segment.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  109. {
  110. struct nilfs_transaction_info *cur_ti = current->journal_info;
  111. void *save = NULL;
  112. if (cur_ti) {
  113. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  114. return ++cur_ti->ti_count;
  115. else {
  116. /*
  117. * If journal_info field is occupied by other FS,
  118. * it is saved and will be restored on
  119. * nilfs_transaction_commit().
  120. */
  121. printk(KERN_WARNING
  122. "NILFS warning: journal info from a different "
  123. "FS\n");
  124. save = current->journal_info;
  125. }
  126. }
  127. if (!ti) {
  128. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  129. if (!ti)
  130. return -ENOMEM;
  131. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  132. } else {
  133. ti->ti_flags = 0;
  134. }
  135. ti->ti_count = 0;
  136. ti->ti_save = save;
  137. ti->ti_magic = NILFS_TI_MAGIC;
  138. current->journal_info = ti;
  139. return 0;
  140. }
  141. /**
  142. * nilfs_transaction_begin - start indivisible file operations.
  143. * @sb: super block
  144. * @ti: nilfs_transaction_info
  145. * @vacancy_check: flags for vacancy rate checks
  146. *
  147. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  148. * the segment semaphore, to make a segment construction and write tasks
  149. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  150. * The region enclosed by these two functions can be nested. To avoid a
  151. * deadlock, the semaphore is only acquired or released in the outermost call.
  152. *
  153. * This function allocates a nilfs_transaction_info struct to keep context
  154. * information on it. It is initialized and hooked onto the current task in
  155. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  156. * instead; otherwise a new struct is assigned from a slab.
  157. *
  158. * When @vacancy_check flag is set, this function will check the amount of
  159. * free space, and will wait for the GC to reclaim disk space if low capacity.
  160. *
  161. * Return Value: On success, 0 is returned. On error, one of the following
  162. * negative error code is returned.
  163. *
  164. * %-ENOMEM - Insufficient memory available.
  165. *
  166. * %-ENOSPC - No space left on device
  167. */
  168. int nilfs_transaction_begin(struct super_block *sb,
  169. struct nilfs_transaction_info *ti,
  170. int vacancy_check)
  171. {
  172. struct nilfs_sb_info *sbi;
  173. struct the_nilfs *nilfs;
  174. int ret = nilfs_prepare_segment_lock(ti);
  175. if (unlikely(ret < 0))
  176. return ret;
  177. if (ret > 0)
  178. return 0;
  179. sbi = NILFS_SB(sb);
  180. nilfs = sbi->s_nilfs;
  181. down_read(&nilfs->ns_segctor_sem);
  182. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  183. up_read(&nilfs->ns_segctor_sem);
  184. ret = -ENOSPC;
  185. goto failed;
  186. }
  187. return 0;
  188. failed:
  189. ti = current->journal_info;
  190. current->journal_info = ti->ti_save;
  191. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  192. kmem_cache_free(nilfs_transaction_cachep, ti);
  193. return ret;
  194. }
  195. /**
  196. * nilfs_transaction_commit - commit indivisible file operations.
  197. * @sb: super block
  198. *
  199. * nilfs_transaction_commit() releases the read semaphore which is
  200. * acquired by nilfs_transaction_begin(). This is only performed
  201. * in outermost call of this function. If a commit flag is set,
  202. * nilfs_transaction_commit() sets a timer to start the segment
  203. * constructor. If a sync flag is set, it starts construction
  204. * directly.
  205. */
  206. int nilfs_transaction_commit(struct super_block *sb)
  207. {
  208. struct nilfs_transaction_info *ti = current->journal_info;
  209. struct nilfs_sb_info *sbi;
  210. struct nilfs_sc_info *sci;
  211. int err = 0;
  212. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  213. ti->ti_flags |= NILFS_TI_COMMIT;
  214. if (ti->ti_count > 0) {
  215. ti->ti_count--;
  216. return 0;
  217. }
  218. sbi = NILFS_SB(sb);
  219. sci = NILFS_SC(sbi);
  220. if (sci != NULL) {
  221. if (ti->ti_flags & NILFS_TI_COMMIT)
  222. nilfs_segctor_start_timer(sci);
  223. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  224. sci->sc_watermark)
  225. nilfs_segctor_do_flush(sci, 0);
  226. }
  227. up_read(&sbi->s_nilfs->ns_segctor_sem);
  228. current->journal_info = ti->ti_save;
  229. if (ti->ti_flags & NILFS_TI_SYNC)
  230. err = nilfs_construct_segment(sb);
  231. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  232. kmem_cache_free(nilfs_transaction_cachep, ti);
  233. return err;
  234. }
  235. void nilfs_transaction_abort(struct super_block *sb)
  236. {
  237. struct nilfs_transaction_info *ti = current->journal_info;
  238. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  239. if (ti->ti_count > 0) {
  240. ti->ti_count--;
  241. return;
  242. }
  243. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  244. current->journal_info = ti->ti_save;
  245. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  246. kmem_cache_free(nilfs_transaction_cachep, ti);
  247. }
  248. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  249. {
  250. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  251. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  252. struct the_nilfs *nilfs = sbi->s_nilfs;
  253. if (!sci || !sci->sc_flush_request)
  254. return;
  255. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  256. up_read(&nilfs->ns_segctor_sem);
  257. down_write(&nilfs->ns_segctor_sem);
  258. if (sci->sc_flush_request &&
  259. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  260. struct nilfs_transaction_info *ti = current->journal_info;
  261. ti->ti_flags |= NILFS_TI_WRITER;
  262. nilfs_segctor_do_immediate_flush(sci);
  263. ti->ti_flags &= ~NILFS_TI_WRITER;
  264. }
  265. downgrade_write(&nilfs->ns_segctor_sem);
  266. }
  267. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  268. struct nilfs_transaction_info *ti,
  269. int gcflag)
  270. {
  271. struct nilfs_transaction_info *cur_ti = current->journal_info;
  272. WARN_ON(cur_ti);
  273. ti->ti_flags = NILFS_TI_WRITER;
  274. ti->ti_count = 0;
  275. ti->ti_save = cur_ti;
  276. ti->ti_magic = NILFS_TI_MAGIC;
  277. INIT_LIST_HEAD(&ti->ti_garbage);
  278. current->journal_info = ti;
  279. for (;;) {
  280. down_write(&sbi->s_nilfs->ns_segctor_sem);
  281. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  282. break;
  283. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  284. up_write(&sbi->s_nilfs->ns_segctor_sem);
  285. yield();
  286. }
  287. if (gcflag)
  288. ti->ti_flags |= NILFS_TI_GC;
  289. }
  290. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  291. {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  294. BUG_ON(ti->ti_count > 0);
  295. up_write(&sbi->s_nilfs->ns_segctor_sem);
  296. current->journal_info = ti->ti_save;
  297. if (!list_empty(&ti->ti_garbage))
  298. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  299. }
  300. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  301. struct nilfs_segsum_pointer *ssp,
  302. unsigned bytes)
  303. {
  304. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  305. unsigned blocksize = sci->sc_super->s_blocksize;
  306. void *p;
  307. if (unlikely(ssp->offset + bytes > blocksize)) {
  308. ssp->offset = 0;
  309. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  310. &segbuf->sb_segsum_buffers));
  311. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  312. }
  313. p = ssp->bh->b_data + ssp->offset;
  314. ssp->offset += bytes;
  315. return p;
  316. }
  317. /**
  318. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  319. * @sci: nilfs_sc_info
  320. */
  321. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  322. {
  323. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  324. struct buffer_head *sumbh;
  325. unsigned sumbytes;
  326. unsigned flags = 0;
  327. int err;
  328. if (nilfs_doing_gc())
  329. flags = NILFS_SS_GC;
  330. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  331. if (unlikely(err))
  332. return err;
  333. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  334. sumbytes = segbuf->sb_sum.sumbytes;
  335. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  336. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  337. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  338. return 0;
  339. }
  340. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  341. {
  342. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  343. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  344. return -E2BIG; /* The current segment is filled up
  345. (internal code) */
  346. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  347. return nilfs_segctor_reset_segment_buffer(sci);
  348. }
  349. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  350. {
  351. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  352. int err;
  353. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  354. err = nilfs_segctor_feed_segment(sci);
  355. if (err)
  356. return err;
  357. segbuf = sci->sc_curseg;
  358. }
  359. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  360. if (likely(!err))
  361. segbuf->sb_sum.flags |= NILFS_SS_SR;
  362. return err;
  363. }
  364. /*
  365. * Functions for making segment summary and payloads
  366. */
  367. static int nilfs_segctor_segsum_block_required(
  368. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  369. unsigned binfo_size)
  370. {
  371. unsigned blocksize = sci->sc_super->s_blocksize;
  372. /* Size of finfo and binfo is enough small against blocksize */
  373. return ssp->offset + binfo_size +
  374. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  375. blocksize;
  376. }
  377. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  378. struct inode *inode)
  379. {
  380. sci->sc_curseg->sb_sum.nfinfo++;
  381. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  382. nilfs_segctor_map_segsum_entry(
  383. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  384. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  385. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  386. /* skip finfo */
  387. }
  388. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  389. struct inode *inode)
  390. {
  391. struct nilfs_finfo *finfo;
  392. struct nilfs_inode_info *ii;
  393. struct nilfs_segment_buffer *segbuf;
  394. __u64 cno;
  395. if (sci->sc_blk_cnt == 0)
  396. return;
  397. ii = NILFS_I(inode);
  398. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  399. cno = ii->i_cno;
  400. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  401. cno = 0;
  402. else
  403. cno = sci->sc_cno;
  404. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  405. sizeof(*finfo));
  406. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  407. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  408. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  409. finfo->fi_cno = cpu_to_le64(cno);
  410. segbuf = sci->sc_curseg;
  411. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  412. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  413. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  414. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  415. }
  416. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  417. struct buffer_head *bh,
  418. struct inode *inode,
  419. unsigned binfo_size)
  420. {
  421. struct nilfs_segment_buffer *segbuf;
  422. int required, err = 0;
  423. retry:
  424. segbuf = sci->sc_curseg;
  425. required = nilfs_segctor_segsum_block_required(
  426. sci, &sci->sc_binfo_ptr, binfo_size);
  427. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  428. nilfs_segctor_end_finfo(sci, inode);
  429. err = nilfs_segctor_feed_segment(sci);
  430. if (err)
  431. return err;
  432. goto retry;
  433. }
  434. if (unlikely(required)) {
  435. err = nilfs_segbuf_extend_segsum(segbuf);
  436. if (unlikely(err))
  437. goto failed;
  438. }
  439. if (sci->sc_blk_cnt == 0)
  440. nilfs_segctor_begin_finfo(sci, inode);
  441. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  442. /* Substitution to vblocknr is delayed until update_blocknr() */
  443. nilfs_segbuf_add_file_buffer(segbuf, bh);
  444. sci->sc_blk_cnt++;
  445. failed:
  446. return err;
  447. }
  448. static int nilfs_handle_bmap_error(int err, const char *fname,
  449. struct inode *inode, struct super_block *sb)
  450. {
  451. if (err == -EINVAL) {
  452. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  453. inode->i_ino);
  454. err = -EIO;
  455. }
  456. return err;
  457. }
  458. /*
  459. * Callback functions that enumerate, mark, and collect dirty blocks
  460. */
  461. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  462. struct buffer_head *bh, struct inode *inode)
  463. {
  464. int err;
  465. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  466. if (unlikely(err < 0))
  467. return nilfs_handle_bmap_error(err, __func__, inode,
  468. sci->sc_super);
  469. err = nilfs_segctor_add_file_block(sci, bh, inode,
  470. sizeof(struct nilfs_binfo_v));
  471. if (!err)
  472. sci->sc_datablk_cnt++;
  473. return err;
  474. }
  475. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  476. struct buffer_head *bh,
  477. struct inode *inode)
  478. {
  479. int err;
  480. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  481. if (unlikely(err < 0))
  482. return nilfs_handle_bmap_error(err, __func__, inode,
  483. sci->sc_super);
  484. return 0;
  485. }
  486. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  487. struct buffer_head *bh,
  488. struct inode *inode)
  489. {
  490. WARN_ON(!buffer_dirty(bh));
  491. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  492. }
  493. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  494. struct nilfs_segsum_pointer *ssp,
  495. union nilfs_binfo *binfo)
  496. {
  497. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  498. sci, ssp, sizeof(*binfo_v));
  499. *binfo_v = binfo->bi_v;
  500. }
  501. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  502. struct nilfs_segsum_pointer *ssp,
  503. union nilfs_binfo *binfo)
  504. {
  505. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  506. sci, ssp, sizeof(*vblocknr));
  507. *vblocknr = binfo->bi_v.bi_vblocknr;
  508. }
  509. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  510. .collect_data = nilfs_collect_file_data,
  511. .collect_node = nilfs_collect_file_node,
  512. .collect_bmap = nilfs_collect_file_bmap,
  513. .write_data_binfo = nilfs_write_file_data_binfo,
  514. .write_node_binfo = nilfs_write_file_node_binfo,
  515. };
  516. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  517. struct buffer_head *bh, struct inode *inode)
  518. {
  519. int err;
  520. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  521. if (unlikely(err < 0))
  522. return nilfs_handle_bmap_error(err, __func__, inode,
  523. sci->sc_super);
  524. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  525. if (!err)
  526. sci->sc_datablk_cnt++;
  527. return err;
  528. }
  529. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  530. struct buffer_head *bh, struct inode *inode)
  531. {
  532. WARN_ON(!buffer_dirty(bh));
  533. return nilfs_segctor_add_file_block(sci, bh, inode,
  534. sizeof(struct nilfs_binfo_dat));
  535. }
  536. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  537. struct nilfs_segsum_pointer *ssp,
  538. union nilfs_binfo *binfo)
  539. {
  540. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  541. sizeof(*blkoff));
  542. *blkoff = binfo->bi_dat.bi_blkoff;
  543. }
  544. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  545. struct nilfs_segsum_pointer *ssp,
  546. union nilfs_binfo *binfo)
  547. {
  548. struct nilfs_binfo_dat *binfo_dat =
  549. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  550. *binfo_dat = binfo->bi_dat;
  551. }
  552. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  553. .collect_data = nilfs_collect_dat_data,
  554. .collect_node = nilfs_collect_file_node,
  555. .collect_bmap = nilfs_collect_dat_bmap,
  556. .write_data_binfo = nilfs_write_dat_data_binfo,
  557. .write_node_binfo = nilfs_write_dat_node_binfo,
  558. };
  559. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  560. .collect_data = nilfs_collect_file_data,
  561. .collect_node = NULL,
  562. .collect_bmap = NULL,
  563. .write_data_binfo = nilfs_write_file_data_binfo,
  564. .write_node_binfo = NULL,
  565. };
  566. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  567. struct list_head *listp,
  568. size_t nlimit,
  569. loff_t start, loff_t end)
  570. {
  571. struct address_space *mapping = inode->i_mapping;
  572. struct pagevec pvec;
  573. pgoff_t index = 0, last = ULONG_MAX;
  574. size_t ndirties = 0;
  575. int i;
  576. if (unlikely(start != 0 || end != LLONG_MAX)) {
  577. /*
  578. * A valid range is given for sync-ing data pages. The
  579. * range is rounded to per-page; extra dirty buffers
  580. * may be included if blocksize < pagesize.
  581. */
  582. index = start >> PAGE_SHIFT;
  583. last = end >> PAGE_SHIFT;
  584. }
  585. pagevec_init(&pvec, 0);
  586. repeat:
  587. if (unlikely(index > last) ||
  588. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  589. min_t(pgoff_t, last - index,
  590. PAGEVEC_SIZE - 1) + 1))
  591. return ndirties;
  592. for (i = 0; i < pagevec_count(&pvec); i++) {
  593. struct buffer_head *bh, *head;
  594. struct page *page = pvec.pages[i];
  595. if (unlikely(page->index > last))
  596. break;
  597. if (mapping->host) {
  598. lock_page(page);
  599. if (!page_has_buffers(page))
  600. create_empty_buffers(page,
  601. 1 << inode->i_blkbits, 0);
  602. unlock_page(page);
  603. }
  604. bh = head = page_buffers(page);
  605. do {
  606. if (!buffer_dirty(bh))
  607. continue;
  608. get_bh(bh);
  609. list_add_tail(&bh->b_assoc_buffers, listp);
  610. ndirties++;
  611. if (unlikely(ndirties >= nlimit)) {
  612. pagevec_release(&pvec);
  613. cond_resched();
  614. return ndirties;
  615. }
  616. } while (bh = bh->b_this_page, bh != head);
  617. }
  618. pagevec_release(&pvec);
  619. cond_resched();
  620. goto repeat;
  621. }
  622. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  623. struct list_head *listp)
  624. {
  625. struct nilfs_inode_info *ii = NILFS_I(inode);
  626. struct address_space *mapping = &ii->i_btnode_cache;
  627. struct pagevec pvec;
  628. struct buffer_head *bh, *head;
  629. unsigned int i;
  630. pgoff_t index = 0;
  631. pagevec_init(&pvec, 0);
  632. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  633. PAGEVEC_SIZE)) {
  634. for (i = 0; i < pagevec_count(&pvec); i++) {
  635. bh = head = page_buffers(pvec.pages[i]);
  636. do {
  637. if (buffer_dirty(bh)) {
  638. get_bh(bh);
  639. list_add_tail(&bh->b_assoc_buffers,
  640. listp);
  641. }
  642. bh = bh->b_this_page;
  643. } while (bh != head);
  644. }
  645. pagevec_release(&pvec);
  646. cond_resched();
  647. }
  648. }
  649. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  650. struct list_head *head, int force)
  651. {
  652. struct nilfs_inode_info *ii, *n;
  653. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  654. unsigned nv = 0;
  655. while (!list_empty(head)) {
  656. spin_lock(&sbi->s_inode_lock);
  657. list_for_each_entry_safe(ii, n, head, i_dirty) {
  658. list_del_init(&ii->i_dirty);
  659. if (force) {
  660. if (unlikely(ii->i_bh)) {
  661. brelse(ii->i_bh);
  662. ii->i_bh = NULL;
  663. }
  664. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  665. set_bit(NILFS_I_QUEUED, &ii->i_state);
  666. list_add_tail(&ii->i_dirty,
  667. &sbi->s_dirty_files);
  668. continue;
  669. }
  670. ivec[nv++] = ii;
  671. if (nv == SC_N_INODEVEC)
  672. break;
  673. }
  674. spin_unlock(&sbi->s_inode_lock);
  675. for (pii = ivec; nv > 0; pii++, nv--)
  676. iput(&(*pii)->vfs_inode);
  677. }
  678. }
  679. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  680. {
  681. struct the_nilfs *nilfs = sbi->s_nilfs;
  682. int ret = 0;
  683. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  684. ret++;
  685. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  686. ret++;
  687. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  688. ret++;
  689. if (ret || nilfs_doing_gc())
  690. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  691. ret++;
  692. return ret;
  693. }
  694. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  695. {
  696. return list_empty(&sci->sc_dirty_files) &&
  697. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  698. sci->sc_nfreesegs == 0 &&
  699. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  700. }
  701. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  702. {
  703. struct nilfs_sb_info *sbi = sci->sc_sbi;
  704. int ret = 0;
  705. if (nilfs_test_metadata_dirty(sbi))
  706. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  707. spin_lock(&sbi->s_inode_lock);
  708. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  709. ret++;
  710. spin_unlock(&sbi->s_inode_lock);
  711. return ret;
  712. }
  713. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  714. {
  715. struct nilfs_sb_info *sbi = sci->sc_sbi;
  716. struct the_nilfs *nilfs = sbi->s_nilfs;
  717. nilfs_mdt_clear_dirty(sbi->s_ifile);
  718. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  719. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  720. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  721. }
  722. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  723. {
  724. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  725. struct buffer_head *bh_cp;
  726. struct nilfs_checkpoint *raw_cp;
  727. int err;
  728. /* XXX: this interface will be changed */
  729. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  730. &raw_cp, &bh_cp);
  731. if (likely(!err)) {
  732. /* The following code is duplicated with cpfile. But, it is
  733. needed to collect the checkpoint even if it was not newly
  734. created */
  735. nilfs_mdt_mark_buffer_dirty(bh_cp);
  736. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  737. nilfs_cpfile_put_checkpoint(
  738. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  739. } else
  740. WARN_ON(err == -EINVAL || err == -ENOENT);
  741. return err;
  742. }
  743. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  744. {
  745. struct nilfs_sb_info *sbi = sci->sc_sbi;
  746. struct the_nilfs *nilfs = sbi->s_nilfs;
  747. struct buffer_head *bh_cp;
  748. struct nilfs_checkpoint *raw_cp;
  749. int err;
  750. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  751. &raw_cp, &bh_cp);
  752. if (unlikely(err)) {
  753. WARN_ON(err == -EINVAL || err == -ENOENT);
  754. goto failed_ibh;
  755. }
  756. raw_cp->cp_snapshot_list.ssl_next = 0;
  757. raw_cp->cp_snapshot_list.ssl_prev = 0;
  758. raw_cp->cp_inodes_count =
  759. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  760. raw_cp->cp_blocks_count =
  761. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  762. raw_cp->cp_nblk_inc =
  763. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  764. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  765. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  766. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  767. nilfs_checkpoint_clear_minor(raw_cp);
  768. else
  769. nilfs_checkpoint_set_minor(raw_cp);
  770. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  771. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  772. return 0;
  773. failed_ibh:
  774. return err;
  775. }
  776. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  777. struct nilfs_inode_info *ii)
  778. {
  779. struct buffer_head *ibh;
  780. struct nilfs_inode *raw_inode;
  781. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  782. ibh = ii->i_bh;
  783. BUG_ON(!ibh);
  784. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  785. ibh);
  786. nilfs_bmap_write(ii->i_bmap, raw_inode);
  787. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  788. }
  789. }
  790. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  791. struct inode *ifile)
  792. {
  793. struct nilfs_inode_info *ii;
  794. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  795. nilfs_fill_in_file_bmap(ifile, ii);
  796. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  797. }
  798. }
  799. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  800. struct the_nilfs *nilfs)
  801. {
  802. struct buffer_head *bh_sr;
  803. struct nilfs_super_root *raw_sr;
  804. unsigned isz = nilfs->ns_inode_size;
  805. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  806. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  807. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  808. raw_sr->sr_nongc_ctime
  809. = cpu_to_le64(nilfs_doing_gc() ?
  810. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  811. raw_sr->sr_flags = 0;
  812. nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
  813. NILFS_SR_DAT_OFFSET(isz), 1);
  814. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  815. NILFS_SR_CPFILE_OFFSET(isz), 1);
  816. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  817. NILFS_SR_SUFILE_OFFSET(isz), 1);
  818. }
  819. static void nilfs_redirty_inodes(struct list_head *head)
  820. {
  821. struct nilfs_inode_info *ii;
  822. list_for_each_entry(ii, head, i_dirty) {
  823. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  824. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  825. }
  826. }
  827. static void nilfs_drop_collected_inodes(struct list_head *head)
  828. {
  829. struct nilfs_inode_info *ii;
  830. list_for_each_entry(ii, head, i_dirty) {
  831. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  832. continue;
  833. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  834. set_bit(NILFS_I_UPDATED, &ii->i_state);
  835. }
  836. }
  837. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  838. struct inode *inode,
  839. struct list_head *listp,
  840. int (*collect)(struct nilfs_sc_info *,
  841. struct buffer_head *,
  842. struct inode *))
  843. {
  844. struct buffer_head *bh, *n;
  845. int err = 0;
  846. if (collect) {
  847. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  848. list_del_init(&bh->b_assoc_buffers);
  849. err = collect(sci, bh, inode);
  850. brelse(bh);
  851. if (unlikely(err))
  852. goto dispose_buffers;
  853. }
  854. return 0;
  855. }
  856. dispose_buffers:
  857. while (!list_empty(listp)) {
  858. bh = list_entry(listp->next, struct buffer_head,
  859. b_assoc_buffers);
  860. list_del_init(&bh->b_assoc_buffers);
  861. brelse(bh);
  862. }
  863. return err;
  864. }
  865. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  866. {
  867. /* Remaining number of blocks within segment buffer */
  868. return sci->sc_segbuf_nblocks -
  869. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  870. }
  871. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  872. struct inode *inode,
  873. struct nilfs_sc_operations *sc_ops)
  874. {
  875. LIST_HEAD(data_buffers);
  876. LIST_HEAD(node_buffers);
  877. int err;
  878. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  879. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  880. n = nilfs_lookup_dirty_data_buffers(
  881. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  882. if (n > rest) {
  883. err = nilfs_segctor_apply_buffers(
  884. sci, inode, &data_buffers,
  885. sc_ops->collect_data);
  886. BUG_ON(!err); /* always receive -E2BIG or true error */
  887. goto break_or_fail;
  888. }
  889. }
  890. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  891. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  892. err = nilfs_segctor_apply_buffers(
  893. sci, inode, &data_buffers, sc_ops->collect_data);
  894. if (unlikely(err)) {
  895. /* dispose node list */
  896. nilfs_segctor_apply_buffers(
  897. sci, inode, &node_buffers, NULL);
  898. goto break_or_fail;
  899. }
  900. sci->sc_stage.flags |= NILFS_CF_NODE;
  901. }
  902. /* Collect node */
  903. err = nilfs_segctor_apply_buffers(
  904. sci, inode, &node_buffers, sc_ops->collect_node);
  905. if (unlikely(err))
  906. goto break_or_fail;
  907. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  908. err = nilfs_segctor_apply_buffers(
  909. sci, inode, &node_buffers, sc_ops->collect_bmap);
  910. if (unlikely(err))
  911. goto break_or_fail;
  912. nilfs_segctor_end_finfo(sci, inode);
  913. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  914. break_or_fail:
  915. return err;
  916. }
  917. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  918. struct inode *inode)
  919. {
  920. LIST_HEAD(data_buffers);
  921. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  922. int err;
  923. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  924. sci->sc_dsync_start,
  925. sci->sc_dsync_end);
  926. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  927. nilfs_collect_file_data);
  928. if (!err) {
  929. nilfs_segctor_end_finfo(sci, inode);
  930. BUG_ON(n > rest);
  931. /* always receive -E2BIG or true error if n > rest */
  932. }
  933. return err;
  934. }
  935. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  936. {
  937. struct nilfs_sb_info *sbi = sci->sc_sbi;
  938. struct the_nilfs *nilfs = sbi->s_nilfs;
  939. struct list_head *head;
  940. struct nilfs_inode_info *ii;
  941. size_t ndone;
  942. int err = 0;
  943. switch (sci->sc_stage.scnt) {
  944. case NILFS_ST_INIT:
  945. /* Pre-processes */
  946. sci->sc_stage.flags = 0;
  947. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  948. sci->sc_nblk_inc = 0;
  949. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  950. if (mode == SC_LSEG_DSYNC) {
  951. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  952. goto dsync_mode;
  953. }
  954. }
  955. sci->sc_stage.dirty_file_ptr = NULL;
  956. sci->sc_stage.gc_inode_ptr = NULL;
  957. if (mode == SC_FLUSH_DAT) {
  958. sci->sc_stage.scnt = NILFS_ST_DAT;
  959. goto dat_stage;
  960. }
  961. sci->sc_stage.scnt++; /* Fall through */
  962. case NILFS_ST_GC:
  963. if (nilfs_doing_gc()) {
  964. head = &sci->sc_gc_inodes;
  965. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  966. head, i_dirty);
  967. list_for_each_entry_continue(ii, head, i_dirty) {
  968. err = nilfs_segctor_scan_file(
  969. sci, &ii->vfs_inode,
  970. &nilfs_sc_file_ops);
  971. if (unlikely(err)) {
  972. sci->sc_stage.gc_inode_ptr = list_entry(
  973. ii->i_dirty.prev,
  974. struct nilfs_inode_info,
  975. i_dirty);
  976. goto break_or_fail;
  977. }
  978. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  979. }
  980. sci->sc_stage.gc_inode_ptr = NULL;
  981. }
  982. sci->sc_stage.scnt++; /* Fall through */
  983. case NILFS_ST_FILE:
  984. head = &sci->sc_dirty_files;
  985. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  986. i_dirty);
  987. list_for_each_entry_continue(ii, head, i_dirty) {
  988. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  989. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  990. &nilfs_sc_file_ops);
  991. if (unlikely(err)) {
  992. sci->sc_stage.dirty_file_ptr =
  993. list_entry(ii->i_dirty.prev,
  994. struct nilfs_inode_info,
  995. i_dirty);
  996. goto break_or_fail;
  997. }
  998. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  999. /* XXX: required ? */
  1000. }
  1001. sci->sc_stage.dirty_file_ptr = NULL;
  1002. if (mode == SC_FLUSH_FILE) {
  1003. sci->sc_stage.scnt = NILFS_ST_DONE;
  1004. return 0;
  1005. }
  1006. sci->sc_stage.scnt++;
  1007. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1008. /* Fall through */
  1009. case NILFS_ST_IFILE:
  1010. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1011. &nilfs_sc_file_ops);
  1012. if (unlikely(err))
  1013. break;
  1014. sci->sc_stage.scnt++;
  1015. /* Creating a checkpoint */
  1016. err = nilfs_segctor_create_checkpoint(sci);
  1017. if (unlikely(err))
  1018. break;
  1019. /* Fall through */
  1020. case NILFS_ST_CPFILE:
  1021. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1022. &nilfs_sc_file_ops);
  1023. if (unlikely(err))
  1024. break;
  1025. sci->sc_stage.scnt++; /* Fall through */
  1026. case NILFS_ST_SUFILE:
  1027. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1028. sci->sc_nfreesegs, &ndone);
  1029. if (unlikely(err)) {
  1030. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1031. sci->sc_freesegs, ndone,
  1032. NULL);
  1033. break;
  1034. }
  1035. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1036. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1037. &nilfs_sc_file_ops);
  1038. if (unlikely(err))
  1039. break;
  1040. sci->sc_stage.scnt++; /* Fall through */
  1041. case NILFS_ST_DAT:
  1042. dat_stage:
  1043. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1044. &nilfs_sc_dat_ops);
  1045. if (unlikely(err))
  1046. break;
  1047. if (mode == SC_FLUSH_DAT) {
  1048. sci->sc_stage.scnt = NILFS_ST_DONE;
  1049. return 0;
  1050. }
  1051. sci->sc_stage.scnt++; /* Fall through */
  1052. case NILFS_ST_SR:
  1053. if (mode == SC_LSEG_SR) {
  1054. /* Appending a super root */
  1055. err = nilfs_segctor_add_super_root(sci);
  1056. if (unlikely(err))
  1057. break;
  1058. }
  1059. /* End of a logical segment */
  1060. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1061. sci->sc_stage.scnt = NILFS_ST_DONE;
  1062. return 0;
  1063. case NILFS_ST_DSYNC:
  1064. dsync_mode:
  1065. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1066. ii = sci->sc_dsync_inode;
  1067. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1068. break;
  1069. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1070. if (unlikely(err))
  1071. break;
  1072. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1073. sci->sc_stage.scnt = NILFS_ST_DONE;
  1074. return 0;
  1075. case NILFS_ST_DONE:
  1076. return 0;
  1077. default:
  1078. BUG();
  1079. }
  1080. break_or_fail:
  1081. return err;
  1082. }
  1083. /**
  1084. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1085. * @sci: nilfs_sc_info
  1086. * @nilfs: nilfs object
  1087. */
  1088. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1089. struct the_nilfs *nilfs)
  1090. {
  1091. struct nilfs_segment_buffer *segbuf, *prev;
  1092. __u64 nextnum;
  1093. int err, alloc = 0;
  1094. segbuf = nilfs_segbuf_new(sci->sc_super);
  1095. if (unlikely(!segbuf))
  1096. return -ENOMEM;
  1097. if (list_empty(&sci->sc_write_logs)) {
  1098. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1099. nilfs->ns_pseg_offset, nilfs);
  1100. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1101. nilfs_shift_to_next_segment(nilfs);
  1102. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1103. }
  1104. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1105. nextnum = nilfs->ns_nextnum;
  1106. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1107. /* Start from the head of a new full segment */
  1108. alloc++;
  1109. } else {
  1110. /* Continue logs */
  1111. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1112. nilfs_segbuf_map_cont(segbuf, prev);
  1113. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1114. nextnum = prev->sb_nextnum;
  1115. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1116. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1117. segbuf->sb_sum.seg_seq++;
  1118. alloc++;
  1119. }
  1120. }
  1121. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1122. if (err)
  1123. goto failed;
  1124. if (alloc) {
  1125. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1126. if (err)
  1127. goto failed;
  1128. }
  1129. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1130. BUG_ON(!list_empty(&sci->sc_segbufs));
  1131. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1132. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1133. return 0;
  1134. failed:
  1135. nilfs_segbuf_free(segbuf);
  1136. return err;
  1137. }
  1138. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1139. struct the_nilfs *nilfs, int nadd)
  1140. {
  1141. struct nilfs_segment_buffer *segbuf, *prev;
  1142. struct inode *sufile = nilfs->ns_sufile;
  1143. __u64 nextnextnum;
  1144. LIST_HEAD(list);
  1145. int err, ret, i;
  1146. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1147. /*
  1148. * Since the segment specified with nextnum might be allocated during
  1149. * the previous construction, the buffer including its segusage may
  1150. * not be dirty. The following call ensures that the buffer is dirty
  1151. * and will pin the buffer on memory until the sufile is written.
  1152. */
  1153. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1154. if (unlikely(err))
  1155. return err;
  1156. for (i = 0; i < nadd; i++) {
  1157. /* extend segment info */
  1158. err = -ENOMEM;
  1159. segbuf = nilfs_segbuf_new(sci->sc_super);
  1160. if (unlikely(!segbuf))
  1161. goto failed;
  1162. /* map this buffer to region of segment on-disk */
  1163. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1164. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1165. /* allocate the next next full segment */
  1166. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1167. if (unlikely(err))
  1168. goto failed_segbuf;
  1169. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1170. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1171. list_add_tail(&segbuf->sb_list, &list);
  1172. prev = segbuf;
  1173. }
  1174. list_splice_tail(&list, &sci->sc_segbufs);
  1175. return 0;
  1176. failed_segbuf:
  1177. nilfs_segbuf_free(segbuf);
  1178. failed:
  1179. list_for_each_entry(segbuf, &list, sb_list) {
  1180. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1181. WARN_ON(ret); /* never fails */
  1182. }
  1183. nilfs_destroy_logs(&list);
  1184. return err;
  1185. }
  1186. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1187. struct the_nilfs *nilfs)
  1188. {
  1189. struct nilfs_segment_buffer *segbuf, *prev;
  1190. struct inode *sufile = nilfs->ns_sufile;
  1191. int ret;
  1192. segbuf = NILFS_FIRST_SEGBUF(logs);
  1193. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1194. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1195. WARN_ON(ret); /* never fails */
  1196. }
  1197. if (atomic_read(&segbuf->sb_err)) {
  1198. /* Case 1: The first segment failed */
  1199. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1200. /* Case 1a: Partial segment appended into an existing
  1201. segment */
  1202. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1203. segbuf->sb_fseg_end);
  1204. else /* Case 1b: New full segment */
  1205. set_nilfs_discontinued(nilfs);
  1206. }
  1207. prev = segbuf;
  1208. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1209. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1210. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1211. WARN_ON(ret); /* never fails */
  1212. }
  1213. if (atomic_read(&segbuf->sb_err) &&
  1214. segbuf->sb_segnum != nilfs->ns_nextnum)
  1215. /* Case 2: extended segment (!= next) failed */
  1216. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1217. prev = segbuf;
  1218. }
  1219. }
  1220. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1221. struct inode *sufile)
  1222. {
  1223. struct nilfs_segment_buffer *segbuf;
  1224. unsigned long live_blocks;
  1225. int ret;
  1226. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1227. live_blocks = segbuf->sb_sum.nblocks +
  1228. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1229. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1230. live_blocks,
  1231. sci->sc_seg_ctime);
  1232. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1233. }
  1234. }
  1235. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1236. {
  1237. struct nilfs_segment_buffer *segbuf;
  1238. int ret;
  1239. segbuf = NILFS_FIRST_SEGBUF(logs);
  1240. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1241. segbuf->sb_pseg_start -
  1242. segbuf->sb_fseg_start, 0);
  1243. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1244. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1245. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1246. 0, 0);
  1247. WARN_ON(ret); /* always succeed */
  1248. }
  1249. }
  1250. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1251. struct nilfs_segment_buffer *last,
  1252. struct inode *sufile)
  1253. {
  1254. struct nilfs_segment_buffer *segbuf = last;
  1255. int ret;
  1256. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1257. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1258. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1259. WARN_ON(ret);
  1260. }
  1261. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1262. }
  1263. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1264. struct the_nilfs *nilfs, int mode)
  1265. {
  1266. struct nilfs_cstage prev_stage = sci->sc_stage;
  1267. int err, nadd = 1;
  1268. /* Collection retry loop */
  1269. for (;;) {
  1270. sci->sc_nblk_this_inc = 0;
  1271. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1272. err = nilfs_segctor_reset_segment_buffer(sci);
  1273. if (unlikely(err))
  1274. goto failed;
  1275. err = nilfs_segctor_collect_blocks(sci, mode);
  1276. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1277. if (!err)
  1278. break;
  1279. if (unlikely(err != -E2BIG))
  1280. goto failed;
  1281. /* The current segment is filled up */
  1282. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1283. break;
  1284. nilfs_clear_logs(&sci->sc_segbufs);
  1285. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1286. if (unlikely(err))
  1287. return err;
  1288. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1289. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1290. sci->sc_freesegs,
  1291. sci->sc_nfreesegs,
  1292. NULL);
  1293. WARN_ON(err); /* do not happen */
  1294. }
  1295. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1296. sci->sc_stage = prev_stage;
  1297. }
  1298. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1299. return 0;
  1300. failed:
  1301. return err;
  1302. }
  1303. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1304. struct buffer_head *new_bh)
  1305. {
  1306. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1307. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1308. /* The caller must release old_bh */
  1309. }
  1310. static int
  1311. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1312. struct nilfs_segment_buffer *segbuf,
  1313. int mode)
  1314. {
  1315. struct inode *inode = NULL;
  1316. sector_t blocknr;
  1317. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1318. unsigned long nblocks = 0, ndatablk = 0;
  1319. struct nilfs_sc_operations *sc_op = NULL;
  1320. struct nilfs_segsum_pointer ssp;
  1321. struct nilfs_finfo *finfo = NULL;
  1322. union nilfs_binfo binfo;
  1323. struct buffer_head *bh, *bh_org;
  1324. ino_t ino = 0;
  1325. int err = 0;
  1326. if (!nfinfo)
  1327. goto out;
  1328. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1329. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1330. ssp.offset = sizeof(struct nilfs_segment_summary);
  1331. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1332. if (bh == segbuf->sb_super_root)
  1333. break;
  1334. if (!finfo) {
  1335. finfo = nilfs_segctor_map_segsum_entry(
  1336. sci, &ssp, sizeof(*finfo));
  1337. ino = le64_to_cpu(finfo->fi_ino);
  1338. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1339. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1340. if (buffer_nilfs_node(bh))
  1341. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1342. else
  1343. inode = NILFS_AS_I(bh->b_page->mapping);
  1344. if (mode == SC_LSEG_DSYNC)
  1345. sc_op = &nilfs_sc_dsync_ops;
  1346. else if (ino == NILFS_DAT_INO)
  1347. sc_op = &nilfs_sc_dat_ops;
  1348. else /* file blocks */
  1349. sc_op = &nilfs_sc_file_ops;
  1350. }
  1351. bh_org = bh;
  1352. get_bh(bh_org);
  1353. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1354. &binfo);
  1355. if (bh != bh_org)
  1356. nilfs_list_replace_buffer(bh_org, bh);
  1357. brelse(bh_org);
  1358. if (unlikely(err))
  1359. goto failed_bmap;
  1360. if (ndatablk > 0)
  1361. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1362. else
  1363. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1364. blocknr++;
  1365. if (--nblocks == 0) {
  1366. finfo = NULL;
  1367. if (--nfinfo == 0)
  1368. break;
  1369. } else if (ndatablk > 0)
  1370. ndatablk--;
  1371. }
  1372. out:
  1373. return 0;
  1374. failed_bmap:
  1375. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1376. return err;
  1377. }
  1378. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1379. {
  1380. struct nilfs_segment_buffer *segbuf;
  1381. int err;
  1382. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1383. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1384. if (unlikely(err))
  1385. return err;
  1386. nilfs_segbuf_fill_in_segsum(segbuf);
  1387. }
  1388. return 0;
  1389. }
  1390. static int
  1391. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1392. {
  1393. struct page *clone_page;
  1394. struct buffer_head *bh, *head, *bh2;
  1395. void *kaddr;
  1396. bh = head = page_buffers(page);
  1397. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1398. if (unlikely(!clone_page))
  1399. return -ENOMEM;
  1400. bh2 = page_buffers(clone_page);
  1401. kaddr = kmap_atomic(page, KM_USER0);
  1402. do {
  1403. if (list_empty(&bh->b_assoc_buffers))
  1404. continue;
  1405. get_bh(bh2);
  1406. page_cache_get(clone_page); /* for each bh */
  1407. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1408. bh2->b_blocknr = bh->b_blocknr;
  1409. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1410. list_add_tail(&bh->b_assoc_buffers, out);
  1411. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1412. kunmap_atomic(kaddr, KM_USER0);
  1413. if (!TestSetPageWriteback(clone_page))
  1414. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1415. unlock_page(clone_page);
  1416. return 0;
  1417. }
  1418. static int nilfs_test_page_to_be_frozen(struct page *page)
  1419. {
  1420. struct address_space *mapping = page->mapping;
  1421. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1422. return 0;
  1423. if (page_mapped(page)) {
  1424. ClearPageChecked(page);
  1425. return 1;
  1426. }
  1427. return PageChecked(page);
  1428. }
  1429. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1430. {
  1431. if (!page || PageWriteback(page))
  1432. /* For split b-tree node pages, this function may be called
  1433. twice. We ignore the 2nd or later calls by this check. */
  1434. return 0;
  1435. lock_page(page);
  1436. clear_page_dirty_for_io(page);
  1437. set_page_writeback(page);
  1438. unlock_page(page);
  1439. if (nilfs_test_page_to_be_frozen(page)) {
  1440. int err = nilfs_copy_replace_page_buffers(page, out);
  1441. if (unlikely(err))
  1442. return err;
  1443. }
  1444. return 0;
  1445. }
  1446. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1447. struct page **failed_page)
  1448. {
  1449. struct nilfs_segment_buffer *segbuf;
  1450. struct page *bd_page = NULL, *fs_page = NULL;
  1451. struct list_head *list = &sci->sc_copied_buffers;
  1452. int err;
  1453. *failed_page = NULL;
  1454. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1455. struct buffer_head *bh;
  1456. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1457. b_assoc_buffers) {
  1458. if (bh->b_page != bd_page) {
  1459. if (bd_page) {
  1460. lock_page(bd_page);
  1461. clear_page_dirty_for_io(bd_page);
  1462. set_page_writeback(bd_page);
  1463. unlock_page(bd_page);
  1464. }
  1465. bd_page = bh->b_page;
  1466. }
  1467. }
  1468. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1469. b_assoc_buffers) {
  1470. if (bh == segbuf->sb_super_root) {
  1471. if (bh->b_page != bd_page) {
  1472. lock_page(bd_page);
  1473. clear_page_dirty_for_io(bd_page);
  1474. set_page_writeback(bd_page);
  1475. unlock_page(bd_page);
  1476. bd_page = bh->b_page;
  1477. }
  1478. break;
  1479. }
  1480. if (bh->b_page != fs_page) {
  1481. err = nilfs_begin_page_io(fs_page, list);
  1482. if (unlikely(err)) {
  1483. *failed_page = fs_page;
  1484. goto out;
  1485. }
  1486. fs_page = bh->b_page;
  1487. }
  1488. }
  1489. }
  1490. if (bd_page) {
  1491. lock_page(bd_page);
  1492. clear_page_dirty_for_io(bd_page);
  1493. set_page_writeback(bd_page);
  1494. unlock_page(bd_page);
  1495. }
  1496. err = nilfs_begin_page_io(fs_page, list);
  1497. if (unlikely(err))
  1498. *failed_page = fs_page;
  1499. out:
  1500. return err;
  1501. }
  1502. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1503. struct the_nilfs *nilfs)
  1504. {
  1505. int ret;
  1506. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1507. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1508. return ret;
  1509. }
  1510. static void __nilfs_end_page_io(struct page *page, int err)
  1511. {
  1512. if (!err) {
  1513. if (!nilfs_page_buffers_clean(page))
  1514. __set_page_dirty_nobuffers(page);
  1515. ClearPageError(page);
  1516. } else {
  1517. __set_page_dirty_nobuffers(page);
  1518. SetPageError(page);
  1519. }
  1520. if (buffer_nilfs_allocated(page_buffers(page))) {
  1521. if (TestClearPageWriteback(page))
  1522. dec_zone_page_state(page, NR_WRITEBACK);
  1523. } else
  1524. end_page_writeback(page);
  1525. }
  1526. static void nilfs_end_page_io(struct page *page, int err)
  1527. {
  1528. if (!page)
  1529. return;
  1530. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1531. /*
  1532. * For b-tree node pages, this function may be called twice
  1533. * or more because they might be split in a segment.
  1534. */
  1535. if (PageDirty(page)) {
  1536. /*
  1537. * For pages holding split b-tree node buffers, dirty
  1538. * flag on the buffers may be cleared discretely.
  1539. * In that case, the page is once redirtied for
  1540. * remaining buffers, and it must be cancelled if
  1541. * all the buffers get cleaned later.
  1542. */
  1543. lock_page(page);
  1544. if (nilfs_page_buffers_clean(page))
  1545. __nilfs_clear_page_dirty(page);
  1546. unlock_page(page);
  1547. }
  1548. return;
  1549. }
  1550. __nilfs_end_page_io(page, err);
  1551. }
  1552. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1553. {
  1554. struct buffer_head *bh, *head;
  1555. struct page *page;
  1556. while (!list_empty(list)) {
  1557. bh = list_entry(list->next, struct buffer_head,
  1558. b_assoc_buffers);
  1559. page = bh->b_page;
  1560. page_cache_get(page);
  1561. head = bh = page_buffers(page);
  1562. do {
  1563. if (!list_empty(&bh->b_assoc_buffers)) {
  1564. list_del_init(&bh->b_assoc_buffers);
  1565. if (!err) {
  1566. set_buffer_uptodate(bh);
  1567. clear_buffer_dirty(bh);
  1568. clear_buffer_nilfs_volatile(bh);
  1569. }
  1570. brelse(bh); /* for b_assoc_buffers */
  1571. }
  1572. } while ((bh = bh->b_this_page) != head);
  1573. __nilfs_end_page_io(page, err);
  1574. page_cache_release(page);
  1575. }
  1576. }
  1577. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1578. int err)
  1579. {
  1580. struct nilfs_segment_buffer *segbuf;
  1581. struct page *bd_page = NULL, *fs_page = NULL;
  1582. struct buffer_head *bh;
  1583. if (list_empty(logs))
  1584. return;
  1585. list_for_each_entry(segbuf, logs, sb_list) {
  1586. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1587. b_assoc_buffers) {
  1588. if (bh->b_page != bd_page) {
  1589. if (bd_page)
  1590. end_page_writeback(bd_page);
  1591. bd_page = bh->b_page;
  1592. }
  1593. }
  1594. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1595. b_assoc_buffers) {
  1596. if (bh == segbuf->sb_super_root) {
  1597. if (bh->b_page != bd_page) {
  1598. end_page_writeback(bd_page);
  1599. bd_page = bh->b_page;
  1600. }
  1601. break;
  1602. }
  1603. if (bh->b_page != fs_page) {
  1604. nilfs_end_page_io(fs_page, err);
  1605. if (fs_page && fs_page == failed_page)
  1606. return;
  1607. fs_page = bh->b_page;
  1608. }
  1609. }
  1610. }
  1611. if (bd_page)
  1612. end_page_writeback(bd_page);
  1613. nilfs_end_page_io(fs_page, err);
  1614. }
  1615. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1616. struct the_nilfs *nilfs, int err)
  1617. {
  1618. LIST_HEAD(logs);
  1619. int ret;
  1620. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1621. ret = nilfs_wait_on_logs(&logs);
  1622. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1623. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1624. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1625. nilfs_free_incomplete_logs(&logs, nilfs);
  1626. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1627. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1628. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1629. sci->sc_freesegs,
  1630. sci->sc_nfreesegs,
  1631. NULL);
  1632. WARN_ON(ret); /* do not happen */
  1633. }
  1634. nilfs_destroy_logs(&logs);
  1635. }
  1636. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1637. struct nilfs_segment_buffer *segbuf)
  1638. {
  1639. nilfs->ns_segnum = segbuf->sb_segnum;
  1640. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1641. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1642. + segbuf->sb_sum.nblocks;
  1643. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1644. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1645. }
  1646. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1647. {
  1648. struct nilfs_segment_buffer *segbuf;
  1649. struct page *bd_page = NULL, *fs_page = NULL;
  1650. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  1651. int update_sr = false;
  1652. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1653. struct buffer_head *bh;
  1654. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1655. b_assoc_buffers) {
  1656. set_buffer_uptodate(bh);
  1657. clear_buffer_dirty(bh);
  1658. if (bh->b_page != bd_page) {
  1659. if (bd_page)
  1660. end_page_writeback(bd_page);
  1661. bd_page = bh->b_page;
  1662. }
  1663. }
  1664. /*
  1665. * We assume that the buffers which belong to the same page
  1666. * continue over the buffer list.
  1667. * Under this assumption, the last BHs of pages is
  1668. * identifiable by the discontinuity of bh->b_page
  1669. * (page != fs_page).
  1670. *
  1671. * For B-tree node blocks, however, this assumption is not
  1672. * guaranteed. The cleanup code of B-tree node pages needs
  1673. * special care.
  1674. */
  1675. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1676. b_assoc_buffers) {
  1677. set_buffer_uptodate(bh);
  1678. clear_buffer_dirty(bh);
  1679. clear_buffer_nilfs_volatile(bh);
  1680. if (bh == segbuf->sb_super_root) {
  1681. if (bh->b_page != bd_page) {
  1682. end_page_writeback(bd_page);
  1683. bd_page = bh->b_page;
  1684. }
  1685. update_sr = true;
  1686. break;
  1687. }
  1688. if (bh->b_page != fs_page) {
  1689. nilfs_end_page_io(fs_page, 0);
  1690. fs_page = bh->b_page;
  1691. }
  1692. }
  1693. if (!nilfs_segbuf_simplex(segbuf)) {
  1694. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1695. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1696. sci->sc_lseg_stime = jiffies;
  1697. }
  1698. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1699. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1700. }
  1701. }
  1702. /*
  1703. * Since pages may continue over multiple segment buffers,
  1704. * end of the last page must be checked outside of the loop.
  1705. */
  1706. if (bd_page)
  1707. end_page_writeback(bd_page);
  1708. nilfs_end_page_io(fs_page, 0);
  1709. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1710. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1711. if (nilfs_doing_gc()) {
  1712. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1713. if (update_sr)
  1714. nilfs_commit_gcdat_inode(nilfs);
  1715. } else
  1716. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1717. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1718. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1719. nilfs_set_next_segment(nilfs, segbuf);
  1720. if (update_sr) {
  1721. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1722. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1723. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1724. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1725. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1726. nilfs_segctor_clear_metadata_dirty(sci);
  1727. } else
  1728. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1729. }
  1730. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1731. {
  1732. int ret;
  1733. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1734. if (!ret) {
  1735. nilfs_segctor_complete_write(sci);
  1736. nilfs_destroy_logs(&sci->sc_write_logs);
  1737. }
  1738. return ret;
  1739. }
  1740. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1741. struct nilfs_sb_info *sbi)
  1742. {
  1743. struct nilfs_inode_info *ii, *n;
  1744. spin_lock(&sbi->s_inode_lock);
  1745. retry:
  1746. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1747. if (!ii->i_bh) {
  1748. struct buffer_head *ibh;
  1749. int err;
  1750. spin_unlock(&sbi->s_inode_lock);
  1751. err = nilfs_ifile_get_inode_block(
  1752. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1753. if (unlikely(err)) {
  1754. nilfs_warning(sbi->s_super, __func__,
  1755. "failed to get inode block.\n");
  1756. return err;
  1757. }
  1758. nilfs_mdt_mark_buffer_dirty(ibh);
  1759. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1760. spin_lock(&sbi->s_inode_lock);
  1761. if (likely(!ii->i_bh))
  1762. ii->i_bh = ibh;
  1763. else
  1764. brelse(ibh);
  1765. goto retry;
  1766. }
  1767. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1768. set_bit(NILFS_I_BUSY, &ii->i_state);
  1769. list_del(&ii->i_dirty);
  1770. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1771. }
  1772. spin_unlock(&sbi->s_inode_lock);
  1773. return 0;
  1774. }
  1775. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1776. struct nilfs_sb_info *sbi)
  1777. {
  1778. struct nilfs_transaction_info *ti = current->journal_info;
  1779. struct nilfs_inode_info *ii, *n;
  1780. spin_lock(&sbi->s_inode_lock);
  1781. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1782. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1783. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1784. continue;
  1785. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1786. brelse(ii->i_bh);
  1787. ii->i_bh = NULL;
  1788. list_del(&ii->i_dirty);
  1789. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1790. }
  1791. spin_unlock(&sbi->s_inode_lock);
  1792. }
  1793. /*
  1794. * Main procedure of segment constructor
  1795. */
  1796. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1797. {
  1798. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1799. struct the_nilfs *nilfs = sbi->s_nilfs;
  1800. struct page *failed_page;
  1801. int err;
  1802. sci->sc_stage.scnt = NILFS_ST_INIT;
  1803. sci->sc_cno = nilfs->ns_cno;
  1804. err = nilfs_segctor_check_in_files(sci, sbi);
  1805. if (unlikely(err))
  1806. goto out;
  1807. if (nilfs_test_metadata_dirty(sbi))
  1808. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1809. if (nilfs_segctor_clean(sci))
  1810. goto out;
  1811. do {
  1812. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1813. err = nilfs_segctor_begin_construction(sci, nilfs);
  1814. if (unlikely(err))
  1815. goto out;
  1816. /* Update time stamp */
  1817. sci->sc_seg_ctime = get_seconds();
  1818. err = nilfs_segctor_collect(sci, nilfs, mode);
  1819. if (unlikely(err))
  1820. goto failed;
  1821. /* Avoid empty segment */
  1822. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1823. nilfs_segbuf_empty(sci->sc_curseg)) {
  1824. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1825. goto out;
  1826. }
  1827. err = nilfs_segctor_assign(sci, mode);
  1828. if (unlikely(err))
  1829. goto failed;
  1830. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1831. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1832. if (mode == SC_LSEG_SR &&
  1833. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1834. err = nilfs_segctor_fill_in_checkpoint(sci);
  1835. if (unlikely(err))
  1836. goto failed_to_write;
  1837. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1838. }
  1839. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1840. /* Write partial segments */
  1841. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1842. if (err) {
  1843. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1844. goto failed_to_write;
  1845. }
  1846. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1847. nilfs->ns_crc_seed);
  1848. err = nilfs_segctor_write(sci, nilfs);
  1849. if (unlikely(err))
  1850. goto failed_to_write;
  1851. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1852. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1853. /*
  1854. * At this point, we avoid double buffering
  1855. * for blocksize < pagesize because page dirty
  1856. * flag is turned off during write and dirty
  1857. * buffers are not properly collected for
  1858. * pages crossing over segments.
  1859. */
  1860. err = nilfs_segctor_wait(sci);
  1861. if (err)
  1862. goto failed_to_write;
  1863. }
  1864. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1865. out:
  1866. nilfs_segctor_check_out_files(sci, sbi);
  1867. return err;
  1868. failed_to_write:
  1869. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1870. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1871. failed:
  1872. if (nilfs_doing_gc())
  1873. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1874. nilfs_segctor_abort_construction(sci, nilfs, err);
  1875. goto out;
  1876. }
  1877. /**
  1878. * nilfs_segctor_start_timer - set timer of background write
  1879. * @sci: nilfs_sc_info
  1880. *
  1881. * If the timer has already been set, it ignores the new request.
  1882. * This function MUST be called within a section locking the segment
  1883. * semaphore.
  1884. */
  1885. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1886. {
  1887. spin_lock(&sci->sc_state_lock);
  1888. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1889. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1890. add_timer(&sci->sc_timer);
  1891. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1892. }
  1893. spin_unlock(&sci->sc_state_lock);
  1894. }
  1895. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1896. {
  1897. spin_lock(&sci->sc_state_lock);
  1898. if (!(sci->sc_flush_request & (1 << bn))) {
  1899. unsigned long prev_req = sci->sc_flush_request;
  1900. sci->sc_flush_request |= (1 << bn);
  1901. if (!prev_req)
  1902. wake_up(&sci->sc_wait_daemon);
  1903. }
  1904. spin_unlock(&sci->sc_state_lock);
  1905. }
  1906. /**
  1907. * nilfs_flush_segment - trigger a segment construction for resource control
  1908. * @sb: super block
  1909. * @ino: inode number of the file to be flushed out.
  1910. */
  1911. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1912. {
  1913. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1914. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1915. if (!sci || nilfs_doing_construction())
  1916. return;
  1917. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1918. /* assign bit 0 to data files */
  1919. }
  1920. struct nilfs_segctor_wait_request {
  1921. wait_queue_t wq;
  1922. __u32 seq;
  1923. int err;
  1924. atomic_t done;
  1925. };
  1926. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1927. {
  1928. struct nilfs_segctor_wait_request wait_req;
  1929. int err = 0;
  1930. spin_lock(&sci->sc_state_lock);
  1931. init_wait(&wait_req.wq);
  1932. wait_req.err = 0;
  1933. atomic_set(&wait_req.done, 0);
  1934. wait_req.seq = ++sci->sc_seq_request;
  1935. spin_unlock(&sci->sc_state_lock);
  1936. init_waitqueue_entry(&wait_req.wq, current);
  1937. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1938. set_current_state(TASK_INTERRUPTIBLE);
  1939. wake_up(&sci->sc_wait_daemon);
  1940. for (;;) {
  1941. if (atomic_read(&wait_req.done)) {
  1942. err = wait_req.err;
  1943. break;
  1944. }
  1945. if (!signal_pending(current)) {
  1946. schedule();
  1947. continue;
  1948. }
  1949. err = -ERESTARTSYS;
  1950. break;
  1951. }
  1952. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1953. return err;
  1954. }
  1955. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1956. {
  1957. struct nilfs_segctor_wait_request *wrq, *n;
  1958. unsigned long flags;
  1959. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1960. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1961. wq.task_list) {
  1962. if (!atomic_read(&wrq->done) &&
  1963. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1964. wrq->err = err;
  1965. atomic_set(&wrq->done, 1);
  1966. }
  1967. if (atomic_read(&wrq->done)) {
  1968. wrq->wq.func(&wrq->wq,
  1969. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1970. 0, NULL);
  1971. }
  1972. }
  1973. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1974. }
  1975. /**
  1976. * nilfs_construct_segment - construct a logical segment
  1977. * @sb: super block
  1978. *
  1979. * Return Value: On success, 0 is retured. On errors, one of the following
  1980. * negative error code is returned.
  1981. *
  1982. * %-EROFS - Read only filesystem.
  1983. *
  1984. * %-EIO - I/O error
  1985. *
  1986. * %-ENOSPC - No space left on device (only in a panic state).
  1987. *
  1988. * %-ERESTARTSYS - Interrupted.
  1989. *
  1990. * %-ENOMEM - Insufficient memory available.
  1991. */
  1992. int nilfs_construct_segment(struct super_block *sb)
  1993. {
  1994. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1995. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1996. struct nilfs_transaction_info *ti;
  1997. int err;
  1998. if (!sci)
  1999. return -EROFS;
  2000. /* A call inside transactions causes a deadlock. */
  2001. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2002. err = nilfs_segctor_sync(sci);
  2003. return err;
  2004. }
  2005. /**
  2006. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2007. * @sb: super block
  2008. * @inode: inode whose data blocks should be written out
  2009. * @start: start byte offset
  2010. * @end: end byte offset (inclusive)
  2011. *
  2012. * Return Value: On success, 0 is retured. On errors, one of the following
  2013. * negative error code is returned.
  2014. *
  2015. * %-EROFS - Read only filesystem.
  2016. *
  2017. * %-EIO - I/O error
  2018. *
  2019. * %-ENOSPC - No space left on device (only in a panic state).
  2020. *
  2021. * %-ERESTARTSYS - Interrupted.
  2022. *
  2023. * %-ENOMEM - Insufficient memory available.
  2024. */
  2025. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2026. loff_t start, loff_t end)
  2027. {
  2028. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2029. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2030. struct nilfs_inode_info *ii;
  2031. struct nilfs_transaction_info ti;
  2032. int err = 0;
  2033. if (!sci)
  2034. return -EROFS;
  2035. nilfs_transaction_lock(sbi, &ti, 0);
  2036. ii = NILFS_I(inode);
  2037. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2038. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2039. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2040. nilfs_discontinued(sbi->s_nilfs)) {
  2041. nilfs_transaction_unlock(sbi);
  2042. err = nilfs_segctor_sync(sci);
  2043. return err;
  2044. }
  2045. spin_lock(&sbi->s_inode_lock);
  2046. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2047. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2048. spin_unlock(&sbi->s_inode_lock);
  2049. nilfs_transaction_unlock(sbi);
  2050. return 0;
  2051. }
  2052. spin_unlock(&sbi->s_inode_lock);
  2053. sci->sc_dsync_inode = ii;
  2054. sci->sc_dsync_start = start;
  2055. sci->sc_dsync_end = end;
  2056. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2057. nilfs_transaction_unlock(sbi);
  2058. return err;
  2059. }
  2060. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2061. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2062. /**
  2063. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2064. * @sci: segment constructor object
  2065. */
  2066. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2067. {
  2068. spin_lock(&sci->sc_state_lock);
  2069. sci->sc_seq_accepted = sci->sc_seq_request;
  2070. spin_unlock(&sci->sc_state_lock);
  2071. del_timer_sync(&sci->sc_timer);
  2072. }
  2073. /**
  2074. * nilfs_segctor_notify - notify the result of request to caller threads
  2075. * @sci: segment constructor object
  2076. * @mode: mode of log forming
  2077. * @err: error code to be notified
  2078. */
  2079. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2080. {
  2081. /* Clear requests (even when the construction failed) */
  2082. spin_lock(&sci->sc_state_lock);
  2083. if (mode == SC_LSEG_SR) {
  2084. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2085. sci->sc_seq_done = sci->sc_seq_accepted;
  2086. nilfs_segctor_wakeup(sci, err);
  2087. sci->sc_flush_request = 0;
  2088. } else {
  2089. if (mode == SC_FLUSH_FILE)
  2090. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2091. else if (mode == SC_FLUSH_DAT)
  2092. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2093. /* re-enable timer if checkpoint creation was not done */
  2094. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2095. time_before(jiffies, sci->sc_timer.expires))
  2096. add_timer(&sci->sc_timer);
  2097. }
  2098. spin_unlock(&sci->sc_state_lock);
  2099. }
  2100. /**
  2101. * nilfs_segctor_construct - form logs and write them to disk
  2102. * @sci: segment constructor object
  2103. * @mode: mode of log forming
  2104. */
  2105. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2106. {
  2107. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2108. struct the_nilfs *nilfs = sbi->s_nilfs;
  2109. struct nilfs_super_block **sbp;
  2110. int err = 0;
  2111. nilfs_segctor_accept(sci);
  2112. if (nilfs_discontinued(nilfs))
  2113. mode = SC_LSEG_SR;
  2114. if (!nilfs_segctor_confirm(sci))
  2115. err = nilfs_segctor_do_construct(sci, mode);
  2116. if (likely(!err)) {
  2117. if (mode != SC_FLUSH_DAT)
  2118. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2119. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2120. nilfs_discontinued(nilfs)) {
  2121. down_write(&nilfs->ns_sem);
  2122. err = -EIO;
  2123. sbp = nilfs_prepare_super(sbi,
  2124. nilfs_sb_will_flip(nilfs));
  2125. if (likely(sbp)) {
  2126. nilfs_set_log_cursor(sbp[0], nilfs);
  2127. err = nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  2128. }
  2129. up_write(&nilfs->ns_sem);
  2130. }
  2131. }
  2132. nilfs_segctor_notify(sci, mode, err);
  2133. return err;
  2134. }
  2135. static void nilfs_construction_timeout(unsigned long data)
  2136. {
  2137. struct task_struct *p = (struct task_struct *)data;
  2138. wake_up_process(p);
  2139. }
  2140. static void
  2141. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2142. {
  2143. struct nilfs_inode_info *ii, *n;
  2144. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2145. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2146. continue;
  2147. hlist_del_init(&ii->vfs_inode.i_hash);
  2148. list_del_init(&ii->i_dirty);
  2149. nilfs_clear_gcinode(&ii->vfs_inode);
  2150. }
  2151. }
  2152. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2153. void **kbufs)
  2154. {
  2155. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2156. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2157. struct the_nilfs *nilfs = sbi->s_nilfs;
  2158. struct nilfs_transaction_info ti;
  2159. int err;
  2160. if (unlikely(!sci))
  2161. return -EROFS;
  2162. nilfs_transaction_lock(sbi, &ti, 1);
  2163. err = nilfs_init_gcdat_inode(nilfs);
  2164. if (unlikely(err))
  2165. goto out_unlock;
  2166. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2167. if (unlikely(err))
  2168. goto out_unlock;
  2169. sci->sc_freesegs = kbufs[4];
  2170. sci->sc_nfreesegs = argv[4].v_nmembs;
  2171. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2172. for (;;) {
  2173. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2174. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2175. if (likely(!err))
  2176. break;
  2177. nilfs_warning(sb, __func__,
  2178. "segment construction failed. (err=%d)", err);
  2179. set_current_state(TASK_INTERRUPTIBLE);
  2180. schedule_timeout(sci->sc_interval);
  2181. }
  2182. if (nilfs_test_opt(sbi, DISCARD)) {
  2183. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2184. sci->sc_nfreesegs);
  2185. if (ret) {
  2186. printk(KERN_WARNING
  2187. "NILFS warning: error %d on discard request, "
  2188. "turning discards off for the device\n", ret);
  2189. nilfs_clear_opt(sbi, DISCARD);
  2190. }
  2191. }
  2192. out_unlock:
  2193. sci->sc_freesegs = NULL;
  2194. sci->sc_nfreesegs = 0;
  2195. nilfs_clear_gcdat_inode(nilfs);
  2196. nilfs_transaction_unlock(sbi);
  2197. return err;
  2198. }
  2199. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2200. {
  2201. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2202. struct nilfs_transaction_info ti;
  2203. nilfs_transaction_lock(sbi, &ti, 0);
  2204. nilfs_segctor_construct(sci, mode);
  2205. /*
  2206. * Unclosed segment should be retried. We do this using sc_timer.
  2207. * Timeout of sc_timer will invoke complete construction which leads
  2208. * to close the current logical segment.
  2209. */
  2210. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2211. nilfs_segctor_start_timer(sci);
  2212. nilfs_transaction_unlock(sbi);
  2213. }
  2214. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2215. {
  2216. int mode = 0;
  2217. int err;
  2218. spin_lock(&sci->sc_state_lock);
  2219. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2220. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2221. spin_unlock(&sci->sc_state_lock);
  2222. if (mode) {
  2223. err = nilfs_segctor_do_construct(sci, mode);
  2224. spin_lock(&sci->sc_state_lock);
  2225. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2226. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2227. spin_unlock(&sci->sc_state_lock);
  2228. }
  2229. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2230. }
  2231. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2232. {
  2233. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2234. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2235. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2236. return SC_FLUSH_FILE;
  2237. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2238. return SC_FLUSH_DAT;
  2239. }
  2240. return SC_LSEG_SR;
  2241. }
  2242. /**
  2243. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2244. * @arg: pointer to a struct nilfs_sc_info.
  2245. *
  2246. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2247. * to execute segment constructions.
  2248. */
  2249. static int nilfs_segctor_thread(void *arg)
  2250. {
  2251. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2252. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2253. int timeout = 0;
  2254. sci->sc_timer.data = (unsigned long)current;
  2255. sci->sc_timer.function = nilfs_construction_timeout;
  2256. /* start sync. */
  2257. sci->sc_task = current;
  2258. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2259. printk(KERN_INFO
  2260. "segctord starting. Construction interval = %lu seconds, "
  2261. "CP frequency < %lu seconds\n",
  2262. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2263. spin_lock(&sci->sc_state_lock);
  2264. loop:
  2265. for (;;) {
  2266. int mode;
  2267. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2268. goto end_thread;
  2269. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2270. mode = SC_LSEG_SR;
  2271. else if (!sci->sc_flush_request)
  2272. break;
  2273. else
  2274. mode = nilfs_segctor_flush_mode(sci);
  2275. spin_unlock(&sci->sc_state_lock);
  2276. nilfs_segctor_thread_construct(sci, mode);
  2277. spin_lock(&sci->sc_state_lock);
  2278. timeout = 0;
  2279. }
  2280. if (freezing(current)) {
  2281. spin_unlock(&sci->sc_state_lock);
  2282. refrigerator();
  2283. spin_lock(&sci->sc_state_lock);
  2284. } else {
  2285. DEFINE_WAIT(wait);
  2286. int should_sleep = 1;
  2287. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2288. TASK_INTERRUPTIBLE);
  2289. if (sci->sc_seq_request != sci->sc_seq_done)
  2290. should_sleep = 0;
  2291. else if (sci->sc_flush_request)
  2292. should_sleep = 0;
  2293. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2294. should_sleep = time_before(jiffies,
  2295. sci->sc_timer.expires);
  2296. if (should_sleep) {
  2297. spin_unlock(&sci->sc_state_lock);
  2298. schedule();
  2299. spin_lock(&sci->sc_state_lock);
  2300. }
  2301. finish_wait(&sci->sc_wait_daemon, &wait);
  2302. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2303. time_after_eq(jiffies, sci->sc_timer.expires));
  2304. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2305. set_nilfs_discontinued(nilfs);
  2306. }
  2307. goto loop;
  2308. end_thread:
  2309. spin_unlock(&sci->sc_state_lock);
  2310. /* end sync. */
  2311. sci->sc_task = NULL;
  2312. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2313. return 0;
  2314. }
  2315. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2316. {
  2317. struct task_struct *t;
  2318. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2319. if (IS_ERR(t)) {
  2320. int err = PTR_ERR(t);
  2321. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2322. err);
  2323. return err;
  2324. }
  2325. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2326. return 0;
  2327. }
  2328. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2329. {
  2330. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2331. while (sci->sc_task) {
  2332. wake_up(&sci->sc_wait_daemon);
  2333. spin_unlock(&sci->sc_state_lock);
  2334. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2335. spin_lock(&sci->sc_state_lock);
  2336. }
  2337. }
  2338. /*
  2339. * Setup & clean-up functions
  2340. */
  2341. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2342. {
  2343. struct nilfs_sc_info *sci;
  2344. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2345. if (!sci)
  2346. return NULL;
  2347. sci->sc_sbi = sbi;
  2348. sci->sc_super = sbi->s_super;
  2349. init_waitqueue_head(&sci->sc_wait_request);
  2350. init_waitqueue_head(&sci->sc_wait_daemon);
  2351. init_waitqueue_head(&sci->sc_wait_task);
  2352. spin_lock_init(&sci->sc_state_lock);
  2353. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2354. INIT_LIST_HEAD(&sci->sc_segbufs);
  2355. INIT_LIST_HEAD(&sci->sc_write_logs);
  2356. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2357. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2358. init_timer(&sci->sc_timer);
  2359. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2360. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2361. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2362. if (sbi->s_interval)
  2363. sci->sc_interval = sbi->s_interval;
  2364. if (sbi->s_watermark)
  2365. sci->sc_watermark = sbi->s_watermark;
  2366. return sci;
  2367. }
  2368. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2369. {
  2370. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2371. /* The segctord thread was stopped and its timer was removed.
  2372. But some tasks remain. */
  2373. do {
  2374. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2375. struct nilfs_transaction_info ti;
  2376. nilfs_transaction_lock(sbi, &ti, 0);
  2377. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2378. nilfs_transaction_unlock(sbi);
  2379. } while (ret && retrycount-- > 0);
  2380. }
  2381. /**
  2382. * nilfs_segctor_destroy - destroy the segment constructor.
  2383. * @sci: nilfs_sc_info
  2384. *
  2385. * nilfs_segctor_destroy() kills the segctord thread and frees
  2386. * the nilfs_sc_info struct.
  2387. * Caller must hold the segment semaphore.
  2388. */
  2389. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2390. {
  2391. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2392. int flag;
  2393. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2394. spin_lock(&sci->sc_state_lock);
  2395. nilfs_segctor_kill_thread(sci);
  2396. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2397. || sci->sc_seq_request != sci->sc_seq_done);
  2398. spin_unlock(&sci->sc_state_lock);
  2399. if (flag || !nilfs_segctor_confirm(sci))
  2400. nilfs_segctor_write_out(sci);
  2401. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2402. if (!list_empty(&sci->sc_dirty_files)) {
  2403. nilfs_warning(sbi->s_super, __func__,
  2404. "dirty file(s) after the final construction\n");
  2405. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2406. }
  2407. WARN_ON(!list_empty(&sci->sc_segbufs));
  2408. WARN_ON(!list_empty(&sci->sc_write_logs));
  2409. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2410. del_timer_sync(&sci->sc_timer);
  2411. kfree(sci);
  2412. }
  2413. /**
  2414. * nilfs_attach_segment_constructor - attach a segment constructor
  2415. * @sbi: nilfs_sb_info
  2416. *
  2417. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2418. * initializes it, and starts the segment constructor.
  2419. *
  2420. * Return Value: On success, 0 is returned. On error, one of the following
  2421. * negative error code is returned.
  2422. *
  2423. * %-ENOMEM - Insufficient memory available.
  2424. */
  2425. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2426. {
  2427. struct the_nilfs *nilfs = sbi->s_nilfs;
  2428. int err;
  2429. if (NILFS_SC(sbi)) {
  2430. /*
  2431. * This happens if the filesystem was remounted
  2432. * read/write after nilfs_error degenerated it into a
  2433. * read-only mount.
  2434. */
  2435. nilfs_detach_segment_constructor(sbi);
  2436. }
  2437. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2438. if (!sbi->s_sc_info)
  2439. return -ENOMEM;
  2440. nilfs_attach_writer(nilfs, sbi);
  2441. err = nilfs_segctor_start_thread(NILFS_SC(sbi));
  2442. if (err) {
  2443. nilfs_detach_writer(nilfs, sbi);
  2444. kfree(sbi->s_sc_info);
  2445. sbi->s_sc_info = NULL;
  2446. }
  2447. return err;
  2448. }
  2449. /**
  2450. * nilfs_detach_segment_constructor - destroy the segment constructor
  2451. * @sbi: nilfs_sb_info
  2452. *
  2453. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2454. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2455. */
  2456. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2457. {
  2458. struct the_nilfs *nilfs = sbi->s_nilfs;
  2459. LIST_HEAD(garbage_list);
  2460. down_write(&nilfs->ns_segctor_sem);
  2461. if (NILFS_SC(sbi)) {
  2462. nilfs_segctor_destroy(NILFS_SC(sbi));
  2463. sbi->s_sc_info = NULL;
  2464. }
  2465. /* Force to free the list of dirty files */
  2466. spin_lock(&sbi->s_inode_lock);
  2467. if (!list_empty(&sbi->s_dirty_files)) {
  2468. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2469. nilfs_warning(sbi->s_super, __func__,
  2470. "Non empty dirty list after the last "
  2471. "segment construction\n");
  2472. }
  2473. spin_unlock(&sbi->s_inode_lock);
  2474. up_write(&nilfs->ns_segctor_sem);
  2475. nilfs_dispose_list(sbi, &garbage_list, 1);
  2476. nilfs_detach_writer(nilfs, sbi);
  2477. }