xfs_inode.c 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_btree_trace.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_bmap.h"
  43. #include "xfs_error.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_quota.h"
  46. #include "xfs_filestream.h"
  47. #include "xfs_vnodeops.h"
  48. #include "xfs_trace.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. #ifdef DEBUG
  61. /*
  62. * Make sure that the extents in the given memory buffer
  63. * are valid.
  64. */
  65. STATIC void
  66. xfs_validate_extents(
  67. xfs_ifork_t *ifp,
  68. int nrecs,
  69. xfs_exntfmt_t fmt)
  70. {
  71. xfs_bmbt_irec_t irec;
  72. xfs_bmbt_rec_host_t rec;
  73. int i;
  74. for (i = 0; i < nrecs; i++) {
  75. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  76. rec.l0 = get_unaligned(&ep->l0);
  77. rec.l1 = get_unaligned(&ep->l1);
  78. xfs_bmbt_get_all(&rec, &irec);
  79. if (fmt == XFS_EXTFMT_NOSTATE)
  80. ASSERT(irec.br_state == XFS_EXT_NORM);
  81. }
  82. }
  83. #else /* DEBUG */
  84. #define xfs_validate_extents(ifp, nrecs, fmt)
  85. #endif /* DEBUG */
  86. /*
  87. * Check that none of the inode's in the buffer have a next
  88. * unlinked field of 0.
  89. */
  90. #if defined(DEBUG)
  91. void
  92. xfs_inobp_check(
  93. xfs_mount_t *mp,
  94. xfs_buf_t *bp)
  95. {
  96. int i;
  97. int j;
  98. xfs_dinode_t *dip;
  99. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  100. for (i = 0; i < j; i++) {
  101. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  102. i * mp->m_sb.sb_inodesize);
  103. if (!dip->di_next_unlinked) {
  104. xfs_fs_cmn_err(CE_ALERT, mp,
  105. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  106. bp);
  107. ASSERT(dip->di_next_unlinked);
  108. }
  109. }
  110. }
  111. #endif
  112. /*
  113. * Find the buffer associated with the given inode map
  114. * We do basic validation checks on the buffer once it has been
  115. * retrieved from disk.
  116. */
  117. STATIC int
  118. xfs_imap_to_bp(
  119. xfs_mount_t *mp,
  120. xfs_trans_t *tp,
  121. struct xfs_imap *imap,
  122. xfs_buf_t **bpp,
  123. uint buf_flags,
  124. uint iget_flags)
  125. {
  126. int error;
  127. int i;
  128. int ni;
  129. xfs_buf_t *bp;
  130. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  131. (int)imap->im_len, buf_flags, &bp);
  132. if (error) {
  133. if (error != EAGAIN) {
  134. cmn_err(CE_WARN,
  135. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  136. "an error %d on %s. Returning error.",
  137. error, mp->m_fsname);
  138. } else {
  139. ASSERT(buf_flags & XBF_TRYLOCK);
  140. }
  141. return error;
  142. }
  143. /*
  144. * Validate the magic number and version of every inode in the buffer
  145. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  146. */
  147. #ifdef DEBUG
  148. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  149. #else /* usual case */
  150. ni = 1;
  151. #endif
  152. for (i = 0; i < ni; i++) {
  153. int di_ok;
  154. xfs_dinode_t *dip;
  155. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  156. (i << mp->m_sb.sb_inodelog));
  157. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  158. XFS_DINODE_GOOD_VERSION(dip->di_version);
  159. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  160. XFS_ERRTAG_ITOBP_INOTOBP,
  161. XFS_RANDOM_ITOBP_INOTOBP))) {
  162. if (iget_flags & XFS_IGET_UNTRUSTED) {
  163. xfs_trans_brelse(tp, bp);
  164. return XFS_ERROR(EINVAL);
  165. }
  166. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  167. XFS_ERRLEVEL_HIGH, mp, dip);
  168. #ifdef DEBUG
  169. cmn_err(CE_PANIC,
  170. "Device %s - bad inode magic/vsn "
  171. "daddr %lld #%d (magic=%x)",
  172. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  173. (unsigned long long)imap->im_blkno, i,
  174. be16_to_cpu(dip->di_magic));
  175. #endif
  176. xfs_trans_brelse(tp, bp);
  177. return XFS_ERROR(EFSCORRUPTED);
  178. }
  179. }
  180. xfs_inobp_check(mp, bp);
  181. /*
  182. * Mark the buffer as an inode buffer now that it looks good
  183. */
  184. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  185. *bpp = bp;
  186. return 0;
  187. }
  188. /*
  189. * This routine is called to map an inode number within a file
  190. * system to the buffer containing the on-disk version of the
  191. * inode. It returns a pointer to the buffer containing the
  192. * on-disk inode in the bpp parameter, and in the dip parameter
  193. * it returns a pointer to the on-disk inode within that buffer.
  194. *
  195. * If a non-zero error is returned, then the contents of bpp and
  196. * dipp are undefined.
  197. *
  198. * Use xfs_imap() to determine the size and location of the
  199. * buffer to read from disk.
  200. */
  201. int
  202. xfs_inotobp(
  203. xfs_mount_t *mp,
  204. xfs_trans_t *tp,
  205. xfs_ino_t ino,
  206. xfs_dinode_t **dipp,
  207. xfs_buf_t **bpp,
  208. int *offset,
  209. uint imap_flags)
  210. {
  211. struct xfs_imap imap;
  212. xfs_buf_t *bp;
  213. int error;
  214. imap.im_blkno = 0;
  215. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  216. if (error)
  217. return error;
  218. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  219. if (error)
  220. return error;
  221. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  222. *bpp = bp;
  223. *offset = imap.im_boffset;
  224. return 0;
  225. }
  226. /*
  227. * This routine is called to map an inode to the buffer containing
  228. * the on-disk version of the inode. It returns a pointer to the
  229. * buffer containing the on-disk inode in the bpp parameter, and in
  230. * the dip parameter it returns a pointer to the on-disk inode within
  231. * that buffer.
  232. *
  233. * If a non-zero error is returned, then the contents of bpp and
  234. * dipp are undefined.
  235. *
  236. * The inode is expected to already been mapped to its buffer and read
  237. * in once, thus we can use the mapping information stored in the inode
  238. * rather than calling xfs_imap(). This allows us to avoid the overhead
  239. * of looking at the inode btree for small block file systems
  240. * (see xfs_imap()).
  241. */
  242. int
  243. xfs_itobp(
  244. xfs_mount_t *mp,
  245. xfs_trans_t *tp,
  246. xfs_inode_t *ip,
  247. xfs_dinode_t **dipp,
  248. xfs_buf_t **bpp,
  249. uint buf_flags)
  250. {
  251. xfs_buf_t *bp;
  252. int error;
  253. ASSERT(ip->i_imap.im_blkno != 0);
  254. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  255. if (error)
  256. return error;
  257. if (!bp) {
  258. ASSERT(buf_flags & XBF_TRYLOCK);
  259. ASSERT(tp == NULL);
  260. *bpp = NULL;
  261. return EAGAIN;
  262. }
  263. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  264. *bpp = bp;
  265. return 0;
  266. }
  267. /*
  268. * Move inode type and inode format specific information from the
  269. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  270. * this means set if_rdev to the proper value. For files, directories,
  271. * and symlinks this means to bring in the in-line data or extent
  272. * pointers. For a file in B-tree format, only the root is immediately
  273. * brought in-core. The rest will be in-lined in if_extents when it
  274. * is first referenced (see xfs_iread_extents()).
  275. */
  276. STATIC int
  277. xfs_iformat(
  278. xfs_inode_t *ip,
  279. xfs_dinode_t *dip)
  280. {
  281. xfs_attr_shortform_t *atp;
  282. int size;
  283. int error;
  284. xfs_fsize_t di_size;
  285. ip->i_df.if_ext_max =
  286. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  287. error = 0;
  288. if (unlikely(be32_to_cpu(dip->di_nextents) +
  289. be16_to_cpu(dip->di_anextents) >
  290. be64_to_cpu(dip->di_nblocks))) {
  291. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  292. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  293. (unsigned long long)ip->i_ino,
  294. (int)(be32_to_cpu(dip->di_nextents) +
  295. be16_to_cpu(dip->di_anextents)),
  296. (unsigned long long)
  297. be64_to_cpu(dip->di_nblocks));
  298. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  299. ip->i_mount, dip);
  300. return XFS_ERROR(EFSCORRUPTED);
  301. }
  302. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  303. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  304. "corrupt dinode %Lu, forkoff = 0x%x.",
  305. (unsigned long long)ip->i_ino,
  306. dip->di_forkoff);
  307. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  308. ip->i_mount, dip);
  309. return XFS_ERROR(EFSCORRUPTED);
  310. }
  311. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  312. !ip->i_mount->m_rtdev_targp)) {
  313. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  314. "corrupt dinode %Lu, has realtime flag set.",
  315. ip->i_ino);
  316. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  317. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  318. return XFS_ERROR(EFSCORRUPTED);
  319. }
  320. switch (ip->i_d.di_mode & S_IFMT) {
  321. case S_IFIFO:
  322. case S_IFCHR:
  323. case S_IFBLK:
  324. case S_IFSOCK:
  325. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  326. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. ip->i_d.di_size = 0;
  331. ip->i_size = 0;
  332. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  333. break;
  334. case S_IFREG:
  335. case S_IFLNK:
  336. case S_IFDIR:
  337. switch (dip->di_format) {
  338. case XFS_DINODE_FMT_LOCAL:
  339. /*
  340. * no local regular files yet
  341. */
  342. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  343. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  344. "corrupt inode %Lu "
  345. "(local format for regular file).",
  346. (unsigned long long) ip->i_ino);
  347. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  348. XFS_ERRLEVEL_LOW,
  349. ip->i_mount, dip);
  350. return XFS_ERROR(EFSCORRUPTED);
  351. }
  352. di_size = be64_to_cpu(dip->di_size);
  353. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  354. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  355. "corrupt inode %Lu "
  356. "(bad size %Ld for local inode).",
  357. (unsigned long long) ip->i_ino,
  358. (long long) di_size);
  359. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  360. XFS_ERRLEVEL_LOW,
  361. ip->i_mount, dip);
  362. return XFS_ERROR(EFSCORRUPTED);
  363. }
  364. size = (int)di_size;
  365. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  366. break;
  367. case XFS_DINODE_FMT_EXTENTS:
  368. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  369. break;
  370. case XFS_DINODE_FMT_BTREE:
  371. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  375. ip->i_mount);
  376. return XFS_ERROR(EFSCORRUPTED);
  377. }
  378. break;
  379. default:
  380. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  381. return XFS_ERROR(EFSCORRUPTED);
  382. }
  383. if (error) {
  384. return error;
  385. }
  386. if (!XFS_DFORK_Q(dip))
  387. return 0;
  388. ASSERT(ip->i_afp == NULL);
  389. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  390. ip->i_afp->if_ext_max =
  391. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  392. switch (dip->di_aformat) {
  393. case XFS_DINODE_FMT_LOCAL:
  394. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  395. size = be16_to_cpu(atp->hdr.totsize);
  396. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  397. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  398. "corrupt inode %Lu "
  399. "(bad attr fork size %Ld).",
  400. (unsigned long long) ip->i_ino,
  401. (long long) size);
  402. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  403. XFS_ERRLEVEL_LOW,
  404. ip->i_mount, dip);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  408. break;
  409. case XFS_DINODE_FMT_EXTENTS:
  410. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  411. break;
  412. case XFS_DINODE_FMT_BTREE:
  413. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  414. break;
  415. default:
  416. error = XFS_ERROR(EFSCORRUPTED);
  417. break;
  418. }
  419. if (error) {
  420. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  421. ip->i_afp = NULL;
  422. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  423. }
  424. return error;
  425. }
  426. /*
  427. * The file is in-lined in the on-disk inode.
  428. * If it fits into if_inline_data, then copy
  429. * it there, otherwise allocate a buffer for it
  430. * and copy the data there. Either way, set
  431. * if_data to point at the data.
  432. * If we allocate a buffer for the data, make
  433. * sure that its size is a multiple of 4 and
  434. * record the real size in i_real_bytes.
  435. */
  436. STATIC int
  437. xfs_iformat_local(
  438. xfs_inode_t *ip,
  439. xfs_dinode_t *dip,
  440. int whichfork,
  441. int size)
  442. {
  443. xfs_ifork_t *ifp;
  444. int real_size;
  445. /*
  446. * If the size is unreasonable, then something
  447. * is wrong and we just bail out rather than crash in
  448. * kmem_alloc() or memcpy() below.
  449. */
  450. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  451. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  452. "corrupt inode %Lu "
  453. "(bad size %d for local fork, size = %d).",
  454. (unsigned long long) ip->i_ino, size,
  455. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  456. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  457. ip->i_mount, dip);
  458. return XFS_ERROR(EFSCORRUPTED);
  459. }
  460. ifp = XFS_IFORK_PTR(ip, whichfork);
  461. real_size = 0;
  462. if (size == 0)
  463. ifp->if_u1.if_data = NULL;
  464. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  465. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  466. else {
  467. real_size = roundup(size, 4);
  468. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  469. }
  470. ifp->if_bytes = size;
  471. ifp->if_real_bytes = real_size;
  472. if (size)
  473. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  474. ifp->if_flags &= ~XFS_IFEXTENTS;
  475. ifp->if_flags |= XFS_IFINLINE;
  476. return 0;
  477. }
  478. /*
  479. * The file consists of a set of extents all
  480. * of which fit into the on-disk inode.
  481. * If there are few enough extents to fit into
  482. * the if_inline_ext, then copy them there.
  483. * Otherwise allocate a buffer for them and copy
  484. * them into it. Either way, set if_extents
  485. * to point at the extents.
  486. */
  487. STATIC int
  488. xfs_iformat_extents(
  489. xfs_inode_t *ip,
  490. xfs_dinode_t *dip,
  491. int whichfork)
  492. {
  493. xfs_bmbt_rec_t *dp;
  494. xfs_ifork_t *ifp;
  495. int nex;
  496. int size;
  497. int i;
  498. ifp = XFS_IFORK_PTR(ip, whichfork);
  499. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  500. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  501. /*
  502. * If the number of extents is unreasonable, then something
  503. * is wrong and we just bail out rather than crash in
  504. * kmem_alloc() or memcpy() below.
  505. */
  506. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  507. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  508. "corrupt inode %Lu ((a)extents = %d).",
  509. (unsigned long long) ip->i_ino, nex);
  510. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  511. ip->i_mount, dip);
  512. return XFS_ERROR(EFSCORRUPTED);
  513. }
  514. ifp->if_real_bytes = 0;
  515. if (nex == 0)
  516. ifp->if_u1.if_extents = NULL;
  517. else if (nex <= XFS_INLINE_EXTS)
  518. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  519. else
  520. xfs_iext_add(ifp, 0, nex);
  521. ifp->if_bytes = size;
  522. if (size) {
  523. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  524. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  525. for (i = 0; i < nex; i++, dp++) {
  526. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  527. ep->l0 = get_unaligned_be64(&dp->l0);
  528. ep->l1 = get_unaligned_be64(&dp->l1);
  529. }
  530. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  531. if (whichfork != XFS_DATA_FORK ||
  532. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  533. if (unlikely(xfs_check_nostate_extents(
  534. ifp, 0, nex))) {
  535. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  536. XFS_ERRLEVEL_LOW,
  537. ip->i_mount);
  538. return XFS_ERROR(EFSCORRUPTED);
  539. }
  540. }
  541. ifp->if_flags |= XFS_IFEXTENTS;
  542. return 0;
  543. }
  544. /*
  545. * The file has too many extents to fit into
  546. * the inode, so they are in B-tree format.
  547. * Allocate a buffer for the root of the B-tree
  548. * and copy the root into it. The i_extents
  549. * field will remain NULL until all of the
  550. * extents are read in (when they are needed).
  551. */
  552. STATIC int
  553. xfs_iformat_btree(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmdr_block_t *dfp;
  559. xfs_ifork_t *ifp;
  560. /* REFERENCED */
  561. int nrecs;
  562. int size;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  565. size = XFS_BMAP_BROOT_SPACE(dfp);
  566. nrecs = be16_to_cpu(dfp->bb_numrecs);
  567. /*
  568. * blow out if -- fork has less extents than can fit in
  569. * fork (fork shouldn't be a btree format), root btree
  570. * block has more records than can fit into the fork,
  571. * or the number of extents is greater than the number of
  572. * blocks.
  573. */
  574. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  575. || XFS_BMDR_SPACE_CALC(nrecs) >
  576. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  577. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  578. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  579. "corrupt inode %Lu (btree).",
  580. (unsigned long long) ip->i_ino);
  581. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  582. ip->i_mount);
  583. return XFS_ERROR(EFSCORRUPTED);
  584. }
  585. ifp->if_broot_bytes = size;
  586. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  587. ASSERT(ifp->if_broot != NULL);
  588. /*
  589. * Copy and convert from the on-disk structure
  590. * to the in-memory structure.
  591. */
  592. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  593. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  594. ifp->if_broot, size);
  595. ifp->if_flags &= ~XFS_IFEXTENTS;
  596. ifp->if_flags |= XFS_IFBROOT;
  597. return 0;
  598. }
  599. STATIC void
  600. xfs_dinode_from_disk(
  601. xfs_icdinode_t *to,
  602. xfs_dinode_t *from)
  603. {
  604. to->di_magic = be16_to_cpu(from->di_magic);
  605. to->di_mode = be16_to_cpu(from->di_mode);
  606. to->di_version = from ->di_version;
  607. to->di_format = from->di_format;
  608. to->di_onlink = be16_to_cpu(from->di_onlink);
  609. to->di_uid = be32_to_cpu(from->di_uid);
  610. to->di_gid = be32_to_cpu(from->di_gid);
  611. to->di_nlink = be32_to_cpu(from->di_nlink);
  612. to->di_projid = be16_to_cpu(from->di_projid);
  613. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  614. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  615. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  616. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  617. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  618. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  619. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  620. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  621. to->di_size = be64_to_cpu(from->di_size);
  622. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  623. to->di_extsize = be32_to_cpu(from->di_extsize);
  624. to->di_nextents = be32_to_cpu(from->di_nextents);
  625. to->di_anextents = be16_to_cpu(from->di_anextents);
  626. to->di_forkoff = from->di_forkoff;
  627. to->di_aformat = from->di_aformat;
  628. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  629. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  630. to->di_flags = be16_to_cpu(from->di_flags);
  631. to->di_gen = be32_to_cpu(from->di_gen);
  632. }
  633. void
  634. xfs_dinode_to_disk(
  635. xfs_dinode_t *to,
  636. xfs_icdinode_t *from)
  637. {
  638. to->di_magic = cpu_to_be16(from->di_magic);
  639. to->di_mode = cpu_to_be16(from->di_mode);
  640. to->di_version = from ->di_version;
  641. to->di_format = from->di_format;
  642. to->di_onlink = cpu_to_be16(from->di_onlink);
  643. to->di_uid = cpu_to_be32(from->di_uid);
  644. to->di_gid = cpu_to_be32(from->di_gid);
  645. to->di_nlink = cpu_to_be32(from->di_nlink);
  646. to->di_projid = cpu_to_be16(from->di_projid);
  647. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  648. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  649. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  650. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  651. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  652. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  653. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  654. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  655. to->di_size = cpu_to_be64(from->di_size);
  656. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  657. to->di_extsize = cpu_to_be32(from->di_extsize);
  658. to->di_nextents = cpu_to_be32(from->di_nextents);
  659. to->di_anextents = cpu_to_be16(from->di_anextents);
  660. to->di_forkoff = from->di_forkoff;
  661. to->di_aformat = from->di_aformat;
  662. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  663. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  664. to->di_flags = cpu_to_be16(from->di_flags);
  665. to->di_gen = cpu_to_be32(from->di_gen);
  666. }
  667. STATIC uint
  668. _xfs_dic2xflags(
  669. __uint16_t di_flags)
  670. {
  671. uint flags = 0;
  672. if (di_flags & XFS_DIFLAG_ANY) {
  673. if (di_flags & XFS_DIFLAG_REALTIME)
  674. flags |= XFS_XFLAG_REALTIME;
  675. if (di_flags & XFS_DIFLAG_PREALLOC)
  676. flags |= XFS_XFLAG_PREALLOC;
  677. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  678. flags |= XFS_XFLAG_IMMUTABLE;
  679. if (di_flags & XFS_DIFLAG_APPEND)
  680. flags |= XFS_XFLAG_APPEND;
  681. if (di_flags & XFS_DIFLAG_SYNC)
  682. flags |= XFS_XFLAG_SYNC;
  683. if (di_flags & XFS_DIFLAG_NOATIME)
  684. flags |= XFS_XFLAG_NOATIME;
  685. if (di_flags & XFS_DIFLAG_NODUMP)
  686. flags |= XFS_XFLAG_NODUMP;
  687. if (di_flags & XFS_DIFLAG_RTINHERIT)
  688. flags |= XFS_XFLAG_RTINHERIT;
  689. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  690. flags |= XFS_XFLAG_PROJINHERIT;
  691. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  692. flags |= XFS_XFLAG_NOSYMLINKS;
  693. if (di_flags & XFS_DIFLAG_EXTSIZE)
  694. flags |= XFS_XFLAG_EXTSIZE;
  695. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  696. flags |= XFS_XFLAG_EXTSZINHERIT;
  697. if (di_flags & XFS_DIFLAG_NODEFRAG)
  698. flags |= XFS_XFLAG_NODEFRAG;
  699. if (di_flags & XFS_DIFLAG_FILESTREAM)
  700. flags |= XFS_XFLAG_FILESTREAM;
  701. }
  702. return flags;
  703. }
  704. uint
  705. xfs_ip2xflags(
  706. xfs_inode_t *ip)
  707. {
  708. xfs_icdinode_t *dic = &ip->i_d;
  709. return _xfs_dic2xflags(dic->di_flags) |
  710. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  711. }
  712. uint
  713. xfs_dic2xflags(
  714. xfs_dinode_t *dip)
  715. {
  716. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  717. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  718. }
  719. /*
  720. * Read the disk inode attributes into the in-core inode structure.
  721. */
  722. int
  723. xfs_iread(
  724. xfs_mount_t *mp,
  725. xfs_trans_t *tp,
  726. xfs_inode_t *ip,
  727. uint iget_flags)
  728. {
  729. xfs_buf_t *bp;
  730. xfs_dinode_t *dip;
  731. int error;
  732. /*
  733. * Fill in the location information in the in-core inode.
  734. */
  735. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  736. if (error)
  737. return error;
  738. /*
  739. * Get pointers to the on-disk inode and the buffer containing it.
  740. */
  741. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  742. XBF_LOCK, iget_flags);
  743. if (error)
  744. return error;
  745. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  746. /*
  747. * If we got something that isn't an inode it means someone
  748. * (nfs or dmi) has a stale handle.
  749. */
  750. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  751. #ifdef DEBUG
  752. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  753. "dip->di_magic (0x%x) != "
  754. "XFS_DINODE_MAGIC (0x%x)",
  755. be16_to_cpu(dip->di_magic),
  756. XFS_DINODE_MAGIC);
  757. #endif /* DEBUG */
  758. error = XFS_ERROR(EINVAL);
  759. goto out_brelse;
  760. }
  761. /*
  762. * If the on-disk inode is already linked to a directory
  763. * entry, copy all of the inode into the in-core inode.
  764. * xfs_iformat() handles copying in the inode format
  765. * specific information.
  766. * Otherwise, just get the truly permanent information.
  767. */
  768. if (dip->di_mode) {
  769. xfs_dinode_from_disk(&ip->i_d, dip);
  770. error = xfs_iformat(ip, dip);
  771. if (error) {
  772. #ifdef DEBUG
  773. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  774. "xfs_iformat() returned error %d",
  775. error);
  776. #endif /* DEBUG */
  777. goto out_brelse;
  778. }
  779. } else {
  780. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  781. ip->i_d.di_version = dip->di_version;
  782. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  783. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  784. /*
  785. * Make sure to pull in the mode here as well in
  786. * case the inode is released without being used.
  787. * This ensures that xfs_inactive() will see that
  788. * the inode is already free and not try to mess
  789. * with the uninitialized part of it.
  790. */
  791. ip->i_d.di_mode = 0;
  792. /*
  793. * Initialize the per-fork minima and maxima for a new
  794. * inode here. xfs_iformat will do it for old inodes.
  795. */
  796. ip->i_df.if_ext_max =
  797. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  798. }
  799. /*
  800. * The inode format changed when we moved the link count and
  801. * made it 32 bits long. If this is an old format inode,
  802. * convert it in memory to look like a new one. If it gets
  803. * flushed to disk we will convert back before flushing or
  804. * logging it. We zero out the new projid field and the old link
  805. * count field. We'll handle clearing the pad field (the remains
  806. * of the old uuid field) when we actually convert the inode to
  807. * the new format. We don't change the version number so that we
  808. * can distinguish this from a real new format inode.
  809. */
  810. if (ip->i_d.di_version == 1) {
  811. ip->i_d.di_nlink = ip->i_d.di_onlink;
  812. ip->i_d.di_onlink = 0;
  813. ip->i_d.di_projid = 0;
  814. }
  815. ip->i_delayed_blks = 0;
  816. ip->i_size = ip->i_d.di_size;
  817. /*
  818. * Mark the buffer containing the inode as something to keep
  819. * around for a while. This helps to keep recently accessed
  820. * meta-data in-core longer.
  821. */
  822. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  823. /*
  824. * Use xfs_trans_brelse() to release the buffer containing the
  825. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  826. * in xfs_itobp() above. If tp is NULL, this is just a normal
  827. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  828. * will only release the buffer if it is not dirty within the
  829. * transaction. It will be OK to release the buffer in this case,
  830. * because inodes on disk are never destroyed and we will be
  831. * locking the new in-core inode before putting it in the hash
  832. * table where other processes can find it. Thus we don't have
  833. * to worry about the inode being changed just because we released
  834. * the buffer.
  835. */
  836. out_brelse:
  837. xfs_trans_brelse(tp, bp);
  838. return error;
  839. }
  840. /*
  841. * Read in extents from a btree-format inode.
  842. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  843. */
  844. int
  845. xfs_iread_extents(
  846. xfs_trans_t *tp,
  847. xfs_inode_t *ip,
  848. int whichfork)
  849. {
  850. int error;
  851. xfs_ifork_t *ifp;
  852. xfs_extnum_t nextents;
  853. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  854. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  855. ip->i_mount);
  856. return XFS_ERROR(EFSCORRUPTED);
  857. }
  858. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  859. ifp = XFS_IFORK_PTR(ip, whichfork);
  860. /*
  861. * We know that the size is valid (it's checked in iformat_btree)
  862. */
  863. ifp->if_lastex = NULLEXTNUM;
  864. ifp->if_bytes = ifp->if_real_bytes = 0;
  865. ifp->if_flags |= XFS_IFEXTENTS;
  866. xfs_iext_add(ifp, 0, nextents);
  867. error = xfs_bmap_read_extents(tp, ip, whichfork);
  868. if (error) {
  869. xfs_iext_destroy(ifp);
  870. ifp->if_flags &= ~XFS_IFEXTENTS;
  871. return error;
  872. }
  873. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  874. return 0;
  875. }
  876. /*
  877. * Allocate an inode on disk and return a copy of its in-core version.
  878. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  879. * appropriately within the inode. The uid and gid for the inode are
  880. * set according to the contents of the given cred structure.
  881. *
  882. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  883. * has a free inode available, call xfs_iget()
  884. * to obtain the in-core version of the allocated inode. Finally,
  885. * fill in the inode and log its initial contents. In this case,
  886. * ialloc_context would be set to NULL and call_again set to false.
  887. *
  888. * If xfs_dialloc() does not have an available inode,
  889. * it will replenish its supply by doing an allocation. Since we can
  890. * only do one allocation within a transaction without deadlocks, we
  891. * must commit the current transaction before returning the inode itself.
  892. * In this case, therefore, we will set call_again to true and return.
  893. * The caller should then commit the current transaction, start a new
  894. * transaction, and call xfs_ialloc() again to actually get the inode.
  895. *
  896. * To ensure that some other process does not grab the inode that
  897. * was allocated during the first call to xfs_ialloc(), this routine
  898. * also returns the [locked] bp pointing to the head of the freelist
  899. * as ialloc_context. The caller should hold this buffer across
  900. * the commit and pass it back into this routine on the second call.
  901. *
  902. * If we are allocating quota inodes, we do not have a parent inode
  903. * to attach to or associate with (i.e. pip == NULL) because they
  904. * are not linked into the directory structure - they are attached
  905. * directly to the superblock - and so have no parent.
  906. */
  907. int
  908. xfs_ialloc(
  909. xfs_trans_t *tp,
  910. xfs_inode_t *pip,
  911. mode_t mode,
  912. xfs_nlink_t nlink,
  913. xfs_dev_t rdev,
  914. xfs_prid_t prid,
  915. int okalloc,
  916. xfs_buf_t **ialloc_context,
  917. boolean_t *call_again,
  918. xfs_inode_t **ipp)
  919. {
  920. xfs_ino_t ino;
  921. xfs_inode_t *ip;
  922. uint flags;
  923. int error;
  924. timespec_t tv;
  925. int filestreams = 0;
  926. /*
  927. * Call the space management code to pick
  928. * the on-disk inode to be allocated.
  929. */
  930. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  931. ialloc_context, call_again, &ino);
  932. if (error)
  933. return error;
  934. if (*call_again || ino == NULLFSINO) {
  935. *ipp = NULL;
  936. return 0;
  937. }
  938. ASSERT(*ialloc_context == NULL);
  939. /*
  940. * Get the in-core inode with the lock held exclusively.
  941. * This is because we're setting fields here we need
  942. * to prevent others from looking at until we're done.
  943. */
  944. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  945. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  946. if (error)
  947. return error;
  948. ASSERT(ip != NULL);
  949. ip->i_d.di_mode = (__uint16_t)mode;
  950. ip->i_d.di_onlink = 0;
  951. ip->i_d.di_nlink = nlink;
  952. ASSERT(ip->i_d.di_nlink == nlink);
  953. ip->i_d.di_uid = current_fsuid();
  954. ip->i_d.di_gid = current_fsgid();
  955. ip->i_d.di_projid = prid;
  956. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  957. /*
  958. * If the superblock version is up to where we support new format
  959. * inodes and this is currently an old format inode, then change
  960. * the inode version number now. This way we only do the conversion
  961. * here rather than here and in the flush/logging code.
  962. */
  963. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  964. ip->i_d.di_version == 1) {
  965. ip->i_d.di_version = 2;
  966. /*
  967. * We've already zeroed the old link count, the projid field,
  968. * and the pad field.
  969. */
  970. }
  971. /*
  972. * Project ids won't be stored on disk if we are using a version 1 inode.
  973. */
  974. if ((prid != 0) && (ip->i_d.di_version == 1))
  975. xfs_bump_ino_vers2(tp, ip);
  976. if (pip && XFS_INHERIT_GID(pip)) {
  977. ip->i_d.di_gid = pip->i_d.di_gid;
  978. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  979. ip->i_d.di_mode |= S_ISGID;
  980. }
  981. }
  982. /*
  983. * If the group ID of the new file does not match the effective group
  984. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  985. * (and only if the irix_sgid_inherit compatibility variable is set).
  986. */
  987. if ((irix_sgid_inherit) &&
  988. (ip->i_d.di_mode & S_ISGID) &&
  989. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  990. ip->i_d.di_mode &= ~S_ISGID;
  991. }
  992. ip->i_d.di_size = 0;
  993. ip->i_size = 0;
  994. ip->i_d.di_nextents = 0;
  995. ASSERT(ip->i_d.di_nblocks == 0);
  996. nanotime(&tv);
  997. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  998. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  999. ip->i_d.di_atime = ip->i_d.di_mtime;
  1000. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1001. /*
  1002. * di_gen will have been taken care of in xfs_iread.
  1003. */
  1004. ip->i_d.di_extsize = 0;
  1005. ip->i_d.di_dmevmask = 0;
  1006. ip->i_d.di_dmstate = 0;
  1007. ip->i_d.di_flags = 0;
  1008. flags = XFS_ILOG_CORE;
  1009. switch (mode & S_IFMT) {
  1010. case S_IFIFO:
  1011. case S_IFCHR:
  1012. case S_IFBLK:
  1013. case S_IFSOCK:
  1014. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1015. ip->i_df.if_u2.if_rdev = rdev;
  1016. ip->i_df.if_flags = 0;
  1017. flags |= XFS_ILOG_DEV;
  1018. break;
  1019. case S_IFREG:
  1020. /*
  1021. * we can't set up filestreams until after the VFS inode
  1022. * is set up properly.
  1023. */
  1024. if (pip && xfs_inode_is_filestream(pip))
  1025. filestreams = 1;
  1026. /* fall through */
  1027. case S_IFDIR:
  1028. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1029. uint di_flags = 0;
  1030. if ((mode & S_IFMT) == S_IFDIR) {
  1031. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1032. di_flags |= XFS_DIFLAG_RTINHERIT;
  1033. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1034. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1035. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1036. }
  1037. } else if ((mode & S_IFMT) == S_IFREG) {
  1038. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1039. di_flags |= XFS_DIFLAG_REALTIME;
  1040. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1041. di_flags |= XFS_DIFLAG_EXTSIZE;
  1042. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1043. }
  1044. }
  1045. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1046. xfs_inherit_noatime)
  1047. di_flags |= XFS_DIFLAG_NOATIME;
  1048. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1049. xfs_inherit_nodump)
  1050. di_flags |= XFS_DIFLAG_NODUMP;
  1051. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1052. xfs_inherit_sync)
  1053. di_flags |= XFS_DIFLAG_SYNC;
  1054. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1055. xfs_inherit_nosymlinks)
  1056. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1057. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1058. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1059. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1060. xfs_inherit_nodefrag)
  1061. di_flags |= XFS_DIFLAG_NODEFRAG;
  1062. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1063. di_flags |= XFS_DIFLAG_FILESTREAM;
  1064. ip->i_d.di_flags |= di_flags;
  1065. }
  1066. /* FALLTHROUGH */
  1067. case S_IFLNK:
  1068. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1069. ip->i_df.if_flags = XFS_IFEXTENTS;
  1070. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1071. ip->i_df.if_u1.if_extents = NULL;
  1072. break;
  1073. default:
  1074. ASSERT(0);
  1075. }
  1076. /*
  1077. * Attribute fork settings for new inode.
  1078. */
  1079. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1080. ip->i_d.di_anextents = 0;
  1081. /*
  1082. * Log the new values stuffed into the inode.
  1083. */
  1084. xfs_trans_log_inode(tp, ip, flags);
  1085. /* now that we have an i_mode we can setup inode ops and unlock */
  1086. xfs_setup_inode(ip);
  1087. /* now we have set up the vfs inode we can associate the filestream */
  1088. if (filestreams) {
  1089. error = xfs_filestream_associate(pip, ip);
  1090. if (error < 0)
  1091. return -error;
  1092. if (!error)
  1093. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1094. }
  1095. *ipp = ip;
  1096. return 0;
  1097. }
  1098. /*
  1099. * Check to make sure that there are no blocks allocated to the
  1100. * file beyond the size of the file. We don't check this for
  1101. * files with fixed size extents or real time extents, but we
  1102. * at least do it for regular files.
  1103. */
  1104. #ifdef DEBUG
  1105. void
  1106. xfs_isize_check(
  1107. xfs_mount_t *mp,
  1108. xfs_inode_t *ip,
  1109. xfs_fsize_t isize)
  1110. {
  1111. xfs_fileoff_t map_first;
  1112. int nimaps;
  1113. xfs_bmbt_irec_t imaps[2];
  1114. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1115. return;
  1116. if (XFS_IS_REALTIME_INODE(ip))
  1117. return;
  1118. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1119. return;
  1120. nimaps = 2;
  1121. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1122. /*
  1123. * The filesystem could be shutting down, so bmapi may return
  1124. * an error.
  1125. */
  1126. if (xfs_bmapi(NULL, ip, map_first,
  1127. (XFS_B_TO_FSB(mp,
  1128. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1129. map_first),
  1130. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1131. NULL))
  1132. return;
  1133. ASSERT(nimaps == 1);
  1134. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1135. }
  1136. #endif /* DEBUG */
  1137. /*
  1138. * Calculate the last possible buffered byte in a file. This must
  1139. * include data that was buffered beyond the EOF by the write code.
  1140. * This also needs to deal with overflowing the xfs_fsize_t type
  1141. * which can happen for sizes near the limit.
  1142. *
  1143. * We also need to take into account any blocks beyond the EOF. It
  1144. * may be the case that they were buffered by a write which failed.
  1145. * In that case the pages will still be in memory, but the inode size
  1146. * will never have been updated.
  1147. */
  1148. STATIC xfs_fsize_t
  1149. xfs_file_last_byte(
  1150. xfs_inode_t *ip)
  1151. {
  1152. xfs_mount_t *mp;
  1153. xfs_fsize_t last_byte;
  1154. xfs_fileoff_t last_block;
  1155. xfs_fileoff_t size_last_block;
  1156. int error;
  1157. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1158. mp = ip->i_mount;
  1159. /*
  1160. * Only check for blocks beyond the EOF if the extents have
  1161. * been read in. This eliminates the need for the inode lock,
  1162. * and it also saves us from looking when it really isn't
  1163. * necessary.
  1164. */
  1165. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1166. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1167. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1168. XFS_DATA_FORK);
  1169. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1170. if (error) {
  1171. last_block = 0;
  1172. }
  1173. } else {
  1174. last_block = 0;
  1175. }
  1176. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1177. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1178. last_byte = XFS_FSB_TO_B(mp, last_block);
  1179. if (last_byte < 0) {
  1180. return XFS_MAXIOFFSET(mp);
  1181. }
  1182. last_byte += (1 << mp->m_writeio_log);
  1183. if (last_byte < 0) {
  1184. return XFS_MAXIOFFSET(mp);
  1185. }
  1186. return last_byte;
  1187. }
  1188. /*
  1189. * Start the truncation of the file to new_size. The new size
  1190. * must be smaller than the current size. This routine will
  1191. * clear the buffer and page caches of file data in the removed
  1192. * range, and xfs_itruncate_finish() will remove the underlying
  1193. * disk blocks.
  1194. *
  1195. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1196. * must NOT have the inode lock held at all. This is because we're
  1197. * calling into the buffer/page cache code and we can't hold the
  1198. * inode lock when we do so.
  1199. *
  1200. * We need to wait for any direct I/Os in flight to complete before we
  1201. * proceed with the truncate. This is needed to prevent the extents
  1202. * being read or written by the direct I/Os from being removed while the
  1203. * I/O is in flight as there is no other method of synchronising
  1204. * direct I/O with the truncate operation. Also, because we hold
  1205. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1206. * started until the truncate completes and drops the lock. Essentially,
  1207. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1208. * ordering between direct I/Os and the truncate operation.
  1209. *
  1210. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1211. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1212. * in the case that the caller is locking things out of order and
  1213. * may not be able to call xfs_itruncate_finish() with the inode lock
  1214. * held without dropping the I/O lock. If the caller must drop the
  1215. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1216. * must be called again with all the same restrictions as the initial
  1217. * call.
  1218. */
  1219. int
  1220. xfs_itruncate_start(
  1221. xfs_inode_t *ip,
  1222. uint flags,
  1223. xfs_fsize_t new_size)
  1224. {
  1225. xfs_fsize_t last_byte;
  1226. xfs_off_t toss_start;
  1227. xfs_mount_t *mp;
  1228. int error = 0;
  1229. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1230. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1231. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1232. (flags == XFS_ITRUNC_MAYBE));
  1233. mp = ip->i_mount;
  1234. /* wait for the completion of any pending DIOs */
  1235. if (new_size == 0 || new_size < ip->i_size)
  1236. xfs_ioend_wait(ip);
  1237. /*
  1238. * Call toss_pages or flushinval_pages to get rid of pages
  1239. * overlapping the region being removed. We have to use
  1240. * the less efficient flushinval_pages in the case that the
  1241. * caller may not be able to finish the truncate without
  1242. * dropping the inode's I/O lock. Make sure
  1243. * to catch any pages brought in by buffers overlapping
  1244. * the EOF by searching out beyond the isize by our
  1245. * block size. We round new_size up to a block boundary
  1246. * so that we don't toss things on the same block as
  1247. * new_size but before it.
  1248. *
  1249. * Before calling toss_page or flushinval_pages, make sure to
  1250. * call remapf() over the same region if the file is mapped.
  1251. * This frees up mapped file references to the pages in the
  1252. * given range and for the flushinval_pages case it ensures
  1253. * that we get the latest mapped changes flushed out.
  1254. */
  1255. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1256. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1257. if (toss_start < 0) {
  1258. /*
  1259. * The place to start tossing is beyond our maximum
  1260. * file size, so there is no way that the data extended
  1261. * out there.
  1262. */
  1263. return 0;
  1264. }
  1265. last_byte = xfs_file_last_byte(ip);
  1266. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1267. if (last_byte > toss_start) {
  1268. if (flags & XFS_ITRUNC_DEFINITE) {
  1269. xfs_tosspages(ip, toss_start,
  1270. -1, FI_REMAPF_LOCKED);
  1271. } else {
  1272. error = xfs_flushinval_pages(ip, toss_start,
  1273. -1, FI_REMAPF_LOCKED);
  1274. }
  1275. }
  1276. #ifdef DEBUG
  1277. if (new_size == 0) {
  1278. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1279. }
  1280. #endif
  1281. return error;
  1282. }
  1283. /*
  1284. * Shrink the file to the given new_size. The new size must be smaller than
  1285. * the current size. This will free up the underlying blocks in the removed
  1286. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1287. *
  1288. * The transaction passed to this routine must have made a permanent log
  1289. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1290. * given transaction and start new ones, so make sure everything involved in
  1291. * the transaction is tidy before calling here. Some transaction will be
  1292. * returned to the caller to be committed. The incoming transaction must
  1293. * already include the inode, and both inode locks must be held exclusively.
  1294. * The inode must also be "held" within the transaction. On return the inode
  1295. * will be "held" within the returned transaction. This routine does NOT
  1296. * require any disk space to be reserved for it within the transaction.
  1297. *
  1298. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1299. * indicates the fork which is to be truncated. For the attribute fork we only
  1300. * support truncation to size 0.
  1301. *
  1302. * We use the sync parameter to indicate whether or not the first transaction
  1303. * we perform might have to be synchronous. For the attr fork, it needs to be
  1304. * so if the unlink of the inode is not yet known to be permanent in the log.
  1305. * This keeps us from freeing and reusing the blocks of the attribute fork
  1306. * before the unlink of the inode becomes permanent.
  1307. *
  1308. * For the data fork, we normally have to run synchronously if we're being
  1309. * called out of the inactive path or we're being called out of the create path
  1310. * where we're truncating an existing file. Either way, the truncate needs to
  1311. * be sync so blocks don't reappear in the file with altered data in case of a
  1312. * crash. wsync filesystems can run the first case async because anything that
  1313. * shrinks the inode has to run sync so by the time we're called here from
  1314. * inactive, the inode size is permanently set to 0.
  1315. *
  1316. * Calls from the truncate path always need to be sync unless we're in a wsync
  1317. * filesystem and the file has already been unlinked.
  1318. *
  1319. * The caller is responsible for correctly setting the sync parameter. It gets
  1320. * too hard for us to guess here which path we're being called out of just
  1321. * based on inode state.
  1322. *
  1323. * If we get an error, we must return with the inode locked and linked into the
  1324. * current transaction. This keeps things simple for the higher level code,
  1325. * because it always knows that the inode is locked and held in the transaction
  1326. * that returns to it whether errors occur or not. We don't mark the inode
  1327. * dirty on error so that transactions can be easily aborted if possible.
  1328. */
  1329. int
  1330. xfs_itruncate_finish(
  1331. xfs_trans_t **tp,
  1332. xfs_inode_t *ip,
  1333. xfs_fsize_t new_size,
  1334. int fork,
  1335. int sync)
  1336. {
  1337. xfs_fsblock_t first_block;
  1338. xfs_fileoff_t first_unmap_block;
  1339. xfs_fileoff_t last_block;
  1340. xfs_filblks_t unmap_len=0;
  1341. xfs_mount_t *mp;
  1342. xfs_trans_t *ntp;
  1343. int done;
  1344. int committed;
  1345. xfs_bmap_free_t free_list;
  1346. int error;
  1347. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1348. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1349. ASSERT(*tp != NULL);
  1350. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1351. ASSERT(ip->i_transp == *tp);
  1352. ASSERT(ip->i_itemp != NULL);
  1353. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1354. ntp = *tp;
  1355. mp = (ntp)->t_mountp;
  1356. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1357. /*
  1358. * We only support truncating the entire attribute fork.
  1359. */
  1360. if (fork == XFS_ATTR_FORK) {
  1361. new_size = 0LL;
  1362. }
  1363. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1364. trace_xfs_itruncate_finish_start(ip, new_size);
  1365. /*
  1366. * The first thing we do is set the size to new_size permanently
  1367. * on disk. This way we don't have to worry about anyone ever
  1368. * being able to look at the data being freed even in the face
  1369. * of a crash. What we're getting around here is the case where
  1370. * we free a block, it is allocated to another file, it is written
  1371. * to, and then we crash. If the new data gets written to the
  1372. * file but the log buffers containing the free and reallocation
  1373. * don't, then we'd end up with garbage in the blocks being freed.
  1374. * As long as we make the new_size permanent before actually
  1375. * freeing any blocks it doesn't matter if they get writtten to.
  1376. *
  1377. * The callers must signal into us whether or not the size
  1378. * setting here must be synchronous. There are a few cases
  1379. * where it doesn't have to be synchronous. Those cases
  1380. * occur if the file is unlinked and we know the unlink is
  1381. * permanent or if the blocks being truncated are guaranteed
  1382. * to be beyond the inode eof (regardless of the link count)
  1383. * and the eof value is permanent. Both of these cases occur
  1384. * only on wsync-mounted filesystems. In those cases, we're
  1385. * guaranteed that no user will ever see the data in the blocks
  1386. * that are being truncated so the truncate can run async.
  1387. * In the free beyond eof case, the file may wind up with
  1388. * more blocks allocated to it than it needs if we crash
  1389. * and that won't get fixed until the next time the file
  1390. * is re-opened and closed but that's ok as that shouldn't
  1391. * be too many blocks.
  1392. *
  1393. * However, we can't just make all wsync xactions run async
  1394. * because there's one call out of the create path that needs
  1395. * to run sync where it's truncating an existing file to size
  1396. * 0 whose size is > 0.
  1397. *
  1398. * It's probably possible to come up with a test in this
  1399. * routine that would correctly distinguish all the above
  1400. * cases from the values of the function parameters and the
  1401. * inode state but for sanity's sake, I've decided to let the
  1402. * layers above just tell us. It's simpler to correctly figure
  1403. * out in the layer above exactly under what conditions we
  1404. * can run async and I think it's easier for others read and
  1405. * follow the logic in case something has to be changed.
  1406. * cscope is your friend -- rcc.
  1407. *
  1408. * The attribute fork is much simpler.
  1409. *
  1410. * For the attribute fork we allow the caller to tell us whether
  1411. * the unlink of the inode that led to this call is yet permanent
  1412. * in the on disk log. If it is not and we will be freeing extents
  1413. * in this inode then we make the first transaction synchronous
  1414. * to make sure that the unlink is permanent by the time we free
  1415. * the blocks.
  1416. */
  1417. if (fork == XFS_DATA_FORK) {
  1418. if (ip->i_d.di_nextents > 0) {
  1419. /*
  1420. * If we are not changing the file size then do
  1421. * not update the on-disk file size - we may be
  1422. * called from xfs_inactive_free_eofblocks(). If we
  1423. * update the on-disk file size and then the system
  1424. * crashes before the contents of the file are
  1425. * flushed to disk then the files may be full of
  1426. * holes (ie NULL files bug).
  1427. */
  1428. if (ip->i_size != new_size) {
  1429. ip->i_d.di_size = new_size;
  1430. ip->i_size = new_size;
  1431. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1432. }
  1433. }
  1434. } else if (sync) {
  1435. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1436. if (ip->i_d.di_anextents > 0)
  1437. xfs_trans_set_sync(ntp);
  1438. }
  1439. ASSERT(fork == XFS_DATA_FORK ||
  1440. (fork == XFS_ATTR_FORK &&
  1441. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1442. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1443. /*
  1444. * Since it is possible for space to become allocated beyond
  1445. * the end of the file (in a crash where the space is allocated
  1446. * but the inode size is not yet updated), simply remove any
  1447. * blocks which show up between the new EOF and the maximum
  1448. * possible file size. If the first block to be removed is
  1449. * beyond the maximum file size (ie it is the same as last_block),
  1450. * then there is nothing to do.
  1451. */
  1452. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1453. ASSERT(first_unmap_block <= last_block);
  1454. done = 0;
  1455. if (last_block == first_unmap_block) {
  1456. done = 1;
  1457. } else {
  1458. unmap_len = last_block - first_unmap_block + 1;
  1459. }
  1460. while (!done) {
  1461. /*
  1462. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1463. * will tell us whether it freed the entire range or
  1464. * not. If this is a synchronous mount (wsync),
  1465. * then we can tell bunmapi to keep all the
  1466. * transactions asynchronous since the unlink
  1467. * transaction that made this inode inactive has
  1468. * already hit the disk. There's no danger of
  1469. * the freed blocks being reused, there being a
  1470. * crash, and the reused blocks suddenly reappearing
  1471. * in this file with garbage in them once recovery
  1472. * runs.
  1473. */
  1474. xfs_bmap_init(&free_list, &first_block);
  1475. error = xfs_bunmapi(ntp, ip,
  1476. first_unmap_block, unmap_len,
  1477. xfs_bmapi_aflag(fork),
  1478. XFS_ITRUNC_MAX_EXTENTS,
  1479. &first_block, &free_list,
  1480. &done);
  1481. if (error) {
  1482. /*
  1483. * If the bunmapi call encounters an error,
  1484. * return to the caller where the transaction
  1485. * can be properly aborted. We just need to
  1486. * make sure we're not holding any resources
  1487. * that we were not when we came in.
  1488. */
  1489. xfs_bmap_cancel(&free_list);
  1490. return error;
  1491. }
  1492. /*
  1493. * Duplicate the transaction that has the permanent
  1494. * reservation and commit the old transaction.
  1495. */
  1496. error = xfs_bmap_finish(tp, &free_list, &committed);
  1497. ntp = *tp;
  1498. if (committed)
  1499. xfs_trans_ijoin(ntp, ip);
  1500. if (error) {
  1501. /*
  1502. * If the bmap finish call encounters an error, return
  1503. * to the caller where the transaction can be properly
  1504. * aborted. We just need to make sure we're not
  1505. * holding any resources that we were not when we came
  1506. * in.
  1507. *
  1508. * Aborting from this point might lose some blocks in
  1509. * the file system, but oh well.
  1510. */
  1511. xfs_bmap_cancel(&free_list);
  1512. return error;
  1513. }
  1514. if (committed) {
  1515. /*
  1516. * Mark the inode dirty so it will be logged and
  1517. * moved forward in the log as part of every commit.
  1518. */
  1519. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1520. }
  1521. ntp = xfs_trans_dup(ntp);
  1522. error = xfs_trans_commit(*tp, 0);
  1523. *tp = ntp;
  1524. xfs_trans_ijoin(ntp, ip);
  1525. if (error)
  1526. return error;
  1527. /*
  1528. * transaction commit worked ok so we can drop the extra ticket
  1529. * reference that we gained in xfs_trans_dup()
  1530. */
  1531. xfs_log_ticket_put(ntp->t_ticket);
  1532. error = xfs_trans_reserve(ntp, 0,
  1533. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1534. XFS_TRANS_PERM_LOG_RES,
  1535. XFS_ITRUNCATE_LOG_COUNT);
  1536. if (error)
  1537. return error;
  1538. }
  1539. /*
  1540. * Only update the size in the case of the data fork, but
  1541. * always re-log the inode so that our permanent transaction
  1542. * can keep on rolling it forward in the log.
  1543. */
  1544. if (fork == XFS_DATA_FORK) {
  1545. xfs_isize_check(mp, ip, new_size);
  1546. /*
  1547. * If we are not changing the file size then do
  1548. * not update the on-disk file size - we may be
  1549. * called from xfs_inactive_free_eofblocks(). If we
  1550. * update the on-disk file size and then the system
  1551. * crashes before the contents of the file are
  1552. * flushed to disk then the files may be full of
  1553. * holes (ie NULL files bug).
  1554. */
  1555. if (ip->i_size != new_size) {
  1556. ip->i_d.di_size = new_size;
  1557. ip->i_size = new_size;
  1558. }
  1559. }
  1560. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1561. ASSERT((new_size != 0) ||
  1562. (fork == XFS_ATTR_FORK) ||
  1563. (ip->i_delayed_blks == 0));
  1564. ASSERT((new_size != 0) ||
  1565. (fork == XFS_ATTR_FORK) ||
  1566. (ip->i_d.di_nextents == 0));
  1567. trace_xfs_itruncate_finish_end(ip, new_size);
  1568. return 0;
  1569. }
  1570. /*
  1571. * This is called when the inode's link count goes to 0.
  1572. * We place the on-disk inode on a list in the AGI. It
  1573. * will be pulled from this list when the inode is freed.
  1574. */
  1575. int
  1576. xfs_iunlink(
  1577. xfs_trans_t *tp,
  1578. xfs_inode_t *ip)
  1579. {
  1580. xfs_mount_t *mp;
  1581. xfs_agi_t *agi;
  1582. xfs_dinode_t *dip;
  1583. xfs_buf_t *agibp;
  1584. xfs_buf_t *ibp;
  1585. xfs_agino_t agino;
  1586. short bucket_index;
  1587. int offset;
  1588. int error;
  1589. ASSERT(ip->i_d.di_nlink == 0);
  1590. ASSERT(ip->i_d.di_mode != 0);
  1591. ASSERT(ip->i_transp == tp);
  1592. mp = tp->t_mountp;
  1593. /*
  1594. * Get the agi buffer first. It ensures lock ordering
  1595. * on the list.
  1596. */
  1597. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1598. if (error)
  1599. return error;
  1600. agi = XFS_BUF_TO_AGI(agibp);
  1601. /*
  1602. * Get the index into the agi hash table for the
  1603. * list this inode will go on.
  1604. */
  1605. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1606. ASSERT(agino != 0);
  1607. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1608. ASSERT(agi->agi_unlinked[bucket_index]);
  1609. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1610. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1611. /*
  1612. * There is already another inode in the bucket we need
  1613. * to add ourselves to. Add us at the front of the list.
  1614. * Here we put the head pointer into our next pointer,
  1615. * and then we fall through to point the head at us.
  1616. */
  1617. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1618. if (error)
  1619. return error;
  1620. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1621. /* both on-disk, don't endian flip twice */
  1622. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1623. offset = ip->i_imap.im_boffset +
  1624. offsetof(xfs_dinode_t, di_next_unlinked);
  1625. xfs_trans_inode_buf(tp, ibp);
  1626. xfs_trans_log_buf(tp, ibp, offset,
  1627. (offset + sizeof(xfs_agino_t) - 1));
  1628. xfs_inobp_check(mp, ibp);
  1629. }
  1630. /*
  1631. * Point the bucket head pointer at the inode being inserted.
  1632. */
  1633. ASSERT(agino != 0);
  1634. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1635. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1636. (sizeof(xfs_agino_t) * bucket_index);
  1637. xfs_trans_log_buf(tp, agibp, offset,
  1638. (offset + sizeof(xfs_agino_t) - 1));
  1639. return 0;
  1640. }
  1641. /*
  1642. * Pull the on-disk inode from the AGI unlinked list.
  1643. */
  1644. STATIC int
  1645. xfs_iunlink_remove(
  1646. xfs_trans_t *tp,
  1647. xfs_inode_t *ip)
  1648. {
  1649. xfs_ino_t next_ino;
  1650. xfs_mount_t *mp;
  1651. xfs_agi_t *agi;
  1652. xfs_dinode_t *dip;
  1653. xfs_buf_t *agibp;
  1654. xfs_buf_t *ibp;
  1655. xfs_agnumber_t agno;
  1656. xfs_agino_t agino;
  1657. xfs_agino_t next_agino;
  1658. xfs_buf_t *last_ibp;
  1659. xfs_dinode_t *last_dip = NULL;
  1660. short bucket_index;
  1661. int offset, last_offset = 0;
  1662. int error;
  1663. mp = tp->t_mountp;
  1664. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1665. /*
  1666. * Get the agi buffer first. It ensures lock ordering
  1667. * on the list.
  1668. */
  1669. error = xfs_read_agi(mp, tp, agno, &agibp);
  1670. if (error)
  1671. return error;
  1672. agi = XFS_BUF_TO_AGI(agibp);
  1673. /*
  1674. * Get the index into the agi hash table for the
  1675. * list this inode will go on.
  1676. */
  1677. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1678. ASSERT(agino != 0);
  1679. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1680. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1681. ASSERT(agi->agi_unlinked[bucket_index]);
  1682. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1683. /*
  1684. * We're at the head of the list. Get the inode's
  1685. * on-disk buffer to see if there is anyone after us
  1686. * on the list. Only modify our next pointer if it
  1687. * is not already NULLAGINO. This saves us the overhead
  1688. * of dealing with the buffer when there is no need to
  1689. * change it.
  1690. */
  1691. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1692. if (error) {
  1693. cmn_err(CE_WARN,
  1694. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1695. error, mp->m_fsname);
  1696. return error;
  1697. }
  1698. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1699. ASSERT(next_agino != 0);
  1700. if (next_agino != NULLAGINO) {
  1701. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1702. offset = ip->i_imap.im_boffset +
  1703. offsetof(xfs_dinode_t, di_next_unlinked);
  1704. xfs_trans_inode_buf(tp, ibp);
  1705. xfs_trans_log_buf(tp, ibp, offset,
  1706. (offset + sizeof(xfs_agino_t) - 1));
  1707. xfs_inobp_check(mp, ibp);
  1708. } else {
  1709. xfs_trans_brelse(tp, ibp);
  1710. }
  1711. /*
  1712. * Point the bucket head pointer at the next inode.
  1713. */
  1714. ASSERT(next_agino != 0);
  1715. ASSERT(next_agino != agino);
  1716. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1717. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1718. (sizeof(xfs_agino_t) * bucket_index);
  1719. xfs_trans_log_buf(tp, agibp, offset,
  1720. (offset + sizeof(xfs_agino_t) - 1));
  1721. } else {
  1722. /*
  1723. * We need to search the list for the inode being freed.
  1724. */
  1725. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1726. last_ibp = NULL;
  1727. while (next_agino != agino) {
  1728. /*
  1729. * If the last inode wasn't the one pointing to
  1730. * us, then release its buffer since we're not
  1731. * going to do anything with it.
  1732. */
  1733. if (last_ibp != NULL) {
  1734. xfs_trans_brelse(tp, last_ibp);
  1735. }
  1736. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1737. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1738. &last_ibp, &last_offset, 0);
  1739. if (error) {
  1740. cmn_err(CE_WARN,
  1741. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1742. error, mp->m_fsname);
  1743. return error;
  1744. }
  1745. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1746. ASSERT(next_agino != NULLAGINO);
  1747. ASSERT(next_agino != 0);
  1748. }
  1749. /*
  1750. * Now last_ibp points to the buffer previous to us on
  1751. * the unlinked list. Pull us from the list.
  1752. */
  1753. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1754. if (error) {
  1755. cmn_err(CE_WARN,
  1756. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1757. error, mp->m_fsname);
  1758. return error;
  1759. }
  1760. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1761. ASSERT(next_agino != 0);
  1762. ASSERT(next_agino != agino);
  1763. if (next_agino != NULLAGINO) {
  1764. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1765. offset = ip->i_imap.im_boffset +
  1766. offsetof(xfs_dinode_t, di_next_unlinked);
  1767. xfs_trans_inode_buf(tp, ibp);
  1768. xfs_trans_log_buf(tp, ibp, offset,
  1769. (offset + sizeof(xfs_agino_t) - 1));
  1770. xfs_inobp_check(mp, ibp);
  1771. } else {
  1772. xfs_trans_brelse(tp, ibp);
  1773. }
  1774. /*
  1775. * Point the previous inode on the list to the next inode.
  1776. */
  1777. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1778. ASSERT(next_agino != 0);
  1779. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1780. xfs_trans_inode_buf(tp, last_ibp);
  1781. xfs_trans_log_buf(tp, last_ibp, offset,
  1782. (offset + sizeof(xfs_agino_t) - 1));
  1783. xfs_inobp_check(mp, last_ibp);
  1784. }
  1785. return 0;
  1786. }
  1787. /*
  1788. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1789. * inodes that are in memory - they all must be marked stale and attached to
  1790. * the cluster buffer.
  1791. */
  1792. STATIC void
  1793. xfs_ifree_cluster(
  1794. xfs_inode_t *free_ip,
  1795. xfs_trans_t *tp,
  1796. xfs_ino_t inum)
  1797. {
  1798. xfs_mount_t *mp = free_ip->i_mount;
  1799. int blks_per_cluster;
  1800. int nbufs;
  1801. int ninodes;
  1802. int i, j;
  1803. xfs_daddr_t blkno;
  1804. xfs_buf_t *bp;
  1805. xfs_inode_t *ip;
  1806. xfs_inode_log_item_t *iip;
  1807. xfs_log_item_t *lip;
  1808. struct xfs_perag *pag;
  1809. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1810. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1811. blks_per_cluster = 1;
  1812. ninodes = mp->m_sb.sb_inopblock;
  1813. nbufs = XFS_IALLOC_BLOCKS(mp);
  1814. } else {
  1815. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1816. mp->m_sb.sb_blocksize;
  1817. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1818. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1819. }
  1820. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1821. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1822. XFS_INO_TO_AGBNO(mp, inum));
  1823. /*
  1824. * We obtain and lock the backing buffer first in the process
  1825. * here, as we have to ensure that any dirty inode that we
  1826. * can't get the flush lock on is attached to the buffer.
  1827. * If we scan the in-memory inodes first, then buffer IO can
  1828. * complete before we get a lock on it, and hence we may fail
  1829. * to mark all the active inodes on the buffer stale.
  1830. */
  1831. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1832. mp->m_bsize * blks_per_cluster,
  1833. XBF_LOCK);
  1834. /*
  1835. * Walk the inodes already attached to the buffer and mark them
  1836. * stale. These will all have the flush locks held, so an
  1837. * in-memory inode walk can't lock them. By marking them all
  1838. * stale first, we will not attempt to lock them in the loop
  1839. * below as the XFS_ISTALE flag will be set.
  1840. */
  1841. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1842. while (lip) {
  1843. if (lip->li_type == XFS_LI_INODE) {
  1844. iip = (xfs_inode_log_item_t *)lip;
  1845. ASSERT(iip->ili_logged == 1);
  1846. lip->li_cb = xfs_istale_done;
  1847. xfs_trans_ail_copy_lsn(mp->m_ail,
  1848. &iip->ili_flush_lsn,
  1849. &iip->ili_item.li_lsn);
  1850. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1851. }
  1852. lip = lip->li_bio_list;
  1853. }
  1854. /*
  1855. * For each inode in memory attempt to add it to the inode
  1856. * buffer and set it up for being staled on buffer IO
  1857. * completion. This is safe as we've locked out tail pushing
  1858. * and flushing by locking the buffer.
  1859. *
  1860. * We have already marked every inode that was part of a
  1861. * transaction stale above, which means there is no point in
  1862. * even trying to lock them.
  1863. */
  1864. for (i = 0; i < ninodes; i++) {
  1865. retry:
  1866. read_lock(&pag->pag_ici_lock);
  1867. ip = radix_tree_lookup(&pag->pag_ici_root,
  1868. XFS_INO_TO_AGINO(mp, (inum + i)));
  1869. /* Inode not in memory or stale, nothing to do */
  1870. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1871. read_unlock(&pag->pag_ici_lock);
  1872. continue;
  1873. }
  1874. /*
  1875. * Don't try to lock/unlock the current inode, but we
  1876. * _cannot_ skip the other inodes that we did not find
  1877. * in the list attached to the buffer and are not
  1878. * already marked stale. If we can't lock it, back off
  1879. * and retry.
  1880. */
  1881. if (ip != free_ip &&
  1882. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1883. read_unlock(&pag->pag_ici_lock);
  1884. delay(1);
  1885. goto retry;
  1886. }
  1887. read_unlock(&pag->pag_ici_lock);
  1888. xfs_iflock(ip);
  1889. xfs_iflags_set(ip, XFS_ISTALE);
  1890. /*
  1891. * we don't need to attach clean inodes or those only
  1892. * with unlogged changes (which we throw away, anyway).
  1893. */
  1894. iip = ip->i_itemp;
  1895. if (!iip || xfs_inode_clean(ip)) {
  1896. ASSERT(ip != free_ip);
  1897. ip->i_update_core = 0;
  1898. xfs_ifunlock(ip);
  1899. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1900. continue;
  1901. }
  1902. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1903. iip->ili_format.ilf_fields = 0;
  1904. iip->ili_logged = 1;
  1905. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1906. &iip->ili_item.li_lsn);
  1907. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1908. &iip->ili_item);
  1909. if (ip != free_ip)
  1910. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1911. }
  1912. xfs_trans_stale_inode_buf(tp, bp);
  1913. xfs_trans_binval(tp, bp);
  1914. }
  1915. xfs_perag_put(pag);
  1916. }
  1917. /*
  1918. * This is called to return an inode to the inode free list.
  1919. * The inode should already be truncated to 0 length and have
  1920. * no pages associated with it. This routine also assumes that
  1921. * the inode is already a part of the transaction.
  1922. *
  1923. * The on-disk copy of the inode will have been added to the list
  1924. * of unlinked inodes in the AGI. We need to remove the inode from
  1925. * that list atomically with respect to freeing it here.
  1926. */
  1927. int
  1928. xfs_ifree(
  1929. xfs_trans_t *tp,
  1930. xfs_inode_t *ip,
  1931. xfs_bmap_free_t *flist)
  1932. {
  1933. int error;
  1934. int delete;
  1935. xfs_ino_t first_ino;
  1936. xfs_dinode_t *dip;
  1937. xfs_buf_t *ibp;
  1938. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1939. ASSERT(ip->i_transp == tp);
  1940. ASSERT(ip->i_d.di_nlink == 0);
  1941. ASSERT(ip->i_d.di_nextents == 0);
  1942. ASSERT(ip->i_d.di_anextents == 0);
  1943. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1944. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1945. ASSERT(ip->i_d.di_nblocks == 0);
  1946. /*
  1947. * Pull the on-disk inode from the AGI unlinked list.
  1948. */
  1949. error = xfs_iunlink_remove(tp, ip);
  1950. if (error != 0) {
  1951. return error;
  1952. }
  1953. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1954. if (error != 0) {
  1955. return error;
  1956. }
  1957. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1958. ip->i_d.di_flags = 0;
  1959. ip->i_d.di_dmevmask = 0;
  1960. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1961. ip->i_df.if_ext_max =
  1962. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1963. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1964. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1965. /*
  1966. * Bump the generation count so no one will be confused
  1967. * by reincarnations of this inode.
  1968. */
  1969. ip->i_d.di_gen++;
  1970. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1971. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1972. if (error)
  1973. return error;
  1974. /*
  1975. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1976. * from picking up this inode when it is reclaimed (its incore state
  1977. * initialzed but not flushed to disk yet). The in-core di_mode is
  1978. * already cleared and a corresponding transaction logged.
  1979. * The hack here just synchronizes the in-core to on-disk
  1980. * di_mode value in advance before the actual inode sync to disk.
  1981. * This is OK because the inode is already unlinked and would never
  1982. * change its di_mode again for this inode generation.
  1983. * This is a temporary hack that would require a proper fix
  1984. * in the future.
  1985. */
  1986. dip->di_mode = 0;
  1987. if (delete) {
  1988. xfs_ifree_cluster(ip, tp, first_ino);
  1989. }
  1990. return 0;
  1991. }
  1992. /*
  1993. * Reallocate the space for if_broot based on the number of records
  1994. * being added or deleted as indicated in rec_diff. Move the records
  1995. * and pointers in if_broot to fit the new size. When shrinking this
  1996. * will eliminate holes between the records and pointers created by
  1997. * the caller. When growing this will create holes to be filled in
  1998. * by the caller.
  1999. *
  2000. * The caller must not request to add more records than would fit in
  2001. * the on-disk inode root. If the if_broot is currently NULL, then
  2002. * if we adding records one will be allocated. The caller must also
  2003. * not request that the number of records go below zero, although
  2004. * it can go to zero.
  2005. *
  2006. * ip -- the inode whose if_broot area is changing
  2007. * ext_diff -- the change in the number of records, positive or negative,
  2008. * requested for the if_broot array.
  2009. */
  2010. void
  2011. xfs_iroot_realloc(
  2012. xfs_inode_t *ip,
  2013. int rec_diff,
  2014. int whichfork)
  2015. {
  2016. struct xfs_mount *mp = ip->i_mount;
  2017. int cur_max;
  2018. xfs_ifork_t *ifp;
  2019. struct xfs_btree_block *new_broot;
  2020. int new_max;
  2021. size_t new_size;
  2022. char *np;
  2023. char *op;
  2024. /*
  2025. * Handle the degenerate case quietly.
  2026. */
  2027. if (rec_diff == 0) {
  2028. return;
  2029. }
  2030. ifp = XFS_IFORK_PTR(ip, whichfork);
  2031. if (rec_diff > 0) {
  2032. /*
  2033. * If there wasn't any memory allocated before, just
  2034. * allocate it now and get out.
  2035. */
  2036. if (ifp->if_broot_bytes == 0) {
  2037. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2038. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2039. ifp->if_broot_bytes = (int)new_size;
  2040. return;
  2041. }
  2042. /*
  2043. * If there is already an existing if_broot, then we need
  2044. * to realloc() it and shift the pointers to their new
  2045. * location. The records don't change location because
  2046. * they are kept butted up against the btree block header.
  2047. */
  2048. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2049. new_max = cur_max + rec_diff;
  2050. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2051. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2052. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2053. KM_SLEEP | KM_NOFS);
  2054. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2055. ifp->if_broot_bytes);
  2056. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2057. (int)new_size);
  2058. ifp->if_broot_bytes = (int)new_size;
  2059. ASSERT(ifp->if_broot_bytes <=
  2060. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2061. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2062. return;
  2063. }
  2064. /*
  2065. * rec_diff is less than 0. In this case, we are shrinking the
  2066. * if_broot buffer. It must already exist. If we go to zero
  2067. * records, just get rid of the root and clear the status bit.
  2068. */
  2069. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2070. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2071. new_max = cur_max + rec_diff;
  2072. ASSERT(new_max >= 0);
  2073. if (new_max > 0)
  2074. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2075. else
  2076. new_size = 0;
  2077. if (new_size > 0) {
  2078. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  2079. /*
  2080. * First copy over the btree block header.
  2081. */
  2082. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2083. } else {
  2084. new_broot = NULL;
  2085. ifp->if_flags &= ~XFS_IFBROOT;
  2086. }
  2087. /*
  2088. * Only copy the records and pointers if there are any.
  2089. */
  2090. if (new_max > 0) {
  2091. /*
  2092. * First copy the records.
  2093. */
  2094. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2095. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2096. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2097. /*
  2098. * Then copy the pointers.
  2099. */
  2100. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2101. ifp->if_broot_bytes);
  2102. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2103. (int)new_size);
  2104. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2105. }
  2106. kmem_free(ifp->if_broot);
  2107. ifp->if_broot = new_broot;
  2108. ifp->if_broot_bytes = (int)new_size;
  2109. ASSERT(ifp->if_broot_bytes <=
  2110. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2111. return;
  2112. }
  2113. /*
  2114. * This is called when the amount of space needed for if_data
  2115. * is increased or decreased. The change in size is indicated by
  2116. * the number of bytes that need to be added or deleted in the
  2117. * byte_diff parameter.
  2118. *
  2119. * If the amount of space needed has decreased below the size of the
  2120. * inline buffer, then switch to using the inline buffer. Otherwise,
  2121. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2122. * to what is needed.
  2123. *
  2124. * ip -- the inode whose if_data area is changing
  2125. * byte_diff -- the change in the number of bytes, positive or negative,
  2126. * requested for the if_data array.
  2127. */
  2128. void
  2129. xfs_idata_realloc(
  2130. xfs_inode_t *ip,
  2131. int byte_diff,
  2132. int whichfork)
  2133. {
  2134. xfs_ifork_t *ifp;
  2135. int new_size;
  2136. int real_size;
  2137. if (byte_diff == 0) {
  2138. return;
  2139. }
  2140. ifp = XFS_IFORK_PTR(ip, whichfork);
  2141. new_size = (int)ifp->if_bytes + byte_diff;
  2142. ASSERT(new_size >= 0);
  2143. if (new_size == 0) {
  2144. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2145. kmem_free(ifp->if_u1.if_data);
  2146. }
  2147. ifp->if_u1.if_data = NULL;
  2148. real_size = 0;
  2149. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2150. /*
  2151. * If the valid extents/data can fit in if_inline_ext/data,
  2152. * copy them from the malloc'd vector and free it.
  2153. */
  2154. if (ifp->if_u1.if_data == NULL) {
  2155. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2156. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2157. ASSERT(ifp->if_real_bytes != 0);
  2158. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2159. new_size);
  2160. kmem_free(ifp->if_u1.if_data);
  2161. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2162. }
  2163. real_size = 0;
  2164. } else {
  2165. /*
  2166. * Stuck with malloc/realloc.
  2167. * For inline data, the underlying buffer must be
  2168. * a multiple of 4 bytes in size so that it can be
  2169. * logged and stay on word boundaries. We enforce
  2170. * that here.
  2171. */
  2172. real_size = roundup(new_size, 4);
  2173. if (ifp->if_u1.if_data == NULL) {
  2174. ASSERT(ifp->if_real_bytes == 0);
  2175. ifp->if_u1.if_data = kmem_alloc(real_size,
  2176. KM_SLEEP | KM_NOFS);
  2177. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2178. /*
  2179. * Only do the realloc if the underlying size
  2180. * is really changing.
  2181. */
  2182. if (ifp->if_real_bytes != real_size) {
  2183. ifp->if_u1.if_data =
  2184. kmem_realloc(ifp->if_u1.if_data,
  2185. real_size,
  2186. ifp->if_real_bytes,
  2187. KM_SLEEP | KM_NOFS);
  2188. }
  2189. } else {
  2190. ASSERT(ifp->if_real_bytes == 0);
  2191. ifp->if_u1.if_data = kmem_alloc(real_size,
  2192. KM_SLEEP | KM_NOFS);
  2193. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2194. ifp->if_bytes);
  2195. }
  2196. }
  2197. ifp->if_real_bytes = real_size;
  2198. ifp->if_bytes = new_size;
  2199. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2200. }
  2201. void
  2202. xfs_idestroy_fork(
  2203. xfs_inode_t *ip,
  2204. int whichfork)
  2205. {
  2206. xfs_ifork_t *ifp;
  2207. ifp = XFS_IFORK_PTR(ip, whichfork);
  2208. if (ifp->if_broot != NULL) {
  2209. kmem_free(ifp->if_broot);
  2210. ifp->if_broot = NULL;
  2211. }
  2212. /*
  2213. * If the format is local, then we can't have an extents
  2214. * array so just look for an inline data array. If we're
  2215. * not local then we may or may not have an extents list,
  2216. * so check and free it up if we do.
  2217. */
  2218. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2219. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2220. (ifp->if_u1.if_data != NULL)) {
  2221. ASSERT(ifp->if_real_bytes != 0);
  2222. kmem_free(ifp->if_u1.if_data);
  2223. ifp->if_u1.if_data = NULL;
  2224. ifp->if_real_bytes = 0;
  2225. }
  2226. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2227. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2228. ((ifp->if_u1.if_extents != NULL) &&
  2229. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2230. ASSERT(ifp->if_real_bytes != 0);
  2231. xfs_iext_destroy(ifp);
  2232. }
  2233. ASSERT(ifp->if_u1.if_extents == NULL ||
  2234. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2235. ASSERT(ifp->if_real_bytes == 0);
  2236. if (whichfork == XFS_ATTR_FORK) {
  2237. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2238. ip->i_afp = NULL;
  2239. }
  2240. }
  2241. /*
  2242. * This is called to unpin an inode. The caller must have the inode locked
  2243. * in at least shared mode so that the buffer cannot be subsequently pinned
  2244. * once someone is waiting for it to be unpinned.
  2245. */
  2246. static void
  2247. xfs_iunpin_nowait(
  2248. struct xfs_inode *ip)
  2249. {
  2250. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2251. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2252. /* Give the log a push to start the unpinning I/O */
  2253. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2254. }
  2255. void
  2256. xfs_iunpin_wait(
  2257. struct xfs_inode *ip)
  2258. {
  2259. if (xfs_ipincount(ip)) {
  2260. xfs_iunpin_nowait(ip);
  2261. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2262. }
  2263. }
  2264. /*
  2265. * xfs_iextents_copy()
  2266. *
  2267. * This is called to copy the REAL extents (as opposed to the delayed
  2268. * allocation extents) from the inode into the given buffer. It
  2269. * returns the number of bytes copied into the buffer.
  2270. *
  2271. * If there are no delayed allocation extents, then we can just
  2272. * memcpy() the extents into the buffer. Otherwise, we need to
  2273. * examine each extent in turn and skip those which are delayed.
  2274. */
  2275. int
  2276. xfs_iextents_copy(
  2277. xfs_inode_t *ip,
  2278. xfs_bmbt_rec_t *dp,
  2279. int whichfork)
  2280. {
  2281. int copied;
  2282. int i;
  2283. xfs_ifork_t *ifp;
  2284. int nrecs;
  2285. xfs_fsblock_t start_block;
  2286. ifp = XFS_IFORK_PTR(ip, whichfork);
  2287. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2288. ASSERT(ifp->if_bytes > 0);
  2289. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2290. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2291. ASSERT(nrecs > 0);
  2292. /*
  2293. * There are some delayed allocation extents in the
  2294. * inode, so copy the extents one at a time and skip
  2295. * the delayed ones. There must be at least one
  2296. * non-delayed extent.
  2297. */
  2298. copied = 0;
  2299. for (i = 0; i < nrecs; i++) {
  2300. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2301. start_block = xfs_bmbt_get_startblock(ep);
  2302. if (isnullstartblock(start_block)) {
  2303. /*
  2304. * It's a delayed allocation extent, so skip it.
  2305. */
  2306. continue;
  2307. }
  2308. /* Translate to on disk format */
  2309. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2310. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2311. dp++;
  2312. copied++;
  2313. }
  2314. ASSERT(copied != 0);
  2315. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2316. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2317. }
  2318. /*
  2319. * Each of the following cases stores data into the same region
  2320. * of the on-disk inode, so only one of them can be valid at
  2321. * any given time. While it is possible to have conflicting formats
  2322. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2323. * in EXTENTS format, this can only happen when the fork has
  2324. * changed formats after being modified but before being flushed.
  2325. * In these cases, the format always takes precedence, because the
  2326. * format indicates the current state of the fork.
  2327. */
  2328. /*ARGSUSED*/
  2329. STATIC void
  2330. xfs_iflush_fork(
  2331. xfs_inode_t *ip,
  2332. xfs_dinode_t *dip,
  2333. xfs_inode_log_item_t *iip,
  2334. int whichfork,
  2335. xfs_buf_t *bp)
  2336. {
  2337. char *cp;
  2338. xfs_ifork_t *ifp;
  2339. xfs_mount_t *mp;
  2340. #ifdef XFS_TRANS_DEBUG
  2341. int first;
  2342. #endif
  2343. static const short brootflag[2] =
  2344. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2345. static const short dataflag[2] =
  2346. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2347. static const short extflag[2] =
  2348. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2349. if (!iip)
  2350. return;
  2351. ifp = XFS_IFORK_PTR(ip, whichfork);
  2352. /*
  2353. * This can happen if we gave up in iformat in an error path,
  2354. * for the attribute fork.
  2355. */
  2356. if (!ifp) {
  2357. ASSERT(whichfork == XFS_ATTR_FORK);
  2358. return;
  2359. }
  2360. cp = XFS_DFORK_PTR(dip, whichfork);
  2361. mp = ip->i_mount;
  2362. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2363. case XFS_DINODE_FMT_LOCAL:
  2364. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2365. (ifp->if_bytes > 0)) {
  2366. ASSERT(ifp->if_u1.if_data != NULL);
  2367. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2368. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2369. }
  2370. break;
  2371. case XFS_DINODE_FMT_EXTENTS:
  2372. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2373. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2374. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2375. (ifp->if_bytes == 0));
  2376. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2377. (ifp->if_bytes > 0));
  2378. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2379. (ifp->if_bytes > 0)) {
  2380. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2381. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2382. whichfork);
  2383. }
  2384. break;
  2385. case XFS_DINODE_FMT_BTREE:
  2386. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2387. (ifp->if_broot_bytes > 0)) {
  2388. ASSERT(ifp->if_broot != NULL);
  2389. ASSERT(ifp->if_broot_bytes <=
  2390. (XFS_IFORK_SIZE(ip, whichfork) +
  2391. XFS_BROOT_SIZE_ADJ));
  2392. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2393. (xfs_bmdr_block_t *)cp,
  2394. XFS_DFORK_SIZE(dip, mp, whichfork));
  2395. }
  2396. break;
  2397. case XFS_DINODE_FMT_DEV:
  2398. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2399. ASSERT(whichfork == XFS_DATA_FORK);
  2400. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2401. }
  2402. break;
  2403. case XFS_DINODE_FMT_UUID:
  2404. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2405. ASSERT(whichfork == XFS_DATA_FORK);
  2406. memcpy(XFS_DFORK_DPTR(dip),
  2407. &ip->i_df.if_u2.if_uuid,
  2408. sizeof(uuid_t));
  2409. }
  2410. break;
  2411. default:
  2412. ASSERT(0);
  2413. break;
  2414. }
  2415. }
  2416. STATIC int
  2417. xfs_iflush_cluster(
  2418. xfs_inode_t *ip,
  2419. xfs_buf_t *bp)
  2420. {
  2421. xfs_mount_t *mp = ip->i_mount;
  2422. struct xfs_perag *pag;
  2423. unsigned long first_index, mask;
  2424. unsigned long inodes_per_cluster;
  2425. int ilist_size;
  2426. xfs_inode_t **ilist;
  2427. xfs_inode_t *iq;
  2428. int nr_found;
  2429. int clcount = 0;
  2430. int bufwasdelwri;
  2431. int i;
  2432. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2433. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2434. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2435. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2436. if (!ilist)
  2437. goto out_put;
  2438. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2439. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2440. read_lock(&pag->pag_ici_lock);
  2441. /* really need a gang lookup range call here */
  2442. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2443. first_index, inodes_per_cluster);
  2444. if (nr_found == 0)
  2445. goto out_free;
  2446. for (i = 0; i < nr_found; i++) {
  2447. iq = ilist[i];
  2448. if (iq == ip)
  2449. continue;
  2450. /* if the inode lies outside this cluster, we're done. */
  2451. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2452. break;
  2453. /*
  2454. * Do an un-protected check to see if the inode is dirty and
  2455. * is a candidate for flushing. These checks will be repeated
  2456. * later after the appropriate locks are acquired.
  2457. */
  2458. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2459. continue;
  2460. /*
  2461. * Try to get locks. If any are unavailable or it is pinned,
  2462. * then this inode cannot be flushed and is skipped.
  2463. */
  2464. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2465. continue;
  2466. if (!xfs_iflock_nowait(iq)) {
  2467. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2468. continue;
  2469. }
  2470. if (xfs_ipincount(iq)) {
  2471. xfs_ifunlock(iq);
  2472. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2473. continue;
  2474. }
  2475. /*
  2476. * arriving here means that this inode can be flushed. First
  2477. * re-check that it's dirty before flushing.
  2478. */
  2479. if (!xfs_inode_clean(iq)) {
  2480. int error;
  2481. error = xfs_iflush_int(iq, bp);
  2482. if (error) {
  2483. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2484. goto cluster_corrupt_out;
  2485. }
  2486. clcount++;
  2487. } else {
  2488. xfs_ifunlock(iq);
  2489. }
  2490. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2491. }
  2492. if (clcount) {
  2493. XFS_STATS_INC(xs_icluster_flushcnt);
  2494. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2495. }
  2496. out_free:
  2497. read_unlock(&pag->pag_ici_lock);
  2498. kmem_free(ilist);
  2499. out_put:
  2500. xfs_perag_put(pag);
  2501. return 0;
  2502. cluster_corrupt_out:
  2503. /*
  2504. * Corruption detected in the clustering loop. Invalidate the
  2505. * inode buffer and shut down the filesystem.
  2506. */
  2507. read_unlock(&pag->pag_ici_lock);
  2508. /*
  2509. * Clean up the buffer. If it was B_DELWRI, just release it --
  2510. * brelse can handle it with no problems. If not, shut down the
  2511. * filesystem before releasing the buffer.
  2512. */
  2513. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2514. if (bufwasdelwri)
  2515. xfs_buf_relse(bp);
  2516. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2517. if (!bufwasdelwri) {
  2518. /*
  2519. * Just like incore_relse: if we have b_iodone functions,
  2520. * mark the buffer as an error and call them. Otherwise
  2521. * mark it as stale and brelse.
  2522. */
  2523. if (XFS_BUF_IODONE_FUNC(bp)) {
  2524. XFS_BUF_UNDONE(bp);
  2525. XFS_BUF_STALE(bp);
  2526. XFS_BUF_ERROR(bp,EIO);
  2527. xfs_biodone(bp);
  2528. } else {
  2529. XFS_BUF_STALE(bp);
  2530. xfs_buf_relse(bp);
  2531. }
  2532. }
  2533. /*
  2534. * Unlocks the flush lock
  2535. */
  2536. xfs_iflush_abort(iq);
  2537. kmem_free(ilist);
  2538. xfs_perag_put(pag);
  2539. return XFS_ERROR(EFSCORRUPTED);
  2540. }
  2541. /*
  2542. * xfs_iflush() will write a modified inode's changes out to the
  2543. * inode's on disk home. The caller must have the inode lock held
  2544. * in at least shared mode and the inode flush completion must be
  2545. * active as well. The inode lock will still be held upon return from
  2546. * the call and the caller is free to unlock it.
  2547. * The inode flush will be completed when the inode reaches the disk.
  2548. * The flags indicate how the inode's buffer should be written out.
  2549. */
  2550. int
  2551. xfs_iflush(
  2552. xfs_inode_t *ip,
  2553. uint flags)
  2554. {
  2555. xfs_inode_log_item_t *iip;
  2556. xfs_buf_t *bp;
  2557. xfs_dinode_t *dip;
  2558. xfs_mount_t *mp;
  2559. int error;
  2560. XFS_STATS_INC(xs_iflush_count);
  2561. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2562. ASSERT(!completion_done(&ip->i_flush));
  2563. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2564. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2565. iip = ip->i_itemp;
  2566. mp = ip->i_mount;
  2567. /*
  2568. * We can't flush the inode until it is unpinned, so wait for it if we
  2569. * are allowed to block. We know noone new can pin it, because we are
  2570. * holding the inode lock shared and you need to hold it exclusively to
  2571. * pin the inode.
  2572. *
  2573. * If we are not allowed to block, force the log out asynchronously so
  2574. * that when we come back the inode will be unpinned. If other inodes
  2575. * in the same cluster are dirty, they will probably write the inode
  2576. * out for us if they occur after the log force completes.
  2577. */
  2578. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2579. xfs_iunpin_nowait(ip);
  2580. xfs_ifunlock(ip);
  2581. return EAGAIN;
  2582. }
  2583. xfs_iunpin_wait(ip);
  2584. /*
  2585. * For stale inodes we cannot rely on the backing buffer remaining
  2586. * stale in cache for the remaining life of the stale inode and so
  2587. * xfs_itobp() below may give us a buffer that no longer contains
  2588. * inodes below. We have to check this after ensuring the inode is
  2589. * unpinned so that it is safe to reclaim the stale inode after the
  2590. * flush call.
  2591. */
  2592. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2593. xfs_ifunlock(ip);
  2594. return 0;
  2595. }
  2596. /*
  2597. * This may have been unpinned because the filesystem is shutting
  2598. * down forcibly. If that's the case we must not write this inode
  2599. * to disk, because the log record didn't make it to disk!
  2600. */
  2601. if (XFS_FORCED_SHUTDOWN(mp)) {
  2602. ip->i_update_core = 0;
  2603. if (iip)
  2604. iip->ili_format.ilf_fields = 0;
  2605. xfs_ifunlock(ip);
  2606. return XFS_ERROR(EIO);
  2607. }
  2608. /*
  2609. * Get the buffer containing the on-disk inode.
  2610. */
  2611. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2612. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2613. if (error || !bp) {
  2614. xfs_ifunlock(ip);
  2615. return error;
  2616. }
  2617. /*
  2618. * First flush out the inode that xfs_iflush was called with.
  2619. */
  2620. error = xfs_iflush_int(ip, bp);
  2621. if (error)
  2622. goto corrupt_out;
  2623. /*
  2624. * If the buffer is pinned then push on the log now so we won't
  2625. * get stuck waiting in the write for too long.
  2626. */
  2627. if (XFS_BUF_ISPINNED(bp))
  2628. xfs_log_force(mp, 0);
  2629. /*
  2630. * inode clustering:
  2631. * see if other inodes can be gathered into this write
  2632. */
  2633. error = xfs_iflush_cluster(ip, bp);
  2634. if (error)
  2635. goto cluster_corrupt_out;
  2636. if (flags & SYNC_WAIT)
  2637. error = xfs_bwrite(mp, bp);
  2638. else
  2639. xfs_bdwrite(mp, bp);
  2640. return error;
  2641. corrupt_out:
  2642. xfs_buf_relse(bp);
  2643. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2644. cluster_corrupt_out:
  2645. /*
  2646. * Unlocks the flush lock
  2647. */
  2648. xfs_iflush_abort(ip);
  2649. return XFS_ERROR(EFSCORRUPTED);
  2650. }
  2651. STATIC int
  2652. xfs_iflush_int(
  2653. xfs_inode_t *ip,
  2654. xfs_buf_t *bp)
  2655. {
  2656. xfs_inode_log_item_t *iip;
  2657. xfs_dinode_t *dip;
  2658. xfs_mount_t *mp;
  2659. #ifdef XFS_TRANS_DEBUG
  2660. int first;
  2661. #endif
  2662. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2663. ASSERT(!completion_done(&ip->i_flush));
  2664. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2665. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2666. iip = ip->i_itemp;
  2667. mp = ip->i_mount;
  2668. /* set *dip = inode's place in the buffer */
  2669. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2670. /*
  2671. * Clear i_update_core before copying out the data.
  2672. * This is for coordination with our timestamp updates
  2673. * that don't hold the inode lock. They will always
  2674. * update the timestamps BEFORE setting i_update_core,
  2675. * so if we clear i_update_core after they set it we
  2676. * are guaranteed to see their updates to the timestamps.
  2677. * I believe that this depends on strongly ordered memory
  2678. * semantics, but we have that. We use the SYNCHRONIZE
  2679. * macro to make sure that the compiler does not reorder
  2680. * the i_update_core access below the data copy below.
  2681. */
  2682. ip->i_update_core = 0;
  2683. SYNCHRONIZE();
  2684. /*
  2685. * Make sure to get the latest timestamps from the Linux inode.
  2686. */
  2687. xfs_synchronize_times(ip);
  2688. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2689. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2690. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2691. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2692. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2693. goto corrupt_out;
  2694. }
  2695. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2696. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2697. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2698. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2699. ip->i_ino, ip, ip->i_d.di_magic);
  2700. goto corrupt_out;
  2701. }
  2702. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2703. if (XFS_TEST_ERROR(
  2704. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2705. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2706. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2707. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2708. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2709. ip->i_ino, ip);
  2710. goto corrupt_out;
  2711. }
  2712. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2713. if (XFS_TEST_ERROR(
  2714. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2715. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2716. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2717. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2718. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2719. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2720. ip->i_ino, ip);
  2721. goto corrupt_out;
  2722. }
  2723. }
  2724. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2725. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2726. XFS_RANDOM_IFLUSH_5)) {
  2727. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2728. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2729. ip->i_ino,
  2730. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2731. ip->i_d.di_nblocks,
  2732. ip);
  2733. goto corrupt_out;
  2734. }
  2735. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2736. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2737. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2738. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2739. ip->i_ino, ip->i_d.di_forkoff, ip);
  2740. goto corrupt_out;
  2741. }
  2742. /*
  2743. * bump the flush iteration count, used to detect flushes which
  2744. * postdate a log record during recovery.
  2745. */
  2746. ip->i_d.di_flushiter++;
  2747. /*
  2748. * Copy the dirty parts of the inode into the on-disk
  2749. * inode. We always copy out the core of the inode,
  2750. * because if the inode is dirty at all the core must
  2751. * be.
  2752. */
  2753. xfs_dinode_to_disk(dip, &ip->i_d);
  2754. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2755. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2756. ip->i_d.di_flushiter = 0;
  2757. /*
  2758. * If this is really an old format inode and the superblock version
  2759. * has not been updated to support only new format inodes, then
  2760. * convert back to the old inode format. If the superblock version
  2761. * has been updated, then make the conversion permanent.
  2762. */
  2763. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2764. if (ip->i_d.di_version == 1) {
  2765. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2766. /*
  2767. * Convert it back.
  2768. */
  2769. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2770. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2771. } else {
  2772. /*
  2773. * The superblock version has already been bumped,
  2774. * so just make the conversion to the new inode
  2775. * format permanent.
  2776. */
  2777. ip->i_d.di_version = 2;
  2778. dip->di_version = 2;
  2779. ip->i_d.di_onlink = 0;
  2780. dip->di_onlink = 0;
  2781. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2782. memset(&(dip->di_pad[0]), 0,
  2783. sizeof(dip->di_pad));
  2784. ASSERT(ip->i_d.di_projid == 0);
  2785. }
  2786. }
  2787. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2788. if (XFS_IFORK_Q(ip))
  2789. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2790. xfs_inobp_check(mp, bp);
  2791. /*
  2792. * We've recorded everything logged in the inode, so we'd
  2793. * like to clear the ilf_fields bits so we don't log and
  2794. * flush things unnecessarily. However, we can't stop
  2795. * logging all this information until the data we've copied
  2796. * into the disk buffer is written to disk. If we did we might
  2797. * overwrite the copy of the inode in the log with all the
  2798. * data after re-logging only part of it, and in the face of
  2799. * a crash we wouldn't have all the data we need to recover.
  2800. *
  2801. * What we do is move the bits to the ili_last_fields field.
  2802. * When logging the inode, these bits are moved back to the
  2803. * ilf_fields field. In the xfs_iflush_done() routine we
  2804. * clear ili_last_fields, since we know that the information
  2805. * those bits represent is permanently on disk. As long as
  2806. * the flush completes before the inode is logged again, then
  2807. * both ilf_fields and ili_last_fields will be cleared.
  2808. *
  2809. * We can play with the ilf_fields bits here, because the inode
  2810. * lock must be held exclusively in order to set bits there
  2811. * and the flush lock protects the ili_last_fields bits.
  2812. * Set ili_logged so the flush done
  2813. * routine can tell whether or not to look in the AIL.
  2814. * Also, store the current LSN of the inode so that we can tell
  2815. * whether the item has moved in the AIL from xfs_iflush_done().
  2816. * In order to read the lsn we need the AIL lock, because
  2817. * it is a 64 bit value that cannot be read atomically.
  2818. */
  2819. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2820. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2821. iip->ili_format.ilf_fields = 0;
  2822. iip->ili_logged = 1;
  2823. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2824. &iip->ili_item.li_lsn);
  2825. /*
  2826. * Attach the function xfs_iflush_done to the inode's
  2827. * buffer. This will remove the inode from the AIL
  2828. * and unlock the inode's flush lock when the inode is
  2829. * completely written to disk.
  2830. */
  2831. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2832. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2833. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2834. } else {
  2835. /*
  2836. * We're flushing an inode which is not in the AIL and has
  2837. * not been logged but has i_update_core set. For this
  2838. * case we can use a B_DELWRI flush and immediately drop
  2839. * the inode flush lock because we can avoid the whole
  2840. * AIL state thing. It's OK to drop the flush lock now,
  2841. * because we've already locked the buffer and to do anything
  2842. * you really need both.
  2843. */
  2844. if (iip != NULL) {
  2845. ASSERT(iip->ili_logged == 0);
  2846. ASSERT(iip->ili_last_fields == 0);
  2847. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2848. }
  2849. xfs_ifunlock(ip);
  2850. }
  2851. return 0;
  2852. corrupt_out:
  2853. return XFS_ERROR(EFSCORRUPTED);
  2854. }
  2855. /*
  2856. * Return a pointer to the extent record at file index idx.
  2857. */
  2858. xfs_bmbt_rec_host_t *
  2859. xfs_iext_get_ext(
  2860. xfs_ifork_t *ifp, /* inode fork pointer */
  2861. xfs_extnum_t idx) /* index of target extent */
  2862. {
  2863. ASSERT(idx >= 0);
  2864. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2865. return ifp->if_u1.if_ext_irec->er_extbuf;
  2866. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2867. xfs_ext_irec_t *erp; /* irec pointer */
  2868. int erp_idx = 0; /* irec index */
  2869. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2870. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2871. return &erp->er_extbuf[page_idx];
  2872. } else if (ifp->if_bytes) {
  2873. return &ifp->if_u1.if_extents[idx];
  2874. } else {
  2875. return NULL;
  2876. }
  2877. }
  2878. /*
  2879. * Insert new item(s) into the extent records for incore inode
  2880. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2881. */
  2882. void
  2883. xfs_iext_insert(
  2884. xfs_inode_t *ip, /* incore inode pointer */
  2885. xfs_extnum_t idx, /* starting index of new items */
  2886. xfs_extnum_t count, /* number of inserted items */
  2887. xfs_bmbt_irec_t *new, /* items to insert */
  2888. int state) /* type of extent conversion */
  2889. {
  2890. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2891. xfs_extnum_t i; /* extent record index */
  2892. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2893. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2894. xfs_iext_add(ifp, idx, count);
  2895. for (i = idx; i < idx + count; i++, new++)
  2896. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2897. }
  2898. /*
  2899. * This is called when the amount of space required for incore file
  2900. * extents needs to be increased. The ext_diff parameter stores the
  2901. * number of new extents being added and the idx parameter contains
  2902. * the extent index where the new extents will be added. If the new
  2903. * extents are being appended, then we just need to (re)allocate and
  2904. * initialize the space. Otherwise, if the new extents are being
  2905. * inserted into the middle of the existing entries, a bit more work
  2906. * is required to make room for the new extents to be inserted. The
  2907. * caller is responsible for filling in the new extent entries upon
  2908. * return.
  2909. */
  2910. void
  2911. xfs_iext_add(
  2912. xfs_ifork_t *ifp, /* inode fork pointer */
  2913. xfs_extnum_t idx, /* index to begin adding exts */
  2914. int ext_diff) /* number of extents to add */
  2915. {
  2916. int byte_diff; /* new bytes being added */
  2917. int new_size; /* size of extents after adding */
  2918. xfs_extnum_t nextents; /* number of extents in file */
  2919. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2920. ASSERT((idx >= 0) && (idx <= nextents));
  2921. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2922. new_size = ifp->if_bytes + byte_diff;
  2923. /*
  2924. * If the new number of extents (nextents + ext_diff)
  2925. * fits inside the inode, then continue to use the inline
  2926. * extent buffer.
  2927. */
  2928. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2929. if (idx < nextents) {
  2930. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2931. &ifp->if_u2.if_inline_ext[idx],
  2932. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2933. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2934. }
  2935. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2936. ifp->if_real_bytes = 0;
  2937. ifp->if_lastex = nextents + ext_diff;
  2938. }
  2939. /*
  2940. * Otherwise use a linear (direct) extent list.
  2941. * If the extents are currently inside the inode,
  2942. * xfs_iext_realloc_direct will switch us from
  2943. * inline to direct extent allocation mode.
  2944. */
  2945. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2946. xfs_iext_realloc_direct(ifp, new_size);
  2947. if (idx < nextents) {
  2948. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2949. &ifp->if_u1.if_extents[idx],
  2950. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2951. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2952. }
  2953. }
  2954. /* Indirection array */
  2955. else {
  2956. xfs_ext_irec_t *erp;
  2957. int erp_idx = 0;
  2958. int page_idx = idx;
  2959. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2960. if (ifp->if_flags & XFS_IFEXTIREC) {
  2961. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2962. } else {
  2963. xfs_iext_irec_init(ifp);
  2964. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2965. erp = ifp->if_u1.if_ext_irec;
  2966. }
  2967. /* Extents fit in target extent page */
  2968. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2969. if (page_idx < erp->er_extcount) {
  2970. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2971. &erp->er_extbuf[page_idx],
  2972. (erp->er_extcount - page_idx) *
  2973. sizeof(xfs_bmbt_rec_t));
  2974. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2975. }
  2976. erp->er_extcount += ext_diff;
  2977. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2978. }
  2979. /* Insert a new extent page */
  2980. else if (erp) {
  2981. xfs_iext_add_indirect_multi(ifp,
  2982. erp_idx, page_idx, ext_diff);
  2983. }
  2984. /*
  2985. * If extent(s) are being appended to the last page in
  2986. * the indirection array and the new extent(s) don't fit
  2987. * in the page, then erp is NULL and erp_idx is set to
  2988. * the next index needed in the indirection array.
  2989. */
  2990. else {
  2991. int count = ext_diff;
  2992. while (count) {
  2993. erp = xfs_iext_irec_new(ifp, erp_idx);
  2994. erp->er_extcount = count;
  2995. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2996. if (count) {
  2997. erp_idx++;
  2998. }
  2999. }
  3000. }
  3001. }
  3002. ifp->if_bytes = new_size;
  3003. }
  3004. /*
  3005. * This is called when incore extents are being added to the indirection
  3006. * array and the new extents do not fit in the target extent list. The
  3007. * erp_idx parameter contains the irec index for the target extent list
  3008. * in the indirection array, and the idx parameter contains the extent
  3009. * index within the list. The number of extents being added is stored
  3010. * in the count parameter.
  3011. *
  3012. * |-------| |-------|
  3013. * | | | | idx - number of extents before idx
  3014. * | idx | | count |
  3015. * | | | | count - number of extents being inserted at idx
  3016. * |-------| |-------|
  3017. * | count | | nex2 | nex2 - number of extents after idx + count
  3018. * |-------| |-------|
  3019. */
  3020. void
  3021. xfs_iext_add_indirect_multi(
  3022. xfs_ifork_t *ifp, /* inode fork pointer */
  3023. int erp_idx, /* target extent irec index */
  3024. xfs_extnum_t idx, /* index within target list */
  3025. int count) /* new extents being added */
  3026. {
  3027. int byte_diff; /* new bytes being added */
  3028. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3029. xfs_extnum_t ext_diff; /* number of extents to add */
  3030. xfs_extnum_t ext_cnt; /* new extents still needed */
  3031. xfs_extnum_t nex2; /* extents after idx + count */
  3032. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3033. int nlists; /* number of irec's (lists) */
  3034. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3035. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3036. nex2 = erp->er_extcount - idx;
  3037. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3038. /*
  3039. * Save second part of target extent list
  3040. * (all extents past */
  3041. if (nex2) {
  3042. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3043. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3044. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3045. erp->er_extcount -= nex2;
  3046. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3047. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3048. }
  3049. /*
  3050. * Add the new extents to the end of the target
  3051. * list, then allocate new irec record(s) and
  3052. * extent buffer(s) as needed to store the rest
  3053. * of the new extents.
  3054. */
  3055. ext_cnt = count;
  3056. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3057. if (ext_diff) {
  3058. erp->er_extcount += ext_diff;
  3059. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3060. ext_cnt -= ext_diff;
  3061. }
  3062. while (ext_cnt) {
  3063. erp_idx++;
  3064. erp = xfs_iext_irec_new(ifp, erp_idx);
  3065. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3066. erp->er_extcount = ext_diff;
  3067. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3068. ext_cnt -= ext_diff;
  3069. }
  3070. /* Add nex2 extents back to indirection array */
  3071. if (nex2) {
  3072. xfs_extnum_t ext_avail;
  3073. int i;
  3074. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3075. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3076. i = 0;
  3077. /*
  3078. * If nex2 extents fit in the current page, append
  3079. * nex2_ep after the new extents.
  3080. */
  3081. if (nex2 <= ext_avail) {
  3082. i = erp->er_extcount;
  3083. }
  3084. /*
  3085. * Otherwise, check if space is available in the
  3086. * next page.
  3087. */
  3088. else if ((erp_idx < nlists - 1) &&
  3089. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3090. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3091. erp_idx++;
  3092. erp++;
  3093. /* Create a hole for nex2 extents */
  3094. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3095. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3096. }
  3097. /*
  3098. * Final choice, create a new extent page for
  3099. * nex2 extents.
  3100. */
  3101. else {
  3102. erp_idx++;
  3103. erp = xfs_iext_irec_new(ifp, erp_idx);
  3104. }
  3105. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3106. kmem_free(nex2_ep);
  3107. erp->er_extcount += nex2;
  3108. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3109. }
  3110. }
  3111. /*
  3112. * This is called when the amount of space required for incore file
  3113. * extents needs to be decreased. The ext_diff parameter stores the
  3114. * number of extents to be removed and the idx parameter contains
  3115. * the extent index where the extents will be removed from.
  3116. *
  3117. * If the amount of space needed has decreased below the linear
  3118. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3119. * extent array. Otherwise, use kmem_realloc() to adjust the
  3120. * size to what is needed.
  3121. */
  3122. void
  3123. xfs_iext_remove(
  3124. xfs_inode_t *ip, /* incore inode pointer */
  3125. xfs_extnum_t idx, /* index to begin removing exts */
  3126. int ext_diff, /* number of extents to remove */
  3127. int state) /* type of extent conversion */
  3128. {
  3129. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3130. xfs_extnum_t nextents; /* number of extents in file */
  3131. int new_size; /* size of extents after removal */
  3132. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3133. ASSERT(ext_diff > 0);
  3134. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3135. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3136. if (new_size == 0) {
  3137. xfs_iext_destroy(ifp);
  3138. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3139. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3140. } else if (ifp->if_real_bytes) {
  3141. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3142. } else {
  3143. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3144. }
  3145. ifp->if_bytes = new_size;
  3146. }
  3147. /*
  3148. * This removes ext_diff extents from the inline buffer, beginning
  3149. * at extent index idx.
  3150. */
  3151. void
  3152. xfs_iext_remove_inline(
  3153. xfs_ifork_t *ifp, /* inode fork pointer */
  3154. xfs_extnum_t idx, /* index to begin removing exts */
  3155. int ext_diff) /* number of extents to remove */
  3156. {
  3157. int nextents; /* number of extents in file */
  3158. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3159. ASSERT(idx < XFS_INLINE_EXTS);
  3160. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3161. ASSERT(((nextents - ext_diff) > 0) &&
  3162. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3163. if (idx + ext_diff < nextents) {
  3164. memmove(&ifp->if_u2.if_inline_ext[idx],
  3165. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3166. (nextents - (idx + ext_diff)) *
  3167. sizeof(xfs_bmbt_rec_t));
  3168. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3169. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3170. } else {
  3171. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3172. ext_diff * sizeof(xfs_bmbt_rec_t));
  3173. }
  3174. }
  3175. /*
  3176. * This removes ext_diff extents from a linear (direct) extent list,
  3177. * beginning at extent index idx. If the extents are being removed
  3178. * from the end of the list (ie. truncate) then we just need to re-
  3179. * allocate the list to remove the extra space. Otherwise, if the
  3180. * extents are being removed from the middle of the existing extent
  3181. * entries, then we first need to move the extent records beginning
  3182. * at idx + ext_diff up in the list to overwrite the records being
  3183. * removed, then remove the extra space via kmem_realloc.
  3184. */
  3185. void
  3186. xfs_iext_remove_direct(
  3187. xfs_ifork_t *ifp, /* inode fork pointer */
  3188. xfs_extnum_t idx, /* index to begin removing exts */
  3189. int ext_diff) /* number of extents to remove */
  3190. {
  3191. xfs_extnum_t nextents; /* number of extents in file */
  3192. int new_size; /* size of extents after removal */
  3193. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3194. new_size = ifp->if_bytes -
  3195. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3196. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3197. if (new_size == 0) {
  3198. xfs_iext_destroy(ifp);
  3199. return;
  3200. }
  3201. /* Move extents up in the list (if needed) */
  3202. if (idx + ext_diff < nextents) {
  3203. memmove(&ifp->if_u1.if_extents[idx],
  3204. &ifp->if_u1.if_extents[idx + ext_diff],
  3205. (nextents - (idx + ext_diff)) *
  3206. sizeof(xfs_bmbt_rec_t));
  3207. }
  3208. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3209. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3210. /*
  3211. * Reallocate the direct extent list. If the extents
  3212. * will fit inside the inode then xfs_iext_realloc_direct
  3213. * will switch from direct to inline extent allocation
  3214. * mode for us.
  3215. */
  3216. xfs_iext_realloc_direct(ifp, new_size);
  3217. ifp->if_bytes = new_size;
  3218. }
  3219. /*
  3220. * This is called when incore extents are being removed from the
  3221. * indirection array and the extents being removed span multiple extent
  3222. * buffers. The idx parameter contains the file extent index where we
  3223. * want to begin removing extents, and the count parameter contains
  3224. * how many extents need to be removed.
  3225. *
  3226. * |-------| |-------|
  3227. * | nex1 | | | nex1 - number of extents before idx
  3228. * |-------| | count |
  3229. * | | | | count - number of extents being removed at idx
  3230. * | count | |-------|
  3231. * | | | nex2 | nex2 - number of extents after idx + count
  3232. * |-------| |-------|
  3233. */
  3234. void
  3235. xfs_iext_remove_indirect(
  3236. xfs_ifork_t *ifp, /* inode fork pointer */
  3237. xfs_extnum_t idx, /* index to begin removing extents */
  3238. int count) /* number of extents to remove */
  3239. {
  3240. xfs_ext_irec_t *erp; /* indirection array pointer */
  3241. int erp_idx = 0; /* indirection array index */
  3242. xfs_extnum_t ext_cnt; /* extents left to remove */
  3243. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3244. xfs_extnum_t nex1; /* number of extents before idx */
  3245. xfs_extnum_t nex2; /* extents after idx + count */
  3246. int page_idx = idx; /* index in target extent list */
  3247. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3248. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3249. ASSERT(erp != NULL);
  3250. nex1 = page_idx;
  3251. ext_cnt = count;
  3252. while (ext_cnt) {
  3253. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3254. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3255. /*
  3256. * Check for deletion of entire list;
  3257. * xfs_iext_irec_remove() updates extent offsets.
  3258. */
  3259. if (ext_diff == erp->er_extcount) {
  3260. xfs_iext_irec_remove(ifp, erp_idx);
  3261. ext_cnt -= ext_diff;
  3262. nex1 = 0;
  3263. if (ext_cnt) {
  3264. ASSERT(erp_idx < ifp->if_real_bytes /
  3265. XFS_IEXT_BUFSZ);
  3266. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3267. nex1 = 0;
  3268. continue;
  3269. } else {
  3270. break;
  3271. }
  3272. }
  3273. /* Move extents up (if needed) */
  3274. if (nex2) {
  3275. memmove(&erp->er_extbuf[nex1],
  3276. &erp->er_extbuf[nex1 + ext_diff],
  3277. nex2 * sizeof(xfs_bmbt_rec_t));
  3278. }
  3279. /* Zero out rest of page */
  3280. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3281. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3282. /* Update remaining counters */
  3283. erp->er_extcount -= ext_diff;
  3284. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3285. ext_cnt -= ext_diff;
  3286. nex1 = 0;
  3287. erp_idx++;
  3288. erp++;
  3289. }
  3290. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3291. xfs_iext_irec_compact(ifp);
  3292. }
  3293. /*
  3294. * Create, destroy, or resize a linear (direct) block of extents.
  3295. */
  3296. void
  3297. xfs_iext_realloc_direct(
  3298. xfs_ifork_t *ifp, /* inode fork pointer */
  3299. int new_size) /* new size of extents */
  3300. {
  3301. int rnew_size; /* real new size of extents */
  3302. rnew_size = new_size;
  3303. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3304. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3305. (new_size != ifp->if_real_bytes)));
  3306. /* Free extent records */
  3307. if (new_size == 0) {
  3308. xfs_iext_destroy(ifp);
  3309. }
  3310. /* Resize direct extent list and zero any new bytes */
  3311. else if (ifp->if_real_bytes) {
  3312. /* Check if extents will fit inside the inode */
  3313. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3314. xfs_iext_direct_to_inline(ifp, new_size /
  3315. (uint)sizeof(xfs_bmbt_rec_t));
  3316. ifp->if_bytes = new_size;
  3317. return;
  3318. }
  3319. if (!is_power_of_2(new_size)){
  3320. rnew_size = roundup_pow_of_two(new_size);
  3321. }
  3322. if (rnew_size != ifp->if_real_bytes) {
  3323. ifp->if_u1.if_extents =
  3324. kmem_realloc(ifp->if_u1.if_extents,
  3325. rnew_size,
  3326. ifp->if_real_bytes, KM_NOFS);
  3327. }
  3328. if (rnew_size > ifp->if_real_bytes) {
  3329. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3330. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3331. rnew_size - ifp->if_real_bytes);
  3332. }
  3333. }
  3334. /*
  3335. * Switch from the inline extent buffer to a direct
  3336. * extent list. Be sure to include the inline extent
  3337. * bytes in new_size.
  3338. */
  3339. else {
  3340. new_size += ifp->if_bytes;
  3341. if (!is_power_of_2(new_size)) {
  3342. rnew_size = roundup_pow_of_two(new_size);
  3343. }
  3344. xfs_iext_inline_to_direct(ifp, rnew_size);
  3345. }
  3346. ifp->if_real_bytes = rnew_size;
  3347. ifp->if_bytes = new_size;
  3348. }
  3349. /*
  3350. * Switch from linear (direct) extent records to inline buffer.
  3351. */
  3352. void
  3353. xfs_iext_direct_to_inline(
  3354. xfs_ifork_t *ifp, /* inode fork pointer */
  3355. xfs_extnum_t nextents) /* number of extents in file */
  3356. {
  3357. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3358. ASSERT(nextents <= XFS_INLINE_EXTS);
  3359. /*
  3360. * The inline buffer was zeroed when we switched
  3361. * from inline to direct extent allocation mode,
  3362. * so we don't need to clear it here.
  3363. */
  3364. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3365. nextents * sizeof(xfs_bmbt_rec_t));
  3366. kmem_free(ifp->if_u1.if_extents);
  3367. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3368. ifp->if_real_bytes = 0;
  3369. }
  3370. /*
  3371. * Switch from inline buffer to linear (direct) extent records.
  3372. * new_size should already be rounded up to the next power of 2
  3373. * by the caller (when appropriate), so use new_size as it is.
  3374. * However, since new_size may be rounded up, we can't update
  3375. * if_bytes here. It is the caller's responsibility to update
  3376. * if_bytes upon return.
  3377. */
  3378. void
  3379. xfs_iext_inline_to_direct(
  3380. xfs_ifork_t *ifp, /* inode fork pointer */
  3381. int new_size) /* number of extents in file */
  3382. {
  3383. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3384. memset(ifp->if_u1.if_extents, 0, new_size);
  3385. if (ifp->if_bytes) {
  3386. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3387. ifp->if_bytes);
  3388. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3389. sizeof(xfs_bmbt_rec_t));
  3390. }
  3391. ifp->if_real_bytes = new_size;
  3392. }
  3393. /*
  3394. * Resize an extent indirection array to new_size bytes.
  3395. */
  3396. STATIC void
  3397. xfs_iext_realloc_indirect(
  3398. xfs_ifork_t *ifp, /* inode fork pointer */
  3399. int new_size) /* new indirection array size */
  3400. {
  3401. int nlists; /* number of irec's (ex lists) */
  3402. int size; /* current indirection array size */
  3403. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3404. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3405. size = nlists * sizeof(xfs_ext_irec_t);
  3406. ASSERT(ifp->if_real_bytes);
  3407. ASSERT((new_size >= 0) && (new_size != size));
  3408. if (new_size == 0) {
  3409. xfs_iext_destroy(ifp);
  3410. } else {
  3411. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3412. kmem_realloc(ifp->if_u1.if_ext_irec,
  3413. new_size, size, KM_NOFS);
  3414. }
  3415. }
  3416. /*
  3417. * Switch from indirection array to linear (direct) extent allocations.
  3418. */
  3419. STATIC void
  3420. xfs_iext_indirect_to_direct(
  3421. xfs_ifork_t *ifp) /* inode fork pointer */
  3422. {
  3423. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3424. xfs_extnum_t nextents; /* number of extents in file */
  3425. int size; /* size of file extents */
  3426. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3427. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3428. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3429. size = nextents * sizeof(xfs_bmbt_rec_t);
  3430. xfs_iext_irec_compact_pages(ifp);
  3431. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3432. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3433. kmem_free(ifp->if_u1.if_ext_irec);
  3434. ifp->if_flags &= ~XFS_IFEXTIREC;
  3435. ifp->if_u1.if_extents = ep;
  3436. ifp->if_bytes = size;
  3437. if (nextents < XFS_LINEAR_EXTS) {
  3438. xfs_iext_realloc_direct(ifp, size);
  3439. }
  3440. }
  3441. /*
  3442. * Free incore file extents.
  3443. */
  3444. void
  3445. xfs_iext_destroy(
  3446. xfs_ifork_t *ifp) /* inode fork pointer */
  3447. {
  3448. if (ifp->if_flags & XFS_IFEXTIREC) {
  3449. int erp_idx;
  3450. int nlists;
  3451. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3452. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3453. xfs_iext_irec_remove(ifp, erp_idx);
  3454. }
  3455. ifp->if_flags &= ~XFS_IFEXTIREC;
  3456. } else if (ifp->if_real_bytes) {
  3457. kmem_free(ifp->if_u1.if_extents);
  3458. } else if (ifp->if_bytes) {
  3459. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3460. sizeof(xfs_bmbt_rec_t));
  3461. }
  3462. ifp->if_u1.if_extents = NULL;
  3463. ifp->if_real_bytes = 0;
  3464. ifp->if_bytes = 0;
  3465. }
  3466. /*
  3467. * Return a pointer to the extent record for file system block bno.
  3468. */
  3469. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3470. xfs_iext_bno_to_ext(
  3471. xfs_ifork_t *ifp, /* inode fork pointer */
  3472. xfs_fileoff_t bno, /* block number to search for */
  3473. xfs_extnum_t *idxp) /* index of target extent */
  3474. {
  3475. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3476. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3477. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3478. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3479. int high; /* upper boundary in search */
  3480. xfs_extnum_t idx = 0; /* index of target extent */
  3481. int low; /* lower boundary in search */
  3482. xfs_extnum_t nextents; /* number of file extents */
  3483. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3484. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3485. if (nextents == 0) {
  3486. *idxp = 0;
  3487. return NULL;
  3488. }
  3489. low = 0;
  3490. if (ifp->if_flags & XFS_IFEXTIREC) {
  3491. /* Find target extent list */
  3492. int erp_idx = 0;
  3493. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3494. base = erp->er_extbuf;
  3495. high = erp->er_extcount - 1;
  3496. } else {
  3497. base = ifp->if_u1.if_extents;
  3498. high = nextents - 1;
  3499. }
  3500. /* Binary search extent records */
  3501. while (low <= high) {
  3502. idx = (low + high) >> 1;
  3503. ep = base + idx;
  3504. startoff = xfs_bmbt_get_startoff(ep);
  3505. blockcount = xfs_bmbt_get_blockcount(ep);
  3506. if (bno < startoff) {
  3507. high = idx - 1;
  3508. } else if (bno >= startoff + blockcount) {
  3509. low = idx + 1;
  3510. } else {
  3511. /* Convert back to file-based extent index */
  3512. if (ifp->if_flags & XFS_IFEXTIREC) {
  3513. idx += erp->er_extoff;
  3514. }
  3515. *idxp = idx;
  3516. return ep;
  3517. }
  3518. }
  3519. /* Convert back to file-based extent index */
  3520. if (ifp->if_flags & XFS_IFEXTIREC) {
  3521. idx += erp->er_extoff;
  3522. }
  3523. if (bno >= startoff + blockcount) {
  3524. if (++idx == nextents) {
  3525. ep = NULL;
  3526. } else {
  3527. ep = xfs_iext_get_ext(ifp, idx);
  3528. }
  3529. }
  3530. *idxp = idx;
  3531. return ep;
  3532. }
  3533. /*
  3534. * Return a pointer to the indirection array entry containing the
  3535. * extent record for filesystem block bno. Store the index of the
  3536. * target irec in *erp_idxp.
  3537. */
  3538. xfs_ext_irec_t * /* pointer to found extent record */
  3539. xfs_iext_bno_to_irec(
  3540. xfs_ifork_t *ifp, /* inode fork pointer */
  3541. xfs_fileoff_t bno, /* block number to search for */
  3542. int *erp_idxp) /* irec index of target ext list */
  3543. {
  3544. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3545. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3546. int erp_idx; /* indirection array index */
  3547. int nlists; /* number of extent irec's (lists) */
  3548. int high; /* binary search upper limit */
  3549. int low; /* binary search lower limit */
  3550. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3551. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3552. erp_idx = 0;
  3553. low = 0;
  3554. high = nlists - 1;
  3555. while (low <= high) {
  3556. erp_idx = (low + high) >> 1;
  3557. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3558. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3559. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3560. high = erp_idx - 1;
  3561. } else if (erp_next && bno >=
  3562. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3563. low = erp_idx + 1;
  3564. } else {
  3565. break;
  3566. }
  3567. }
  3568. *erp_idxp = erp_idx;
  3569. return erp;
  3570. }
  3571. /*
  3572. * Return a pointer to the indirection array entry containing the
  3573. * extent record at file extent index *idxp. Store the index of the
  3574. * target irec in *erp_idxp and store the page index of the target
  3575. * extent record in *idxp.
  3576. */
  3577. xfs_ext_irec_t *
  3578. xfs_iext_idx_to_irec(
  3579. xfs_ifork_t *ifp, /* inode fork pointer */
  3580. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3581. int *erp_idxp, /* pointer to target irec */
  3582. int realloc) /* new bytes were just added */
  3583. {
  3584. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3585. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3586. int erp_idx; /* indirection array index */
  3587. int nlists; /* number of irec's (ex lists) */
  3588. int high; /* binary search upper limit */
  3589. int low; /* binary search lower limit */
  3590. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3591. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3592. ASSERT(page_idx >= 0 && page_idx <=
  3593. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3594. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3595. erp_idx = 0;
  3596. low = 0;
  3597. high = nlists - 1;
  3598. /* Binary search extent irec's */
  3599. while (low <= high) {
  3600. erp_idx = (low + high) >> 1;
  3601. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3602. prev = erp_idx > 0 ? erp - 1 : NULL;
  3603. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3604. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3605. high = erp_idx - 1;
  3606. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3607. (page_idx == erp->er_extoff + erp->er_extcount &&
  3608. !realloc)) {
  3609. low = erp_idx + 1;
  3610. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3611. erp->er_extcount == XFS_LINEAR_EXTS) {
  3612. ASSERT(realloc);
  3613. page_idx = 0;
  3614. erp_idx++;
  3615. erp = erp_idx < nlists ? erp + 1 : NULL;
  3616. break;
  3617. } else {
  3618. page_idx -= erp->er_extoff;
  3619. break;
  3620. }
  3621. }
  3622. *idxp = page_idx;
  3623. *erp_idxp = erp_idx;
  3624. return(erp);
  3625. }
  3626. /*
  3627. * Allocate and initialize an indirection array once the space needed
  3628. * for incore extents increases above XFS_IEXT_BUFSZ.
  3629. */
  3630. void
  3631. xfs_iext_irec_init(
  3632. xfs_ifork_t *ifp) /* inode fork pointer */
  3633. {
  3634. xfs_ext_irec_t *erp; /* indirection array pointer */
  3635. xfs_extnum_t nextents; /* number of extents in file */
  3636. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3637. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3638. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3639. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3640. if (nextents == 0) {
  3641. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3642. } else if (!ifp->if_real_bytes) {
  3643. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3644. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3645. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3646. }
  3647. erp->er_extbuf = ifp->if_u1.if_extents;
  3648. erp->er_extcount = nextents;
  3649. erp->er_extoff = 0;
  3650. ifp->if_flags |= XFS_IFEXTIREC;
  3651. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3652. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3653. ifp->if_u1.if_ext_irec = erp;
  3654. return;
  3655. }
  3656. /*
  3657. * Allocate and initialize a new entry in the indirection array.
  3658. */
  3659. xfs_ext_irec_t *
  3660. xfs_iext_irec_new(
  3661. xfs_ifork_t *ifp, /* inode fork pointer */
  3662. int erp_idx) /* index for new irec */
  3663. {
  3664. xfs_ext_irec_t *erp; /* indirection array pointer */
  3665. int i; /* loop counter */
  3666. int nlists; /* number of irec's (ex lists) */
  3667. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3668. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3669. /* Resize indirection array */
  3670. xfs_iext_realloc_indirect(ifp, ++nlists *
  3671. sizeof(xfs_ext_irec_t));
  3672. /*
  3673. * Move records down in the array so the
  3674. * new page can use erp_idx.
  3675. */
  3676. erp = ifp->if_u1.if_ext_irec;
  3677. for (i = nlists - 1; i > erp_idx; i--) {
  3678. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3679. }
  3680. ASSERT(i == erp_idx);
  3681. /* Initialize new extent record */
  3682. erp = ifp->if_u1.if_ext_irec;
  3683. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3684. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3685. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3686. erp[erp_idx].er_extcount = 0;
  3687. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3688. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3689. return (&erp[erp_idx]);
  3690. }
  3691. /*
  3692. * Remove a record from the indirection array.
  3693. */
  3694. void
  3695. xfs_iext_irec_remove(
  3696. xfs_ifork_t *ifp, /* inode fork pointer */
  3697. int erp_idx) /* irec index to remove */
  3698. {
  3699. xfs_ext_irec_t *erp; /* indirection array pointer */
  3700. int i; /* loop counter */
  3701. int nlists; /* number of irec's (ex lists) */
  3702. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3703. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3704. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3705. if (erp->er_extbuf) {
  3706. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3707. -erp->er_extcount);
  3708. kmem_free(erp->er_extbuf);
  3709. }
  3710. /* Compact extent records */
  3711. erp = ifp->if_u1.if_ext_irec;
  3712. for (i = erp_idx; i < nlists - 1; i++) {
  3713. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3714. }
  3715. /*
  3716. * Manually free the last extent record from the indirection
  3717. * array. A call to xfs_iext_realloc_indirect() with a size
  3718. * of zero would result in a call to xfs_iext_destroy() which
  3719. * would in turn call this function again, creating a nasty
  3720. * infinite loop.
  3721. */
  3722. if (--nlists) {
  3723. xfs_iext_realloc_indirect(ifp,
  3724. nlists * sizeof(xfs_ext_irec_t));
  3725. } else {
  3726. kmem_free(ifp->if_u1.if_ext_irec);
  3727. }
  3728. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3729. }
  3730. /*
  3731. * This is called to clean up large amounts of unused memory allocated
  3732. * by the indirection array. Before compacting anything though, verify
  3733. * that the indirection array is still needed and switch back to the
  3734. * linear extent list (or even the inline buffer) if possible. The
  3735. * compaction policy is as follows:
  3736. *
  3737. * Full Compaction: Extents fit into a single page (or inline buffer)
  3738. * Partial Compaction: Extents occupy less than 50% of allocated space
  3739. * No Compaction: Extents occupy at least 50% of allocated space
  3740. */
  3741. void
  3742. xfs_iext_irec_compact(
  3743. xfs_ifork_t *ifp) /* inode fork pointer */
  3744. {
  3745. xfs_extnum_t nextents; /* number of extents in file */
  3746. int nlists; /* number of irec's (ex lists) */
  3747. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3748. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3749. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3750. if (nextents == 0) {
  3751. xfs_iext_destroy(ifp);
  3752. } else if (nextents <= XFS_INLINE_EXTS) {
  3753. xfs_iext_indirect_to_direct(ifp);
  3754. xfs_iext_direct_to_inline(ifp, nextents);
  3755. } else if (nextents <= XFS_LINEAR_EXTS) {
  3756. xfs_iext_indirect_to_direct(ifp);
  3757. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3758. xfs_iext_irec_compact_pages(ifp);
  3759. }
  3760. }
  3761. /*
  3762. * Combine extents from neighboring extent pages.
  3763. */
  3764. void
  3765. xfs_iext_irec_compact_pages(
  3766. xfs_ifork_t *ifp) /* inode fork pointer */
  3767. {
  3768. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3769. int erp_idx = 0; /* indirection array index */
  3770. int nlists; /* number of irec's (ex lists) */
  3771. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3772. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3773. while (erp_idx < nlists - 1) {
  3774. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3775. erp_next = erp + 1;
  3776. if (erp_next->er_extcount <=
  3777. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3778. memcpy(&erp->er_extbuf[erp->er_extcount],
  3779. erp_next->er_extbuf, erp_next->er_extcount *
  3780. sizeof(xfs_bmbt_rec_t));
  3781. erp->er_extcount += erp_next->er_extcount;
  3782. /*
  3783. * Free page before removing extent record
  3784. * so er_extoffs don't get modified in
  3785. * xfs_iext_irec_remove.
  3786. */
  3787. kmem_free(erp_next->er_extbuf);
  3788. erp_next->er_extbuf = NULL;
  3789. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3790. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3791. } else {
  3792. erp_idx++;
  3793. }
  3794. }
  3795. }
  3796. /*
  3797. * This is called to update the er_extoff field in the indirection
  3798. * array when extents have been added or removed from one of the
  3799. * extent lists. erp_idx contains the irec index to begin updating
  3800. * at and ext_diff contains the number of extents that were added
  3801. * or removed.
  3802. */
  3803. void
  3804. xfs_iext_irec_update_extoffs(
  3805. xfs_ifork_t *ifp, /* inode fork pointer */
  3806. int erp_idx, /* irec index to update */
  3807. int ext_diff) /* number of new extents */
  3808. {
  3809. int i; /* loop counter */
  3810. int nlists; /* number of irec's (ex lists */
  3811. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3812. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3813. for (i = erp_idx; i < nlists; i++) {
  3814. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3815. }
  3816. }