netxen_nic_init.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. /*
  2. * Copyright (C) 2003 - 2006 NetXen, Inc.
  3. * All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
  18. * MA 02111-1307, USA.
  19. *
  20. * The full GNU General Public License is included in this distribution
  21. * in the file called LICENSE.
  22. *
  23. * Contact Information:
  24. * info@netxen.com
  25. * NetXen,
  26. * 3965 Freedom Circle, Fourth floor,
  27. * Santa Clara, CA 95054
  28. *
  29. *
  30. * Source file for NIC routines to initialize the Phantom Hardware
  31. *
  32. */
  33. #include <linux/netdevice.h>
  34. #include <linux/delay.h>
  35. #include "netxen_nic.h"
  36. #include "netxen_nic_hw.h"
  37. #include "netxen_nic_phan_reg.h"
  38. struct crb_addr_pair {
  39. long addr;
  40. long data;
  41. };
  42. #define NETXEN_MAX_CRB_XFORM 60
  43. static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
  44. #define NETXEN_ADDR_ERROR ((unsigned long ) 0xffffffff )
  45. #define crb_addr_transform(name) \
  46. crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
  47. NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
  48. #define NETXEN_NIC_XDMA_RESET 0x8000ff
  49. static inline void
  50. netxen_nic_locked_write_reg(struct netxen_adapter *adapter,
  51. unsigned long off, int *data)
  52. {
  53. void __iomem *addr = pci_base_offset(adapter, off);
  54. writel(*data, addr);
  55. }
  56. static void crb_addr_transform_setup(void)
  57. {
  58. crb_addr_transform(XDMA);
  59. crb_addr_transform(TIMR);
  60. crb_addr_transform(SRE);
  61. crb_addr_transform(SQN3);
  62. crb_addr_transform(SQN2);
  63. crb_addr_transform(SQN1);
  64. crb_addr_transform(SQN0);
  65. crb_addr_transform(SQS3);
  66. crb_addr_transform(SQS2);
  67. crb_addr_transform(SQS1);
  68. crb_addr_transform(SQS0);
  69. crb_addr_transform(RPMX7);
  70. crb_addr_transform(RPMX6);
  71. crb_addr_transform(RPMX5);
  72. crb_addr_transform(RPMX4);
  73. crb_addr_transform(RPMX3);
  74. crb_addr_transform(RPMX2);
  75. crb_addr_transform(RPMX1);
  76. crb_addr_transform(RPMX0);
  77. crb_addr_transform(ROMUSB);
  78. crb_addr_transform(SN);
  79. crb_addr_transform(QMN);
  80. crb_addr_transform(QMS);
  81. crb_addr_transform(PGNI);
  82. crb_addr_transform(PGND);
  83. crb_addr_transform(PGN3);
  84. crb_addr_transform(PGN2);
  85. crb_addr_transform(PGN1);
  86. crb_addr_transform(PGN0);
  87. crb_addr_transform(PGSI);
  88. crb_addr_transform(PGSD);
  89. crb_addr_transform(PGS3);
  90. crb_addr_transform(PGS2);
  91. crb_addr_transform(PGS1);
  92. crb_addr_transform(PGS0);
  93. crb_addr_transform(PS);
  94. crb_addr_transform(PH);
  95. crb_addr_transform(NIU);
  96. crb_addr_transform(I2Q);
  97. crb_addr_transform(EG);
  98. crb_addr_transform(MN);
  99. crb_addr_transform(MS);
  100. crb_addr_transform(CAS2);
  101. crb_addr_transform(CAS1);
  102. crb_addr_transform(CAS0);
  103. crb_addr_transform(CAM);
  104. crb_addr_transform(C2C1);
  105. crb_addr_transform(C2C0);
  106. }
  107. int netxen_init_firmware(struct netxen_adapter *adapter)
  108. {
  109. u32 state = 0, loops = 0, err = 0;
  110. /* Window 1 call */
  111. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  112. if (state == PHAN_INITIALIZE_ACK)
  113. return 0;
  114. while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
  115. udelay(100);
  116. /* Window 1 call */
  117. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  118. loops++;
  119. }
  120. if (loops >= 2000) {
  121. printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
  122. state);
  123. err = -EIO;
  124. return err;
  125. }
  126. /* Window 1 call */
  127. writel(MPORT_SINGLE_FUNCTION_MODE,
  128. NETXEN_CRB_NORMALIZE(adapter, CRB_MPORT_MODE));
  129. writel(PHAN_INITIALIZE_ACK,
  130. NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  131. return err;
  132. }
  133. #define NETXEN_ADDR_LIMIT 0xffffffffULL
  134. void *netxen_alloc(struct pci_dev *pdev, size_t sz, dma_addr_t * ptr,
  135. struct pci_dev **used_dev)
  136. {
  137. void *addr;
  138. addr = pci_alloc_consistent(pdev, sz, ptr);
  139. if ((unsigned long long)(*ptr) < NETXEN_ADDR_LIMIT) {
  140. *used_dev = pdev;
  141. return addr;
  142. }
  143. pci_free_consistent(pdev, sz, addr, *ptr);
  144. addr = pci_alloc_consistent(NULL, sz, ptr);
  145. *used_dev = NULL;
  146. return addr;
  147. }
  148. void netxen_initialize_adapter_sw(struct netxen_adapter *adapter)
  149. {
  150. int ctxid, ring;
  151. u32 i;
  152. u32 num_rx_bufs = 0;
  153. struct netxen_rcv_desc_ctx *rcv_desc;
  154. DPRINTK(INFO, "initializing some queues: %p\n", adapter);
  155. for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
  156. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  157. struct netxen_rx_buffer *rx_buf;
  158. rcv_desc = &adapter->recv_ctx[ctxid].rcv_desc[ring];
  159. rcv_desc->rcv_free = rcv_desc->max_rx_desc_count;
  160. rcv_desc->begin_alloc = 0;
  161. rx_buf = rcv_desc->rx_buf_arr;
  162. num_rx_bufs = rcv_desc->max_rx_desc_count;
  163. /*
  164. * Now go through all of them, set reference handles
  165. * and put them in the queues.
  166. */
  167. for (i = 0; i < num_rx_bufs; i++) {
  168. rx_buf->ref_handle = i;
  169. rx_buf->state = NETXEN_BUFFER_FREE;
  170. DPRINTK(INFO, "Rx buf:ctx%d i(%d) rx_buf:"
  171. "%p\n", ctxid, i, rx_buf);
  172. rx_buf++;
  173. }
  174. }
  175. }
  176. }
  177. void netxen_initialize_adapter_hw(struct netxen_adapter *adapter)
  178. {
  179. int ports = 0;
  180. struct netxen_board_info *board_info = &(adapter->ahw.boardcfg);
  181. if (netxen_nic_get_board_info(adapter) != 0)
  182. printk("%s: Error getting board config info.\n",
  183. netxen_nic_driver_name);
  184. get_brd_port_by_type(board_info->board_type, &ports);
  185. if (ports == 0)
  186. printk(KERN_ERR "%s: Unknown board type\n",
  187. netxen_nic_driver_name);
  188. adapter->ahw.max_ports = ports;
  189. }
  190. void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
  191. {
  192. switch (adapter->ahw.board_type) {
  193. case NETXEN_NIC_GBE:
  194. adapter->enable_phy_interrupts =
  195. netxen_niu_gbe_enable_phy_interrupts;
  196. adapter->disable_phy_interrupts =
  197. netxen_niu_gbe_disable_phy_interrupts;
  198. adapter->handle_phy_intr = netxen_nic_gbe_handle_phy_intr;
  199. adapter->macaddr_set = netxen_niu_macaddr_set;
  200. adapter->set_mtu = netxen_nic_set_mtu_gb;
  201. adapter->set_promisc = netxen_niu_set_promiscuous_mode;
  202. adapter->unset_promisc = netxen_niu_set_promiscuous_mode;
  203. adapter->phy_read = netxen_niu_gbe_phy_read;
  204. adapter->phy_write = netxen_niu_gbe_phy_write;
  205. adapter->init_port = netxen_niu_gbe_init_port;
  206. adapter->init_niu = netxen_nic_init_niu_gb;
  207. adapter->stop_port = netxen_niu_disable_gbe_port;
  208. break;
  209. case NETXEN_NIC_XGBE:
  210. adapter->enable_phy_interrupts =
  211. netxen_niu_xgbe_enable_phy_interrupts;
  212. adapter->disable_phy_interrupts =
  213. netxen_niu_xgbe_disable_phy_interrupts;
  214. adapter->handle_phy_intr = netxen_nic_xgbe_handle_phy_intr;
  215. adapter->macaddr_set = netxen_niu_xg_macaddr_set;
  216. adapter->set_mtu = netxen_nic_set_mtu_xgb;
  217. adapter->init_port = netxen_niu_xg_init_port;
  218. adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
  219. adapter->unset_promisc = netxen_niu_xg_set_promiscuous_mode;
  220. adapter->stop_port = netxen_niu_disable_xg_port;
  221. break;
  222. default:
  223. break;
  224. }
  225. }
  226. /*
  227. * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
  228. * address to external PCI CRB address.
  229. */
  230. unsigned long netxen_decode_crb_addr(unsigned long addr)
  231. {
  232. int i;
  233. unsigned long base_addr, offset, pci_base;
  234. crb_addr_transform_setup();
  235. pci_base = NETXEN_ADDR_ERROR;
  236. base_addr = addr & 0xfff00000;
  237. offset = addr & 0x000fffff;
  238. for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
  239. if (crb_addr_xform[i] == base_addr) {
  240. pci_base = i << 20;
  241. break;
  242. }
  243. }
  244. if (pci_base == NETXEN_ADDR_ERROR)
  245. return pci_base;
  246. else
  247. return (pci_base + offset);
  248. }
  249. static long rom_max_timeout = 10000;
  250. static long rom_lock_timeout = 1000000;
  251. static inline int rom_lock(struct netxen_adapter *adapter)
  252. {
  253. int iter;
  254. u32 done = 0;
  255. int timeout = 0;
  256. while (!done) {
  257. /* acquire semaphore2 from PCI HW block */
  258. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
  259. &done);
  260. if (done == 1)
  261. break;
  262. if (timeout >= rom_lock_timeout)
  263. return -EIO;
  264. timeout++;
  265. /*
  266. * Yield CPU
  267. */
  268. if (!in_atomic())
  269. schedule();
  270. else {
  271. for (iter = 0; iter < 20; iter++)
  272. cpu_relax(); /*This a nop instr on i386 */
  273. }
  274. }
  275. netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
  276. return 0;
  277. }
  278. int netxen_wait_rom_done(struct netxen_adapter *adapter)
  279. {
  280. long timeout = 0;
  281. long done = 0;
  282. while (done == 0) {
  283. done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
  284. done &= 2;
  285. timeout++;
  286. if (timeout >= rom_max_timeout) {
  287. printk("Timeout reached waiting for rom done");
  288. return -EIO;
  289. }
  290. }
  291. return 0;
  292. }
  293. static inline int netxen_rom_wren(struct netxen_adapter *adapter)
  294. {
  295. /* Set write enable latch in ROM status register */
  296. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  297. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  298. M25P_INSTR_WREN);
  299. if (netxen_wait_rom_done(adapter)) {
  300. return -1;
  301. }
  302. return 0;
  303. }
  304. static inline unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter,
  305. unsigned int addr)
  306. {
  307. unsigned int data = 0xdeaddead;
  308. data = netxen_nic_reg_read(adapter, addr);
  309. return data;
  310. }
  311. static inline int netxen_do_rom_rdsr(struct netxen_adapter *adapter)
  312. {
  313. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  314. M25P_INSTR_RDSR);
  315. if (netxen_wait_rom_done(adapter)) {
  316. return -1;
  317. }
  318. return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA);
  319. }
  320. static inline void netxen_rom_unlock(struct netxen_adapter *adapter)
  321. {
  322. u32 val;
  323. /* release semaphore2 */
  324. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
  325. }
  326. int netxen_rom_wip_poll(struct netxen_adapter *adapter)
  327. {
  328. long timeout = 0;
  329. long wip = 1;
  330. int val;
  331. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  332. while (wip != 0) {
  333. val = netxen_do_rom_rdsr(adapter);
  334. wip = val & 1;
  335. timeout++;
  336. if (timeout > rom_max_timeout) {
  337. return -1;
  338. }
  339. }
  340. return 0;
  341. }
  342. static inline int do_rom_fast_write(struct netxen_adapter *adapter, int addr,
  343. int data)
  344. {
  345. if (netxen_rom_wren(adapter)) {
  346. return -1;
  347. }
  348. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  349. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  350. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  351. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  352. M25P_INSTR_PP);
  353. if (netxen_wait_rom_done(adapter)) {
  354. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  355. return -1;
  356. }
  357. return netxen_rom_wip_poll(adapter);
  358. }
  359. static inline int
  360. do_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  361. {
  362. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  363. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  364. udelay(100); /* prevent bursting on CRB */
  365. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  366. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
  367. if (netxen_wait_rom_done(adapter)) {
  368. printk("Error waiting for rom done\n");
  369. return -EIO;
  370. }
  371. /* reset abyte_cnt and dummy_byte_cnt */
  372. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  373. udelay(100); /* prevent bursting on CRB */
  374. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  375. *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
  376. return 0;
  377. }
  378. int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  379. {
  380. int ret;
  381. if (rom_lock(adapter) != 0)
  382. return -EIO;
  383. ret = do_rom_fast_read(adapter, addr, valp);
  384. netxen_rom_unlock(adapter);
  385. return ret;
  386. }
  387. int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data)
  388. {
  389. int ret = 0;
  390. if (rom_lock(adapter) != 0) {
  391. return -1;
  392. }
  393. ret = do_rom_fast_write(adapter, addr, data);
  394. netxen_rom_unlock(adapter);
  395. return ret;
  396. }
  397. int netxen_do_rom_se(struct netxen_adapter *adapter, int addr)
  398. {
  399. netxen_rom_wren(adapter);
  400. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  401. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  402. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  403. M25P_INSTR_SE);
  404. if (netxen_wait_rom_done(adapter)) {
  405. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  406. return -1;
  407. }
  408. return netxen_rom_wip_poll(adapter);
  409. }
  410. int netxen_rom_se(struct netxen_adapter *adapter, int addr)
  411. {
  412. int ret = 0;
  413. if (rom_lock(adapter) != 0) {
  414. return -1;
  415. }
  416. ret = netxen_do_rom_se(adapter, addr);
  417. netxen_rom_unlock(adapter);
  418. return ret;
  419. }
  420. #define NETXEN_BOARDTYPE 0x4008
  421. #define NETXEN_BOARDNUM 0x400c
  422. #define NETXEN_CHIPNUM 0x4010
  423. #define NETXEN_ROMBUS_RESET 0xFFFFFFFF
  424. #define NETXEN_ROM_FIRST_BARRIER 0x800000000ULL
  425. #define NETXEN_ROM_FOUND_INIT 0x400
  426. int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
  427. {
  428. int addr, val, status;
  429. int n, i;
  430. int init_delay = 0;
  431. struct crb_addr_pair *buf;
  432. unsigned long off;
  433. /* resetall */
  434. status = netxen_nic_get_board_info(adapter);
  435. if (status)
  436. printk("%s: netxen_pinit_from_rom: Error getting board info\n",
  437. netxen_nic_driver_name);
  438. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  439. NETXEN_ROMBUS_RESET);
  440. if (verbose) {
  441. int val;
  442. if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
  443. printk("P2 ROM board type: 0x%08x\n", val);
  444. else
  445. printk("Could not read board type\n");
  446. if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
  447. printk("P2 ROM board num: 0x%08x\n", val);
  448. else
  449. printk("Could not read board number\n");
  450. if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
  451. printk("P2 ROM chip num: 0x%08x\n", val);
  452. else
  453. printk("Could not read chip number\n");
  454. }
  455. if (netxen_rom_fast_read(adapter, 0, &n) == 0
  456. && (n & NETXEN_ROM_FIRST_BARRIER)) {
  457. n &= ~NETXEN_ROM_ROUNDUP;
  458. if (n < NETXEN_ROM_FOUND_INIT) {
  459. if (verbose)
  460. printk("%s: %d CRB init values found"
  461. " in ROM.\n", netxen_nic_driver_name, n);
  462. } else {
  463. printk("%s:n=0x%x Error! NetXen card flash not"
  464. " initialized.\n", __FUNCTION__, n);
  465. return -EIO;
  466. }
  467. buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
  468. if (buf == NULL) {
  469. printk("%s: netxen_pinit_from_rom: Unable to calloc "
  470. "memory.\n", netxen_nic_driver_name);
  471. return -ENOMEM;
  472. }
  473. for (i = 0; i < n; i++) {
  474. if (netxen_rom_fast_read(adapter, 8 * i + 4, &val) != 0
  475. || netxen_rom_fast_read(adapter, 8 * i + 8,
  476. &addr) != 0)
  477. return -EIO;
  478. buf[i].addr = addr;
  479. buf[i].data = val;
  480. if (verbose)
  481. printk("%s: PCI: 0x%08x == 0x%08x\n",
  482. netxen_nic_driver_name, (unsigned int)
  483. netxen_decode_crb_addr((unsigned long)
  484. addr), val);
  485. }
  486. for (i = 0; i < n; i++) {
  487. off =
  488. netxen_decode_crb_addr((unsigned long)buf[i].addr) +
  489. NETXEN_PCI_CRBSPACE;
  490. /* skipping cold reboot MAGIC */
  491. if (off == NETXEN_CAM_RAM(0x1fc))
  492. continue;
  493. /* After writing this register, HW needs time for CRB */
  494. /* to quiet down (else crb_window returns 0xffffffff) */
  495. if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
  496. init_delay = 1;
  497. /* hold xdma in reset also */
  498. buf[i].data = NETXEN_NIC_XDMA_RESET;
  499. }
  500. if (ADDR_IN_WINDOW1(off)) {
  501. writel(buf[i].data,
  502. NETXEN_CRB_NORMALIZE(adapter, off));
  503. } else {
  504. netxen_nic_pci_change_crbwindow(adapter, 0);
  505. writel(buf[i].data,
  506. pci_base_offset(adapter, off));
  507. netxen_nic_pci_change_crbwindow(adapter, 1);
  508. }
  509. if (init_delay == 1) {
  510. ssleep(1);
  511. init_delay = 0;
  512. }
  513. msleep(1);
  514. }
  515. kfree(buf);
  516. /* disable_peg_cache_all */
  517. /* unreset_net_cache */
  518. netxen_nic_hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val,
  519. 4);
  520. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  521. (val & 0xffffff0f));
  522. /* p2dn replyCount */
  523. netxen_crb_writelit_adapter(adapter,
  524. NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
  525. /* disable_peg_cache 0 */
  526. netxen_crb_writelit_adapter(adapter,
  527. NETXEN_CRB_PEG_NET_D + 0x4c, 8);
  528. /* disable_peg_cache 1 */
  529. netxen_crb_writelit_adapter(adapter,
  530. NETXEN_CRB_PEG_NET_I + 0x4c, 8);
  531. /* peg_clr_all */
  532. /* peg_clr 0 */
  533. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8,
  534. 0);
  535. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc,
  536. 0);
  537. /* peg_clr 1 */
  538. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8,
  539. 0);
  540. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc,
  541. 0);
  542. /* peg_clr 2 */
  543. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8,
  544. 0);
  545. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc,
  546. 0);
  547. /* peg_clr 3 */
  548. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8,
  549. 0);
  550. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc,
  551. 0);
  552. }
  553. return 0;
  554. }
  555. int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
  556. {
  557. uint64_t addr;
  558. uint32_t hi;
  559. uint32_t lo;
  560. adapter->dummy_dma.addr =
  561. pci_alloc_consistent(adapter->ahw.pdev,
  562. NETXEN_HOST_DUMMY_DMA_SIZE,
  563. &adapter->dummy_dma.phys_addr);
  564. if (adapter->dummy_dma.addr == NULL) {
  565. printk("%s: ERROR: Could not allocate dummy DMA memory\n",
  566. __FUNCTION__);
  567. return -ENOMEM;
  568. }
  569. addr = (uint64_t) adapter->dummy_dma.phys_addr;
  570. hi = (addr >> 32) & 0xffffffff;
  571. lo = addr & 0xffffffff;
  572. writel(hi, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI));
  573. writel(lo, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO));
  574. return 0;
  575. }
  576. void netxen_free_adapter_offload(struct netxen_adapter *adapter)
  577. {
  578. if (adapter->dummy_dma.addr) {
  579. pci_free_consistent(adapter->ahw.pdev,
  580. NETXEN_HOST_DUMMY_DMA_SIZE,
  581. adapter->dummy_dma.addr,
  582. adapter->dummy_dma.phys_addr);
  583. adapter->dummy_dma.addr = NULL;
  584. }
  585. }
  586. void netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
  587. {
  588. u32 val = 0;
  589. int loops = 0;
  590. if (!pegtune_val) {
  591. while (val != PHAN_INITIALIZE_COMPLETE && loops < 200000) {
  592. udelay(100);
  593. schedule();
  594. val =
  595. readl(NETXEN_CRB_NORMALIZE
  596. (adapter, CRB_CMDPEG_STATE));
  597. loops++;
  598. }
  599. if (val != PHAN_INITIALIZE_COMPLETE)
  600. printk("WARNING: Initial boot wait loop failed...\n");
  601. }
  602. }
  603. int netxen_nic_rx_has_work(struct netxen_adapter *adapter)
  604. {
  605. int ctx;
  606. for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
  607. struct netxen_recv_context *recv_ctx =
  608. &(adapter->recv_ctx[ctx]);
  609. u32 consumer;
  610. struct status_desc *desc_head;
  611. struct status_desc *desc;
  612. consumer = recv_ctx->status_rx_consumer;
  613. desc_head = recv_ctx->rcv_status_desc_head;
  614. desc = &desc_head[consumer];
  615. if (((le16_to_cpu(netxen_get_sts_owner(desc)))
  616. & STATUS_OWNER_HOST))
  617. return 1;
  618. }
  619. return 0;
  620. }
  621. static inline int netxen_nic_check_temp(struct netxen_adapter *adapter)
  622. {
  623. int port_num;
  624. struct netxen_port *port;
  625. struct net_device *netdev;
  626. uint32_t temp, temp_state, temp_val;
  627. int rv = 0;
  628. temp = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_TEMP_STATE));
  629. temp_state = nx_get_temp_state(temp);
  630. temp_val = nx_get_temp_val(temp);
  631. if (temp_state == NX_TEMP_PANIC) {
  632. printk(KERN_ALERT
  633. "%s: Device temperature %d degrees C exceeds"
  634. " maximum allowed. Hardware has been shut down.\n",
  635. netxen_nic_driver_name, temp_val);
  636. for (port_num = 0; port_num < adapter->ahw.max_ports;
  637. port_num++) {
  638. port = adapter->port[port_num];
  639. netdev = port->netdev;
  640. netif_carrier_off(netdev);
  641. netif_stop_queue(netdev);
  642. }
  643. rv = 1;
  644. } else if (temp_state == NX_TEMP_WARN) {
  645. if (adapter->temp == NX_TEMP_NORMAL) {
  646. printk(KERN_ALERT
  647. "%s: Device temperature %d degrees C "
  648. "exceeds operating range."
  649. " Immediate action needed.\n",
  650. netxen_nic_driver_name, temp_val);
  651. }
  652. } else {
  653. if (adapter->temp == NX_TEMP_WARN) {
  654. printk(KERN_INFO
  655. "%s: Device temperature is now %d degrees C"
  656. " in normal range.\n", netxen_nic_driver_name,
  657. temp_val);
  658. }
  659. }
  660. adapter->temp = temp_state;
  661. return rv;
  662. }
  663. void netxen_watchdog_task(struct work_struct *work)
  664. {
  665. int port_num;
  666. struct netxen_port *port;
  667. struct net_device *netdev;
  668. struct netxen_adapter *adapter =
  669. container_of(work, struct netxen_adapter, watchdog_task);
  670. if (netxen_nic_check_temp(adapter))
  671. return;
  672. for (port_num = 0; port_num < adapter->ahw.max_ports; port_num++) {
  673. port = adapter->port[port_num];
  674. netdev = port->netdev;
  675. if ((netif_running(netdev)) && !netif_carrier_ok(netdev)) {
  676. printk(KERN_INFO "%s port %d, %s carrier is now ok\n",
  677. netxen_nic_driver_name, port_num, netdev->name);
  678. netif_carrier_on(netdev);
  679. }
  680. if (netif_queue_stopped(netdev))
  681. netif_wake_queue(netdev);
  682. }
  683. if (adapter->handle_phy_intr)
  684. adapter->handle_phy_intr(adapter);
  685. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  686. }
  687. /*
  688. * netxen_process_rcv() send the received packet to the protocol stack.
  689. * and if the number of receives exceeds RX_BUFFERS_REFILL, then we
  690. * invoke the routine to send more rx buffers to the Phantom...
  691. */
  692. void
  693. netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
  694. struct status_desc *desc)
  695. {
  696. struct netxen_port *port = adapter->port[netxen_get_sts_port(desc)];
  697. struct pci_dev *pdev = port->pdev;
  698. struct net_device *netdev = port->netdev;
  699. int index = le16_to_cpu(netxen_get_sts_refhandle(desc));
  700. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  701. struct netxen_rx_buffer *buffer;
  702. struct sk_buff *skb;
  703. u32 length = le16_to_cpu(netxen_get_sts_totallength(desc));
  704. u32 desc_ctx;
  705. struct netxen_rcv_desc_ctx *rcv_desc;
  706. int ret;
  707. desc_ctx = netxen_get_sts_type(desc);
  708. if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
  709. printk("%s: %s Bad Rcv descriptor ring\n",
  710. netxen_nic_driver_name, netdev->name);
  711. return;
  712. }
  713. rcv_desc = &recv_ctx->rcv_desc[desc_ctx];
  714. if (unlikely(index > rcv_desc->max_rx_desc_count)) {
  715. DPRINTK(ERR, "Got a buffer index:%x Max is %x\n",
  716. index, rcv_desc->max_rx_desc_count);
  717. return;
  718. }
  719. buffer = &rcv_desc->rx_buf_arr[index];
  720. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  721. buffer->lro_current_frags++;
  722. if (netxen_get_sts_desc_lro_last_frag(desc)) {
  723. buffer->lro_expected_frags =
  724. netxen_get_sts_desc_lro_cnt(desc);
  725. buffer->lro_length = length;
  726. }
  727. if (buffer->lro_current_frags != buffer->lro_expected_frags) {
  728. if (buffer->lro_expected_frags != 0) {
  729. printk("LRO: (refhandle:%x) recv frag."
  730. "wait for last. flags: %x expected:%d"
  731. "have:%d\n", index,
  732. netxen_get_sts_desc_lro_last_frag(desc),
  733. buffer->lro_expected_frags,
  734. buffer->lro_current_frags);
  735. }
  736. return;
  737. }
  738. }
  739. pci_unmap_single(pdev, buffer->dma, rcv_desc->dma_size,
  740. PCI_DMA_FROMDEVICE);
  741. skb = (struct sk_buff *)buffer->skb;
  742. if (likely(netxen_get_sts_status(desc) == STATUS_CKSUM_OK)) {
  743. port->stats.csummed++;
  744. skb->ip_summed = CHECKSUM_UNNECESSARY;
  745. }
  746. skb->dev = netdev;
  747. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  748. /* True length was only available on the last pkt */
  749. skb_put(skb, buffer->lro_length);
  750. } else {
  751. skb_put(skb, length);
  752. }
  753. skb->protocol = eth_type_trans(skb, netdev);
  754. ret = netif_receive_skb(skb);
  755. /*
  756. * RH: Do we need these stats on a regular basis. Can we get it from
  757. * Linux stats.
  758. */
  759. switch (ret) {
  760. case NET_RX_SUCCESS:
  761. port->stats.uphappy++;
  762. break;
  763. case NET_RX_CN_LOW:
  764. port->stats.uplcong++;
  765. break;
  766. case NET_RX_CN_MOD:
  767. port->stats.upmcong++;
  768. break;
  769. case NET_RX_CN_HIGH:
  770. port->stats.uphcong++;
  771. break;
  772. case NET_RX_DROP:
  773. port->stats.updropped++;
  774. break;
  775. default:
  776. port->stats.updunno++;
  777. break;
  778. }
  779. netdev->last_rx = jiffies;
  780. rcv_desc->rcv_free++;
  781. rcv_desc->rcv_pending--;
  782. /*
  783. * We just consumed one buffer so post a buffer.
  784. */
  785. adapter->stats.post_called++;
  786. buffer->skb = NULL;
  787. buffer->state = NETXEN_BUFFER_FREE;
  788. buffer->lro_current_frags = 0;
  789. buffer->lro_expected_frags = 0;
  790. port->stats.no_rcv++;
  791. port->stats.rxbytes += length;
  792. }
  793. /* Process Receive status ring */
  794. u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
  795. {
  796. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  797. struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
  798. struct status_desc *desc; /* used to read status desc here */
  799. u32 consumer = recv_ctx->status_rx_consumer;
  800. u32 producer = 0;
  801. int count = 0, ring;
  802. DPRINTK(INFO, "procesing receive\n");
  803. /*
  804. * we assume in this case that there is only one port and that is
  805. * port #1...changes need to be done in firmware to indicate port
  806. * number as part of the descriptor. This way we will be able to get
  807. * the netdev which is associated with that device.
  808. */
  809. while (count < max) {
  810. desc = &desc_head[consumer];
  811. if (!
  812. (le16_to_cpu(netxen_get_sts_owner(desc)) &
  813. STATUS_OWNER_HOST)) {
  814. DPRINTK(ERR, "desc %p ownedby %x\n", desc,
  815. netxen_get_sts_owner(desc));
  816. break;
  817. }
  818. netxen_process_rcv(adapter, ctxid, desc);
  819. netxen_clear_sts_owner(desc);
  820. netxen_set_sts_owner(desc, cpu_to_le16(STATUS_OWNER_PHANTOM));
  821. consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1);
  822. count++;
  823. }
  824. if (count) {
  825. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  826. netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
  827. }
  828. }
  829. /* update the consumer index in phantom */
  830. if (count) {
  831. adapter->stats.process_rcv++;
  832. recv_ctx->status_rx_consumer = consumer;
  833. recv_ctx->status_rx_producer = producer;
  834. /* Window = 1 */
  835. writel(consumer,
  836. NETXEN_CRB_NORMALIZE(adapter,
  837. recv_crb_registers[ctxid].
  838. crb_rcv_status_consumer));
  839. }
  840. return count;
  841. }
  842. /* Process Command status ring */
  843. int netxen_process_cmd_ring(unsigned long data)
  844. {
  845. u32 last_consumer;
  846. u32 consumer;
  847. struct netxen_adapter *adapter = (struct netxen_adapter *)data;
  848. int count1 = 0;
  849. int count2 = 0;
  850. struct netxen_cmd_buffer *buffer;
  851. struct netxen_port *port; /* port #1 */
  852. struct netxen_port *nport;
  853. struct pci_dev *pdev;
  854. struct netxen_skb_frag *frag;
  855. u32 i;
  856. struct sk_buff *skb = NULL;
  857. int p;
  858. int done;
  859. spin_lock(&adapter->tx_lock);
  860. last_consumer = adapter->last_cmd_consumer;
  861. DPRINTK(INFO, "procesing xmit complete\n");
  862. /* we assume in this case that there is only one port and that is
  863. * port #1...changes need to be done in firmware to indicate port
  864. * number as part of the descriptor. This way we will be able to get
  865. * the netdev which is associated with that device.
  866. */
  867. consumer = *(adapter->cmd_consumer);
  868. if (last_consumer == consumer) { /* Ring is empty */
  869. DPRINTK(INFO, "last_consumer %d == consumer %d\n",
  870. last_consumer, consumer);
  871. spin_unlock(&adapter->tx_lock);
  872. return 1;
  873. }
  874. adapter->proc_cmd_buf_counter++;
  875. adapter->stats.process_xmit++;
  876. /*
  877. * Not needed - does not seem to be used anywhere.
  878. * adapter->cmd_consumer = consumer;
  879. */
  880. spin_unlock(&adapter->tx_lock);
  881. while ((last_consumer != consumer) && (count1 < MAX_STATUS_HANDLE)) {
  882. buffer = &adapter->cmd_buf_arr[last_consumer];
  883. port = adapter->port[buffer->port];
  884. pdev = port->pdev;
  885. frag = &buffer->frag_array[0];
  886. skb = buffer->skb;
  887. if (skb && (cmpxchg(&buffer->skb, skb, 0) == skb)) {
  888. pci_unmap_single(pdev, frag->dma, frag->length,
  889. PCI_DMA_TODEVICE);
  890. for (i = 1; i < buffer->frag_count; i++) {
  891. DPRINTK(INFO, "getting fragment no %d\n", i);
  892. frag++; /* Get the next frag */
  893. pci_unmap_page(pdev, frag->dma, frag->length,
  894. PCI_DMA_TODEVICE);
  895. }
  896. port->stats.skbfreed++;
  897. dev_kfree_skb_any(skb);
  898. skb = NULL;
  899. } else if (adapter->proc_cmd_buf_counter == 1) {
  900. port->stats.txnullskb++;
  901. }
  902. if (unlikely(netif_queue_stopped(port->netdev)
  903. && netif_carrier_ok(port->netdev))
  904. && ((jiffies - port->netdev->trans_start) >
  905. port->netdev->watchdog_timeo)) {
  906. SCHEDULE_WORK(&port->tx_timeout_task);
  907. }
  908. last_consumer = get_next_index(last_consumer,
  909. adapter->max_tx_desc_count);
  910. count1++;
  911. }
  912. adapter->stats.noxmitdone += count1;
  913. count2 = 0;
  914. spin_lock(&adapter->tx_lock);
  915. if ((--adapter->proc_cmd_buf_counter) == 0) {
  916. adapter->last_cmd_consumer = last_consumer;
  917. while ((adapter->last_cmd_consumer != consumer)
  918. && (count2 < MAX_STATUS_HANDLE)) {
  919. buffer =
  920. &adapter->cmd_buf_arr[adapter->last_cmd_consumer];
  921. count2++;
  922. if (buffer->skb)
  923. break;
  924. else
  925. adapter->last_cmd_consumer =
  926. get_next_index(adapter->last_cmd_consumer,
  927. adapter->max_tx_desc_count);
  928. }
  929. }
  930. if (count1 || count2) {
  931. for (p = 0; p < adapter->ahw.max_ports; p++) {
  932. nport = adapter->port[p];
  933. if (netif_queue_stopped(nport->netdev)
  934. && (nport->flags & NETXEN_NETDEV_STATUS)) {
  935. netif_wake_queue(nport->netdev);
  936. nport->flags &= ~NETXEN_NETDEV_STATUS;
  937. }
  938. }
  939. }
  940. /*
  941. * If everything is freed up to consumer then check if the ring is full
  942. * If the ring is full then check if more needs to be freed and
  943. * schedule the call back again.
  944. *
  945. * This happens when there are 2 CPUs. One could be freeing and the
  946. * other filling it. If the ring is full when we get out of here and
  947. * the card has already interrupted the host then the host can miss the
  948. * interrupt.
  949. *
  950. * There is still a possible race condition and the host could miss an
  951. * interrupt. The card has to take care of this.
  952. */
  953. if (adapter->last_cmd_consumer == consumer &&
  954. (((adapter->cmd_producer + 1) %
  955. adapter->max_tx_desc_count) == adapter->last_cmd_consumer)) {
  956. consumer = *(adapter->cmd_consumer);
  957. }
  958. done = (adapter->last_cmd_consumer == consumer);
  959. spin_unlock(&adapter->tx_lock);
  960. DPRINTK(INFO, "last consumer is %d in %s\n", last_consumer,
  961. __FUNCTION__);
  962. return (done);
  963. }
  964. /*
  965. * netxen_post_rx_buffers puts buffer in the Phantom memory
  966. */
  967. void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
  968. {
  969. struct pci_dev *pdev = adapter->ahw.pdev;
  970. struct sk_buff *skb;
  971. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  972. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  973. uint producer;
  974. struct rcv_desc *pdesc;
  975. struct netxen_rx_buffer *buffer;
  976. int count = 0;
  977. int index = 0;
  978. netxen_ctx_msg msg = 0;
  979. dma_addr_t dma;
  980. adapter->stats.post_called++;
  981. rcv_desc = &recv_ctx->rcv_desc[ringid];
  982. producer = rcv_desc->producer;
  983. index = rcv_desc->begin_alloc;
  984. buffer = &rcv_desc->rx_buf_arr[index];
  985. /* We can start writing rx descriptors into the phantom memory. */
  986. while (buffer->state == NETXEN_BUFFER_FREE) {
  987. skb = dev_alloc_skb(rcv_desc->skb_size);
  988. if (unlikely(!skb)) {
  989. /*
  990. * TODO
  991. * We need to schedule the posting of buffers to the pegs.
  992. */
  993. rcv_desc->begin_alloc = index;
  994. DPRINTK(ERR, "netxen_post_rx_buffers: "
  995. " allocated only %d buffers\n", count);
  996. break;
  997. }
  998. count++; /* now there should be no failure */
  999. pdesc = &rcv_desc->desc_head[producer];
  1000. #if defined(XGB_DEBUG)
  1001. *(unsigned long *)(skb->head) = 0xc0debabe;
  1002. if (skb_is_nonlinear(skb)) {
  1003. printk("Allocated SKB @%p is nonlinear\n");
  1004. }
  1005. #endif
  1006. skb_reserve(skb, 2);
  1007. /* This will be setup when we receive the
  1008. * buffer after it has been filled FSL TBD TBD
  1009. * skb->dev = netdev;
  1010. */
  1011. dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size,
  1012. PCI_DMA_FROMDEVICE);
  1013. pdesc->addr_buffer = cpu_to_le64(dma);
  1014. buffer->skb = skb;
  1015. buffer->state = NETXEN_BUFFER_BUSY;
  1016. buffer->dma = dma;
  1017. /* make a rcv descriptor */
  1018. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1019. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1020. DPRINTK(INFO, "done writing descripter\n");
  1021. producer =
  1022. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1023. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1024. buffer = &rcv_desc->rx_buf_arr[index];
  1025. }
  1026. /* if we did allocate buffers, then write the count to Phantom */
  1027. if (count) {
  1028. rcv_desc->begin_alloc = index;
  1029. rcv_desc->rcv_pending += count;
  1030. adapter->stats.lastposted = count;
  1031. adapter->stats.posted += count;
  1032. rcv_desc->producer = producer;
  1033. if (rcv_desc->rcv_free >= 32) {
  1034. rcv_desc->rcv_free = 0;
  1035. /* Window = 1 */
  1036. writel((producer - 1) &
  1037. (rcv_desc->max_rx_desc_count - 1),
  1038. NETXEN_CRB_NORMALIZE(adapter,
  1039. recv_crb_registers[0].
  1040. rcv_desc_crb[ringid].
  1041. crb_rcv_producer_offset));
  1042. /*
  1043. * Write a doorbell msg to tell phanmon of change in
  1044. * receive ring producer
  1045. */
  1046. netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
  1047. netxen_set_msg_privid(msg);
  1048. netxen_set_msg_count(msg,
  1049. ((producer -
  1050. 1) & (rcv_desc->
  1051. max_rx_desc_count - 1)));
  1052. netxen_set_msg_ctxid(msg, 0);
  1053. netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
  1054. writel(msg,
  1055. DB_NORMALIZE(adapter,
  1056. NETXEN_RCV_PRODUCER_OFFSET));
  1057. }
  1058. }
  1059. }
  1060. void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, uint32_t ctx,
  1061. uint32_t ringid)
  1062. {
  1063. struct pci_dev *pdev = adapter->ahw.pdev;
  1064. struct sk_buff *skb;
  1065. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1066. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1067. u32 producer;
  1068. struct rcv_desc *pdesc;
  1069. struct netxen_rx_buffer *buffer;
  1070. int count = 0;
  1071. int index = 0;
  1072. adapter->stats.post_called++;
  1073. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1074. producer = rcv_desc->producer;
  1075. index = rcv_desc->begin_alloc;
  1076. buffer = &rcv_desc->rx_buf_arr[index];
  1077. /* We can start writing rx descriptors into the phantom memory. */
  1078. while (buffer->state == NETXEN_BUFFER_FREE) {
  1079. skb = dev_alloc_skb(rcv_desc->skb_size);
  1080. if (unlikely(!skb)) {
  1081. /*
  1082. * We need to schedule the posting of buffers to the pegs.
  1083. */
  1084. rcv_desc->begin_alloc = index;
  1085. DPRINTK(ERR, "netxen_post_rx_buffers_nodb: "
  1086. " allocated only %d buffers\n", count);
  1087. break;
  1088. }
  1089. count++; /* now there should be no failure */
  1090. pdesc = &rcv_desc->desc_head[producer];
  1091. skb_reserve(skb, 2);
  1092. /*
  1093. * This will be setup when we receive the
  1094. * buffer after it has been filled
  1095. * skb->dev = netdev;
  1096. */
  1097. buffer->skb = skb;
  1098. buffer->state = NETXEN_BUFFER_BUSY;
  1099. buffer->dma = pci_map_single(pdev, skb->data,
  1100. rcv_desc->dma_size,
  1101. PCI_DMA_FROMDEVICE);
  1102. /* make a rcv descriptor */
  1103. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1104. pdesc->buffer_length = cpu_to_le16(rcv_desc->dma_size);
  1105. pdesc->addr_buffer = cpu_to_le64(buffer->dma);
  1106. DPRINTK(INFO, "done writing descripter\n");
  1107. producer =
  1108. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1109. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1110. buffer = &rcv_desc->rx_buf_arr[index];
  1111. }
  1112. /* if we did allocate buffers, then write the count to Phantom */
  1113. if (count) {
  1114. rcv_desc->begin_alloc = index;
  1115. rcv_desc->rcv_pending += count;
  1116. adapter->stats.lastposted = count;
  1117. adapter->stats.posted += count;
  1118. rcv_desc->producer = producer;
  1119. if (rcv_desc->rcv_free >= 32) {
  1120. rcv_desc->rcv_free = 0;
  1121. /* Window = 1 */
  1122. writel((producer - 1) &
  1123. (rcv_desc->max_rx_desc_count - 1),
  1124. NETXEN_CRB_NORMALIZE(adapter,
  1125. recv_crb_registers[0].
  1126. rcv_desc_crb[ringid].
  1127. crb_rcv_producer_offset));
  1128. wmb();
  1129. }
  1130. }
  1131. }
  1132. int netxen_nic_tx_has_work(struct netxen_adapter *adapter)
  1133. {
  1134. if (find_diff_among(adapter->last_cmd_consumer,
  1135. adapter->cmd_producer,
  1136. adapter->max_tx_desc_count) > 0)
  1137. return 1;
  1138. return 0;
  1139. }
  1140. void netxen_nic_clear_stats(struct netxen_adapter *adapter)
  1141. {
  1142. struct netxen_port *port;
  1143. int port_num;
  1144. memset(&adapter->stats, 0, sizeof(adapter->stats));
  1145. for (port_num = 0; port_num < adapter->ahw.max_ports; port_num++) {
  1146. port = adapter->port[port_num];
  1147. memset(&port->stats, 0, sizeof(port->stats));
  1148. }
  1149. }