loop(me, true);
  1351. /*
  1352. * We boost the priority of a VCPU that is runnable but not
  1353. * currently running, because it got preempted by something
  1354. * else and called schedule in __vcpu_run. Hopefully that
  1355. * VCPU is holding the lock that we need and will release it.
  1356. * We approximate round-robin by starting at the last boosted VCPU.
  1357. */
  1358. for (pass = 0; pass < 2 && !yielded; pass++) {
  1359. kvm_for_each_vcpu(i, vcpu, kvm) {
  1360. if (!pass && i <= last_boosted_vcpu) {
  1361. i = last_boosted_vcpu;
  1362. continue;
  1363. } else if (pass && i > last_boosted_vcpu)
  1364. break;
  1365. if (vcpu == me)
  1366. continue;
  1367. if (waitqueue_active(&vcpu->wq))
  1368. continue;
  1369. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1370. continue;
  1371. if (kvm_vcpu_yield_to(vcpu)) {
  1372. kvm->last_boosted_vcpu = i;
  1373. yielded = 1;
  1374. break;
  1375. }
  1376. }
  1377. }
  1378. kvm_vcpu_set_in_spin_loop(me, false);
  1379. /* Ensure vcpu is not eligible during next spinloop */
  1380. kvm_vcpu_set_dy_eligible(me, false);
  1381. }
  1382. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1383. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1384. {
  1385. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1386. struct page *page;
  1387. if (vmf->pgoff == 0)
  1388. page = virt_to_page(vcpu->run);
  1389. #ifdef CONFIG_X86
  1390. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1391. page = virt_to_page(vcpu->arch.pio_data);
  1392. #endif
  1393. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1394. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1395. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1396. #endif
  1397. else
  1398. return kvm_arch_vcpu_fault(vcpu, vmf);
  1399. get_page(page);
  1400. vmf->page = page;
  1401. return 0;
  1402. }
  1403. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1404. .fault = kvm_vcpu_fault,
  1405. };
  1406. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1407. {
  1408. vma->vm_ops = &kvm_vcpu_vm_ops;
  1409. return 0;
  1410. }
  1411. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1412. {
  1413. struct kvm_vcpu *vcpu = filp->private_data;
  1414. kvm_put_kvm(vcpu->kvm);
  1415. return 0;
  1416. }
  1417. static struct file_operations kvm_vcpu_fops = {
  1418. .release = kvm_vcpu_release,
  1419. .unlocked_ioctl = kvm_vcpu_ioctl,
  1420. #ifdef CONFIG_COMPAT
  1421. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1422. #endif
  1423. .mmap = kvm_vcpu_mmap,
  1424. .llseek = noop_llseek,
  1425. };
  1426. /*
  1427. * Allocates an inode for the vcpu.
  1428. */
  1429. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1430. {
  1431. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1432. }
  1433. /*
  1434. * Creates some virtual cpus. Good luck creating more than one.
  1435. */
  1436. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1437. {
  1438. int r;
  1439. struct kvm_vcpu *vcpu, *v;
  1440. vcpu = kvm_arch_vcpu_create(kvm, id);
  1441. if (IS_ERR(vcpu))
  1442. return PTR_ERR(vcpu);
  1443. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1444. r = kvm_arch_vcpu_setup(vcpu);
  1445. if (r)
  1446. goto vcpu_destroy;
  1447. mutex_lock(&kvm->lock);
  1448. if (!kvm_vcpu_compatible(vcpu)) {
  1449. r = -EINVAL;
  1450. goto unlock_vcpu_destroy;
  1451. }
  1452. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1453. r = -EINVAL;
  1454. goto unlock_vcpu_destroy;
  1455. }
  1456. kvm_for_each_vcpu(r, v, kvm)
  1457. if (v->vcpu_id == id) {
  1458. r = -EEXIST;
  1459. goto unlock_vcpu_destroy;
  1460. }
  1461. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1462. /* Now it's all set up, let userspace reach it */
  1463. kvm_get_kvm(kvm);
  1464. r = create_vcpu_fd(vcpu);
  1465. if (r < 0) {
  1466. kvm_put_kvm(kvm);
  1467. goto unlock_vcpu_destroy;
  1468. }
  1469. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1470. smp_wmb();
  1471. atomic_inc(&kvm->online_vcpus);
  1472. mutex_unlock(&kvm->lock);
  1473. return r;
  1474. unlock_vcpu_destroy:
  1475. mutex_unlock(&kvm->lock);
  1476. vcpu_destroy:
  1477. kvm_arch_vcpu_destroy(vcpu);
  1478. return r;
  1479. }
  1480. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1481. {
  1482. if (sigset) {
  1483. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1484. vcpu->sigset_active = 1;
  1485. vcpu->sigset = *sigset;
  1486. } else
  1487. vcpu->sigset_active = 0;
  1488. return 0;
  1489. }
  1490. static long kvm_vcpu_ioctl(struct file *filp,
  1491. unsigned int ioctl, unsigned long arg)
  1492. {
  1493. struct kvm_vcpu *vcpu = filp->private_data;
  1494. void __user *argp = (void __user *)arg;
  1495. int r;
  1496. struct kvm_fpu *fpu = NULL;
  1497. struct kvm_sregs *kvm_sregs = NULL;
  1498. if (vcpu->kvm->mm != current->mm)
  1499. return -EIO;
  1500. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1501. /*
  1502. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1503. * so vcpu_load() would break it.
  1504. */
  1505. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1506. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1507. #endif
  1508. vcpu_load(vcpu);
  1509. switch (ioctl) {
  1510. case KVM_RUN:
  1511. r = -EINVAL;
  1512. if (arg)
  1513. goto out;
  1514. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1515. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1516. break;
  1517. case KVM_GET_REGS: {
  1518. struct kvm_regs *kvm_regs;
  1519. r = -ENOMEM;
  1520. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1521. if (!kvm_regs)
  1522. goto out;
  1523. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1524. if (r)
  1525. goto out_free1;
  1526. r = -EFAULT;
  1527. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1528. goto out_free1;
  1529. r = 0;
  1530. out_free1:
  1531. kfree(kvm_regs);
  1532. break;
  1533. }
  1534. case KVM_SET_REGS: {
  1535. struct kvm_regs *kvm_regs;
  1536. r = -ENOMEM;
  1537. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1538. if (IS_ERR(kvm_regs)) {
  1539. r = PTR_ERR(kvm_regs);
  1540. goto out;
  1541. }
  1542. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1543. if (r)
  1544. goto out_free2;
  1545. r = 0;
  1546. out_free2:
  1547. kfree(kvm_regs);
  1548. break;
  1549. }
  1550. case KVM_GET_SREGS: {
  1551. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1552. r = -ENOMEM;
  1553. if (!kvm_sregs)
  1554. goto out;
  1555. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1556. if (r)
  1557. goto out;
  1558. r = -EFAULT;
  1559. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1560. goto out;
  1561. r = 0;
  1562. break;
  1563. }
  1564. case KVM_SET_SREGS: {
  1565. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1566. if (IS_ERR(kvm_sregs)) {
  1567. r = PTR_ERR(kvm_sregs);
  1568. goto out;
  1569. }
  1570. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1571. if (r)
  1572. goto out;
  1573. r = 0;
  1574. break;
  1575. }
  1576. case KVM_GET_MP_STATE: {
  1577. struct kvm_mp_state mp_state;
  1578. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1579. if (r)
  1580. goto out;
  1581. r = -EFAULT;
  1582. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1583. goto out;
  1584. r = 0;
  1585. break;
  1586. }
  1587. case KVM_SET_MP_STATE: {
  1588. struct kvm_mp_state mp_state;
  1589. r = -EFAULT;
  1590. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1591. goto out;
  1592. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1593. if (r)
  1594. goto out;
  1595. r = 0;
  1596. break;
  1597. }
  1598. case KVM_TRANSLATE: {
  1599. struct kvm_translation tr;
  1600. r = -EFAULT;
  1601. if (copy_from_user(&tr, argp, sizeof tr))
  1602. goto out;
  1603. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1604. if (r)
  1605. goto out;
  1606. r = -EFAULT;
  1607. if (copy_to_user(argp, &tr, sizeof tr))
  1608. goto out;
  1609. r = 0;
  1610. break;
  1611. }
  1612. case KVM_SET_GUEST_DEBUG: {
  1613. struct kvm_guest_debug dbg;
  1614. r = -EFAULT;
  1615. if (copy_from_user(&dbg, argp, sizeof dbg))
  1616. goto out;
  1617. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1618. if (r)
  1619. goto out;
  1620. r = 0;
  1621. break;
  1622. }
  1623. case KVM_SET_SIGNAL_MASK: {
  1624. struct kvm_signal_mask __user *sigmask_arg = argp;
  1625. struct kvm_signal_mask kvm_sigmask;
  1626. sigset_t sigset, *p;
  1627. p = NULL;
  1628. if (argp) {
  1629. r = -EFAULT;
  1630. if (copy_from_user(&kvm_sigmask, argp,
  1631. sizeof kvm_sigmask))
  1632. goto out;
  1633. r = -EINVAL;
  1634. if (kvm_sigmask.len != sizeof sigset)
  1635. goto out;
  1636. r = -EFAULT;
  1637. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1638. sizeof sigset))
  1639. goto out;
  1640. p = &sigset;
  1641. }
  1642. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1643. break;
  1644. }
  1645. case KVM_GET_FPU: {
  1646. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1647. r = -ENOMEM;
  1648. if (!fpu)
  1649. goto out;
  1650. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1651. if (r)
  1652. goto out;
  1653. r = -EFAULT;
  1654. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1655. goto out;
  1656. r = 0;
  1657. break;
  1658. }
  1659. case KVM_SET_FPU: {
  1660. fpu = memdup_user(argp, sizeof(*fpu));
  1661. if (IS_ERR(fpu)) {
  1662. r = PTR_ERR(fpu);
  1663. goto out;
  1664. }
  1665. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1666. if (r)
  1667. goto out;
  1668. r = 0;
  1669. break;
  1670. }
  1671. default:
  1672. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1673. }
  1674. out:
  1675. vcpu_put(vcpu);
  1676. kfree(fpu);
  1677. kfree(kvm_sregs);
  1678. return r;
  1679. }
  1680. #ifdef CONFIG_COMPAT
  1681. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1682. unsigned int ioctl, unsigned long arg)
  1683. {
  1684. struct kvm_vcpu *vcpu = filp->private_data;
  1685. void __user *argp = compat_ptr(arg);
  1686. int r;
  1687. if (vcpu->kvm->mm != current->mm)
  1688. return -EIO;
  1689. switch (ioctl) {
  1690. case KVM_SET_SIGNAL_MASK: {
  1691. struct kvm_signal_mask __user *sigmask_arg = argp;
  1692. struct kvm_signal_mask kvm_sigmask;
  1693. compat_sigset_t csigset;
  1694. sigset_t sigset;
  1695. if (argp) {
  1696. r = -EFAULT;
  1697. if (copy_from_user(&kvm_sigmask, argp,
  1698. sizeof kvm_sigmask))
  1699. goto out;
  1700. r = -EINVAL;
  1701. if (kvm_sigmask.len != sizeof csigset)
  1702. goto out;
  1703. r = -EFAULT;
  1704. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1705. sizeof csigset))
  1706. goto out;
  1707. }
  1708. sigset_from_compat(&sigset, &csigset);
  1709. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1710. break;
  1711. }
  1712. default:
  1713. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1714. }
  1715. out:
  1716. return r;
  1717. }
  1718. #endif
  1719. static long kvm_vm_ioctl(struct file *filp,
  1720. unsigned int ioctl, unsigned long arg)
  1721. {
  1722. struct kvm *kvm = filp->private_data;
  1723. void __user *argp = (void __user *)arg;
  1724. int r;
  1725. if (kvm->mm != current->mm)
  1726. return -EIO;
  1727. switch (ioctl) {
  1728. case KVM_CREATE_VCPU:
  1729. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1730. if (r < 0)
  1731. goto out;
  1732. break;
  1733. case KVM_SET_USER_MEMORY_REGION: {
  1734. struct kvm_userspace_memory_region kvm_userspace_mem;
  1735. r = -EFAULT;
  1736. if (copy_from_user(&kvm_userspace_mem, argp,
  1737. sizeof kvm_userspace_mem))
  1738. goto out;
  1739. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1740. if (r)
  1741. goto out;
  1742. break;
  1743. }
  1744. case KVM_GET_DIRTY_LOG: {
  1745. struct kvm_dirty_log log;
  1746. r = -EFAULT;
  1747. if (copy_from_user(&log, argp, sizeof log))
  1748. goto out;
  1749. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1750. if (r)
  1751. goto out;
  1752. break;
  1753. }
  1754. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1755. case KVM_REGISTER_COALESCED_MMIO: {
  1756. struct kvm_coalesced_mmio_zone zone;
  1757. r = -EFAULT;
  1758. if (copy_from_user(&zone, argp, sizeof zone))
  1759. goto out;
  1760. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1761. if (r)
  1762. goto out;
  1763. r = 0;
  1764. break;
  1765. }
  1766. case KVM_UNREGISTER_COALESCED_MMIO: {
  1767. struct kvm_coalesced_mmio_zone zone;
  1768. r = -EFAULT;
  1769. if (copy_from_user(&zone, argp, sizeof zone))
  1770. goto out;
  1771. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1772. if (r)
  1773. goto out;
  1774. r = 0;
  1775. break;
  1776. }
  1777. #endif
  1778. case KVM_IRQFD: {
  1779. struct kvm_irqfd data;
  1780. r = -EFAULT;
  1781. if (copy_from_user(&data, argp, sizeof data))
  1782. goto out;
  1783. r = kvm_irqfd(kvm, &data);
  1784. break;
  1785. }
  1786. case KVM_IOEVENTFD: {
  1787. struct kvm_ioeventfd data;
  1788. r = -EFAULT;
  1789. if (copy_from_user(&data, argp, sizeof data))
  1790. goto out;
  1791. r = kvm_ioeventfd(kvm, &data);
  1792. break;
  1793. }
  1794. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1795. case KVM_SET_BOOT_CPU_ID:
  1796. r = 0;
  1797. mutex_lock(&kvm->lock);
  1798. if (atomic_read(&kvm->online_vcpus) != 0)
  1799. r = -EBUSY;
  1800. else
  1801. kvm->bsp_vcpu_id = arg;
  1802. mutex_unlock(&kvm->lock);
  1803. break;
  1804. #endif
  1805. #ifdef CONFIG_HAVE_KVM_MSI
  1806. case KVM_SIGNAL_MSI: {
  1807. struct kvm_msi msi;
  1808. r = -EFAULT;
  1809. if (copy_from_user(&msi, argp, sizeof msi))
  1810. goto out;
  1811. r = kvm_send_userspace_msi(kvm, &msi);
  1812. break;
  1813. }
  1814. #endif
  1815. #ifdef __KVM_HAVE_IRQ_LINE
  1816. case KVM_IRQ_LINE_STATUS:
  1817. case KVM_IRQ_LINE: {
  1818. struct kvm_irq_level irq_event;
  1819. r = -EFAULT;
  1820. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1821. goto out;
  1822. r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
  1823. if (r)
  1824. goto out;
  1825. r = -EFAULT;
  1826. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1827. if (copy_to_user(argp, &irq_event, sizeof irq_event))
  1828. goto out;
  1829. }
  1830. r = 0;
  1831. break;
  1832. }
  1833. #endif
  1834. default:
  1835. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1836. if (r == -ENOTTY)
  1837. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1838. }
  1839. out:
  1840. return r;
  1841. }
  1842. #ifdef CONFIG_COMPAT
  1843. struct compat_kvm_dirty_log {
  1844. __u32 slot;
  1845. __u32 padding1;
  1846. union {
  1847. compat_uptr_t dirty_bitmap; /* one bit per page */
  1848. __u64 padding2;
  1849. };
  1850. };
  1851. static long kvm_vm_compat_ioctl(struct file *filp,
  1852. unsigned int ioctl, unsigned long arg)
  1853. {
  1854. struct kvm *kvm = filp->private_data;
  1855. int r;
  1856. if (kvm->mm != current->mm)
  1857. return -EIO;
  1858. switch (ioctl) {
  1859. case KVM_GET_DIRTY_LOG: {
  1860. struct compat_kvm_dirty_log compat_log;
  1861. struct kvm_dirty_log log;
  1862. r = -EFAULT;
  1863. if (copy_from_user(&compat_log, (void __user *)arg,
  1864. sizeof(compat_log)))
  1865. goto out;
  1866. log.slot = compat_log.slot;
  1867. log.padding1 = compat_log.padding1;
  1868. log.padding2 = compat_log.padding2;
  1869. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1870. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1871. if (r)
  1872. goto out;
  1873. break;
  1874. }
  1875. default:
  1876. r = kvm_vm_ioctl(filp, ioctl, arg);
  1877. }
  1878. out:
  1879. return r;
  1880. }
  1881. #endif
  1882. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1883. {
  1884. struct page *page[1];
  1885. unsigned long addr;
  1886. int npages;
  1887. gfn_t gfn = vmf->pgoff;
  1888. struct kvm *kvm = vma->vm_file->private_data;
  1889. addr = gfn_to_hva(kvm, gfn);
  1890. if (kvm_is_error_hva(addr))
  1891. return VM_FAULT_SIGBUS;
  1892. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1893. NULL);
  1894. if (unlikely(npages != 1))
  1895. return VM_FAULT_SIGBUS;
  1896. vmf->page = page[0];
  1897. return 0;
  1898. }
  1899. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1900. .fault = kvm_vm_fault,
  1901. };
  1902. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1903. {
  1904. vma->vm_ops = &kvm_vm_vm_ops;
  1905. return 0;
  1906. }
  1907. static struct file_operations kvm_vm_fops = {
  1908. .release = kvm_vm_release,
  1909. .unlocked_ioctl = kvm_vm_ioctl,
  1910. #ifdef CONFIG_COMPAT
  1911. .compat_ioctl = kvm_vm_compat_ioctl,
  1912. #endif
  1913. .mmap = kvm_vm_mmap,
  1914. .llseek = noop_llseek,
  1915. };
  1916. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1917. {
  1918. int r;
  1919. struct kvm *kvm;
  1920. kvm = kvm_create_vm(type);
  1921. if (IS_ERR(kvm))
  1922. return PTR_ERR(kvm);
  1923. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1924. r = kvm_coalesced_mmio_init(kvm);
  1925. if (r < 0) {
  1926. kvm_put_kvm(kvm);
  1927. return r;
  1928. }
  1929. #endif
  1930. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1931. if (r < 0)
  1932. kvm_put_kvm(kvm);
  1933. return r;
  1934. }
  1935. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1936. {
  1937. switch (arg) {
  1938. case KVM_CAP_USER_MEMORY:
  1939. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1940. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1941. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1942. case KVM_CAP_SET_BOOT_CPU_ID:
  1943. #endif
  1944. case KVM_CAP_INTERNAL_ERROR_DATA:
  1945. #ifdef CONFIG_HAVE_KVM_MSI
  1946. case KVM_CAP_SIGNAL_MSI:
  1947. #endif
  1948. return 1;
  1949. #ifdef KVM_CAP_IRQ_ROUTING
  1950. case KVM_CAP_IRQ_ROUTING:
  1951. return KVM_MAX_IRQ_ROUTES;
  1952. #endif
  1953. default:
  1954. break;
  1955. }
  1956. return kvm_dev_ioctl_check_extension(arg);
  1957. }
  1958. static long kvm_dev_ioctl(struct file *filp,
  1959. unsigned int ioctl, unsigned long arg)
  1960. {
  1961. long r = -EINVAL;
  1962. switch (ioctl) {
  1963. case KVM_GET_API_VERSION:
  1964. r = -EINVAL;
  1965. if (arg)
  1966. goto out;
  1967. r = KVM_API_VERSION;
  1968. break;
  1969. case KVM_CREATE_VM:
  1970. r = kvm_dev_ioctl_create_vm(arg);
  1971. break;
  1972. case KVM_CHECK_EXTENSION:
  1973. r = kvm_dev_ioctl_check_extension_generic(arg);
  1974. break;
  1975. case KVM_GET_VCPU_MMAP_SIZE:
  1976. r = -EINVAL;
  1977. if (arg)
  1978. goto out;
  1979. r = PAGE_SIZE; /* struct kvm_run */
  1980. #ifdef CONFIG_X86
  1981. r += PAGE_SIZE; /* pio data page */
  1982. #endif
  1983. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1984. r += PAGE_SIZE; /* coalesced mmio ring page */
  1985. #endif
  1986. break;
  1987. case KVM_TRACE_ENABLE:
  1988. case KVM_TRACE_PAUSE:
  1989. case KVM_TRACE_DISABLE:
  1990. r = -EOPNOTSUPP;
  1991. break;
  1992. default:
  1993. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1994. }
  1995. out:
  1996. return r;
  1997. }
  1998. static struct file_operations kvm_chardev_ops = {
  1999. .unlocked_ioctl = kvm_dev_ioctl,
  2000. .compat_ioctl = kvm_dev_ioctl,
  2001. .llseek = noop_llseek,
  2002. };
  2003. static struct miscdevice kvm_dev = {
  2004. KVM_MINOR,
  2005. "kvm",
  2006. &kvm_chardev_ops,
  2007. };
  2008. static void hardware_enable_nolock(void *junk)
  2009. {
  2010. int cpu = raw_smp_processor_id();
  2011. int r;
  2012. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2013. return;
  2014. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2015. r = kvm_arch_hardware_enable(NULL);
  2016. if (r) {
  2017. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2018. atomic_inc(&hardware_enable_failed);
  2019. printk(KERN_INFO "kvm: enabling virtualization on "
  2020. "CPU%d failed\n", cpu);
  2021. }
  2022. }
  2023. static void hardware_enable(void *junk)
  2024. {
  2025. raw_spin_lock(&kvm_lock);
  2026. hardware_enable_nolock(junk);
  2027. raw_spin_unlock(&kvm_lock);
  2028. }
  2029. static void hardware_disable_nolock(void *junk)
  2030. {
  2031. int cpu = raw_smp_processor_id();
  2032. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2033. return;
  2034. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2035. kvm_arch_hardware_disable(NULL);
  2036. }
  2037. static void hardware_disable(void *junk)
  2038. {
  2039. raw_spin_lock(&kvm_lock);
  2040. hardware_disable_nolock(junk);
  2041. raw_spin_unlock(&kvm_lock);
  2042. }
  2043. static void hardware_disable_all_nolock(void)
  2044. {
  2045. BUG_ON(!kvm_usage_count);
  2046. kvm_usage_count--;
  2047. if (!kvm_usage_count)
  2048. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2049. }
  2050. static void hardware_disable_all(void)
  2051. {
  2052. raw_spin_lock(&kvm_lock);
  2053. hardware_disable_all_nolock();
  2054. raw_spin_unlock(&kvm_lock);
  2055. }
  2056. static int hardware_enable_all(void)
  2057. {
  2058. int r = 0;
  2059. raw_spin_lock(&kvm_lock);
  2060. kvm_usage_count++;
  2061. if (kvm_usage_count == 1) {
  2062. atomic_set(&hardware_enable_failed, 0);
  2063. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2064. if (atomic_read(&hardware_enable_failed)) {
  2065. hardware_disable_all_nolock();
  2066. r = -EBUSY;
  2067. }
  2068. }
  2069. raw_spin_unlock(&kvm_lock);
  2070. return r;
  2071. }
  2072. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2073. void *v)
  2074. {
  2075. int cpu = (long)v;
  2076. if (!kvm_usage_count)
  2077. return NOTIFY_OK;
  2078. val &= ~CPU_TASKS_FROZEN;
  2079. switch (val) {
  2080. case CPU_DYING:
  2081. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2082. cpu);
  2083. hardware_disable(NULL);
  2084. break;
  2085. case CPU_STARTING:
  2086. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2087. cpu);
  2088. hardware_enable(NULL);
  2089. break;
  2090. }
  2091. return NOTIFY_OK;
  2092. }
  2093. asmlinkage void kvm_spurious_fault(void)
  2094. {
  2095. /* Fault while not rebooting. We want the trace. */
  2096. BUG();
  2097. }
  2098. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2099. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2100. void *v)
  2101. {
  2102. /*
  2103. * Some (well, at least mine) BIOSes hang on reboot if
  2104. * in vmx root mode.
  2105. *
  2106. * And Intel TXT required VMX off for all cpu when system shutdown.
  2107. */
  2108. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2109. kvm_rebooting = true;
  2110. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2111. return NOTIFY_OK;
  2112. }
  2113. static struct notifier_block kvm_reboot_notifier = {
  2114. .notifier_call = kvm_reboot,
  2115. .priority = 0,
  2116. };
  2117. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2118. {
  2119. int i;
  2120. for (i = 0; i < bus->dev_count; i++) {
  2121. struct kvm_io_device *pos = bus->range[i].dev;
  2122. kvm_iodevice_destructor(pos);
  2123. }
  2124. kfree(bus);
  2125. }
  2126. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2127. {
  2128. const struct kvm_io_range *r1 = p1;
  2129. const struct kvm_io_range *r2 = p2;
  2130. if (r1->addr < r2->addr)
  2131. return -1;
  2132. if (r1->addr + r1->len > r2->addr + r2->len)
  2133. return 1;
  2134. return 0;
  2135. }
  2136. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2137. gpa_t addr, int len)
  2138. {
  2139. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2140. .addr = addr,
  2141. .len = len,
  2142. .dev = dev,
  2143. };
  2144. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2145. kvm_io_bus_sort_cmp, NULL);
  2146. return 0;
  2147. }
  2148. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2149. gpa_t addr, int len)
  2150. {
  2151. struct kvm_io_range *range, key;
  2152. int off;
  2153. key = (struct kvm_io_range) {
  2154. .addr = addr,
  2155. .len = len,
  2156. };
  2157. range = bsearch(&key, bus->range, bus->dev_count,
  2158. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2159. if (range == NULL)
  2160. return -ENOENT;
  2161. off = range - bus->range;
  2162. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2163. off--;
  2164. return off;
  2165. }
  2166. /* kvm_io_bus_write - called under kvm->slots_lock */
  2167. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2168. int len, const void *val)
  2169. {
  2170. int idx;
  2171. struct kvm_io_bus *bus;
  2172. struct kvm_io_range range;
  2173. range = (struct kvm_io_range) {
  2174. .addr = addr,
  2175. .len = len,
  2176. };
  2177. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2178. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2179. if (idx < 0)
  2180. return -EOPNOTSUPP;
  2181. while (idx < bus->dev_count &&
  2182. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2183. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2184. return 0;
  2185. idx++;
  2186. }
  2187. return -EOPNOTSUPP;
  2188. }
  2189. /* kvm_io_bus_read - called under kvm->slots_lock */
  2190. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2191. int len, void *val)
  2192. {
  2193. int idx;
  2194. struct kvm_io_bus *bus;
  2195. struct kvm_io_range range;
  2196. range = (struct kvm_io_range) {
  2197. .addr = addr,
  2198. .len = len,
  2199. };
  2200. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2201. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2202. if (idx < 0)
  2203. return -EOPNOTSUPP;
  2204. while (idx < bus->dev_count &&
  2205. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2206. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2207. return 0;
  2208. idx++;
  2209. }
  2210. return -EOPNOTSUPP;
  2211. }
  2212. /* Caller must hold slots_lock. */
  2213. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2214. int len, struct kvm_io_device *dev)
  2215. {
  2216. struct kvm_io_bus *new_bus, *bus;
  2217. bus = kvm->buses[bus_idx];
  2218. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2219. return -ENOSPC;
  2220. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2221. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2222. if (!new_bus)
  2223. return -ENOMEM;
  2224. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2225. sizeof(struct kvm_io_range)));
  2226. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2227. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2228. synchronize_srcu_expedited(&kvm->srcu);
  2229. kfree(bus);
  2230. return 0;
  2231. }
  2232. /* Caller must hold slots_lock. */
  2233. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2234. struct kvm_io_device *dev)
  2235. {
  2236. int i, r;
  2237. struct kvm_io_bus *new_bus, *bus;
  2238. bus = kvm->buses[bus_idx];
  2239. r = -ENOENT;
  2240. for (i = 0; i < bus->dev_count; i++)
  2241. if (bus->range[i].dev == dev) {
  2242. r = 0;
  2243. break;
  2244. }
  2245. if (r)
  2246. return r;
  2247. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2248. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2249. if (!new_bus)
  2250. return -ENOMEM;
  2251. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2252. new_bus->dev_count--;
  2253. memcpy(new_bus->range + i, bus->range + i + 1,
  2254. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2255. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2256. synchronize_srcu_expedited(&kvm->srcu);
  2257. kfree(bus);
  2258. return r;
  2259. }
  2260. static struct notifier_block kvm_cpu_notifier = {
  2261. .notifier_call = kvm_cpu_hotplug,
  2262. };
  2263. static int vm_stat_get(void *_offset, u64 *val)
  2264. {
  2265. unsigned offset = (long)_offset;
  2266. struct kvm *kvm;
  2267. *val = 0;
  2268. raw_spin_lock(&kvm_lock);
  2269. list_for_each_entry(kvm, &vm_list, vm_list)
  2270. *val += *(u32 *)((void *)kvm + offset);
  2271. raw_spin_unlock(&kvm_lock);
  2272. return 0;
  2273. }
  2274. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2275. static int vcpu_stat_get(void *_offset, u64 *val)
  2276. {
  2277. unsigned offset = (long)_offset;
  2278. struct kvm *kvm;
  2279. struct kvm_vcpu *vcpu;
  2280. int i;
  2281. *val = 0;
  2282. raw_spin_lock(&kvm_lock);
  2283. list_for_each_entry(kvm, &vm_list, vm_list)
  2284. kvm_for_each_vcpu(i, vcpu, kvm)
  2285. *val += *(u32 *)((void *)vcpu + offset);
  2286. raw_spin_unlock(&kvm_lock);
  2287. return 0;
  2288. }
  2289. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2290. static const struct file_operations *stat_fops[] = {
  2291. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2292. [KVM_STAT_VM] = &vm_stat_fops,
  2293. };
  2294. static int kvm_init_debug(void)
  2295. {
  2296. int r = -EFAULT;
  2297. struct kvm_stats_debugfs_item *p;
  2298. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2299. if (kvm_debugfs_dir == NULL)
  2300. goto out;
  2301. for (p = debugfs_entries; p->name; ++p) {
  2302. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2303. (void *)(long)p->offset,
  2304. stat_fops[p->kind]);
  2305. if (p->dentry == NULL)
  2306. goto out_dir;
  2307. }
  2308. return 0;
  2309. out_dir:
  2310. debugfs_remove_recursive(kvm_debugfs_dir);
  2311. out:
  2312. return r;
  2313. }
  2314. static void kvm_exit_debug(void)
  2315. {
  2316. struct kvm_stats_debugfs_item *p;
  2317. for (p = debugfs_entries; p->name; ++p)
  2318. debugfs_remove(p->dentry);
  2319. debugfs_remove(kvm_debugfs_dir);
  2320. }
  2321. static int kvm_suspend(void)
  2322. {
  2323. if (kvm_usage_count)
  2324. hardware_disable_nolock(NULL);
  2325. return 0;
  2326. }
  2327. static void kvm_resume(void)
  2328. {
  2329. if (kvm_usage_count) {
  2330. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2331. hardware_enable_nolock(NULL);
  2332. }
  2333. }
  2334. static struct syscore_ops kvm_syscore_ops = {
  2335. .suspend = kvm_suspend,
  2336. .resume = kvm_resume,
  2337. };
  2338. static inline
  2339. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2340. {
  2341. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2342. }
  2343. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2344. {
  2345. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2346. kvm_arch_vcpu_load(vcpu, cpu);
  2347. }
  2348. static void kvm_sched_out(struct preempt_notifier *pn,
  2349. struct task_struct *next)
  2350. {
  2351. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2352. kvm_arch_vcpu_put(vcpu);
  2353. }
  2354. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2355. struct module *module)
  2356. {
  2357. int r;
  2358. int cpu;
  2359. r = kvm_arch_init(opaque);
  2360. if (r)
  2361. goto out_fail;
  2362. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2363. r = -ENOMEM;
  2364. goto out_free_0;
  2365. }
  2366. r = kvm_arch_hardware_setup();
  2367. if (r < 0)
  2368. goto out_free_0a;
  2369. for_each_online_cpu(cpu) {
  2370. smp_call_function_single(cpu,
  2371. kvm_arch_check_processor_compat,
  2372. &r, 1);
  2373. if (r < 0)
  2374. goto out_free_1;
  2375. }
  2376. r = register_cpu_notifier(&kvm_cpu_notifier);
  2377. if (r)
  2378. goto out_free_2;
  2379. register_reboot_notifier(&kvm_reboot_notifier);
  2380. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2381. if (!vcpu_align)
  2382. vcpu_align = __alignof__(struct kvm_vcpu);
  2383. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2384. 0, NULL);
  2385. if (!kvm_vcpu_cache) {
  2386. r = -ENOMEM;
  2387. goto out_free_3;
  2388. }
  2389. r = kvm_async_pf_init();
  2390. if (r)
  2391. goto out_free;
  2392. kvm_chardev_ops.owner = module;
  2393. kvm_vm_fops.owner = module;
  2394. kvm_vcpu_fops.owner = module;
  2395. r = misc_register(&kvm_dev);
  2396. if (r) {
  2397. printk(KERN_ERR "kvm: misc device register failed\n");
  2398. goto out_unreg;
  2399. }
  2400. register_syscore_ops(&kvm_syscore_ops);
  2401. kvm_preempt_ops.sched_in = kvm_sched_in;
  2402. kvm_preempt_ops.sched_out = kvm_sched_out;
  2403. r = kvm_init_debug();
  2404. if (r) {
  2405. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2406. goto out_undebugfs;
  2407. }
  2408. return 0;
  2409. out_undebugfs:
  2410. unregister_syscore_ops(&kvm_syscore_ops);
  2411. out_unreg:
  2412. kvm_async_pf_deinit();
  2413. out_free:
  2414. kmem_cache_destroy(kvm_vcpu_cache);
  2415. out_free_3:
  2416. unregister_reboot_notifier(&kvm_reboot_notifier);
  2417. unregister_cpu_notifier(&kvm_cpu_notifier);
  2418. out_free_2:
  2419. out_free_1:
  2420. kvm_arch_hardware_unsetup();
  2421. out_free_0a:
  2422. free_cpumask_var(cpus_hardware_enabled);
  2423. out_free_0:
  2424. kvm_arch_exit();
  2425. out_fail:
  2426. return r;
  2427. }
  2428. EXPORT_SYMBOL_GPL(kvm_init);
  2429. void kvm_exit(void)
  2430. {
  2431. kvm_exit_debug();
  2432. misc_deregister(&kvm_dev);
  2433. kmem_cache_destroy(kvm_vcpu_cache);
  2434. kvm_async_pf_deinit();
  2435. unregister_syscore_ops(&kvm_syscore_ops);
  2436. unregister_reboot_notifier(&kvm_reboot_notifier);
  2437. unregister_cpu_notifier(&kvm_cpu_notifier);
  2438. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2439. kvm_arch_hardware_unsetup();
  2440. kvm_arch_exit();
  2441. free_cpumask_var(cpus_hardware_enabled);
  2442. }
  2443. EXPORT_SYMBOL_GPL(kvm_exit);