setup.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/init.h>
  22. #include <linux/root_dev.h>
  23. #include <linux/cpu.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/fs.h>
  27. #include <asm/cpu.h>
  28. #include <asm/cputype.h>
  29. #include <asm/elf.h>
  30. #include <asm/procinfo.h>
  31. #include <asm/setup.h>
  32. #include <asm/mach-types.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/cachetype.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/mach/arch.h>
  37. #include <asm/mach/irq.h>
  38. #include <asm/mach/time.h>
  39. #include <asm/traps.h>
  40. #include "compat.h"
  41. #include "atags.h"
  42. #ifndef MEM_SIZE
  43. #define MEM_SIZE (16*1024*1024)
  44. #endif
  45. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  46. char fpe_type[8];
  47. static int __init fpe_setup(char *line)
  48. {
  49. memcpy(fpe_type, line, 8);
  50. return 1;
  51. }
  52. __setup("fpe=", fpe_setup);
  53. #endif
  54. extern void paging_init(struct meminfo *, struct machine_desc *desc);
  55. extern void reboot_setup(char *str);
  56. extern void _text, _etext, __data_start, _edata, _end;
  57. unsigned int processor_id;
  58. EXPORT_SYMBOL(processor_id);
  59. unsigned int __machine_arch_type;
  60. EXPORT_SYMBOL(__machine_arch_type);
  61. unsigned int cacheid;
  62. EXPORT_SYMBOL(cacheid);
  63. unsigned int __atags_pointer __initdata;
  64. unsigned int system_rev;
  65. EXPORT_SYMBOL(system_rev);
  66. unsigned int system_serial_low;
  67. EXPORT_SYMBOL(system_serial_low);
  68. unsigned int system_serial_high;
  69. EXPORT_SYMBOL(system_serial_high);
  70. unsigned int elf_hwcap;
  71. EXPORT_SYMBOL(elf_hwcap);
  72. #ifdef MULTI_CPU
  73. struct processor processor;
  74. #endif
  75. #ifdef MULTI_TLB
  76. struct cpu_tlb_fns cpu_tlb;
  77. #endif
  78. #ifdef MULTI_USER
  79. struct cpu_user_fns cpu_user;
  80. #endif
  81. #ifdef MULTI_CACHE
  82. struct cpu_cache_fns cpu_cache;
  83. #endif
  84. #ifdef CONFIG_OUTER_CACHE
  85. struct outer_cache_fns outer_cache;
  86. #endif
  87. struct stack {
  88. u32 irq[3];
  89. u32 abt[3];
  90. u32 und[3];
  91. } ____cacheline_aligned;
  92. static struct stack stacks[NR_CPUS];
  93. char elf_platform[ELF_PLATFORM_SIZE];
  94. EXPORT_SYMBOL(elf_platform);
  95. static struct meminfo meminfo __initdata = { 0, };
  96. static const char *cpu_name;
  97. static const char *machine_name;
  98. static char __initdata command_line[COMMAND_LINE_SIZE];
  99. static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
  100. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  101. #define ENDIANNESS ((char)endian_test.l)
  102. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  103. /*
  104. * Standard memory resources
  105. */
  106. static struct resource mem_res[] = {
  107. {
  108. .name = "Video RAM",
  109. .start = 0,
  110. .end = 0,
  111. .flags = IORESOURCE_MEM
  112. },
  113. {
  114. .name = "Kernel text",
  115. .start = 0,
  116. .end = 0,
  117. .flags = IORESOURCE_MEM
  118. },
  119. {
  120. .name = "Kernel data",
  121. .start = 0,
  122. .end = 0,
  123. .flags = IORESOURCE_MEM
  124. }
  125. };
  126. #define video_ram mem_res[0]
  127. #define kernel_code mem_res[1]
  128. #define kernel_data mem_res[2]
  129. static struct resource io_res[] = {
  130. {
  131. .name = "reserved",
  132. .start = 0x3bc,
  133. .end = 0x3be,
  134. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  135. },
  136. {
  137. .name = "reserved",
  138. .start = 0x378,
  139. .end = 0x37f,
  140. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  141. },
  142. {
  143. .name = "reserved",
  144. .start = 0x278,
  145. .end = 0x27f,
  146. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  147. }
  148. };
  149. #define lp0 io_res[0]
  150. #define lp1 io_res[1]
  151. #define lp2 io_res[2]
  152. static const char *proc_arch[] = {
  153. "undefined/unknown",
  154. "3",
  155. "4",
  156. "4T",
  157. "5",
  158. "5T",
  159. "5TE",
  160. "5TEJ",
  161. "6TEJ",
  162. "7",
  163. "?(11)",
  164. "?(12)",
  165. "?(13)",
  166. "?(14)",
  167. "?(15)",
  168. "?(16)",
  169. "?(17)",
  170. };
  171. int cpu_architecture(void)
  172. {
  173. int cpu_arch;
  174. if ((read_cpuid_id() & 0x0008f000) == 0) {
  175. cpu_arch = CPU_ARCH_UNKNOWN;
  176. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  177. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  178. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  179. cpu_arch = (read_cpuid_id() >> 16) & 7;
  180. if (cpu_arch)
  181. cpu_arch += CPU_ARCH_ARMv3;
  182. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  183. unsigned int mmfr0;
  184. /* Revised CPUID format. Read the Memory Model Feature
  185. * Register 0 and check for VMSAv7 or PMSAv7 */
  186. asm("mrc p15, 0, %0, c0, c1, 4"
  187. : "=r" (mmfr0));
  188. if ((mmfr0 & 0x0000000f) == 0x00000003 ||
  189. (mmfr0 & 0x000000f0) == 0x00000030)
  190. cpu_arch = CPU_ARCH_ARMv7;
  191. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  192. (mmfr0 & 0x000000f0) == 0x00000020)
  193. cpu_arch = CPU_ARCH_ARMv6;
  194. else
  195. cpu_arch = CPU_ARCH_UNKNOWN;
  196. } else
  197. cpu_arch = CPU_ARCH_UNKNOWN;
  198. return cpu_arch;
  199. }
  200. static void __init cacheid_init(void)
  201. {
  202. unsigned int cachetype = read_cpuid_cachetype();
  203. unsigned int arch = cpu_architecture();
  204. if (arch >= CPU_ARCH_ARMv7) {
  205. cacheid = CACHEID_VIPT_NONALIASING;
  206. if ((cachetype & (3 << 14)) == 1 << 14)
  207. cacheid |= CACHEID_ASID_TAGGED;
  208. } else if (arch >= CPU_ARCH_ARMv6) {
  209. if (cachetype & (1 << 23))
  210. cacheid = CACHEID_VIPT_ALIASING;
  211. else
  212. cacheid = CACHEID_VIPT_NONALIASING;
  213. } else {
  214. cacheid = CACHEID_VIVT;
  215. }
  216. printk("CPU: %s data cache, %s instruction cache\n",
  217. cache_is_vivt() ? "VIVT" :
  218. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  219. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
  220. cache_is_vivt() ? "VIVT" :
  221. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  222. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  223. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  224. }
  225. /*
  226. * These functions re-use the assembly code in head.S, which
  227. * already provide the required functionality.
  228. */
  229. extern struct proc_info_list *lookup_processor_type(unsigned int);
  230. extern struct machine_desc *lookup_machine_type(unsigned int);
  231. static void __init setup_processor(void)
  232. {
  233. struct proc_info_list *list;
  234. /*
  235. * locate processor in the list of supported processor
  236. * types. The linker builds this table for us from the
  237. * entries in arch/arm/mm/proc-*.S
  238. */
  239. list = lookup_processor_type(read_cpuid_id());
  240. if (!list) {
  241. printk("CPU configuration botched (ID %08x), unable "
  242. "to continue.\n", read_cpuid_id());
  243. while (1);
  244. }
  245. cpu_name = list->cpu_name;
  246. #ifdef MULTI_CPU
  247. processor = *list->proc;
  248. #endif
  249. #ifdef MULTI_TLB
  250. cpu_tlb = *list->tlb;
  251. #endif
  252. #ifdef MULTI_USER
  253. cpu_user = *list->user;
  254. #endif
  255. #ifdef MULTI_CACHE
  256. cpu_cache = *list->cache;
  257. #endif
  258. printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  259. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  260. proc_arch[cpu_architecture()], cr_alignment);
  261. sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
  262. sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
  263. elf_hwcap = list->elf_hwcap;
  264. #ifndef CONFIG_ARM_THUMB
  265. elf_hwcap &= ~HWCAP_THUMB;
  266. #endif
  267. cacheid_init();
  268. cpu_proc_init();
  269. }
  270. /*
  271. * cpu_init - initialise one CPU.
  272. *
  273. * cpu_init sets up the per-CPU stacks.
  274. */
  275. void cpu_init(void)
  276. {
  277. unsigned int cpu = smp_processor_id();
  278. struct stack *stk = &stacks[cpu];
  279. if (cpu >= NR_CPUS) {
  280. printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
  281. BUG();
  282. }
  283. /*
  284. * setup stacks for re-entrant exception handlers
  285. */
  286. __asm__ (
  287. "msr cpsr_c, %1\n\t"
  288. "add sp, %0, %2\n\t"
  289. "msr cpsr_c, %3\n\t"
  290. "add sp, %0, %4\n\t"
  291. "msr cpsr_c, %5\n\t"
  292. "add sp, %0, %6\n\t"
  293. "msr cpsr_c, %7"
  294. :
  295. : "r" (stk),
  296. "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  297. "I" (offsetof(struct stack, irq[0])),
  298. "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  299. "I" (offsetof(struct stack, abt[0])),
  300. "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  301. "I" (offsetof(struct stack, und[0])),
  302. "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  303. : "r14");
  304. }
  305. static struct machine_desc * __init setup_machine(unsigned int nr)
  306. {
  307. struct machine_desc *list;
  308. /*
  309. * locate machine in the list of supported machines.
  310. */
  311. list = lookup_machine_type(nr);
  312. if (!list) {
  313. printk("Machine configuration botched (nr %d), unable "
  314. "to continue.\n", nr);
  315. while (1);
  316. }
  317. printk("Machine: %s\n", list->name);
  318. return list;
  319. }
  320. static void __init arm_add_memory(unsigned long start, unsigned long size)
  321. {
  322. struct membank *bank;
  323. /*
  324. * Ensure that start/size are aligned to a page boundary.
  325. * Size is appropriately rounded down, start is rounded up.
  326. */
  327. size -= start & ~PAGE_MASK;
  328. bank = &meminfo.bank[meminfo.nr_banks++];
  329. bank->start = PAGE_ALIGN(start);
  330. bank->size = size & PAGE_MASK;
  331. bank->node = PHYS_TO_NID(start);
  332. }
  333. /*
  334. * Pick out the memory size. We look for mem=size@start,
  335. * where start and size are "size[KkMm]"
  336. */
  337. static void __init early_mem(char **p)
  338. {
  339. static int usermem __initdata = 0;
  340. unsigned long size, start;
  341. /*
  342. * If the user specifies memory size, we
  343. * blow away any automatically generated
  344. * size.
  345. */
  346. if (usermem == 0) {
  347. usermem = 1;
  348. meminfo.nr_banks = 0;
  349. }
  350. start = PHYS_OFFSET;
  351. size = memparse(*p, p);
  352. if (**p == '@')
  353. start = memparse(*p + 1, p);
  354. arm_add_memory(start, size);
  355. }
  356. __early_param("mem=", early_mem);
  357. /*
  358. * Initial parsing of the command line.
  359. */
  360. static void __init parse_cmdline(char **cmdline_p, char *from)
  361. {
  362. char c = ' ', *to = command_line;
  363. int len = 0;
  364. for (;;) {
  365. if (c == ' ') {
  366. extern struct early_params __early_begin, __early_end;
  367. struct early_params *p;
  368. for (p = &__early_begin; p < &__early_end; p++) {
  369. int arglen = strlen(p->arg);
  370. if (memcmp(from, p->arg, arglen) == 0) {
  371. if (to != command_line)
  372. to -= 1;
  373. from += arglen;
  374. p->fn(&from);
  375. while (*from != ' ' && *from != '\0')
  376. from++;
  377. break;
  378. }
  379. }
  380. }
  381. c = *from++;
  382. if (!c)
  383. break;
  384. if (COMMAND_LINE_SIZE <= ++len)
  385. break;
  386. *to++ = c;
  387. }
  388. *to = '\0';
  389. *cmdline_p = command_line;
  390. }
  391. static void __init
  392. setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
  393. {
  394. #ifdef CONFIG_BLK_DEV_RAM
  395. extern int rd_size, rd_image_start, rd_prompt, rd_doload;
  396. rd_image_start = image_start;
  397. rd_prompt = prompt;
  398. rd_doload = doload;
  399. if (rd_sz)
  400. rd_size = rd_sz;
  401. #endif
  402. }
  403. static void __init
  404. request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
  405. {
  406. struct resource *res;
  407. int i;
  408. kernel_code.start = virt_to_phys(&_text);
  409. kernel_code.end = virt_to_phys(&_etext - 1);
  410. kernel_data.start = virt_to_phys(&__data_start);
  411. kernel_data.end = virt_to_phys(&_end - 1);
  412. for (i = 0; i < mi->nr_banks; i++) {
  413. unsigned long virt_start, virt_end;
  414. if (mi->bank[i].size == 0)
  415. continue;
  416. virt_start = __phys_to_virt(mi->bank[i].start);
  417. virt_end = virt_start + mi->bank[i].size - 1;
  418. res = alloc_bootmem_low(sizeof(*res));
  419. res->name = "System RAM";
  420. res->start = __virt_to_phys(virt_start);
  421. res->end = __virt_to_phys(virt_end);
  422. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  423. request_resource(&iomem_resource, res);
  424. if (kernel_code.start >= res->start &&
  425. kernel_code.end <= res->end)
  426. request_resource(res, &kernel_code);
  427. if (kernel_data.start >= res->start &&
  428. kernel_data.end <= res->end)
  429. request_resource(res, &kernel_data);
  430. }
  431. if (mdesc->video_start) {
  432. video_ram.start = mdesc->video_start;
  433. video_ram.end = mdesc->video_end;
  434. request_resource(&iomem_resource, &video_ram);
  435. }
  436. /*
  437. * Some machines don't have the possibility of ever
  438. * possessing lp0, lp1 or lp2
  439. */
  440. if (mdesc->reserve_lp0)
  441. request_resource(&ioport_resource, &lp0);
  442. if (mdesc->reserve_lp1)
  443. request_resource(&ioport_resource, &lp1);
  444. if (mdesc->reserve_lp2)
  445. request_resource(&ioport_resource, &lp2);
  446. }
  447. /*
  448. * Tag parsing.
  449. *
  450. * This is the new way of passing data to the kernel at boot time. Rather
  451. * than passing a fixed inflexible structure to the kernel, we pass a list
  452. * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
  453. * tag for the list to be recognised (to distinguish the tagged list from
  454. * a param_struct). The list is terminated with a zero-length tag (this tag
  455. * is not parsed in any way).
  456. */
  457. static int __init parse_tag_core(const struct tag *tag)
  458. {
  459. if (tag->hdr.size > 2) {
  460. if ((tag->u.core.flags & 1) == 0)
  461. root_mountflags &= ~MS_RDONLY;
  462. ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
  463. }
  464. return 0;
  465. }
  466. __tagtable(ATAG_CORE, parse_tag_core);
  467. static int __init parse_tag_mem32(const struct tag *tag)
  468. {
  469. if (meminfo.nr_banks >= NR_BANKS) {
  470. printk(KERN_WARNING
  471. "Ignoring memory bank 0x%08x size %dKB\n",
  472. tag->u.mem.start, tag->u.mem.size / 1024);
  473. return -EINVAL;
  474. }
  475. arm_add_memory(tag->u.mem.start, tag->u.mem.size);
  476. return 0;
  477. }
  478. __tagtable(ATAG_MEM, parse_tag_mem32);
  479. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  480. struct screen_info screen_info = {
  481. .orig_video_lines = 30,
  482. .orig_video_cols = 80,
  483. .orig_video_mode = 0,
  484. .orig_video_ega_bx = 0,
  485. .orig_video_isVGA = 1,
  486. .orig_video_points = 8
  487. };
  488. static int __init parse_tag_videotext(const struct tag *tag)
  489. {
  490. screen_info.orig_x = tag->u.videotext.x;
  491. screen_info.orig_y = tag->u.videotext.y;
  492. screen_info.orig_video_page = tag->u.videotext.video_page;
  493. screen_info.orig_video_mode = tag->u.videotext.video_mode;
  494. screen_info.orig_video_cols = tag->u.videotext.video_cols;
  495. screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
  496. screen_info.orig_video_lines = tag->u.videotext.video_lines;
  497. screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
  498. screen_info.orig_video_points = tag->u.videotext.video_points;
  499. return 0;
  500. }
  501. __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
  502. #endif
  503. static int __init parse_tag_ramdisk(const struct tag *tag)
  504. {
  505. setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
  506. (tag->u.ramdisk.flags & 2) == 0,
  507. tag->u.ramdisk.start, tag->u.ramdisk.size);
  508. return 0;
  509. }
  510. __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
  511. static int __init parse_tag_serialnr(const struct tag *tag)
  512. {
  513. system_serial_low = tag->u.serialnr.low;
  514. system_serial_high = tag->u.serialnr.high;
  515. return 0;
  516. }
  517. __tagtable(ATAG_SERIAL, parse_tag_serialnr);
  518. static int __init parse_tag_revision(const struct tag *tag)
  519. {
  520. system_rev = tag->u.revision.rev;
  521. return 0;
  522. }
  523. __tagtable(ATAG_REVISION, parse_tag_revision);
  524. static int __init parse_tag_cmdline(const struct tag *tag)
  525. {
  526. strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
  527. return 0;
  528. }
  529. __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
  530. /*
  531. * Scan the tag table for this tag, and call its parse function.
  532. * The tag table is built by the linker from all the __tagtable
  533. * declarations.
  534. */
  535. static int __init parse_tag(const struct tag *tag)
  536. {
  537. extern struct tagtable __tagtable_begin, __tagtable_end;
  538. struct tagtable *t;
  539. for (t = &__tagtable_begin; t < &__tagtable_end; t++)
  540. if (tag->hdr.tag == t->tag) {
  541. t->parse(tag);
  542. break;
  543. }
  544. return t < &__tagtable_end;
  545. }
  546. /*
  547. * Parse all tags in the list, checking both the global and architecture
  548. * specific tag tables.
  549. */
  550. static void __init parse_tags(const struct tag *t)
  551. {
  552. for (; t->hdr.size; t = tag_next(t))
  553. if (!parse_tag(t))
  554. printk(KERN_WARNING
  555. "Ignoring unrecognised tag 0x%08x\n",
  556. t->hdr.tag);
  557. }
  558. /*
  559. * This holds our defaults.
  560. */
  561. static struct init_tags {
  562. struct tag_header hdr1;
  563. struct tag_core core;
  564. struct tag_header hdr2;
  565. struct tag_mem32 mem;
  566. struct tag_header hdr3;
  567. } init_tags __initdata = {
  568. { tag_size(tag_core), ATAG_CORE },
  569. { 1, PAGE_SIZE, 0xff },
  570. { tag_size(tag_mem32), ATAG_MEM },
  571. { MEM_SIZE, PHYS_OFFSET },
  572. { 0, ATAG_NONE }
  573. };
  574. static void (*init_machine)(void) __initdata;
  575. static int __init customize_machine(void)
  576. {
  577. /* customizes platform devices, or adds new ones */
  578. if (init_machine)
  579. init_machine();
  580. return 0;
  581. }
  582. arch_initcall(customize_machine);
  583. void __init setup_arch(char **cmdline_p)
  584. {
  585. struct tag *tags = (struct tag *)&init_tags;
  586. struct machine_desc *mdesc;
  587. char *from = default_command_line;
  588. setup_processor();
  589. mdesc = setup_machine(machine_arch_type);
  590. machine_name = mdesc->name;
  591. if (mdesc->soft_reboot)
  592. reboot_setup("s");
  593. if (__atags_pointer)
  594. tags = phys_to_virt(__atags_pointer);
  595. else if (mdesc->boot_params)
  596. tags = phys_to_virt(mdesc->boot_params);
  597. /*
  598. * If we have the old style parameters, convert them to
  599. * a tag list.
  600. */
  601. if (tags->hdr.tag != ATAG_CORE)
  602. convert_to_tag_list(tags);
  603. if (tags->hdr.tag != ATAG_CORE)
  604. tags = (struct tag *)&init_tags;
  605. if (mdesc->fixup)
  606. mdesc->fixup(mdesc, tags, &from, &meminfo);
  607. if (tags->hdr.tag == ATAG_CORE) {
  608. if (meminfo.nr_banks != 0)
  609. squash_mem_tags(tags);
  610. save_atags(tags);
  611. parse_tags(tags);
  612. }
  613. init_mm.start_code = (unsigned long) &_text;
  614. init_mm.end_code = (unsigned long) &_etext;
  615. init_mm.end_data = (unsigned long) &_edata;
  616. init_mm.brk = (unsigned long) &_end;
  617. memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
  618. boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
  619. parse_cmdline(cmdline_p, from);
  620. paging_init(&meminfo, mdesc);
  621. request_standard_resources(&meminfo, mdesc);
  622. #ifdef CONFIG_SMP
  623. smp_init_cpus();
  624. #endif
  625. cpu_init();
  626. /*
  627. * Set up various architecture-specific pointers
  628. */
  629. init_arch_irq = mdesc->init_irq;
  630. system_timer = mdesc->timer;
  631. init_machine = mdesc->init_machine;
  632. #ifdef CONFIG_VT
  633. #if defined(CONFIG_VGA_CONSOLE)
  634. conswitchp = &vga_con;
  635. #elif defined(CONFIG_DUMMY_CONSOLE)
  636. conswitchp = &dummy_con;
  637. #endif
  638. #endif
  639. early_trap_init();
  640. }
  641. static int __init topology_init(void)
  642. {
  643. int cpu;
  644. for_each_possible_cpu(cpu) {
  645. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  646. cpuinfo->cpu.hotpluggable = 1;
  647. register_cpu(&cpuinfo->cpu, cpu);
  648. }
  649. return 0;
  650. }
  651. subsys_initcall(topology_init);
  652. static const char *hwcap_str[] = {
  653. "swp",
  654. "half",
  655. "thumb",
  656. "26bit",
  657. "fastmult",
  658. "fpa",
  659. "vfp",
  660. "edsp",
  661. "java",
  662. "iwmmxt",
  663. "crunch",
  664. NULL
  665. };
  666. static int c_show(struct seq_file *m, void *v)
  667. {
  668. int i;
  669. seq_printf(m, "Processor\t: %s rev %d (%s)\n",
  670. cpu_name, read_cpuid_id() & 15, elf_platform);
  671. #if defined(CONFIG_SMP)
  672. for_each_online_cpu(i) {
  673. /*
  674. * glibc reads /proc/cpuinfo to determine the number of
  675. * online processors, looking for lines beginning with
  676. * "processor". Give glibc what it expects.
  677. */
  678. seq_printf(m, "processor\t: %d\n", i);
  679. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
  680. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  681. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  682. }
  683. #else /* CONFIG_SMP */
  684. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  685. loops_per_jiffy / (500000/HZ),
  686. (loops_per_jiffy / (5000/HZ)) % 100);
  687. #endif
  688. /* dump out the processor features */
  689. seq_puts(m, "Features\t: ");
  690. for (i = 0; hwcap_str[i]; i++)
  691. if (elf_hwcap & (1 << i))
  692. seq_printf(m, "%s ", hwcap_str[i]);
  693. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
  694. seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
  695. if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
  696. /* pre-ARM7 */
  697. seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
  698. } else {
  699. if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  700. /* ARM7 */
  701. seq_printf(m, "CPU variant\t: 0x%02x\n",
  702. (read_cpuid_id() >> 16) & 127);
  703. } else {
  704. /* post-ARM7 */
  705. seq_printf(m, "CPU variant\t: 0x%x\n",
  706. (read_cpuid_id() >> 20) & 15);
  707. }
  708. seq_printf(m, "CPU part\t: 0x%03x\n",
  709. (read_cpuid_id() >> 4) & 0xfff);
  710. }
  711. seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
  712. seq_puts(m, "\n");
  713. seq_printf(m, "Hardware\t: %s\n", machine_name);
  714. seq_printf(m, "Revision\t: %04x\n", system_rev);
  715. seq_printf(m, "Serial\t\t: %08x%08x\n",
  716. system_serial_high, system_serial_low);
  717. return 0;
  718. }
  719. static void *c_start(struct seq_file *m, loff_t *pos)
  720. {
  721. return *pos < 1 ? (void *)1 : NULL;
  722. }
  723. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  724. {
  725. ++*pos;
  726. return NULL;
  727. }
  728. static void c_stop(struct seq_file *m, void *v)
  729. {
  730. }
  731. const struct seq_operations cpuinfo_op = {
  732. .start = c_start,
  733. .next = c_next,
  734. .stop = c_stop,
  735. .show = c_show
  736. };