sched.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_FAIR_GROUP_SCHED
  226. /* schedulable entities of this group on each cpu */
  227. struct sched_entity **se;
  228. /* runqueue "owned" by this group on each cpu */
  229. struct cfs_rq **cfs_rq;
  230. unsigned long shares;
  231. #endif
  232. #ifdef CONFIG_RT_GROUP_SCHED
  233. struct sched_rt_entity **rt_se;
  234. struct rt_rq **rt_rq;
  235. struct rt_bandwidth rt_bandwidth;
  236. #endif
  237. struct rcu_head rcu;
  238. struct list_head list;
  239. struct task_group *parent;
  240. struct list_head siblings;
  241. struct list_head children;
  242. };
  243. #ifdef CONFIG_USER_SCHED
  244. /*
  245. * Root task group.
  246. * Every UID task group (including init_task_group aka UID-0) will
  247. * be a child to this group.
  248. */
  249. struct task_group root_task_group;
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. /* Default task group's sched entity on each cpu */
  252. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  253. /* Default task group's cfs_rq on each cpu */
  254. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. #ifdef CONFIG_RT_GROUP_SCHED
  257. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  258. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  259. #endif /* CONFIG_RT_GROUP_SCHED */
  260. #else /* !CONFIG_USER_SCHED */
  261. #define root_task_group init_task_group
  262. #endif /* CONFIG_USER_SCHED */
  263. /* task_group_lock serializes add/remove of task groups and also changes to
  264. * a task group's cpu shares.
  265. */
  266. static DEFINE_SPINLOCK(task_group_lock);
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. tg = p->user->tg;
  295. #elif defined(CONFIG_CGROUP_SCHED)
  296. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  297. struct task_group, css);
  298. #else
  299. tg = &init_task_group;
  300. #endif
  301. return tg;
  302. }
  303. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  304. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  305. {
  306. #ifdef CONFIG_FAIR_GROUP_SCHED
  307. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  308. p->se.parent = task_group(p)->se[cpu];
  309. #endif
  310. #ifdef CONFIG_RT_GROUP_SCHED
  311. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  312. p->rt.parent = task_group(p)->rt_se[cpu];
  313. #endif
  314. }
  315. #else
  316. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  317. static inline struct task_group *task_group(struct task_struct *p)
  318. {
  319. return NULL;
  320. }
  321. #endif /* CONFIG_GROUP_SCHED */
  322. /* CFS-related fields in a runqueue */
  323. struct cfs_rq {
  324. struct load_weight load;
  325. unsigned long nr_running;
  326. u64 exec_clock;
  327. u64 min_vruntime;
  328. struct rb_root tasks_timeline;
  329. struct rb_node *rb_leftmost;
  330. struct list_head tasks;
  331. struct list_head *balance_iterator;
  332. /*
  333. * 'curr' points to currently running entity on this cfs_rq.
  334. * It is set to NULL otherwise (i.e when none are currently running).
  335. */
  336. struct sched_entity *curr, *next, *last;
  337. unsigned int nr_spread_over;
  338. #ifdef CONFIG_FAIR_GROUP_SCHED
  339. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  340. /*
  341. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  342. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  343. * (like users, containers etc.)
  344. *
  345. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  346. * list is used during load balance.
  347. */
  348. struct list_head leaf_cfs_rq_list;
  349. struct task_group *tg; /* group that "owns" this runqueue */
  350. #ifdef CONFIG_SMP
  351. /*
  352. * the part of load.weight contributed by tasks
  353. */
  354. unsigned long task_weight;
  355. /*
  356. * h_load = weight * f(tg)
  357. *
  358. * Where f(tg) is the recursive weight fraction assigned to
  359. * this group.
  360. */
  361. unsigned long h_load;
  362. /*
  363. * this cpu's part of tg->shares
  364. */
  365. unsigned long shares;
  366. /*
  367. * load.weight at the time we set shares
  368. */
  369. unsigned long rq_weight;
  370. #endif
  371. #endif
  372. };
  373. /* Real-Time classes' related field in a runqueue: */
  374. struct rt_rq {
  375. struct rt_prio_array active;
  376. unsigned long rt_nr_running;
  377. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  378. int highest_prio; /* highest queued rt task prio */
  379. #endif
  380. #ifdef CONFIG_SMP
  381. unsigned long rt_nr_migratory;
  382. int overloaded;
  383. #endif
  384. int rt_throttled;
  385. u64 rt_time;
  386. u64 rt_runtime;
  387. /* Nests inside the rq lock: */
  388. spinlock_t rt_runtime_lock;
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. unsigned long rt_nr_boosted;
  391. struct rq *rq;
  392. struct list_head leaf_rt_rq_list;
  393. struct task_group *tg;
  394. struct sched_rt_entity *rt_se;
  395. #endif
  396. };
  397. #ifdef CONFIG_SMP
  398. /*
  399. * We add the notion of a root-domain which will be used to define per-domain
  400. * variables. Each exclusive cpuset essentially defines an island domain by
  401. * fully partitioning the member cpus from any other cpuset. Whenever a new
  402. * exclusive cpuset is created, we also create and attach a new root-domain
  403. * object.
  404. *
  405. */
  406. struct root_domain {
  407. atomic_t refcount;
  408. cpumask_t span;
  409. cpumask_t online;
  410. /*
  411. * The "RT overload" flag: it gets set if a CPU has more than
  412. * one runnable RT task.
  413. */
  414. cpumask_t rto_mask;
  415. atomic_t rto_count;
  416. #ifdef CONFIG_SMP
  417. struct cpupri cpupri;
  418. #endif
  419. };
  420. /*
  421. * By default the system creates a single root-domain with all cpus as
  422. * members (mimicking the global state we have today).
  423. */
  424. static struct root_domain def_root_domain;
  425. #endif
  426. /*
  427. * This is the main, per-CPU runqueue data structure.
  428. *
  429. * Locking rule: those places that want to lock multiple runqueues
  430. * (such as the load balancing or the thread migration code), lock
  431. * acquire operations must be ordered by ascending &runqueue.
  432. */
  433. struct rq {
  434. /* runqueue lock: */
  435. spinlock_t lock;
  436. /*
  437. * nr_running and cpu_load should be in the same cacheline because
  438. * remote CPUs use both these fields when doing load calculation.
  439. */
  440. unsigned long nr_running;
  441. #define CPU_LOAD_IDX_MAX 5
  442. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  443. unsigned char idle_at_tick;
  444. #ifdef CONFIG_NO_HZ
  445. unsigned long last_tick_seen;
  446. unsigned char in_nohz_recently;
  447. #endif
  448. /* capture load from *all* tasks on this cpu: */
  449. struct load_weight load;
  450. unsigned long nr_load_updates;
  451. u64 nr_switches;
  452. struct cfs_rq cfs;
  453. struct rt_rq rt;
  454. #ifdef CONFIG_FAIR_GROUP_SCHED
  455. /* list of leaf cfs_rq on this cpu: */
  456. struct list_head leaf_cfs_rq_list;
  457. #endif
  458. #ifdef CONFIG_RT_GROUP_SCHED
  459. struct list_head leaf_rt_rq_list;
  460. #endif
  461. /*
  462. * This is part of a global counter where only the total sum
  463. * over all CPUs matters. A task can increase this counter on
  464. * one CPU and if it got migrated afterwards it may decrease
  465. * it on another CPU. Always updated under the runqueue lock:
  466. */
  467. unsigned long nr_uninterruptible;
  468. struct task_struct *curr, *idle;
  469. unsigned long next_balance;
  470. struct mm_struct *prev_mm;
  471. u64 clock;
  472. atomic_t nr_iowait;
  473. #ifdef CONFIG_SMP
  474. struct root_domain *rd;
  475. struct sched_domain *sd;
  476. /* For active balancing */
  477. int active_balance;
  478. int push_cpu;
  479. /* cpu of this runqueue: */
  480. int cpu;
  481. int online;
  482. unsigned long avg_load_per_task;
  483. struct task_struct *migration_thread;
  484. struct list_head migration_queue;
  485. #endif
  486. #ifdef CONFIG_SCHED_HRTICK
  487. #ifdef CONFIG_SMP
  488. int hrtick_csd_pending;
  489. struct call_single_data hrtick_csd;
  490. #endif
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. };
  512. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  513. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  514. {
  515. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  516. }
  517. static inline int cpu_of(struct rq *rq)
  518. {
  519. #ifdef CONFIG_SMP
  520. return rq->cpu;
  521. #else
  522. return 0;
  523. #endif
  524. }
  525. /*
  526. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  527. * See detach_destroy_domains: synchronize_sched for details.
  528. *
  529. * The domain tree of any CPU may only be accessed from within
  530. * preempt-disabled sections.
  531. */
  532. #define for_each_domain(cpu, __sd) \
  533. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  534. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  535. #define this_rq() (&__get_cpu_var(runqueues))
  536. #define task_rq(p) cpu_rq(task_cpu(p))
  537. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  538. static inline void update_rq_clock(struct rq *rq)
  539. {
  540. rq->clock = sched_clock_cpu(cpu_of(rq));
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(void)
  558. {
  559. int cpu = get_cpu();
  560. struct rq *rq = cpu_rq(cpu);
  561. int ret;
  562. ret = spin_is_locked(&rq->lock);
  563. put_cpu();
  564. return ret;
  565. }
  566. /*
  567. * Debugging: various feature bits
  568. */
  569. #define SCHED_FEAT(name, enabled) \
  570. __SCHED_FEAT_##name ,
  571. enum {
  572. #include "sched_features.h"
  573. };
  574. #undef SCHED_FEAT
  575. #define SCHED_FEAT(name, enabled) \
  576. (1UL << __SCHED_FEAT_##name) * enabled |
  577. const_debug unsigned int sysctl_sched_features =
  578. #include "sched_features.h"
  579. 0;
  580. #undef SCHED_FEAT
  581. #ifdef CONFIG_SCHED_DEBUG
  582. #define SCHED_FEAT(name, enabled) \
  583. #name ,
  584. static __read_mostly char *sched_feat_names[] = {
  585. #include "sched_features.h"
  586. NULL
  587. };
  588. #undef SCHED_FEAT
  589. static int sched_feat_open(struct inode *inode, struct file *filp)
  590. {
  591. filp->private_data = inode->i_private;
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_read(struct file *filp, char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char *buf;
  599. int r = 0;
  600. int len = 0;
  601. int i;
  602. for (i = 0; sched_feat_names[i]; i++) {
  603. len += strlen(sched_feat_names[i]);
  604. len += 4;
  605. }
  606. buf = kmalloc(len + 2, GFP_KERNEL);
  607. if (!buf)
  608. return -ENOMEM;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (sysctl_sched_features & (1UL << i))
  611. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  612. else
  613. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  614. }
  615. r += sprintf(buf + r, "\n");
  616. WARN_ON(r >= len + 2);
  617. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  618. kfree(buf);
  619. return r;
  620. }
  621. static ssize_t
  622. sched_feat_write(struct file *filp, const char __user *ubuf,
  623. size_t cnt, loff_t *ppos)
  624. {
  625. char buf[64];
  626. char *cmp = buf;
  627. int neg = 0;
  628. int i;
  629. if (cnt > 63)
  630. cnt = 63;
  631. if (copy_from_user(&buf, ubuf, cnt))
  632. return -EFAULT;
  633. buf[cnt] = 0;
  634. if (strncmp(buf, "NO_", 3) == 0) {
  635. neg = 1;
  636. cmp += 3;
  637. }
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. int len = strlen(sched_feat_names[i]);
  640. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  641. if (neg)
  642. sysctl_sched_features &= ~(1UL << i);
  643. else
  644. sysctl_sched_features |= (1UL << i);
  645. break;
  646. }
  647. }
  648. if (!sched_feat_names[i])
  649. return -EINVAL;
  650. filp->f_pos += cnt;
  651. return cnt;
  652. }
  653. static struct file_operations sched_feat_fops = {
  654. .open = sched_feat_open,
  655. .read = sched_feat_read,
  656. .write = sched_feat_write,
  657. };
  658. static __init int sched_init_debug(void)
  659. {
  660. debugfs_create_file("sched_features", 0644, NULL, NULL,
  661. &sched_feat_fops);
  662. return 0;
  663. }
  664. late_initcall(sched_init_debug);
  665. #endif
  666. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  667. /*
  668. * Number of tasks to iterate in a single balance run.
  669. * Limited because this is done with IRQs disabled.
  670. */
  671. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  672. /*
  673. * ratelimit for updating the group shares.
  674. * default: 0.25ms
  675. */
  676. unsigned int sysctl_sched_shares_ratelimit = 250000;
  677. /*
  678. * Inject some fuzzyness into changing the per-cpu group shares
  679. * this avoids remote rq-locks at the expense of fairness.
  680. * default: 4
  681. */
  682. unsigned int sysctl_sched_shares_thresh = 4;
  683. /*
  684. * period over which we measure -rt task cpu usage in us.
  685. * default: 1s
  686. */
  687. unsigned int sysctl_sched_rt_period = 1000000;
  688. static __read_mostly int scheduler_running;
  689. /*
  690. * part of the period that we allow rt tasks to run in us.
  691. * default: 0.95s
  692. */
  693. int sysctl_sched_rt_runtime = 950000;
  694. static inline u64 global_rt_period(void)
  695. {
  696. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  697. }
  698. static inline u64 global_rt_runtime(void)
  699. {
  700. if (sysctl_sched_rt_runtime < 0)
  701. return RUNTIME_INF;
  702. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  703. }
  704. #ifndef prepare_arch_switch
  705. # define prepare_arch_switch(next) do { } while (0)
  706. #endif
  707. #ifndef finish_arch_switch
  708. # define finish_arch_switch(prev) do { } while (0)
  709. #endif
  710. static inline int task_current(struct rq *rq, struct task_struct *p)
  711. {
  712. return rq->curr == p;
  713. }
  714. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  715. static inline int task_running(struct rq *rq, struct task_struct *p)
  716. {
  717. return task_current(rq, p);
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. }
  722. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  723. {
  724. #ifdef CONFIG_DEBUG_SPINLOCK
  725. /* this is a valid case when another task releases the spinlock */
  726. rq->lock.owner = current;
  727. #endif
  728. /*
  729. * If we are tracking spinlock dependencies then we have to
  730. * fix up the runqueue lock - which gets 'carried over' from
  731. * prev into current:
  732. */
  733. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  734. spin_unlock_irq(&rq->lock);
  735. }
  736. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  737. static inline int task_running(struct rq *rq, struct task_struct *p)
  738. {
  739. #ifdef CONFIG_SMP
  740. return p->oncpu;
  741. #else
  742. return task_current(rq, p);
  743. #endif
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. #ifdef CONFIG_SMP
  748. /*
  749. * We can optimise this out completely for !SMP, because the
  750. * SMP rebalancing from interrupt is the only thing that cares
  751. * here.
  752. */
  753. next->oncpu = 1;
  754. #endif
  755. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  756. spin_unlock_irq(&rq->lock);
  757. #else
  758. spin_unlock(&rq->lock);
  759. #endif
  760. }
  761. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  762. {
  763. #ifdef CONFIG_SMP
  764. /*
  765. * After ->oncpu is cleared, the task can be moved to a different CPU.
  766. * We must ensure this doesn't happen until the switch is completely
  767. * finished.
  768. */
  769. smp_wmb();
  770. prev->oncpu = 0;
  771. #endif
  772. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  773. local_irq_enable();
  774. #endif
  775. }
  776. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  777. /*
  778. * __task_rq_lock - lock the runqueue a given task resides on.
  779. * Must be called interrupts disabled.
  780. */
  781. static inline struct rq *__task_rq_lock(struct task_struct *p)
  782. __acquires(rq->lock)
  783. {
  784. for (;;) {
  785. struct rq *rq = task_rq(p);
  786. spin_lock(&rq->lock);
  787. if (likely(rq == task_rq(p)))
  788. return rq;
  789. spin_unlock(&rq->lock);
  790. }
  791. }
  792. /*
  793. * task_rq_lock - lock the runqueue a given task resides on and disable
  794. * interrupts. Note the ordering: we can safely lookup the task_rq without
  795. * explicitly disabling preemption.
  796. */
  797. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. for (;;) {
  802. local_irq_save(*flags);
  803. rq = task_rq(p);
  804. spin_lock(&rq->lock);
  805. if (likely(rq == task_rq(p)))
  806. return rq;
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. }
  810. void task_rq_unlock_wait(struct task_struct *p)
  811. {
  812. struct rq *rq = task_rq(p);
  813. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  814. spin_unlock_wait(&rq->lock);
  815. }
  816. static void __task_rq_unlock(struct rq *rq)
  817. __releases(rq->lock)
  818. {
  819. spin_unlock(&rq->lock);
  820. }
  821. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  822. __releases(rq->lock)
  823. {
  824. spin_unlock_irqrestore(&rq->lock, *flags);
  825. }
  826. /*
  827. * this_rq_lock - lock this runqueue and disable interrupts.
  828. */
  829. static struct rq *this_rq_lock(void)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. local_irq_disable();
  834. rq = this_rq();
  835. spin_lock(&rq->lock);
  836. return rq;
  837. }
  838. #ifdef CONFIG_SCHED_HRTICK
  839. /*
  840. * Use HR-timers to deliver accurate preemption points.
  841. *
  842. * Its all a bit involved since we cannot program an hrt while holding the
  843. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  844. * reschedule event.
  845. *
  846. * When we get rescheduled we reprogram the hrtick_timer outside of the
  847. * rq->lock.
  848. */
  849. /*
  850. * Use hrtick when:
  851. * - enabled by features
  852. * - hrtimer is actually high res
  853. */
  854. static inline int hrtick_enabled(struct rq *rq)
  855. {
  856. if (!sched_feat(HRTICK))
  857. return 0;
  858. if (!cpu_active(cpu_of(rq)))
  859. return 0;
  860. return hrtimer_is_hres_active(&rq->hrtick_timer);
  861. }
  862. static void hrtick_clear(struct rq *rq)
  863. {
  864. if (hrtimer_active(&rq->hrtick_timer))
  865. hrtimer_cancel(&rq->hrtick_timer);
  866. }
  867. /*
  868. * High-resolution timer tick.
  869. * Runs from hardirq context with interrupts disabled.
  870. */
  871. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  872. {
  873. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  874. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  875. spin_lock(&rq->lock);
  876. update_rq_clock(rq);
  877. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  878. spin_unlock(&rq->lock);
  879. return HRTIMER_NORESTART;
  880. }
  881. #ifdef CONFIG_SMP
  882. /*
  883. * called from hardirq (IPI) context
  884. */
  885. static void __hrtick_start(void *arg)
  886. {
  887. struct rq *rq = arg;
  888. spin_lock(&rq->lock);
  889. hrtimer_restart(&rq->hrtick_timer);
  890. rq->hrtick_csd_pending = 0;
  891. spin_unlock(&rq->lock);
  892. }
  893. /*
  894. * Called to set the hrtick timer state.
  895. *
  896. * called with rq->lock held and irqs disabled
  897. */
  898. static void hrtick_start(struct rq *rq, u64 delay)
  899. {
  900. struct hrtimer *timer = &rq->hrtick_timer;
  901. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  902. hrtimer_set_expires(timer, time);
  903. if (rq == this_rq()) {
  904. hrtimer_restart(timer);
  905. } else if (!rq->hrtick_csd_pending) {
  906. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  907. rq->hrtick_csd_pending = 1;
  908. }
  909. }
  910. static int
  911. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  912. {
  913. int cpu = (int)(long)hcpu;
  914. switch (action) {
  915. case CPU_UP_CANCELED:
  916. case CPU_UP_CANCELED_FROZEN:
  917. case CPU_DOWN_PREPARE:
  918. case CPU_DOWN_PREPARE_FROZEN:
  919. case CPU_DEAD:
  920. case CPU_DEAD_FROZEN:
  921. hrtick_clear(cpu_rq(cpu));
  922. return NOTIFY_OK;
  923. }
  924. return NOTIFY_DONE;
  925. }
  926. static __init void init_hrtick(void)
  927. {
  928. hotcpu_notifier(hotplug_hrtick, 0);
  929. }
  930. #else
  931. /*
  932. * Called to set the hrtick timer state.
  933. *
  934. * called with rq->lock held and irqs disabled
  935. */
  936. static void hrtick_start(struct rq *rq, u64 delay)
  937. {
  938. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  955. }
  956. #else /* CONFIG_SCHED_HRTICK */
  957. static inline void hrtick_clear(struct rq *rq)
  958. {
  959. }
  960. static inline void init_rq_hrtick(struct rq *rq)
  961. {
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SCHED_HRTICK */
  967. /*
  968. * resched_task - mark a task 'to be rescheduled now'.
  969. *
  970. * On UP this means the setting of the need_resched flag, on SMP it
  971. * might also involve a cross-CPU call to trigger the scheduler on
  972. * the target CPU.
  973. */
  974. #ifdef CONFIG_SMP
  975. #ifndef tsk_is_polling
  976. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  977. #endif
  978. static void resched_task(struct task_struct *p)
  979. {
  980. int cpu;
  981. assert_spin_locked(&task_rq(p)->lock);
  982. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  983. return;
  984. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  985. cpu = task_cpu(p);
  986. if (cpu == smp_processor_id())
  987. return;
  988. /* NEED_RESCHED must be visible before we test polling */
  989. smp_mb();
  990. if (!tsk_is_polling(p))
  991. smp_send_reschedule(cpu);
  992. }
  993. static void resched_cpu(int cpu)
  994. {
  995. struct rq *rq = cpu_rq(cpu);
  996. unsigned long flags;
  997. if (!spin_trylock_irqsave(&rq->lock, flags))
  998. return;
  999. resched_task(cpu_curr(cpu));
  1000. spin_unlock_irqrestore(&rq->lock, flags);
  1001. }
  1002. #ifdef CONFIG_NO_HZ
  1003. /*
  1004. * When add_timer_on() enqueues a timer into the timer wheel of an
  1005. * idle CPU then this timer might expire before the next timer event
  1006. * which is scheduled to wake up that CPU. In case of a completely
  1007. * idle system the next event might even be infinite time into the
  1008. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1009. * leaves the inner idle loop so the newly added timer is taken into
  1010. * account when the CPU goes back to idle and evaluates the timer
  1011. * wheel for the next timer event.
  1012. */
  1013. void wake_up_idle_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /*
  1019. * This is safe, as this function is called with the timer
  1020. * wheel base lock of (cpu) held. When the CPU is on the way
  1021. * to idle and has not yet set rq->curr to idle then it will
  1022. * be serialized on the timer wheel base lock and take the new
  1023. * timer into account automatically.
  1024. */
  1025. if (rq->curr != rq->idle)
  1026. return;
  1027. /*
  1028. * We can set TIF_RESCHED on the idle task of the other CPU
  1029. * lockless. The worst case is that the other CPU runs the
  1030. * idle task through an additional NOOP schedule()
  1031. */
  1032. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1033. /* NEED_RESCHED must be visible before we test polling */
  1034. smp_mb();
  1035. if (!tsk_is_polling(rq->idle))
  1036. smp_send_reschedule(cpu);
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. #else /* !CONFIG_SMP */
  1040. static void resched_task(struct task_struct *p)
  1041. {
  1042. assert_spin_locked(&task_rq(p)->lock);
  1043. set_tsk_need_resched(p);
  1044. }
  1045. #endif /* CONFIG_SMP */
  1046. #if BITS_PER_LONG == 32
  1047. # define WMULT_CONST (~0UL)
  1048. #else
  1049. # define WMULT_CONST (1UL << 32)
  1050. #endif
  1051. #define WMULT_SHIFT 32
  1052. /*
  1053. * Shift right and round:
  1054. */
  1055. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1056. /*
  1057. * delta *= weight / lw
  1058. */
  1059. static unsigned long
  1060. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1061. struct load_weight *lw)
  1062. {
  1063. u64 tmp;
  1064. if (!lw->inv_weight) {
  1065. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1066. lw->inv_weight = 1;
  1067. else
  1068. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1069. / (lw->weight+1);
  1070. }
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1083. {
  1084. lw->weight += inc;
  1085. lw->inv_weight = 0;
  1086. }
  1087. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1088. {
  1089. lw->weight -= dec;
  1090. lw->inv_weight = 0;
  1091. }
  1092. /*
  1093. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1094. * of tasks with abnormal "nice" values across CPUs the contribution that
  1095. * each task makes to its run queue's load is weighted according to its
  1096. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1097. * scaled version of the new time slice allocation that they receive on time
  1098. * slice expiry etc.
  1099. */
  1100. #define WEIGHT_IDLEPRIO 2
  1101. #define WMULT_IDLEPRIO (1 << 31)
  1102. /*
  1103. * Nice levels are multiplicative, with a gentle 10% change for every
  1104. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1105. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1106. * that remained on nice 0.
  1107. *
  1108. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1109. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1110. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1111. * If a task goes up by ~10% and another task goes down by ~10% then
  1112. * the relative distance between them is ~25%.)
  1113. */
  1114. static const int prio_to_weight[40] = {
  1115. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1116. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1117. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1118. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1119. /* 0 */ 1024, 820, 655, 526, 423,
  1120. /* 5 */ 335, 272, 215, 172, 137,
  1121. /* 10 */ 110, 87, 70, 56, 45,
  1122. /* 15 */ 36, 29, 23, 18, 15,
  1123. };
  1124. /*
  1125. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1126. *
  1127. * In cases where the weight does not change often, we can use the
  1128. * precalculated inverse to speed up arithmetics by turning divisions
  1129. * into multiplications:
  1130. */
  1131. static const u32 prio_to_wmult[40] = {
  1132. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1133. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1134. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1135. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1136. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1137. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1138. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1139. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1140. };
  1141. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1142. /*
  1143. * runqueue iterator, to support SMP load-balancing between different
  1144. * scheduling classes, without having to expose their internal data
  1145. * structures to the load-balancing proper:
  1146. */
  1147. struct rq_iterator {
  1148. void *arg;
  1149. struct task_struct *(*start)(void *);
  1150. struct task_struct *(*next)(void *);
  1151. };
  1152. #ifdef CONFIG_SMP
  1153. static unsigned long
  1154. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. unsigned long max_load_move, struct sched_domain *sd,
  1156. enum cpu_idle_type idle, int *all_pinned,
  1157. int *this_best_prio, struct rq_iterator *iterator);
  1158. static int
  1159. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. struct sched_domain *sd, enum cpu_idle_type idle,
  1161. struct rq_iterator *iterator);
  1162. #endif
  1163. #ifdef CONFIG_CGROUP_CPUACCT
  1164. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1165. #else
  1166. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1167. #endif
  1168. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1169. {
  1170. update_load_add(&rq->load, load);
  1171. }
  1172. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1173. {
  1174. update_load_sub(&rq->load, load);
  1175. }
  1176. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1177. typedef int (*tg_visitor)(struct task_group *, void *);
  1178. /*
  1179. * Iterate the full tree, calling @down when first entering a node and @up when
  1180. * leaving it for the final time.
  1181. */
  1182. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1183. {
  1184. struct task_group *parent, *child;
  1185. int ret;
  1186. rcu_read_lock();
  1187. parent = &root_task_group;
  1188. down:
  1189. ret = (*down)(parent, data);
  1190. if (ret)
  1191. goto out_unlock;
  1192. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1193. parent = child;
  1194. goto down;
  1195. up:
  1196. continue;
  1197. }
  1198. ret = (*up)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. child = parent;
  1202. parent = parent->parent;
  1203. if (parent)
  1204. goto up;
  1205. out_unlock:
  1206. rcu_read_unlock();
  1207. return ret;
  1208. }
  1209. static int tg_nop(struct task_group *tg, void *data)
  1210. {
  1211. return 0;
  1212. }
  1213. #endif
  1214. #ifdef CONFIG_SMP
  1215. static unsigned long source_load(int cpu, int type);
  1216. static unsigned long target_load(int cpu, int type);
  1217. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1218. static unsigned long cpu_avg_load_per_task(int cpu)
  1219. {
  1220. struct rq *rq = cpu_rq(cpu);
  1221. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1222. if (nr_running)
  1223. rq->avg_load_per_task = rq->load.weight / nr_running;
  1224. else
  1225. rq->avg_load_per_task = 0;
  1226. return rq->avg_load_per_task;
  1227. }
  1228. #ifdef CONFIG_FAIR_GROUP_SCHED
  1229. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1230. /*
  1231. * Calculate and set the cpu's group shares.
  1232. */
  1233. static void
  1234. update_group_shares_cpu(struct task_group *tg, int cpu,
  1235. unsigned long sd_shares, unsigned long sd_rq_weight)
  1236. {
  1237. int boost = 0;
  1238. unsigned long shares;
  1239. unsigned long rq_weight;
  1240. if (!tg->se[cpu])
  1241. return;
  1242. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1243. /*
  1244. * If there are currently no tasks on the cpu pretend there is one of
  1245. * average load so that when a new task gets to run here it will not
  1246. * get delayed by group starvation.
  1247. */
  1248. if (!rq_weight) {
  1249. boost = 1;
  1250. rq_weight = NICE_0_LOAD;
  1251. }
  1252. if (unlikely(rq_weight > sd_rq_weight))
  1253. rq_weight = sd_rq_weight;
  1254. /*
  1255. * \Sum shares * rq_weight
  1256. * shares = -----------------------
  1257. * \Sum rq_weight
  1258. *
  1259. */
  1260. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1261. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1262. if (abs(shares - tg->se[cpu]->load.weight) >
  1263. sysctl_sched_shares_thresh) {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long flags;
  1266. spin_lock_irqsave(&rq->lock, flags);
  1267. /*
  1268. * record the actual number of shares, not the boosted amount.
  1269. */
  1270. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1271. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1272. __set_se_shares(tg->se[cpu], shares);
  1273. spin_unlock_irqrestore(&rq->lock, flags);
  1274. }
  1275. }
  1276. /*
  1277. * Re-compute the task group their per cpu shares over the given domain.
  1278. * This needs to be done in a bottom-up fashion because the rq weight of a
  1279. * parent group depends on the shares of its child groups.
  1280. */
  1281. static int tg_shares_up(struct task_group *tg, void *data)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long shares = 0;
  1285. struct sched_domain *sd = data;
  1286. int i;
  1287. for_each_cpu_mask(i, sd->span) {
  1288. rq_weight += tg->cfs_rq[i]->load.weight;
  1289. shares += tg->cfs_rq[i]->shares;
  1290. }
  1291. if ((!shares && rq_weight) || shares > tg->shares)
  1292. shares = tg->shares;
  1293. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1294. shares = tg->shares;
  1295. if (!rq_weight)
  1296. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1297. for_each_cpu_mask(i, sd->span)
  1298. update_group_shares_cpu(tg, i, shares, rq_weight);
  1299. return 0;
  1300. }
  1301. /*
  1302. * Compute the cpu's hierarchical load factor for each task group.
  1303. * This needs to be done in a top-down fashion because the load of a child
  1304. * group is a fraction of its parents load.
  1305. */
  1306. static int tg_load_down(struct task_group *tg, void *data)
  1307. {
  1308. unsigned long load;
  1309. long cpu = (long)data;
  1310. if (!tg->parent) {
  1311. load = cpu_rq(cpu)->load.weight;
  1312. } else {
  1313. load = tg->parent->cfs_rq[cpu]->h_load;
  1314. load *= tg->cfs_rq[cpu]->shares;
  1315. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1316. }
  1317. tg->cfs_rq[cpu]->h_load = load;
  1318. return 0;
  1319. }
  1320. static void update_shares(struct sched_domain *sd)
  1321. {
  1322. u64 now = cpu_clock(raw_smp_processor_id());
  1323. s64 elapsed = now - sd->last_update;
  1324. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1325. sd->last_update = now;
  1326. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1327. }
  1328. }
  1329. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1330. {
  1331. spin_unlock(&rq->lock);
  1332. update_shares(sd);
  1333. spin_lock(&rq->lock);
  1334. }
  1335. static void update_h_load(long cpu)
  1336. {
  1337. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1338. }
  1339. #else
  1340. static inline void update_shares(struct sched_domain *sd)
  1341. {
  1342. }
  1343. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1344. {
  1345. }
  1346. #endif
  1347. #endif
  1348. #ifdef CONFIG_FAIR_GROUP_SCHED
  1349. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1350. {
  1351. #ifdef CONFIG_SMP
  1352. cfs_rq->shares = shares;
  1353. #endif
  1354. }
  1355. #endif
  1356. #include "sched_stats.h"
  1357. #include "sched_idletask.c"
  1358. #include "sched_fair.c"
  1359. #include "sched_rt.c"
  1360. #ifdef CONFIG_SCHED_DEBUG
  1361. # include "sched_debug.c"
  1362. #endif
  1363. #define sched_class_highest (&rt_sched_class)
  1364. #define for_each_class(class) \
  1365. for (class = sched_class_highest; class; class = class->next)
  1366. static void inc_nr_running(struct rq *rq)
  1367. {
  1368. rq->nr_running++;
  1369. }
  1370. static void dec_nr_running(struct rq *rq)
  1371. {
  1372. rq->nr_running--;
  1373. }
  1374. static void set_load_weight(struct task_struct *p)
  1375. {
  1376. if (task_has_rt_policy(p)) {
  1377. p->se.load.weight = prio_to_weight[0] * 2;
  1378. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1379. return;
  1380. }
  1381. /*
  1382. * SCHED_IDLE tasks get minimal weight:
  1383. */
  1384. if (p->policy == SCHED_IDLE) {
  1385. p->se.load.weight = WEIGHT_IDLEPRIO;
  1386. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1387. return;
  1388. }
  1389. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1390. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1391. }
  1392. static void update_avg(u64 *avg, u64 sample)
  1393. {
  1394. s64 diff = sample - *avg;
  1395. *avg += diff >> 3;
  1396. }
  1397. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1398. {
  1399. sched_info_queued(p);
  1400. p->sched_class->enqueue_task(rq, p, wakeup);
  1401. p->se.on_rq = 1;
  1402. }
  1403. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1404. {
  1405. if (sleep && p->se.last_wakeup) {
  1406. update_avg(&p->se.avg_overlap,
  1407. p->se.sum_exec_runtime - p->se.last_wakeup);
  1408. p->se.last_wakeup = 0;
  1409. }
  1410. sched_info_dequeued(p);
  1411. p->sched_class->dequeue_task(rq, p, sleep);
  1412. p->se.on_rq = 0;
  1413. }
  1414. /*
  1415. * __normal_prio - return the priority that is based on the static prio
  1416. */
  1417. static inline int __normal_prio(struct task_struct *p)
  1418. {
  1419. return p->static_prio;
  1420. }
  1421. /*
  1422. * Calculate the expected normal priority: i.e. priority
  1423. * without taking RT-inheritance into account. Might be
  1424. * boosted by interactivity modifiers. Changes upon fork,
  1425. * setprio syscalls, and whenever the interactivity
  1426. * estimator recalculates.
  1427. */
  1428. static inline int normal_prio(struct task_struct *p)
  1429. {
  1430. int prio;
  1431. if (task_has_rt_policy(p))
  1432. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1433. else
  1434. prio = __normal_prio(p);
  1435. return prio;
  1436. }
  1437. /*
  1438. * Calculate the current priority, i.e. the priority
  1439. * taken into account by the scheduler. This value might
  1440. * be boosted by RT tasks, or might be boosted by
  1441. * interactivity modifiers. Will be RT if the task got
  1442. * RT-boosted. If not then it returns p->normal_prio.
  1443. */
  1444. static int effective_prio(struct task_struct *p)
  1445. {
  1446. p->normal_prio = normal_prio(p);
  1447. /*
  1448. * If we are RT tasks or we were boosted to RT priority,
  1449. * keep the priority unchanged. Otherwise, update priority
  1450. * to the normal priority:
  1451. */
  1452. if (!rt_prio(p->prio))
  1453. return p->normal_prio;
  1454. return p->prio;
  1455. }
  1456. /*
  1457. * activate_task - move a task to the runqueue.
  1458. */
  1459. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1460. {
  1461. if (task_contributes_to_load(p))
  1462. rq->nr_uninterruptible--;
  1463. enqueue_task(rq, p, wakeup);
  1464. inc_nr_running(rq);
  1465. }
  1466. /*
  1467. * deactivate_task - remove a task from the runqueue.
  1468. */
  1469. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1470. {
  1471. if (task_contributes_to_load(p))
  1472. rq->nr_uninterruptible++;
  1473. dequeue_task(rq, p, sleep);
  1474. dec_nr_running(rq);
  1475. }
  1476. /**
  1477. * task_curr - is this task currently executing on a CPU?
  1478. * @p: the task in question.
  1479. */
  1480. inline int task_curr(const struct task_struct *p)
  1481. {
  1482. return cpu_curr(task_cpu(p)) == p;
  1483. }
  1484. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1485. {
  1486. set_task_rq(p, cpu);
  1487. #ifdef CONFIG_SMP
  1488. /*
  1489. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1490. * successfuly executed on another CPU. We must ensure that updates of
  1491. * per-task data have been completed by this moment.
  1492. */
  1493. smp_wmb();
  1494. task_thread_info(p)->cpu = cpu;
  1495. #endif
  1496. }
  1497. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1498. const struct sched_class *prev_class,
  1499. int oldprio, int running)
  1500. {
  1501. if (prev_class != p->sched_class) {
  1502. if (prev_class->switched_from)
  1503. prev_class->switched_from(rq, p, running);
  1504. p->sched_class->switched_to(rq, p, running);
  1505. } else
  1506. p->sched_class->prio_changed(rq, p, oldprio, running);
  1507. }
  1508. #ifdef CONFIG_SMP
  1509. /* Used instead of source_load when we know the type == 0 */
  1510. static unsigned long weighted_cpuload(const int cpu)
  1511. {
  1512. return cpu_rq(cpu)->load.weight;
  1513. }
  1514. /*
  1515. * Is this task likely cache-hot:
  1516. */
  1517. static int
  1518. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1519. {
  1520. s64 delta;
  1521. /*
  1522. * Buddy candidates are cache hot:
  1523. */
  1524. if (sched_feat(CACHE_HOT_BUDDY) &&
  1525. (&p->se == cfs_rq_of(&p->se)->next ||
  1526. &p->se == cfs_rq_of(&p->se)->last))
  1527. return 1;
  1528. if (p->sched_class != &fair_sched_class)
  1529. return 0;
  1530. if (sysctl_sched_migration_cost == -1)
  1531. return 1;
  1532. if (sysctl_sched_migration_cost == 0)
  1533. return 0;
  1534. delta = now - p->se.exec_start;
  1535. return delta < (s64)sysctl_sched_migration_cost;
  1536. }
  1537. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1538. {
  1539. int old_cpu = task_cpu(p);
  1540. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1541. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1542. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1543. u64 clock_offset;
  1544. clock_offset = old_rq->clock - new_rq->clock;
  1545. #ifdef CONFIG_SCHEDSTATS
  1546. if (p->se.wait_start)
  1547. p->se.wait_start -= clock_offset;
  1548. if (p->se.sleep_start)
  1549. p->se.sleep_start -= clock_offset;
  1550. if (p->se.block_start)
  1551. p->se.block_start -= clock_offset;
  1552. #endif
  1553. if (old_cpu != new_cpu) {
  1554. p->se.nr_migrations++;
  1555. #ifdef CONFIG_SCHEDSTATS
  1556. if (task_hot(p, old_rq->clock, NULL))
  1557. schedstat_inc(p, se.nr_forced2_migrations);
  1558. #endif
  1559. }
  1560. p->se.vruntime -= old_cfsrq->min_vruntime -
  1561. new_cfsrq->min_vruntime;
  1562. __set_task_cpu(p, new_cpu);
  1563. }
  1564. struct migration_req {
  1565. struct list_head list;
  1566. struct task_struct *task;
  1567. int dest_cpu;
  1568. struct completion done;
  1569. };
  1570. /*
  1571. * The task's runqueue lock must be held.
  1572. * Returns true if you have to wait for migration thread.
  1573. */
  1574. static int
  1575. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1576. {
  1577. struct rq *rq = task_rq(p);
  1578. /*
  1579. * If the task is not on a runqueue (and not running), then
  1580. * it is sufficient to simply update the task's cpu field.
  1581. */
  1582. if (!p->se.on_rq && !task_running(rq, p)) {
  1583. set_task_cpu(p, dest_cpu);
  1584. return 0;
  1585. }
  1586. init_completion(&req->done);
  1587. req->task = p;
  1588. req->dest_cpu = dest_cpu;
  1589. list_add(&req->list, &rq->migration_queue);
  1590. return 1;
  1591. }
  1592. /*
  1593. * wait_task_inactive - wait for a thread to unschedule.
  1594. *
  1595. * If @match_state is nonzero, it's the @p->state value just checked and
  1596. * not expected to change. If it changes, i.e. @p might have woken up,
  1597. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1598. * we return a positive number (its total switch count). If a second call
  1599. * a short while later returns the same number, the caller can be sure that
  1600. * @p has remained unscheduled the whole time.
  1601. *
  1602. * The caller must ensure that the task *will* unschedule sometime soon,
  1603. * else this function might spin for a *long* time. This function can't
  1604. * be called with interrupts off, or it may introduce deadlock with
  1605. * smp_call_function() if an IPI is sent by the same process we are
  1606. * waiting to become inactive.
  1607. */
  1608. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1609. {
  1610. unsigned long flags;
  1611. int running, on_rq;
  1612. unsigned long ncsw;
  1613. struct rq *rq;
  1614. for (;;) {
  1615. /*
  1616. * We do the initial early heuristics without holding
  1617. * any task-queue locks at all. We'll only try to get
  1618. * the runqueue lock when things look like they will
  1619. * work out!
  1620. */
  1621. rq = task_rq(p);
  1622. /*
  1623. * If the task is actively running on another CPU
  1624. * still, just relax and busy-wait without holding
  1625. * any locks.
  1626. *
  1627. * NOTE! Since we don't hold any locks, it's not
  1628. * even sure that "rq" stays as the right runqueue!
  1629. * But we don't care, since "task_running()" will
  1630. * return false if the runqueue has changed and p
  1631. * is actually now running somewhere else!
  1632. */
  1633. while (task_running(rq, p)) {
  1634. if (match_state && unlikely(p->state != match_state))
  1635. return 0;
  1636. cpu_relax();
  1637. }
  1638. /*
  1639. * Ok, time to look more closely! We need the rq
  1640. * lock now, to be *sure*. If we're wrong, we'll
  1641. * just go back and repeat.
  1642. */
  1643. rq = task_rq_lock(p, &flags);
  1644. trace_sched_wait_task(rq, p);
  1645. running = task_running(rq, p);
  1646. on_rq = p->se.on_rq;
  1647. ncsw = 0;
  1648. if (!match_state || p->state == match_state)
  1649. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1650. task_rq_unlock(rq, &flags);
  1651. /*
  1652. * If it changed from the expected state, bail out now.
  1653. */
  1654. if (unlikely(!ncsw))
  1655. break;
  1656. /*
  1657. * Was it really running after all now that we
  1658. * checked with the proper locks actually held?
  1659. *
  1660. * Oops. Go back and try again..
  1661. */
  1662. if (unlikely(running)) {
  1663. cpu_relax();
  1664. continue;
  1665. }
  1666. /*
  1667. * It's not enough that it's not actively running,
  1668. * it must be off the runqueue _entirely_, and not
  1669. * preempted!
  1670. *
  1671. * So if it wa still runnable (but just not actively
  1672. * running right now), it's preempted, and we should
  1673. * yield - it could be a while.
  1674. */
  1675. if (unlikely(on_rq)) {
  1676. schedule_timeout_uninterruptible(1);
  1677. continue;
  1678. }
  1679. /*
  1680. * Ahh, all good. It wasn't running, and it wasn't
  1681. * runnable, which means that it will never become
  1682. * running in the future either. We're all done!
  1683. */
  1684. break;
  1685. }
  1686. return ncsw;
  1687. }
  1688. /***
  1689. * kick_process - kick a running thread to enter/exit the kernel
  1690. * @p: the to-be-kicked thread
  1691. *
  1692. * Cause a process which is running on another CPU to enter
  1693. * kernel-mode, without any delay. (to get signals handled.)
  1694. *
  1695. * NOTE: this function doesnt have to take the runqueue lock,
  1696. * because all it wants to ensure is that the remote task enters
  1697. * the kernel. If the IPI races and the task has been migrated
  1698. * to another CPU then no harm is done and the purpose has been
  1699. * achieved as well.
  1700. */
  1701. void kick_process(struct task_struct *p)
  1702. {
  1703. int cpu;
  1704. preempt_disable();
  1705. cpu = task_cpu(p);
  1706. if ((cpu != smp_processor_id()) && task_curr(p))
  1707. smp_send_reschedule(cpu);
  1708. preempt_enable();
  1709. }
  1710. /*
  1711. * Return a low guess at the load of a migration-source cpu weighted
  1712. * according to the scheduling class and "nice" value.
  1713. *
  1714. * We want to under-estimate the load of migration sources, to
  1715. * balance conservatively.
  1716. */
  1717. static unsigned long source_load(int cpu, int type)
  1718. {
  1719. struct rq *rq = cpu_rq(cpu);
  1720. unsigned long total = weighted_cpuload(cpu);
  1721. if (type == 0 || !sched_feat(LB_BIAS))
  1722. return total;
  1723. return min(rq->cpu_load[type-1], total);
  1724. }
  1725. /*
  1726. * Return a high guess at the load of a migration-target cpu weighted
  1727. * according to the scheduling class and "nice" value.
  1728. */
  1729. static unsigned long target_load(int cpu, int type)
  1730. {
  1731. struct rq *rq = cpu_rq(cpu);
  1732. unsigned long total = weighted_cpuload(cpu);
  1733. if (type == 0 || !sched_feat(LB_BIAS))
  1734. return total;
  1735. return max(rq->cpu_load[type-1], total);
  1736. }
  1737. /*
  1738. * find_idlest_group finds and returns the least busy CPU group within the
  1739. * domain.
  1740. */
  1741. static struct sched_group *
  1742. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1743. {
  1744. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1745. unsigned long min_load = ULONG_MAX, this_load = 0;
  1746. int load_idx = sd->forkexec_idx;
  1747. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1748. do {
  1749. unsigned long load, avg_load;
  1750. int local_group;
  1751. int i;
  1752. /* Skip over this group if it has no CPUs allowed */
  1753. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1754. continue;
  1755. local_group = cpu_isset(this_cpu, group->cpumask);
  1756. /* Tally up the load of all CPUs in the group */
  1757. avg_load = 0;
  1758. for_each_cpu_mask_nr(i, group->cpumask) {
  1759. /* Bias balancing toward cpus of our domain */
  1760. if (local_group)
  1761. load = source_load(i, load_idx);
  1762. else
  1763. load = target_load(i, load_idx);
  1764. avg_load += load;
  1765. }
  1766. /* Adjust by relative CPU power of the group */
  1767. avg_load = sg_div_cpu_power(group,
  1768. avg_load * SCHED_LOAD_SCALE);
  1769. if (local_group) {
  1770. this_load = avg_load;
  1771. this = group;
  1772. } else if (avg_load < min_load) {
  1773. min_load = avg_load;
  1774. idlest = group;
  1775. }
  1776. } while (group = group->next, group != sd->groups);
  1777. if (!idlest || 100*this_load < imbalance*min_load)
  1778. return NULL;
  1779. return idlest;
  1780. }
  1781. /*
  1782. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1783. */
  1784. static int
  1785. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1786. cpumask_t *tmp)
  1787. {
  1788. unsigned long load, min_load = ULONG_MAX;
  1789. int idlest = -1;
  1790. int i;
  1791. /* Traverse only the allowed CPUs */
  1792. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1793. for_each_cpu_mask_nr(i, *tmp) {
  1794. load = weighted_cpuload(i);
  1795. if (load < min_load || (load == min_load && i == this_cpu)) {
  1796. min_load = load;
  1797. idlest = i;
  1798. }
  1799. }
  1800. return idlest;
  1801. }
  1802. /*
  1803. * sched_balance_self: balance the current task (running on cpu) in domains
  1804. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1805. * SD_BALANCE_EXEC.
  1806. *
  1807. * Balance, ie. select the least loaded group.
  1808. *
  1809. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1810. *
  1811. * preempt must be disabled.
  1812. */
  1813. static int sched_balance_self(int cpu, int flag)
  1814. {
  1815. struct task_struct *t = current;
  1816. struct sched_domain *tmp, *sd = NULL;
  1817. for_each_domain(cpu, tmp) {
  1818. /*
  1819. * If power savings logic is enabled for a domain, stop there.
  1820. */
  1821. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1822. break;
  1823. if (tmp->flags & flag)
  1824. sd = tmp;
  1825. }
  1826. if (sd)
  1827. update_shares(sd);
  1828. while (sd) {
  1829. cpumask_t span, tmpmask;
  1830. struct sched_group *group;
  1831. int new_cpu, weight;
  1832. if (!(sd->flags & flag)) {
  1833. sd = sd->child;
  1834. continue;
  1835. }
  1836. span = sd->span;
  1837. group = find_idlest_group(sd, t, cpu);
  1838. if (!group) {
  1839. sd = sd->child;
  1840. continue;
  1841. }
  1842. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1843. if (new_cpu == -1 || new_cpu == cpu) {
  1844. /* Now try balancing at a lower domain level of cpu */
  1845. sd = sd->child;
  1846. continue;
  1847. }
  1848. /* Now try balancing at a lower domain level of new_cpu */
  1849. cpu = new_cpu;
  1850. sd = NULL;
  1851. weight = cpus_weight(span);
  1852. for_each_domain(cpu, tmp) {
  1853. if (weight <= cpus_weight(tmp->span))
  1854. break;
  1855. if (tmp->flags & flag)
  1856. sd = tmp;
  1857. }
  1858. /* while loop will break here if sd == NULL */
  1859. }
  1860. return cpu;
  1861. }
  1862. #endif /* CONFIG_SMP */
  1863. /**
  1864. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1865. * @p: the task to evaluate
  1866. * @func: the function to be called
  1867. * @info: the function call argument
  1868. *
  1869. * Calls the function @func when the task is currently running. This might
  1870. * be on the current CPU, which just calls the function directly
  1871. */
  1872. void task_oncpu_function_call(struct task_struct *p,
  1873. void (*func) (void *info), void *info)
  1874. {
  1875. int cpu;
  1876. preempt_disable();
  1877. cpu = task_cpu(p);
  1878. if (task_curr(p))
  1879. smp_call_function_single(cpu, func, info, 1);
  1880. preempt_enable();
  1881. }
  1882. /***
  1883. * try_to_wake_up - wake up a thread
  1884. * @p: the to-be-woken-up thread
  1885. * @state: the mask of task states that can be woken
  1886. * @sync: do a synchronous wakeup?
  1887. *
  1888. * Put it on the run-queue if it's not already there. The "current"
  1889. * thread is always on the run-queue (except when the actual
  1890. * re-schedule is in progress), and as such you're allowed to do
  1891. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1892. * runnable without the overhead of this.
  1893. *
  1894. * returns failure only if the task is already active.
  1895. */
  1896. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1897. {
  1898. int cpu, orig_cpu, this_cpu, success = 0;
  1899. unsigned long flags;
  1900. long old_state;
  1901. struct rq *rq;
  1902. if (!sched_feat(SYNC_WAKEUPS))
  1903. sync = 0;
  1904. #ifdef CONFIG_SMP
  1905. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1906. struct sched_domain *sd;
  1907. this_cpu = raw_smp_processor_id();
  1908. cpu = task_cpu(p);
  1909. for_each_domain(this_cpu, sd) {
  1910. if (cpu_isset(cpu, sd->span)) {
  1911. update_shares(sd);
  1912. break;
  1913. }
  1914. }
  1915. }
  1916. #endif
  1917. smp_wmb();
  1918. rq = task_rq_lock(p, &flags);
  1919. old_state = p->state;
  1920. if (!(old_state & state))
  1921. goto out;
  1922. if (p->se.on_rq)
  1923. goto out_running;
  1924. cpu = task_cpu(p);
  1925. orig_cpu = cpu;
  1926. this_cpu = smp_processor_id();
  1927. #ifdef CONFIG_SMP
  1928. if (unlikely(task_running(rq, p)))
  1929. goto out_activate;
  1930. cpu = p->sched_class->select_task_rq(p, sync);
  1931. if (cpu != orig_cpu) {
  1932. set_task_cpu(p, cpu);
  1933. task_rq_unlock(rq, &flags);
  1934. /* might preempt at this point */
  1935. rq = task_rq_lock(p, &flags);
  1936. old_state = p->state;
  1937. if (!(old_state & state))
  1938. goto out;
  1939. if (p->se.on_rq)
  1940. goto out_running;
  1941. this_cpu = smp_processor_id();
  1942. cpu = task_cpu(p);
  1943. }
  1944. #ifdef CONFIG_SCHEDSTATS
  1945. schedstat_inc(rq, ttwu_count);
  1946. if (cpu == this_cpu)
  1947. schedstat_inc(rq, ttwu_local);
  1948. else {
  1949. struct sched_domain *sd;
  1950. for_each_domain(this_cpu, sd) {
  1951. if (cpu_isset(cpu, sd->span)) {
  1952. schedstat_inc(sd, ttwu_wake_remote);
  1953. break;
  1954. }
  1955. }
  1956. }
  1957. #endif /* CONFIG_SCHEDSTATS */
  1958. out_activate:
  1959. #endif /* CONFIG_SMP */
  1960. schedstat_inc(p, se.nr_wakeups);
  1961. if (sync)
  1962. schedstat_inc(p, se.nr_wakeups_sync);
  1963. if (orig_cpu != cpu)
  1964. schedstat_inc(p, se.nr_wakeups_migrate);
  1965. if (cpu == this_cpu)
  1966. schedstat_inc(p, se.nr_wakeups_local);
  1967. else
  1968. schedstat_inc(p, se.nr_wakeups_remote);
  1969. update_rq_clock(rq);
  1970. activate_task(rq, p, 1);
  1971. success = 1;
  1972. out_running:
  1973. trace_sched_wakeup(rq, p);
  1974. check_preempt_curr(rq, p, sync);
  1975. p->state = TASK_RUNNING;
  1976. #ifdef CONFIG_SMP
  1977. if (p->sched_class->task_wake_up)
  1978. p->sched_class->task_wake_up(rq, p);
  1979. #endif
  1980. out:
  1981. current->se.last_wakeup = current->se.sum_exec_runtime;
  1982. task_rq_unlock(rq, &flags);
  1983. return success;
  1984. }
  1985. int wake_up_process(struct task_struct *p)
  1986. {
  1987. return try_to_wake_up(p, TASK_ALL, 0);
  1988. }
  1989. EXPORT_SYMBOL(wake_up_process);
  1990. int wake_up_state(struct task_struct *p, unsigned int state)
  1991. {
  1992. return try_to_wake_up(p, state, 0);
  1993. }
  1994. /*
  1995. * Perform scheduler related setup for a newly forked process p.
  1996. * p is forked by current.
  1997. *
  1998. * __sched_fork() is basic setup used by init_idle() too:
  1999. */
  2000. static void __sched_fork(struct task_struct *p)
  2001. {
  2002. p->se.exec_start = 0;
  2003. p->se.sum_exec_runtime = 0;
  2004. p->se.prev_sum_exec_runtime = 0;
  2005. p->se.nr_migrations = 0;
  2006. p->se.last_wakeup = 0;
  2007. p->se.avg_overlap = 0;
  2008. #ifdef CONFIG_SCHEDSTATS
  2009. p->se.wait_start = 0;
  2010. p->se.sum_sleep_runtime = 0;
  2011. p->se.sleep_start = 0;
  2012. p->se.block_start = 0;
  2013. p->se.sleep_max = 0;
  2014. p->se.block_max = 0;
  2015. p->se.exec_max = 0;
  2016. p->se.slice_max = 0;
  2017. p->se.wait_max = 0;
  2018. #endif
  2019. INIT_LIST_HEAD(&p->rt.run_list);
  2020. p->se.on_rq = 0;
  2021. INIT_LIST_HEAD(&p->se.group_node);
  2022. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2023. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2024. #endif
  2025. /*
  2026. * We mark the process as running here, but have not actually
  2027. * inserted it onto the runqueue yet. This guarantees that
  2028. * nobody will actually run it, and a signal or other external
  2029. * event cannot wake it up and insert it on the runqueue either.
  2030. */
  2031. p->state = TASK_RUNNING;
  2032. }
  2033. /*
  2034. * fork()/clone()-time setup:
  2035. */
  2036. void sched_fork(struct task_struct *p, int clone_flags)
  2037. {
  2038. int cpu = get_cpu();
  2039. __sched_fork(p);
  2040. #ifdef CONFIG_SMP
  2041. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2042. #endif
  2043. set_task_cpu(p, cpu);
  2044. /*
  2045. * Make sure we do not leak PI boosting priority to the child:
  2046. */
  2047. p->prio = current->normal_prio;
  2048. if (!rt_prio(p->prio))
  2049. p->sched_class = &fair_sched_class;
  2050. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2051. if (likely(sched_info_on()))
  2052. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2053. #endif
  2054. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2055. p->oncpu = 0;
  2056. #endif
  2057. #ifdef CONFIG_PREEMPT
  2058. /* Want to start with kernel preemption disabled. */
  2059. task_thread_info(p)->preempt_count = 1;
  2060. #endif
  2061. put_cpu();
  2062. }
  2063. /*
  2064. * wake_up_new_task - wake up a newly created task for the first time.
  2065. *
  2066. * This function will do some initial scheduler statistics housekeeping
  2067. * that must be done for every newly created context, then puts the task
  2068. * on the runqueue and wakes it.
  2069. */
  2070. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2071. {
  2072. unsigned long flags;
  2073. struct rq *rq;
  2074. rq = task_rq_lock(p, &flags);
  2075. BUG_ON(p->state != TASK_RUNNING);
  2076. update_rq_clock(rq);
  2077. p->prio = effective_prio(p);
  2078. if (!p->sched_class->task_new || !current->se.on_rq) {
  2079. activate_task(rq, p, 0);
  2080. } else {
  2081. /*
  2082. * Let the scheduling class do new task startup
  2083. * management (if any):
  2084. */
  2085. p->sched_class->task_new(rq, p);
  2086. inc_nr_running(rq);
  2087. }
  2088. trace_sched_wakeup_new(rq, p);
  2089. check_preempt_curr(rq, p, 0);
  2090. #ifdef CONFIG_SMP
  2091. if (p->sched_class->task_wake_up)
  2092. p->sched_class->task_wake_up(rq, p);
  2093. #endif
  2094. task_rq_unlock(rq, &flags);
  2095. }
  2096. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2097. /**
  2098. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2099. * @notifier: notifier struct to register
  2100. */
  2101. void preempt_notifier_register(struct preempt_notifier *notifier)
  2102. {
  2103. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2104. }
  2105. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2106. /**
  2107. * preempt_notifier_unregister - no longer interested in preemption notifications
  2108. * @notifier: notifier struct to unregister
  2109. *
  2110. * This is safe to call from within a preemption notifier.
  2111. */
  2112. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2113. {
  2114. hlist_del(&notifier->link);
  2115. }
  2116. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2117. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2118. {
  2119. struct preempt_notifier *notifier;
  2120. struct hlist_node *node;
  2121. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2122. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2123. }
  2124. static void
  2125. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2126. struct task_struct *next)
  2127. {
  2128. struct preempt_notifier *notifier;
  2129. struct hlist_node *node;
  2130. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2131. notifier->ops->sched_out(notifier, next);
  2132. }
  2133. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2134. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2135. {
  2136. }
  2137. static void
  2138. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2139. struct task_struct *next)
  2140. {
  2141. }
  2142. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2143. /**
  2144. * prepare_task_switch - prepare to switch tasks
  2145. * @rq: the runqueue preparing to switch
  2146. * @prev: the current task that is being switched out
  2147. * @next: the task we are going to switch to.
  2148. *
  2149. * This is called with the rq lock held and interrupts off. It must
  2150. * be paired with a subsequent finish_task_switch after the context
  2151. * switch.
  2152. *
  2153. * prepare_task_switch sets up locking and calls architecture specific
  2154. * hooks.
  2155. */
  2156. static inline void
  2157. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2158. struct task_struct *next)
  2159. {
  2160. fire_sched_out_preempt_notifiers(prev, next);
  2161. perf_counter_task_sched_out(prev, cpu_of(rq));
  2162. prepare_lock_switch(rq, next);
  2163. prepare_arch_switch(next);
  2164. }
  2165. /**
  2166. * finish_task_switch - clean up after a task-switch
  2167. * @rq: runqueue associated with task-switch
  2168. * @prev: the thread we just switched away from.
  2169. *
  2170. * finish_task_switch must be called after the context switch, paired
  2171. * with a prepare_task_switch call before the context switch.
  2172. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2173. * and do any other architecture-specific cleanup actions.
  2174. *
  2175. * Note that we may have delayed dropping an mm in context_switch(). If
  2176. * so, we finish that here outside of the runqueue lock. (Doing it
  2177. * with the lock held can cause deadlocks; see schedule() for
  2178. * details.)
  2179. */
  2180. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2181. __releases(rq->lock)
  2182. {
  2183. struct mm_struct *mm = rq->prev_mm;
  2184. long prev_state;
  2185. rq->prev_mm = NULL;
  2186. /*
  2187. * A task struct has one reference for the use as "current".
  2188. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2189. * schedule one last time. The schedule call will never return, and
  2190. * the scheduled task must drop that reference.
  2191. * The test for TASK_DEAD must occur while the runqueue locks are
  2192. * still held, otherwise prev could be scheduled on another cpu, die
  2193. * there before we look at prev->state, and then the reference would
  2194. * be dropped twice.
  2195. * Manfred Spraul <manfred@colorfullife.com>
  2196. */
  2197. prev_state = prev->state;
  2198. finish_arch_switch(prev);
  2199. perf_counter_task_sched_in(current, cpu_of(rq));
  2200. finish_lock_switch(rq, prev);
  2201. #ifdef CONFIG_SMP
  2202. if (current->sched_class->post_schedule)
  2203. current->sched_class->post_schedule(rq);
  2204. #endif
  2205. fire_sched_in_preempt_notifiers(current);
  2206. if (mm)
  2207. mmdrop(mm);
  2208. if (unlikely(prev_state == TASK_DEAD)) {
  2209. /*
  2210. * Remove function-return probe instances associated with this
  2211. * task and put them back on the free list.
  2212. */
  2213. kprobe_flush_task(prev);
  2214. put_task_struct(prev);
  2215. }
  2216. }
  2217. /**
  2218. * schedule_tail - first thing a freshly forked thread must call.
  2219. * @prev: the thread we just switched away from.
  2220. */
  2221. asmlinkage void schedule_tail(struct task_struct *prev)
  2222. __releases(rq->lock)
  2223. {
  2224. struct rq *rq = this_rq();
  2225. finish_task_switch(rq, prev);
  2226. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2227. /* In this case, finish_task_switch does not reenable preemption */
  2228. preempt_enable();
  2229. #endif
  2230. if (current->set_child_tid)
  2231. put_user(task_pid_vnr(current), current->set_child_tid);
  2232. }
  2233. /*
  2234. * context_switch - switch to the new MM and the new
  2235. * thread's register state.
  2236. */
  2237. static inline void
  2238. context_switch(struct rq *rq, struct task_struct *prev,
  2239. struct task_struct *next)
  2240. {
  2241. struct mm_struct *mm, *oldmm;
  2242. prepare_task_switch(rq, prev, next);
  2243. trace_sched_switch(rq, prev, next);
  2244. mm = next->mm;
  2245. oldmm = prev->active_mm;
  2246. /*
  2247. * For paravirt, this is coupled with an exit in switch_to to
  2248. * combine the page table reload and the switch backend into
  2249. * one hypercall.
  2250. */
  2251. arch_enter_lazy_cpu_mode();
  2252. if (unlikely(!mm)) {
  2253. next->active_mm = oldmm;
  2254. atomic_inc(&oldmm->mm_count);
  2255. enter_lazy_tlb(oldmm, next);
  2256. } else
  2257. switch_mm(oldmm, mm, next);
  2258. if (unlikely(!prev->mm)) {
  2259. prev->active_mm = NULL;
  2260. rq->prev_mm = oldmm;
  2261. }
  2262. /*
  2263. * Since the runqueue lock will be released by the next
  2264. * task (which is an invalid locking op but in the case
  2265. * of the scheduler it's an obvious special-case), so we
  2266. * do an early lockdep release here:
  2267. */
  2268. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2269. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2270. #endif
  2271. /* Here we just switch the register state and the stack. */
  2272. switch_to(prev, next, prev);
  2273. barrier();
  2274. /*
  2275. * this_rq must be evaluated again because prev may have moved
  2276. * CPUs since it called schedule(), thus the 'rq' on its stack
  2277. * frame will be invalid.
  2278. */
  2279. finish_task_switch(this_rq(), prev);
  2280. }
  2281. /*
  2282. * nr_running, nr_uninterruptible and nr_context_switches:
  2283. *
  2284. * externally visible scheduler statistics: current number of runnable
  2285. * threads, current number of uninterruptible-sleeping threads, total
  2286. * number of context switches performed since bootup.
  2287. */
  2288. unsigned long nr_running(void)
  2289. {
  2290. unsigned long i, sum = 0;
  2291. for_each_online_cpu(i)
  2292. sum += cpu_rq(i)->nr_running;
  2293. return sum;
  2294. }
  2295. unsigned long nr_uninterruptible(void)
  2296. {
  2297. unsigned long i, sum = 0;
  2298. for_each_possible_cpu(i)
  2299. sum += cpu_rq(i)->nr_uninterruptible;
  2300. /*
  2301. * Since we read the counters lockless, it might be slightly
  2302. * inaccurate. Do not allow it to go below zero though:
  2303. */
  2304. if (unlikely((long)sum < 0))
  2305. sum = 0;
  2306. return sum;
  2307. }
  2308. unsigned long long nr_context_switches(void)
  2309. {
  2310. int i;
  2311. unsigned long long sum = 0;
  2312. for_each_possible_cpu(i)
  2313. sum += cpu_rq(i)->nr_switches;
  2314. return sum;
  2315. }
  2316. unsigned long nr_iowait(void)
  2317. {
  2318. unsigned long i, sum = 0;
  2319. for_each_possible_cpu(i)
  2320. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2321. return sum;
  2322. }
  2323. unsigned long nr_active(void)
  2324. {
  2325. unsigned long i, running = 0, uninterruptible = 0;
  2326. for_each_online_cpu(i) {
  2327. running += cpu_rq(i)->nr_running;
  2328. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2329. }
  2330. if (unlikely((long)uninterruptible < 0))
  2331. uninterruptible = 0;
  2332. return running + uninterruptible;
  2333. }
  2334. /*
  2335. * Update rq->cpu_load[] statistics. This function is usually called every
  2336. * scheduler tick (TICK_NSEC).
  2337. */
  2338. static void update_cpu_load(struct rq *this_rq)
  2339. {
  2340. unsigned long this_load = this_rq->load.weight;
  2341. int i, scale;
  2342. this_rq->nr_load_updates++;
  2343. /* Update our load: */
  2344. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2345. unsigned long old_load, new_load;
  2346. /* scale is effectively 1 << i now, and >> i divides by scale */
  2347. old_load = this_rq->cpu_load[i];
  2348. new_load = this_load;
  2349. /*
  2350. * Round up the averaging division if load is increasing. This
  2351. * prevents us from getting stuck on 9 if the load is 10, for
  2352. * example.
  2353. */
  2354. if (new_load > old_load)
  2355. new_load += scale-1;
  2356. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2357. }
  2358. }
  2359. #ifdef CONFIG_SMP
  2360. /*
  2361. * double_rq_lock - safely lock two runqueues
  2362. *
  2363. * Note this does not disable interrupts like task_rq_lock,
  2364. * you need to do so manually before calling.
  2365. */
  2366. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2367. __acquires(rq1->lock)
  2368. __acquires(rq2->lock)
  2369. {
  2370. BUG_ON(!irqs_disabled());
  2371. if (rq1 == rq2) {
  2372. spin_lock(&rq1->lock);
  2373. __acquire(rq2->lock); /* Fake it out ;) */
  2374. } else {
  2375. if (rq1 < rq2) {
  2376. spin_lock(&rq1->lock);
  2377. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2378. } else {
  2379. spin_lock(&rq2->lock);
  2380. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2381. }
  2382. }
  2383. update_rq_clock(rq1);
  2384. update_rq_clock(rq2);
  2385. }
  2386. /*
  2387. * double_rq_unlock - safely unlock two runqueues
  2388. *
  2389. * Note this does not restore interrupts like task_rq_unlock,
  2390. * you need to do so manually after calling.
  2391. */
  2392. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2393. __releases(rq1->lock)
  2394. __releases(rq2->lock)
  2395. {
  2396. spin_unlock(&rq1->lock);
  2397. if (rq1 != rq2)
  2398. spin_unlock(&rq2->lock);
  2399. else
  2400. __release(rq2->lock);
  2401. }
  2402. /*
  2403. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2404. */
  2405. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2406. __releases(this_rq->lock)
  2407. __acquires(busiest->lock)
  2408. __acquires(this_rq->lock)
  2409. {
  2410. int ret = 0;
  2411. if (unlikely(!irqs_disabled())) {
  2412. /* printk() doesn't work good under rq->lock */
  2413. spin_unlock(&this_rq->lock);
  2414. BUG_ON(1);
  2415. }
  2416. if (unlikely(!spin_trylock(&busiest->lock))) {
  2417. if (busiest < this_rq) {
  2418. spin_unlock(&this_rq->lock);
  2419. spin_lock(&busiest->lock);
  2420. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2421. ret = 1;
  2422. } else
  2423. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2424. }
  2425. return ret;
  2426. }
  2427. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2428. __releases(busiest->lock)
  2429. {
  2430. spin_unlock(&busiest->lock);
  2431. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2432. }
  2433. /*
  2434. * If dest_cpu is allowed for this process, migrate the task to it.
  2435. * This is accomplished by forcing the cpu_allowed mask to only
  2436. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2437. * the cpu_allowed mask is restored.
  2438. */
  2439. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2440. {
  2441. struct migration_req req;
  2442. unsigned long flags;
  2443. struct rq *rq;
  2444. rq = task_rq_lock(p, &flags);
  2445. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2446. || unlikely(!cpu_active(dest_cpu)))
  2447. goto out;
  2448. trace_sched_migrate_task(rq, p, dest_cpu);
  2449. /* force the process onto the specified CPU */
  2450. if (migrate_task(p, dest_cpu, &req)) {
  2451. /* Need to wait for migration thread (might exit: take ref). */
  2452. struct task_struct *mt = rq->migration_thread;
  2453. get_task_struct(mt);
  2454. task_rq_unlock(rq, &flags);
  2455. wake_up_process(mt);
  2456. put_task_struct(mt);
  2457. wait_for_completion(&req.done);
  2458. return;
  2459. }
  2460. out:
  2461. task_rq_unlock(rq, &flags);
  2462. }
  2463. /*
  2464. * sched_exec - execve() is a valuable balancing opportunity, because at
  2465. * this point the task has the smallest effective memory and cache footprint.
  2466. */
  2467. void sched_exec(void)
  2468. {
  2469. int new_cpu, this_cpu = get_cpu();
  2470. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2471. put_cpu();
  2472. if (new_cpu != this_cpu)
  2473. sched_migrate_task(current, new_cpu);
  2474. }
  2475. /*
  2476. * pull_task - move a task from a remote runqueue to the local runqueue.
  2477. * Both runqueues must be locked.
  2478. */
  2479. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2480. struct rq *this_rq, int this_cpu)
  2481. {
  2482. deactivate_task(src_rq, p, 0);
  2483. set_task_cpu(p, this_cpu);
  2484. activate_task(this_rq, p, 0);
  2485. /*
  2486. * Note that idle threads have a prio of MAX_PRIO, for this test
  2487. * to be always true for them.
  2488. */
  2489. check_preempt_curr(this_rq, p, 0);
  2490. }
  2491. /*
  2492. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2493. */
  2494. static
  2495. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2496. struct sched_domain *sd, enum cpu_idle_type idle,
  2497. int *all_pinned)
  2498. {
  2499. /*
  2500. * We do not migrate tasks that are:
  2501. * 1) running (obviously), or
  2502. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2503. * 3) are cache-hot on their current CPU.
  2504. */
  2505. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2506. schedstat_inc(p, se.nr_failed_migrations_affine);
  2507. return 0;
  2508. }
  2509. *all_pinned = 0;
  2510. if (task_running(rq, p)) {
  2511. schedstat_inc(p, se.nr_failed_migrations_running);
  2512. return 0;
  2513. }
  2514. /*
  2515. * Aggressive migration if:
  2516. * 1) task is cache cold, or
  2517. * 2) too many balance attempts have failed.
  2518. */
  2519. if (!task_hot(p, rq->clock, sd) ||
  2520. sd->nr_balance_failed > sd->cache_nice_tries) {
  2521. #ifdef CONFIG_SCHEDSTATS
  2522. if (task_hot(p, rq->clock, sd)) {
  2523. schedstat_inc(sd, lb_hot_gained[idle]);
  2524. schedstat_inc(p, se.nr_forced_migrations);
  2525. }
  2526. #endif
  2527. return 1;
  2528. }
  2529. if (task_hot(p, rq->clock, sd)) {
  2530. schedstat_inc(p, se.nr_failed_migrations_hot);
  2531. return 0;
  2532. }
  2533. return 1;
  2534. }
  2535. static unsigned long
  2536. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2537. unsigned long max_load_move, struct sched_domain *sd,
  2538. enum cpu_idle_type idle, int *all_pinned,
  2539. int *this_best_prio, struct rq_iterator *iterator)
  2540. {
  2541. int loops = 0, pulled = 0, pinned = 0;
  2542. struct task_struct *p;
  2543. long rem_load_move = max_load_move;
  2544. if (max_load_move == 0)
  2545. goto out;
  2546. pinned = 1;
  2547. /*
  2548. * Start the load-balancing iterator:
  2549. */
  2550. p = iterator->start(iterator->arg);
  2551. next:
  2552. if (!p || loops++ > sysctl_sched_nr_migrate)
  2553. goto out;
  2554. if ((p->se.load.weight >> 1) > rem_load_move ||
  2555. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2556. p = iterator->next(iterator->arg);
  2557. goto next;
  2558. }
  2559. pull_task(busiest, p, this_rq, this_cpu);
  2560. pulled++;
  2561. rem_load_move -= p->se.load.weight;
  2562. /*
  2563. * We only want to steal up to the prescribed amount of weighted load.
  2564. */
  2565. if (rem_load_move > 0) {
  2566. if (p->prio < *this_best_prio)
  2567. *this_best_prio = p->prio;
  2568. p = iterator->next(iterator->arg);
  2569. goto next;
  2570. }
  2571. out:
  2572. /*
  2573. * Right now, this is one of only two places pull_task() is called,
  2574. * so we can safely collect pull_task() stats here rather than
  2575. * inside pull_task().
  2576. */
  2577. schedstat_add(sd, lb_gained[idle], pulled);
  2578. if (all_pinned)
  2579. *all_pinned = pinned;
  2580. return max_load_move - rem_load_move;
  2581. }
  2582. /*
  2583. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2584. * this_rq, as part of a balancing operation within domain "sd".
  2585. * Returns 1 if successful and 0 otherwise.
  2586. *
  2587. * Called with both runqueues locked.
  2588. */
  2589. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2590. unsigned long max_load_move,
  2591. struct sched_domain *sd, enum cpu_idle_type idle,
  2592. int *all_pinned)
  2593. {
  2594. const struct sched_class *class = sched_class_highest;
  2595. unsigned long total_load_moved = 0;
  2596. int this_best_prio = this_rq->curr->prio;
  2597. do {
  2598. total_load_moved +=
  2599. class->load_balance(this_rq, this_cpu, busiest,
  2600. max_load_move - total_load_moved,
  2601. sd, idle, all_pinned, &this_best_prio);
  2602. class = class->next;
  2603. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2604. break;
  2605. } while (class && max_load_move > total_load_moved);
  2606. return total_load_moved > 0;
  2607. }
  2608. static int
  2609. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2610. struct sched_domain *sd, enum cpu_idle_type idle,
  2611. struct rq_iterator *iterator)
  2612. {
  2613. struct task_struct *p = iterator->start(iterator->arg);
  2614. int pinned = 0;
  2615. while (p) {
  2616. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2617. pull_task(busiest, p, this_rq, this_cpu);
  2618. /*
  2619. * Right now, this is only the second place pull_task()
  2620. * is called, so we can safely collect pull_task()
  2621. * stats here rather than inside pull_task().
  2622. */
  2623. schedstat_inc(sd, lb_gained[idle]);
  2624. return 1;
  2625. }
  2626. p = iterator->next(iterator->arg);
  2627. }
  2628. return 0;
  2629. }
  2630. /*
  2631. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2632. * part of active balancing operations within "domain".
  2633. * Returns 1 if successful and 0 otherwise.
  2634. *
  2635. * Called with both runqueues locked.
  2636. */
  2637. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2638. struct sched_domain *sd, enum cpu_idle_type idle)
  2639. {
  2640. const struct sched_class *class;
  2641. for (class = sched_class_highest; class; class = class->next)
  2642. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2643. return 1;
  2644. return 0;
  2645. }
  2646. /*
  2647. * find_busiest_group finds and returns the busiest CPU group within the
  2648. * domain. It calculates and returns the amount of weighted load which
  2649. * should be moved to restore balance via the imbalance parameter.
  2650. */
  2651. static struct sched_group *
  2652. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2653. unsigned long *imbalance, enum cpu_idle_type idle,
  2654. int *sd_idle, const cpumask_t *cpus, int *balance)
  2655. {
  2656. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2657. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2658. unsigned long max_pull;
  2659. unsigned long busiest_load_per_task, busiest_nr_running;
  2660. unsigned long this_load_per_task, this_nr_running;
  2661. int load_idx, group_imb = 0;
  2662. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2663. int power_savings_balance = 1;
  2664. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2665. unsigned long min_nr_running = ULONG_MAX;
  2666. struct sched_group *group_min = NULL, *group_leader = NULL;
  2667. #endif
  2668. max_load = this_load = total_load = total_pwr = 0;
  2669. busiest_load_per_task = busiest_nr_running = 0;
  2670. this_load_per_task = this_nr_running = 0;
  2671. if (idle == CPU_NOT_IDLE)
  2672. load_idx = sd->busy_idx;
  2673. else if (idle == CPU_NEWLY_IDLE)
  2674. load_idx = sd->newidle_idx;
  2675. else
  2676. load_idx = sd->idle_idx;
  2677. do {
  2678. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2679. int local_group;
  2680. int i;
  2681. int __group_imb = 0;
  2682. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2683. unsigned long sum_nr_running, sum_weighted_load;
  2684. unsigned long sum_avg_load_per_task;
  2685. unsigned long avg_load_per_task;
  2686. local_group = cpu_isset(this_cpu, group->cpumask);
  2687. if (local_group)
  2688. balance_cpu = first_cpu(group->cpumask);
  2689. /* Tally up the load of all CPUs in the group */
  2690. sum_weighted_load = sum_nr_running = avg_load = 0;
  2691. sum_avg_load_per_task = avg_load_per_task = 0;
  2692. max_cpu_load = 0;
  2693. min_cpu_load = ~0UL;
  2694. for_each_cpu_mask_nr(i, group->cpumask) {
  2695. struct rq *rq;
  2696. if (!cpu_isset(i, *cpus))
  2697. continue;
  2698. rq = cpu_rq(i);
  2699. if (*sd_idle && rq->nr_running)
  2700. *sd_idle = 0;
  2701. /* Bias balancing toward cpus of our domain */
  2702. if (local_group) {
  2703. if (idle_cpu(i) && !first_idle_cpu) {
  2704. first_idle_cpu = 1;
  2705. balance_cpu = i;
  2706. }
  2707. load = target_load(i, load_idx);
  2708. } else {
  2709. load = source_load(i, load_idx);
  2710. if (load > max_cpu_load)
  2711. max_cpu_load = load;
  2712. if (min_cpu_load > load)
  2713. min_cpu_load = load;
  2714. }
  2715. avg_load += load;
  2716. sum_nr_running += rq->nr_running;
  2717. sum_weighted_load += weighted_cpuload(i);
  2718. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2719. }
  2720. /*
  2721. * First idle cpu or the first cpu(busiest) in this sched group
  2722. * is eligible for doing load balancing at this and above
  2723. * domains. In the newly idle case, we will allow all the cpu's
  2724. * to do the newly idle load balance.
  2725. */
  2726. if (idle != CPU_NEWLY_IDLE && local_group &&
  2727. balance_cpu != this_cpu && balance) {
  2728. *balance = 0;
  2729. goto ret;
  2730. }
  2731. total_load += avg_load;
  2732. total_pwr += group->__cpu_power;
  2733. /* Adjust by relative CPU power of the group */
  2734. avg_load = sg_div_cpu_power(group,
  2735. avg_load * SCHED_LOAD_SCALE);
  2736. /*
  2737. * Consider the group unbalanced when the imbalance is larger
  2738. * than the average weight of two tasks.
  2739. *
  2740. * APZ: with cgroup the avg task weight can vary wildly and
  2741. * might not be a suitable number - should we keep a
  2742. * normalized nr_running number somewhere that negates
  2743. * the hierarchy?
  2744. */
  2745. avg_load_per_task = sg_div_cpu_power(group,
  2746. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2747. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2748. __group_imb = 1;
  2749. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2750. if (local_group) {
  2751. this_load = avg_load;
  2752. this = group;
  2753. this_nr_running = sum_nr_running;
  2754. this_load_per_task = sum_weighted_load;
  2755. } else if (avg_load > max_load &&
  2756. (sum_nr_running > group_capacity || __group_imb)) {
  2757. max_load = avg_load;
  2758. busiest = group;
  2759. busiest_nr_running = sum_nr_running;
  2760. busiest_load_per_task = sum_weighted_load;
  2761. group_imb = __group_imb;
  2762. }
  2763. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2764. /*
  2765. * Busy processors will not participate in power savings
  2766. * balance.
  2767. */
  2768. if (idle == CPU_NOT_IDLE ||
  2769. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2770. goto group_next;
  2771. /*
  2772. * If the local group is idle or completely loaded
  2773. * no need to do power savings balance at this domain
  2774. */
  2775. if (local_group && (this_nr_running >= group_capacity ||
  2776. !this_nr_running))
  2777. power_savings_balance = 0;
  2778. /*
  2779. * If a group is already running at full capacity or idle,
  2780. * don't include that group in power savings calculations
  2781. */
  2782. if (!power_savings_balance || sum_nr_running >= group_capacity
  2783. || !sum_nr_running)
  2784. goto group_next;
  2785. /*
  2786. * Calculate the group which has the least non-idle load.
  2787. * This is the group from where we need to pick up the load
  2788. * for saving power
  2789. */
  2790. if ((sum_nr_running < min_nr_running) ||
  2791. (sum_nr_running == min_nr_running &&
  2792. first_cpu(group->cpumask) <
  2793. first_cpu(group_min->cpumask))) {
  2794. group_min = group;
  2795. min_nr_running = sum_nr_running;
  2796. min_load_per_task = sum_weighted_load /
  2797. sum_nr_running;
  2798. }
  2799. /*
  2800. * Calculate the group which is almost near its
  2801. * capacity but still has some space to pick up some load
  2802. * from other group and save more power
  2803. */
  2804. if (sum_nr_running <= group_capacity - 1) {
  2805. if (sum_nr_running > leader_nr_running ||
  2806. (sum_nr_running == leader_nr_running &&
  2807. first_cpu(group->cpumask) >
  2808. first_cpu(group_leader->cpumask))) {
  2809. group_leader = group;
  2810. leader_nr_running = sum_nr_running;
  2811. }
  2812. }
  2813. group_next:
  2814. #endif
  2815. group = group->next;
  2816. } while (group != sd->groups);
  2817. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2818. goto out_balanced;
  2819. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2820. if (this_load >= avg_load ||
  2821. 100*max_load <= sd->imbalance_pct*this_load)
  2822. goto out_balanced;
  2823. busiest_load_per_task /= busiest_nr_running;
  2824. if (group_imb)
  2825. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2826. /*
  2827. * We're trying to get all the cpus to the average_load, so we don't
  2828. * want to push ourselves above the average load, nor do we wish to
  2829. * reduce the max loaded cpu below the average load, as either of these
  2830. * actions would just result in more rebalancing later, and ping-pong
  2831. * tasks around. Thus we look for the minimum possible imbalance.
  2832. * Negative imbalances (*we* are more loaded than anyone else) will
  2833. * be counted as no imbalance for these purposes -- we can't fix that
  2834. * by pulling tasks to us. Be careful of negative numbers as they'll
  2835. * appear as very large values with unsigned longs.
  2836. */
  2837. if (max_load <= busiest_load_per_task)
  2838. goto out_balanced;
  2839. /*
  2840. * In the presence of smp nice balancing, certain scenarios can have
  2841. * max load less than avg load(as we skip the groups at or below
  2842. * its cpu_power, while calculating max_load..)
  2843. */
  2844. if (max_load < avg_load) {
  2845. *imbalance = 0;
  2846. goto small_imbalance;
  2847. }
  2848. /* Don't want to pull so many tasks that a group would go idle */
  2849. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2850. /* How much load to actually move to equalise the imbalance */
  2851. *imbalance = min(max_pull * busiest->__cpu_power,
  2852. (avg_load - this_load) * this->__cpu_power)
  2853. / SCHED_LOAD_SCALE;
  2854. /*
  2855. * if *imbalance is less than the average load per runnable task
  2856. * there is no gaurantee that any tasks will be moved so we'll have
  2857. * a think about bumping its value to force at least one task to be
  2858. * moved
  2859. */
  2860. if (*imbalance < busiest_load_per_task) {
  2861. unsigned long tmp, pwr_now, pwr_move;
  2862. unsigned int imbn;
  2863. small_imbalance:
  2864. pwr_move = pwr_now = 0;
  2865. imbn = 2;
  2866. if (this_nr_running) {
  2867. this_load_per_task /= this_nr_running;
  2868. if (busiest_load_per_task > this_load_per_task)
  2869. imbn = 1;
  2870. } else
  2871. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2872. if (max_load - this_load + busiest_load_per_task >=
  2873. busiest_load_per_task * imbn) {
  2874. *imbalance = busiest_load_per_task;
  2875. return busiest;
  2876. }
  2877. /*
  2878. * OK, we don't have enough imbalance to justify moving tasks,
  2879. * however we may be able to increase total CPU power used by
  2880. * moving them.
  2881. */
  2882. pwr_now += busiest->__cpu_power *
  2883. min(busiest_load_per_task, max_load);
  2884. pwr_now += this->__cpu_power *
  2885. min(this_load_per_task, this_load);
  2886. pwr_now /= SCHED_LOAD_SCALE;
  2887. /* Amount of load we'd subtract */
  2888. tmp = sg_div_cpu_power(busiest,
  2889. busiest_load_per_task * SCHED_LOAD_SCALE);
  2890. if (max_load > tmp)
  2891. pwr_move += busiest->__cpu_power *
  2892. min(busiest_load_per_task, max_load - tmp);
  2893. /* Amount of load we'd add */
  2894. if (max_load * busiest->__cpu_power <
  2895. busiest_load_per_task * SCHED_LOAD_SCALE)
  2896. tmp = sg_div_cpu_power(this,
  2897. max_load * busiest->__cpu_power);
  2898. else
  2899. tmp = sg_div_cpu_power(this,
  2900. busiest_load_per_task * SCHED_LOAD_SCALE);
  2901. pwr_move += this->__cpu_power *
  2902. min(this_load_per_task, this_load + tmp);
  2903. pwr_move /= SCHED_LOAD_SCALE;
  2904. /* Move if we gain throughput */
  2905. if (pwr_move > pwr_now)
  2906. *imbalance = busiest_load_per_task;
  2907. }
  2908. return busiest;
  2909. out_balanced:
  2910. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2911. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2912. goto ret;
  2913. if (this == group_leader && group_leader != group_min) {
  2914. *imbalance = min_load_per_task;
  2915. return group_min;
  2916. }
  2917. #endif
  2918. ret:
  2919. *imbalance = 0;
  2920. return NULL;
  2921. }
  2922. /*
  2923. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2924. */
  2925. static struct rq *
  2926. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2927. unsigned long imbalance, const cpumask_t *cpus)
  2928. {
  2929. struct rq *busiest = NULL, *rq;
  2930. unsigned long max_load = 0;
  2931. int i;
  2932. for_each_cpu_mask_nr(i, group->cpumask) {
  2933. unsigned long wl;
  2934. if (!cpu_isset(i, *cpus))
  2935. continue;
  2936. rq = cpu_rq(i);
  2937. wl = weighted_cpuload(i);
  2938. if (rq->nr_running == 1 && wl > imbalance)
  2939. continue;
  2940. if (wl > max_load) {
  2941. max_load = wl;
  2942. busiest = rq;
  2943. }
  2944. }
  2945. return busiest;
  2946. }
  2947. /*
  2948. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2949. * so long as it is large enough.
  2950. */
  2951. #define MAX_PINNED_INTERVAL 512
  2952. /*
  2953. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2954. * tasks if there is an imbalance.
  2955. */
  2956. static int load_balance(int this_cpu, struct rq *this_rq,
  2957. struct sched_domain *sd, enum cpu_idle_type idle,
  2958. int *balance, cpumask_t *cpus)
  2959. {
  2960. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2961. struct sched_group *group;
  2962. unsigned long imbalance;
  2963. struct rq *busiest;
  2964. unsigned long flags;
  2965. cpus_setall(*cpus);
  2966. /*
  2967. * When power savings policy is enabled for the parent domain, idle
  2968. * sibling can pick up load irrespective of busy siblings. In this case,
  2969. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2970. * portraying it as CPU_NOT_IDLE.
  2971. */
  2972. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2973. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2974. sd_idle = 1;
  2975. schedstat_inc(sd, lb_count[idle]);
  2976. redo:
  2977. update_shares(sd);
  2978. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2979. cpus, balance);
  2980. if (*balance == 0)
  2981. goto out_balanced;
  2982. if (!group) {
  2983. schedstat_inc(sd, lb_nobusyg[idle]);
  2984. goto out_balanced;
  2985. }
  2986. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2987. if (!busiest) {
  2988. schedstat_inc(sd, lb_nobusyq[idle]);
  2989. goto out_balanced;
  2990. }
  2991. BUG_ON(busiest == this_rq);
  2992. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2993. ld_moved = 0;
  2994. if (busiest->nr_running > 1) {
  2995. /*
  2996. * Attempt to move tasks. If find_busiest_group has found
  2997. * an imbalance but busiest->nr_running <= 1, the group is
  2998. * still unbalanced. ld_moved simply stays zero, so it is
  2999. * correctly treated as an imbalance.
  3000. */
  3001. local_irq_save(flags);
  3002. double_rq_lock(this_rq, busiest);
  3003. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3004. imbalance, sd, idle, &all_pinned);
  3005. double_rq_unlock(this_rq, busiest);
  3006. local_irq_restore(flags);
  3007. /*
  3008. * some other cpu did the load balance for us.
  3009. */
  3010. if (ld_moved && this_cpu != smp_processor_id())
  3011. resched_cpu(this_cpu);
  3012. /* All tasks on this runqueue were pinned by CPU affinity */
  3013. if (unlikely(all_pinned)) {
  3014. cpu_clear(cpu_of(busiest), *cpus);
  3015. if (!cpus_empty(*cpus))
  3016. goto redo;
  3017. goto out_balanced;
  3018. }
  3019. }
  3020. if (!ld_moved) {
  3021. schedstat_inc(sd, lb_failed[idle]);
  3022. sd->nr_balance_failed++;
  3023. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3024. spin_lock_irqsave(&busiest->lock, flags);
  3025. /* don't kick the migration_thread, if the curr
  3026. * task on busiest cpu can't be moved to this_cpu
  3027. */
  3028. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3029. spin_unlock_irqrestore(&busiest->lock, flags);
  3030. all_pinned = 1;
  3031. goto out_one_pinned;
  3032. }
  3033. if (!busiest->active_balance) {
  3034. busiest->active_balance = 1;
  3035. busiest->push_cpu = this_cpu;
  3036. active_balance = 1;
  3037. }
  3038. spin_unlock_irqrestore(&busiest->lock, flags);
  3039. if (active_balance)
  3040. wake_up_process(busiest->migration_thread);
  3041. /*
  3042. * We've kicked active balancing, reset the failure
  3043. * counter.
  3044. */
  3045. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3046. }
  3047. } else
  3048. sd->nr_balance_failed = 0;
  3049. if (likely(!active_balance)) {
  3050. /* We were unbalanced, so reset the balancing interval */
  3051. sd->balance_interval = sd->min_interval;
  3052. } else {
  3053. /*
  3054. * If we've begun active balancing, start to back off. This
  3055. * case may not be covered by the all_pinned logic if there
  3056. * is only 1 task on the busy runqueue (because we don't call
  3057. * move_tasks).
  3058. */
  3059. if (sd->balance_interval < sd->max_interval)
  3060. sd->balance_interval *= 2;
  3061. }
  3062. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3063. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3064. ld_moved = -1;
  3065. goto out;
  3066. out_balanced:
  3067. schedstat_inc(sd, lb_balanced[idle]);
  3068. sd->nr_balance_failed = 0;
  3069. out_one_pinned:
  3070. /* tune up the balancing interval */
  3071. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3072. (sd->balance_interval < sd->max_interval))
  3073. sd->balance_interval *= 2;
  3074. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3075. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3076. ld_moved = -1;
  3077. else
  3078. ld_moved = 0;
  3079. out:
  3080. if (ld_moved)
  3081. update_shares(sd);
  3082. return ld_moved;
  3083. }
  3084. /*
  3085. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3086. * tasks if there is an imbalance.
  3087. *
  3088. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3089. * this_rq is locked.
  3090. */
  3091. static int
  3092. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3093. cpumask_t *cpus)
  3094. {
  3095. struct sched_group *group;
  3096. struct rq *busiest = NULL;
  3097. unsigned long imbalance;
  3098. int ld_moved = 0;
  3099. int sd_idle = 0;
  3100. int all_pinned = 0;
  3101. cpus_setall(*cpus);
  3102. /*
  3103. * When power savings policy is enabled for the parent domain, idle
  3104. * sibling can pick up load irrespective of busy siblings. In this case,
  3105. * let the state of idle sibling percolate up as IDLE, instead of
  3106. * portraying it as CPU_NOT_IDLE.
  3107. */
  3108. if (sd->flags & SD_SHARE_CPUPOWER &&
  3109. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3110. sd_idle = 1;
  3111. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3112. redo:
  3113. update_shares_locked(this_rq, sd);
  3114. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3115. &sd_idle, cpus, NULL);
  3116. if (!group) {
  3117. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3118. goto out_balanced;
  3119. }
  3120. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3121. if (!busiest) {
  3122. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3123. goto out_balanced;
  3124. }
  3125. BUG_ON(busiest == this_rq);
  3126. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3127. ld_moved = 0;
  3128. if (busiest->nr_running > 1) {
  3129. /* Attempt to move tasks */
  3130. double_lock_balance(this_rq, busiest);
  3131. /* this_rq->clock is already updated */
  3132. update_rq_clock(busiest);
  3133. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3134. imbalance, sd, CPU_NEWLY_IDLE,
  3135. &all_pinned);
  3136. double_unlock_balance(this_rq, busiest);
  3137. if (unlikely(all_pinned)) {
  3138. cpu_clear(cpu_of(busiest), *cpus);
  3139. if (!cpus_empty(*cpus))
  3140. goto redo;
  3141. }
  3142. }
  3143. if (!ld_moved) {
  3144. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3145. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3146. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3147. return -1;
  3148. } else
  3149. sd->nr_balance_failed = 0;
  3150. update_shares_locked(this_rq, sd);
  3151. return ld_moved;
  3152. out_balanced:
  3153. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3154. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3155. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3156. return -1;
  3157. sd->nr_balance_failed = 0;
  3158. return 0;
  3159. }
  3160. /*
  3161. * idle_balance is called by schedule() if this_cpu is about to become
  3162. * idle. Attempts to pull tasks from other CPUs.
  3163. */
  3164. static void idle_balance(int this_cpu, struct rq *this_rq)
  3165. {
  3166. struct sched_domain *sd;
  3167. int pulled_task = -1;
  3168. unsigned long next_balance = jiffies + HZ;
  3169. cpumask_t tmpmask;
  3170. for_each_domain(this_cpu, sd) {
  3171. unsigned long interval;
  3172. if (!(sd->flags & SD_LOAD_BALANCE))
  3173. continue;
  3174. if (sd->flags & SD_BALANCE_NEWIDLE)
  3175. /* If we've pulled tasks over stop searching: */
  3176. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3177. sd, &tmpmask);
  3178. interval = msecs_to_jiffies(sd->balance_interval);
  3179. if (time_after(next_balance, sd->last_balance + interval))
  3180. next_balance = sd->last_balance + interval;
  3181. if (pulled_task)
  3182. break;
  3183. }
  3184. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3185. /*
  3186. * We are going idle. next_balance may be set based on
  3187. * a busy processor. So reset next_balance.
  3188. */
  3189. this_rq->next_balance = next_balance;
  3190. }
  3191. }
  3192. /*
  3193. * active_load_balance is run by migration threads. It pushes running tasks
  3194. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3195. * running on each physical CPU where possible, and avoids physical /
  3196. * logical imbalances.
  3197. *
  3198. * Called with busiest_rq locked.
  3199. */
  3200. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3201. {
  3202. int target_cpu = busiest_rq->push_cpu;
  3203. struct sched_domain *sd;
  3204. struct rq *target_rq;
  3205. /* Is there any task to move? */
  3206. if (busiest_rq->nr_running <= 1)
  3207. return;
  3208. target_rq = cpu_rq(target_cpu);
  3209. /*
  3210. * This condition is "impossible", if it occurs
  3211. * we need to fix it. Originally reported by
  3212. * Bjorn Helgaas on a 128-cpu setup.
  3213. */
  3214. BUG_ON(busiest_rq == target_rq);
  3215. /* move a task from busiest_rq to target_rq */
  3216. double_lock_balance(busiest_rq, target_rq);
  3217. update_rq_clock(busiest_rq);
  3218. update_rq_clock(target_rq);
  3219. /* Search for an sd spanning us and the target CPU. */
  3220. for_each_domain(target_cpu, sd) {
  3221. if ((sd->flags & SD_LOAD_BALANCE) &&
  3222. cpu_isset(busiest_cpu, sd->span))
  3223. break;
  3224. }
  3225. if (likely(sd)) {
  3226. schedstat_inc(sd, alb_count);
  3227. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3228. sd, CPU_IDLE))
  3229. schedstat_inc(sd, alb_pushed);
  3230. else
  3231. schedstat_inc(sd, alb_failed);
  3232. }
  3233. double_unlock_balance(busiest_rq, target_rq);
  3234. }
  3235. #ifdef CONFIG_NO_HZ
  3236. static struct {
  3237. atomic_t load_balancer;
  3238. cpumask_t cpu_mask;
  3239. } nohz ____cacheline_aligned = {
  3240. .load_balancer = ATOMIC_INIT(-1),
  3241. .cpu_mask = CPU_MASK_NONE,
  3242. };
  3243. /*
  3244. * This routine will try to nominate the ilb (idle load balancing)
  3245. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3246. * load balancing on behalf of all those cpus. If all the cpus in the system
  3247. * go into this tickless mode, then there will be no ilb owner (as there is
  3248. * no need for one) and all the cpus will sleep till the next wakeup event
  3249. * arrives...
  3250. *
  3251. * For the ilb owner, tick is not stopped. And this tick will be used
  3252. * for idle load balancing. ilb owner will still be part of
  3253. * nohz.cpu_mask..
  3254. *
  3255. * While stopping the tick, this cpu will become the ilb owner if there
  3256. * is no other owner. And will be the owner till that cpu becomes busy
  3257. * or if all cpus in the system stop their ticks at which point
  3258. * there is no need for ilb owner.
  3259. *
  3260. * When the ilb owner becomes busy, it nominates another owner, during the
  3261. * next busy scheduler_tick()
  3262. */
  3263. int select_nohz_load_balancer(int stop_tick)
  3264. {
  3265. int cpu = smp_processor_id();
  3266. if (stop_tick) {
  3267. cpu_set(cpu, nohz.cpu_mask);
  3268. cpu_rq(cpu)->in_nohz_recently = 1;
  3269. /*
  3270. * If we are going offline and still the leader, give up!
  3271. */
  3272. if (!cpu_active(cpu) &&
  3273. atomic_read(&nohz.load_balancer) == cpu) {
  3274. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3275. BUG();
  3276. return 0;
  3277. }
  3278. /* time for ilb owner also to sleep */
  3279. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3280. if (atomic_read(&nohz.load_balancer) == cpu)
  3281. atomic_set(&nohz.load_balancer, -1);
  3282. return 0;
  3283. }
  3284. if (atomic_read(&nohz.load_balancer) == -1) {
  3285. /* make me the ilb owner */
  3286. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3287. return 1;
  3288. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3289. return 1;
  3290. } else {
  3291. if (!cpu_isset(cpu, nohz.cpu_mask))
  3292. return 0;
  3293. cpu_clear(cpu, nohz.cpu_mask);
  3294. if (atomic_read(&nohz.load_balancer) == cpu)
  3295. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3296. BUG();
  3297. }
  3298. return 0;
  3299. }
  3300. #endif
  3301. static DEFINE_SPINLOCK(balancing);
  3302. /*
  3303. * It checks each scheduling domain to see if it is due to be balanced,
  3304. * and initiates a balancing operation if so.
  3305. *
  3306. * Balancing parameters are set up in arch_init_sched_domains.
  3307. */
  3308. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3309. {
  3310. int balance = 1;
  3311. struct rq *rq = cpu_rq(cpu);
  3312. unsigned long interval;
  3313. struct sched_domain *sd;
  3314. /* Earliest time when we have to do rebalance again */
  3315. unsigned long next_balance = jiffies + 60*HZ;
  3316. int update_next_balance = 0;
  3317. int need_serialize;
  3318. cpumask_t tmp;
  3319. for_each_domain(cpu, sd) {
  3320. if (!(sd->flags & SD_LOAD_BALANCE))
  3321. continue;
  3322. interval = sd->balance_interval;
  3323. if (idle != CPU_IDLE)
  3324. interval *= sd->busy_factor;
  3325. /* scale ms to jiffies */
  3326. interval = msecs_to_jiffies(interval);
  3327. if (unlikely(!interval))
  3328. interval = 1;
  3329. if (interval > HZ*NR_CPUS/10)
  3330. interval = HZ*NR_CPUS/10;
  3331. need_serialize = sd->flags & SD_SERIALIZE;
  3332. if (need_serialize) {
  3333. if (!spin_trylock(&balancing))
  3334. goto out;
  3335. }
  3336. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3337. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3338. /*
  3339. * We've pulled tasks over so either we're no
  3340. * longer idle, or one of our SMT siblings is
  3341. * not idle.
  3342. */
  3343. idle = CPU_NOT_IDLE;
  3344. }
  3345. sd->last_balance = jiffies;
  3346. }
  3347. if (need_serialize)
  3348. spin_unlock(&balancing);
  3349. out:
  3350. if (time_after(next_balance, sd->last_balance + interval)) {
  3351. next_balance = sd->last_balance + interval;
  3352. update_next_balance = 1;
  3353. }
  3354. /*
  3355. * Stop the load balance at this level. There is another
  3356. * CPU in our sched group which is doing load balancing more
  3357. * actively.
  3358. */
  3359. if (!balance)
  3360. break;
  3361. }
  3362. /*
  3363. * next_balance will be updated only when there is a need.
  3364. * When the cpu is attached to null domain for ex, it will not be
  3365. * updated.
  3366. */
  3367. if (likely(update_next_balance))
  3368. rq->next_balance = next_balance;
  3369. }
  3370. /*
  3371. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3372. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3373. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3374. */
  3375. static void run_rebalance_domains(struct softirq_action *h)
  3376. {
  3377. int this_cpu = smp_processor_id();
  3378. struct rq *this_rq = cpu_rq(this_cpu);
  3379. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3380. CPU_IDLE : CPU_NOT_IDLE;
  3381. rebalance_domains(this_cpu, idle);
  3382. #ifdef CONFIG_NO_HZ
  3383. /*
  3384. * If this cpu is the owner for idle load balancing, then do the
  3385. * balancing on behalf of the other idle cpus whose ticks are
  3386. * stopped.
  3387. */
  3388. if (this_rq->idle_at_tick &&
  3389. atomic_read(&nohz.load_balancer) == this_cpu) {
  3390. cpumask_t cpus = nohz.cpu_mask;
  3391. struct rq *rq;
  3392. int balance_cpu;
  3393. cpu_clear(this_cpu, cpus);
  3394. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3395. /*
  3396. * If this cpu gets work to do, stop the load balancing
  3397. * work being done for other cpus. Next load
  3398. * balancing owner will pick it up.
  3399. */
  3400. if (need_resched())
  3401. break;
  3402. rebalance_domains(balance_cpu, CPU_IDLE);
  3403. rq = cpu_rq(balance_cpu);
  3404. if (time_after(this_rq->next_balance, rq->next_balance))
  3405. this_rq->next_balance = rq->next_balance;
  3406. }
  3407. }
  3408. #endif
  3409. }
  3410. /*
  3411. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3412. *
  3413. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3414. * idle load balancing owner or decide to stop the periodic load balancing,
  3415. * if the whole system is idle.
  3416. */
  3417. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3418. {
  3419. #ifdef CONFIG_NO_HZ
  3420. /*
  3421. * If we were in the nohz mode recently and busy at the current
  3422. * scheduler tick, then check if we need to nominate new idle
  3423. * load balancer.
  3424. */
  3425. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3426. rq->in_nohz_recently = 0;
  3427. if (atomic_read(&nohz.load_balancer) == cpu) {
  3428. cpu_clear(cpu, nohz.cpu_mask);
  3429. atomic_set(&nohz.load_balancer, -1);
  3430. }
  3431. if (atomic_read(&nohz.load_balancer) == -1) {
  3432. /*
  3433. * simple selection for now: Nominate the
  3434. * first cpu in the nohz list to be the next
  3435. * ilb owner.
  3436. *
  3437. * TBD: Traverse the sched domains and nominate
  3438. * the nearest cpu in the nohz.cpu_mask.
  3439. */
  3440. int ilb = first_cpu(nohz.cpu_mask);
  3441. if (ilb < nr_cpu_ids)
  3442. resched_cpu(ilb);
  3443. }
  3444. }
  3445. /*
  3446. * If this cpu is idle and doing idle load balancing for all the
  3447. * cpus with ticks stopped, is it time for that to stop?
  3448. */
  3449. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3450. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3451. resched_cpu(cpu);
  3452. return;
  3453. }
  3454. /*
  3455. * If this cpu is idle and the idle load balancing is done by
  3456. * someone else, then no need raise the SCHED_SOFTIRQ
  3457. */
  3458. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3459. cpu_isset(cpu, nohz.cpu_mask))
  3460. return;
  3461. #endif
  3462. if (time_after_eq(jiffies, rq->next_balance))
  3463. raise_softirq(SCHED_SOFTIRQ);
  3464. }
  3465. #else /* CONFIG_SMP */
  3466. /*
  3467. * on UP we do not need to balance between CPUs:
  3468. */
  3469. static inline void idle_balance(int cpu, struct rq *rq)
  3470. {
  3471. }
  3472. #endif
  3473. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3474. EXPORT_PER_CPU_SYMBOL(kstat);
  3475. /*
  3476. * Return any ns on the sched_clock that have not yet been banked in
  3477. * @p in case that task is currently running.
  3478. */
  3479. unsigned long long task_delta_exec(struct task_struct *p)
  3480. {
  3481. unsigned long flags;
  3482. struct rq *rq;
  3483. u64 ns = 0;
  3484. rq = task_rq_lock(p, &flags);
  3485. if (task_current(rq, p)) {
  3486. u64 delta_exec;
  3487. update_rq_clock(rq);
  3488. delta_exec = rq->clock - p->se.exec_start;
  3489. if ((s64)delta_exec > 0)
  3490. ns = delta_exec;
  3491. }
  3492. task_rq_unlock(rq, &flags);
  3493. return ns;
  3494. }
  3495. /*
  3496. * Account user cpu time to a process.
  3497. * @p: the process that the cpu time gets accounted to
  3498. * @cputime: the cpu time spent in user space since the last update
  3499. */
  3500. void account_user_time(struct task_struct *p, cputime_t cputime)
  3501. {
  3502. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3503. cputime64_t tmp;
  3504. p->utime = cputime_add(p->utime, cputime);
  3505. account_group_user_time(p, cputime);
  3506. /* Add user time to cpustat. */
  3507. tmp = cputime_to_cputime64(cputime);
  3508. if (TASK_NICE(p) > 0)
  3509. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3510. else
  3511. cpustat->user = cputime64_add(cpustat->user, tmp);
  3512. /* Account for user time used */
  3513. acct_update_integrals(p);
  3514. }
  3515. /*
  3516. * Account guest cpu time to a process.
  3517. * @p: the process that the cpu time gets accounted to
  3518. * @cputime: the cpu time spent in virtual machine since the last update
  3519. */
  3520. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3521. {
  3522. cputime64_t tmp;
  3523. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3524. tmp = cputime_to_cputime64(cputime);
  3525. p->utime = cputime_add(p->utime, cputime);
  3526. account_group_user_time(p, cputime);
  3527. p->gtime = cputime_add(p->gtime, cputime);
  3528. cpustat->user = cputime64_add(cpustat->user, tmp);
  3529. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3530. }
  3531. /*
  3532. * Account scaled user cpu time to a process.
  3533. * @p: the process that the cpu time gets accounted to
  3534. * @cputime: the cpu time spent in user space since the last update
  3535. */
  3536. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3537. {
  3538. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3539. }
  3540. /*
  3541. * Account system cpu time to a process.
  3542. * @p: the process that the cpu time gets accounted to
  3543. * @hardirq_offset: the offset to subtract from hardirq_count()
  3544. * @cputime: the cpu time spent in kernel space since the last update
  3545. */
  3546. void account_system_time(struct task_struct *p, int hardirq_offset,
  3547. cputime_t cputime)
  3548. {
  3549. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3550. struct rq *rq = this_rq();
  3551. cputime64_t tmp;
  3552. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3553. account_guest_time(p, cputime);
  3554. return;
  3555. }
  3556. p->stime = cputime_add(p->stime, cputime);
  3557. account_group_system_time(p, cputime);
  3558. /* Add system time to cpustat. */
  3559. tmp = cputime_to_cputime64(cputime);
  3560. if (hardirq_count() - hardirq_offset)
  3561. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3562. else if (softirq_count())
  3563. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3564. else if (p != rq->idle)
  3565. cpustat->system = cputime64_add(cpustat->system, tmp);
  3566. else if (atomic_read(&rq->nr_iowait) > 0)
  3567. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3568. else
  3569. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3570. /* Account for system time used */
  3571. acct_update_integrals(p);
  3572. }
  3573. /*
  3574. * Account scaled system cpu time to a process.
  3575. * @p: the process that the cpu time gets accounted to
  3576. * @hardirq_offset: the offset to subtract from hardirq_count()
  3577. * @cputime: the cpu time spent in kernel space since the last update
  3578. */
  3579. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3580. {
  3581. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3582. }
  3583. /*
  3584. * Account for involuntary wait time.
  3585. * @p: the process from which the cpu time has been stolen
  3586. * @steal: the cpu time spent in involuntary wait
  3587. */
  3588. void account_steal_time(struct task_struct *p, cputime_t steal)
  3589. {
  3590. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3591. cputime64_t tmp = cputime_to_cputime64(steal);
  3592. struct rq *rq = this_rq();
  3593. if (p == rq->idle) {
  3594. p->stime = cputime_add(p->stime, steal);
  3595. account_group_system_time(p, steal);
  3596. if (atomic_read(&rq->nr_iowait) > 0)
  3597. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3598. else
  3599. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3600. } else
  3601. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3602. }
  3603. /*
  3604. * Use precise platform statistics if available:
  3605. */
  3606. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3607. cputime_t task_utime(struct task_struct *p)
  3608. {
  3609. return p->utime;
  3610. }
  3611. cputime_t task_stime(struct task_struct *p)
  3612. {
  3613. return p->stime;
  3614. }
  3615. #else
  3616. cputime_t task_utime(struct task_struct *p)
  3617. {
  3618. clock_t utime = cputime_to_clock_t(p->utime),
  3619. total = utime + cputime_to_clock_t(p->stime);
  3620. u64 temp;
  3621. /*
  3622. * Use CFS's precise accounting:
  3623. */
  3624. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3625. if (total) {
  3626. temp *= utime;
  3627. do_div(temp, total);
  3628. }
  3629. utime = (clock_t)temp;
  3630. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3631. return p->prev_utime;
  3632. }
  3633. cputime_t task_stime(struct task_struct *p)
  3634. {
  3635. clock_t stime;
  3636. /*
  3637. * Use CFS's precise accounting. (we subtract utime from
  3638. * the total, to make sure the total observed by userspace
  3639. * grows monotonically - apps rely on that):
  3640. */
  3641. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3642. cputime_to_clock_t(task_utime(p));
  3643. if (stime >= 0)
  3644. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3645. return p->prev_stime;
  3646. }
  3647. #endif
  3648. inline cputime_t task_gtime(struct task_struct *p)
  3649. {
  3650. return p->gtime;
  3651. }
  3652. /*
  3653. * This function gets called by the timer code, with HZ frequency.
  3654. * We call it with interrupts disabled.
  3655. *
  3656. * It also gets called by the fork code, when changing the parent's
  3657. * timeslices.
  3658. */
  3659. void scheduler_tick(void)
  3660. {
  3661. int cpu = smp_processor_id();
  3662. struct rq *rq = cpu_rq(cpu);
  3663. struct task_struct *curr = rq->curr;
  3664. sched_clock_tick();
  3665. spin_lock(&rq->lock);
  3666. update_rq_clock(rq);
  3667. update_cpu_load(rq);
  3668. curr->sched_class->task_tick(rq, curr, 0);
  3669. spin_unlock(&rq->lock);
  3670. #ifdef CONFIG_SMP
  3671. rq->idle_at_tick = idle_cpu(cpu);
  3672. trigger_load_balance(rq, cpu);
  3673. #endif
  3674. perf_counter_task_tick(curr, cpu);
  3675. }
  3676. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3677. defined(CONFIG_PREEMPT_TRACER))
  3678. static inline unsigned long get_parent_ip(unsigned long addr)
  3679. {
  3680. if (in_lock_functions(addr)) {
  3681. addr = CALLER_ADDR2;
  3682. if (in_lock_functions(addr))
  3683. addr = CALLER_ADDR3;
  3684. }
  3685. return addr;
  3686. }
  3687. void __kprobes add_preempt_count(int val)
  3688. {
  3689. #ifdef CONFIG_DEBUG_PREEMPT
  3690. /*
  3691. * Underflow?
  3692. */
  3693. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3694. return;
  3695. #endif
  3696. preempt_count() += val;
  3697. #ifdef CONFIG_DEBUG_PREEMPT
  3698. /*
  3699. * Spinlock count overflowing soon?
  3700. */
  3701. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3702. PREEMPT_MASK - 10);
  3703. #endif
  3704. if (preempt_count() == val)
  3705. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3706. }
  3707. EXPORT_SYMBOL(add_preempt_count);
  3708. void __kprobes sub_preempt_count(int val)
  3709. {
  3710. #ifdef CONFIG_DEBUG_PREEMPT
  3711. /*
  3712. * Underflow?
  3713. */
  3714. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3715. return;
  3716. /*
  3717. * Is the spinlock portion underflowing?
  3718. */
  3719. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3720. !(preempt_count() & PREEMPT_MASK)))
  3721. return;
  3722. #endif
  3723. if (preempt_count() == val)
  3724. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3725. preempt_count() -= val;
  3726. }
  3727. EXPORT_SYMBOL(sub_preempt_count);
  3728. #endif
  3729. /*
  3730. * Print scheduling while atomic bug:
  3731. */
  3732. static noinline void __schedule_bug(struct task_struct *prev)
  3733. {
  3734. struct pt_regs *regs = get_irq_regs();
  3735. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3736. prev->comm, prev->pid, preempt_count());
  3737. debug_show_held_locks(prev);
  3738. print_modules();
  3739. if (irqs_disabled())
  3740. print_irqtrace_events(prev);
  3741. if (regs)
  3742. show_regs(regs);
  3743. else
  3744. dump_stack();
  3745. }
  3746. /*
  3747. * Various schedule()-time debugging checks and statistics:
  3748. */
  3749. static inline void schedule_debug(struct task_struct *prev)
  3750. {
  3751. /*
  3752. * Test if we are atomic. Since do_exit() needs to call into
  3753. * schedule() atomically, we ignore that path for now.
  3754. * Otherwise, whine if we are scheduling when we should not be.
  3755. */
  3756. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3757. __schedule_bug(prev);
  3758. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3759. schedstat_inc(this_rq(), sched_count);
  3760. #ifdef CONFIG_SCHEDSTATS
  3761. if (unlikely(prev->lock_depth >= 0)) {
  3762. schedstat_inc(this_rq(), bkl_count);
  3763. schedstat_inc(prev, sched_info.bkl_count);
  3764. }
  3765. #endif
  3766. }
  3767. /*
  3768. * Pick up the highest-prio task:
  3769. */
  3770. static inline struct task_struct *
  3771. pick_next_task(struct rq *rq, struct task_struct *prev)
  3772. {
  3773. const struct sched_class *class;
  3774. struct task_struct *p;
  3775. /*
  3776. * Optimization: we know that if all tasks are in
  3777. * the fair class we can call that function directly:
  3778. */
  3779. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3780. p = fair_sched_class.pick_next_task(rq);
  3781. if (likely(p))
  3782. return p;
  3783. }
  3784. class = sched_class_highest;
  3785. for ( ; ; ) {
  3786. p = class->pick_next_task(rq);
  3787. if (p)
  3788. return p;
  3789. /*
  3790. * Will never be NULL as the idle class always
  3791. * returns a non-NULL p:
  3792. */
  3793. class = class->next;
  3794. }
  3795. }
  3796. /*
  3797. * schedule() is the main scheduler function.
  3798. */
  3799. asmlinkage void __sched schedule(void)
  3800. {
  3801. struct task_struct *prev, *next;
  3802. unsigned long *switch_count;
  3803. struct rq *rq;
  3804. int cpu;
  3805. need_resched:
  3806. preempt_disable();
  3807. cpu = smp_processor_id();
  3808. rq = cpu_rq(cpu);
  3809. rcu_qsctr_inc(cpu);
  3810. prev = rq->curr;
  3811. switch_count = &prev->nivcsw;
  3812. release_kernel_lock(prev);
  3813. need_resched_nonpreemptible:
  3814. schedule_debug(prev);
  3815. if (sched_feat(HRTICK))
  3816. hrtick_clear(rq);
  3817. spin_lock_irq(&rq->lock);
  3818. update_rq_clock(rq);
  3819. clear_tsk_need_resched(prev);
  3820. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3821. if (unlikely(signal_pending_state(prev->state, prev)))
  3822. prev->state = TASK_RUNNING;
  3823. else
  3824. deactivate_task(rq, prev, 1);
  3825. switch_count = &prev->nvcsw;
  3826. }
  3827. #ifdef CONFIG_SMP
  3828. if (prev->sched_class->pre_schedule)
  3829. prev->sched_class->pre_schedule(rq, prev);
  3830. #endif
  3831. if (unlikely(!rq->nr_running))
  3832. idle_balance(cpu, rq);
  3833. prev->sched_class->put_prev_task(rq, prev);
  3834. next = pick_next_task(rq, prev);
  3835. if (likely(prev != next)) {
  3836. sched_info_switch(prev, next);
  3837. rq->nr_switches++;
  3838. rq->curr = next;
  3839. ++*switch_count;
  3840. context_switch(rq, prev, next); /* unlocks the rq */
  3841. /*
  3842. * the context switch might have flipped the stack from under
  3843. * us, hence refresh the local variables.
  3844. */
  3845. cpu = smp_processor_id();
  3846. rq = cpu_rq(cpu);
  3847. } else
  3848. spin_unlock_irq(&rq->lock);
  3849. if (unlikely(reacquire_kernel_lock(current) < 0))
  3850. goto need_resched_nonpreemptible;
  3851. preempt_enable_no_resched();
  3852. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3853. goto need_resched;
  3854. }
  3855. EXPORT_SYMBOL(schedule);
  3856. #ifdef CONFIG_PREEMPT
  3857. /*
  3858. * this is the entry point to schedule() from in-kernel preemption
  3859. * off of preempt_enable. Kernel preemptions off return from interrupt
  3860. * occur there and call schedule directly.
  3861. */
  3862. asmlinkage void __sched preempt_schedule(void)
  3863. {
  3864. struct thread_info *ti = current_thread_info();
  3865. /*
  3866. * If there is a non-zero preempt_count or interrupts are disabled,
  3867. * we do not want to preempt the current task. Just return..
  3868. */
  3869. if (likely(ti->preempt_count || irqs_disabled()))
  3870. return;
  3871. do {
  3872. add_preempt_count(PREEMPT_ACTIVE);
  3873. schedule();
  3874. sub_preempt_count(PREEMPT_ACTIVE);
  3875. /*
  3876. * Check again in case we missed a preemption opportunity
  3877. * between schedule and now.
  3878. */
  3879. barrier();
  3880. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3881. }
  3882. EXPORT_SYMBOL(preempt_schedule);
  3883. /*
  3884. * this is the entry point to schedule() from kernel preemption
  3885. * off of irq context.
  3886. * Note, that this is called and return with irqs disabled. This will
  3887. * protect us against recursive calling from irq.
  3888. */
  3889. asmlinkage void __sched preempt_schedule_irq(void)
  3890. {
  3891. struct thread_info *ti = current_thread_info();
  3892. /* Catch callers which need to be fixed */
  3893. BUG_ON(ti->preempt_count || !irqs_disabled());
  3894. do {
  3895. add_preempt_count(PREEMPT_ACTIVE);
  3896. local_irq_enable();
  3897. schedule();
  3898. local_irq_disable();
  3899. sub_preempt_count(PREEMPT_ACTIVE);
  3900. /*
  3901. * Check again in case we missed a preemption opportunity
  3902. * between schedule and now.
  3903. */
  3904. barrier();
  3905. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3906. }
  3907. #endif /* CONFIG_PREEMPT */
  3908. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3909. void *key)
  3910. {
  3911. return try_to_wake_up(curr->private, mode, sync);
  3912. }
  3913. EXPORT_SYMBOL(default_wake_function);
  3914. /*
  3915. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3916. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3917. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3918. *
  3919. * There are circumstances in which we can try to wake a task which has already
  3920. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3921. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3922. */
  3923. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3924. int nr_exclusive, int sync, void *key)
  3925. {
  3926. wait_queue_t *curr, *next;
  3927. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3928. unsigned flags = curr->flags;
  3929. if (curr->func(curr, mode, sync, key) &&
  3930. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3931. break;
  3932. }
  3933. }
  3934. /**
  3935. * __wake_up - wake up threads blocked on a waitqueue.
  3936. * @q: the waitqueue
  3937. * @mode: which threads
  3938. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3939. * @key: is directly passed to the wakeup function
  3940. */
  3941. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3942. int nr_exclusive, void *key)
  3943. {
  3944. unsigned long flags;
  3945. spin_lock_irqsave(&q->lock, flags);
  3946. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3947. spin_unlock_irqrestore(&q->lock, flags);
  3948. }
  3949. EXPORT_SYMBOL(__wake_up);
  3950. /*
  3951. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3952. */
  3953. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3954. {
  3955. __wake_up_common(q, mode, 1, 0, NULL);
  3956. }
  3957. /**
  3958. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3959. * @q: the waitqueue
  3960. * @mode: which threads
  3961. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3962. *
  3963. * The sync wakeup differs that the waker knows that it will schedule
  3964. * away soon, so while the target thread will be woken up, it will not
  3965. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3966. * with each other. This can prevent needless bouncing between CPUs.
  3967. *
  3968. * On UP it can prevent extra preemption.
  3969. */
  3970. void
  3971. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3972. {
  3973. unsigned long flags;
  3974. int sync = 1;
  3975. if (unlikely(!q))
  3976. return;
  3977. if (unlikely(!nr_exclusive))
  3978. sync = 0;
  3979. spin_lock_irqsave(&q->lock, flags);
  3980. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3981. spin_unlock_irqrestore(&q->lock, flags);
  3982. }
  3983. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3984. /**
  3985. * complete: - signals a single thread waiting on this completion
  3986. * @x: holds the state of this particular completion
  3987. *
  3988. * This will wake up a single thread waiting on this completion. Threads will be
  3989. * awakened in the same order in which they were queued.
  3990. *
  3991. * See also complete_all(), wait_for_completion() and related routines.
  3992. */
  3993. void complete(struct completion *x)
  3994. {
  3995. unsigned long flags;
  3996. spin_lock_irqsave(&x->wait.lock, flags);
  3997. x->done++;
  3998. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3999. spin_unlock_irqrestore(&x->wait.lock, flags);
  4000. }
  4001. EXPORT_SYMBOL(complete);
  4002. /**
  4003. * complete_all: - signals all threads waiting on this completion
  4004. * @x: holds the state of this particular completion
  4005. *
  4006. * This will wake up all threads waiting on this particular completion event.
  4007. */
  4008. void complete_all(struct completion *x)
  4009. {
  4010. unsigned long flags;
  4011. spin_lock_irqsave(&x->wait.lock, flags);
  4012. x->done += UINT_MAX/2;
  4013. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4014. spin_unlock_irqrestore(&x->wait.lock, flags);
  4015. }
  4016. EXPORT_SYMBOL(complete_all);
  4017. static inline long __sched
  4018. do_wait_for_common(struct completion *x, long timeout, int state)
  4019. {
  4020. if (!x->done) {
  4021. DECLARE_WAITQUEUE(wait, current);
  4022. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4023. __add_wait_queue_tail(&x->wait, &wait);
  4024. do {
  4025. if (signal_pending_state(state, current)) {
  4026. timeout = -ERESTARTSYS;
  4027. break;
  4028. }
  4029. __set_current_state(state);
  4030. spin_unlock_irq(&x->wait.lock);
  4031. timeout = schedule_timeout(timeout);
  4032. spin_lock_irq(&x->wait.lock);
  4033. } while (!x->done && timeout);
  4034. __remove_wait_queue(&x->wait, &wait);
  4035. if (!x->done)
  4036. return timeout;
  4037. }
  4038. x->done--;
  4039. return timeout ?: 1;
  4040. }
  4041. static long __sched
  4042. wait_for_common(struct completion *x, long timeout, int state)
  4043. {
  4044. might_sleep();
  4045. spin_lock_irq(&x->wait.lock);
  4046. timeout = do_wait_for_common(x, timeout, state);
  4047. spin_unlock_irq(&x->wait.lock);
  4048. return timeout;
  4049. }
  4050. /**
  4051. * wait_for_completion: - waits for completion of a task
  4052. * @x: holds the state of this particular completion
  4053. *
  4054. * This waits to be signaled for completion of a specific task. It is NOT
  4055. * interruptible and there is no timeout.
  4056. *
  4057. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4058. * and interrupt capability. Also see complete().
  4059. */
  4060. void __sched wait_for_completion(struct completion *x)
  4061. {
  4062. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4063. }
  4064. EXPORT_SYMBOL(wait_for_completion);
  4065. /**
  4066. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4067. * @x: holds the state of this particular completion
  4068. * @timeout: timeout value in jiffies
  4069. *
  4070. * This waits for either a completion of a specific task to be signaled or for a
  4071. * specified timeout to expire. The timeout is in jiffies. It is not
  4072. * interruptible.
  4073. */
  4074. unsigned long __sched
  4075. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4076. {
  4077. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4078. }
  4079. EXPORT_SYMBOL(wait_for_completion_timeout);
  4080. /**
  4081. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4082. * @x: holds the state of this particular completion
  4083. *
  4084. * This waits for completion of a specific task to be signaled. It is
  4085. * interruptible.
  4086. */
  4087. int __sched wait_for_completion_interruptible(struct completion *x)
  4088. {
  4089. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4090. if (t == -ERESTARTSYS)
  4091. return t;
  4092. return 0;
  4093. }
  4094. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4095. /**
  4096. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4097. * @x: holds the state of this particular completion
  4098. * @timeout: timeout value in jiffies
  4099. *
  4100. * This waits for either a completion of a specific task to be signaled or for a
  4101. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4102. */
  4103. unsigned long __sched
  4104. wait_for_completion_interruptible_timeout(struct completion *x,
  4105. unsigned long timeout)
  4106. {
  4107. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4108. }
  4109. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4110. /**
  4111. * wait_for_completion_killable: - waits for completion of a task (killable)
  4112. * @x: holds the state of this particular completion
  4113. *
  4114. * This waits to be signaled for completion of a specific task. It can be
  4115. * interrupted by a kill signal.
  4116. */
  4117. int __sched wait_for_completion_killable(struct completion *x)
  4118. {
  4119. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4120. if (t == -ERESTARTSYS)
  4121. return t;
  4122. return 0;
  4123. }
  4124. EXPORT_SYMBOL(wait_for_completion_killable);
  4125. /**
  4126. * try_wait_for_completion - try to decrement a completion without blocking
  4127. * @x: completion structure
  4128. *
  4129. * Returns: 0 if a decrement cannot be done without blocking
  4130. * 1 if a decrement succeeded.
  4131. *
  4132. * If a completion is being used as a counting completion,
  4133. * attempt to decrement the counter without blocking. This
  4134. * enables us to avoid waiting if the resource the completion
  4135. * is protecting is not available.
  4136. */
  4137. bool try_wait_for_completion(struct completion *x)
  4138. {
  4139. int ret = 1;
  4140. spin_lock_irq(&x->wait.lock);
  4141. if (!x->done)
  4142. ret = 0;
  4143. else
  4144. x->done--;
  4145. spin_unlock_irq(&x->wait.lock);
  4146. return ret;
  4147. }
  4148. EXPORT_SYMBOL(try_wait_for_completion);
  4149. /**
  4150. * completion_done - Test to see if a completion has any waiters
  4151. * @x: completion structure
  4152. *
  4153. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4154. * 1 if there are no waiters.
  4155. *
  4156. */
  4157. bool completion_done(struct completion *x)
  4158. {
  4159. int ret = 1;
  4160. spin_lock_irq(&x->wait.lock);
  4161. if (!x->done)
  4162. ret = 0;
  4163. spin_unlock_irq(&x->wait.lock);
  4164. return ret;
  4165. }
  4166. EXPORT_SYMBOL(completion_done);
  4167. static long __sched
  4168. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4169. {
  4170. unsigned long flags;
  4171. wait_queue_t wait;
  4172. init_waitqueue_entry(&wait, current);
  4173. __set_current_state(state);
  4174. spin_lock_irqsave(&q->lock, flags);
  4175. __add_wait_queue(q, &wait);
  4176. spin_unlock(&q->lock);
  4177. timeout = schedule_timeout(timeout);
  4178. spin_lock_irq(&q->lock);
  4179. __remove_wait_queue(q, &wait);
  4180. spin_unlock_irqrestore(&q->lock, flags);
  4181. return timeout;
  4182. }
  4183. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4184. {
  4185. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4186. }
  4187. EXPORT_SYMBOL(interruptible_sleep_on);
  4188. long __sched
  4189. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4190. {
  4191. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4192. }
  4193. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4194. void __sched sleep_on(wait_queue_head_t *q)
  4195. {
  4196. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4197. }
  4198. EXPORT_SYMBOL(sleep_on);
  4199. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4200. {
  4201. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4202. }
  4203. EXPORT_SYMBOL(sleep_on_timeout);
  4204. #ifdef CONFIG_RT_MUTEXES
  4205. /*
  4206. * rt_mutex_setprio - set the current priority of a task
  4207. * @p: task
  4208. * @prio: prio value (kernel-internal form)
  4209. *
  4210. * This function changes the 'effective' priority of a task. It does
  4211. * not touch ->normal_prio like __setscheduler().
  4212. *
  4213. * Used by the rt_mutex code to implement priority inheritance logic.
  4214. */
  4215. void rt_mutex_setprio(struct task_struct *p, int prio)
  4216. {
  4217. unsigned long flags;
  4218. int oldprio, on_rq, running;
  4219. struct rq *rq;
  4220. const struct sched_class *prev_class = p->sched_class;
  4221. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4222. rq = task_rq_lock(p, &flags);
  4223. update_rq_clock(rq);
  4224. oldprio = p->prio;
  4225. on_rq = p->se.on_rq;
  4226. running = task_current(rq, p);
  4227. if (on_rq)
  4228. dequeue_task(rq, p, 0);
  4229. if (running)
  4230. p->sched_class->put_prev_task(rq, p);
  4231. if (rt_prio(prio))
  4232. p->sched_class = &rt_sched_class;
  4233. else
  4234. p->sched_class = &fair_sched_class;
  4235. p->prio = prio;
  4236. if (running)
  4237. p->sched_class->set_curr_task(rq);
  4238. if (on_rq) {
  4239. enqueue_task(rq, p, 0);
  4240. check_class_changed(rq, p, prev_class, oldprio, running);
  4241. }
  4242. task_rq_unlock(rq, &flags);
  4243. }
  4244. #endif
  4245. void set_user_nice(struct task_struct *p, long nice)
  4246. {
  4247. int old_prio, delta, on_rq;
  4248. unsigned long flags;
  4249. struct rq *rq;
  4250. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4251. return;
  4252. /*
  4253. * We have to be careful, if called from sys_setpriority(),
  4254. * the task might be in the middle of scheduling on another CPU.
  4255. */
  4256. rq = task_rq_lock(p, &flags);
  4257. update_rq_clock(rq);
  4258. /*
  4259. * The RT priorities are set via sched_setscheduler(), but we still
  4260. * allow the 'normal' nice value to be set - but as expected
  4261. * it wont have any effect on scheduling until the task is
  4262. * SCHED_FIFO/SCHED_RR:
  4263. */
  4264. if (task_has_rt_policy(p)) {
  4265. p->static_prio = NICE_TO_PRIO(nice);
  4266. goto out_unlock;
  4267. }
  4268. on_rq = p->se.on_rq;
  4269. if (on_rq)
  4270. dequeue_task(rq, p, 0);
  4271. p->static_prio = NICE_TO_PRIO(nice);
  4272. set_load_weight(p);
  4273. old_prio = p->prio;
  4274. p->prio = effective_prio(p);
  4275. delta = p->prio - old_prio;
  4276. if (on_rq) {
  4277. enqueue_task(rq, p, 0);
  4278. /*
  4279. * If the task increased its priority or is running and
  4280. * lowered its priority, then reschedule its CPU:
  4281. */
  4282. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4283. resched_task(rq->curr);
  4284. }
  4285. out_unlock:
  4286. task_rq_unlock(rq, &flags);
  4287. }
  4288. EXPORT_SYMBOL(set_user_nice);
  4289. /*
  4290. * can_nice - check if a task can reduce its nice value
  4291. * @p: task
  4292. * @nice: nice value
  4293. */
  4294. int can_nice(const struct task_struct *p, const int nice)
  4295. {
  4296. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4297. int nice_rlim = 20 - nice;
  4298. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4299. capable(CAP_SYS_NICE));
  4300. }
  4301. #ifdef __ARCH_WANT_SYS_NICE
  4302. /*
  4303. * sys_nice - change the priority of the current process.
  4304. * @increment: priority increment
  4305. *
  4306. * sys_setpriority is a more generic, but much slower function that
  4307. * does similar things.
  4308. */
  4309. asmlinkage long sys_nice(int increment)
  4310. {
  4311. long nice, retval;
  4312. /*
  4313. * Setpriority might change our priority at the same moment.
  4314. * We don't have to worry. Conceptually one call occurs first
  4315. * and we have a single winner.
  4316. */
  4317. if (increment < -40)
  4318. increment = -40;
  4319. if (increment > 40)
  4320. increment = 40;
  4321. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4322. if (nice < -20)
  4323. nice = -20;
  4324. if (nice > 19)
  4325. nice = 19;
  4326. if (increment < 0 && !can_nice(current, nice))
  4327. return -EPERM;
  4328. retval = security_task_setnice(current, nice);
  4329. if (retval)
  4330. return retval;
  4331. set_user_nice(current, nice);
  4332. return 0;
  4333. }
  4334. #endif
  4335. /**
  4336. * task_prio - return the priority value of a given task.
  4337. * @p: the task in question.
  4338. *
  4339. * This is the priority value as seen by users in /proc.
  4340. * RT tasks are offset by -200. Normal tasks are centered
  4341. * around 0, value goes from -16 to +15.
  4342. */
  4343. int task_prio(const struct task_struct *p)
  4344. {
  4345. return p->prio - MAX_RT_PRIO;
  4346. }
  4347. /**
  4348. * task_nice - return the nice value of a given task.
  4349. * @p: the task in question.
  4350. */
  4351. int task_nice(const struct task_struct *p)
  4352. {
  4353. return TASK_NICE(p);
  4354. }
  4355. EXPORT_SYMBOL(task_nice);
  4356. /**
  4357. * idle_cpu - is a given cpu idle currently?
  4358. * @cpu: the processor in question.
  4359. */
  4360. int idle_cpu(int cpu)
  4361. {
  4362. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4363. }
  4364. /**
  4365. * idle_task - return the idle task for a given cpu.
  4366. * @cpu: the processor in question.
  4367. */
  4368. struct task_struct *idle_task(int cpu)
  4369. {
  4370. return cpu_rq(cpu)->idle;
  4371. }
  4372. /**
  4373. * find_process_by_pid - find a process with a matching PID value.
  4374. * @pid: the pid in question.
  4375. */
  4376. static struct task_struct *find_process_by_pid(pid_t pid)
  4377. {
  4378. return pid ? find_task_by_vpid(pid) : current;
  4379. }
  4380. /* Actually do priority change: must hold rq lock. */
  4381. static void
  4382. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4383. {
  4384. BUG_ON(p->se.on_rq);
  4385. p->policy = policy;
  4386. switch (p->policy) {
  4387. case SCHED_NORMAL:
  4388. case SCHED_BATCH:
  4389. case SCHED_IDLE:
  4390. p->sched_class = &fair_sched_class;
  4391. break;
  4392. case SCHED_FIFO:
  4393. case SCHED_RR:
  4394. p->sched_class = &rt_sched_class;
  4395. break;
  4396. }
  4397. p->rt_priority = prio;
  4398. p->normal_prio = normal_prio(p);
  4399. /* we are holding p->pi_lock already */
  4400. p->prio = rt_mutex_getprio(p);
  4401. set_load_weight(p);
  4402. }
  4403. static int __sched_setscheduler(struct task_struct *p, int policy,
  4404. struct sched_param *param, bool user)
  4405. {
  4406. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4407. unsigned long flags;
  4408. const struct sched_class *prev_class = p->sched_class;
  4409. struct rq *rq;
  4410. /* may grab non-irq protected spin_locks */
  4411. BUG_ON(in_interrupt());
  4412. recheck:
  4413. /* double check policy once rq lock held */
  4414. if (policy < 0)
  4415. policy = oldpolicy = p->policy;
  4416. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4417. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4418. policy != SCHED_IDLE)
  4419. return -EINVAL;
  4420. /*
  4421. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4422. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4423. * SCHED_BATCH and SCHED_IDLE is 0.
  4424. */
  4425. if (param->sched_priority < 0 ||
  4426. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4427. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4428. return -EINVAL;
  4429. if (rt_policy(policy) != (param->sched_priority != 0))
  4430. return -EINVAL;
  4431. /*
  4432. * Allow unprivileged RT tasks to decrease priority:
  4433. */
  4434. if (user && !capable(CAP_SYS_NICE)) {
  4435. if (rt_policy(policy)) {
  4436. unsigned long rlim_rtprio;
  4437. if (!lock_task_sighand(p, &flags))
  4438. return -ESRCH;
  4439. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4440. unlock_task_sighand(p, &flags);
  4441. /* can't set/change the rt policy */
  4442. if (policy != p->policy && !rlim_rtprio)
  4443. return -EPERM;
  4444. /* can't increase priority */
  4445. if (param->sched_priority > p->rt_priority &&
  4446. param->sched_priority > rlim_rtprio)
  4447. return -EPERM;
  4448. }
  4449. /*
  4450. * Like positive nice levels, dont allow tasks to
  4451. * move out of SCHED_IDLE either:
  4452. */
  4453. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4454. return -EPERM;
  4455. /* can't change other user's priorities */
  4456. if ((current->euid != p->euid) &&
  4457. (current->euid != p->uid))
  4458. return -EPERM;
  4459. }
  4460. if (user) {
  4461. #ifdef CONFIG_RT_GROUP_SCHED
  4462. /*
  4463. * Do not allow realtime tasks into groups that have no runtime
  4464. * assigned.
  4465. */
  4466. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4467. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4468. return -EPERM;
  4469. #endif
  4470. retval = security_task_setscheduler(p, policy, param);
  4471. if (retval)
  4472. return retval;
  4473. }
  4474. /*
  4475. * make sure no PI-waiters arrive (or leave) while we are
  4476. * changing the priority of the task:
  4477. */
  4478. spin_lock_irqsave(&p->pi_lock, flags);
  4479. /*
  4480. * To be able to change p->policy safely, the apropriate
  4481. * runqueue lock must be held.
  4482. */
  4483. rq = __task_rq_lock(p);
  4484. /* recheck policy now with rq lock held */
  4485. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4486. policy = oldpolicy = -1;
  4487. __task_rq_unlock(rq);
  4488. spin_unlock_irqrestore(&p->pi_lock, flags);
  4489. goto recheck;
  4490. }
  4491. update_rq_clock(rq);
  4492. on_rq = p->se.on_rq;
  4493. running = task_current(rq, p);
  4494. if (on_rq)
  4495. deactivate_task(rq, p, 0);
  4496. if (running)
  4497. p->sched_class->put_prev_task(rq, p);
  4498. oldprio = p->prio;
  4499. __setscheduler(rq, p, policy, param->sched_priority);
  4500. if (running)
  4501. p->sched_class->set_curr_task(rq);
  4502. if (on_rq) {
  4503. activate_task(rq, p, 0);
  4504. check_class_changed(rq, p, prev_class, oldprio, running);
  4505. }
  4506. __task_rq_unlock(rq);
  4507. spin_unlock_irqrestore(&p->pi_lock, flags);
  4508. rt_mutex_adjust_pi(p);
  4509. return 0;
  4510. }
  4511. /**
  4512. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4513. * @p: the task in question.
  4514. * @policy: new policy.
  4515. * @param: structure containing the new RT priority.
  4516. *
  4517. * NOTE that the task may be already dead.
  4518. */
  4519. int sched_setscheduler(struct task_struct *p, int policy,
  4520. struct sched_param *param)
  4521. {
  4522. return __sched_setscheduler(p, policy, param, true);
  4523. }
  4524. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4525. /**
  4526. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4527. * @p: the task in question.
  4528. * @policy: new policy.
  4529. * @param: structure containing the new RT priority.
  4530. *
  4531. * Just like sched_setscheduler, only don't bother checking if the
  4532. * current context has permission. For example, this is needed in
  4533. * stop_machine(): we create temporary high priority worker threads,
  4534. * but our caller might not have that capability.
  4535. */
  4536. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4537. struct sched_param *param)
  4538. {
  4539. return __sched_setscheduler(p, policy, param, false);
  4540. }
  4541. static int
  4542. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4543. {
  4544. struct sched_param lparam;
  4545. struct task_struct *p;
  4546. int retval;
  4547. if (!param || pid < 0)
  4548. return -EINVAL;
  4549. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4550. return -EFAULT;
  4551. rcu_read_lock();
  4552. retval = -ESRCH;
  4553. p = find_process_by_pid(pid);
  4554. if (p != NULL)
  4555. retval = sched_setscheduler(p, policy, &lparam);
  4556. rcu_read_unlock();
  4557. return retval;
  4558. }
  4559. /**
  4560. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4561. * @pid: the pid in question.
  4562. * @policy: new policy.
  4563. * @param: structure containing the new RT priority.
  4564. */
  4565. asmlinkage long
  4566. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4567. {
  4568. /* negative values for policy are not valid */
  4569. if (policy < 0)
  4570. return -EINVAL;
  4571. return do_sched_setscheduler(pid, policy, param);
  4572. }
  4573. /**
  4574. * sys_sched_setparam - set/change the RT priority of a thread
  4575. * @pid: the pid in question.
  4576. * @param: structure containing the new RT priority.
  4577. */
  4578. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4579. {
  4580. return do_sched_setscheduler(pid, -1, param);
  4581. }
  4582. /**
  4583. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4584. * @pid: the pid in question.
  4585. */
  4586. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4587. {
  4588. struct task_struct *p;
  4589. int retval;
  4590. if (pid < 0)
  4591. return -EINVAL;
  4592. retval = -ESRCH;
  4593. read_lock(&tasklist_lock);
  4594. p = find_process_by_pid(pid);
  4595. if (p) {
  4596. retval = security_task_getscheduler(p);
  4597. if (!retval)
  4598. retval = p->policy;
  4599. }
  4600. read_unlock(&tasklist_lock);
  4601. return retval;
  4602. }
  4603. /**
  4604. * sys_sched_getscheduler - get the RT priority of a thread
  4605. * @pid: the pid in question.
  4606. * @param: structure containing the RT priority.
  4607. */
  4608. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4609. {
  4610. struct sched_param lp;
  4611. struct task_struct *p;
  4612. int retval;
  4613. if (!param || pid < 0)
  4614. return -EINVAL;
  4615. read_lock(&tasklist_lock);
  4616. p = find_process_by_pid(pid);
  4617. retval = -ESRCH;
  4618. if (!p)
  4619. goto out_unlock;
  4620. retval = security_task_getscheduler(p);
  4621. if (retval)
  4622. goto out_unlock;
  4623. lp.sched_priority = p->rt_priority;
  4624. read_unlock(&tasklist_lock);
  4625. /*
  4626. * This one might sleep, we cannot do it with a spinlock held ...
  4627. */
  4628. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4629. return retval;
  4630. out_unlock:
  4631. read_unlock(&tasklist_lock);
  4632. return retval;
  4633. }
  4634. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4635. {
  4636. cpumask_t cpus_allowed;
  4637. cpumask_t new_mask = *in_mask;
  4638. struct task_struct *p;
  4639. int retval;
  4640. get_online_cpus();
  4641. read_lock(&tasklist_lock);
  4642. p = find_process_by_pid(pid);
  4643. if (!p) {
  4644. read_unlock(&tasklist_lock);
  4645. put_online_cpus();
  4646. return -ESRCH;
  4647. }
  4648. /*
  4649. * It is not safe to call set_cpus_allowed with the
  4650. * tasklist_lock held. We will bump the task_struct's
  4651. * usage count and then drop tasklist_lock.
  4652. */
  4653. get_task_struct(p);
  4654. read_unlock(&tasklist_lock);
  4655. retval = -EPERM;
  4656. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4657. !capable(CAP_SYS_NICE))
  4658. goto out_unlock;
  4659. retval = security_task_setscheduler(p, 0, NULL);
  4660. if (retval)
  4661. goto out_unlock;
  4662. cpuset_cpus_allowed(p, &cpus_allowed);
  4663. cpus_and(new_mask, new_mask, cpus_allowed);
  4664. again:
  4665. retval = set_cpus_allowed_ptr(p, &new_mask);
  4666. if (!retval) {
  4667. cpuset_cpus_allowed(p, &cpus_allowed);
  4668. if (!cpus_subset(new_mask, cpus_allowed)) {
  4669. /*
  4670. * We must have raced with a concurrent cpuset
  4671. * update. Just reset the cpus_allowed to the
  4672. * cpuset's cpus_allowed
  4673. */
  4674. new_mask = cpus_allowed;
  4675. goto again;
  4676. }
  4677. }
  4678. out_unlock:
  4679. put_task_struct(p);
  4680. put_online_cpus();
  4681. return retval;
  4682. }
  4683. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4684. cpumask_t *new_mask)
  4685. {
  4686. if (len < sizeof(cpumask_t)) {
  4687. memset(new_mask, 0, sizeof(cpumask_t));
  4688. } else if (len > sizeof(cpumask_t)) {
  4689. len = sizeof(cpumask_t);
  4690. }
  4691. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4692. }
  4693. /**
  4694. * sys_sched_setaffinity - set the cpu affinity of a process
  4695. * @pid: pid of the process
  4696. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4697. * @user_mask_ptr: user-space pointer to the new cpu mask
  4698. */
  4699. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4700. unsigned long __user *user_mask_ptr)
  4701. {
  4702. cpumask_t new_mask;
  4703. int retval;
  4704. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4705. if (retval)
  4706. return retval;
  4707. return sched_setaffinity(pid, &new_mask);
  4708. }
  4709. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4710. {
  4711. struct task_struct *p;
  4712. int retval;
  4713. get_online_cpus();
  4714. read_lock(&tasklist_lock);
  4715. retval = -ESRCH;
  4716. p = find_process_by_pid(pid);
  4717. if (!p)
  4718. goto out_unlock;
  4719. retval = security_task_getscheduler(p);
  4720. if (retval)
  4721. goto out_unlock;
  4722. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4723. out_unlock:
  4724. read_unlock(&tasklist_lock);
  4725. put_online_cpus();
  4726. return retval;
  4727. }
  4728. /**
  4729. * sys_sched_getaffinity - get the cpu affinity of a process
  4730. * @pid: pid of the process
  4731. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4732. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4733. */
  4734. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4735. unsigned long __user *user_mask_ptr)
  4736. {
  4737. int ret;
  4738. cpumask_t mask;
  4739. if (len < sizeof(cpumask_t))
  4740. return -EINVAL;
  4741. ret = sched_getaffinity(pid, &mask);
  4742. if (ret < 0)
  4743. return ret;
  4744. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4745. return -EFAULT;
  4746. return sizeof(cpumask_t);
  4747. }
  4748. /**
  4749. * sys_sched_yield - yield the current processor to other threads.
  4750. *
  4751. * This function yields the current CPU to other tasks. If there are no
  4752. * other threads running on this CPU then this function will return.
  4753. */
  4754. asmlinkage long sys_sched_yield(void)
  4755. {
  4756. struct rq *rq = this_rq_lock();
  4757. schedstat_inc(rq, yld_count);
  4758. current->sched_class->yield_task(rq);
  4759. /*
  4760. * Since we are going to call schedule() anyway, there's
  4761. * no need to preempt or enable interrupts:
  4762. */
  4763. __release(rq->lock);
  4764. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4765. _raw_spin_unlock(&rq->lock);
  4766. preempt_enable_no_resched();
  4767. schedule();
  4768. return 0;
  4769. }
  4770. static void __cond_resched(void)
  4771. {
  4772. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4773. __might_sleep(__FILE__, __LINE__);
  4774. #endif
  4775. /*
  4776. * The BKS might be reacquired before we have dropped
  4777. * PREEMPT_ACTIVE, which could trigger a second
  4778. * cond_resched() call.
  4779. */
  4780. do {
  4781. add_preempt_count(PREEMPT_ACTIVE);
  4782. schedule();
  4783. sub_preempt_count(PREEMPT_ACTIVE);
  4784. } while (need_resched());
  4785. }
  4786. int __sched _cond_resched(void)
  4787. {
  4788. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4789. system_state == SYSTEM_RUNNING) {
  4790. __cond_resched();
  4791. return 1;
  4792. }
  4793. return 0;
  4794. }
  4795. EXPORT_SYMBOL(_cond_resched);
  4796. /*
  4797. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4798. * call schedule, and on return reacquire the lock.
  4799. *
  4800. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4801. * operations here to prevent schedule() from being called twice (once via
  4802. * spin_unlock(), once by hand).
  4803. */
  4804. int cond_resched_lock(spinlock_t *lock)
  4805. {
  4806. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4807. int ret = 0;
  4808. if (spin_needbreak(lock) || resched) {
  4809. spin_unlock(lock);
  4810. if (resched && need_resched())
  4811. __cond_resched();
  4812. else
  4813. cpu_relax();
  4814. ret = 1;
  4815. spin_lock(lock);
  4816. }
  4817. return ret;
  4818. }
  4819. EXPORT_SYMBOL(cond_resched_lock);
  4820. int __sched cond_resched_softirq(void)
  4821. {
  4822. BUG_ON(!in_softirq());
  4823. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4824. local_bh_enable();
  4825. __cond_resched();
  4826. local_bh_disable();
  4827. return 1;
  4828. }
  4829. return 0;
  4830. }
  4831. EXPORT_SYMBOL(cond_resched_softirq);
  4832. /**
  4833. * yield - yield the current processor to other threads.
  4834. *
  4835. * This is a shortcut for kernel-space yielding - it marks the
  4836. * thread runnable and calls sys_sched_yield().
  4837. */
  4838. void __sched yield(void)
  4839. {
  4840. set_current_state(TASK_RUNNING);
  4841. sys_sched_yield();
  4842. }
  4843. EXPORT_SYMBOL(yield);
  4844. /*
  4845. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4846. * that process accounting knows that this is a task in IO wait state.
  4847. *
  4848. * But don't do that if it is a deliberate, throttling IO wait (this task
  4849. * has set its backing_dev_info: the queue against which it should throttle)
  4850. */
  4851. void __sched io_schedule(void)
  4852. {
  4853. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4854. delayacct_blkio_start();
  4855. atomic_inc(&rq->nr_iowait);
  4856. schedule();
  4857. atomic_dec(&rq->nr_iowait);
  4858. delayacct_blkio_end();
  4859. }
  4860. EXPORT_SYMBOL(io_schedule);
  4861. long __sched io_schedule_timeout(long timeout)
  4862. {
  4863. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4864. long ret;
  4865. delayacct_blkio_start();
  4866. atomic_inc(&rq->nr_iowait);
  4867. ret = schedule_timeout(timeout);
  4868. atomic_dec(&rq->nr_iowait);
  4869. delayacct_blkio_end();
  4870. return ret;
  4871. }
  4872. /**
  4873. * sys_sched_get_priority_max - return maximum RT priority.
  4874. * @policy: scheduling class.
  4875. *
  4876. * this syscall returns the maximum rt_priority that can be used
  4877. * by a given scheduling class.
  4878. */
  4879. asmlinkage long sys_sched_get_priority_max(int policy)
  4880. {
  4881. int ret = -EINVAL;
  4882. switch (policy) {
  4883. case SCHED_FIFO:
  4884. case SCHED_RR:
  4885. ret = MAX_USER_RT_PRIO-1;
  4886. break;
  4887. case SCHED_NORMAL:
  4888. case SCHED_BATCH:
  4889. case SCHED_IDLE:
  4890. ret = 0;
  4891. break;
  4892. }
  4893. return ret;
  4894. }
  4895. /**
  4896. * sys_sched_get_priority_min - return minimum RT priority.
  4897. * @policy: scheduling class.
  4898. *
  4899. * this syscall returns the minimum rt_priority that can be used
  4900. * by a given scheduling class.
  4901. */
  4902. asmlinkage long sys_sched_get_priority_min(int policy)
  4903. {
  4904. int ret = -EINVAL;
  4905. switch (policy) {
  4906. case SCHED_FIFO:
  4907. case SCHED_RR:
  4908. ret = 1;
  4909. break;
  4910. case SCHED_NORMAL:
  4911. case SCHED_BATCH:
  4912. case SCHED_IDLE:
  4913. ret = 0;
  4914. }
  4915. return ret;
  4916. }
  4917. /**
  4918. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4919. * @pid: pid of the process.
  4920. * @interval: userspace pointer to the timeslice value.
  4921. *
  4922. * this syscall writes the default timeslice value of a given process
  4923. * into the user-space timespec buffer. A value of '0' means infinity.
  4924. */
  4925. asmlinkage
  4926. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4927. {
  4928. struct task_struct *p;
  4929. unsigned int time_slice;
  4930. int retval;
  4931. struct timespec t;
  4932. if (pid < 0)
  4933. return -EINVAL;
  4934. retval = -ESRCH;
  4935. read_lock(&tasklist_lock);
  4936. p = find_process_by_pid(pid);
  4937. if (!p)
  4938. goto out_unlock;
  4939. retval = security_task_getscheduler(p);
  4940. if (retval)
  4941. goto out_unlock;
  4942. /*
  4943. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4944. * tasks that are on an otherwise idle runqueue:
  4945. */
  4946. time_slice = 0;
  4947. if (p->policy == SCHED_RR) {
  4948. time_slice = DEF_TIMESLICE;
  4949. } else if (p->policy != SCHED_FIFO) {
  4950. struct sched_entity *se = &p->se;
  4951. unsigned long flags;
  4952. struct rq *rq;
  4953. rq = task_rq_lock(p, &flags);
  4954. if (rq->cfs.load.weight)
  4955. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4956. task_rq_unlock(rq, &flags);
  4957. }
  4958. read_unlock(&tasklist_lock);
  4959. jiffies_to_timespec(time_slice, &t);
  4960. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4961. return retval;
  4962. out_unlock:
  4963. read_unlock(&tasklist_lock);
  4964. return retval;
  4965. }
  4966. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4967. void sched_show_task(struct task_struct *p)
  4968. {
  4969. unsigned long free = 0;
  4970. unsigned state;
  4971. state = p->state ? __ffs(p->state) + 1 : 0;
  4972. printk(KERN_INFO "%-13.13s %c", p->comm,
  4973. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4974. #if BITS_PER_LONG == 32
  4975. if (state == TASK_RUNNING)
  4976. printk(KERN_CONT " running ");
  4977. else
  4978. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4979. #else
  4980. if (state == TASK_RUNNING)
  4981. printk(KERN_CONT " running task ");
  4982. else
  4983. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4984. #endif
  4985. #ifdef CONFIG_DEBUG_STACK_USAGE
  4986. {
  4987. unsigned long *n = end_of_stack(p);
  4988. while (!*n)
  4989. n++;
  4990. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4991. }
  4992. #endif
  4993. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4994. task_pid_nr(p), task_pid_nr(p->real_parent));
  4995. show_stack(p, NULL);
  4996. }
  4997. void show_state_filter(unsigned long state_filter)
  4998. {
  4999. struct task_struct *g, *p;
  5000. #if BITS_PER_LONG == 32
  5001. printk(KERN_INFO
  5002. " task PC stack pid father\n");
  5003. #else
  5004. printk(KERN_INFO
  5005. " task PC stack pid father\n");
  5006. #endif
  5007. read_lock(&tasklist_lock);
  5008. do_each_thread(g, p) {
  5009. /*
  5010. * reset the NMI-timeout, listing all files on a slow
  5011. * console might take alot of time:
  5012. */
  5013. touch_nmi_watchdog();
  5014. if (!state_filter || (p->state & state_filter))
  5015. sched_show_task(p);
  5016. } while_each_thread(g, p);
  5017. touch_all_softlockup_watchdogs();
  5018. #ifdef CONFIG_SCHED_DEBUG
  5019. sysrq_sched_debug_show();
  5020. #endif
  5021. read_unlock(&tasklist_lock);
  5022. /*
  5023. * Only show locks if all tasks are dumped:
  5024. */
  5025. if (state_filter == -1)
  5026. debug_show_all_locks();
  5027. }
  5028. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5029. {
  5030. idle->sched_class = &idle_sched_class;
  5031. }
  5032. /**
  5033. * init_idle - set up an idle thread for a given CPU
  5034. * @idle: task in question
  5035. * @cpu: cpu the idle task belongs to
  5036. *
  5037. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5038. * flag, to make booting more robust.
  5039. */
  5040. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5041. {
  5042. struct rq *rq = cpu_rq(cpu);
  5043. unsigned long flags;
  5044. spin_lock_irqsave(&rq->lock, flags);
  5045. __sched_fork(idle);
  5046. idle->se.exec_start = sched_clock();
  5047. idle->prio = idle->normal_prio = MAX_PRIO;
  5048. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5049. __set_task_cpu(idle, cpu);
  5050. rq->curr = rq->idle = idle;
  5051. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5052. idle->oncpu = 1;
  5053. #endif
  5054. spin_unlock_irqrestore(&rq->lock, flags);
  5055. /* Set the preempt count _outside_ the spinlocks! */
  5056. #if defined(CONFIG_PREEMPT)
  5057. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5058. #else
  5059. task_thread_info(idle)->preempt_count = 0;
  5060. #endif
  5061. /*
  5062. * The idle tasks have their own, simple scheduling class:
  5063. */
  5064. idle->sched_class = &idle_sched_class;
  5065. }
  5066. /*
  5067. * In a system that switches off the HZ timer nohz_cpu_mask
  5068. * indicates which cpus entered this state. This is used
  5069. * in the rcu update to wait only for active cpus. For system
  5070. * which do not switch off the HZ timer nohz_cpu_mask should
  5071. * always be CPU_MASK_NONE.
  5072. */
  5073. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5074. /*
  5075. * Increase the granularity value when there are more CPUs,
  5076. * because with more CPUs the 'effective latency' as visible
  5077. * to users decreases. But the relationship is not linear,
  5078. * so pick a second-best guess by going with the log2 of the
  5079. * number of CPUs.
  5080. *
  5081. * This idea comes from the SD scheduler of Con Kolivas:
  5082. */
  5083. static inline void sched_init_granularity(void)
  5084. {
  5085. unsigned int factor = 1 + ilog2(num_online_cpus());
  5086. const unsigned long limit = 200000000;
  5087. sysctl_sched_min_granularity *= factor;
  5088. if (sysctl_sched_min_granularity > limit)
  5089. sysctl_sched_min_granularity = limit;
  5090. sysctl_sched_latency *= factor;
  5091. if (sysctl_sched_latency > limit)
  5092. sysctl_sched_latency = limit;
  5093. sysctl_sched_wakeup_granularity *= factor;
  5094. sysctl_sched_shares_ratelimit *= factor;
  5095. }
  5096. #ifdef CONFIG_SMP
  5097. /*
  5098. * This is how migration works:
  5099. *
  5100. * 1) we queue a struct migration_req structure in the source CPU's
  5101. * runqueue and wake up that CPU's migration thread.
  5102. * 2) we down() the locked semaphore => thread blocks.
  5103. * 3) migration thread wakes up (implicitly it forces the migrated
  5104. * thread off the CPU)
  5105. * 4) it gets the migration request and checks whether the migrated
  5106. * task is still in the wrong runqueue.
  5107. * 5) if it's in the wrong runqueue then the migration thread removes
  5108. * it and puts it into the right queue.
  5109. * 6) migration thread up()s the semaphore.
  5110. * 7) we wake up and the migration is done.
  5111. */
  5112. /*
  5113. * Change a given task's CPU affinity. Migrate the thread to a
  5114. * proper CPU and schedule it away if the CPU it's executing on
  5115. * is removed from the allowed bitmask.
  5116. *
  5117. * NOTE: the caller must have a valid reference to the task, the
  5118. * task must not exit() & deallocate itself prematurely. The
  5119. * call is not atomic; no spinlocks may be held.
  5120. */
  5121. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5122. {
  5123. struct migration_req req;
  5124. unsigned long flags;
  5125. struct rq *rq;
  5126. int ret = 0;
  5127. rq = task_rq_lock(p, &flags);
  5128. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5129. ret = -EINVAL;
  5130. goto out;
  5131. }
  5132. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5133. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5134. ret = -EINVAL;
  5135. goto out;
  5136. }
  5137. if (p->sched_class->set_cpus_allowed)
  5138. p->sched_class->set_cpus_allowed(p, new_mask);
  5139. else {
  5140. p->cpus_allowed = *new_mask;
  5141. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5142. }
  5143. /* Can the task run on the task's current CPU? If so, we're done */
  5144. if (cpu_isset(task_cpu(p), *new_mask))
  5145. goto out;
  5146. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5147. /* Need help from migration thread: drop lock and wait. */
  5148. task_rq_unlock(rq, &flags);
  5149. wake_up_process(rq->migration_thread);
  5150. wait_for_completion(&req.done);
  5151. tlb_migrate_finish(p->mm);
  5152. return 0;
  5153. }
  5154. out:
  5155. task_rq_unlock(rq, &flags);
  5156. return ret;
  5157. }
  5158. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5159. /*
  5160. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5161. * this because either it can't run here any more (set_cpus_allowed()
  5162. * away from this CPU, or CPU going down), or because we're
  5163. * attempting to rebalance this task on exec (sched_exec).
  5164. *
  5165. * So we race with normal scheduler movements, but that's OK, as long
  5166. * as the task is no longer on this CPU.
  5167. *
  5168. * Returns non-zero if task was successfully migrated.
  5169. */
  5170. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5171. {
  5172. struct rq *rq_dest, *rq_src;
  5173. int ret = 0, on_rq;
  5174. if (unlikely(!cpu_active(dest_cpu)))
  5175. return ret;
  5176. rq_src = cpu_rq(src_cpu);
  5177. rq_dest = cpu_rq(dest_cpu);
  5178. double_rq_lock(rq_src, rq_dest);
  5179. /* Already moved. */
  5180. if (task_cpu(p) != src_cpu)
  5181. goto done;
  5182. /* Affinity changed (again). */
  5183. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5184. goto fail;
  5185. on_rq = p->se.on_rq;
  5186. if (on_rq)
  5187. deactivate_task(rq_src, p, 0);
  5188. set_task_cpu(p, dest_cpu);
  5189. if (on_rq) {
  5190. activate_task(rq_dest, p, 0);
  5191. check_preempt_curr(rq_dest, p, 0);
  5192. }
  5193. done:
  5194. ret = 1;
  5195. fail:
  5196. double_rq_unlock(rq_src, rq_dest);
  5197. return ret;
  5198. }
  5199. /*
  5200. * migration_thread - this is a highprio system thread that performs
  5201. * thread migration by bumping thread off CPU then 'pushing' onto
  5202. * another runqueue.
  5203. */
  5204. static int migration_thread(void *data)
  5205. {
  5206. int cpu = (long)data;
  5207. struct rq *rq;
  5208. rq = cpu_rq(cpu);
  5209. BUG_ON(rq->migration_thread != current);
  5210. set_current_state(TASK_INTERRUPTIBLE);
  5211. while (!kthread_should_stop()) {
  5212. struct migration_req *req;
  5213. struct list_head *head;
  5214. spin_lock_irq(&rq->lock);
  5215. if (cpu_is_offline(cpu)) {
  5216. spin_unlock_irq(&rq->lock);
  5217. goto wait_to_die;
  5218. }
  5219. if (rq->active_balance) {
  5220. active_load_balance(rq, cpu);
  5221. rq->active_balance = 0;
  5222. }
  5223. head = &rq->migration_queue;
  5224. if (list_empty(head)) {
  5225. spin_unlock_irq(&rq->lock);
  5226. schedule();
  5227. set_current_state(TASK_INTERRUPTIBLE);
  5228. continue;
  5229. }
  5230. req = list_entry(head->next, struct migration_req, list);
  5231. list_del_init(head->next);
  5232. spin_unlock(&rq->lock);
  5233. __migrate_task(req->task, cpu, req->dest_cpu);
  5234. local_irq_enable();
  5235. complete(&req->done);
  5236. }
  5237. __set_current_state(TASK_RUNNING);
  5238. return 0;
  5239. wait_to_die:
  5240. /* Wait for kthread_stop */
  5241. set_current_state(TASK_INTERRUPTIBLE);
  5242. while (!kthread_should_stop()) {
  5243. schedule();
  5244. set_current_state(TASK_INTERRUPTIBLE);
  5245. }
  5246. __set_current_state(TASK_RUNNING);
  5247. return 0;
  5248. }
  5249. #ifdef CONFIG_HOTPLUG_CPU
  5250. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5251. {
  5252. int ret;
  5253. local_irq_disable();
  5254. ret = __migrate_task(p, src_cpu, dest_cpu);
  5255. local_irq_enable();
  5256. return ret;
  5257. }
  5258. /*
  5259. * Figure out where task on dead CPU should go, use force if necessary.
  5260. * NOTE: interrupts should be disabled by the caller
  5261. */
  5262. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5263. {
  5264. unsigned long flags;
  5265. cpumask_t mask;
  5266. struct rq *rq;
  5267. int dest_cpu;
  5268. do {
  5269. /* On same node? */
  5270. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5271. cpus_and(mask, mask, p->cpus_allowed);
  5272. dest_cpu = any_online_cpu(mask);
  5273. /* On any allowed CPU? */
  5274. if (dest_cpu >= nr_cpu_ids)
  5275. dest_cpu = any_online_cpu(p->cpus_allowed);
  5276. /* No more Mr. Nice Guy. */
  5277. if (dest_cpu >= nr_cpu_ids) {
  5278. cpumask_t cpus_allowed;
  5279. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5280. /*
  5281. * Try to stay on the same cpuset, where the
  5282. * current cpuset may be a subset of all cpus.
  5283. * The cpuset_cpus_allowed_locked() variant of
  5284. * cpuset_cpus_allowed() will not block. It must be
  5285. * called within calls to cpuset_lock/cpuset_unlock.
  5286. */
  5287. rq = task_rq_lock(p, &flags);
  5288. p->cpus_allowed = cpus_allowed;
  5289. dest_cpu = any_online_cpu(p->cpus_allowed);
  5290. task_rq_unlock(rq, &flags);
  5291. /*
  5292. * Don't tell them about moving exiting tasks or
  5293. * kernel threads (both mm NULL), since they never
  5294. * leave kernel.
  5295. */
  5296. if (p->mm && printk_ratelimit()) {
  5297. printk(KERN_INFO "process %d (%s) no "
  5298. "longer affine to cpu%d\n",
  5299. task_pid_nr(p), p->comm, dead_cpu);
  5300. }
  5301. }
  5302. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5303. }
  5304. /*
  5305. * While a dead CPU has no uninterruptible tasks queued at this point,
  5306. * it might still have a nonzero ->nr_uninterruptible counter, because
  5307. * for performance reasons the counter is not stricly tracking tasks to
  5308. * their home CPUs. So we just add the counter to another CPU's counter,
  5309. * to keep the global sum constant after CPU-down:
  5310. */
  5311. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5312. {
  5313. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5314. unsigned long flags;
  5315. local_irq_save(flags);
  5316. double_rq_lock(rq_src, rq_dest);
  5317. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5318. rq_src->nr_uninterruptible = 0;
  5319. double_rq_unlock(rq_src, rq_dest);
  5320. local_irq_restore(flags);
  5321. }
  5322. /* Run through task list and migrate tasks from the dead cpu. */
  5323. static void migrate_live_tasks(int src_cpu)
  5324. {
  5325. struct task_struct *p, *t;
  5326. read_lock(&tasklist_lock);
  5327. do_each_thread(t, p) {
  5328. if (p == current)
  5329. continue;
  5330. if (task_cpu(p) == src_cpu)
  5331. move_task_off_dead_cpu(src_cpu, p);
  5332. } while_each_thread(t, p);
  5333. read_unlock(&tasklist_lock);
  5334. }
  5335. /*
  5336. * Schedules idle task to be the next runnable task on current CPU.
  5337. * It does so by boosting its priority to highest possible.
  5338. * Used by CPU offline code.
  5339. */
  5340. void sched_idle_next(void)
  5341. {
  5342. int this_cpu = smp_processor_id();
  5343. struct rq *rq = cpu_rq(this_cpu);
  5344. struct task_struct *p = rq->idle;
  5345. unsigned long flags;
  5346. /* cpu has to be offline */
  5347. BUG_ON(cpu_online(this_cpu));
  5348. /*
  5349. * Strictly not necessary since rest of the CPUs are stopped by now
  5350. * and interrupts disabled on the current cpu.
  5351. */
  5352. spin_lock_irqsave(&rq->lock, flags);
  5353. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5354. update_rq_clock(rq);
  5355. activate_task(rq, p, 0);
  5356. spin_unlock_irqrestore(&rq->lock, flags);
  5357. }
  5358. /*
  5359. * Ensures that the idle task is using init_mm right before its cpu goes
  5360. * offline.
  5361. */
  5362. void idle_task_exit(void)
  5363. {
  5364. struct mm_struct *mm = current->active_mm;
  5365. BUG_ON(cpu_online(smp_processor_id()));
  5366. if (mm != &init_mm)
  5367. switch_mm(mm, &init_mm, current);
  5368. mmdrop(mm);
  5369. }
  5370. /* called under rq->lock with disabled interrupts */
  5371. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5372. {
  5373. struct rq *rq = cpu_rq(dead_cpu);
  5374. /* Must be exiting, otherwise would be on tasklist. */
  5375. BUG_ON(!p->exit_state);
  5376. /* Cannot have done final schedule yet: would have vanished. */
  5377. BUG_ON(p->state == TASK_DEAD);
  5378. get_task_struct(p);
  5379. /*
  5380. * Drop lock around migration; if someone else moves it,
  5381. * that's OK. No task can be added to this CPU, so iteration is
  5382. * fine.
  5383. */
  5384. spin_unlock_irq(&rq->lock);
  5385. move_task_off_dead_cpu(dead_cpu, p);
  5386. spin_lock_irq(&rq->lock);
  5387. put_task_struct(p);
  5388. }
  5389. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5390. static void migrate_dead_tasks(unsigned int dead_cpu)
  5391. {
  5392. struct rq *rq = cpu_rq(dead_cpu);
  5393. struct task_struct *next;
  5394. for ( ; ; ) {
  5395. if (!rq->nr_running)
  5396. break;
  5397. update_rq_clock(rq);
  5398. next = pick_next_task(rq, rq->curr);
  5399. if (!next)
  5400. break;
  5401. next->sched_class->put_prev_task(rq, next);
  5402. migrate_dead(dead_cpu, next);
  5403. }
  5404. }
  5405. #endif /* CONFIG_HOTPLUG_CPU */
  5406. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5407. static struct ctl_table sd_ctl_dir[] = {
  5408. {
  5409. .procname = "sched_domain",
  5410. .mode = 0555,
  5411. },
  5412. {0, },
  5413. };
  5414. static struct ctl_table sd_ctl_root[] = {
  5415. {
  5416. .ctl_name = CTL_KERN,
  5417. .procname = "kernel",
  5418. .mode = 0555,
  5419. .child = sd_ctl_dir,
  5420. },
  5421. {0, },
  5422. };
  5423. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5424. {
  5425. struct ctl_table *entry =
  5426. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5427. return entry;
  5428. }
  5429. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5430. {
  5431. struct ctl_table *entry;
  5432. /*
  5433. * In the intermediate directories, both the child directory and
  5434. * procname are dynamically allocated and could fail but the mode
  5435. * will always be set. In the lowest directory the names are
  5436. * static strings and all have proc handlers.
  5437. */
  5438. for (entry = *tablep; entry->mode; entry++) {
  5439. if (entry->child)
  5440. sd_free_ctl_entry(&entry->child);
  5441. if (entry->proc_handler == NULL)
  5442. kfree(entry->procname);
  5443. }
  5444. kfree(*tablep);
  5445. *tablep = NULL;
  5446. }
  5447. static void
  5448. set_table_entry(struct ctl_table *entry,
  5449. const char *procname, void *data, int maxlen,
  5450. mode_t mode, proc_handler *proc_handler)
  5451. {
  5452. entry->procname = procname;
  5453. entry->data = data;
  5454. entry->maxlen = maxlen;
  5455. entry->mode = mode;
  5456. entry->proc_handler = proc_handler;
  5457. }
  5458. static struct ctl_table *
  5459. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5460. {
  5461. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5462. if (table == NULL)
  5463. return NULL;
  5464. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5465. sizeof(long), 0644, proc_doulongvec_minmax);
  5466. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5467. sizeof(long), 0644, proc_doulongvec_minmax);
  5468. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5469. sizeof(int), 0644, proc_dointvec_minmax);
  5470. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5471. sizeof(int), 0644, proc_dointvec_minmax);
  5472. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5473. sizeof(int), 0644, proc_dointvec_minmax);
  5474. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5475. sizeof(int), 0644, proc_dointvec_minmax);
  5476. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5477. sizeof(int), 0644, proc_dointvec_minmax);
  5478. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5479. sizeof(int), 0644, proc_dointvec_minmax);
  5480. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5481. sizeof(int), 0644, proc_dointvec_minmax);
  5482. set_table_entry(&table[9], "cache_nice_tries",
  5483. &sd->cache_nice_tries,
  5484. sizeof(int), 0644, proc_dointvec_minmax);
  5485. set_table_entry(&table[10], "flags", &sd->flags,
  5486. sizeof(int), 0644, proc_dointvec_minmax);
  5487. set_table_entry(&table[11], "name", sd->name,
  5488. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5489. /* &table[12] is terminator */
  5490. return table;
  5491. }
  5492. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5493. {
  5494. struct ctl_table *entry, *table;
  5495. struct sched_domain *sd;
  5496. int domain_num = 0, i;
  5497. char buf[32];
  5498. for_each_domain(cpu, sd)
  5499. domain_num++;
  5500. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5501. if (table == NULL)
  5502. return NULL;
  5503. i = 0;
  5504. for_each_domain(cpu, sd) {
  5505. snprintf(buf, 32, "domain%d", i);
  5506. entry->procname = kstrdup(buf, GFP_KERNEL);
  5507. entry->mode = 0555;
  5508. entry->child = sd_alloc_ctl_domain_table(sd);
  5509. entry++;
  5510. i++;
  5511. }
  5512. return table;
  5513. }
  5514. static struct ctl_table_header *sd_sysctl_header;
  5515. static void register_sched_domain_sysctl(void)
  5516. {
  5517. int i, cpu_num = num_online_cpus();
  5518. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5519. char buf[32];
  5520. WARN_ON(sd_ctl_dir[0].child);
  5521. sd_ctl_dir[0].child = entry;
  5522. if (entry == NULL)
  5523. return;
  5524. for_each_online_cpu(i) {
  5525. snprintf(buf, 32, "cpu%d", i);
  5526. entry->procname = kstrdup(buf, GFP_KERNEL);
  5527. entry->mode = 0555;
  5528. entry->child = sd_alloc_ctl_cpu_table(i);
  5529. entry++;
  5530. }
  5531. WARN_ON(sd_sysctl_header);
  5532. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5533. }
  5534. /* may be called multiple times per register */
  5535. static void unregister_sched_domain_sysctl(void)
  5536. {
  5537. if (sd_sysctl_header)
  5538. unregister_sysctl_table(sd_sysctl_header);
  5539. sd_sysctl_header = NULL;
  5540. if (sd_ctl_dir[0].child)
  5541. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5542. }
  5543. #else
  5544. static void register_sched_domain_sysctl(void)
  5545. {
  5546. }
  5547. static void unregister_sched_domain_sysctl(void)
  5548. {
  5549. }
  5550. #endif
  5551. static void set_rq_online(struct rq *rq)
  5552. {
  5553. if (!rq->online) {
  5554. const struct sched_class *class;
  5555. cpu_set(rq->cpu, rq->rd->online);
  5556. rq->online = 1;
  5557. for_each_class(class) {
  5558. if (class->rq_online)
  5559. class->rq_online(rq);
  5560. }
  5561. }
  5562. }
  5563. static void set_rq_offline(struct rq *rq)
  5564. {
  5565. if (rq->online) {
  5566. const struct sched_class *class;
  5567. for_each_class(class) {
  5568. if (class->rq_offline)
  5569. class->rq_offline(rq);
  5570. }
  5571. cpu_clear(rq->cpu, rq->rd->online);
  5572. rq->online = 0;
  5573. }
  5574. }
  5575. /*
  5576. * migration_call - callback that gets triggered when a CPU is added.
  5577. * Here we can start up the necessary migration thread for the new CPU.
  5578. */
  5579. static int __cpuinit
  5580. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5581. {
  5582. struct task_struct *p;
  5583. int cpu = (long)hcpu;
  5584. unsigned long flags;
  5585. struct rq *rq;
  5586. switch (action) {
  5587. case CPU_UP_PREPARE:
  5588. case CPU_UP_PREPARE_FROZEN:
  5589. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5590. if (IS_ERR(p))
  5591. return NOTIFY_BAD;
  5592. kthread_bind(p, cpu);
  5593. /* Must be high prio: stop_machine expects to yield to it. */
  5594. rq = task_rq_lock(p, &flags);
  5595. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5596. task_rq_unlock(rq, &flags);
  5597. cpu_rq(cpu)->migration_thread = p;
  5598. break;
  5599. case CPU_ONLINE:
  5600. case CPU_ONLINE_FROZEN:
  5601. /* Strictly unnecessary, as first user will wake it. */
  5602. wake_up_process(cpu_rq(cpu)->migration_thread);
  5603. /* Update our root-domain */
  5604. rq = cpu_rq(cpu);
  5605. spin_lock_irqsave(&rq->lock, flags);
  5606. if (rq->rd) {
  5607. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5608. set_rq_online(rq);
  5609. }
  5610. spin_unlock_irqrestore(&rq->lock, flags);
  5611. break;
  5612. #ifdef CONFIG_HOTPLUG_CPU
  5613. case CPU_UP_CANCELED:
  5614. case CPU_UP_CANCELED_FROZEN:
  5615. if (!cpu_rq(cpu)->migration_thread)
  5616. break;
  5617. /* Unbind it from offline cpu so it can run. Fall thru. */
  5618. kthread_bind(cpu_rq(cpu)->migration_thread,
  5619. any_online_cpu(cpu_online_map));
  5620. kthread_stop(cpu_rq(cpu)->migration_thread);
  5621. cpu_rq(cpu)->migration_thread = NULL;
  5622. break;
  5623. case CPU_DEAD:
  5624. case CPU_DEAD_FROZEN:
  5625. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5626. migrate_live_tasks(cpu);
  5627. rq = cpu_rq(cpu);
  5628. kthread_stop(rq->migration_thread);
  5629. rq->migration_thread = NULL;
  5630. /* Idle task back to normal (off runqueue, low prio) */
  5631. spin_lock_irq(&rq->lock);
  5632. update_rq_clock(rq);
  5633. deactivate_task(rq, rq->idle, 0);
  5634. rq->idle->static_prio = MAX_PRIO;
  5635. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5636. rq->idle->sched_class = &idle_sched_class;
  5637. migrate_dead_tasks(cpu);
  5638. spin_unlock_irq(&rq->lock);
  5639. cpuset_unlock();
  5640. migrate_nr_uninterruptible(rq);
  5641. BUG_ON(rq->nr_running != 0);
  5642. /*
  5643. * No need to migrate the tasks: it was best-effort if
  5644. * they didn't take sched_hotcpu_mutex. Just wake up
  5645. * the requestors.
  5646. */
  5647. spin_lock_irq(&rq->lock);
  5648. while (!list_empty(&rq->migration_queue)) {
  5649. struct migration_req *req;
  5650. req = list_entry(rq->migration_queue.next,
  5651. struct migration_req, list);
  5652. list_del_init(&req->list);
  5653. spin_unlock_irq(&rq->lock);
  5654. complete(&req->done);
  5655. spin_lock_irq(&rq->lock);
  5656. }
  5657. spin_unlock_irq(&rq->lock);
  5658. break;
  5659. case CPU_DYING:
  5660. case CPU_DYING_FROZEN:
  5661. /* Update our root-domain */
  5662. rq = cpu_rq(cpu);
  5663. spin_lock_irqsave(&rq->lock, flags);
  5664. if (rq->rd) {
  5665. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5666. set_rq_offline(rq);
  5667. }
  5668. spin_unlock_irqrestore(&rq->lock, flags);
  5669. break;
  5670. #endif
  5671. }
  5672. return NOTIFY_OK;
  5673. }
  5674. /* Register at highest priority so that task migration (migrate_all_tasks)
  5675. * happens before everything else.
  5676. */
  5677. static struct notifier_block __cpuinitdata migration_notifier = {
  5678. .notifier_call = migration_call,
  5679. .priority = 10
  5680. };
  5681. static int __init migration_init(void)
  5682. {
  5683. void *cpu = (void *)(long)smp_processor_id();
  5684. int err;
  5685. /* Start one for the boot CPU: */
  5686. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5687. BUG_ON(err == NOTIFY_BAD);
  5688. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5689. register_cpu_notifier(&migration_notifier);
  5690. return err;
  5691. }
  5692. early_initcall(migration_init);
  5693. #endif
  5694. #ifdef CONFIG_SMP
  5695. #ifdef CONFIG_SCHED_DEBUG
  5696. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5697. {
  5698. switch (lvl) {
  5699. case SD_LV_NONE:
  5700. return "NONE";
  5701. case SD_LV_SIBLING:
  5702. return "SIBLING";
  5703. case SD_LV_MC:
  5704. return "MC";
  5705. case SD_LV_CPU:
  5706. return "CPU";
  5707. case SD_LV_NODE:
  5708. return "NODE";
  5709. case SD_LV_ALLNODES:
  5710. return "ALLNODES";
  5711. case SD_LV_MAX:
  5712. return "MAX";
  5713. }
  5714. return "MAX";
  5715. }
  5716. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5717. cpumask_t *groupmask)
  5718. {
  5719. struct sched_group *group = sd->groups;
  5720. char str[256];
  5721. cpulist_scnprintf(str, sizeof(str), sd->span);
  5722. cpus_clear(*groupmask);
  5723. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5724. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5725. printk("does not load-balance\n");
  5726. if (sd->parent)
  5727. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5728. " has parent");
  5729. return -1;
  5730. }
  5731. printk(KERN_CONT "span %s level %s\n",
  5732. str, sd_level_to_string(sd->level));
  5733. if (!cpu_isset(cpu, sd->span)) {
  5734. printk(KERN_ERR "ERROR: domain->span does not contain "
  5735. "CPU%d\n", cpu);
  5736. }
  5737. if (!cpu_isset(cpu, group->cpumask)) {
  5738. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5739. " CPU%d\n", cpu);
  5740. }
  5741. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5742. do {
  5743. if (!group) {
  5744. printk("\n");
  5745. printk(KERN_ERR "ERROR: group is NULL\n");
  5746. break;
  5747. }
  5748. if (!group->__cpu_power) {
  5749. printk(KERN_CONT "\n");
  5750. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5751. "set\n");
  5752. break;
  5753. }
  5754. if (!cpus_weight(group->cpumask)) {
  5755. printk(KERN_CONT "\n");
  5756. printk(KERN_ERR "ERROR: empty group\n");
  5757. break;
  5758. }
  5759. if (cpus_intersects(*groupmask, group->cpumask)) {
  5760. printk(KERN_CONT "\n");
  5761. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5762. break;
  5763. }
  5764. cpus_or(*groupmask, *groupmask, group->cpumask);
  5765. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5766. printk(KERN_CONT " %s", str);
  5767. group = group->next;
  5768. } while (group != sd->groups);
  5769. printk(KERN_CONT "\n");
  5770. if (!cpus_equal(sd->span, *groupmask))
  5771. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5772. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5773. printk(KERN_ERR "ERROR: parent span is not a superset "
  5774. "of domain->span\n");
  5775. return 0;
  5776. }
  5777. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5778. {
  5779. cpumask_t *groupmask;
  5780. int level = 0;
  5781. if (!sd) {
  5782. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5783. return;
  5784. }
  5785. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5786. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5787. if (!groupmask) {
  5788. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5789. return;
  5790. }
  5791. for (;;) {
  5792. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5793. break;
  5794. level++;
  5795. sd = sd->parent;
  5796. if (!sd)
  5797. break;
  5798. }
  5799. kfree(groupmask);
  5800. }
  5801. #else /* !CONFIG_SCHED_DEBUG */
  5802. # define sched_domain_debug(sd, cpu) do { } while (0)
  5803. #endif /* CONFIG_SCHED_DEBUG */
  5804. static int sd_degenerate(struct sched_domain *sd)
  5805. {
  5806. if (cpus_weight(sd->span) == 1)
  5807. return 1;
  5808. /* Following flags need at least 2 groups */
  5809. if (sd->flags & (SD_LOAD_BALANCE |
  5810. SD_BALANCE_NEWIDLE |
  5811. SD_BALANCE_FORK |
  5812. SD_BALANCE_EXEC |
  5813. SD_SHARE_CPUPOWER |
  5814. SD_SHARE_PKG_RESOURCES)) {
  5815. if (sd->groups != sd->groups->next)
  5816. return 0;
  5817. }
  5818. /* Following flags don't use groups */
  5819. if (sd->flags & (SD_WAKE_IDLE |
  5820. SD_WAKE_AFFINE |
  5821. SD_WAKE_BALANCE))
  5822. return 0;
  5823. return 1;
  5824. }
  5825. static int
  5826. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5827. {
  5828. unsigned long cflags = sd->flags, pflags = parent->flags;
  5829. if (sd_degenerate(parent))
  5830. return 1;
  5831. if (!cpus_equal(sd->span, parent->span))
  5832. return 0;
  5833. /* Does parent contain flags not in child? */
  5834. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5835. if (cflags & SD_WAKE_AFFINE)
  5836. pflags &= ~SD_WAKE_BALANCE;
  5837. /* Flags needing groups don't count if only 1 group in parent */
  5838. if (parent->groups == parent->groups->next) {
  5839. pflags &= ~(SD_LOAD_BALANCE |
  5840. SD_BALANCE_NEWIDLE |
  5841. SD_BALANCE_FORK |
  5842. SD_BALANCE_EXEC |
  5843. SD_SHARE_CPUPOWER |
  5844. SD_SHARE_PKG_RESOURCES);
  5845. }
  5846. if (~cflags & pflags)
  5847. return 0;
  5848. return 1;
  5849. }
  5850. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5851. {
  5852. unsigned long flags;
  5853. spin_lock_irqsave(&rq->lock, flags);
  5854. if (rq->rd) {
  5855. struct root_domain *old_rd = rq->rd;
  5856. if (cpu_isset(rq->cpu, old_rd->online))
  5857. set_rq_offline(rq);
  5858. cpu_clear(rq->cpu, old_rd->span);
  5859. if (atomic_dec_and_test(&old_rd->refcount))
  5860. kfree(old_rd);
  5861. }
  5862. atomic_inc(&rd->refcount);
  5863. rq->rd = rd;
  5864. cpu_set(rq->cpu, rd->span);
  5865. if (cpu_isset(rq->cpu, cpu_online_map))
  5866. set_rq_online(rq);
  5867. spin_unlock_irqrestore(&rq->lock, flags);
  5868. }
  5869. static void init_rootdomain(struct root_domain *rd)
  5870. {
  5871. memset(rd, 0, sizeof(*rd));
  5872. cpus_clear(rd->span);
  5873. cpus_clear(rd->online);
  5874. cpupri_init(&rd->cpupri);
  5875. }
  5876. static void init_defrootdomain(void)
  5877. {
  5878. init_rootdomain(&def_root_domain);
  5879. atomic_set(&def_root_domain.refcount, 1);
  5880. }
  5881. static struct root_domain *alloc_rootdomain(void)
  5882. {
  5883. struct root_domain *rd;
  5884. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5885. if (!rd)
  5886. return NULL;
  5887. init_rootdomain(rd);
  5888. return rd;
  5889. }
  5890. /*
  5891. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5892. * hold the hotplug lock.
  5893. */
  5894. static void
  5895. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5896. {
  5897. struct rq *rq = cpu_rq(cpu);
  5898. struct sched_domain *tmp;
  5899. /* Remove the sched domains which do not contribute to scheduling. */
  5900. for (tmp = sd; tmp; ) {
  5901. struct sched_domain *parent = tmp->parent;
  5902. if (!parent)
  5903. break;
  5904. if (sd_parent_degenerate(tmp, parent)) {
  5905. tmp->parent = parent->parent;
  5906. if (parent->parent)
  5907. parent->parent->child = tmp;
  5908. } else
  5909. tmp = tmp->parent;
  5910. }
  5911. if (sd && sd_degenerate(sd)) {
  5912. sd = sd->parent;
  5913. if (sd)
  5914. sd->child = NULL;
  5915. }
  5916. sched_domain_debug(sd, cpu);
  5917. rq_attach_root(rq, rd);
  5918. rcu_assign_pointer(rq->sd, sd);
  5919. }
  5920. /* cpus with isolated domains */
  5921. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5922. /* Setup the mask of cpus configured for isolated domains */
  5923. static int __init isolated_cpu_setup(char *str)
  5924. {
  5925. static int __initdata ints[NR_CPUS];
  5926. int i;
  5927. str = get_options(str, ARRAY_SIZE(ints), ints);
  5928. cpus_clear(cpu_isolated_map);
  5929. for (i = 1; i <= ints[0]; i++)
  5930. if (ints[i] < NR_CPUS)
  5931. cpu_set(ints[i], cpu_isolated_map);
  5932. return 1;
  5933. }
  5934. __setup("isolcpus=", isolated_cpu_setup);
  5935. /*
  5936. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5937. * to a function which identifies what group(along with sched group) a CPU
  5938. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5939. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5940. *
  5941. * init_sched_build_groups will build a circular linked list of the groups
  5942. * covered by the given span, and will set each group's ->cpumask correctly,
  5943. * and ->cpu_power to 0.
  5944. */
  5945. static void
  5946. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5947. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5948. struct sched_group **sg,
  5949. cpumask_t *tmpmask),
  5950. cpumask_t *covered, cpumask_t *tmpmask)
  5951. {
  5952. struct sched_group *first = NULL, *last = NULL;
  5953. int i;
  5954. cpus_clear(*covered);
  5955. for_each_cpu_mask_nr(i, *span) {
  5956. struct sched_group *sg;
  5957. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5958. int j;
  5959. if (cpu_isset(i, *covered))
  5960. continue;
  5961. cpus_clear(sg->cpumask);
  5962. sg->__cpu_power = 0;
  5963. for_each_cpu_mask_nr(j, *span) {
  5964. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5965. continue;
  5966. cpu_set(j, *covered);
  5967. cpu_set(j, sg->cpumask);
  5968. }
  5969. if (!first)
  5970. first = sg;
  5971. if (last)
  5972. last->next = sg;
  5973. last = sg;
  5974. }
  5975. last->next = first;
  5976. }
  5977. #define SD_NODES_PER_DOMAIN 16
  5978. #ifdef CONFIG_NUMA
  5979. /**
  5980. * find_next_best_node - find the next node to include in a sched_domain
  5981. * @node: node whose sched_domain we're building
  5982. * @used_nodes: nodes already in the sched_domain
  5983. *
  5984. * Find the next node to include in a given scheduling domain. Simply
  5985. * finds the closest node not already in the @used_nodes map.
  5986. *
  5987. * Should use nodemask_t.
  5988. */
  5989. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5990. {
  5991. int i, n, val, min_val, best_node = 0;
  5992. min_val = INT_MAX;
  5993. for (i = 0; i < nr_node_ids; i++) {
  5994. /* Start at @node */
  5995. n = (node + i) % nr_node_ids;
  5996. if (!nr_cpus_node(n))
  5997. continue;
  5998. /* Skip already used nodes */
  5999. if (node_isset(n, *used_nodes))
  6000. continue;
  6001. /* Simple min distance search */
  6002. val = node_distance(node, n);
  6003. if (val < min_val) {
  6004. min_val = val;
  6005. best_node = n;
  6006. }
  6007. }
  6008. node_set(best_node, *used_nodes);
  6009. return best_node;
  6010. }
  6011. /**
  6012. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6013. * @node: node whose cpumask we're constructing
  6014. * @span: resulting cpumask
  6015. *
  6016. * Given a node, construct a good cpumask for its sched_domain to span. It
  6017. * should be one that prevents unnecessary balancing, but also spreads tasks
  6018. * out optimally.
  6019. */
  6020. static void sched_domain_node_span(int node, cpumask_t *span)
  6021. {
  6022. nodemask_t used_nodes;
  6023. node_to_cpumask_ptr(nodemask, node);
  6024. int i;
  6025. cpus_clear(*span);
  6026. nodes_clear(used_nodes);
  6027. cpus_or(*span, *span, *nodemask);
  6028. node_set(node, used_nodes);
  6029. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6030. int next_node = find_next_best_node(node, &used_nodes);
  6031. node_to_cpumask_ptr_next(nodemask, next_node);
  6032. cpus_or(*span, *span, *nodemask);
  6033. }
  6034. }
  6035. #endif /* CONFIG_NUMA */
  6036. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6037. /*
  6038. * SMT sched-domains:
  6039. */
  6040. #ifdef CONFIG_SCHED_SMT
  6041. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6042. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6043. static int
  6044. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6045. cpumask_t *unused)
  6046. {
  6047. if (sg)
  6048. *sg = &per_cpu(sched_group_cpus, cpu);
  6049. return cpu;
  6050. }
  6051. #endif /* CONFIG_SCHED_SMT */
  6052. /*
  6053. * multi-core sched-domains:
  6054. */
  6055. #ifdef CONFIG_SCHED_MC
  6056. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6057. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6058. #endif /* CONFIG_SCHED_MC */
  6059. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6060. static int
  6061. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6062. cpumask_t *mask)
  6063. {
  6064. int group;
  6065. *mask = per_cpu(cpu_sibling_map, cpu);
  6066. cpus_and(*mask, *mask, *cpu_map);
  6067. group = first_cpu(*mask);
  6068. if (sg)
  6069. *sg = &per_cpu(sched_group_core, group);
  6070. return group;
  6071. }
  6072. #elif defined(CONFIG_SCHED_MC)
  6073. static int
  6074. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6075. cpumask_t *unused)
  6076. {
  6077. if (sg)
  6078. *sg = &per_cpu(sched_group_core, cpu);
  6079. return cpu;
  6080. }
  6081. #endif
  6082. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6083. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6084. static int
  6085. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6086. cpumask_t *mask)
  6087. {
  6088. int group;
  6089. #ifdef CONFIG_SCHED_MC
  6090. *mask = cpu_coregroup_map(cpu);
  6091. cpus_and(*mask, *mask, *cpu_map);
  6092. group = first_cpu(*mask);
  6093. #elif defined(CONFIG_SCHED_SMT)
  6094. *mask = per_cpu(cpu_sibling_map, cpu);
  6095. cpus_and(*mask, *mask, *cpu_map);
  6096. group = first_cpu(*mask);
  6097. #else
  6098. group = cpu;
  6099. #endif
  6100. if (sg)
  6101. *sg = &per_cpu(sched_group_phys, group);
  6102. return group;
  6103. }
  6104. #ifdef CONFIG_NUMA
  6105. /*
  6106. * The init_sched_build_groups can't handle what we want to do with node
  6107. * groups, so roll our own. Now each node has its own list of groups which
  6108. * gets dynamically allocated.
  6109. */
  6110. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6111. static struct sched_group ***sched_group_nodes_bycpu;
  6112. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6113. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6114. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6115. struct sched_group **sg, cpumask_t *nodemask)
  6116. {
  6117. int group;
  6118. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6119. cpus_and(*nodemask, *nodemask, *cpu_map);
  6120. group = first_cpu(*nodemask);
  6121. if (sg)
  6122. *sg = &per_cpu(sched_group_allnodes, group);
  6123. return group;
  6124. }
  6125. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6126. {
  6127. struct sched_group *sg = group_head;
  6128. int j;
  6129. if (!sg)
  6130. return;
  6131. do {
  6132. for_each_cpu_mask_nr(j, sg->cpumask) {
  6133. struct sched_domain *sd;
  6134. sd = &per_cpu(phys_domains, j);
  6135. if (j != first_cpu(sd->groups->cpumask)) {
  6136. /*
  6137. * Only add "power" once for each
  6138. * physical package.
  6139. */
  6140. continue;
  6141. }
  6142. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6143. }
  6144. sg = sg->next;
  6145. } while (sg != group_head);
  6146. }
  6147. #endif /* CONFIG_NUMA */
  6148. #ifdef CONFIG_NUMA
  6149. /* Free memory allocated for various sched_group structures */
  6150. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6151. {
  6152. int cpu, i;
  6153. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6154. struct sched_group **sched_group_nodes
  6155. = sched_group_nodes_bycpu[cpu];
  6156. if (!sched_group_nodes)
  6157. continue;
  6158. for (i = 0; i < nr_node_ids; i++) {
  6159. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6160. *nodemask = node_to_cpumask(i);
  6161. cpus_and(*nodemask, *nodemask, *cpu_map);
  6162. if (cpus_empty(*nodemask))
  6163. continue;
  6164. if (sg == NULL)
  6165. continue;
  6166. sg = sg->next;
  6167. next_sg:
  6168. oldsg = sg;
  6169. sg = sg->next;
  6170. kfree(oldsg);
  6171. if (oldsg != sched_group_nodes[i])
  6172. goto next_sg;
  6173. }
  6174. kfree(sched_group_nodes);
  6175. sched_group_nodes_bycpu[cpu] = NULL;
  6176. }
  6177. }
  6178. #else /* !CONFIG_NUMA */
  6179. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6180. {
  6181. }
  6182. #endif /* CONFIG_NUMA */
  6183. /*
  6184. * Initialize sched groups cpu_power.
  6185. *
  6186. * cpu_power indicates the capacity of sched group, which is used while
  6187. * distributing the load between different sched groups in a sched domain.
  6188. * Typically cpu_power for all the groups in a sched domain will be same unless
  6189. * there are asymmetries in the topology. If there are asymmetries, group
  6190. * having more cpu_power will pickup more load compared to the group having
  6191. * less cpu_power.
  6192. *
  6193. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6194. * the maximum number of tasks a group can handle in the presence of other idle
  6195. * or lightly loaded groups in the same sched domain.
  6196. */
  6197. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6198. {
  6199. struct sched_domain *child;
  6200. struct sched_group *group;
  6201. WARN_ON(!sd || !sd->groups);
  6202. if (cpu != first_cpu(sd->groups->cpumask))
  6203. return;
  6204. child = sd->child;
  6205. sd->groups->__cpu_power = 0;
  6206. /*
  6207. * For perf policy, if the groups in child domain share resources
  6208. * (for example cores sharing some portions of the cache hierarchy
  6209. * or SMT), then set this domain groups cpu_power such that each group
  6210. * can handle only one task, when there are other idle groups in the
  6211. * same sched domain.
  6212. */
  6213. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6214. (child->flags &
  6215. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6216. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6217. return;
  6218. }
  6219. /*
  6220. * add cpu_power of each child group to this groups cpu_power
  6221. */
  6222. group = child->groups;
  6223. do {
  6224. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6225. group = group->next;
  6226. } while (group != child->groups);
  6227. }
  6228. /*
  6229. * Initializers for schedule domains
  6230. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6231. */
  6232. #ifdef CONFIG_SCHED_DEBUG
  6233. # define SD_INIT_NAME(sd, type) sd->name = #type
  6234. #else
  6235. # define SD_INIT_NAME(sd, type) do { } while (0)
  6236. #endif
  6237. #define SD_INIT(sd, type) sd_init_##type(sd)
  6238. #define SD_INIT_FUNC(type) \
  6239. static noinline void sd_init_##type(struct sched_domain *sd) \
  6240. { \
  6241. memset(sd, 0, sizeof(*sd)); \
  6242. *sd = SD_##type##_INIT; \
  6243. sd->level = SD_LV_##type; \
  6244. SD_INIT_NAME(sd, type); \
  6245. }
  6246. SD_INIT_FUNC(CPU)
  6247. #ifdef CONFIG_NUMA
  6248. SD_INIT_FUNC(ALLNODES)
  6249. SD_INIT_FUNC(NODE)
  6250. #endif
  6251. #ifdef CONFIG_SCHED_SMT
  6252. SD_INIT_FUNC(SIBLING)
  6253. #endif
  6254. #ifdef CONFIG_SCHED_MC
  6255. SD_INIT_FUNC(MC)
  6256. #endif
  6257. /*
  6258. * To minimize stack usage kmalloc room for cpumasks and share the
  6259. * space as the usage in build_sched_domains() dictates. Used only
  6260. * if the amount of space is significant.
  6261. */
  6262. struct allmasks {
  6263. cpumask_t tmpmask; /* make this one first */
  6264. union {
  6265. cpumask_t nodemask;
  6266. cpumask_t this_sibling_map;
  6267. cpumask_t this_core_map;
  6268. };
  6269. cpumask_t send_covered;
  6270. #ifdef CONFIG_NUMA
  6271. cpumask_t domainspan;
  6272. cpumask_t covered;
  6273. cpumask_t notcovered;
  6274. #endif
  6275. };
  6276. #if NR_CPUS > 128
  6277. #define SCHED_CPUMASK_ALLOC 1
  6278. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6279. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6280. #else
  6281. #define SCHED_CPUMASK_ALLOC 0
  6282. #define SCHED_CPUMASK_FREE(v)
  6283. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6284. #endif
  6285. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6286. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6287. static int default_relax_domain_level = -1;
  6288. static int __init setup_relax_domain_level(char *str)
  6289. {
  6290. unsigned long val;
  6291. val = simple_strtoul(str, NULL, 0);
  6292. if (val < SD_LV_MAX)
  6293. default_relax_domain_level = val;
  6294. return 1;
  6295. }
  6296. __setup("relax_domain_level=", setup_relax_domain_level);
  6297. static void set_domain_attribute(struct sched_domain *sd,
  6298. struct sched_domain_attr *attr)
  6299. {
  6300. int request;
  6301. if (!attr || attr->relax_domain_level < 0) {
  6302. if (default_relax_domain_level < 0)
  6303. return;
  6304. else
  6305. request = default_relax_domain_level;
  6306. } else
  6307. request = attr->relax_domain_level;
  6308. if (request < sd->level) {
  6309. /* turn off idle balance on this domain */
  6310. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6311. } else {
  6312. /* turn on idle balance on this domain */
  6313. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6314. }
  6315. }
  6316. /*
  6317. * Build sched domains for a given set of cpus and attach the sched domains
  6318. * to the individual cpus
  6319. */
  6320. static int __build_sched_domains(const cpumask_t *cpu_map,
  6321. struct sched_domain_attr *attr)
  6322. {
  6323. int i;
  6324. struct root_domain *rd;
  6325. SCHED_CPUMASK_DECLARE(allmasks);
  6326. cpumask_t *tmpmask;
  6327. #ifdef CONFIG_NUMA
  6328. struct sched_group **sched_group_nodes = NULL;
  6329. int sd_allnodes = 0;
  6330. /*
  6331. * Allocate the per-node list of sched groups
  6332. */
  6333. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6334. GFP_KERNEL);
  6335. if (!sched_group_nodes) {
  6336. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6337. return -ENOMEM;
  6338. }
  6339. #endif
  6340. rd = alloc_rootdomain();
  6341. if (!rd) {
  6342. printk(KERN_WARNING "Cannot alloc root domain\n");
  6343. #ifdef CONFIG_NUMA
  6344. kfree(sched_group_nodes);
  6345. #endif
  6346. return -ENOMEM;
  6347. }
  6348. #if SCHED_CPUMASK_ALLOC
  6349. /* get space for all scratch cpumask variables */
  6350. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6351. if (!allmasks) {
  6352. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6353. kfree(rd);
  6354. #ifdef CONFIG_NUMA
  6355. kfree(sched_group_nodes);
  6356. #endif
  6357. return -ENOMEM;
  6358. }
  6359. #endif
  6360. tmpmask = (cpumask_t *)allmasks;
  6361. #ifdef CONFIG_NUMA
  6362. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6363. #endif
  6364. /*
  6365. * Set up domains for cpus specified by the cpu_map.
  6366. */
  6367. for_each_cpu_mask_nr(i, *cpu_map) {
  6368. struct sched_domain *sd = NULL, *p;
  6369. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6370. *nodemask = node_to_cpumask(cpu_to_node(i));
  6371. cpus_and(*nodemask, *nodemask, *cpu_map);
  6372. #ifdef CONFIG_NUMA
  6373. if (cpus_weight(*cpu_map) >
  6374. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6375. sd = &per_cpu(allnodes_domains, i);
  6376. SD_INIT(sd, ALLNODES);
  6377. set_domain_attribute(sd, attr);
  6378. sd->span = *cpu_map;
  6379. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6380. p = sd;
  6381. sd_allnodes = 1;
  6382. } else
  6383. p = NULL;
  6384. sd = &per_cpu(node_domains, i);
  6385. SD_INIT(sd, NODE);
  6386. set_domain_attribute(sd, attr);
  6387. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6388. sd->parent = p;
  6389. if (p)
  6390. p->child = sd;
  6391. cpus_and(sd->span, sd->span, *cpu_map);
  6392. #endif
  6393. p = sd;
  6394. sd = &per_cpu(phys_domains, i);
  6395. SD_INIT(sd, CPU);
  6396. set_domain_attribute(sd, attr);
  6397. sd->span = *nodemask;
  6398. sd->parent = p;
  6399. if (p)
  6400. p->child = sd;
  6401. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6402. #ifdef CONFIG_SCHED_MC
  6403. p = sd;
  6404. sd = &per_cpu(core_domains, i);
  6405. SD_INIT(sd, MC);
  6406. set_domain_attribute(sd, attr);
  6407. sd->span = cpu_coregroup_map(i);
  6408. cpus_and(sd->span, sd->span, *cpu_map);
  6409. sd->parent = p;
  6410. p->child = sd;
  6411. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6412. #endif
  6413. #ifdef CONFIG_SCHED_SMT
  6414. p = sd;
  6415. sd = &per_cpu(cpu_domains, i);
  6416. SD_INIT(sd, SIBLING);
  6417. set_domain_attribute(sd, attr);
  6418. sd->span = per_cpu(cpu_sibling_map, i);
  6419. cpus_and(sd->span, sd->span, *cpu_map);
  6420. sd->parent = p;
  6421. p->child = sd;
  6422. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6423. #endif
  6424. }
  6425. #ifdef CONFIG_SCHED_SMT
  6426. /* Set up CPU (sibling) groups */
  6427. for_each_cpu_mask_nr(i, *cpu_map) {
  6428. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6429. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6430. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6431. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6432. if (i != first_cpu(*this_sibling_map))
  6433. continue;
  6434. init_sched_build_groups(this_sibling_map, cpu_map,
  6435. &cpu_to_cpu_group,
  6436. send_covered, tmpmask);
  6437. }
  6438. #endif
  6439. #ifdef CONFIG_SCHED_MC
  6440. /* Set up multi-core groups */
  6441. for_each_cpu_mask_nr(i, *cpu_map) {
  6442. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6443. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6444. *this_core_map = cpu_coregroup_map(i);
  6445. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6446. if (i != first_cpu(*this_core_map))
  6447. continue;
  6448. init_sched_build_groups(this_core_map, cpu_map,
  6449. &cpu_to_core_group,
  6450. send_covered, tmpmask);
  6451. }
  6452. #endif
  6453. /* Set up physical groups */
  6454. for (i = 0; i < nr_node_ids; i++) {
  6455. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6456. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6457. *nodemask = node_to_cpumask(i);
  6458. cpus_and(*nodemask, *nodemask, *cpu_map);
  6459. if (cpus_empty(*nodemask))
  6460. continue;
  6461. init_sched_build_groups(nodemask, cpu_map,
  6462. &cpu_to_phys_group,
  6463. send_covered, tmpmask);
  6464. }
  6465. #ifdef CONFIG_NUMA
  6466. /* Set up node groups */
  6467. if (sd_allnodes) {
  6468. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6469. init_sched_build_groups(cpu_map, cpu_map,
  6470. &cpu_to_allnodes_group,
  6471. send_covered, tmpmask);
  6472. }
  6473. for (i = 0; i < nr_node_ids; i++) {
  6474. /* Set up node groups */
  6475. struct sched_group *sg, *prev;
  6476. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6477. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6478. SCHED_CPUMASK_VAR(covered, allmasks);
  6479. int j;
  6480. *nodemask = node_to_cpumask(i);
  6481. cpus_clear(*covered);
  6482. cpus_and(*nodemask, *nodemask, *cpu_map);
  6483. if (cpus_empty(*nodemask)) {
  6484. sched_group_nodes[i] = NULL;
  6485. continue;
  6486. }
  6487. sched_domain_node_span(i, domainspan);
  6488. cpus_and(*domainspan, *domainspan, *cpu_map);
  6489. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6490. if (!sg) {
  6491. printk(KERN_WARNING "Can not alloc domain group for "
  6492. "node %d\n", i);
  6493. goto error;
  6494. }
  6495. sched_group_nodes[i] = sg;
  6496. for_each_cpu_mask_nr(j, *nodemask) {
  6497. struct sched_domain *sd;
  6498. sd = &per_cpu(node_domains, j);
  6499. sd->groups = sg;
  6500. }
  6501. sg->__cpu_power = 0;
  6502. sg->cpumask = *nodemask;
  6503. sg->next = sg;
  6504. cpus_or(*covered, *covered, *nodemask);
  6505. prev = sg;
  6506. for (j = 0; j < nr_node_ids; j++) {
  6507. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6508. int n = (i + j) % nr_node_ids;
  6509. node_to_cpumask_ptr(pnodemask, n);
  6510. cpus_complement(*notcovered, *covered);
  6511. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6512. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6513. if (cpus_empty(*tmpmask))
  6514. break;
  6515. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6516. if (cpus_empty(*tmpmask))
  6517. continue;
  6518. sg = kmalloc_node(sizeof(struct sched_group),
  6519. GFP_KERNEL, i);
  6520. if (!sg) {
  6521. printk(KERN_WARNING
  6522. "Can not alloc domain group for node %d\n", j);
  6523. goto error;
  6524. }
  6525. sg->__cpu_power = 0;
  6526. sg->cpumask = *tmpmask;
  6527. sg->next = prev->next;
  6528. cpus_or(*covered, *covered, *tmpmask);
  6529. prev->next = sg;
  6530. prev = sg;
  6531. }
  6532. }
  6533. #endif
  6534. /* Calculate CPU power for physical packages and nodes */
  6535. #ifdef CONFIG_SCHED_SMT
  6536. for_each_cpu_mask_nr(i, *cpu_map) {
  6537. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6538. init_sched_groups_power(i, sd);
  6539. }
  6540. #endif
  6541. #ifdef CONFIG_SCHED_MC
  6542. for_each_cpu_mask_nr(i, *cpu_map) {
  6543. struct sched_domain *sd = &per_cpu(core_domains, i);
  6544. init_sched_groups_power(i, sd);
  6545. }
  6546. #endif
  6547. for_each_cpu_mask_nr(i, *cpu_map) {
  6548. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6549. init_sched_groups_power(i, sd);
  6550. }
  6551. #ifdef CONFIG_NUMA
  6552. for (i = 0; i < nr_node_ids; i++)
  6553. init_numa_sched_groups_power(sched_group_nodes[i]);
  6554. if (sd_allnodes) {
  6555. struct sched_group *sg;
  6556. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6557. tmpmask);
  6558. init_numa_sched_groups_power(sg);
  6559. }
  6560. #endif
  6561. /* Attach the domains */
  6562. for_each_cpu_mask_nr(i, *cpu_map) {
  6563. struct sched_domain *sd;
  6564. #ifdef CONFIG_SCHED_SMT
  6565. sd = &per_cpu(cpu_domains, i);
  6566. #elif defined(CONFIG_SCHED_MC)
  6567. sd = &per_cpu(core_domains, i);
  6568. #else
  6569. sd = &per_cpu(phys_domains, i);
  6570. #endif
  6571. cpu_attach_domain(sd, rd, i);
  6572. }
  6573. SCHED_CPUMASK_FREE((void *)allmasks);
  6574. return 0;
  6575. #ifdef CONFIG_NUMA
  6576. error:
  6577. free_sched_groups(cpu_map, tmpmask);
  6578. SCHED_CPUMASK_FREE((void *)allmasks);
  6579. kfree(rd);
  6580. return -ENOMEM;
  6581. #endif
  6582. }
  6583. static int build_sched_domains(const cpumask_t *cpu_map)
  6584. {
  6585. return __build_sched_domains(cpu_map, NULL);
  6586. }
  6587. static cpumask_t *doms_cur; /* current sched domains */
  6588. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6589. static struct sched_domain_attr *dattr_cur;
  6590. /* attribues of custom domains in 'doms_cur' */
  6591. /*
  6592. * Special case: If a kmalloc of a doms_cur partition (array of
  6593. * cpumask_t) fails, then fallback to a single sched domain,
  6594. * as determined by the single cpumask_t fallback_doms.
  6595. */
  6596. static cpumask_t fallback_doms;
  6597. void __attribute__((weak)) arch_update_cpu_topology(void)
  6598. {
  6599. }
  6600. /*
  6601. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6602. * For now this just excludes isolated cpus, but could be used to
  6603. * exclude other special cases in the future.
  6604. */
  6605. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6606. {
  6607. int err;
  6608. arch_update_cpu_topology();
  6609. ndoms_cur = 1;
  6610. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6611. if (!doms_cur)
  6612. doms_cur = &fallback_doms;
  6613. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6614. dattr_cur = NULL;
  6615. err = build_sched_domains(doms_cur);
  6616. register_sched_domain_sysctl();
  6617. return err;
  6618. }
  6619. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6620. cpumask_t *tmpmask)
  6621. {
  6622. free_sched_groups(cpu_map, tmpmask);
  6623. }
  6624. /*
  6625. * Detach sched domains from a group of cpus specified in cpu_map
  6626. * These cpus will now be attached to the NULL domain
  6627. */
  6628. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6629. {
  6630. cpumask_t tmpmask;
  6631. int i;
  6632. unregister_sched_domain_sysctl();
  6633. for_each_cpu_mask_nr(i, *cpu_map)
  6634. cpu_attach_domain(NULL, &def_root_domain, i);
  6635. synchronize_sched();
  6636. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6637. }
  6638. /* handle null as "default" */
  6639. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6640. struct sched_domain_attr *new, int idx_new)
  6641. {
  6642. struct sched_domain_attr tmp;
  6643. /* fast path */
  6644. if (!new && !cur)
  6645. return 1;
  6646. tmp = SD_ATTR_INIT;
  6647. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6648. new ? (new + idx_new) : &tmp,
  6649. sizeof(struct sched_domain_attr));
  6650. }
  6651. /*
  6652. * Partition sched domains as specified by the 'ndoms_new'
  6653. * cpumasks in the array doms_new[] of cpumasks. This compares
  6654. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6655. * It destroys each deleted domain and builds each new domain.
  6656. *
  6657. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6658. * The masks don't intersect (don't overlap.) We should setup one
  6659. * sched domain for each mask. CPUs not in any of the cpumasks will
  6660. * not be load balanced. If the same cpumask appears both in the
  6661. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6662. * it as it is.
  6663. *
  6664. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6665. * ownership of it and will kfree it when done with it. If the caller
  6666. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6667. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6668. * the single partition 'fallback_doms', it also forces the domains
  6669. * to be rebuilt.
  6670. *
  6671. * If doms_new == NULL it will be replaced with cpu_online_map.
  6672. * ndoms_new == 0 is a special case for destroying existing domains,
  6673. * and it will not create the default domain.
  6674. *
  6675. * Call with hotplug lock held
  6676. */
  6677. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6678. struct sched_domain_attr *dattr_new)
  6679. {
  6680. int i, j, n;
  6681. mutex_lock(&sched_domains_mutex);
  6682. /* always unregister in case we don't destroy any domains */
  6683. unregister_sched_domain_sysctl();
  6684. n = doms_new ? ndoms_new : 0;
  6685. /* Destroy deleted domains */
  6686. for (i = 0; i < ndoms_cur; i++) {
  6687. for (j = 0; j < n; j++) {
  6688. if (cpus_equal(doms_cur[i], doms_new[j])
  6689. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6690. goto match1;
  6691. }
  6692. /* no match - a current sched domain not in new doms_new[] */
  6693. detach_destroy_domains(doms_cur + i);
  6694. match1:
  6695. ;
  6696. }
  6697. if (doms_new == NULL) {
  6698. ndoms_cur = 0;
  6699. doms_new = &fallback_doms;
  6700. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6701. dattr_new = NULL;
  6702. }
  6703. /* Build new domains */
  6704. for (i = 0; i < ndoms_new; i++) {
  6705. for (j = 0; j < ndoms_cur; j++) {
  6706. if (cpus_equal(doms_new[i], doms_cur[j])
  6707. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6708. goto match2;
  6709. }
  6710. /* no match - add a new doms_new */
  6711. __build_sched_domains(doms_new + i,
  6712. dattr_new ? dattr_new + i : NULL);
  6713. match2:
  6714. ;
  6715. }
  6716. /* Remember the new sched domains */
  6717. if (doms_cur != &fallback_doms)
  6718. kfree(doms_cur);
  6719. kfree(dattr_cur); /* kfree(NULL) is safe */
  6720. doms_cur = doms_new;
  6721. dattr_cur = dattr_new;
  6722. ndoms_cur = ndoms_new;
  6723. register_sched_domain_sysctl();
  6724. mutex_unlock(&sched_domains_mutex);
  6725. }
  6726. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6727. int arch_reinit_sched_domains(void)
  6728. {
  6729. get_online_cpus();
  6730. /* Destroy domains first to force the rebuild */
  6731. partition_sched_domains(0, NULL, NULL);
  6732. rebuild_sched_domains();
  6733. put_online_cpus();
  6734. return 0;
  6735. }
  6736. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6737. {
  6738. int ret;
  6739. if (buf[0] != '0' && buf[0] != '1')
  6740. return -EINVAL;
  6741. if (smt)
  6742. sched_smt_power_savings = (buf[0] == '1');
  6743. else
  6744. sched_mc_power_savings = (buf[0] == '1');
  6745. ret = arch_reinit_sched_domains();
  6746. return ret ? ret : count;
  6747. }
  6748. #ifdef CONFIG_SCHED_MC
  6749. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6750. char *page)
  6751. {
  6752. return sprintf(page, "%u\n", sched_mc_power_savings);
  6753. }
  6754. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6755. const char *buf, size_t count)
  6756. {
  6757. return sched_power_savings_store(buf, count, 0);
  6758. }
  6759. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6760. sched_mc_power_savings_show,
  6761. sched_mc_power_savings_store);
  6762. #endif
  6763. #ifdef CONFIG_SCHED_SMT
  6764. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6765. char *page)
  6766. {
  6767. return sprintf(page, "%u\n", sched_smt_power_savings);
  6768. }
  6769. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6770. const char *buf, size_t count)
  6771. {
  6772. return sched_power_savings_store(buf, count, 1);
  6773. }
  6774. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6775. sched_smt_power_savings_show,
  6776. sched_smt_power_savings_store);
  6777. #endif
  6778. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6779. {
  6780. int err = 0;
  6781. #ifdef CONFIG_SCHED_SMT
  6782. if (smt_capable())
  6783. err = sysfs_create_file(&cls->kset.kobj,
  6784. &attr_sched_smt_power_savings.attr);
  6785. #endif
  6786. #ifdef CONFIG_SCHED_MC
  6787. if (!err && mc_capable())
  6788. err = sysfs_create_file(&cls->kset.kobj,
  6789. &attr_sched_mc_power_savings.attr);
  6790. #endif
  6791. return err;
  6792. }
  6793. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6794. #ifndef CONFIG_CPUSETS
  6795. /*
  6796. * Add online and remove offline CPUs from the scheduler domains.
  6797. * When cpusets are enabled they take over this function.
  6798. */
  6799. static int update_sched_domains(struct notifier_block *nfb,
  6800. unsigned long action, void *hcpu)
  6801. {
  6802. switch (action) {
  6803. case CPU_ONLINE:
  6804. case CPU_ONLINE_FROZEN:
  6805. case CPU_DEAD:
  6806. case CPU_DEAD_FROZEN:
  6807. partition_sched_domains(1, NULL, NULL);
  6808. return NOTIFY_OK;
  6809. default:
  6810. return NOTIFY_DONE;
  6811. }
  6812. }
  6813. #endif
  6814. static int update_runtime(struct notifier_block *nfb,
  6815. unsigned long action, void *hcpu)
  6816. {
  6817. int cpu = (int)(long)hcpu;
  6818. switch (action) {
  6819. case CPU_DOWN_PREPARE:
  6820. case CPU_DOWN_PREPARE_FROZEN:
  6821. disable_runtime(cpu_rq(cpu));
  6822. return NOTIFY_OK;
  6823. case CPU_DOWN_FAILED:
  6824. case CPU_DOWN_FAILED_FROZEN:
  6825. case CPU_ONLINE:
  6826. case CPU_ONLINE_FROZEN:
  6827. enable_runtime(cpu_rq(cpu));
  6828. return NOTIFY_OK;
  6829. default:
  6830. return NOTIFY_DONE;
  6831. }
  6832. }
  6833. void __init sched_init_smp(void)
  6834. {
  6835. cpumask_t non_isolated_cpus;
  6836. #if defined(CONFIG_NUMA)
  6837. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6838. GFP_KERNEL);
  6839. BUG_ON(sched_group_nodes_bycpu == NULL);
  6840. #endif
  6841. get_online_cpus();
  6842. mutex_lock(&sched_domains_mutex);
  6843. arch_init_sched_domains(&cpu_online_map);
  6844. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6845. if (cpus_empty(non_isolated_cpus))
  6846. cpu_set(smp_processor_id(), non_isolated_cpus);
  6847. mutex_unlock(&sched_domains_mutex);
  6848. put_online_cpus();
  6849. #ifndef CONFIG_CPUSETS
  6850. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6851. hotcpu_notifier(update_sched_domains, 0);
  6852. #endif
  6853. /* RT runtime code needs to handle some hotplug events */
  6854. hotcpu_notifier(update_runtime, 0);
  6855. init_hrtick();
  6856. /* Move init over to a non-isolated CPU */
  6857. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6858. BUG();
  6859. sched_init_granularity();
  6860. }
  6861. #else
  6862. void __init sched_init_smp(void)
  6863. {
  6864. sched_init_granularity();
  6865. }
  6866. #endif /* CONFIG_SMP */
  6867. int in_sched_functions(unsigned long addr)
  6868. {
  6869. return in_lock_functions(addr) ||
  6870. (addr >= (unsigned long)__sched_text_start
  6871. && addr < (unsigned long)__sched_text_end);
  6872. }
  6873. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6874. {
  6875. cfs_rq->tasks_timeline = RB_ROOT;
  6876. INIT_LIST_HEAD(&cfs_rq->tasks);
  6877. #ifdef CONFIG_FAIR_GROUP_SCHED
  6878. cfs_rq->rq = rq;
  6879. #endif
  6880. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6881. }
  6882. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6883. {
  6884. struct rt_prio_array *array;
  6885. int i;
  6886. array = &rt_rq->active;
  6887. for (i = 0; i < MAX_RT_PRIO; i++) {
  6888. INIT_LIST_HEAD(array->queue + i);
  6889. __clear_bit(i, array->bitmap);
  6890. }
  6891. /* delimiter for bitsearch: */
  6892. __set_bit(MAX_RT_PRIO, array->bitmap);
  6893. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6894. rt_rq->highest_prio = MAX_RT_PRIO;
  6895. #endif
  6896. #ifdef CONFIG_SMP
  6897. rt_rq->rt_nr_migratory = 0;
  6898. rt_rq->overloaded = 0;
  6899. #endif
  6900. rt_rq->rt_time = 0;
  6901. rt_rq->rt_throttled = 0;
  6902. rt_rq->rt_runtime = 0;
  6903. spin_lock_init(&rt_rq->rt_runtime_lock);
  6904. #ifdef CONFIG_RT_GROUP_SCHED
  6905. rt_rq->rt_nr_boosted = 0;
  6906. rt_rq->rq = rq;
  6907. #endif
  6908. }
  6909. #ifdef CONFIG_FAIR_GROUP_SCHED
  6910. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6911. struct sched_entity *se, int cpu, int add,
  6912. struct sched_entity *parent)
  6913. {
  6914. struct rq *rq = cpu_rq(cpu);
  6915. tg->cfs_rq[cpu] = cfs_rq;
  6916. init_cfs_rq(cfs_rq, rq);
  6917. cfs_rq->tg = tg;
  6918. if (add)
  6919. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6920. tg->se[cpu] = se;
  6921. /* se could be NULL for init_task_group */
  6922. if (!se)
  6923. return;
  6924. if (!parent)
  6925. se->cfs_rq = &rq->cfs;
  6926. else
  6927. se->cfs_rq = parent->my_q;
  6928. se->my_q = cfs_rq;
  6929. se->load.weight = tg->shares;
  6930. se->load.inv_weight = 0;
  6931. se->parent = parent;
  6932. }
  6933. #endif
  6934. #ifdef CONFIG_RT_GROUP_SCHED
  6935. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6936. struct sched_rt_entity *rt_se, int cpu, int add,
  6937. struct sched_rt_entity *parent)
  6938. {
  6939. struct rq *rq = cpu_rq(cpu);
  6940. tg->rt_rq[cpu] = rt_rq;
  6941. init_rt_rq(rt_rq, rq);
  6942. rt_rq->tg = tg;
  6943. rt_rq->rt_se = rt_se;
  6944. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6945. if (add)
  6946. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6947. tg->rt_se[cpu] = rt_se;
  6948. if (!rt_se)
  6949. return;
  6950. if (!parent)
  6951. rt_se->rt_rq = &rq->rt;
  6952. else
  6953. rt_se->rt_rq = parent->my_q;
  6954. rt_se->my_q = rt_rq;
  6955. rt_se->parent = parent;
  6956. INIT_LIST_HEAD(&rt_se->run_list);
  6957. }
  6958. #endif
  6959. void __init sched_init(void)
  6960. {
  6961. int i, j;
  6962. unsigned long alloc_size = 0, ptr;
  6963. #ifdef CONFIG_FAIR_GROUP_SCHED
  6964. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6965. #endif
  6966. #ifdef CONFIG_RT_GROUP_SCHED
  6967. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6968. #endif
  6969. #ifdef CONFIG_USER_SCHED
  6970. alloc_size *= 2;
  6971. #endif
  6972. /*
  6973. * As sched_init() is called before page_alloc is setup,
  6974. * we use alloc_bootmem().
  6975. */
  6976. if (alloc_size) {
  6977. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6978. #ifdef CONFIG_FAIR_GROUP_SCHED
  6979. init_task_group.se = (struct sched_entity **)ptr;
  6980. ptr += nr_cpu_ids * sizeof(void **);
  6981. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6982. ptr += nr_cpu_ids * sizeof(void **);
  6983. #ifdef CONFIG_USER_SCHED
  6984. root_task_group.se = (struct sched_entity **)ptr;
  6985. ptr += nr_cpu_ids * sizeof(void **);
  6986. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6987. ptr += nr_cpu_ids * sizeof(void **);
  6988. #endif /* CONFIG_USER_SCHED */
  6989. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6990. #ifdef CONFIG_RT_GROUP_SCHED
  6991. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6992. ptr += nr_cpu_ids * sizeof(void **);
  6993. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6994. ptr += nr_cpu_ids * sizeof(void **);
  6995. #ifdef CONFIG_USER_SCHED
  6996. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6997. ptr += nr_cpu_ids * sizeof(void **);
  6998. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6999. ptr += nr_cpu_ids * sizeof(void **);
  7000. #endif /* CONFIG_USER_SCHED */
  7001. #endif /* CONFIG_RT_GROUP_SCHED */
  7002. }
  7003. #ifdef CONFIG_SMP
  7004. init_defrootdomain();
  7005. #endif
  7006. init_rt_bandwidth(&def_rt_bandwidth,
  7007. global_rt_period(), global_rt_runtime());
  7008. #ifdef CONFIG_RT_GROUP_SCHED
  7009. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7010. global_rt_period(), global_rt_runtime());
  7011. #ifdef CONFIG_USER_SCHED
  7012. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7013. global_rt_period(), RUNTIME_INF);
  7014. #endif /* CONFIG_USER_SCHED */
  7015. #endif /* CONFIG_RT_GROUP_SCHED */
  7016. #ifdef CONFIG_GROUP_SCHED
  7017. list_add(&init_task_group.list, &task_groups);
  7018. INIT_LIST_HEAD(&init_task_group.children);
  7019. #ifdef CONFIG_USER_SCHED
  7020. INIT_LIST_HEAD(&root_task_group.children);
  7021. init_task_group.parent = &root_task_group;
  7022. list_add(&init_task_group.siblings, &root_task_group.children);
  7023. #endif /* CONFIG_USER_SCHED */
  7024. #endif /* CONFIG_GROUP_SCHED */
  7025. for_each_possible_cpu(i) {
  7026. struct rq *rq;
  7027. rq = cpu_rq(i);
  7028. spin_lock_init(&rq->lock);
  7029. rq->nr_running = 0;
  7030. init_cfs_rq(&rq->cfs, rq);
  7031. init_rt_rq(&rq->rt, rq);
  7032. #ifdef CONFIG_FAIR_GROUP_SCHED
  7033. init_task_group.shares = init_task_group_load;
  7034. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7035. #ifdef CONFIG_CGROUP_SCHED
  7036. /*
  7037. * How much cpu bandwidth does init_task_group get?
  7038. *
  7039. * In case of task-groups formed thr' the cgroup filesystem, it
  7040. * gets 100% of the cpu resources in the system. This overall
  7041. * system cpu resource is divided among the tasks of
  7042. * init_task_group and its child task-groups in a fair manner,
  7043. * based on each entity's (task or task-group's) weight
  7044. * (se->load.weight).
  7045. *
  7046. * In other words, if init_task_group has 10 tasks of weight
  7047. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7048. * then A0's share of the cpu resource is:
  7049. *
  7050. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7051. *
  7052. * We achieve this by letting init_task_group's tasks sit
  7053. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7054. */
  7055. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7056. #elif defined CONFIG_USER_SCHED
  7057. root_task_group.shares = NICE_0_LOAD;
  7058. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7059. /*
  7060. * In case of task-groups formed thr' the user id of tasks,
  7061. * init_task_group represents tasks belonging to root user.
  7062. * Hence it forms a sibling of all subsequent groups formed.
  7063. * In this case, init_task_group gets only a fraction of overall
  7064. * system cpu resource, based on the weight assigned to root
  7065. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7066. * by letting tasks of init_task_group sit in a separate cfs_rq
  7067. * (init_cfs_rq) and having one entity represent this group of
  7068. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7069. */
  7070. init_tg_cfs_entry(&init_task_group,
  7071. &per_cpu(init_cfs_rq, i),
  7072. &per_cpu(init_sched_entity, i), i, 1,
  7073. root_task_group.se[i]);
  7074. #endif
  7075. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7076. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7077. #ifdef CONFIG_RT_GROUP_SCHED
  7078. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7079. #ifdef CONFIG_CGROUP_SCHED
  7080. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7081. #elif defined CONFIG_USER_SCHED
  7082. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7083. init_tg_rt_entry(&init_task_group,
  7084. &per_cpu(init_rt_rq, i),
  7085. &per_cpu(init_sched_rt_entity, i), i, 1,
  7086. root_task_group.rt_se[i]);
  7087. #endif
  7088. #endif
  7089. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7090. rq->cpu_load[j] = 0;
  7091. #ifdef CONFIG_SMP
  7092. rq->sd = NULL;
  7093. rq->rd = NULL;
  7094. rq->active_balance = 0;
  7095. rq->next_balance = jiffies;
  7096. rq->push_cpu = 0;
  7097. rq->cpu = i;
  7098. rq->online = 0;
  7099. rq->migration_thread = NULL;
  7100. INIT_LIST_HEAD(&rq->migration_queue);
  7101. rq_attach_root(rq, &def_root_domain);
  7102. #endif
  7103. init_rq_hrtick(rq);
  7104. atomic_set(&rq->nr_iowait, 0);
  7105. }
  7106. set_load_weight(&init_task);
  7107. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7108. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7109. #endif
  7110. #ifdef CONFIG_SMP
  7111. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7112. #endif
  7113. #ifdef CONFIG_RT_MUTEXES
  7114. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7115. #endif
  7116. /*
  7117. * The boot idle thread does lazy MMU switching as well:
  7118. */
  7119. atomic_inc(&init_mm.mm_count);
  7120. enter_lazy_tlb(&init_mm, current);
  7121. /*
  7122. * Make us the idle thread. Technically, schedule() should not be
  7123. * called from this thread, however somewhere below it might be,
  7124. * but because we are the idle thread, we just pick up running again
  7125. * when this runqueue becomes "idle".
  7126. */
  7127. init_idle(current, smp_processor_id());
  7128. /*
  7129. * During early bootup we pretend to be a normal task:
  7130. */
  7131. current->sched_class = &fair_sched_class;
  7132. scheduler_running = 1;
  7133. }
  7134. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7135. void __might_sleep(char *file, int line)
  7136. {
  7137. #ifdef in_atomic
  7138. static unsigned long prev_jiffy; /* ratelimiting */
  7139. if ((!in_atomic() && !irqs_disabled()) ||
  7140. system_state != SYSTEM_RUNNING || oops_in_progress)
  7141. return;
  7142. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7143. return;
  7144. prev_jiffy = jiffies;
  7145. printk(KERN_ERR
  7146. "BUG: sleeping function called from invalid context at %s:%d\n",
  7147. file, line);
  7148. printk(KERN_ERR
  7149. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7150. in_atomic(), irqs_disabled(),
  7151. current->pid, current->comm);
  7152. debug_show_held_locks(current);
  7153. if (irqs_disabled())
  7154. print_irqtrace_events(current);
  7155. dump_stack();
  7156. #endif
  7157. }
  7158. EXPORT_SYMBOL(__might_sleep);
  7159. #endif
  7160. #ifdef CONFIG_MAGIC_SYSRQ
  7161. static void normalize_task(struct rq *rq, struct task_struct *p)
  7162. {
  7163. int on_rq;
  7164. update_rq_clock(rq);
  7165. on_rq = p->se.on_rq;
  7166. if (on_rq)
  7167. deactivate_task(rq, p, 0);
  7168. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7169. if (on_rq) {
  7170. activate_task(rq, p, 0);
  7171. resched_task(rq->curr);
  7172. }
  7173. }
  7174. void normalize_rt_tasks(void)
  7175. {
  7176. struct task_struct *g, *p;
  7177. unsigned long flags;
  7178. struct rq *rq;
  7179. read_lock_irqsave(&tasklist_lock, flags);
  7180. do_each_thread(g, p) {
  7181. /*
  7182. * Only normalize user tasks:
  7183. */
  7184. if (!p->mm)
  7185. continue;
  7186. p->se.exec_start = 0;
  7187. #ifdef CONFIG_SCHEDSTATS
  7188. p->se.wait_start = 0;
  7189. p->se.sleep_start = 0;
  7190. p->se.block_start = 0;
  7191. #endif
  7192. if (!rt_task(p)) {
  7193. /*
  7194. * Renice negative nice level userspace
  7195. * tasks back to 0:
  7196. */
  7197. if (TASK_NICE(p) < 0 && p->mm)
  7198. set_user_nice(p, 0);
  7199. continue;
  7200. }
  7201. spin_lock(&p->pi_lock);
  7202. rq = __task_rq_lock(p);
  7203. normalize_task(rq, p);
  7204. __task_rq_unlock(rq);
  7205. spin_unlock(&p->pi_lock);
  7206. } while_each_thread(g, p);
  7207. read_unlock_irqrestore(&tasklist_lock, flags);
  7208. }
  7209. #endif /* CONFIG_MAGIC_SYSRQ */
  7210. #ifdef CONFIG_IA64
  7211. /*
  7212. * These functions are only useful for the IA64 MCA handling.
  7213. *
  7214. * They can only be called when the whole system has been
  7215. * stopped - every CPU needs to be quiescent, and no scheduling
  7216. * activity can take place. Using them for anything else would
  7217. * be a serious bug, and as a result, they aren't even visible
  7218. * under any other configuration.
  7219. */
  7220. /**
  7221. * curr_task - return the current task for a given cpu.
  7222. * @cpu: the processor in question.
  7223. *
  7224. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7225. */
  7226. struct task_struct *curr_task(int cpu)
  7227. {
  7228. return cpu_curr(cpu);
  7229. }
  7230. /**
  7231. * set_curr_task - set the current task for a given cpu.
  7232. * @cpu: the processor in question.
  7233. * @p: the task pointer to set.
  7234. *
  7235. * Description: This function must only be used when non-maskable interrupts
  7236. * are serviced on a separate stack. It allows the architecture to switch the
  7237. * notion of the current task on a cpu in a non-blocking manner. This function
  7238. * must be called with all CPU's synchronized, and interrupts disabled, the
  7239. * and caller must save the original value of the current task (see
  7240. * curr_task() above) and restore that value before reenabling interrupts and
  7241. * re-starting the system.
  7242. *
  7243. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7244. */
  7245. void set_curr_task(int cpu, struct task_struct *p)
  7246. {
  7247. cpu_curr(cpu) = p;
  7248. }
  7249. #endif
  7250. #ifdef CONFIG_FAIR_GROUP_SCHED
  7251. static void free_fair_sched_group(struct task_group *tg)
  7252. {
  7253. int i;
  7254. for_each_possible_cpu(i) {
  7255. if (tg->cfs_rq)
  7256. kfree(tg->cfs_rq[i]);
  7257. if (tg->se)
  7258. kfree(tg->se[i]);
  7259. }
  7260. kfree(tg->cfs_rq);
  7261. kfree(tg->se);
  7262. }
  7263. static
  7264. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7265. {
  7266. struct cfs_rq *cfs_rq;
  7267. struct sched_entity *se, *parent_se;
  7268. struct rq *rq;
  7269. int i;
  7270. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7271. if (!tg->cfs_rq)
  7272. goto err;
  7273. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7274. if (!tg->se)
  7275. goto err;
  7276. tg->shares = NICE_0_LOAD;
  7277. for_each_possible_cpu(i) {
  7278. rq = cpu_rq(i);
  7279. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7280. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7281. if (!cfs_rq)
  7282. goto err;
  7283. se = kmalloc_node(sizeof(struct sched_entity),
  7284. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7285. if (!se)
  7286. goto err;
  7287. parent_se = parent ? parent->se[i] : NULL;
  7288. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7289. }
  7290. return 1;
  7291. err:
  7292. return 0;
  7293. }
  7294. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7295. {
  7296. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7297. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7298. }
  7299. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7300. {
  7301. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7302. }
  7303. #else /* !CONFG_FAIR_GROUP_SCHED */
  7304. static inline void free_fair_sched_group(struct task_group *tg)
  7305. {
  7306. }
  7307. static inline
  7308. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7309. {
  7310. return 1;
  7311. }
  7312. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7313. {
  7314. }
  7315. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7316. {
  7317. }
  7318. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7319. #ifdef CONFIG_RT_GROUP_SCHED
  7320. static void free_rt_sched_group(struct task_group *tg)
  7321. {
  7322. int i;
  7323. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7324. for_each_possible_cpu(i) {
  7325. if (tg->rt_rq)
  7326. kfree(tg->rt_rq[i]);
  7327. if (tg->rt_se)
  7328. kfree(tg->rt_se[i]);
  7329. }
  7330. kfree(tg->rt_rq);
  7331. kfree(tg->rt_se);
  7332. }
  7333. static
  7334. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7335. {
  7336. struct rt_rq *rt_rq;
  7337. struct sched_rt_entity *rt_se, *parent_se;
  7338. struct rq *rq;
  7339. int i;
  7340. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7341. if (!tg->rt_rq)
  7342. goto err;
  7343. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7344. if (!tg->rt_se)
  7345. goto err;
  7346. init_rt_bandwidth(&tg->rt_bandwidth,
  7347. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7348. for_each_possible_cpu(i) {
  7349. rq = cpu_rq(i);
  7350. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7351. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7352. if (!rt_rq)
  7353. goto err;
  7354. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7355. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7356. if (!rt_se)
  7357. goto err;
  7358. parent_se = parent ? parent->rt_se[i] : NULL;
  7359. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7360. }
  7361. return 1;
  7362. err:
  7363. return 0;
  7364. }
  7365. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7366. {
  7367. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7368. &cpu_rq(cpu)->leaf_rt_rq_list);
  7369. }
  7370. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7371. {
  7372. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7373. }
  7374. #else /* !CONFIG_RT_GROUP_SCHED */
  7375. static inline void free_rt_sched_group(struct task_group *tg)
  7376. {
  7377. }
  7378. static inline
  7379. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7380. {
  7381. return 1;
  7382. }
  7383. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7384. {
  7385. }
  7386. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7387. {
  7388. }
  7389. #endif /* CONFIG_RT_GROUP_SCHED */
  7390. #ifdef CONFIG_GROUP_SCHED
  7391. static void free_sched_group(struct task_group *tg)
  7392. {
  7393. free_fair_sched_group(tg);
  7394. free_rt_sched_group(tg);
  7395. kfree(tg);
  7396. }
  7397. /* allocate runqueue etc for a new task group */
  7398. struct task_group *sched_create_group(struct task_group *parent)
  7399. {
  7400. struct task_group *tg;
  7401. unsigned long flags;
  7402. int i;
  7403. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7404. if (!tg)
  7405. return ERR_PTR(-ENOMEM);
  7406. if (!alloc_fair_sched_group(tg, parent))
  7407. goto err;
  7408. if (!alloc_rt_sched_group(tg, parent))
  7409. goto err;
  7410. spin_lock_irqsave(&task_group_lock, flags);
  7411. for_each_possible_cpu(i) {
  7412. register_fair_sched_group(tg, i);
  7413. register_rt_sched_group(tg, i);
  7414. }
  7415. list_add_rcu(&tg->list, &task_groups);
  7416. WARN_ON(!parent); /* root should already exist */
  7417. tg->parent = parent;
  7418. INIT_LIST_HEAD(&tg->children);
  7419. list_add_rcu(&tg->siblings, &parent->children);
  7420. spin_unlock_irqrestore(&task_group_lock, flags);
  7421. return tg;
  7422. err:
  7423. free_sched_group(tg);
  7424. return ERR_PTR(-ENOMEM);
  7425. }
  7426. /* rcu callback to free various structures associated with a task group */
  7427. static void free_sched_group_rcu(struct rcu_head *rhp)
  7428. {
  7429. /* now it should be safe to free those cfs_rqs */
  7430. free_sched_group(container_of(rhp, struct task_group, rcu));
  7431. }
  7432. /* Destroy runqueue etc associated with a task group */
  7433. void sched_destroy_group(struct task_group *tg)
  7434. {
  7435. unsigned long flags;
  7436. int i;
  7437. spin_lock_irqsave(&task_group_lock, flags);
  7438. for_each_possible_cpu(i) {
  7439. unregister_fair_sched_group(tg, i);
  7440. unregister_rt_sched_group(tg, i);
  7441. }
  7442. list_del_rcu(&tg->list);
  7443. list_del_rcu(&tg->siblings);
  7444. spin_unlock_irqrestore(&task_group_lock, flags);
  7445. /* wait for possible concurrent references to cfs_rqs complete */
  7446. call_rcu(&tg->rcu, free_sched_group_rcu);
  7447. }
  7448. /* change task's runqueue when it moves between groups.
  7449. * The caller of this function should have put the task in its new group
  7450. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7451. * reflect its new group.
  7452. */
  7453. void sched_move_task(struct task_struct *tsk)
  7454. {
  7455. int on_rq, running;
  7456. unsigned long flags;
  7457. struct rq *rq;
  7458. rq = task_rq_lock(tsk, &flags);
  7459. update_rq_clock(rq);
  7460. running = task_current(rq, tsk);
  7461. on_rq = tsk->se.on_rq;
  7462. if (on_rq)
  7463. dequeue_task(rq, tsk, 0);
  7464. if (unlikely(running))
  7465. tsk->sched_class->put_prev_task(rq, tsk);
  7466. set_task_rq(tsk, task_cpu(tsk));
  7467. #ifdef CONFIG_FAIR_GROUP_SCHED
  7468. if (tsk->sched_class->moved_group)
  7469. tsk->sched_class->moved_group(tsk);
  7470. #endif
  7471. if (unlikely(running))
  7472. tsk->sched_class->set_curr_task(rq);
  7473. if (on_rq)
  7474. enqueue_task(rq, tsk, 0);
  7475. task_rq_unlock(rq, &flags);
  7476. }
  7477. #endif /* CONFIG_GROUP_SCHED */
  7478. #ifdef CONFIG_FAIR_GROUP_SCHED
  7479. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7480. {
  7481. struct cfs_rq *cfs_rq = se->cfs_rq;
  7482. int on_rq;
  7483. on_rq = se->on_rq;
  7484. if (on_rq)
  7485. dequeue_entity(cfs_rq, se, 0);
  7486. se->load.weight = shares;
  7487. se->load.inv_weight = 0;
  7488. if (on_rq)
  7489. enqueue_entity(cfs_rq, se, 0);
  7490. }
  7491. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7492. {
  7493. struct cfs_rq *cfs_rq = se->cfs_rq;
  7494. struct rq *rq = cfs_rq->rq;
  7495. unsigned long flags;
  7496. spin_lock_irqsave(&rq->lock, flags);
  7497. __set_se_shares(se, shares);
  7498. spin_unlock_irqrestore(&rq->lock, flags);
  7499. }
  7500. static DEFINE_MUTEX(shares_mutex);
  7501. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7502. {
  7503. int i;
  7504. unsigned long flags;
  7505. /*
  7506. * We can't change the weight of the root cgroup.
  7507. */
  7508. if (!tg->se[0])
  7509. return -EINVAL;
  7510. if (shares < MIN_SHARES)
  7511. shares = MIN_SHARES;
  7512. else if (shares > MAX_SHARES)
  7513. shares = MAX_SHARES;
  7514. mutex_lock(&shares_mutex);
  7515. if (tg->shares == shares)
  7516. goto done;
  7517. spin_lock_irqsave(&task_group_lock, flags);
  7518. for_each_possible_cpu(i)
  7519. unregister_fair_sched_group(tg, i);
  7520. list_del_rcu(&tg->siblings);
  7521. spin_unlock_irqrestore(&task_group_lock, flags);
  7522. /* wait for any ongoing reference to this group to finish */
  7523. synchronize_sched();
  7524. /*
  7525. * Now we are free to modify the group's share on each cpu
  7526. * w/o tripping rebalance_share or load_balance_fair.
  7527. */
  7528. tg->shares = shares;
  7529. for_each_possible_cpu(i) {
  7530. /*
  7531. * force a rebalance
  7532. */
  7533. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7534. set_se_shares(tg->se[i], shares);
  7535. }
  7536. /*
  7537. * Enable load balance activity on this group, by inserting it back on
  7538. * each cpu's rq->leaf_cfs_rq_list.
  7539. */
  7540. spin_lock_irqsave(&task_group_lock, flags);
  7541. for_each_possible_cpu(i)
  7542. register_fair_sched_group(tg, i);
  7543. list_add_rcu(&tg->siblings, &tg->parent->children);
  7544. spin_unlock_irqrestore(&task_group_lock, flags);
  7545. done:
  7546. mutex_unlock(&shares_mutex);
  7547. return 0;
  7548. }
  7549. unsigned long sched_group_shares(struct task_group *tg)
  7550. {
  7551. return tg->shares;
  7552. }
  7553. #endif
  7554. #ifdef CONFIG_RT_GROUP_SCHED
  7555. /*
  7556. * Ensure that the real time constraints are schedulable.
  7557. */
  7558. static DEFINE_MUTEX(rt_constraints_mutex);
  7559. static unsigned long to_ratio(u64 period, u64 runtime)
  7560. {
  7561. if (runtime == RUNTIME_INF)
  7562. return 1ULL << 20;
  7563. return div64_u64(runtime << 20, period);
  7564. }
  7565. /* Must be called with tasklist_lock held */
  7566. static inline int tg_has_rt_tasks(struct task_group *tg)
  7567. {
  7568. struct task_struct *g, *p;
  7569. do_each_thread(g, p) {
  7570. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7571. return 1;
  7572. } while_each_thread(g, p);
  7573. return 0;
  7574. }
  7575. struct rt_schedulable_data {
  7576. struct task_group *tg;
  7577. u64 rt_period;
  7578. u64 rt_runtime;
  7579. };
  7580. static int tg_schedulable(struct task_group *tg, void *data)
  7581. {
  7582. struct rt_schedulable_data *d = data;
  7583. struct task_group *child;
  7584. unsigned long total, sum = 0;
  7585. u64 period, runtime;
  7586. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7587. runtime = tg->rt_bandwidth.rt_runtime;
  7588. if (tg == d->tg) {
  7589. period = d->rt_period;
  7590. runtime = d->rt_runtime;
  7591. }
  7592. /*
  7593. * Cannot have more runtime than the period.
  7594. */
  7595. if (runtime > period && runtime != RUNTIME_INF)
  7596. return -EINVAL;
  7597. /*
  7598. * Ensure we don't starve existing RT tasks.
  7599. */
  7600. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7601. return -EBUSY;
  7602. total = to_ratio(period, runtime);
  7603. /*
  7604. * Nobody can have more than the global setting allows.
  7605. */
  7606. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7607. return -EINVAL;
  7608. /*
  7609. * The sum of our children's runtime should not exceed our own.
  7610. */
  7611. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7612. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7613. runtime = child->rt_bandwidth.rt_runtime;
  7614. if (child == d->tg) {
  7615. period = d->rt_period;
  7616. runtime = d->rt_runtime;
  7617. }
  7618. sum += to_ratio(period, runtime);
  7619. }
  7620. if (sum > total)
  7621. return -EINVAL;
  7622. return 0;
  7623. }
  7624. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7625. {
  7626. struct rt_schedulable_data data = {
  7627. .tg = tg,
  7628. .rt_period = period,
  7629. .rt_runtime = runtime,
  7630. };
  7631. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7632. }
  7633. static int tg_set_bandwidth(struct task_group *tg,
  7634. u64 rt_period, u64 rt_runtime)
  7635. {
  7636. int i, err = 0;
  7637. mutex_lock(&rt_constraints_mutex);
  7638. read_lock(&tasklist_lock);
  7639. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7640. if (err)
  7641. goto unlock;
  7642. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7643. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7644. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7645. for_each_possible_cpu(i) {
  7646. struct rt_rq *rt_rq = tg->rt_rq[i];
  7647. spin_lock(&rt_rq->rt_runtime_lock);
  7648. rt_rq->rt_runtime = rt_runtime;
  7649. spin_unlock(&rt_rq->rt_runtime_lock);
  7650. }
  7651. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7652. unlock:
  7653. read_unlock(&tasklist_lock);
  7654. mutex_unlock(&rt_constraints_mutex);
  7655. return err;
  7656. }
  7657. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7658. {
  7659. u64 rt_runtime, rt_period;
  7660. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7661. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7662. if (rt_runtime_us < 0)
  7663. rt_runtime = RUNTIME_INF;
  7664. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7665. }
  7666. long sched_group_rt_runtime(struct task_group *tg)
  7667. {
  7668. u64 rt_runtime_us;
  7669. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7670. return -1;
  7671. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7672. do_div(rt_runtime_us, NSEC_PER_USEC);
  7673. return rt_runtime_us;
  7674. }
  7675. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7676. {
  7677. u64 rt_runtime, rt_period;
  7678. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7679. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7680. if (rt_period == 0)
  7681. return -EINVAL;
  7682. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7683. }
  7684. long sched_group_rt_period(struct task_group *tg)
  7685. {
  7686. u64 rt_period_us;
  7687. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7688. do_div(rt_period_us, NSEC_PER_USEC);
  7689. return rt_period_us;
  7690. }
  7691. static int sched_rt_global_constraints(void)
  7692. {
  7693. u64 runtime, period;
  7694. int ret = 0;
  7695. if (sysctl_sched_rt_period <= 0)
  7696. return -EINVAL;
  7697. runtime = global_rt_runtime();
  7698. period = global_rt_period();
  7699. /*
  7700. * Sanity check on the sysctl variables.
  7701. */
  7702. if (runtime > period && runtime != RUNTIME_INF)
  7703. return -EINVAL;
  7704. mutex_lock(&rt_constraints_mutex);
  7705. read_lock(&tasklist_lock);
  7706. ret = __rt_schedulable(NULL, 0, 0);
  7707. read_unlock(&tasklist_lock);
  7708. mutex_unlock(&rt_constraints_mutex);
  7709. return ret;
  7710. }
  7711. #else /* !CONFIG_RT_GROUP_SCHED */
  7712. static int sched_rt_global_constraints(void)
  7713. {
  7714. unsigned long flags;
  7715. int i;
  7716. if (sysctl_sched_rt_period <= 0)
  7717. return -EINVAL;
  7718. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7719. for_each_possible_cpu(i) {
  7720. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7721. spin_lock(&rt_rq->rt_runtime_lock);
  7722. rt_rq->rt_runtime = global_rt_runtime();
  7723. spin_unlock(&rt_rq->rt_runtime_lock);
  7724. }
  7725. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7726. return 0;
  7727. }
  7728. #endif /* CONFIG_RT_GROUP_SCHED */
  7729. int sched_rt_handler(struct ctl_table *table, int write,
  7730. struct file *filp, void __user *buffer, size_t *lenp,
  7731. loff_t *ppos)
  7732. {
  7733. int ret;
  7734. int old_period, old_runtime;
  7735. static DEFINE_MUTEX(mutex);
  7736. mutex_lock(&mutex);
  7737. old_period = sysctl_sched_rt_period;
  7738. old_runtime = sysctl_sched_rt_runtime;
  7739. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7740. if (!ret && write) {
  7741. ret = sched_rt_global_constraints();
  7742. if (ret) {
  7743. sysctl_sched_rt_period = old_period;
  7744. sysctl_sched_rt_runtime = old_runtime;
  7745. } else {
  7746. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7747. def_rt_bandwidth.rt_period =
  7748. ns_to_ktime(global_rt_period());
  7749. }
  7750. }
  7751. mutex_unlock(&mutex);
  7752. return ret;
  7753. }
  7754. #ifdef CONFIG_CGROUP_SCHED
  7755. /* return corresponding task_group object of a cgroup */
  7756. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7757. {
  7758. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7759. struct task_group, css);
  7760. }
  7761. static struct cgroup_subsys_state *
  7762. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7763. {
  7764. struct task_group *tg, *parent;
  7765. if (!cgrp->parent) {
  7766. /* This is early initialization for the top cgroup */
  7767. return &init_task_group.css;
  7768. }
  7769. parent = cgroup_tg(cgrp->parent);
  7770. tg = sched_create_group(parent);
  7771. if (IS_ERR(tg))
  7772. return ERR_PTR(-ENOMEM);
  7773. return &tg->css;
  7774. }
  7775. static void
  7776. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7777. {
  7778. struct task_group *tg = cgroup_tg(cgrp);
  7779. sched_destroy_group(tg);
  7780. }
  7781. static int
  7782. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7783. struct task_struct *tsk)
  7784. {
  7785. #ifdef CONFIG_RT_GROUP_SCHED
  7786. /* Don't accept realtime tasks when there is no way for them to run */
  7787. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7788. return -EINVAL;
  7789. #else
  7790. /* We don't support RT-tasks being in separate groups */
  7791. if (tsk->sched_class != &fair_sched_class)
  7792. return -EINVAL;
  7793. #endif
  7794. return 0;
  7795. }
  7796. static void
  7797. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7798. struct cgroup *old_cont, struct task_struct *tsk)
  7799. {
  7800. sched_move_task(tsk);
  7801. }
  7802. #ifdef CONFIG_FAIR_GROUP_SCHED
  7803. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7804. u64 shareval)
  7805. {
  7806. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7807. }
  7808. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7809. {
  7810. struct task_group *tg = cgroup_tg(cgrp);
  7811. return (u64) tg->shares;
  7812. }
  7813. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7814. #ifdef CONFIG_RT_GROUP_SCHED
  7815. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7816. s64 val)
  7817. {
  7818. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7819. }
  7820. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7821. {
  7822. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7823. }
  7824. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7825. u64 rt_period_us)
  7826. {
  7827. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7828. }
  7829. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7830. {
  7831. return sched_group_rt_period(cgroup_tg(cgrp));
  7832. }
  7833. #endif /* CONFIG_RT_GROUP_SCHED */
  7834. static struct cftype cpu_files[] = {
  7835. #ifdef CONFIG_FAIR_GROUP_SCHED
  7836. {
  7837. .name = "shares",
  7838. .read_u64 = cpu_shares_read_u64,
  7839. .write_u64 = cpu_shares_write_u64,
  7840. },
  7841. #endif
  7842. #ifdef CONFIG_RT_GROUP_SCHED
  7843. {
  7844. .name = "rt_runtime_us",
  7845. .read_s64 = cpu_rt_runtime_read,
  7846. .write_s64 = cpu_rt_runtime_write,
  7847. },
  7848. {
  7849. .name = "rt_period_us",
  7850. .read_u64 = cpu_rt_period_read_uint,
  7851. .write_u64 = cpu_rt_period_write_uint,
  7852. },
  7853. #endif
  7854. };
  7855. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7856. {
  7857. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7858. }
  7859. struct cgroup_subsys cpu_cgroup_subsys = {
  7860. .name = "cpu",
  7861. .create = cpu_cgroup_create,
  7862. .destroy = cpu_cgroup_destroy,
  7863. .can_attach = cpu_cgroup_can_attach,
  7864. .attach = cpu_cgroup_attach,
  7865. .populate = cpu_cgroup_populate,
  7866. .subsys_id = cpu_cgroup_subsys_id,
  7867. .early_init = 1,
  7868. };
  7869. #endif /* CONFIG_CGROUP_SCHED */
  7870. #ifdef CONFIG_CGROUP_CPUACCT
  7871. /*
  7872. * CPU accounting code for task groups.
  7873. *
  7874. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7875. * (balbir@in.ibm.com).
  7876. */
  7877. /* track cpu usage of a group of tasks */
  7878. struct cpuacct {
  7879. struct cgroup_subsys_state css;
  7880. /* cpuusage holds pointer to a u64-type object on every cpu */
  7881. u64 *cpuusage;
  7882. };
  7883. struct cgroup_subsys cpuacct_subsys;
  7884. /* return cpu accounting group corresponding to this container */
  7885. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7886. {
  7887. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7888. struct cpuacct, css);
  7889. }
  7890. /* return cpu accounting group to which this task belongs */
  7891. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7892. {
  7893. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7894. struct cpuacct, css);
  7895. }
  7896. /* create a new cpu accounting group */
  7897. static struct cgroup_subsys_state *cpuacct_create(
  7898. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7899. {
  7900. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7901. if (!ca)
  7902. return ERR_PTR(-ENOMEM);
  7903. ca->cpuusage = alloc_percpu(u64);
  7904. if (!ca->cpuusage) {
  7905. kfree(ca);
  7906. return ERR_PTR(-ENOMEM);
  7907. }
  7908. return &ca->css;
  7909. }
  7910. /* destroy an existing cpu accounting group */
  7911. static void
  7912. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7913. {
  7914. struct cpuacct *ca = cgroup_ca(cgrp);
  7915. free_percpu(ca->cpuusage);
  7916. kfree(ca);
  7917. }
  7918. /* return total cpu usage (in nanoseconds) of a group */
  7919. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7920. {
  7921. struct cpuacct *ca = cgroup_ca(cgrp);
  7922. u64 totalcpuusage = 0;
  7923. int i;
  7924. for_each_possible_cpu(i) {
  7925. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7926. /*
  7927. * Take rq->lock to make 64-bit addition safe on 32-bit
  7928. * platforms.
  7929. */
  7930. spin_lock_irq(&cpu_rq(i)->lock);
  7931. totalcpuusage += *cpuusage;
  7932. spin_unlock_irq(&cpu_rq(i)->lock);
  7933. }
  7934. return totalcpuusage;
  7935. }
  7936. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7937. u64 reset)
  7938. {
  7939. struct cpuacct *ca = cgroup_ca(cgrp);
  7940. int err = 0;
  7941. int i;
  7942. if (reset) {
  7943. err = -EINVAL;
  7944. goto out;
  7945. }
  7946. for_each_possible_cpu(i) {
  7947. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7948. spin_lock_irq(&cpu_rq(i)->lock);
  7949. *cpuusage = 0;
  7950. spin_unlock_irq(&cpu_rq(i)->lock);
  7951. }
  7952. out:
  7953. return err;
  7954. }
  7955. static struct cftype files[] = {
  7956. {
  7957. .name = "usage",
  7958. .read_u64 = cpuusage_read,
  7959. .write_u64 = cpuusage_write,
  7960. },
  7961. };
  7962. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7963. {
  7964. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7965. }
  7966. /*
  7967. * charge this task's execution time to its accounting group.
  7968. *
  7969. * called with rq->lock held.
  7970. */
  7971. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7972. {
  7973. struct cpuacct *ca;
  7974. if (!cpuacct_subsys.active)
  7975. return;
  7976. ca = task_ca(tsk);
  7977. if (ca) {
  7978. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7979. *cpuusage += cputime;
  7980. }
  7981. }
  7982. struct cgroup_subsys cpuacct_subsys = {
  7983. .name = "cpuacct",
  7984. .create = cpuacct_create,
  7985. .destroy = cpuacct_destroy,
  7986. .populate = cpuacct_populate,
  7987. .subsys_id = cpuacct_subsys_id,
  7988. };
  7989. #endif /* CONFIG_CGROUP_CPUACCT */