sched.c 225 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start_expires(&rt_b->rt_period_timer,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. /*
  212. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  213. * detach_destroy_domains and partition_sched_domains.
  214. */
  215. static DEFINE_MUTEX(sched_domains_mutex);
  216. #ifdef CONFIG_GROUP_SCHED
  217. #include <linux/cgroup.h>
  218. struct cfs_rq;
  219. static LIST_HEAD(task_groups);
  220. /* task group related information */
  221. struct task_group {
  222. #ifdef CONFIG_CGROUP_SCHED
  223. struct cgroup_subsys_state css;
  224. #endif
  225. #ifdef CONFIG_USER_SCHED
  226. uid_t uid;
  227. #endif
  228. #ifdef CONFIG_FAIR_GROUP_SCHED
  229. /* schedulable entities of this group on each cpu */
  230. struct sched_entity **se;
  231. /* runqueue "owned" by this group on each cpu */
  232. struct cfs_rq **cfs_rq;
  233. unsigned long shares;
  234. #endif
  235. #ifdef CONFIG_RT_GROUP_SCHED
  236. struct sched_rt_entity **rt_se;
  237. struct rt_rq **rt_rq;
  238. struct rt_bandwidth rt_bandwidth;
  239. #endif
  240. struct rcu_head rcu;
  241. struct list_head list;
  242. struct task_group *parent;
  243. struct list_head siblings;
  244. struct list_head children;
  245. };
  246. #ifdef CONFIG_USER_SCHED
  247. /* Helper function to pass uid information to create_sched_user() */
  248. void set_tg_uid(struct user_struct *user)
  249. {
  250. user->tg->uid = user->uid;
  251. }
  252. /*
  253. * Root task group.
  254. * Every UID task group (including init_task_group aka UID-0) will
  255. * be a child to this group.
  256. */
  257. struct task_group root_task_group;
  258. #ifdef CONFIG_FAIR_GROUP_SCHED
  259. /* Default task group's sched entity on each cpu */
  260. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  261. /* Default task group's cfs_rq on each cpu */
  262. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  263. #endif /* CONFIG_FAIR_GROUP_SCHED */
  264. #ifdef CONFIG_RT_GROUP_SCHED
  265. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  266. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  267. #endif /* CONFIG_RT_GROUP_SCHED */
  268. #else /* !CONFIG_USER_SCHED */
  269. #define root_task_group init_task_group
  270. #endif /* CONFIG_USER_SCHED */
  271. /* task_group_lock serializes add/remove of task groups and also changes to
  272. * a task group's cpu shares.
  273. */
  274. static DEFINE_SPINLOCK(task_group_lock);
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. #ifdef CONFIG_USER_SCHED
  277. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  278. #else /* !CONFIG_USER_SCHED */
  279. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  280. #endif /* CONFIG_USER_SCHED */
  281. /*
  282. * A weight of 0 or 1 can cause arithmetics problems.
  283. * A weight of a cfs_rq is the sum of weights of which entities
  284. * are queued on this cfs_rq, so a weight of a entity should not be
  285. * too large, so as the shares value of a task group.
  286. * (The default weight is 1024 - so there's no practical
  287. * limitation from this.)
  288. */
  289. #define MIN_SHARES 2
  290. #define MAX_SHARES (1UL << 18)
  291. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  292. #endif
  293. /* Default task group.
  294. * Every task in system belong to this group at bootup.
  295. */
  296. struct task_group init_task_group;
  297. /* return group to which a task belongs */
  298. static inline struct task_group *task_group(struct task_struct *p)
  299. {
  300. struct task_group *tg;
  301. #ifdef CONFIG_USER_SCHED
  302. tg = p->user->tg;
  303. #elif defined(CONFIG_CGROUP_SCHED)
  304. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  305. struct task_group, css);
  306. #else
  307. tg = &init_task_group;
  308. #endif
  309. return tg;
  310. }
  311. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  312. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  313. {
  314. #ifdef CONFIG_FAIR_GROUP_SCHED
  315. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  316. p->se.parent = task_group(p)->se[cpu];
  317. #endif
  318. #ifdef CONFIG_RT_GROUP_SCHED
  319. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  320. p->rt.parent = task_group(p)->rt_se[cpu];
  321. #endif
  322. }
  323. #else
  324. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  325. static inline struct task_group *task_group(struct task_struct *p)
  326. {
  327. return NULL;
  328. }
  329. #endif /* CONFIG_GROUP_SCHED */
  330. /* CFS-related fields in a runqueue */
  331. struct cfs_rq {
  332. struct load_weight load;
  333. unsigned long nr_running;
  334. u64 exec_clock;
  335. u64 min_vruntime;
  336. struct rb_root tasks_timeline;
  337. struct rb_node *rb_leftmost;
  338. struct list_head tasks;
  339. struct list_head *balance_iterator;
  340. /*
  341. * 'curr' points to currently running entity on this cfs_rq.
  342. * It is set to NULL otherwise (i.e when none are currently running).
  343. */
  344. struct sched_entity *curr, *next, *last;
  345. unsigned int nr_spread_over;
  346. #ifdef CONFIG_FAIR_GROUP_SCHED
  347. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  348. /*
  349. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  350. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  351. * (like users, containers etc.)
  352. *
  353. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  354. * list is used during load balance.
  355. */
  356. struct list_head leaf_cfs_rq_list;
  357. struct task_group *tg; /* group that "owns" this runqueue */
  358. #ifdef CONFIG_SMP
  359. /*
  360. * the part of load.weight contributed by tasks
  361. */
  362. unsigned long task_weight;
  363. /*
  364. * h_load = weight * f(tg)
  365. *
  366. * Where f(tg) is the recursive weight fraction assigned to
  367. * this group.
  368. */
  369. unsigned long h_load;
  370. /*
  371. * this cpu's part of tg->shares
  372. */
  373. unsigned long shares;
  374. /*
  375. * load.weight at the time we set shares
  376. */
  377. unsigned long rq_weight;
  378. #endif
  379. #endif
  380. };
  381. /* Real-Time classes' related field in a runqueue: */
  382. struct rt_rq {
  383. struct rt_prio_array active;
  384. unsigned long rt_nr_running;
  385. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  386. int highest_prio; /* highest queued rt task prio */
  387. #endif
  388. #ifdef CONFIG_SMP
  389. unsigned long rt_nr_migratory;
  390. int overloaded;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_t span;
  417. cpumask_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. unsigned char idle_at_tick;
  452. #ifdef CONFIG_NO_HZ
  453. unsigned long last_tick_seen;
  454. unsigned char in_nohz_recently;
  455. #endif
  456. /* capture load from *all* tasks on this cpu: */
  457. struct load_weight load;
  458. unsigned long nr_load_updates;
  459. u64 nr_switches;
  460. struct cfs_rq cfs;
  461. struct rt_rq rt;
  462. #ifdef CONFIG_FAIR_GROUP_SCHED
  463. /* list of leaf cfs_rq on this cpu: */
  464. struct list_head leaf_cfs_rq_list;
  465. #endif
  466. #ifdef CONFIG_RT_GROUP_SCHED
  467. struct list_head leaf_rt_rq_list;
  468. #endif
  469. /*
  470. * This is part of a global counter where only the total sum
  471. * over all CPUs matters. A task can increase this counter on
  472. * one CPU and if it got migrated afterwards it may decrease
  473. * it on another CPU. Always updated under the runqueue lock:
  474. */
  475. unsigned long nr_uninterruptible;
  476. struct task_struct *curr, *idle;
  477. unsigned long next_balance;
  478. struct mm_struct *prev_mm;
  479. u64 clock;
  480. atomic_t nr_iowait;
  481. #ifdef CONFIG_SMP
  482. struct root_domain *rd;
  483. struct sched_domain *sd;
  484. /* For active balancing */
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. #endif
  494. #ifdef CONFIG_SCHED_HRTICK
  495. #ifdef CONFIG_SMP
  496. int hrtick_csd_pending;
  497. struct call_single_data hrtick_csd;
  498. #endif
  499. struct hrtimer hrtick_timer;
  500. #endif
  501. #ifdef CONFIG_SCHEDSTATS
  502. /* latency stats */
  503. struct sched_info rq_sched_info;
  504. /* sys_sched_yield() stats */
  505. unsigned int yld_exp_empty;
  506. unsigned int yld_act_empty;
  507. unsigned int yld_both_empty;
  508. unsigned int yld_count;
  509. /* schedule() stats */
  510. unsigned int sched_switch;
  511. unsigned int sched_count;
  512. unsigned int sched_goidle;
  513. /* try_to_wake_up() stats */
  514. unsigned int ttwu_count;
  515. unsigned int ttwu_local;
  516. /* BKL stats */
  517. unsigned int bkl_count;
  518. #endif
  519. };
  520. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  521. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  522. {
  523. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  524. }
  525. static inline int cpu_of(struct rq *rq)
  526. {
  527. #ifdef CONFIG_SMP
  528. return rq->cpu;
  529. #else
  530. return 0;
  531. #endif
  532. }
  533. /*
  534. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  535. * See detach_destroy_domains: synchronize_sched for details.
  536. *
  537. * The domain tree of any CPU may only be accessed from within
  538. * preempt-disabled sections.
  539. */
  540. #define for_each_domain(cpu, __sd) \
  541. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  542. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  543. #define this_rq() (&__get_cpu_var(runqueues))
  544. #define task_rq(p) cpu_rq(task_cpu(p))
  545. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  546. static inline void update_rq_clock(struct rq *rq)
  547. {
  548. rq->clock = sched_clock_cpu(cpu_of(rq));
  549. }
  550. /*
  551. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  552. */
  553. #ifdef CONFIG_SCHED_DEBUG
  554. # define const_debug __read_mostly
  555. #else
  556. # define const_debug static const
  557. #endif
  558. /**
  559. * runqueue_is_locked
  560. *
  561. * Returns true if the current cpu runqueue is locked.
  562. * This interface allows printk to be called with the runqueue lock
  563. * held and know whether or not it is OK to wake up the klogd.
  564. */
  565. int runqueue_is_locked(void)
  566. {
  567. int cpu = get_cpu();
  568. struct rq *rq = cpu_rq(cpu);
  569. int ret;
  570. ret = spin_is_locked(&rq->lock);
  571. put_cpu();
  572. return ret;
  573. }
  574. /*
  575. * Debugging: various feature bits
  576. */
  577. #define SCHED_FEAT(name, enabled) \
  578. __SCHED_FEAT_##name ,
  579. enum {
  580. #include "sched_features.h"
  581. };
  582. #undef SCHED_FEAT
  583. #define SCHED_FEAT(name, enabled) \
  584. (1UL << __SCHED_FEAT_##name) * enabled |
  585. const_debug unsigned int sysctl_sched_features =
  586. #include "sched_features.h"
  587. 0;
  588. #undef SCHED_FEAT
  589. #ifdef CONFIG_SCHED_DEBUG
  590. #define SCHED_FEAT(name, enabled) \
  591. #name ,
  592. static __read_mostly char *sched_feat_names[] = {
  593. #include "sched_features.h"
  594. NULL
  595. };
  596. #undef SCHED_FEAT
  597. static int sched_feat_show(struct seq_file *m, void *v)
  598. {
  599. int i;
  600. for (i = 0; sched_feat_names[i]; i++) {
  601. if (!(sysctl_sched_features & (1UL << i)))
  602. seq_puts(m, "NO_");
  603. seq_printf(m, "%s ", sched_feat_names[i]);
  604. }
  605. seq_puts(m, "\n");
  606. return 0;
  607. }
  608. static ssize_t
  609. sched_feat_write(struct file *filp, const char __user *ubuf,
  610. size_t cnt, loff_t *ppos)
  611. {
  612. char buf[64];
  613. char *cmp = buf;
  614. int neg = 0;
  615. int i;
  616. if (cnt > 63)
  617. cnt = 63;
  618. if (copy_from_user(&buf, ubuf, cnt))
  619. return -EFAULT;
  620. buf[cnt] = 0;
  621. if (strncmp(buf, "NO_", 3) == 0) {
  622. neg = 1;
  623. cmp += 3;
  624. }
  625. for (i = 0; sched_feat_names[i]; i++) {
  626. int len = strlen(sched_feat_names[i]);
  627. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  628. if (neg)
  629. sysctl_sched_features &= ~(1UL << i);
  630. else
  631. sysctl_sched_features |= (1UL << i);
  632. break;
  633. }
  634. }
  635. if (!sched_feat_names[i])
  636. return -EINVAL;
  637. filp->f_pos += cnt;
  638. return cnt;
  639. }
  640. static int sched_feat_open(struct inode *inode, struct file *filp)
  641. {
  642. return single_open(filp, sched_feat_show, NULL);
  643. }
  644. static struct file_operations sched_feat_fops = {
  645. .open = sched_feat_open,
  646. .write = sched_feat_write,
  647. .read = seq_read,
  648. .llseek = seq_lseek,
  649. .release = single_release,
  650. };
  651. static __init int sched_init_debug(void)
  652. {
  653. debugfs_create_file("sched_features", 0644, NULL, NULL,
  654. &sched_feat_fops);
  655. return 0;
  656. }
  657. late_initcall(sched_init_debug);
  658. #endif
  659. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  660. /*
  661. * Number of tasks to iterate in a single balance run.
  662. * Limited because this is done with IRQs disabled.
  663. */
  664. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  665. /*
  666. * ratelimit for updating the group shares.
  667. * default: 0.25ms
  668. */
  669. unsigned int sysctl_sched_shares_ratelimit = 250000;
  670. /*
  671. * Inject some fuzzyness into changing the per-cpu group shares
  672. * this avoids remote rq-locks at the expense of fairness.
  673. * default: 4
  674. */
  675. unsigned int sysctl_sched_shares_thresh = 4;
  676. /*
  677. * period over which we measure -rt task cpu usage in us.
  678. * default: 1s
  679. */
  680. unsigned int sysctl_sched_rt_period = 1000000;
  681. static __read_mostly int scheduler_running;
  682. /*
  683. * part of the period that we allow rt tasks to run in us.
  684. * default: 0.95s
  685. */
  686. int sysctl_sched_rt_runtime = 950000;
  687. static inline u64 global_rt_period(void)
  688. {
  689. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  690. }
  691. static inline u64 global_rt_runtime(void)
  692. {
  693. if (sysctl_sched_rt_runtime < 0)
  694. return RUNTIME_INF;
  695. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  696. }
  697. #ifndef prepare_arch_switch
  698. # define prepare_arch_switch(next) do { } while (0)
  699. #endif
  700. #ifndef finish_arch_switch
  701. # define finish_arch_switch(prev) do { } while (0)
  702. #endif
  703. static inline int task_current(struct rq *rq, struct task_struct *p)
  704. {
  705. return rq->curr == p;
  706. }
  707. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  708. static inline int task_running(struct rq *rq, struct task_struct *p)
  709. {
  710. return task_current(rq, p);
  711. }
  712. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  713. {
  714. }
  715. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  716. {
  717. #ifdef CONFIG_DEBUG_SPINLOCK
  718. /* this is a valid case when another task releases the spinlock */
  719. rq->lock.owner = current;
  720. #endif
  721. /*
  722. * If we are tracking spinlock dependencies then we have to
  723. * fix up the runqueue lock - which gets 'carried over' from
  724. * prev into current:
  725. */
  726. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  727. spin_unlock_irq(&rq->lock);
  728. }
  729. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  730. static inline int task_running(struct rq *rq, struct task_struct *p)
  731. {
  732. #ifdef CONFIG_SMP
  733. return p->oncpu;
  734. #else
  735. return task_current(rq, p);
  736. #endif
  737. }
  738. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  739. {
  740. #ifdef CONFIG_SMP
  741. /*
  742. * We can optimise this out completely for !SMP, because the
  743. * SMP rebalancing from interrupt is the only thing that cares
  744. * here.
  745. */
  746. next->oncpu = 1;
  747. #endif
  748. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  749. spin_unlock_irq(&rq->lock);
  750. #else
  751. spin_unlock(&rq->lock);
  752. #endif
  753. }
  754. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  755. {
  756. #ifdef CONFIG_SMP
  757. /*
  758. * After ->oncpu is cleared, the task can be moved to a different CPU.
  759. * We must ensure this doesn't happen until the switch is completely
  760. * finished.
  761. */
  762. smp_wmb();
  763. prev->oncpu = 0;
  764. #endif
  765. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  766. local_irq_enable();
  767. #endif
  768. }
  769. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  770. /*
  771. * __task_rq_lock - lock the runqueue a given task resides on.
  772. * Must be called interrupts disabled.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. for (;;) {
  778. struct rq *rq = task_rq(p);
  779. spin_lock(&rq->lock);
  780. if (likely(rq == task_rq(p)))
  781. return rq;
  782. spin_unlock(&rq->lock);
  783. }
  784. }
  785. /*
  786. * task_rq_lock - lock the runqueue a given task resides on and disable
  787. * interrupts. Note the ordering: we can safely lookup the task_rq without
  788. * explicitly disabling preemption.
  789. */
  790. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  791. __acquires(rq->lock)
  792. {
  793. struct rq *rq;
  794. for (;;) {
  795. local_irq_save(*flags);
  796. rq = task_rq(p);
  797. spin_lock(&rq->lock);
  798. if (likely(rq == task_rq(p)))
  799. return rq;
  800. spin_unlock_irqrestore(&rq->lock, *flags);
  801. }
  802. }
  803. void task_rq_unlock_wait(struct task_struct *p)
  804. {
  805. struct rq *rq = task_rq(p);
  806. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  807. spin_unlock_wait(&rq->lock);
  808. }
  809. static void __task_rq_unlock(struct rq *rq)
  810. __releases(rq->lock)
  811. {
  812. spin_unlock(&rq->lock);
  813. }
  814. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  815. __releases(rq->lock)
  816. {
  817. spin_unlock_irqrestore(&rq->lock, *flags);
  818. }
  819. /*
  820. * this_rq_lock - lock this runqueue and disable interrupts.
  821. */
  822. static struct rq *this_rq_lock(void)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. local_irq_disable();
  827. rq = this_rq();
  828. spin_lock(&rq->lock);
  829. return rq;
  830. }
  831. #ifdef CONFIG_SCHED_HRTICK
  832. /*
  833. * Use HR-timers to deliver accurate preemption points.
  834. *
  835. * Its all a bit involved since we cannot program an hrt while holding the
  836. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  837. * reschedule event.
  838. *
  839. * When we get rescheduled we reprogram the hrtick_timer outside of the
  840. * rq->lock.
  841. */
  842. /*
  843. * Use hrtick when:
  844. * - enabled by features
  845. * - hrtimer is actually high res
  846. */
  847. static inline int hrtick_enabled(struct rq *rq)
  848. {
  849. if (!sched_feat(HRTICK))
  850. return 0;
  851. if (!cpu_active(cpu_of(rq)))
  852. return 0;
  853. return hrtimer_is_hres_active(&rq->hrtick_timer);
  854. }
  855. static void hrtick_clear(struct rq *rq)
  856. {
  857. if (hrtimer_active(&rq->hrtick_timer))
  858. hrtimer_cancel(&rq->hrtick_timer);
  859. }
  860. /*
  861. * High-resolution timer tick.
  862. * Runs from hardirq context with interrupts disabled.
  863. */
  864. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  865. {
  866. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  867. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  868. spin_lock(&rq->lock);
  869. update_rq_clock(rq);
  870. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  871. spin_unlock(&rq->lock);
  872. return HRTIMER_NORESTART;
  873. }
  874. #ifdef CONFIG_SMP
  875. /*
  876. * called from hardirq (IPI) context
  877. */
  878. static void __hrtick_start(void *arg)
  879. {
  880. struct rq *rq = arg;
  881. spin_lock(&rq->lock);
  882. hrtimer_restart(&rq->hrtick_timer);
  883. rq->hrtick_csd_pending = 0;
  884. spin_unlock(&rq->lock);
  885. }
  886. /*
  887. * Called to set the hrtick timer state.
  888. *
  889. * called with rq->lock held and irqs disabled
  890. */
  891. static void hrtick_start(struct rq *rq, u64 delay)
  892. {
  893. struct hrtimer *timer = &rq->hrtick_timer;
  894. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  895. hrtimer_set_expires(timer, time);
  896. if (rq == this_rq()) {
  897. hrtimer_restart(timer);
  898. } else if (!rq->hrtick_csd_pending) {
  899. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  900. rq->hrtick_csd_pending = 1;
  901. }
  902. }
  903. static int
  904. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  905. {
  906. int cpu = (int)(long)hcpu;
  907. switch (action) {
  908. case CPU_UP_CANCELED:
  909. case CPU_UP_CANCELED_FROZEN:
  910. case CPU_DOWN_PREPARE:
  911. case CPU_DOWN_PREPARE_FROZEN:
  912. case CPU_DEAD:
  913. case CPU_DEAD_FROZEN:
  914. hrtick_clear(cpu_rq(cpu));
  915. return NOTIFY_OK;
  916. }
  917. return NOTIFY_DONE;
  918. }
  919. static __init void init_hrtick(void)
  920. {
  921. hotcpu_notifier(hotplug_hrtick, 0);
  922. }
  923. #else
  924. /*
  925. * Called to set the hrtick timer state.
  926. *
  927. * called with rq->lock held and irqs disabled
  928. */
  929. static void hrtick_start(struct rq *rq, u64 delay)
  930. {
  931. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  932. }
  933. static inline void init_hrtick(void)
  934. {
  935. }
  936. #endif /* CONFIG_SMP */
  937. static void init_rq_hrtick(struct rq *rq)
  938. {
  939. #ifdef CONFIG_SMP
  940. rq->hrtick_csd_pending = 0;
  941. rq->hrtick_csd.flags = 0;
  942. rq->hrtick_csd.func = __hrtick_start;
  943. rq->hrtick_csd.info = rq;
  944. #endif
  945. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  946. rq->hrtick_timer.function = hrtick;
  947. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  948. }
  949. #else /* CONFIG_SCHED_HRTICK */
  950. static inline void hrtick_clear(struct rq *rq)
  951. {
  952. }
  953. static inline void init_rq_hrtick(struct rq *rq)
  954. {
  955. }
  956. static inline void init_hrtick(void)
  957. {
  958. }
  959. #endif /* CONFIG_SCHED_HRTICK */
  960. /*
  961. * resched_task - mark a task 'to be rescheduled now'.
  962. *
  963. * On UP this means the setting of the need_resched flag, on SMP it
  964. * might also involve a cross-CPU call to trigger the scheduler on
  965. * the target CPU.
  966. */
  967. #ifdef CONFIG_SMP
  968. #ifndef tsk_is_polling
  969. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  970. #endif
  971. static void resched_task(struct task_struct *p)
  972. {
  973. int cpu;
  974. assert_spin_locked(&task_rq(p)->lock);
  975. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  976. return;
  977. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  978. cpu = task_cpu(p);
  979. if (cpu == smp_processor_id())
  980. return;
  981. /* NEED_RESCHED must be visible before we test polling */
  982. smp_mb();
  983. if (!tsk_is_polling(p))
  984. smp_send_reschedule(cpu);
  985. }
  986. static void resched_cpu(int cpu)
  987. {
  988. struct rq *rq = cpu_rq(cpu);
  989. unsigned long flags;
  990. if (!spin_trylock_irqsave(&rq->lock, flags))
  991. return;
  992. resched_task(cpu_curr(cpu));
  993. spin_unlock_irqrestore(&rq->lock, flags);
  994. }
  995. #ifdef CONFIG_NO_HZ
  996. /*
  997. * When add_timer_on() enqueues a timer into the timer wheel of an
  998. * idle CPU then this timer might expire before the next timer event
  999. * which is scheduled to wake up that CPU. In case of a completely
  1000. * idle system the next event might even be infinite time into the
  1001. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1002. * leaves the inner idle loop so the newly added timer is taken into
  1003. * account when the CPU goes back to idle and evaluates the timer
  1004. * wheel for the next timer event.
  1005. */
  1006. void wake_up_idle_cpu(int cpu)
  1007. {
  1008. struct rq *rq = cpu_rq(cpu);
  1009. if (cpu == smp_processor_id())
  1010. return;
  1011. /*
  1012. * This is safe, as this function is called with the timer
  1013. * wheel base lock of (cpu) held. When the CPU is on the way
  1014. * to idle and has not yet set rq->curr to idle then it will
  1015. * be serialized on the timer wheel base lock and take the new
  1016. * timer into account automatically.
  1017. */
  1018. if (rq->curr != rq->idle)
  1019. return;
  1020. /*
  1021. * We can set TIF_RESCHED on the idle task of the other CPU
  1022. * lockless. The worst case is that the other CPU runs the
  1023. * idle task through an additional NOOP schedule()
  1024. */
  1025. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1026. /* NEED_RESCHED must be visible before we test polling */
  1027. smp_mb();
  1028. if (!tsk_is_polling(rq->idle))
  1029. smp_send_reschedule(cpu);
  1030. }
  1031. #endif /* CONFIG_NO_HZ */
  1032. #else /* !CONFIG_SMP */
  1033. static void resched_task(struct task_struct *p)
  1034. {
  1035. assert_spin_locked(&task_rq(p)->lock);
  1036. set_tsk_need_resched(p);
  1037. }
  1038. #endif /* CONFIG_SMP */
  1039. #if BITS_PER_LONG == 32
  1040. # define WMULT_CONST (~0UL)
  1041. #else
  1042. # define WMULT_CONST (1UL << 32)
  1043. #endif
  1044. #define WMULT_SHIFT 32
  1045. /*
  1046. * Shift right and round:
  1047. */
  1048. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1049. /*
  1050. * delta *= weight / lw
  1051. */
  1052. static unsigned long
  1053. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1054. struct load_weight *lw)
  1055. {
  1056. u64 tmp;
  1057. if (!lw->inv_weight) {
  1058. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1059. lw->inv_weight = 1;
  1060. else
  1061. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1062. / (lw->weight+1);
  1063. }
  1064. tmp = (u64)delta_exec * weight;
  1065. /*
  1066. * Check whether we'd overflow the 64-bit multiplication:
  1067. */
  1068. if (unlikely(tmp > WMULT_CONST))
  1069. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1070. WMULT_SHIFT/2);
  1071. else
  1072. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1073. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1074. }
  1075. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1076. {
  1077. lw->weight += inc;
  1078. lw->inv_weight = 0;
  1079. }
  1080. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1081. {
  1082. lw->weight -= dec;
  1083. lw->inv_weight = 0;
  1084. }
  1085. /*
  1086. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1087. * of tasks with abnormal "nice" values across CPUs the contribution that
  1088. * each task makes to its run queue's load is weighted according to its
  1089. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1090. * scaled version of the new time slice allocation that they receive on time
  1091. * slice expiry etc.
  1092. */
  1093. #define WEIGHT_IDLEPRIO 2
  1094. #define WMULT_IDLEPRIO (1 << 31)
  1095. /*
  1096. * Nice levels are multiplicative, with a gentle 10% change for every
  1097. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1098. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1099. * that remained on nice 0.
  1100. *
  1101. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1102. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1103. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1104. * If a task goes up by ~10% and another task goes down by ~10% then
  1105. * the relative distance between them is ~25%.)
  1106. */
  1107. static const int prio_to_weight[40] = {
  1108. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1109. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1110. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1111. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1112. /* 0 */ 1024, 820, 655, 526, 423,
  1113. /* 5 */ 335, 272, 215, 172, 137,
  1114. /* 10 */ 110, 87, 70, 56, 45,
  1115. /* 15 */ 36, 29, 23, 18, 15,
  1116. };
  1117. /*
  1118. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1119. *
  1120. * In cases where the weight does not change often, we can use the
  1121. * precalculated inverse to speed up arithmetics by turning divisions
  1122. * into multiplications:
  1123. */
  1124. static const u32 prio_to_wmult[40] = {
  1125. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1126. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1127. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1128. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1129. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1130. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1131. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1132. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1133. };
  1134. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1135. /*
  1136. * runqueue iterator, to support SMP load-balancing between different
  1137. * scheduling classes, without having to expose their internal data
  1138. * structures to the load-balancing proper:
  1139. */
  1140. struct rq_iterator {
  1141. void *arg;
  1142. struct task_struct *(*start)(void *);
  1143. struct task_struct *(*next)(void *);
  1144. };
  1145. #ifdef CONFIG_SMP
  1146. static unsigned long
  1147. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1148. unsigned long max_load_move, struct sched_domain *sd,
  1149. enum cpu_idle_type idle, int *all_pinned,
  1150. int *this_best_prio, struct rq_iterator *iterator);
  1151. static int
  1152. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1153. struct sched_domain *sd, enum cpu_idle_type idle,
  1154. struct rq_iterator *iterator);
  1155. #endif
  1156. #ifdef CONFIG_CGROUP_CPUACCT
  1157. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1158. #else
  1159. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1160. #endif
  1161. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1162. {
  1163. update_load_add(&rq->load, load);
  1164. }
  1165. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1166. {
  1167. update_load_sub(&rq->load, load);
  1168. }
  1169. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1170. typedef int (*tg_visitor)(struct task_group *, void *);
  1171. /*
  1172. * Iterate the full tree, calling @down when first entering a node and @up when
  1173. * leaving it for the final time.
  1174. */
  1175. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1176. {
  1177. struct task_group *parent, *child;
  1178. int ret;
  1179. rcu_read_lock();
  1180. parent = &root_task_group;
  1181. down:
  1182. ret = (*down)(parent, data);
  1183. if (ret)
  1184. goto out_unlock;
  1185. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1186. parent = child;
  1187. goto down;
  1188. up:
  1189. continue;
  1190. }
  1191. ret = (*up)(parent, data);
  1192. if (ret)
  1193. goto out_unlock;
  1194. child = parent;
  1195. parent = parent->parent;
  1196. if (parent)
  1197. goto up;
  1198. out_unlock:
  1199. rcu_read_unlock();
  1200. return ret;
  1201. }
  1202. static int tg_nop(struct task_group *tg, void *data)
  1203. {
  1204. return 0;
  1205. }
  1206. #endif
  1207. #ifdef CONFIG_SMP
  1208. static unsigned long source_load(int cpu, int type);
  1209. static unsigned long target_load(int cpu, int type);
  1210. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1211. static unsigned long cpu_avg_load_per_task(int cpu)
  1212. {
  1213. struct rq *rq = cpu_rq(cpu);
  1214. unsigned long nr_running = rq->nr_running;
  1215. if (nr_running)
  1216. rq->avg_load_per_task = rq->load.weight / nr_running;
  1217. else
  1218. rq->avg_load_per_task = 0;
  1219. return rq->avg_load_per_task;
  1220. }
  1221. #ifdef CONFIG_FAIR_GROUP_SCHED
  1222. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1223. /*
  1224. * Calculate and set the cpu's group shares.
  1225. */
  1226. static void
  1227. update_group_shares_cpu(struct task_group *tg, int cpu,
  1228. unsigned long sd_shares, unsigned long sd_rq_weight)
  1229. {
  1230. unsigned long shares;
  1231. unsigned long rq_weight;
  1232. if (!tg->se[cpu])
  1233. return;
  1234. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1235. /*
  1236. * \Sum shares * rq_weight
  1237. * shares = -----------------------
  1238. * \Sum rq_weight
  1239. *
  1240. */
  1241. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1242. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1243. if (abs(shares - tg->se[cpu]->load.weight) >
  1244. sysctl_sched_shares_thresh) {
  1245. struct rq *rq = cpu_rq(cpu);
  1246. unsigned long flags;
  1247. spin_lock_irqsave(&rq->lock, flags);
  1248. tg->cfs_rq[cpu]->shares = shares;
  1249. __set_se_shares(tg->se[cpu], shares);
  1250. spin_unlock_irqrestore(&rq->lock, flags);
  1251. }
  1252. }
  1253. /*
  1254. * Re-compute the task group their per cpu shares over the given domain.
  1255. * This needs to be done in a bottom-up fashion because the rq weight of a
  1256. * parent group depends on the shares of its child groups.
  1257. */
  1258. static int tg_shares_up(struct task_group *tg, void *data)
  1259. {
  1260. unsigned long weight, rq_weight = 0;
  1261. unsigned long shares = 0;
  1262. struct sched_domain *sd = data;
  1263. int i;
  1264. for_each_cpu_mask(i, sd->span) {
  1265. /*
  1266. * If there are currently no tasks on the cpu pretend there
  1267. * is one of average load so that when a new task gets to
  1268. * run here it will not get delayed by group starvation.
  1269. */
  1270. weight = tg->cfs_rq[i]->load.weight;
  1271. if (!weight)
  1272. weight = NICE_0_LOAD;
  1273. tg->cfs_rq[i]->rq_weight = weight;
  1274. rq_weight += weight;
  1275. shares += tg->cfs_rq[i]->shares;
  1276. }
  1277. if ((!shares && rq_weight) || shares > tg->shares)
  1278. shares = tg->shares;
  1279. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1280. shares = tg->shares;
  1281. for_each_cpu_mask(i, sd->span)
  1282. update_group_shares_cpu(tg, i, shares, rq_weight);
  1283. return 0;
  1284. }
  1285. /*
  1286. * Compute the cpu's hierarchical load factor for each task group.
  1287. * This needs to be done in a top-down fashion because the load of a child
  1288. * group is a fraction of its parents load.
  1289. */
  1290. static int tg_load_down(struct task_group *tg, void *data)
  1291. {
  1292. unsigned long load;
  1293. long cpu = (long)data;
  1294. if (!tg->parent) {
  1295. load = cpu_rq(cpu)->load.weight;
  1296. } else {
  1297. load = tg->parent->cfs_rq[cpu]->h_load;
  1298. load *= tg->cfs_rq[cpu]->shares;
  1299. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1300. }
  1301. tg->cfs_rq[cpu]->h_load = load;
  1302. return 0;
  1303. }
  1304. static void update_shares(struct sched_domain *sd)
  1305. {
  1306. u64 now = cpu_clock(raw_smp_processor_id());
  1307. s64 elapsed = now - sd->last_update;
  1308. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1309. sd->last_update = now;
  1310. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1311. }
  1312. }
  1313. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1314. {
  1315. spin_unlock(&rq->lock);
  1316. update_shares(sd);
  1317. spin_lock(&rq->lock);
  1318. }
  1319. static void update_h_load(long cpu)
  1320. {
  1321. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1322. }
  1323. #else
  1324. static inline void update_shares(struct sched_domain *sd)
  1325. {
  1326. }
  1327. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1328. {
  1329. }
  1330. #endif
  1331. /*
  1332. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1333. */
  1334. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1335. __releases(this_rq->lock)
  1336. __acquires(busiest->lock)
  1337. __acquires(this_rq->lock)
  1338. {
  1339. int ret = 0;
  1340. if (unlikely(!irqs_disabled())) {
  1341. /* printk() doesn't work good under rq->lock */
  1342. spin_unlock(&this_rq->lock);
  1343. BUG_ON(1);
  1344. }
  1345. if (unlikely(!spin_trylock(&busiest->lock))) {
  1346. if (busiest < this_rq) {
  1347. spin_unlock(&this_rq->lock);
  1348. spin_lock(&busiest->lock);
  1349. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1350. ret = 1;
  1351. } else
  1352. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1353. }
  1354. return ret;
  1355. }
  1356. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1357. __releases(busiest->lock)
  1358. {
  1359. spin_unlock(&busiest->lock);
  1360. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1361. }
  1362. #endif
  1363. #ifdef CONFIG_FAIR_GROUP_SCHED
  1364. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1365. {
  1366. #ifdef CONFIG_SMP
  1367. cfs_rq->shares = shares;
  1368. #endif
  1369. }
  1370. #endif
  1371. #include "sched_stats.h"
  1372. #include "sched_idletask.c"
  1373. #include "sched_fair.c"
  1374. #include "sched_rt.c"
  1375. #ifdef CONFIG_SCHED_DEBUG
  1376. # include "sched_debug.c"
  1377. #endif
  1378. #define sched_class_highest (&rt_sched_class)
  1379. #define for_each_class(class) \
  1380. for (class = sched_class_highest; class; class = class->next)
  1381. static void inc_nr_running(struct rq *rq)
  1382. {
  1383. rq->nr_running++;
  1384. }
  1385. static void dec_nr_running(struct rq *rq)
  1386. {
  1387. rq->nr_running--;
  1388. }
  1389. static void set_load_weight(struct task_struct *p)
  1390. {
  1391. if (task_has_rt_policy(p)) {
  1392. p->se.load.weight = prio_to_weight[0] * 2;
  1393. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1394. return;
  1395. }
  1396. /*
  1397. * SCHED_IDLE tasks get minimal weight:
  1398. */
  1399. if (p->policy == SCHED_IDLE) {
  1400. p->se.load.weight = WEIGHT_IDLEPRIO;
  1401. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1402. return;
  1403. }
  1404. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1405. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1406. }
  1407. static void update_avg(u64 *avg, u64 sample)
  1408. {
  1409. s64 diff = sample - *avg;
  1410. *avg += diff >> 3;
  1411. }
  1412. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1413. {
  1414. sched_info_queued(p);
  1415. p->sched_class->enqueue_task(rq, p, wakeup);
  1416. p->se.on_rq = 1;
  1417. }
  1418. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1419. {
  1420. if (sleep && p->se.last_wakeup) {
  1421. update_avg(&p->se.avg_overlap,
  1422. p->se.sum_exec_runtime - p->se.last_wakeup);
  1423. p->se.last_wakeup = 0;
  1424. }
  1425. sched_info_dequeued(p);
  1426. p->sched_class->dequeue_task(rq, p, sleep);
  1427. p->se.on_rq = 0;
  1428. }
  1429. /*
  1430. * __normal_prio - return the priority that is based on the static prio
  1431. */
  1432. static inline int __normal_prio(struct task_struct *p)
  1433. {
  1434. return p->static_prio;
  1435. }
  1436. /*
  1437. * Calculate the expected normal priority: i.e. priority
  1438. * without taking RT-inheritance into account. Might be
  1439. * boosted by interactivity modifiers. Changes upon fork,
  1440. * setprio syscalls, and whenever the interactivity
  1441. * estimator recalculates.
  1442. */
  1443. static inline int normal_prio(struct task_struct *p)
  1444. {
  1445. int prio;
  1446. if (task_has_rt_policy(p))
  1447. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1448. else
  1449. prio = __normal_prio(p);
  1450. return prio;
  1451. }
  1452. /*
  1453. * Calculate the current priority, i.e. the priority
  1454. * taken into account by the scheduler. This value might
  1455. * be boosted by RT tasks, or might be boosted by
  1456. * interactivity modifiers. Will be RT if the task got
  1457. * RT-boosted. If not then it returns p->normal_prio.
  1458. */
  1459. static int effective_prio(struct task_struct *p)
  1460. {
  1461. p->normal_prio = normal_prio(p);
  1462. /*
  1463. * If we are RT tasks or we were boosted to RT priority,
  1464. * keep the priority unchanged. Otherwise, update priority
  1465. * to the normal priority:
  1466. */
  1467. if (!rt_prio(p->prio))
  1468. return p->normal_prio;
  1469. return p->prio;
  1470. }
  1471. /*
  1472. * activate_task - move a task to the runqueue.
  1473. */
  1474. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1475. {
  1476. if (task_contributes_to_load(p))
  1477. rq->nr_uninterruptible--;
  1478. enqueue_task(rq, p, wakeup);
  1479. inc_nr_running(rq);
  1480. }
  1481. /*
  1482. * deactivate_task - remove a task from the runqueue.
  1483. */
  1484. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1485. {
  1486. if (task_contributes_to_load(p))
  1487. rq->nr_uninterruptible++;
  1488. dequeue_task(rq, p, sleep);
  1489. dec_nr_running(rq);
  1490. }
  1491. /**
  1492. * task_curr - is this task currently executing on a CPU?
  1493. * @p: the task in question.
  1494. */
  1495. inline int task_curr(const struct task_struct *p)
  1496. {
  1497. return cpu_curr(task_cpu(p)) == p;
  1498. }
  1499. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1500. {
  1501. set_task_rq(p, cpu);
  1502. #ifdef CONFIG_SMP
  1503. /*
  1504. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1505. * successfuly executed on another CPU. We must ensure that updates of
  1506. * per-task data have been completed by this moment.
  1507. */
  1508. smp_wmb();
  1509. task_thread_info(p)->cpu = cpu;
  1510. #endif
  1511. }
  1512. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1513. const struct sched_class *prev_class,
  1514. int oldprio, int running)
  1515. {
  1516. if (prev_class != p->sched_class) {
  1517. if (prev_class->switched_from)
  1518. prev_class->switched_from(rq, p, running);
  1519. p->sched_class->switched_to(rq, p, running);
  1520. } else
  1521. p->sched_class->prio_changed(rq, p, oldprio, running);
  1522. }
  1523. #ifdef CONFIG_SMP
  1524. /* Used instead of source_load when we know the type == 0 */
  1525. static unsigned long weighted_cpuload(const int cpu)
  1526. {
  1527. return cpu_rq(cpu)->load.weight;
  1528. }
  1529. /*
  1530. * Is this task likely cache-hot:
  1531. */
  1532. static int
  1533. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1534. {
  1535. s64 delta;
  1536. /*
  1537. * Buddy candidates are cache hot:
  1538. */
  1539. if (sched_feat(CACHE_HOT_BUDDY) &&
  1540. (&p->se == cfs_rq_of(&p->se)->next ||
  1541. &p->se == cfs_rq_of(&p->se)->last))
  1542. return 1;
  1543. if (p->sched_class != &fair_sched_class)
  1544. return 0;
  1545. if (sysctl_sched_migration_cost == -1)
  1546. return 1;
  1547. if (sysctl_sched_migration_cost == 0)
  1548. return 0;
  1549. delta = now - p->se.exec_start;
  1550. return delta < (s64)sysctl_sched_migration_cost;
  1551. }
  1552. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1553. {
  1554. int old_cpu = task_cpu(p);
  1555. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1556. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1557. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1558. u64 clock_offset;
  1559. clock_offset = old_rq->clock - new_rq->clock;
  1560. #ifdef CONFIG_SCHEDSTATS
  1561. if (p->se.wait_start)
  1562. p->se.wait_start -= clock_offset;
  1563. if (p->se.sleep_start)
  1564. p->se.sleep_start -= clock_offset;
  1565. if (p->se.block_start)
  1566. p->se.block_start -= clock_offset;
  1567. if (old_cpu != new_cpu) {
  1568. schedstat_inc(p, se.nr_migrations);
  1569. if (task_hot(p, old_rq->clock, NULL))
  1570. schedstat_inc(p, se.nr_forced2_migrations);
  1571. }
  1572. #endif
  1573. p->se.vruntime -= old_cfsrq->min_vruntime -
  1574. new_cfsrq->min_vruntime;
  1575. __set_task_cpu(p, new_cpu);
  1576. }
  1577. struct migration_req {
  1578. struct list_head list;
  1579. struct task_struct *task;
  1580. int dest_cpu;
  1581. struct completion done;
  1582. };
  1583. /*
  1584. * The task's runqueue lock must be held.
  1585. * Returns true if you have to wait for migration thread.
  1586. */
  1587. static int
  1588. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1589. {
  1590. struct rq *rq = task_rq(p);
  1591. /*
  1592. * If the task is not on a runqueue (and not running), then
  1593. * it is sufficient to simply update the task's cpu field.
  1594. */
  1595. if (!p->se.on_rq && !task_running(rq, p)) {
  1596. set_task_cpu(p, dest_cpu);
  1597. return 0;
  1598. }
  1599. init_completion(&req->done);
  1600. req->task = p;
  1601. req->dest_cpu = dest_cpu;
  1602. list_add(&req->list, &rq->migration_queue);
  1603. return 1;
  1604. }
  1605. /*
  1606. * wait_task_inactive - wait for a thread to unschedule.
  1607. *
  1608. * If @match_state is nonzero, it's the @p->state value just checked and
  1609. * not expected to change. If it changes, i.e. @p might have woken up,
  1610. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1611. * we return a positive number (its total switch count). If a second call
  1612. * a short while later returns the same number, the caller can be sure that
  1613. * @p has remained unscheduled the whole time.
  1614. *
  1615. * The caller must ensure that the task *will* unschedule sometime soon,
  1616. * else this function might spin for a *long* time. This function can't
  1617. * be called with interrupts off, or it may introduce deadlock with
  1618. * smp_call_function() if an IPI is sent by the same process we are
  1619. * waiting to become inactive.
  1620. */
  1621. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1622. {
  1623. unsigned long flags;
  1624. int running, on_rq;
  1625. unsigned long ncsw;
  1626. struct rq *rq;
  1627. for (;;) {
  1628. /*
  1629. * We do the initial early heuristics without holding
  1630. * any task-queue locks at all. We'll only try to get
  1631. * the runqueue lock when things look like they will
  1632. * work out!
  1633. */
  1634. rq = task_rq(p);
  1635. /*
  1636. * If the task is actively running on another CPU
  1637. * still, just relax and busy-wait without holding
  1638. * any locks.
  1639. *
  1640. * NOTE! Since we don't hold any locks, it's not
  1641. * even sure that "rq" stays as the right runqueue!
  1642. * But we don't care, since "task_running()" will
  1643. * return false if the runqueue has changed and p
  1644. * is actually now running somewhere else!
  1645. */
  1646. while (task_running(rq, p)) {
  1647. if (match_state && unlikely(p->state != match_state))
  1648. return 0;
  1649. cpu_relax();
  1650. }
  1651. /*
  1652. * Ok, time to look more closely! We need the rq
  1653. * lock now, to be *sure*. If we're wrong, we'll
  1654. * just go back and repeat.
  1655. */
  1656. rq = task_rq_lock(p, &flags);
  1657. trace_sched_wait_task(rq, p);
  1658. running = task_running(rq, p);
  1659. on_rq = p->se.on_rq;
  1660. ncsw = 0;
  1661. if (!match_state || p->state == match_state)
  1662. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1663. task_rq_unlock(rq, &flags);
  1664. /*
  1665. * If it changed from the expected state, bail out now.
  1666. */
  1667. if (unlikely(!ncsw))
  1668. break;
  1669. /*
  1670. * Was it really running after all now that we
  1671. * checked with the proper locks actually held?
  1672. *
  1673. * Oops. Go back and try again..
  1674. */
  1675. if (unlikely(running)) {
  1676. cpu_relax();
  1677. continue;
  1678. }
  1679. /*
  1680. * It's not enough that it's not actively running,
  1681. * it must be off the runqueue _entirely_, and not
  1682. * preempted!
  1683. *
  1684. * So if it wa still runnable (but just not actively
  1685. * running right now), it's preempted, and we should
  1686. * yield - it could be a while.
  1687. */
  1688. if (unlikely(on_rq)) {
  1689. schedule_timeout_uninterruptible(1);
  1690. continue;
  1691. }
  1692. /*
  1693. * Ahh, all good. It wasn't running, and it wasn't
  1694. * runnable, which means that it will never become
  1695. * running in the future either. We're all done!
  1696. */
  1697. break;
  1698. }
  1699. return ncsw;
  1700. }
  1701. /***
  1702. * kick_process - kick a running thread to enter/exit the kernel
  1703. * @p: the to-be-kicked thread
  1704. *
  1705. * Cause a process which is running on another CPU to enter
  1706. * kernel-mode, without any delay. (to get signals handled.)
  1707. *
  1708. * NOTE: this function doesnt have to take the runqueue lock,
  1709. * because all it wants to ensure is that the remote task enters
  1710. * the kernel. If the IPI races and the task has been migrated
  1711. * to another CPU then no harm is done and the purpose has been
  1712. * achieved as well.
  1713. */
  1714. void kick_process(struct task_struct *p)
  1715. {
  1716. int cpu;
  1717. preempt_disable();
  1718. cpu = task_cpu(p);
  1719. if ((cpu != smp_processor_id()) && task_curr(p))
  1720. smp_send_reschedule(cpu);
  1721. preempt_enable();
  1722. }
  1723. /*
  1724. * Return a low guess at the load of a migration-source cpu weighted
  1725. * according to the scheduling class and "nice" value.
  1726. *
  1727. * We want to under-estimate the load of migration sources, to
  1728. * balance conservatively.
  1729. */
  1730. static unsigned long source_load(int cpu, int type)
  1731. {
  1732. struct rq *rq = cpu_rq(cpu);
  1733. unsigned long total = weighted_cpuload(cpu);
  1734. if (type == 0 || !sched_feat(LB_BIAS))
  1735. return total;
  1736. return min(rq->cpu_load[type-1], total);
  1737. }
  1738. /*
  1739. * Return a high guess at the load of a migration-target cpu weighted
  1740. * according to the scheduling class and "nice" value.
  1741. */
  1742. static unsigned long target_load(int cpu, int type)
  1743. {
  1744. struct rq *rq = cpu_rq(cpu);
  1745. unsigned long total = weighted_cpuload(cpu);
  1746. if (type == 0 || !sched_feat(LB_BIAS))
  1747. return total;
  1748. return max(rq->cpu_load[type-1], total);
  1749. }
  1750. /*
  1751. * find_idlest_group finds and returns the least busy CPU group within the
  1752. * domain.
  1753. */
  1754. static struct sched_group *
  1755. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1756. {
  1757. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1758. unsigned long min_load = ULONG_MAX, this_load = 0;
  1759. int load_idx = sd->forkexec_idx;
  1760. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1761. do {
  1762. unsigned long load, avg_load;
  1763. int local_group;
  1764. int i;
  1765. /* Skip over this group if it has no CPUs allowed */
  1766. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1767. continue;
  1768. local_group = cpu_isset(this_cpu, group->cpumask);
  1769. /* Tally up the load of all CPUs in the group */
  1770. avg_load = 0;
  1771. for_each_cpu_mask_nr(i, group->cpumask) {
  1772. /* Bias balancing toward cpus of our domain */
  1773. if (local_group)
  1774. load = source_load(i, load_idx);
  1775. else
  1776. load = target_load(i, load_idx);
  1777. avg_load += load;
  1778. }
  1779. /* Adjust by relative CPU power of the group */
  1780. avg_load = sg_div_cpu_power(group,
  1781. avg_load * SCHED_LOAD_SCALE);
  1782. if (local_group) {
  1783. this_load = avg_load;
  1784. this = group;
  1785. } else if (avg_load < min_load) {
  1786. min_load = avg_load;
  1787. idlest = group;
  1788. }
  1789. } while (group = group->next, group != sd->groups);
  1790. if (!idlest || 100*this_load < imbalance*min_load)
  1791. return NULL;
  1792. return idlest;
  1793. }
  1794. /*
  1795. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1796. */
  1797. static int
  1798. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1799. cpumask_t *tmp)
  1800. {
  1801. unsigned long load, min_load = ULONG_MAX;
  1802. int idlest = -1;
  1803. int i;
  1804. /* Traverse only the allowed CPUs */
  1805. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1806. for_each_cpu_mask_nr(i, *tmp) {
  1807. load = weighted_cpuload(i);
  1808. if (load < min_load || (load == min_load && i == this_cpu)) {
  1809. min_load = load;
  1810. idlest = i;
  1811. }
  1812. }
  1813. return idlest;
  1814. }
  1815. /*
  1816. * sched_balance_self: balance the current task (running on cpu) in domains
  1817. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1818. * SD_BALANCE_EXEC.
  1819. *
  1820. * Balance, ie. select the least loaded group.
  1821. *
  1822. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1823. *
  1824. * preempt must be disabled.
  1825. */
  1826. static int sched_balance_self(int cpu, int flag)
  1827. {
  1828. struct task_struct *t = current;
  1829. struct sched_domain *tmp, *sd = NULL;
  1830. for_each_domain(cpu, tmp) {
  1831. /*
  1832. * If power savings logic is enabled for a domain, stop there.
  1833. */
  1834. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1835. break;
  1836. if (tmp->flags & flag)
  1837. sd = tmp;
  1838. }
  1839. if (sd)
  1840. update_shares(sd);
  1841. while (sd) {
  1842. cpumask_t span, tmpmask;
  1843. struct sched_group *group;
  1844. int new_cpu, weight;
  1845. if (!(sd->flags & flag)) {
  1846. sd = sd->child;
  1847. continue;
  1848. }
  1849. span = sd->span;
  1850. group = find_idlest_group(sd, t, cpu);
  1851. if (!group) {
  1852. sd = sd->child;
  1853. continue;
  1854. }
  1855. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1856. if (new_cpu == -1 || new_cpu == cpu) {
  1857. /* Now try balancing at a lower domain level of cpu */
  1858. sd = sd->child;
  1859. continue;
  1860. }
  1861. /* Now try balancing at a lower domain level of new_cpu */
  1862. cpu = new_cpu;
  1863. sd = NULL;
  1864. weight = cpus_weight(span);
  1865. for_each_domain(cpu, tmp) {
  1866. if (weight <= cpus_weight(tmp->span))
  1867. break;
  1868. if (tmp->flags & flag)
  1869. sd = tmp;
  1870. }
  1871. /* while loop will break here if sd == NULL */
  1872. }
  1873. return cpu;
  1874. }
  1875. #endif /* CONFIG_SMP */
  1876. /***
  1877. * try_to_wake_up - wake up a thread
  1878. * @p: the to-be-woken-up thread
  1879. * @state: the mask of task states that can be woken
  1880. * @sync: do a synchronous wakeup?
  1881. *
  1882. * Put it on the run-queue if it's not already there. The "current"
  1883. * thread is always on the run-queue (except when the actual
  1884. * re-schedule is in progress), and as such you're allowed to do
  1885. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1886. * runnable without the overhead of this.
  1887. *
  1888. * returns failure only if the task is already active.
  1889. */
  1890. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1891. {
  1892. int cpu, orig_cpu, this_cpu, success = 0;
  1893. unsigned long flags;
  1894. long old_state;
  1895. struct rq *rq;
  1896. if (!sched_feat(SYNC_WAKEUPS))
  1897. sync = 0;
  1898. #ifdef CONFIG_SMP
  1899. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1900. struct sched_domain *sd;
  1901. this_cpu = raw_smp_processor_id();
  1902. cpu = task_cpu(p);
  1903. for_each_domain(this_cpu, sd) {
  1904. if (cpu_isset(cpu, sd->span)) {
  1905. update_shares(sd);
  1906. break;
  1907. }
  1908. }
  1909. }
  1910. #endif
  1911. smp_wmb();
  1912. rq = task_rq_lock(p, &flags);
  1913. old_state = p->state;
  1914. if (!(old_state & state))
  1915. goto out;
  1916. if (p->se.on_rq)
  1917. goto out_running;
  1918. cpu = task_cpu(p);
  1919. orig_cpu = cpu;
  1920. this_cpu = smp_processor_id();
  1921. #ifdef CONFIG_SMP
  1922. if (unlikely(task_running(rq, p)))
  1923. goto out_activate;
  1924. cpu = p->sched_class->select_task_rq(p, sync);
  1925. if (cpu != orig_cpu) {
  1926. set_task_cpu(p, cpu);
  1927. task_rq_unlock(rq, &flags);
  1928. /* might preempt at this point */
  1929. rq = task_rq_lock(p, &flags);
  1930. old_state = p->state;
  1931. if (!(old_state & state))
  1932. goto out;
  1933. if (p->se.on_rq)
  1934. goto out_running;
  1935. this_cpu = smp_processor_id();
  1936. cpu = task_cpu(p);
  1937. }
  1938. #ifdef CONFIG_SCHEDSTATS
  1939. schedstat_inc(rq, ttwu_count);
  1940. if (cpu == this_cpu)
  1941. schedstat_inc(rq, ttwu_local);
  1942. else {
  1943. struct sched_domain *sd;
  1944. for_each_domain(this_cpu, sd) {
  1945. if (cpu_isset(cpu, sd->span)) {
  1946. schedstat_inc(sd, ttwu_wake_remote);
  1947. break;
  1948. }
  1949. }
  1950. }
  1951. #endif /* CONFIG_SCHEDSTATS */
  1952. out_activate:
  1953. #endif /* CONFIG_SMP */
  1954. schedstat_inc(p, se.nr_wakeups);
  1955. if (sync)
  1956. schedstat_inc(p, se.nr_wakeups_sync);
  1957. if (orig_cpu != cpu)
  1958. schedstat_inc(p, se.nr_wakeups_migrate);
  1959. if (cpu == this_cpu)
  1960. schedstat_inc(p, se.nr_wakeups_local);
  1961. else
  1962. schedstat_inc(p, se.nr_wakeups_remote);
  1963. update_rq_clock(rq);
  1964. activate_task(rq, p, 1);
  1965. success = 1;
  1966. out_running:
  1967. trace_sched_wakeup(rq, p);
  1968. check_preempt_curr(rq, p, sync);
  1969. p->state = TASK_RUNNING;
  1970. #ifdef CONFIG_SMP
  1971. if (p->sched_class->task_wake_up)
  1972. p->sched_class->task_wake_up(rq, p);
  1973. #endif
  1974. out:
  1975. current->se.last_wakeup = current->se.sum_exec_runtime;
  1976. task_rq_unlock(rq, &flags);
  1977. return success;
  1978. }
  1979. int wake_up_process(struct task_struct *p)
  1980. {
  1981. return try_to_wake_up(p, TASK_ALL, 0);
  1982. }
  1983. EXPORT_SYMBOL(wake_up_process);
  1984. int wake_up_state(struct task_struct *p, unsigned int state)
  1985. {
  1986. return try_to_wake_up(p, state, 0);
  1987. }
  1988. /*
  1989. * Perform scheduler related setup for a newly forked process p.
  1990. * p is forked by current.
  1991. *
  1992. * __sched_fork() is basic setup used by init_idle() too:
  1993. */
  1994. static void __sched_fork(struct task_struct *p)
  1995. {
  1996. p->se.exec_start = 0;
  1997. p->se.sum_exec_runtime = 0;
  1998. p->se.prev_sum_exec_runtime = 0;
  1999. p->se.last_wakeup = 0;
  2000. p->se.avg_overlap = 0;
  2001. #ifdef CONFIG_SCHEDSTATS
  2002. p->se.wait_start = 0;
  2003. p->se.sum_sleep_runtime = 0;
  2004. p->se.sleep_start = 0;
  2005. p->se.block_start = 0;
  2006. p->se.sleep_max = 0;
  2007. p->se.block_max = 0;
  2008. p->se.exec_max = 0;
  2009. p->se.slice_max = 0;
  2010. p->se.wait_max = 0;
  2011. #endif
  2012. INIT_LIST_HEAD(&p->rt.run_list);
  2013. p->se.on_rq = 0;
  2014. INIT_LIST_HEAD(&p->se.group_node);
  2015. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2016. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2017. #endif
  2018. /*
  2019. * We mark the process as running here, but have not actually
  2020. * inserted it onto the runqueue yet. This guarantees that
  2021. * nobody will actually run it, and a signal or other external
  2022. * event cannot wake it up and insert it on the runqueue either.
  2023. */
  2024. p->state = TASK_RUNNING;
  2025. }
  2026. /*
  2027. * fork()/clone()-time setup:
  2028. */
  2029. void sched_fork(struct task_struct *p, int clone_flags)
  2030. {
  2031. int cpu = get_cpu();
  2032. __sched_fork(p);
  2033. #ifdef CONFIG_SMP
  2034. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2035. #endif
  2036. set_task_cpu(p, cpu);
  2037. /*
  2038. * Make sure we do not leak PI boosting priority to the child:
  2039. */
  2040. p->prio = current->normal_prio;
  2041. if (!rt_prio(p->prio))
  2042. p->sched_class = &fair_sched_class;
  2043. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2044. if (likely(sched_info_on()))
  2045. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2046. #endif
  2047. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2048. p->oncpu = 0;
  2049. #endif
  2050. #ifdef CONFIG_PREEMPT
  2051. /* Want to start with kernel preemption disabled. */
  2052. task_thread_info(p)->preempt_count = 1;
  2053. #endif
  2054. put_cpu();
  2055. }
  2056. /*
  2057. * wake_up_new_task - wake up a newly created task for the first time.
  2058. *
  2059. * This function will do some initial scheduler statistics housekeeping
  2060. * that must be done for every newly created context, then puts the task
  2061. * on the runqueue and wakes it.
  2062. */
  2063. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2064. {
  2065. unsigned long flags;
  2066. struct rq *rq;
  2067. rq = task_rq_lock(p, &flags);
  2068. BUG_ON(p->state != TASK_RUNNING);
  2069. update_rq_clock(rq);
  2070. p->prio = effective_prio(p);
  2071. if (!p->sched_class->task_new || !current->se.on_rq) {
  2072. activate_task(rq, p, 0);
  2073. } else {
  2074. /*
  2075. * Let the scheduling class do new task startup
  2076. * management (if any):
  2077. */
  2078. p->sched_class->task_new(rq, p);
  2079. inc_nr_running(rq);
  2080. }
  2081. trace_sched_wakeup_new(rq, p);
  2082. check_preempt_curr(rq, p, 0);
  2083. #ifdef CONFIG_SMP
  2084. if (p->sched_class->task_wake_up)
  2085. p->sched_class->task_wake_up(rq, p);
  2086. #endif
  2087. task_rq_unlock(rq, &flags);
  2088. }
  2089. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2090. /**
  2091. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2092. * @notifier: notifier struct to register
  2093. */
  2094. void preempt_notifier_register(struct preempt_notifier *notifier)
  2095. {
  2096. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2097. }
  2098. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2099. /**
  2100. * preempt_notifier_unregister - no longer interested in preemption notifications
  2101. * @notifier: notifier struct to unregister
  2102. *
  2103. * This is safe to call from within a preemption notifier.
  2104. */
  2105. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2106. {
  2107. hlist_del(&notifier->link);
  2108. }
  2109. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2110. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2111. {
  2112. struct preempt_notifier *notifier;
  2113. struct hlist_node *node;
  2114. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2115. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2116. }
  2117. static void
  2118. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2119. struct task_struct *next)
  2120. {
  2121. struct preempt_notifier *notifier;
  2122. struct hlist_node *node;
  2123. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2124. notifier->ops->sched_out(notifier, next);
  2125. }
  2126. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2127. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2128. {
  2129. }
  2130. static void
  2131. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2132. struct task_struct *next)
  2133. {
  2134. }
  2135. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2136. /**
  2137. * prepare_task_switch - prepare to switch tasks
  2138. * @rq: the runqueue preparing to switch
  2139. * @prev: the current task that is being switched out
  2140. * @next: the task we are going to switch to.
  2141. *
  2142. * This is called with the rq lock held and interrupts off. It must
  2143. * be paired with a subsequent finish_task_switch after the context
  2144. * switch.
  2145. *
  2146. * prepare_task_switch sets up locking and calls architecture specific
  2147. * hooks.
  2148. */
  2149. static inline void
  2150. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2151. struct task_struct *next)
  2152. {
  2153. fire_sched_out_preempt_notifiers(prev, next);
  2154. prepare_lock_switch(rq, next);
  2155. prepare_arch_switch(next);
  2156. }
  2157. /**
  2158. * finish_task_switch - clean up after a task-switch
  2159. * @rq: runqueue associated with task-switch
  2160. * @prev: the thread we just switched away from.
  2161. *
  2162. * finish_task_switch must be called after the context switch, paired
  2163. * with a prepare_task_switch call before the context switch.
  2164. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2165. * and do any other architecture-specific cleanup actions.
  2166. *
  2167. * Note that we may have delayed dropping an mm in context_switch(). If
  2168. * so, we finish that here outside of the runqueue lock. (Doing it
  2169. * with the lock held can cause deadlocks; see schedule() for
  2170. * details.)
  2171. */
  2172. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2173. __releases(rq->lock)
  2174. {
  2175. struct mm_struct *mm = rq->prev_mm;
  2176. long prev_state;
  2177. rq->prev_mm = NULL;
  2178. /*
  2179. * A task struct has one reference for the use as "current".
  2180. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2181. * schedule one last time. The schedule call will never return, and
  2182. * the scheduled task must drop that reference.
  2183. * The test for TASK_DEAD must occur while the runqueue locks are
  2184. * still held, otherwise prev could be scheduled on another cpu, die
  2185. * there before we look at prev->state, and then the reference would
  2186. * be dropped twice.
  2187. * Manfred Spraul <manfred@colorfullife.com>
  2188. */
  2189. prev_state = prev->state;
  2190. finish_arch_switch(prev);
  2191. finish_lock_switch(rq, prev);
  2192. #ifdef CONFIG_SMP
  2193. if (current->sched_class->post_schedule)
  2194. current->sched_class->post_schedule(rq);
  2195. #endif
  2196. fire_sched_in_preempt_notifiers(current);
  2197. if (mm)
  2198. mmdrop(mm);
  2199. if (unlikely(prev_state == TASK_DEAD)) {
  2200. /*
  2201. * Remove function-return probe instances associated with this
  2202. * task and put them back on the free list.
  2203. */
  2204. kprobe_flush_task(prev);
  2205. put_task_struct(prev);
  2206. }
  2207. }
  2208. /**
  2209. * schedule_tail - first thing a freshly forked thread must call.
  2210. * @prev: the thread we just switched away from.
  2211. */
  2212. asmlinkage void schedule_tail(struct task_struct *prev)
  2213. __releases(rq->lock)
  2214. {
  2215. struct rq *rq = this_rq();
  2216. finish_task_switch(rq, prev);
  2217. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2218. /* In this case, finish_task_switch does not reenable preemption */
  2219. preempt_enable();
  2220. #endif
  2221. if (current->set_child_tid)
  2222. put_user(task_pid_vnr(current), current->set_child_tid);
  2223. }
  2224. /*
  2225. * context_switch - switch to the new MM and the new
  2226. * thread's register state.
  2227. */
  2228. static inline void
  2229. context_switch(struct rq *rq, struct task_struct *prev,
  2230. struct task_struct *next)
  2231. {
  2232. struct mm_struct *mm, *oldmm;
  2233. prepare_task_switch(rq, prev, next);
  2234. trace_sched_switch(rq, prev, next);
  2235. mm = next->mm;
  2236. oldmm = prev->active_mm;
  2237. /*
  2238. * For paravirt, this is coupled with an exit in switch_to to
  2239. * combine the page table reload and the switch backend into
  2240. * one hypercall.
  2241. */
  2242. arch_enter_lazy_cpu_mode();
  2243. if (unlikely(!mm)) {
  2244. next->active_mm = oldmm;
  2245. atomic_inc(&oldmm->mm_count);
  2246. enter_lazy_tlb(oldmm, next);
  2247. } else
  2248. switch_mm(oldmm, mm, next);
  2249. if (unlikely(!prev->mm)) {
  2250. prev->active_mm = NULL;
  2251. rq->prev_mm = oldmm;
  2252. }
  2253. /*
  2254. * Since the runqueue lock will be released by the next
  2255. * task (which is an invalid locking op but in the case
  2256. * of the scheduler it's an obvious special-case), so we
  2257. * do an early lockdep release here:
  2258. */
  2259. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2260. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2261. #endif
  2262. /* Here we just switch the register state and the stack. */
  2263. switch_to(prev, next, prev);
  2264. barrier();
  2265. /*
  2266. * this_rq must be evaluated again because prev may have moved
  2267. * CPUs since it called schedule(), thus the 'rq' on its stack
  2268. * frame will be invalid.
  2269. */
  2270. finish_task_switch(this_rq(), prev);
  2271. }
  2272. /*
  2273. * nr_running, nr_uninterruptible and nr_context_switches:
  2274. *
  2275. * externally visible scheduler statistics: current number of runnable
  2276. * threads, current number of uninterruptible-sleeping threads, total
  2277. * number of context switches performed since bootup.
  2278. */
  2279. unsigned long nr_running(void)
  2280. {
  2281. unsigned long i, sum = 0;
  2282. for_each_online_cpu(i)
  2283. sum += cpu_rq(i)->nr_running;
  2284. return sum;
  2285. }
  2286. unsigned long nr_uninterruptible(void)
  2287. {
  2288. unsigned long i, sum = 0;
  2289. for_each_possible_cpu(i)
  2290. sum += cpu_rq(i)->nr_uninterruptible;
  2291. /*
  2292. * Since we read the counters lockless, it might be slightly
  2293. * inaccurate. Do not allow it to go below zero though:
  2294. */
  2295. if (unlikely((long)sum < 0))
  2296. sum = 0;
  2297. return sum;
  2298. }
  2299. unsigned long long nr_context_switches(void)
  2300. {
  2301. int i;
  2302. unsigned long long sum = 0;
  2303. for_each_possible_cpu(i)
  2304. sum += cpu_rq(i)->nr_switches;
  2305. return sum;
  2306. }
  2307. unsigned long nr_iowait(void)
  2308. {
  2309. unsigned long i, sum = 0;
  2310. for_each_possible_cpu(i)
  2311. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2312. return sum;
  2313. }
  2314. unsigned long nr_active(void)
  2315. {
  2316. unsigned long i, running = 0, uninterruptible = 0;
  2317. for_each_online_cpu(i) {
  2318. running += cpu_rq(i)->nr_running;
  2319. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2320. }
  2321. if (unlikely((long)uninterruptible < 0))
  2322. uninterruptible = 0;
  2323. return running + uninterruptible;
  2324. }
  2325. /*
  2326. * Update rq->cpu_load[] statistics. This function is usually called every
  2327. * scheduler tick (TICK_NSEC).
  2328. */
  2329. static void update_cpu_load(struct rq *this_rq)
  2330. {
  2331. unsigned long this_load = this_rq->load.weight;
  2332. int i, scale;
  2333. this_rq->nr_load_updates++;
  2334. /* Update our load: */
  2335. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2336. unsigned long old_load, new_load;
  2337. /* scale is effectively 1 << i now, and >> i divides by scale */
  2338. old_load = this_rq->cpu_load[i];
  2339. new_load = this_load;
  2340. /*
  2341. * Round up the averaging division if load is increasing. This
  2342. * prevents us from getting stuck on 9 if the load is 10, for
  2343. * example.
  2344. */
  2345. if (new_load > old_load)
  2346. new_load += scale-1;
  2347. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2348. }
  2349. }
  2350. #ifdef CONFIG_SMP
  2351. /*
  2352. * double_rq_lock - safely lock two runqueues
  2353. *
  2354. * Note this does not disable interrupts like task_rq_lock,
  2355. * you need to do so manually before calling.
  2356. */
  2357. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2358. __acquires(rq1->lock)
  2359. __acquires(rq2->lock)
  2360. {
  2361. BUG_ON(!irqs_disabled());
  2362. if (rq1 == rq2) {
  2363. spin_lock(&rq1->lock);
  2364. __acquire(rq2->lock); /* Fake it out ;) */
  2365. } else {
  2366. if (rq1 < rq2) {
  2367. spin_lock(&rq1->lock);
  2368. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2369. } else {
  2370. spin_lock(&rq2->lock);
  2371. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2372. }
  2373. }
  2374. update_rq_clock(rq1);
  2375. update_rq_clock(rq2);
  2376. }
  2377. /*
  2378. * double_rq_unlock - safely unlock two runqueues
  2379. *
  2380. * Note this does not restore interrupts like task_rq_unlock,
  2381. * you need to do so manually after calling.
  2382. */
  2383. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2384. __releases(rq1->lock)
  2385. __releases(rq2->lock)
  2386. {
  2387. spin_unlock(&rq1->lock);
  2388. if (rq1 != rq2)
  2389. spin_unlock(&rq2->lock);
  2390. else
  2391. __release(rq2->lock);
  2392. }
  2393. /*
  2394. * If dest_cpu is allowed for this process, migrate the task to it.
  2395. * This is accomplished by forcing the cpu_allowed mask to only
  2396. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2397. * the cpu_allowed mask is restored.
  2398. */
  2399. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2400. {
  2401. struct migration_req req;
  2402. unsigned long flags;
  2403. struct rq *rq;
  2404. rq = task_rq_lock(p, &flags);
  2405. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2406. || unlikely(!cpu_active(dest_cpu)))
  2407. goto out;
  2408. trace_sched_migrate_task(rq, p, dest_cpu);
  2409. /* force the process onto the specified CPU */
  2410. if (migrate_task(p, dest_cpu, &req)) {
  2411. /* Need to wait for migration thread (might exit: take ref). */
  2412. struct task_struct *mt = rq->migration_thread;
  2413. get_task_struct(mt);
  2414. task_rq_unlock(rq, &flags);
  2415. wake_up_process(mt);
  2416. put_task_struct(mt);
  2417. wait_for_completion(&req.done);
  2418. return;
  2419. }
  2420. out:
  2421. task_rq_unlock(rq, &flags);
  2422. }
  2423. /*
  2424. * sched_exec - execve() is a valuable balancing opportunity, because at
  2425. * this point the task has the smallest effective memory and cache footprint.
  2426. */
  2427. void sched_exec(void)
  2428. {
  2429. int new_cpu, this_cpu = get_cpu();
  2430. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2431. put_cpu();
  2432. if (new_cpu != this_cpu)
  2433. sched_migrate_task(current, new_cpu);
  2434. }
  2435. /*
  2436. * pull_task - move a task from a remote runqueue to the local runqueue.
  2437. * Both runqueues must be locked.
  2438. */
  2439. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2440. struct rq *this_rq, int this_cpu)
  2441. {
  2442. deactivate_task(src_rq, p, 0);
  2443. set_task_cpu(p, this_cpu);
  2444. activate_task(this_rq, p, 0);
  2445. /*
  2446. * Note that idle threads have a prio of MAX_PRIO, for this test
  2447. * to be always true for them.
  2448. */
  2449. check_preempt_curr(this_rq, p, 0);
  2450. }
  2451. /*
  2452. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2453. */
  2454. static
  2455. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2456. struct sched_domain *sd, enum cpu_idle_type idle,
  2457. int *all_pinned)
  2458. {
  2459. /*
  2460. * We do not migrate tasks that are:
  2461. * 1) running (obviously), or
  2462. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2463. * 3) are cache-hot on their current CPU.
  2464. */
  2465. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2466. schedstat_inc(p, se.nr_failed_migrations_affine);
  2467. return 0;
  2468. }
  2469. *all_pinned = 0;
  2470. if (task_running(rq, p)) {
  2471. schedstat_inc(p, se.nr_failed_migrations_running);
  2472. return 0;
  2473. }
  2474. /*
  2475. * Aggressive migration if:
  2476. * 1) task is cache cold, or
  2477. * 2) too many balance attempts have failed.
  2478. */
  2479. if (!task_hot(p, rq->clock, sd) ||
  2480. sd->nr_balance_failed > sd->cache_nice_tries) {
  2481. #ifdef CONFIG_SCHEDSTATS
  2482. if (task_hot(p, rq->clock, sd)) {
  2483. schedstat_inc(sd, lb_hot_gained[idle]);
  2484. schedstat_inc(p, se.nr_forced_migrations);
  2485. }
  2486. #endif
  2487. return 1;
  2488. }
  2489. if (task_hot(p, rq->clock, sd)) {
  2490. schedstat_inc(p, se.nr_failed_migrations_hot);
  2491. return 0;
  2492. }
  2493. return 1;
  2494. }
  2495. static unsigned long
  2496. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2497. unsigned long max_load_move, struct sched_domain *sd,
  2498. enum cpu_idle_type idle, int *all_pinned,
  2499. int *this_best_prio, struct rq_iterator *iterator)
  2500. {
  2501. int loops = 0, pulled = 0, pinned = 0;
  2502. struct task_struct *p;
  2503. long rem_load_move = max_load_move;
  2504. if (max_load_move == 0)
  2505. goto out;
  2506. pinned = 1;
  2507. /*
  2508. * Start the load-balancing iterator:
  2509. */
  2510. p = iterator->start(iterator->arg);
  2511. next:
  2512. if (!p || loops++ > sysctl_sched_nr_migrate)
  2513. goto out;
  2514. if ((p->se.load.weight >> 1) > rem_load_move ||
  2515. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2516. p = iterator->next(iterator->arg);
  2517. goto next;
  2518. }
  2519. pull_task(busiest, p, this_rq, this_cpu);
  2520. pulled++;
  2521. rem_load_move -= p->se.load.weight;
  2522. /*
  2523. * We only want to steal up to the prescribed amount of weighted load.
  2524. */
  2525. if (rem_load_move > 0) {
  2526. if (p->prio < *this_best_prio)
  2527. *this_best_prio = p->prio;
  2528. p = iterator->next(iterator->arg);
  2529. goto next;
  2530. }
  2531. out:
  2532. /*
  2533. * Right now, this is one of only two places pull_task() is called,
  2534. * so we can safely collect pull_task() stats here rather than
  2535. * inside pull_task().
  2536. */
  2537. schedstat_add(sd, lb_gained[idle], pulled);
  2538. if (all_pinned)
  2539. *all_pinned = pinned;
  2540. return max_load_move - rem_load_move;
  2541. }
  2542. /*
  2543. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2544. * this_rq, as part of a balancing operation within domain "sd".
  2545. * Returns 1 if successful and 0 otherwise.
  2546. *
  2547. * Called with both runqueues locked.
  2548. */
  2549. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2550. unsigned long max_load_move,
  2551. struct sched_domain *sd, enum cpu_idle_type idle,
  2552. int *all_pinned)
  2553. {
  2554. const struct sched_class *class = sched_class_highest;
  2555. unsigned long total_load_moved = 0;
  2556. int this_best_prio = this_rq->curr->prio;
  2557. do {
  2558. total_load_moved +=
  2559. class->load_balance(this_rq, this_cpu, busiest,
  2560. max_load_move - total_load_moved,
  2561. sd, idle, all_pinned, &this_best_prio);
  2562. class = class->next;
  2563. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2564. break;
  2565. } while (class && max_load_move > total_load_moved);
  2566. return total_load_moved > 0;
  2567. }
  2568. static int
  2569. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2570. struct sched_domain *sd, enum cpu_idle_type idle,
  2571. struct rq_iterator *iterator)
  2572. {
  2573. struct task_struct *p = iterator->start(iterator->arg);
  2574. int pinned = 0;
  2575. while (p) {
  2576. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2577. pull_task(busiest, p, this_rq, this_cpu);
  2578. /*
  2579. * Right now, this is only the second place pull_task()
  2580. * is called, so we can safely collect pull_task()
  2581. * stats here rather than inside pull_task().
  2582. */
  2583. schedstat_inc(sd, lb_gained[idle]);
  2584. return 1;
  2585. }
  2586. p = iterator->next(iterator->arg);
  2587. }
  2588. return 0;
  2589. }
  2590. /*
  2591. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2592. * part of active balancing operations within "domain".
  2593. * Returns 1 if successful and 0 otherwise.
  2594. *
  2595. * Called with both runqueues locked.
  2596. */
  2597. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2598. struct sched_domain *sd, enum cpu_idle_type idle)
  2599. {
  2600. const struct sched_class *class;
  2601. for (class = sched_class_highest; class; class = class->next)
  2602. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2603. return 1;
  2604. return 0;
  2605. }
  2606. /*
  2607. * find_busiest_group finds and returns the busiest CPU group within the
  2608. * domain. It calculates and returns the amount of weighted load which
  2609. * should be moved to restore balance via the imbalance parameter.
  2610. */
  2611. static struct sched_group *
  2612. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2613. unsigned long *imbalance, enum cpu_idle_type idle,
  2614. int *sd_idle, const cpumask_t *cpus, int *balance)
  2615. {
  2616. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2617. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2618. unsigned long max_pull;
  2619. unsigned long busiest_load_per_task, busiest_nr_running;
  2620. unsigned long this_load_per_task, this_nr_running;
  2621. int load_idx, group_imb = 0;
  2622. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2623. int power_savings_balance = 1;
  2624. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2625. unsigned long min_nr_running = ULONG_MAX;
  2626. struct sched_group *group_min = NULL, *group_leader = NULL;
  2627. #endif
  2628. max_load = this_load = total_load = total_pwr = 0;
  2629. busiest_load_per_task = busiest_nr_running = 0;
  2630. this_load_per_task = this_nr_running = 0;
  2631. if (idle == CPU_NOT_IDLE)
  2632. load_idx = sd->busy_idx;
  2633. else if (idle == CPU_NEWLY_IDLE)
  2634. load_idx = sd->newidle_idx;
  2635. else
  2636. load_idx = sd->idle_idx;
  2637. do {
  2638. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2639. int local_group;
  2640. int i;
  2641. int __group_imb = 0;
  2642. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2643. unsigned long sum_nr_running, sum_weighted_load;
  2644. unsigned long sum_avg_load_per_task;
  2645. unsigned long avg_load_per_task;
  2646. local_group = cpu_isset(this_cpu, group->cpumask);
  2647. if (local_group)
  2648. balance_cpu = first_cpu(group->cpumask);
  2649. /* Tally up the load of all CPUs in the group */
  2650. sum_weighted_load = sum_nr_running = avg_load = 0;
  2651. sum_avg_load_per_task = avg_load_per_task = 0;
  2652. max_cpu_load = 0;
  2653. min_cpu_load = ~0UL;
  2654. for_each_cpu_mask_nr(i, group->cpumask) {
  2655. struct rq *rq;
  2656. if (!cpu_isset(i, *cpus))
  2657. continue;
  2658. rq = cpu_rq(i);
  2659. if (*sd_idle && rq->nr_running)
  2660. *sd_idle = 0;
  2661. /* Bias balancing toward cpus of our domain */
  2662. if (local_group) {
  2663. if (idle_cpu(i) && !first_idle_cpu) {
  2664. first_idle_cpu = 1;
  2665. balance_cpu = i;
  2666. }
  2667. load = target_load(i, load_idx);
  2668. } else {
  2669. load = source_load(i, load_idx);
  2670. if (load > max_cpu_load)
  2671. max_cpu_load = load;
  2672. if (min_cpu_load > load)
  2673. min_cpu_load = load;
  2674. }
  2675. avg_load += load;
  2676. sum_nr_running += rq->nr_running;
  2677. sum_weighted_load += weighted_cpuload(i);
  2678. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2679. }
  2680. /*
  2681. * First idle cpu or the first cpu(busiest) in this sched group
  2682. * is eligible for doing load balancing at this and above
  2683. * domains. In the newly idle case, we will allow all the cpu's
  2684. * to do the newly idle load balance.
  2685. */
  2686. if (idle != CPU_NEWLY_IDLE && local_group &&
  2687. balance_cpu != this_cpu && balance) {
  2688. *balance = 0;
  2689. goto ret;
  2690. }
  2691. total_load += avg_load;
  2692. total_pwr += group->__cpu_power;
  2693. /* Adjust by relative CPU power of the group */
  2694. avg_load = sg_div_cpu_power(group,
  2695. avg_load * SCHED_LOAD_SCALE);
  2696. /*
  2697. * Consider the group unbalanced when the imbalance is larger
  2698. * than the average weight of two tasks.
  2699. *
  2700. * APZ: with cgroup the avg task weight can vary wildly and
  2701. * might not be a suitable number - should we keep a
  2702. * normalized nr_running number somewhere that negates
  2703. * the hierarchy?
  2704. */
  2705. avg_load_per_task = sg_div_cpu_power(group,
  2706. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2707. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2708. __group_imb = 1;
  2709. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2710. if (local_group) {
  2711. this_load = avg_load;
  2712. this = group;
  2713. this_nr_running = sum_nr_running;
  2714. this_load_per_task = sum_weighted_load;
  2715. } else if (avg_load > max_load &&
  2716. (sum_nr_running > group_capacity || __group_imb)) {
  2717. max_load = avg_load;
  2718. busiest = group;
  2719. busiest_nr_running = sum_nr_running;
  2720. busiest_load_per_task = sum_weighted_load;
  2721. group_imb = __group_imb;
  2722. }
  2723. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2724. /*
  2725. * Busy processors will not participate in power savings
  2726. * balance.
  2727. */
  2728. if (idle == CPU_NOT_IDLE ||
  2729. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2730. goto group_next;
  2731. /*
  2732. * If the local group is idle or completely loaded
  2733. * no need to do power savings balance at this domain
  2734. */
  2735. if (local_group && (this_nr_running >= group_capacity ||
  2736. !this_nr_running))
  2737. power_savings_balance = 0;
  2738. /*
  2739. * If a group is already running at full capacity or idle,
  2740. * don't include that group in power savings calculations
  2741. */
  2742. if (!power_savings_balance || sum_nr_running >= group_capacity
  2743. || !sum_nr_running)
  2744. goto group_next;
  2745. /*
  2746. * Calculate the group which has the least non-idle load.
  2747. * This is the group from where we need to pick up the load
  2748. * for saving power
  2749. */
  2750. if ((sum_nr_running < min_nr_running) ||
  2751. (sum_nr_running == min_nr_running &&
  2752. first_cpu(group->cpumask) <
  2753. first_cpu(group_min->cpumask))) {
  2754. group_min = group;
  2755. min_nr_running = sum_nr_running;
  2756. min_load_per_task = sum_weighted_load /
  2757. sum_nr_running;
  2758. }
  2759. /*
  2760. * Calculate the group which is almost near its
  2761. * capacity but still has some space to pick up some load
  2762. * from other group and save more power
  2763. */
  2764. if (sum_nr_running <= group_capacity - 1) {
  2765. if (sum_nr_running > leader_nr_running ||
  2766. (sum_nr_running == leader_nr_running &&
  2767. first_cpu(group->cpumask) >
  2768. first_cpu(group_leader->cpumask))) {
  2769. group_leader = group;
  2770. leader_nr_running = sum_nr_running;
  2771. }
  2772. }
  2773. group_next:
  2774. #endif
  2775. group = group->next;
  2776. } while (group != sd->groups);
  2777. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2778. goto out_balanced;
  2779. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2780. if (this_load >= avg_load ||
  2781. 100*max_load <= sd->imbalance_pct*this_load)
  2782. goto out_balanced;
  2783. busiest_load_per_task /= busiest_nr_running;
  2784. if (group_imb)
  2785. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2786. /*
  2787. * We're trying to get all the cpus to the average_load, so we don't
  2788. * want to push ourselves above the average load, nor do we wish to
  2789. * reduce the max loaded cpu below the average load, as either of these
  2790. * actions would just result in more rebalancing later, and ping-pong
  2791. * tasks around. Thus we look for the minimum possible imbalance.
  2792. * Negative imbalances (*we* are more loaded than anyone else) will
  2793. * be counted as no imbalance for these purposes -- we can't fix that
  2794. * by pulling tasks to us. Be careful of negative numbers as they'll
  2795. * appear as very large values with unsigned longs.
  2796. */
  2797. if (max_load <= busiest_load_per_task)
  2798. goto out_balanced;
  2799. /*
  2800. * In the presence of smp nice balancing, certain scenarios can have
  2801. * max load less than avg load(as we skip the groups at or below
  2802. * its cpu_power, while calculating max_load..)
  2803. */
  2804. if (max_load < avg_load) {
  2805. *imbalance = 0;
  2806. goto small_imbalance;
  2807. }
  2808. /* Don't want to pull so many tasks that a group would go idle */
  2809. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2810. /* How much load to actually move to equalise the imbalance */
  2811. *imbalance = min(max_pull * busiest->__cpu_power,
  2812. (avg_load - this_load) * this->__cpu_power)
  2813. / SCHED_LOAD_SCALE;
  2814. /*
  2815. * if *imbalance is less than the average load per runnable task
  2816. * there is no gaurantee that any tasks will be moved so we'll have
  2817. * a think about bumping its value to force at least one task to be
  2818. * moved
  2819. */
  2820. if (*imbalance < busiest_load_per_task) {
  2821. unsigned long tmp, pwr_now, pwr_move;
  2822. unsigned int imbn;
  2823. small_imbalance:
  2824. pwr_move = pwr_now = 0;
  2825. imbn = 2;
  2826. if (this_nr_running) {
  2827. this_load_per_task /= this_nr_running;
  2828. if (busiest_load_per_task > this_load_per_task)
  2829. imbn = 1;
  2830. } else
  2831. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2832. if (max_load - this_load + busiest_load_per_task >=
  2833. busiest_load_per_task * imbn) {
  2834. *imbalance = busiest_load_per_task;
  2835. return busiest;
  2836. }
  2837. /*
  2838. * OK, we don't have enough imbalance to justify moving tasks,
  2839. * however we may be able to increase total CPU power used by
  2840. * moving them.
  2841. */
  2842. pwr_now += busiest->__cpu_power *
  2843. min(busiest_load_per_task, max_load);
  2844. pwr_now += this->__cpu_power *
  2845. min(this_load_per_task, this_load);
  2846. pwr_now /= SCHED_LOAD_SCALE;
  2847. /* Amount of load we'd subtract */
  2848. tmp = sg_div_cpu_power(busiest,
  2849. busiest_load_per_task * SCHED_LOAD_SCALE);
  2850. if (max_load > tmp)
  2851. pwr_move += busiest->__cpu_power *
  2852. min(busiest_load_per_task, max_load - tmp);
  2853. /* Amount of load we'd add */
  2854. if (max_load * busiest->__cpu_power <
  2855. busiest_load_per_task * SCHED_LOAD_SCALE)
  2856. tmp = sg_div_cpu_power(this,
  2857. max_load * busiest->__cpu_power);
  2858. else
  2859. tmp = sg_div_cpu_power(this,
  2860. busiest_load_per_task * SCHED_LOAD_SCALE);
  2861. pwr_move += this->__cpu_power *
  2862. min(this_load_per_task, this_load + tmp);
  2863. pwr_move /= SCHED_LOAD_SCALE;
  2864. /* Move if we gain throughput */
  2865. if (pwr_move > pwr_now)
  2866. *imbalance = busiest_load_per_task;
  2867. }
  2868. return busiest;
  2869. out_balanced:
  2870. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2871. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2872. goto ret;
  2873. if (this == group_leader && group_leader != group_min) {
  2874. *imbalance = min_load_per_task;
  2875. return group_min;
  2876. }
  2877. #endif
  2878. ret:
  2879. *imbalance = 0;
  2880. return NULL;
  2881. }
  2882. /*
  2883. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2884. */
  2885. static struct rq *
  2886. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2887. unsigned long imbalance, const cpumask_t *cpus)
  2888. {
  2889. struct rq *busiest = NULL, *rq;
  2890. unsigned long max_load = 0;
  2891. int i;
  2892. for_each_cpu_mask_nr(i, group->cpumask) {
  2893. unsigned long wl;
  2894. if (!cpu_isset(i, *cpus))
  2895. continue;
  2896. rq = cpu_rq(i);
  2897. wl = weighted_cpuload(i);
  2898. if (rq->nr_running == 1 && wl > imbalance)
  2899. continue;
  2900. if (wl > max_load) {
  2901. max_load = wl;
  2902. busiest = rq;
  2903. }
  2904. }
  2905. return busiest;
  2906. }
  2907. /*
  2908. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2909. * so long as it is large enough.
  2910. */
  2911. #define MAX_PINNED_INTERVAL 512
  2912. /*
  2913. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2914. * tasks if there is an imbalance.
  2915. */
  2916. static int load_balance(int this_cpu, struct rq *this_rq,
  2917. struct sched_domain *sd, enum cpu_idle_type idle,
  2918. int *balance, cpumask_t *cpus)
  2919. {
  2920. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2921. struct sched_group *group;
  2922. unsigned long imbalance;
  2923. struct rq *busiest;
  2924. unsigned long flags;
  2925. cpus_setall(*cpus);
  2926. /*
  2927. * When power savings policy is enabled for the parent domain, idle
  2928. * sibling can pick up load irrespective of busy siblings. In this case,
  2929. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2930. * portraying it as CPU_NOT_IDLE.
  2931. */
  2932. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2933. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2934. sd_idle = 1;
  2935. schedstat_inc(sd, lb_count[idle]);
  2936. redo:
  2937. update_shares(sd);
  2938. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2939. cpus, balance);
  2940. if (*balance == 0)
  2941. goto out_balanced;
  2942. if (!group) {
  2943. schedstat_inc(sd, lb_nobusyg[idle]);
  2944. goto out_balanced;
  2945. }
  2946. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2947. if (!busiest) {
  2948. schedstat_inc(sd, lb_nobusyq[idle]);
  2949. goto out_balanced;
  2950. }
  2951. BUG_ON(busiest == this_rq);
  2952. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2953. ld_moved = 0;
  2954. if (busiest->nr_running > 1) {
  2955. /*
  2956. * Attempt to move tasks. If find_busiest_group has found
  2957. * an imbalance but busiest->nr_running <= 1, the group is
  2958. * still unbalanced. ld_moved simply stays zero, so it is
  2959. * correctly treated as an imbalance.
  2960. */
  2961. local_irq_save(flags);
  2962. double_rq_lock(this_rq, busiest);
  2963. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2964. imbalance, sd, idle, &all_pinned);
  2965. double_rq_unlock(this_rq, busiest);
  2966. local_irq_restore(flags);
  2967. /*
  2968. * some other cpu did the load balance for us.
  2969. */
  2970. if (ld_moved && this_cpu != smp_processor_id())
  2971. resched_cpu(this_cpu);
  2972. /* All tasks on this runqueue were pinned by CPU affinity */
  2973. if (unlikely(all_pinned)) {
  2974. cpu_clear(cpu_of(busiest), *cpus);
  2975. if (!cpus_empty(*cpus))
  2976. goto redo;
  2977. goto out_balanced;
  2978. }
  2979. }
  2980. if (!ld_moved) {
  2981. schedstat_inc(sd, lb_failed[idle]);
  2982. sd->nr_balance_failed++;
  2983. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2984. spin_lock_irqsave(&busiest->lock, flags);
  2985. /* don't kick the migration_thread, if the curr
  2986. * task on busiest cpu can't be moved to this_cpu
  2987. */
  2988. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2989. spin_unlock_irqrestore(&busiest->lock, flags);
  2990. all_pinned = 1;
  2991. goto out_one_pinned;
  2992. }
  2993. if (!busiest->active_balance) {
  2994. busiest->active_balance = 1;
  2995. busiest->push_cpu = this_cpu;
  2996. active_balance = 1;
  2997. }
  2998. spin_unlock_irqrestore(&busiest->lock, flags);
  2999. if (active_balance)
  3000. wake_up_process(busiest->migration_thread);
  3001. /*
  3002. * We've kicked active balancing, reset the failure
  3003. * counter.
  3004. */
  3005. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3006. }
  3007. } else
  3008. sd->nr_balance_failed = 0;
  3009. if (likely(!active_balance)) {
  3010. /* We were unbalanced, so reset the balancing interval */
  3011. sd->balance_interval = sd->min_interval;
  3012. } else {
  3013. /*
  3014. * If we've begun active balancing, start to back off. This
  3015. * case may not be covered by the all_pinned logic if there
  3016. * is only 1 task on the busy runqueue (because we don't call
  3017. * move_tasks).
  3018. */
  3019. if (sd->balance_interval < sd->max_interval)
  3020. sd->balance_interval *= 2;
  3021. }
  3022. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3023. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3024. ld_moved = -1;
  3025. goto out;
  3026. out_balanced:
  3027. schedstat_inc(sd, lb_balanced[idle]);
  3028. sd->nr_balance_failed = 0;
  3029. out_one_pinned:
  3030. /* tune up the balancing interval */
  3031. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3032. (sd->balance_interval < sd->max_interval))
  3033. sd->balance_interval *= 2;
  3034. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3035. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3036. ld_moved = -1;
  3037. else
  3038. ld_moved = 0;
  3039. out:
  3040. if (ld_moved)
  3041. update_shares(sd);
  3042. return ld_moved;
  3043. }
  3044. /*
  3045. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3046. * tasks if there is an imbalance.
  3047. *
  3048. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3049. * this_rq is locked.
  3050. */
  3051. static int
  3052. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3053. cpumask_t *cpus)
  3054. {
  3055. struct sched_group *group;
  3056. struct rq *busiest = NULL;
  3057. unsigned long imbalance;
  3058. int ld_moved = 0;
  3059. int sd_idle = 0;
  3060. int all_pinned = 0;
  3061. cpus_setall(*cpus);
  3062. /*
  3063. * When power savings policy is enabled for the parent domain, idle
  3064. * sibling can pick up load irrespective of busy siblings. In this case,
  3065. * let the state of idle sibling percolate up as IDLE, instead of
  3066. * portraying it as CPU_NOT_IDLE.
  3067. */
  3068. if (sd->flags & SD_SHARE_CPUPOWER &&
  3069. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3070. sd_idle = 1;
  3071. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3072. redo:
  3073. update_shares_locked(this_rq, sd);
  3074. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3075. &sd_idle, cpus, NULL);
  3076. if (!group) {
  3077. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3078. goto out_balanced;
  3079. }
  3080. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3081. if (!busiest) {
  3082. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3083. goto out_balanced;
  3084. }
  3085. BUG_ON(busiest == this_rq);
  3086. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3087. ld_moved = 0;
  3088. if (busiest->nr_running > 1) {
  3089. /* Attempt to move tasks */
  3090. double_lock_balance(this_rq, busiest);
  3091. /* this_rq->clock is already updated */
  3092. update_rq_clock(busiest);
  3093. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3094. imbalance, sd, CPU_NEWLY_IDLE,
  3095. &all_pinned);
  3096. double_unlock_balance(this_rq, busiest);
  3097. if (unlikely(all_pinned)) {
  3098. cpu_clear(cpu_of(busiest), *cpus);
  3099. if (!cpus_empty(*cpus))
  3100. goto redo;
  3101. }
  3102. }
  3103. if (!ld_moved) {
  3104. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. return -1;
  3108. } else
  3109. sd->nr_balance_failed = 0;
  3110. update_shares_locked(this_rq, sd);
  3111. return ld_moved;
  3112. out_balanced:
  3113. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3114. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3115. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3116. return -1;
  3117. sd->nr_balance_failed = 0;
  3118. return 0;
  3119. }
  3120. /*
  3121. * idle_balance is called by schedule() if this_cpu is about to become
  3122. * idle. Attempts to pull tasks from other CPUs.
  3123. */
  3124. static void idle_balance(int this_cpu, struct rq *this_rq)
  3125. {
  3126. struct sched_domain *sd;
  3127. int pulled_task = -1;
  3128. unsigned long next_balance = jiffies + HZ;
  3129. cpumask_t tmpmask;
  3130. for_each_domain(this_cpu, sd) {
  3131. unsigned long interval;
  3132. if (!(sd->flags & SD_LOAD_BALANCE))
  3133. continue;
  3134. if (sd->flags & SD_BALANCE_NEWIDLE)
  3135. /* If we've pulled tasks over stop searching: */
  3136. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3137. sd, &tmpmask);
  3138. interval = msecs_to_jiffies(sd->balance_interval);
  3139. if (time_after(next_balance, sd->last_balance + interval))
  3140. next_balance = sd->last_balance + interval;
  3141. if (pulled_task)
  3142. break;
  3143. }
  3144. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3145. /*
  3146. * We are going idle. next_balance may be set based on
  3147. * a busy processor. So reset next_balance.
  3148. */
  3149. this_rq->next_balance = next_balance;
  3150. }
  3151. }
  3152. /*
  3153. * active_load_balance is run by migration threads. It pushes running tasks
  3154. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3155. * running on each physical CPU where possible, and avoids physical /
  3156. * logical imbalances.
  3157. *
  3158. * Called with busiest_rq locked.
  3159. */
  3160. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3161. {
  3162. int target_cpu = busiest_rq->push_cpu;
  3163. struct sched_domain *sd;
  3164. struct rq *target_rq;
  3165. /* Is there any task to move? */
  3166. if (busiest_rq->nr_running <= 1)
  3167. return;
  3168. target_rq = cpu_rq(target_cpu);
  3169. /*
  3170. * This condition is "impossible", if it occurs
  3171. * we need to fix it. Originally reported by
  3172. * Bjorn Helgaas on a 128-cpu setup.
  3173. */
  3174. BUG_ON(busiest_rq == target_rq);
  3175. /* move a task from busiest_rq to target_rq */
  3176. double_lock_balance(busiest_rq, target_rq);
  3177. update_rq_clock(busiest_rq);
  3178. update_rq_clock(target_rq);
  3179. /* Search for an sd spanning us and the target CPU. */
  3180. for_each_domain(target_cpu, sd) {
  3181. if ((sd->flags & SD_LOAD_BALANCE) &&
  3182. cpu_isset(busiest_cpu, sd->span))
  3183. break;
  3184. }
  3185. if (likely(sd)) {
  3186. schedstat_inc(sd, alb_count);
  3187. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3188. sd, CPU_IDLE))
  3189. schedstat_inc(sd, alb_pushed);
  3190. else
  3191. schedstat_inc(sd, alb_failed);
  3192. }
  3193. double_unlock_balance(busiest_rq, target_rq);
  3194. }
  3195. #ifdef CONFIG_NO_HZ
  3196. static struct {
  3197. atomic_t load_balancer;
  3198. cpumask_t cpu_mask;
  3199. } nohz ____cacheline_aligned = {
  3200. .load_balancer = ATOMIC_INIT(-1),
  3201. .cpu_mask = CPU_MASK_NONE,
  3202. };
  3203. /*
  3204. * This routine will try to nominate the ilb (idle load balancing)
  3205. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3206. * load balancing on behalf of all those cpus. If all the cpus in the system
  3207. * go into this tickless mode, then there will be no ilb owner (as there is
  3208. * no need for one) and all the cpus will sleep till the next wakeup event
  3209. * arrives...
  3210. *
  3211. * For the ilb owner, tick is not stopped. And this tick will be used
  3212. * for idle load balancing. ilb owner will still be part of
  3213. * nohz.cpu_mask..
  3214. *
  3215. * While stopping the tick, this cpu will become the ilb owner if there
  3216. * is no other owner. And will be the owner till that cpu becomes busy
  3217. * or if all cpus in the system stop their ticks at which point
  3218. * there is no need for ilb owner.
  3219. *
  3220. * When the ilb owner becomes busy, it nominates another owner, during the
  3221. * next busy scheduler_tick()
  3222. */
  3223. int select_nohz_load_balancer(int stop_tick)
  3224. {
  3225. int cpu = smp_processor_id();
  3226. if (stop_tick) {
  3227. cpu_set(cpu, nohz.cpu_mask);
  3228. cpu_rq(cpu)->in_nohz_recently = 1;
  3229. /*
  3230. * If we are going offline and still the leader, give up!
  3231. */
  3232. if (!cpu_active(cpu) &&
  3233. atomic_read(&nohz.load_balancer) == cpu) {
  3234. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3235. BUG();
  3236. return 0;
  3237. }
  3238. /* time for ilb owner also to sleep */
  3239. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3240. if (atomic_read(&nohz.load_balancer) == cpu)
  3241. atomic_set(&nohz.load_balancer, -1);
  3242. return 0;
  3243. }
  3244. if (atomic_read(&nohz.load_balancer) == -1) {
  3245. /* make me the ilb owner */
  3246. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3247. return 1;
  3248. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3249. return 1;
  3250. } else {
  3251. if (!cpu_isset(cpu, nohz.cpu_mask))
  3252. return 0;
  3253. cpu_clear(cpu, nohz.cpu_mask);
  3254. if (atomic_read(&nohz.load_balancer) == cpu)
  3255. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3256. BUG();
  3257. }
  3258. return 0;
  3259. }
  3260. #endif
  3261. static DEFINE_SPINLOCK(balancing);
  3262. /*
  3263. * It checks each scheduling domain to see if it is due to be balanced,
  3264. * and initiates a balancing operation if so.
  3265. *
  3266. * Balancing parameters are set up in arch_init_sched_domains.
  3267. */
  3268. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3269. {
  3270. int balance = 1;
  3271. struct rq *rq = cpu_rq(cpu);
  3272. unsigned long interval;
  3273. struct sched_domain *sd;
  3274. /* Earliest time when we have to do rebalance again */
  3275. unsigned long next_balance = jiffies + 60*HZ;
  3276. int update_next_balance = 0;
  3277. int need_serialize;
  3278. cpumask_t tmp;
  3279. for_each_domain(cpu, sd) {
  3280. if (!(sd->flags & SD_LOAD_BALANCE))
  3281. continue;
  3282. interval = sd->balance_interval;
  3283. if (idle != CPU_IDLE)
  3284. interval *= sd->busy_factor;
  3285. /* scale ms to jiffies */
  3286. interval = msecs_to_jiffies(interval);
  3287. if (unlikely(!interval))
  3288. interval = 1;
  3289. if (interval > HZ*NR_CPUS/10)
  3290. interval = HZ*NR_CPUS/10;
  3291. need_serialize = sd->flags & SD_SERIALIZE;
  3292. if (need_serialize) {
  3293. if (!spin_trylock(&balancing))
  3294. goto out;
  3295. }
  3296. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3297. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3298. /*
  3299. * We've pulled tasks over so either we're no
  3300. * longer idle, or one of our SMT siblings is
  3301. * not idle.
  3302. */
  3303. idle = CPU_NOT_IDLE;
  3304. }
  3305. sd->last_balance = jiffies;
  3306. }
  3307. if (need_serialize)
  3308. spin_unlock(&balancing);
  3309. out:
  3310. if (time_after(next_balance, sd->last_balance + interval)) {
  3311. next_balance = sd->last_balance + interval;
  3312. update_next_balance = 1;
  3313. }
  3314. /*
  3315. * Stop the load balance at this level. There is another
  3316. * CPU in our sched group which is doing load balancing more
  3317. * actively.
  3318. */
  3319. if (!balance)
  3320. break;
  3321. }
  3322. /*
  3323. * next_balance will be updated only when there is a need.
  3324. * When the cpu is attached to null domain for ex, it will not be
  3325. * updated.
  3326. */
  3327. if (likely(update_next_balance))
  3328. rq->next_balance = next_balance;
  3329. }
  3330. /*
  3331. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3332. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3333. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3334. */
  3335. static void run_rebalance_domains(struct softirq_action *h)
  3336. {
  3337. int this_cpu = smp_processor_id();
  3338. struct rq *this_rq = cpu_rq(this_cpu);
  3339. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3340. CPU_IDLE : CPU_NOT_IDLE;
  3341. rebalance_domains(this_cpu, idle);
  3342. #ifdef CONFIG_NO_HZ
  3343. /*
  3344. * If this cpu is the owner for idle load balancing, then do the
  3345. * balancing on behalf of the other idle cpus whose ticks are
  3346. * stopped.
  3347. */
  3348. if (this_rq->idle_at_tick &&
  3349. atomic_read(&nohz.load_balancer) == this_cpu) {
  3350. cpumask_t cpus = nohz.cpu_mask;
  3351. struct rq *rq;
  3352. int balance_cpu;
  3353. cpu_clear(this_cpu, cpus);
  3354. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3355. /*
  3356. * If this cpu gets work to do, stop the load balancing
  3357. * work being done for other cpus. Next load
  3358. * balancing owner will pick it up.
  3359. */
  3360. if (need_resched())
  3361. break;
  3362. rebalance_domains(balance_cpu, CPU_IDLE);
  3363. rq = cpu_rq(balance_cpu);
  3364. if (time_after(this_rq->next_balance, rq->next_balance))
  3365. this_rq->next_balance = rq->next_balance;
  3366. }
  3367. }
  3368. #endif
  3369. }
  3370. /*
  3371. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3372. *
  3373. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3374. * idle load balancing owner or decide to stop the periodic load balancing,
  3375. * if the whole system is idle.
  3376. */
  3377. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3378. {
  3379. #ifdef CONFIG_NO_HZ
  3380. /*
  3381. * If we were in the nohz mode recently and busy at the current
  3382. * scheduler tick, then check if we need to nominate new idle
  3383. * load balancer.
  3384. */
  3385. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3386. rq->in_nohz_recently = 0;
  3387. if (atomic_read(&nohz.load_balancer) == cpu) {
  3388. cpu_clear(cpu, nohz.cpu_mask);
  3389. atomic_set(&nohz.load_balancer, -1);
  3390. }
  3391. if (atomic_read(&nohz.load_balancer) == -1) {
  3392. /*
  3393. * simple selection for now: Nominate the
  3394. * first cpu in the nohz list to be the next
  3395. * ilb owner.
  3396. *
  3397. * TBD: Traverse the sched domains and nominate
  3398. * the nearest cpu in the nohz.cpu_mask.
  3399. */
  3400. int ilb = first_cpu(nohz.cpu_mask);
  3401. if (ilb < nr_cpu_ids)
  3402. resched_cpu(ilb);
  3403. }
  3404. }
  3405. /*
  3406. * If this cpu is idle and doing idle load balancing for all the
  3407. * cpus with ticks stopped, is it time for that to stop?
  3408. */
  3409. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3410. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3411. resched_cpu(cpu);
  3412. return;
  3413. }
  3414. /*
  3415. * If this cpu is idle and the idle load balancing is done by
  3416. * someone else, then no need raise the SCHED_SOFTIRQ
  3417. */
  3418. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3419. cpu_isset(cpu, nohz.cpu_mask))
  3420. return;
  3421. #endif
  3422. if (time_after_eq(jiffies, rq->next_balance))
  3423. raise_softirq(SCHED_SOFTIRQ);
  3424. }
  3425. #else /* CONFIG_SMP */
  3426. /*
  3427. * on UP we do not need to balance between CPUs:
  3428. */
  3429. static inline void idle_balance(int cpu, struct rq *rq)
  3430. {
  3431. }
  3432. #endif
  3433. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3434. EXPORT_PER_CPU_SYMBOL(kstat);
  3435. /*
  3436. * Return any ns on the sched_clock that have not yet been banked in
  3437. * @p in case that task is currently running.
  3438. */
  3439. unsigned long long task_delta_exec(struct task_struct *p)
  3440. {
  3441. unsigned long flags;
  3442. struct rq *rq;
  3443. u64 ns = 0;
  3444. rq = task_rq_lock(p, &flags);
  3445. if (task_current(rq, p)) {
  3446. u64 delta_exec;
  3447. update_rq_clock(rq);
  3448. delta_exec = rq->clock - p->se.exec_start;
  3449. if ((s64)delta_exec > 0)
  3450. ns = delta_exec;
  3451. }
  3452. task_rq_unlock(rq, &flags);
  3453. return ns;
  3454. }
  3455. /*
  3456. * Account user cpu time to a process.
  3457. * @p: the process that the cpu time gets accounted to
  3458. * @cputime: the cpu time spent in user space since the last update
  3459. */
  3460. void account_user_time(struct task_struct *p, cputime_t cputime)
  3461. {
  3462. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3463. cputime64_t tmp;
  3464. p->utime = cputime_add(p->utime, cputime);
  3465. account_group_user_time(p, cputime);
  3466. /* Add user time to cpustat. */
  3467. tmp = cputime_to_cputime64(cputime);
  3468. if (TASK_NICE(p) > 0)
  3469. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3470. else
  3471. cpustat->user = cputime64_add(cpustat->user, tmp);
  3472. /* Account for user time used */
  3473. acct_update_integrals(p);
  3474. }
  3475. /*
  3476. * Account guest cpu time to a process.
  3477. * @p: the process that the cpu time gets accounted to
  3478. * @cputime: the cpu time spent in virtual machine since the last update
  3479. */
  3480. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3481. {
  3482. cputime64_t tmp;
  3483. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3484. tmp = cputime_to_cputime64(cputime);
  3485. p->utime = cputime_add(p->utime, cputime);
  3486. account_group_user_time(p, cputime);
  3487. p->gtime = cputime_add(p->gtime, cputime);
  3488. cpustat->user = cputime64_add(cpustat->user, tmp);
  3489. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3490. }
  3491. /*
  3492. * Account scaled user cpu time to a process.
  3493. * @p: the process that the cpu time gets accounted to
  3494. * @cputime: the cpu time spent in user space since the last update
  3495. */
  3496. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3497. {
  3498. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3499. }
  3500. /*
  3501. * Account system cpu time to a process.
  3502. * @p: the process that the cpu time gets accounted to
  3503. * @hardirq_offset: the offset to subtract from hardirq_count()
  3504. * @cputime: the cpu time spent in kernel space since the last update
  3505. */
  3506. void account_system_time(struct task_struct *p, int hardirq_offset,
  3507. cputime_t cputime)
  3508. {
  3509. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3510. struct rq *rq = this_rq();
  3511. cputime64_t tmp;
  3512. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3513. account_guest_time(p, cputime);
  3514. return;
  3515. }
  3516. p->stime = cputime_add(p->stime, cputime);
  3517. account_group_system_time(p, cputime);
  3518. /* Add system time to cpustat. */
  3519. tmp = cputime_to_cputime64(cputime);
  3520. if (hardirq_count() - hardirq_offset)
  3521. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3522. else if (softirq_count())
  3523. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3524. else if (p != rq->idle)
  3525. cpustat->system = cputime64_add(cpustat->system, tmp);
  3526. else if (atomic_read(&rq->nr_iowait) > 0)
  3527. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3528. else
  3529. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3530. /* Account for system time used */
  3531. acct_update_integrals(p);
  3532. }
  3533. /*
  3534. * Account scaled system cpu time to a process.
  3535. * @p: the process that the cpu time gets accounted to
  3536. * @hardirq_offset: the offset to subtract from hardirq_count()
  3537. * @cputime: the cpu time spent in kernel space since the last update
  3538. */
  3539. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3540. {
  3541. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3542. }
  3543. /*
  3544. * Account for involuntary wait time.
  3545. * @p: the process from which the cpu time has been stolen
  3546. * @steal: the cpu time spent in involuntary wait
  3547. */
  3548. void account_steal_time(struct task_struct *p, cputime_t steal)
  3549. {
  3550. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3551. cputime64_t tmp = cputime_to_cputime64(steal);
  3552. struct rq *rq = this_rq();
  3553. if (p == rq->idle) {
  3554. p->stime = cputime_add(p->stime, steal);
  3555. account_group_system_time(p, steal);
  3556. if (atomic_read(&rq->nr_iowait) > 0)
  3557. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3558. else
  3559. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3560. } else
  3561. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3562. }
  3563. /*
  3564. * Use precise platform statistics if available:
  3565. */
  3566. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3567. cputime_t task_utime(struct task_struct *p)
  3568. {
  3569. return p->utime;
  3570. }
  3571. cputime_t task_stime(struct task_struct *p)
  3572. {
  3573. return p->stime;
  3574. }
  3575. #else
  3576. cputime_t task_utime(struct task_struct *p)
  3577. {
  3578. clock_t utime = cputime_to_clock_t(p->utime),
  3579. total = utime + cputime_to_clock_t(p->stime);
  3580. u64 temp;
  3581. /*
  3582. * Use CFS's precise accounting:
  3583. */
  3584. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3585. if (total) {
  3586. temp *= utime;
  3587. do_div(temp, total);
  3588. }
  3589. utime = (clock_t)temp;
  3590. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3591. return p->prev_utime;
  3592. }
  3593. cputime_t task_stime(struct task_struct *p)
  3594. {
  3595. clock_t stime;
  3596. /*
  3597. * Use CFS's precise accounting. (we subtract utime from
  3598. * the total, to make sure the total observed by userspace
  3599. * grows monotonically - apps rely on that):
  3600. */
  3601. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3602. cputime_to_clock_t(task_utime(p));
  3603. if (stime >= 0)
  3604. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3605. return p->prev_stime;
  3606. }
  3607. #endif
  3608. inline cputime_t task_gtime(struct task_struct *p)
  3609. {
  3610. return p->gtime;
  3611. }
  3612. /*
  3613. * This function gets called by the timer code, with HZ frequency.
  3614. * We call it with interrupts disabled.
  3615. *
  3616. * It also gets called by the fork code, when changing the parent's
  3617. * timeslices.
  3618. */
  3619. void scheduler_tick(void)
  3620. {
  3621. int cpu = smp_processor_id();
  3622. struct rq *rq = cpu_rq(cpu);
  3623. struct task_struct *curr = rq->curr;
  3624. sched_clock_tick();
  3625. spin_lock(&rq->lock);
  3626. update_rq_clock(rq);
  3627. update_cpu_load(rq);
  3628. curr->sched_class->task_tick(rq, curr, 0);
  3629. spin_unlock(&rq->lock);
  3630. #ifdef CONFIG_SMP
  3631. rq->idle_at_tick = idle_cpu(cpu);
  3632. trigger_load_balance(rq, cpu);
  3633. #endif
  3634. }
  3635. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3636. defined(CONFIG_PREEMPT_TRACER))
  3637. static inline unsigned long get_parent_ip(unsigned long addr)
  3638. {
  3639. if (in_lock_functions(addr)) {
  3640. addr = CALLER_ADDR2;
  3641. if (in_lock_functions(addr))
  3642. addr = CALLER_ADDR3;
  3643. }
  3644. return addr;
  3645. }
  3646. void __kprobes add_preempt_count(int val)
  3647. {
  3648. #ifdef CONFIG_DEBUG_PREEMPT
  3649. /*
  3650. * Underflow?
  3651. */
  3652. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3653. return;
  3654. #endif
  3655. preempt_count() += val;
  3656. #ifdef CONFIG_DEBUG_PREEMPT
  3657. /*
  3658. * Spinlock count overflowing soon?
  3659. */
  3660. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3661. PREEMPT_MASK - 10);
  3662. #endif
  3663. if (preempt_count() == val)
  3664. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3665. }
  3666. EXPORT_SYMBOL(add_preempt_count);
  3667. void __kprobes sub_preempt_count(int val)
  3668. {
  3669. #ifdef CONFIG_DEBUG_PREEMPT
  3670. /*
  3671. * Underflow?
  3672. */
  3673. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3674. return;
  3675. /*
  3676. * Is the spinlock portion underflowing?
  3677. */
  3678. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3679. !(preempt_count() & PREEMPT_MASK)))
  3680. return;
  3681. #endif
  3682. if (preempt_count() == val)
  3683. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3684. preempt_count() -= val;
  3685. }
  3686. EXPORT_SYMBOL(sub_preempt_count);
  3687. #endif
  3688. /*
  3689. * Print scheduling while atomic bug:
  3690. */
  3691. static noinline void __schedule_bug(struct task_struct *prev)
  3692. {
  3693. struct pt_regs *regs = get_irq_regs();
  3694. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3695. prev->comm, prev->pid, preempt_count());
  3696. debug_show_held_locks(prev);
  3697. print_modules();
  3698. if (irqs_disabled())
  3699. print_irqtrace_events(prev);
  3700. if (regs)
  3701. show_regs(regs);
  3702. else
  3703. dump_stack();
  3704. }
  3705. /*
  3706. * Various schedule()-time debugging checks and statistics:
  3707. */
  3708. static inline void schedule_debug(struct task_struct *prev)
  3709. {
  3710. /*
  3711. * Test if we are atomic. Since do_exit() needs to call into
  3712. * schedule() atomically, we ignore that path for now.
  3713. * Otherwise, whine if we are scheduling when we should not be.
  3714. */
  3715. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3716. __schedule_bug(prev);
  3717. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3718. schedstat_inc(this_rq(), sched_count);
  3719. #ifdef CONFIG_SCHEDSTATS
  3720. if (unlikely(prev->lock_depth >= 0)) {
  3721. schedstat_inc(this_rq(), bkl_count);
  3722. schedstat_inc(prev, sched_info.bkl_count);
  3723. }
  3724. #endif
  3725. }
  3726. /*
  3727. * Pick up the highest-prio task:
  3728. */
  3729. static inline struct task_struct *
  3730. pick_next_task(struct rq *rq, struct task_struct *prev)
  3731. {
  3732. const struct sched_class *class;
  3733. struct task_struct *p;
  3734. /*
  3735. * Optimization: we know that if all tasks are in
  3736. * the fair class we can call that function directly:
  3737. */
  3738. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3739. p = fair_sched_class.pick_next_task(rq);
  3740. if (likely(p))
  3741. return p;
  3742. }
  3743. class = sched_class_highest;
  3744. for ( ; ; ) {
  3745. p = class->pick_next_task(rq);
  3746. if (p)
  3747. return p;
  3748. /*
  3749. * Will never be NULL as the idle class always
  3750. * returns a non-NULL p:
  3751. */
  3752. class = class->next;
  3753. }
  3754. }
  3755. /*
  3756. * schedule() is the main scheduler function.
  3757. */
  3758. asmlinkage void __sched schedule(void)
  3759. {
  3760. struct task_struct *prev, *next;
  3761. unsigned long *switch_count;
  3762. struct rq *rq;
  3763. int cpu;
  3764. need_resched:
  3765. preempt_disable();
  3766. cpu = smp_processor_id();
  3767. rq = cpu_rq(cpu);
  3768. rcu_qsctr_inc(cpu);
  3769. prev = rq->curr;
  3770. switch_count = &prev->nivcsw;
  3771. release_kernel_lock(prev);
  3772. need_resched_nonpreemptible:
  3773. schedule_debug(prev);
  3774. if (sched_feat(HRTICK))
  3775. hrtick_clear(rq);
  3776. spin_lock_irq(&rq->lock);
  3777. update_rq_clock(rq);
  3778. clear_tsk_need_resched(prev);
  3779. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3780. if (unlikely(signal_pending_state(prev->state, prev)))
  3781. prev->state = TASK_RUNNING;
  3782. else
  3783. deactivate_task(rq, prev, 1);
  3784. switch_count = &prev->nvcsw;
  3785. }
  3786. #ifdef CONFIG_SMP
  3787. if (prev->sched_class->pre_schedule)
  3788. prev->sched_class->pre_schedule(rq, prev);
  3789. #endif
  3790. if (unlikely(!rq->nr_running))
  3791. idle_balance(cpu, rq);
  3792. prev->sched_class->put_prev_task(rq, prev);
  3793. next = pick_next_task(rq, prev);
  3794. if (likely(prev != next)) {
  3795. sched_info_switch(prev, next);
  3796. rq->nr_switches++;
  3797. rq->curr = next;
  3798. ++*switch_count;
  3799. context_switch(rq, prev, next); /* unlocks the rq */
  3800. /*
  3801. * the context switch might have flipped the stack from under
  3802. * us, hence refresh the local variables.
  3803. */
  3804. cpu = smp_processor_id();
  3805. rq = cpu_rq(cpu);
  3806. } else
  3807. spin_unlock_irq(&rq->lock);
  3808. if (unlikely(reacquire_kernel_lock(current) < 0))
  3809. goto need_resched_nonpreemptible;
  3810. preempt_enable_no_resched();
  3811. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3812. goto need_resched;
  3813. }
  3814. EXPORT_SYMBOL(schedule);
  3815. #ifdef CONFIG_PREEMPT
  3816. /*
  3817. * this is the entry point to schedule() from in-kernel preemption
  3818. * off of preempt_enable. Kernel preemptions off return from interrupt
  3819. * occur there and call schedule directly.
  3820. */
  3821. asmlinkage void __sched preempt_schedule(void)
  3822. {
  3823. struct thread_info *ti = current_thread_info();
  3824. /*
  3825. * If there is a non-zero preempt_count or interrupts are disabled,
  3826. * we do not want to preempt the current task. Just return..
  3827. */
  3828. if (likely(ti->preempt_count || irqs_disabled()))
  3829. return;
  3830. do {
  3831. add_preempt_count(PREEMPT_ACTIVE);
  3832. schedule();
  3833. sub_preempt_count(PREEMPT_ACTIVE);
  3834. /*
  3835. * Check again in case we missed a preemption opportunity
  3836. * between schedule and now.
  3837. */
  3838. barrier();
  3839. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3840. }
  3841. EXPORT_SYMBOL(preempt_schedule);
  3842. /*
  3843. * this is the entry point to schedule() from kernel preemption
  3844. * off of irq context.
  3845. * Note, that this is called and return with irqs disabled. This will
  3846. * protect us against recursive calling from irq.
  3847. */
  3848. asmlinkage void __sched preempt_schedule_irq(void)
  3849. {
  3850. struct thread_info *ti = current_thread_info();
  3851. /* Catch callers which need to be fixed */
  3852. BUG_ON(ti->preempt_count || !irqs_disabled());
  3853. do {
  3854. add_preempt_count(PREEMPT_ACTIVE);
  3855. local_irq_enable();
  3856. schedule();
  3857. local_irq_disable();
  3858. sub_preempt_count(PREEMPT_ACTIVE);
  3859. /*
  3860. * Check again in case we missed a preemption opportunity
  3861. * between schedule and now.
  3862. */
  3863. barrier();
  3864. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3865. }
  3866. #endif /* CONFIG_PREEMPT */
  3867. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3868. void *key)
  3869. {
  3870. return try_to_wake_up(curr->private, mode, sync);
  3871. }
  3872. EXPORT_SYMBOL(default_wake_function);
  3873. /*
  3874. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3875. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3876. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3877. *
  3878. * There are circumstances in which we can try to wake a task which has already
  3879. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3880. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3881. */
  3882. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3883. int nr_exclusive, int sync, void *key)
  3884. {
  3885. wait_queue_t *curr, *next;
  3886. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3887. unsigned flags = curr->flags;
  3888. if (curr->func(curr, mode, sync, key) &&
  3889. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3890. break;
  3891. }
  3892. }
  3893. /**
  3894. * __wake_up - wake up threads blocked on a waitqueue.
  3895. * @q: the waitqueue
  3896. * @mode: which threads
  3897. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3898. * @key: is directly passed to the wakeup function
  3899. */
  3900. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3901. int nr_exclusive, void *key)
  3902. {
  3903. unsigned long flags;
  3904. spin_lock_irqsave(&q->lock, flags);
  3905. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3906. spin_unlock_irqrestore(&q->lock, flags);
  3907. }
  3908. EXPORT_SYMBOL(__wake_up);
  3909. /*
  3910. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3911. */
  3912. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3913. {
  3914. __wake_up_common(q, mode, 1, 0, NULL);
  3915. }
  3916. /**
  3917. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3918. * @q: the waitqueue
  3919. * @mode: which threads
  3920. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3921. *
  3922. * The sync wakeup differs that the waker knows that it will schedule
  3923. * away soon, so while the target thread will be woken up, it will not
  3924. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3925. * with each other. This can prevent needless bouncing between CPUs.
  3926. *
  3927. * On UP it can prevent extra preemption.
  3928. */
  3929. void
  3930. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3931. {
  3932. unsigned long flags;
  3933. int sync = 1;
  3934. if (unlikely(!q))
  3935. return;
  3936. if (unlikely(!nr_exclusive))
  3937. sync = 0;
  3938. spin_lock_irqsave(&q->lock, flags);
  3939. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3940. spin_unlock_irqrestore(&q->lock, flags);
  3941. }
  3942. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3943. /**
  3944. * complete: - signals a single thread waiting on this completion
  3945. * @x: holds the state of this particular completion
  3946. *
  3947. * This will wake up a single thread waiting on this completion. Threads will be
  3948. * awakened in the same order in which they were queued.
  3949. *
  3950. * See also complete_all(), wait_for_completion() and related routines.
  3951. */
  3952. void complete(struct completion *x)
  3953. {
  3954. unsigned long flags;
  3955. spin_lock_irqsave(&x->wait.lock, flags);
  3956. x->done++;
  3957. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3958. spin_unlock_irqrestore(&x->wait.lock, flags);
  3959. }
  3960. EXPORT_SYMBOL(complete);
  3961. /**
  3962. * complete_all: - signals all threads waiting on this completion
  3963. * @x: holds the state of this particular completion
  3964. *
  3965. * This will wake up all threads waiting on this particular completion event.
  3966. */
  3967. void complete_all(struct completion *x)
  3968. {
  3969. unsigned long flags;
  3970. spin_lock_irqsave(&x->wait.lock, flags);
  3971. x->done += UINT_MAX/2;
  3972. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3973. spin_unlock_irqrestore(&x->wait.lock, flags);
  3974. }
  3975. EXPORT_SYMBOL(complete_all);
  3976. static inline long __sched
  3977. do_wait_for_common(struct completion *x, long timeout, int state)
  3978. {
  3979. if (!x->done) {
  3980. DECLARE_WAITQUEUE(wait, current);
  3981. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3982. __add_wait_queue_tail(&x->wait, &wait);
  3983. do {
  3984. if (signal_pending_state(state, current)) {
  3985. timeout = -ERESTARTSYS;
  3986. break;
  3987. }
  3988. __set_current_state(state);
  3989. spin_unlock_irq(&x->wait.lock);
  3990. timeout = schedule_timeout(timeout);
  3991. spin_lock_irq(&x->wait.lock);
  3992. } while (!x->done && timeout);
  3993. __remove_wait_queue(&x->wait, &wait);
  3994. if (!x->done)
  3995. return timeout;
  3996. }
  3997. x->done--;
  3998. return timeout ?: 1;
  3999. }
  4000. static long __sched
  4001. wait_for_common(struct completion *x, long timeout, int state)
  4002. {
  4003. might_sleep();
  4004. spin_lock_irq(&x->wait.lock);
  4005. timeout = do_wait_for_common(x, timeout, state);
  4006. spin_unlock_irq(&x->wait.lock);
  4007. return timeout;
  4008. }
  4009. /**
  4010. * wait_for_completion: - waits for completion of a task
  4011. * @x: holds the state of this particular completion
  4012. *
  4013. * This waits to be signaled for completion of a specific task. It is NOT
  4014. * interruptible and there is no timeout.
  4015. *
  4016. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4017. * and interrupt capability. Also see complete().
  4018. */
  4019. void __sched wait_for_completion(struct completion *x)
  4020. {
  4021. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4022. }
  4023. EXPORT_SYMBOL(wait_for_completion);
  4024. /**
  4025. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4026. * @x: holds the state of this particular completion
  4027. * @timeout: timeout value in jiffies
  4028. *
  4029. * This waits for either a completion of a specific task to be signaled or for a
  4030. * specified timeout to expire. The timeout is in jiffies. It is not
  4031. * interruptible.
  4032. */
  4033. unsigned long __sched
  4034. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4035. {
  4036. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4037. }
  4038. EXPORT_SYMBOL(wait_for_completion_timeout);
  4039. /**
  4040. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4041. * @x: holds the state of this particular completion
  4042. *
  4043. * This waits for completion of a specific task to be signaled. It is
  4044. * interruptible.
  4045. */
  4046. int __sched wait_for_completion_interruptible(struct completion *x)
  4047. {
  4048. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4049. if (t == -ERESTARTSYS)
  4050. return t;
  4051. return 0;
  4052. }
  4053. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4054. /**
  4055. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4056. * @x: holds the state of this particular completion
  4057. * @timeout: timeout value in jiffies
  4058. *
  4059. * This waits for either a completion of a specific task to be signaled or for a
  4060. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4061. */
  4062. unsigned long __sched
  4063. wait_for_completion_interruptible_timeout(struct completion *x,
  4064. unsigned long timeout)
  4065. {
  4066. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4067. }
  4068. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4069. /**
  4070. * wait_for_completion_killable: - waits for completion of a task (killable)
  4071. * @x: holds the state of this particular completion
  4072. *
  4073. * This waits to be signaled for completion of a specific task. It can be
  4074. * interrupted by a kill signal.
  4075. */
  4076. int __sched wait_for_completion_killable(struct completion *x)
  4077. {
  4078. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4079. if (t == -ERESTARTSYS)
  4080. return t;
  4081. return 0;
  4082. }
  4083. EXPORT_SYMBOL(wait_for_completion_killable);
  4084. /**
  4085. * try_wait_for_completion - try to decrement a completion without blocking
  4086. * @x: completion structure
  4087. *
  4088. * Returns: 0 if a decrement cannot be done without blocking
  4089. * 1 if a decrement succeeded.
  4090. *
  4091. * If a completion is being used as a counting completion,
  4092. * attempt to decrement the counter without blocking. This
  4093. * enables us to avoid waiting if the resource the completion
  4094. * is protecting is not available.
  4095. */
  4096. bool try_wait_for_completion(struct completion *x)
  4097. {
  4098. int ret = 1;
  4099. spin_lock_irq(&x->wait.lock);
  4100. if (!x->done)
  4101. ret = 0;
  4102. else
  4103. x->done--;
  4104. spin_unlock_irq(&x->wait.lock);
  4105. return ret;
  4106. }
  4107. EXPORT_SYMBOL(try_wait_for_completion);
  4108. /**
  4109. * completion_done - Test to see if a completion has any waiters
  4110. * @x: completion structure
  4111. *
  4112. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4113. * 1 if there are no waiters.
  4114. *
  4115. */
  4116. bool completion_done(struct completion *x)
  4117. {
  4118. int ret = 1;
  4119. spin_lock_irq(&x->wait.lock);
  4120. if (!x->done)
  4121. ret = 0;
  4122. spin_unlock_irq(&x->wait.lock);
  4123. return ret;
  4124. }
  4125. EXPORT_SYMBOL(completion_done);
  4126. static long __sched
  4127. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4128. {
  4129. unsigned long flags;
  4130. wait_queue_t wait;
  4131. init_waitqueue_entry(&wait, current);
  4132. __set_current_state(state);
  4133. spin_lock_irqsave(&q->lock, flags);
  4134. __add_wait_queue(q, &wait);
  4135. spin_unlock(&q->lock);
  4136. timeout = schedule_timeout(timeout);
  4137. spin_lock_irq(&q->lock);
  4138. __remove_wait_queue(q, &wait);
  4139. spin_unlock_irqrestore(&q->lock, flags);
  4140. return timeout;
  4141. }
  4142. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4143. {
  4144. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4145. }
  4146. EXPORT_SYMBOL(interruptible_sleep_on);
  4147. long __sched
  4148. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4149. {
  4150. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4151. }
  4152. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4153. void __sched sleep_on(wait_queue_head_t *q)
  4154. {
  4155. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4156. }
  4157. EXPORT_SYMBOL(sleep_on);
  4158. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4159. {
  4160. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4161. }
  4162. EXPORT_SYMBOL(sleep_on_timeout);
  4163. #ifdef CONFIG_RT_MUTEXES
  4164. /*
  4165. * rt_mutex_setprio - set the current priority of a task
  4166. * @p: task
  4167. * @prio: prio value (kernel-internal form)
  4168. *
  4169. * This function changes the 'effective' priority of a task. It does
  4170. * not touch ->normal_prio like __setscheduler().
  4171. *
  4172. * Used by the rt_mutex code to implement priority inheritance logic.
  4173. */
  4174. void rt_mutex_setprio(struct task_struct *p, int prio)
  4175. {
  4176. unsigned long flags;
  4177. int oldprio, on_rq, running;
  4178. struct rq *rq;
  4179. const struct sched_class *prev_class = p->sched_class;
  4180. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4181. rq = task_rq_lock(p, &flags);
  4182. update_rq_clock(rq);
  4183. oldprio = p->prio;
  4184. on_rq = p->se.on_rq;
  4185. running = task_current(rq, p);
  4186. if (on_rq)
  4187. dequeue_task(rq, p, 0);
  4188. if (running)
  4189. p->sched_class->put_prev_task(rq, p);
  4190. if (rt_prio(prio))
  4191. p->sched_class = &rt_sched_class;
  4192. else
  4193. p->sched_class = &fair_sched_class;
  4194. p->prio = prio;
  4195. if (running)
  4196. p->sched_class->set_curr_task(rq);
  4197. if (on_rq) {
  4198. enqueue_task(rq, p, 0);
  4199. check_class_changed(rq, p, prev_class, oldprio, running);
  4200. }
  4201. task_rq_unlock(rq, &flags);
  4202. }
  4203. #endif
  4204. void set_user_nice(struct task_struct *p, long nice)
  4205. {
  4206. int old_prio, delta, on_rq;
  4207. unsigned long flags;
  4208. struct rq *rq;
  4209. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4210. return;
  4211. /*
  4212. * We have to be careful, if called from sys_setpriority(),
  4213. * the task might be in the middle of scheduling on another CPU.
  4214. */
  4215. rq = task_rq_lock(p, &flags);
  4216. update_rq_clock(rq);
  4217. /*
  4218. * The RT priorities are set via sched_setscheduler(), but we still
  4219. * allow the 'normal' nice value to be set - but as expected
  4220. * it wont have any effect on scheduling until the task is
  4221. * SCHED_FIFO/SCHED_RR:
  4222. */
  4223. if (task_has_rt_policy(p)) {
  4224. p->static_prio = NICE_TO_PRIO(nice);
  4225. goto out_unlock;
  4226. }
  4227. on_rq = p->se.on_rq;
  4228. if (on_rq)
  4229. dequeue_task(rq, p, 0);
  4230. p->static_prio = NICE_TO_PRIO(nice);
  4231. set_load_weight(p);
  4232. old_prio = p->prio;
  4233. p->prio = effective_prio(p);
  4234. delta = p->prio - old_prio;
  4235. if (on_rq) {
  4236. enqueue_task(rq, p, 0);
  4237. /*
  4238. * If the task increased its priority or is running and
  4239. * lowered its priority, then reschedule its CPU:
  4240. */
  4241. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4242. resched_task(rq->curr);
  4243. }
  4244. out_unlock:
  4245. task_rq_unlock(rq, &flags);
  4246. }
  4247. EXPORT_SYMBOL(set_user_nice);
  4248. /*
  4249. * can_nice - check if a task can reduce its nice value
  4250. * @p: task
  4251. * @nice: nice value
  4252. */
  4253. int can_nice(const struct task_struct *p, const int nice)
  4254. {
  4255. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4256. int nice_rlim = 20 - nice;
  4257. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4258. capable(CAP_SYS_NICE));
  4259. }
  4260. #ifdef __ARCH_WANT_SYS_NICE
  4261. /*
  4262. * sys_nice - change the priority of the current process.
  4263. * @increment: priority increment
  4264. *
  4265. * sys_setpriority is a more generic, but much slower function that
  4266. * does similar things.
  4267. */
  4268. asmlinkage long sys_nice(int increment)
  4269. {
  4270. long nice, retval;
  4271. /*
  4272. * Setpriority might change our priority at the same moment.
  4273. * We don't have to worry. Conceptually one call occurs first
  4274. * and we have a single winner.
  4275. */
  4276. if (increment < -40)
  4277. increment = -40;
  4278. if (increment > 40)
  4279. increment = 40;
  4280. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4281. if (nice < -20)
  4282. nice = -20;
  4283. if (nice > 19)
  4284. nice = 19;
  4285. if (increment < 0 && !can_nice(current, nice))
  4286. return -EPERM;
  4287. retval = security_task_setnice(current, nice);
  4288. if (retval)
  4289. return retval;
  4290. set_user_nice(current, nice);
  4291. return 0;
  4292. }
  4293. #endif
  4294. /**
  4295. * task_prio - return the priority value of a given task.
  4296. * @p: the task in question.
  4297. *
  4298. * This is the priority value as seen by users in /proc.
  4299. * RT tasks are offset by -200. Normal tasks are centered
  4300. * around 0, value goes from -16 to +15.
  4301. */
  4302. int task_prio(const struct task_struct *p)
  4303. {
  4304. return p->prio - MAX_RT_PRIO;
  4305. }
  4306. /**
  4307. * task_nice - return the nice value of a given task.
  4308. * @p: the task in question.
  4309. */
  4310. int task_nice(const struct task_struct *p)
  4311. {
  4312. return TASK_NICE(p);
  4313. }
  4314. EXPORT_SYMBOL(task_nice);
  4315. /**
  4316. * idle_cpu - is a given cpu idle currently?
  4317. * @cpu: the processor in question.
  4318. */
  4319. int idle_cpu(int cpu)
  4320. {
  4321. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4322. }
  4323. /**
  4324. * idle_task - return the idle task for a given cpu.
  4325. * @cpu: the processor in question.
  4326. */
  4327. struct task_struct *idle_task(int cpu)
  4328. {
  4329. return cpu_rq(cpu)->idle;
  4330. }
  4331. /**
  4332. * find_process_by_pid - find a process with a matching PID value.
  4333. * @pid: the pid in question.
  4334. */
  4335. static struct task_struct *find_process_by_pid(pid_t pid)
  4336. {
  4337. return pid ? find_task_by_vpid(pid) : current;
  4338. }
  4339. /* Actually do priority change: must hold rq lock. */
  4340. static void
  4341. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4342. {
  4343. BUG_ON(p->se.on_rq);
  4344. p->policy = policy;
  4345. switch (p->policy) {
  4346. case SCHED_NORMAL:
  4347. case SCHED_BATCH:
  4348. case SCHED_IDLE:
  4349. p->sched_class = &fair_sched_class;
  4350. break;
  4351. case SCHED_FIFO:
  4352. case SCHED_RR:
  4353. p->sched_class = &rt_sched_class;
  4354. break;
  4355. }
  4356. p->rt_priority = prio;
  4357. p->normal_prio = normal_prio(p);
  4358. /* we are holding p->pi_lock already */
  4359. p->prio = rt_mutex_getprio(p);
  4360. set_load_weight(p);
  4361. }
  4362. static int __sched_setscheduler(struct task_struct *p, int policy,
  4363. struct sched_param *param, bool user)
  4364. {
  4365. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4366. unsigned long flags;
  4367. const struct sched_class *prev_class = p->sched_class;
  4368. struct rq *rq;
  4369. /* may grab non-irq protected spin_locks */
  4370. BUG_ON(in_interrupt());
  4371. recheck:
  4372. /* double check policy once rq lock held */
  4373. if (policy < 0)
  4374. policy = oldpolicy = p->policy;
  4375. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4376. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4377. policy != SCHED_IDLE)
  4378. return -EINVAL;
  4379. /*
  4380. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4381. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4382. * SCHED_BATCH and SCHED_IDLE is 0.
  4383. */
  4384. if (param->sched_priority < 0 ||
  4385. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4386. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4387. return -EINVAL;
  4388. if (rt_policy(policy) != (param->sched_priority != 0))
  4389. return -EINVAL;
  4390. /*
  4391. * Allow unprivileged RT tasks to decrease priority:
  4392. */
  4393. if (user && !capable(CAP_SYS_NICE)) {
  4394. if (rt_policy(policy)) {
  4395. unsigned long rlim_rtprio;
  4396. if (!lock_task_sighand(p, &flags))
  4397. return -ESRCH;
  4398. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4399. unlock_task_sighand(p, &flags);
  4400. /* can't set/change the rt policy */
  4401. if (policy != p->policy && !rlim_rtprio)
  4402. return -EPERM;
  4403. /* can't increase priority */
  4404. if (param->sched_priority > p->rt_priority &&
  4405. param->sched_priority > rlim_rtprio)
  4406. return -EPERM;
  4407. }
  4408. /*
  4409. * Like positive nice levels, dont allow tasks to
  4410. * move out of SCHED_IDLE either:
  4411. */
  4412. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4413. return -EPERM;
  4414. /* can't change other user's priorities */
  4415. if ((current->euid != p->euid) &&
  4416. (current->euid != p->uid))
  4417. return -EPERM;
  4418. }
  4419. if (user) {
  4420. #ifdef CONFIG_RT_GROUP_SCHED
  4421. /*
  4422. * Do not allow realtime tasks into groups that have no runtime
  4423. * assigned.
  4424. */
  4425. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4426. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4427. return -EPERM;
  4428. #endif
  4429. retval = security_task_setscheduler(p, policy, param);
  4430. if (retval)
  4431. return retval;
  4432. }
  4433. /*
  4434. * make sure no PI-waiters arrive (or leave) while we are
  4435. * changing the priority of the task:
  4436. */
  4437. spin_lock_irqsave(&p->pi_lock, flags);
  4438. /*
  4439. * To be able to change p->policy safely, the apropriate
  4440. * runqueue lock must be held.
  4441. */
  4442. rq = __task_rq_lock(p);
  4443. /* recheck policy now with rq lock held */
  4444. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4445. policy = oldpolicy = -1;
  4446. __task_rq_unlock(rq);
  4447. spin_unlock_irqrestore(&p->pi_lock, flags);
  4448. goto recheck;
  4449. }
  4450. update_rq_clock(rq);
  4451. on_rq = p->se.on_rq;
  4452. running = task_current(rq, p);
  4453. if (on_rq)
  4454. deactivate_task(rq, p, 0);
  4455. if (running)
  4456. p->sched_class->put_prev_task(rq, p);
  4457. oldprio = p->prio;
  4458. __setscheduler(rq, p, policy, param->sched_priority);
  4459. if (running)
  4460. p->sched_class->set_curr_task(rq);
  4461. if (on_rq) {
  4462. activate_task(rq, p, 0);
  4463. check_class_changed(rq, p, prev_class, oldprio, running);
  4464. }
  4465. __task_rq_unlock(rq);
  4466. spin_unlock_irqrestore(&p->pi_lock, flags);
  4467. rt_mutex_adjust_pi(p);
  4468. return 0;
  4469. }
  4470. /**
  4471. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4472. * @p: the task in question.
  4473. * @policy: new policy.
  4474. * @param: structure containing the new RT priority.
  4475. *
  4476. * NOTE that the task may be already dead.
  4477. */
  4478. int sched_setscheduler(struct task_struct *p, int policy,
  4479. struct sched_param *param)
  4480. {
  4481. return __sched_setscheduler(p, policy, param, true);
  4482. }
  4483. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4484. /**
  4485. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4486. * @p: the task in question.
  4487. * @policy: new policy.
  4488. * @param: structure containing the new RT priority.
  4489. *
  4490. * Just like sched_setscheduler, only don't bother checking if the
  4491. * current context has permission. For example, this is needed in
  4492. * stop_machine(): we create temporary high priority worker threads,
  4493. * but our caller might not have that capability.
  4494. */
  4495. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4496. struct sched_param *param)
  4497. {
  4498. return __sched_setscheduler(p, policy, param, false);
  4499. }
  4500. static int
  4501. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4502. {
  4503. struct sched_param lparam;
  4504. struct task_struct *p;
  4505. int retval;
  4506. if (!param || pid < 0)
  4507. return -EINVAL;
  4508. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4509. return -EFAULT;
  4510. rcu_read_lock();
  4511. retval = -ESRCH;
  4512. p = find_process_by_pid(pid);
  4513. if (p != NULL)
  4514. retval = sched_setscheduler(p, policy, &lparam);
  4515. rcu_read_unlock();
  4516. return retval;
  4517. }
  4518. /**
  4519. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4520. * @pid: the pid in question.
  4521. * @policy: new policy.
  4522. * @param: structure containing the new RT priority.
  4523. */
  4524. asmlinkage long
  4525. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4526. {
  4527. /* negative values for policy are not valid */
  4528. if (policy < 0)
  4529. return -EINVAL;
  4530. return do_sched_setscheduler(pid, policy, param);
  4531. }
  4532. /**
  4533. * sys_sched_setparam - set/change the RT priority of a thread
  4534. * @pid: the pid in question.
  4535. * @param: structure containing the new RT priority.
  4536. */
  4537. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4538. {
  4539. return do_sched_setscheduler(pid, -1, param);
  4540. }
  4541. /**
  4542. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4543. * @pid: the pid in question.
  4544. */
  4545. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4546. {
  4547. struct task_struct *p;
  4548. int retval;
  4549. if (pid < 0)
  4550. return -EINVAL;
  4551. retval = -ESRCH;
  4552. read_lock(&tasklist_lock);
  4553. p = find_process_by_pid(pid);
  4554. if (p) {
  4555. retval = security_task_getscheduler(p);
  4556. if (!retval)
  4557. retval = p->policy;
  4558. }
  4559. read_unlock(&tasklist_lock);
  4560. return retval;
  4561. }
  4562. /**
  4563. * sys_sched_getscheduler - get the RT priority of a thread
  4564. * @pid: the pid in question.
  4565. * @param: structure containing the RT priority.
  4566. */
  4567. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4568. {
  4569. struct sched_param lp;
  4570. struct task_struct *p;
  4571. int retval;
  4572. if (!param || pid < 0)
  4573. return -EINVAL;
  4574. read_lock(&tasklist_lock);
  4575. p = find_process_by_pid(pid);
  4576. retval = -ESRCH;
  4577. if (!p)
  4578. goto out_unlock;
  4579. retval = security_task_getscheduler(p);
  4580. if (retval)
  4581. goto out_unlock;
  4582. lp.sched_priority = p->rt_priority;
  4583. read_unlock(&tasklist_lock);
  4584. /*
  4585. * This one might sleep, we cannot do it with a spinlock held ...
  4586. */
  4587. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4588. return retval;
  4589. out_unlock:
  4590. read_unlock(&tasklist_lock);
  4591. return retval;
  4592. }
  4593. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4594. {
  4595. cpumask_t cpus_allowed;
  4596. cpumask_t new_mask = *in_mask;
  4597. struct task_struct *p;
  4598. int retval;
  4599. get_online_cpus();
  4600. read_lock(&tasklist_lock);
  4601. p = find_process_by_pid(pid);
  4602. if (!p) {
  4603. read_unlock(&tasklist_lock);
  4604. put_online_cpus();
  4605. return -ESRCH;
  4606. }
  4607. /*
  4608. * It is not safe to call set_cpus_allowed with the
  4609. * tasklist_lock held. We will bump the task_struct's
  4610. * usage count and then drop tasklist_lock.
  4611. */
  4612. get_task_struct(p);
  4613. read_unlock(&tasklist_lock);
  4614. retval = -EPERM;
  4615. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4616. !capable(CAP_SYS_NICE))
  4617. goto out_unlock;
  4618. retval = security_task_setscheduler(p, 0, NULL);
  4619. if (retval)
  4620. goto out_unlock;
  4621. cpuset_cpus_allowed(p, &cpus_allowed);
  4622. cpus_and(new_mask, new_mask, cpus_allowed);
  4623. again:
  4624. retval = set_cpus_allowed_ptr(p, &new_mask);
  4625. if (!retval) {
  4626. cpuset_cpus_allowed(p, &cpus_allowed);
  4627. if (!cpus_subset(new_mask, cpus_allowed)) {
  4628. /*
  4629. * We must have raced with a concurrent cpuset
  4630. * update. Just reset the cpus_allowed to the
  4631. * cpuset's cpus_allowed
  4632. */
  4633. new_mask = cpus_allowed;
  4634. goto again;
  4635. }
  4636. }
  4637. out_unlock:
  4638. put_task_struct(p);
  4639. put_online_cpus();
  4640. return retval;
  4641. }
  4642. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4643. cpumask_t *new_mask)
  4644. {
  4645. if (len < sizeof(cpumask_t)) {
  4646. memset(new_mask, 0, sizeof(cpumask_t));
  4647. } else if (len > sizeof(cpumask_t)) {
  4648. len = sizeof(cpumask_t);
  4649. }
  4650. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4651. }
  4652. /**
  4653. * sys_sched_setaffinity - set the cpu affinity of a process
  4654. * @pid: pid of the process
  4655. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4656. * @user_mask_ptr: user-space pointer to the new cpu mask
  4657. */
  4658. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4659. unsigned long __user *user_mask_ptr)
  4660. {
  4661. cpumask_t new_mask;
  4662. int retval;
  4663. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4664. if (retval)
  4665. return retval;
  4666. return sched_setaffinity(pid, &new_mask);
  4667. }
  4668. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4669. {
  4670. struct task_struct *p;
  4671. int retval;
  4672. get_online_cpus();
  4673. read_lock(&tasklist_lock);
  4674. retval = -ESRCH;
  4675. p = find_process_by_pid(pid);
  4676. if (!p)
  4677. goto out_unlock;
  4678. retval = security_task_getscheduler(p);
  4679. if (retval)
  4680. goto out_unlock;
  4681. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4682. out_unlock:
  4683. read_unlock(&tasklist_lock);
  4684. put_online_cpus();
  4685. return retval;
  4686. }
  4687. /**
  4688. * sys_sched_getaffinity - get the cpu affinity of a process
  4689. * @pid: pid of the process
  4690. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4691. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4692. */
  4693. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4694. unsigned long __user *user_mask_ptr)
  4695. {
  4696. int ret;
  4697. cpumask_t mask;
  4698. if (len < sizeof(cpumask_t))
  4699. return -EINVAL;
  4700. ret = sched_getaffinity(pid, &mask);
  4701. if (ret < 0)
  4702. return ret;
  4703. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4704. return -EFAULT;
  4705. return sizeof(cpumask_t);
  4706. }
  4707. /**
  4708. * sys_sched_yield - yield the current processor to other threads.
  4709. *
  4710. * This function yields the current CPU to other tasks. If there are no
  4711. * other threads running on this CPU then this function will return.
  4712. */
  4713. asmlinkage long sys_sched_yield(void)
  4714. {
  4715. struct rq *rq = this_rq_lock();
  4716. schedstat_inc(rq, yld_count);
  4717. current->sched_class->yield_task(rq);
  4718. /*
  4719. * Since we are going to call schedule() anyway, there's
  4720. * no need to preempt or enable interrupts:
  4721. */
  4722. __release(rq->lock);
  4723. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4724. _raw_spin_unlock(&rq->lock);
  4725. preempt_enable_no_resched();
  4726. schedule();
  4727. return 0;
  4728. }
  4729. static void __cond_resched(void)
  4730. {
  4731. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4732. __might_sleep(__FILE__, __LINE__);
  4733. #endif
  4734. /*
  4735. * The BKS might be reacquired before we have dropped
  4736. * PREEMPT_ACTIVE, which could trigger a second
  4737. * cond_resched() call.
  4738. */
  4739. do {
  4740. add_preempt_count(PREEMPT_ACTIVE);
  4741. schedule();
  4742. sub_preempt_count(PREEMPT_ACTIVE);
  4743. } while (need_resched());
  4744. }
  4745. int __sched _cond_resched(void)
  4746. {
  4747. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4748. system_state == SYSTEM_RUNNING) {
  4749. __cond_resched();
  4750. return 1;
  4751. }
  4752. return 0;
  4753. }
  4754. EXPORT_SYMBOL(_cond_resched);
  4755. /*
  4756. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4757. * call schedule, and on return reacquire the lock.
  4758. *
  4759. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4760. * operations here to prevent schedule() from being called twice (once via
  4761. * spin_unlock(), once by hand).
  4762. */
  4763. int cond_resched_lock(spinlock_t *lock)
  4764. {
  4765. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4766. int ret = 0;
  4767. if (spin_needbreak(lock) || resched) {
  4768. spin_unlock(lock);
  4769. if (resched && need_resched())
  4770. __cond_resched();
  4771. else
  4772. cpu_relax();
  4773. ret = 1;
  4774. spin_lock(lock);
  4775. }
  4776. return ret;
  4777. }
  4778. EXPORT_SYMBOL(cond_resched_lock);
  4779. int __sched cond_resched_softirq(void)
  4780. {
  4781. BUG_ON(!in_softirq());
  4782. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4783. local_bh_enable();
  4784. __cond_resched();
  4785. local_bh_disable();
  4786. return 1;
  4787. }
  4788. return 0;
  4789. }
  4790. EXPORT_SYMBOL(cond_resched_softirq);
  4791. /**
  4792. * yield - yield the current processor to other threads.
  4793. *
  4794. * This is a shortcut for kernel-space yielding - it marks the
  4795. * thread runnable and calls sys_sched_yield().
  4796. */
  4797. void __sched yield(void)
  4798. {
  4799. set_current_state(TASK_RUNNING);
  4800. sys_sched_yield();
  4801. }
  4802. EXPORT_SYMBOL(yield);
  4803. /*
  4804. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4805. * that process accounting knows that this is a task in IO wait state.
  4806. *
  4807. * But don't do that if it is a deliberate, throttling IO wait (this task
  4808. * has set its backing_dev_info: the queue against which it should throttle)
  4809. */
  4810. void __sched io_schedule(void)
  4811. {
  4812. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4813. delayacct_blkio_start();
  4814. atomic_inc(&rq->nr_iowait);
  4815. schedule();
  4816. atomic_dec(&rq->nr_iowait);
  4817. delayacct_blkio_end();
  4818. }
  4819. EXPORT_SYMBOL(io_schedule);
  4820. long __sched io_schedule_timeout(long timeout)
  4821. {
  4822. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4823. long ret;
  4824. delayacct_blkio_start();
  4825. atomic_inc(&rq->nr_iowait);
  4826. ret = schedule_timeout(timeout);
  4827. atomic_dec(&rq->nr_iowait);
  4828. delayacct_blkio_end();
  4829. return ret;
  4830. }
  4831. /**
  4832. * sys_sched_get_priority_max - return maximum RT priority.
  4833. * @policy: scheduling class.
  4834. *
  4835. * this syscall returns the maximum rt_priority that can be used
  4836. * by a given scheduling class.
  4837. */
  4838. asmlinkage long sys_sched_get_priority_max(int policy)
  4839. {
  4840. int ret = -EINVAL;
  4841. switch (policy) {
  4842. case SCHED_FIFO:
  4843. case SCHED_RR:
  4844. ret = MAX_USER_RT_PRIO-1;
  4845. break;
  4846. case SCHED_NORMAL:
  4847. case SCHED_BATCH:
  4848. case SCHED_IDLE:
  4849. ret = 0;
  4850. break;
  4851. }
  4852. return ret;
  4853. }
  4854. /**
  4855. * sys_sched_get_priority_min - return minimum RT priority.
  4856. * @policy: scheduling class.
  4857. *
  4858. * this syscall returns the minimum rt_priority that can be used
  4859. * by a given scheduling class.
  4860. */
  4861. asmlinkage long sys_sched_get_priority_min(int policy)
  4862. {
  4863. int ret = -EINVAL;
  4864. switch (policy) {
  4865. case SCHED_FIFO:
  4866. case SCHED_RR:
  4867. ret = 1;
  4868. break;
  4869. case SCHED_NORMAL:
  4870. case SCHED_BATCH:
  4871. case SCHED_IDLE:
  4872. ret = 0;
  4873. }
  4874. return ret;
  4875. }
  4876. /**
  4877. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4878. * @pid: pid of the process.
  4879. * @interval: userspace pointer to the timeslice value.
  4880. *
  4881. * this syscall writes the default timeslice value of a given process
  4882. * into the user-space timespec buffer. A value of '0' means infinity.
  4883. */
  4884. asmlinkage
  4885. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4886. {
  4887. struct task_struct *p;
  4888. unsigned int time_slice;
  4889. int retval;
  4890. struct timespec t;
  4891. if (pid < 0)
  4892. return -EINVAL;
  4893. retval = -ESRCH;
  4894. read_lock(&tasklist_lock);
  4895. p = find_process_by_pid(pid);
  4896. if (!p)
  4897. goto out_unlock;
  4898. retval = security_task_getscheduler(p);
  4899. if (retval)
  4900. goto out_unlock;
  4901. /*
  4902. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4903. * tasks that are on an otherwise idle runqueue:
  4904. */
  4905. time_slice = 0;
  4906. if (p->policy == SCHED_RR) {
  4907. time_slice = DEF_TIMESLICE;
  4908. } else if (p->policy != SCHED_FIFO) {
  4909. struct sched_entity *se = &p->se;
  4910. unsigned long flags;
  4911. struct rq *rq;
  4912. rq = task_rq_lock(p, &flags);
  4913. if (rq->cfs.load.weight)
  4914. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4915. task_rq_unlock(rq, &flags);
  4916. }
  4917. read_unlock(&tasklist_lock);
  4918. jiffies_to_timespec(time_slice, &t);
  4919. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4920. return retval;
  4921. out_unlock:
  4922. read_unlock(&tasklist_lock);
  4923. return retval;
  4924. }
  4925. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4926. void sched_show_task(struct task_struct *p)
  4927. {
  4928. unsigned long free = 0;
  4929. unsigned state;
  4930. state = p->state ? __ffs(p->state) + 1 : 0;
  4931. printk(KERN_INFO "%-13.13s %c", p->comm,
  4932. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4933. #if BITS_PER_LONG == 32
  4934. if (state == TASK_RUNNING)
  4935. printk(KERN_CONT " running ");
  4936. else
  4937. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4938. #else
  4939. if (state == TASK_RUNNING)
  4940. printk(KERN_CONT " running task ");
  4941. else
  4942. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4943. #endif
  4944. #ifdef CONFIG_DEBUG_STACK_USAGE
  4945. {
  4946. unsigned long *n = end_of_stack(p);
  4947. while (!*n)
  4948. n++;
  4949. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4950. }
  4951. #endif
  4952. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4953. task_pid_nr(p), task_pid_nr(p->real_parent));
  4954. show_stack(p, NULL);
  4955. }
  4956. void show_state_filter(unsigned long state_filter)
  4957. {
  4958. struct task_struct *g, *p;
  4959. #if BITS_PER_LONG == 32
  4960. printk(KERN_INFO
  4961. " task PC stack pid father\n");
  4962. #else
  4963. printk(KERN_INFO
  4964. " task PC stack pid father\n");
  4965. #endif
  4966. read_lock(&tasklist_lock);
  4967. do_each_thread(g, p) {
  4968. /*
  4969. * reset the NMI-timeout, listing all files on a slow
  4970. * console might take alot of time:
  4971. */
  4972. touch_nmi_watchdog();
  4973. if (!state_filter || (p->state & state_filter))
  4974. sched_show_task(p);
  4975. } while_each_thread(g, p);
  4976. touch_all_softlockup_watchdogs();
  4977. #ifdef CONFIG_SCHED_DEBUG
  4978. sysrq_sched_debug_show();
  4979. #endif
  4980. read_unlock(&tasklist_lock);
  4981. /*
  4982. * Only show locks if all tasks are dumped:
  4983. */
  4984. if (state_filter == -1)
  4985. debug_show_all_locks();
  4986. }
  4987. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4988. {
  4989. idle->sched_class = &idle_sched_class;
  4990. }
  4991. /**
  4992. * init_idle - set up an idle thread for a given CPU
  4993. * @idle: task in question
  4994. * @cpu: cpu the idle task belongs to
  4995. *
  4996. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4997. * flag, to make booting more robust.
  4998. */
  4999. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5000. {
  5001. struct rq *rq = cpu_rq(cpu);
  5002. unsigned long flags;
  5003. spin_lock_irqsave(&rq->lock, flags);
  5004. __sched_fork(idle);
  5005. idle->se.exec_start = sched_clock();
  5006. idle->prio = idle->normal_prio = MAX_PRIO;
  5007. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5008. __set_task_cpu(idle, cpu);
  5009. rq->curr = rq->idle = idle;
  5010. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5011. idle->oncpu = 1;
  5012. #endif
  5013. spin_unlock_irqrestore(&rq->lock, flags);
  5014. /* Set the preempt count _outside_ the spinlocks! */
  5015. #if defined(CONFIG_PREEMPT)
  5016. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5017. #else
  5018. task_thread_info(idle)->preempt_count = 0;
  5019. #endif
  5020. /*
  5021. * The idle tasks have their own, simple scheduling class:
  5022. */
  5023. idle->sched_class = &idle_sched_class;
  5024. }
  5025. /*
  5026. * In a system that switches off the HZ timer nohz_cpu_mask
  5027. * indicates which cpus entered this state. This is used
  5028. * in the rcu update to wait only for active cpus. For system
  5029. * which do not switch off the HZ timer nohz_cpu_mask should
  5030. * always be CPU_MASK_NONE.
  5031. */
  5032. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5033. /*
  5034. * Increase the granularity value when there are more CPUs,
  5035. * because with more CPUs the 'effective latency' as visible
  5036. * to users decreases. But the relationship is not linear,
  5037. * so pick a second-best guess by going with the log2 of the
  5038. * number of CPUs.
  5039. *
  5040. * This idea comes from the SD scheduler of Con Kolivas:
  5041. */
  5042. static inline void sched_init_granularity(void)
  5043. {
  5044. unsigned int factor = 1 + ilog2(num_online_cpus());
  5045. const unsigned long limit = 200000000;
  5046. sysctl_sched_min_granularity *= factor;
  5047. if (sysctl_sched_min_granularity > limit)
  5048. sysctl_sched_min_granularity = limit;
  5049. sysctl_sched_latency *= factor;
  5050. if (sysctl_sched_latency > limit)
  5051. sysctl_sched_latency = limit;
  5052. sysctl_sched_wakeup_granularity *= factor;
  5053. sysctl_sched_shares_ratelimit *= factor;
  5054. }
  5055. #ifdef CONFIG_SMP
  5056. /*
  5057. * This is how migration works:
  5058. *
  5059. * 1) we queue a struct migration_req structure in the source CPU's
  5060. * runqueue and wake up that CPU's migration thread.
  5061. * 2) we down() the locked semaphore => thread blocks.
  5062. * 3) migration thread wakes up (implicitly it forces the migrated
  5063. * thread off the CPU)
  5064. * 4) it gets the migration request and checks whether the migrated
  5065. * task is still in the wrong runqueue.
  5066. * 5) if it's in the wrong runqueue then the migration thread removes
  5067. * it and puts it into the right queue.
  5068. * 6) migration thread up()s the semaphore.
  5069. * 7) we wake up and the migration is done.
  5070. */
  5071. /*
  5072. * Change a given task's CPU affinity. Migrate the thread to a
  5073. * proper CPU and schedule it away if the CPU it's executing on
  5074. * is removed from the allowed bitmask.
  5075. *
  5076. * NOTE: the caller must have a valid reference to the task, the
  5077. * task must not exit() & deallocate itself prematurely. The
  5078. * call is not atomic; no spinlocks may be held.
  5079. */
  5080. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5081. {
  5082. struct migration_req req;
  5083. unsigned long flags;
  5084. struct rq *rq;
  5085. int ret = 0;
  5086. rq = task_rq_lock(p, &flags);
  5087. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5088. ret = -EINVAL;
  5089. goto out;
  5090. }
  5091. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5092. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5093. ret = -EINVAL;
  5094. goto out;
  5095. }
  5096. if (p->sched_class->set_cpus_allowed)
  5097. p->sched_class->set_cpus_allowed(p, new_mask);
  5098. else {
  5099. p->cpus_allowed = *new_mask;
  5100. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5101. }
  5102. /* Can the task run on the task's current CPU? If so, we're done */
  5103. if (cpu_isset(task_cpu(p), *new_mask))
  5104. goto out;
  5105. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5106. /* Need help from migration thread: drop lock and wait. */
  5107. task_rq_unlock(rq, &flags);
  5108. wake_up_process(rq->migration_thread);
  5109. wait_for_completion(&req.done);
  5110. tlb_migrate_finish(p->mm);
  5111. return 0;
  5112. }
  5113. out:
  5114. task_rq_unlock(rq, &flags);
  5115. return ret;
  5116. }
  5117. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5118. /*
  5119. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5120. * this because either it can't run here any more (set_cpus_allowed()
  5121. * away from this CPU, or CPU going down), or because we're
  5122. * attempting to rebalance this task on exec (sched_exec).
  5123. *
  5124. * So we race with normal scheduler movements, but that's OK, as long
  5125. * as the task is no longer on this CPU.
  5126. *
  5127. * Returns non-zero if task was successfully migrated.
  5128. */
  5129. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5130. {
  5131. struct rq *rq_dest, *rq_src;
  5132. int ret = 0, on_rq;
  5133. if (unlikely(!cpu_active(dest_cpu)))
  5134. return ret;
  5135. rq_src = cpu_rq(src_cpu);
  5136. rq_dest = cpu_rq(dest_cpu);
  5137. double_rq_lock(rq_src, rq_dest);
  5138. /* Already moved. */
  5139. if (task_cpu(p) != src_cpu)
  5140. goto done;
  5141. /* Affinity changed (again). */
  5142. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5143. goto fail;
  5144. on_rq = p->se.on_rq;
  5145. if (on_rq)
  5146. deactivate_task(rq_src, p, 0);
  5147. set_task_cpu(p, dest_cpu);
  5148. if (on_rq) {
  5149. activate_task(rq_dest, p, 0);
  5150. check_preempt_curr(rq_dest, p, 0);
  5151. }
  5152. done:
  5153. ret = 1;
  5154. fail:
  5155. double_rq_unlock(rq_src, rq_dest);
  5156. return ret;
  5157. }
  5158. /*
  5159. * migration_thread - this is a highprio system thread that performs
  5160. * thread migration by bumping thread off CPU then 'pushing' onto
  5161. * another runqueue.
  5162. */
  5163. static int migration_thread(void *data)
  5164. {
  5165. int cpu = (long)data;
  5166. struct rq *rq;
  5167. rq = cpu_rq(cpu);
  5168. BUG_ON(rq->migration_thread != current);
  5169. set_current_state(TASK_INTERRUPTIBLE);
  5170. while (!kthread_should_stop()) {
  5171. struct migration_req *req;
  5172. struct list_head *head;
  5173. spin_lock_irq(&rq->lock);
  5174. if (cpu_is_offline(cpu)) {
  5175. spin_unlock_irq(&rq->lock);
  5176. goto wait_to_die;
  5177. }
  5178. if (rq->active_balance) {
  5179. active_load_balance(rq, cpu);
  5180. rq->active_balance = 0;
  5181. }
  5182. head = &rq->migration_queue;
  5183. if (list_empty(head)) {
  5184. spin_unlock_irq(&rq->lock);
  5185. schedule();
  5186. set_current_state(TASK_INTERRUPTIBLE);
  5187. continue;
  5188. }
  5189. req = list_entry(head->next, struct migration_req, list);
  5190. list_del_init(head->next);
  5191. spin_unlock(&rq->lock);
  5192. __migrate_task(req->task, cpu, req->dest_cpu);
  5193. local_irq_enable();
  5194. complete(&req->done);
  5195. }
  5196. __set_current_state(TASK_RUNNING);
  5197. return 0;
  5198. wait_to_die:
  5199. /* Wait for kthread_stop */
  5200. set_current_state(TASK_INTERRUPTIBLE);
  5201. while (!kthread_should_stop()) {
  5202. schedule();
  5203. set_current_state(TASK_INTERRUPTIBLE);
  5204. }
  5205. __set_current_state(TASK_RUNNING);
  5206. return 0;
  5207. }
  5208. #ifdef CONFIG_HOTPLUG_CPU
  5209. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5210. {
  5211. int ret;
  5212. local_irq_disable();
  5213. ret = __migrate_task(p, src_cpu, dest_cpu);
  5214. local_irq_enable();
  5215. return ret;
  5216. }
  5217. /*
  5218. * Figure out where task on dead CPU should go, use force if necessary.
  5219. */
  5220. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5221. {
  5222. unsigned long flags;
  5223. cpumask_t mask;
  5224. struct rq *rq;
  5225. int dest_cpu;
  5226. do {
  5227. /* On same node? */
  5228. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5229. cpus_and(mask, mask, p->cpus_allowed);
  5230. dest_cpu = any_online_cpu(mask);
  5231. /* On any allowed CPU? */
  5232. if (dest_cpu >= nr_cpu_ids)
  5233. dest_cpu = any_online_cpu(p->cpus_allowed);
  5234. /* No more Mr. Nice Guy. */
  5235. if (dest_cpu >= nr_cpu_ids) {
  5236. cpumask_t cpus_allowed;
  5237. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5238. /*
  5239. * Try to stay on the same cpuset, where the
  5240. * current cpuset may be a subset of all cpus.
  5241. * The cpuset_cpus_allowed_locked() variant of
  5242. * cpuset_cpus_allowed() will not block. It must be
  5243. * called within calls to cpuset_lock/cpuset_unlock.
  5244. */
  5245. rq = task_rq_lock(p, &flags);
  5246. p->cpus_allowed = cpus_allowed;
  5247. dest_cpu = any_online_cpu(p->cpus_allowed);
  5248. task_rq_unlock(rq, &flags);
  5249. /*
  5250. * Don't tell them about moving exiting tasks or
  5251. * kernel threads (both mm NULL), since they never
  5252. * leave kernel.
  5253. */
  5254. if (p->mm && printk_ratelimit()) {
  5255. printk(KERN_INFO "process %d (%s) no "
  5256. "longer affine to cpu%d\n",
  5257. task_pid_nr(p), p->comm, dead_cpu);
  5258. }
  5259. }
  5260. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5261. }
  5262. /*
  5263. * While a dead CPU has no uninterruptible tasks queued at this point,
  5264. * it might still have a nonzero ->nr_uninterruptible counter, because
  5265. * for performance reasons the counter is not stricly tracking tasks to
  5266. * their home CPUs. So we just add the counter to another CPU's counter,
  5267. * to keep the global sum constant after CPU-down:
  5268. */
  5269. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5270. {
  5271. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5272. unsigned long flags;
  5273. local_irq_save(flags);
  5274. double_rq_lock(rq_src, rq_dest);
  5275. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5276. rq_src->nr_uninterruptible = 0;
  5277. double_rq_unlock(rq_src, rq_dest);
  5278. local_irq_restore(flags);
  5279. }
  5280. /* Run through task list and migrate tasks from the dead cpu. */
  5281. static void migrate_live_tasks(int src_cpu)
  5282. {
  5283. struct task_struct *p, *t;
  5284. read_lock(&tasklist_lock);
  5285. do_each_thread(t, p) {
  5286. if (p == current)
  5287. continue;
  5288. if (task_cpu(p) == src_cpu)
  5289. move_task_off_dead_cpu(src_cpu, p);
  5290. } while_each_thread(t, p);
  5291. read_unlock(&tasklist_lock);
  5292. }
  5293. /*
  5294. * Schedules idle task to be the next runnable task on current CPU.
  5295. * It does so by boosting its priority to highest possible.
  5296. * Used by CPU offline code.
  5297. */
  5298. void sched_idle_next(void)
  5299. {
  5300. int this_cpu = smp_processor_id();
  5301. struct rq *rq = cpu_rq(this_cpu);
  5302. struct task_struct *p = rq->idle;
  5303. unsigned long flags;
  5304. /* cpu has to be offline */
  5305. BUG_ON(cpu_online(this_cpu));
  5306. /*
  5307. * Strictly not necessary since rest of the CPUs are stopped by now
  5308. * and interrupts disabled on the current cpu.
  5309. */
  5310. spin_lock_irqsave(&rq->lock, flags);
  5311. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5312. update_rq_clock(rq);
  5313. activate_task(rq, p, 0);
  5314. spin_unlock_irqrestore(&rq->lock, flags);
  5315. }
  5316. /*
  5317. * Ensures that the idle task is using init_mm right before its cpu goes
  5318. * offline.
  5319. */
  5320. void idle_task_exit(void)
  5321. {
  5322. struct mm_struct *mm = current->active_mm;
  5323. BUG_ON(cpu_online(smp_processor_id()));
  5324. if (mm != &init_mm)
  5325. switch_mm(mm, &init_mm, current);
  5326. mmdrop(mm);
  5327. }
  5328. /* called under rq->lock with disabled interrupts */
  5329. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5330. {
  5331. struct rq *rq = cpu_rq(dead_cpu);
  5332. /* Must be exiting, otherwise would be on tasklist. */
  5333. BUG_ON(!p->exit_state);
  5334. /* Cannot have done final schedule yet: would have vanished. */
  5335. BUG_ON(p->state == TASK_DEAD);
  5336. get_task_struct(p);
  5337. /*
  5338. * Drop lock around migration; if someone else moves it,
  5339. * that's OK. No task can be added to this CPU, so iteration is
  5340. * fine.
  5341. */
  5342. spin_unlock_irq(&rq->lock);
  5343. move_task_off_dead_cpu(dead_cpu, p);
  5344. spin_lock_irq(&rq->lock);
  5345. put_task_struct(p);
  5346. }
  5347. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5348. static void migrate_dead_tasks(unsigned int dead_cpu)
  5349. {
  5350. struct rq *rq = cpu_rq(dead_cpu);
  5351. struct task_struct *next;
  5352. for ( ; ; ) {
  5353. if (!rq->nr_running)
  5354. break;
  5355. update_rq_clock(rq);
  5356. next = pick_next_task(rq, rq->curr);
  5357. if (!next)
  5358. break;
  5359. next->sched_class->put_prev_task(rq, next);
  5360. migrate_dead(dead_cpu, next);
  5361. }
  5362. }
  5363. #endif /* CONFIG_HOTPLUG_CPU */
  5364. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5365. static struct ctl_table sd_ctl_dir[] = {
  5366. {
  5367. .procname = "sched_domain",
  5368. .mode = 0555,
  5369. },
  5370. {0, },
  5371. };
  5372. static struct ctl_table sd_ctl_root[] = {
  5373. {
  5374. .ctl_name = CTL_KERN,
  5375. .procname = "kernel",
  5376. .mode = 0555,
  5377. .child = sd_ctl_dir,
  5378. },
  5379. {0, },
  5380. };
  5381. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5382. {
  5383. struct ctl_table *entry =
  5384. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5385. return entry;
  5386. }
  5387. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5388. {
  5389. struct ctl_table *entry;
  5390. /*
  5391. * In the intermediate directories, both the child directory and
  5392. * procname are dynamically allocated and could fail but the mode
  5393. * will always be set. In the lowest directory the names are
  5394. * static strings and all have proc handlers.
  5395. */
  5396. for (entry = *tablep; entry->mode; entry++) {
  5397. if (entry->child)
  5398. sd_free_ctl_entry(&entry->child);
  5399. if (entry->proc_handler == NULL)
  5400. kfree(entry->procname);
  5401. }
  5402. kfree(*tablep);
  5403. *tablep = NULL;
  5404. }
  5405. static void
  5406. set_table_entry(struct ctl_table *entry,
  5407. const char *procname, void *data, int maxlen,
  5408. mode_t mode, proc_handler *proc_handler)
  5409. {
  5410. entry->procname = procname;
  5411. entry->data = data;
  5412. entry->maxlen = maxlen;
  5413. entry->mode = mode;
  5414. entry->proc_handler = proc_handler;
  5415. }
  5416. static struct ctl_table *
  5417. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5418. {
  5419. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5420. if (table == NULL)
  5421. return NULL;
  5422. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5423. sizeof(long), 0644, proc_doulongvec_minmax);
  5424. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5425. sizeof(long), 0644, proc_doulongvec_minmax);
  5426. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5427. sizeof(int), 0644, proc_dointvec_minmax);
  5428. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5429. sizeof(int), 0644, proc_dointvec_minmax);
  5430. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5431. sizeof(int), 0644, proc_dointvec_minmax);
  5432. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5437. sizeof(int), 0644, proc_dointvec_minmax);
  5438. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5439. sizeof(int), 0644, proc_dointvec_minmax);
  5440. set_table_entry(&table[9], "cache_nice_tries",
  5441. &sd->cache_nice_tries,
  5442. sizeof(int), 0644, proc_dointvec_minmax);
  5443. set_table_entry(&table[10], "flags", &sd->flags,
  5444. sizeof(int), 0644, proc_dointvec_minmax);
  5445. set_table_entry(&table[11], "name", sd->name,
  5446. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5447. /* &table[12] is terminator */
  5448. return table;
  5449. }
  5450. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5451. {
  5452. struct ctl_table *entry, *table;
  5453. struct sched_domain *sd;
  5454. int domain_num = 0, i;
  5455. char buf[32];
  5456. for_each_domain(cpu, sd)
  5457. domain_num++;
  5458. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5459. if (table == NULL)
  5460. return NULL;
  5461. i = 0;
  5462. for_each_domain(cpu, sd) {
  5463. snprintf(buf, 32, "domain%d", i);
  5464. entry->procname = kstrdup(buf, GFP_KERNEL);
  5465. entry->mode = 0555;
  5466. entry->child = sd_alloc_ctl_domain_table(sd);
  5467. entry++;
  5468. i++;
  5469. }
  5470. return table;
  5471. }
  5472. static struct ctl_table_header *sd_sysctl_header;
  5473. static void register_sched_domain_sysctl(void)
  5474. {
  5475. int i, cpu_num = num_online_cpus();
  5476. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5477. char buf[32];
  5478. WARN_ON(sd_ctl_dir[0].child);
  5479. sd_ctl_dir[0].child = entry;
  5480. if (entry == NULL)
  5481. return;
  5482. for_each_online_cpu(i) {
  5483. snprintf(buf, 32, "cpu%d", i);
  5484. entry->procname = kstrdup(buf, GFP_KERNEL);
  5485. entry->mode = 0555;
  5486. entry->child = sd_alloc_ctl_cpu_table(i);
  5487. entry++;
  5488. }
  5489. WARN_ON(sd_sysctl_header);
  5490. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5491. }
  5492. /* may be called multiple times per register */
  5493. static void unregister_sched_domain_sysctl(void)
  5494. {
  5495. if (sd_sysctl_header)
  5496. unregister_sysctl_table(sd_sysctl_header);
  5497. sd_sysctl_header = NULL;
  5498. if (sd_ctl_dir[0].child)
  5499. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5500. }
  5501. #else
  5502. static void register_sched_domain_sysctl(void)
  5503. {
  5504. }
  5505. static void unregister_sched_domain_sysctl(void)
  5506. {
  5507. }
  5508. #endif
  5509. static void set_rq_online(struct rq *rq)
  5510. {
  5511. if (!rq->online) {
  5512. const struct sched_class *class;
  5513. cpu_set(rq->cpu, rq->rd->online);
  5514. rq->online = 1;
  5515. for_each_class(class) {
  5516. if (class->rq_online)
  5517. class->rq_online(rq);
  5518. }
  5519. }
  5520. }
  5521. static void set_rq_offline(struct rq *rq)
  5522. {
  5523. if (rq->online) {
  5524. const struct sched_class *class;
  5525. for_each_class(class) {
  5526. if (class->rq_offline)
  5527. class->rq_offline(rq);
  5528. }
  5529. cpu_clear(rq->cpu, rq->rd->online);
  5530. rq->online = 0;
  5531. }
  5532. }
  5533. /*
  5534. * migration_call - callback that gets triggered when a CPU is added.
  5535. * Here we can start up the necessary migration thread for the new CPU.
  5536. */
  5537. static int __cpuinit
  5538. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5539. {
  5540. struct task_struct *p;
  5541. int cpu = (long)hcpu;
  5542. unsigned long flags;
  5543. struct rq *rq;
  5544. switch (action) {
  5545. case CPU_UP_PREPARE:
  5546. case CPU_UP_PREPARE_FROZEN:
  5547. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5548. if (IS_ERR(p))
  5549. return NOTIFY_BAD;
  5550. kthread_bind(p, cpu);
  5551. /* Must be high prio: stop_machine expects to yield to it. */
  5552. rq = task_rq_lock(p, &flags);
  5553. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5554. task_rq_unlock(rq, &flags);
  5555. cpu_rq(cpu)->migration_thread = p;
  5556. break;
  5557. case CPU_ONLINE:
  5558. case CPU_ONLINE_FROZEN:
  5559. /* Strictly unnecessary, as first user will wake it. */
  5560. wake_up_process(cpu_rq(cpu)->migration_thread);
  5561. /* Update our root-domain */
  5562. rq = cpu_rq(cpu);
  5563. spin_lock_irqsave(&rq->lock, flags);
  5564. if (rq->rd) {
  5565. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5566. set_rq_online(rq);
  5567. }
  5568. spin_unlock_irqrestore(&rq->lock, flags);
  5569. break;
  5570. #ifdef CONFIG_HOTPLUG_CPU
  5571. case CPU_UP_CANCELED:
  5572. case CPU_UP_CANCELED_FROZEN:
  5573. if (!cpu_rq(cpu)->migration_thread)
  5574. break;
  5575. /* Unbind it from offline cpu so it can run. Fall thru. */
  5576. kthread_bind(cpu_rq(cpu)->migration_thread,
  5577. any_online_cpu(cpu_online_map));
  5578. kthread_stop(cpu_rq(cpu)->migration_thread);
  5579. cpu_rq(cpu)->migration_thread = NULL;
  5580. break;
  5581. case CPU_DEAD:
  5582. case CPU_DEAD_FROZEN:
  5583. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5584. migrate_live_tasks(cpu);
  5585. rq = cpu_rq(cpu);
  5586. kthread_stop(rq->migration_thread);
  5587. rq->migration_thread = NULL;
  5588. /* Idle task back to normal (off runqueue, low prio) */
  5589. spin_lock_irq(&rq->lock);
  5590. update_rq_clock(rq);
  5591. deactivate_task(rq, rq->idle, 0);
  5592. rq->idle->static_prio = MAX_PRIO;
  5593. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5594. rq->idle->sched_class = &idle_sched_class;
  5595. migrate_dead_tasks(cpu);
  5596. spin_unlock_irq(&rq->lock);
  5597. cpuset_unlock();
  5598. migrate_nr_uninterruptible(rq);
  5599. BUG_ON(rq->nr_running != 0);
  5600. /*
  5601. * No need to migrate the tasks: it was best-effort if
  5602. * they didn't take sched_hotcpu_mutex. Just wake up
  5603. * the requestors.
  5604. */
  5605. spin_lock_irq(&rq->lock);
  5606. while (!list_empty(&rq->migration_queue)) {
  5607. struct migration_req *req;
  5608. req = list_entry(rq->migration_queue.next,
  5609. struct migration_req, list);
  5610. list_del_init(&req->list);
  5611. complete(&req->done);
  5612. }
  5613. spin_unlock_irq(&rq->lock);
  5614. break;
  5615. case CPU_DYING:
  5616. case CPU_DYING_FROZEN:
  5617. /* Update our root-domain */
  5618. rq = cpu_rq(cpu);
  5619. spin_lock_irqsave(&rq->lock, flags);
  5620. if (rq->rd) {
  5621. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5622. set_rq_offline(rq);
  5623. }
  5624. spin_unlock_irqrestore(&rq->lock, flags);
  5625. break;
  5626. #endif
  5627. }
  5628. return NOTIFY_OK;
  5629. }
  5630. /* Register at highest priority so that task migration (migrate_all_tasks)
  5631. * happens before everything else.
  5632. */
  5633. static struct notifier_block __cpuinitdata migration_notifier = {
  5634. .notifier_call = migration_call,
  5635. .priority = 10
  5636. };
  5637. static int __init migration_init(void)
  5638. {
  5639. void *cpu = (void *)(long)smp_processor_id();
  5640. int err;
  5641. /* Start one for the boot CPU: */
  5642. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5643. BUG_ON(err == NOTIFY_BAD);
  5644. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5645. register_cpu_notifier(&migration_notifier);
  5646. return err;
  5647. }
  5648. early_initcall(migration_init);
  5649. #endif
  5650. #ifdef CONFIG_SMP
  5651. #ifdef CONFIG_SCHED_DEBUG
  5652. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5653. cpumask_t *groupmask)
  5654. {
  5655. struct sched_group *group = sd->groups;
  5656. char str[256];
  5657. cpulist_scnprintf(str, sizeof(str), sd->span);
  5658. cpus_clear(*groupmask);
  5659. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5660. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5661. printk("does not load-balance\n");
  5662. if (sd->parent)
  5663. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5664. " has parent");
  5665. return -1;
  5666. }
  5667. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5668. if (!cpu_isset(cpu, sd->span)) {
  5669. printk(KERN_ERR "ERROR: domain->span does not contain "
  5670. "CPU%d\n", cpu);
  5671. }
  5672. if (!cpu_isset(cpu, group->cpumask)) {
  5673. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5674. " CPU%d\n", cpu);
  5675. }
  5676. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5677. do {
  5678. if (!group) {
  5679. printk("\n");
  5680. printk(KERN_ERR "ERROR: group is NULL\n");
  5681. break;
  5682. }
  5683. if (!group->__cpu_power) {
  5684. printk(KERN_CONT "\n");
  5685. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5686. "set\n");
  5687. break;
  5688. }
  5689. if (!cpus_weight(group->cpumask)) {
  5690. printk(KERN_CONT "\n");
  5691. printk(KERN_ERR "ERROR: empty group\n");
  5692. break;
  5693. }
  5694. if (cpus_intersects(*groupmask, group->cpumask)) {
  5695. printk(KERN_CONT "\n");
  5696. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5697. break;
  5698. }
  5699. cpus_or(*groupmask, *groupmask, group->cpumask);
  5700. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5701. printk(KERN_CONT " %s", str);
  5702. group = group->next;
  5703. } while (group != sd->groups);
  5704. printk(KERN_CONT "\n");
  5705. if (!cpus_equal(sd->span, *groupmask))
  5706. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5707. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5708. printk(KERN_ERR "ERROR: parent span is not a superset "
  5709. "of domain->span\n");
  5710. return 0;
  5711. }
  5712. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5713. {
  5714. cpumask_t *groupmask;
  5715. int level = 0;
  5716. if (!sd) {
  5717. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5718. return;
  5719. }
  5720. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5721. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5722. if (!groupmask) {
  5723. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5724. return;
  5725. }
  5726. for (;;) {
  5727. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5728. break;
  5729. level++;
  5730. sd = sd->parent;
  5731. if (!sd)
  5732. break;
  5733. }
  5734. kfree(groupmask);
  5735. }
  5736. #else /* !CONFIG_SCHED_DEBUG */
  5737. # define sched_domain_debug(sd, cpu) do { } while (0)
  5738. #endif /* CONFIG_SCHED_DEBUG */
  5739. static int sd_degenerate(struct sched_domain *sd)
  5740. {
  5741. if (cpus_weight(sd->span) == 1)
  5742. return 1;
  5743. /* Following flags need at least 2 groups */
  5744. if (sd->flags & (SD_LOAD_BALANCE |
  5745. SD_BALANCE_NEWIDLE |
  5746. SD_BALANCE_FORK |
  5747. SD_BALANCE_EXEC |
  5748. SD_SHARE_CPUPOWER |
  5749. SD_SHARE_PKG_RESOURCES)) {
  5750. if (sd->groups != sd->groups->next)
  5751. return 0;
  5752. }
  5753. /* Following flags don't use groups */
  5754. if (sd->flags & (SD_WAKE_IDLE |
  5755. SD_WAKE_AFFINE |
  5756. SD_WAKE_BALANCE))
  5757. return 0;
  5758. return 1;
  5759. }
  5760. static int
  5761. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5762. {
  5763. unsigned long cflags = sd->flags, pflags = parent->flags;
  5764. if (sd_degenerate(parent))
  5765. return 1;
  5766. if (!cpus_equal(sd->span, parent->span))
  5767. return 0;
  5768. /* Does parent contain flags not in child? */
  5769. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5770. if (cflags & SD_WAKE_AFFINE)
  5771. pflags &= ~SD_WAKE_BALANCE;
  5772. /* Flags needing groups don't count if only 1 group in parent */
  5773. if (parent->groups == parent->groups->next) {
  5774. pflags &= ~(SD_LOAD_BALANCE |
  5775. SD_BALANCE_NEWIDLE |
  5776. SD_BALANCE_FORK |
  5777. SD_BALANCE_EXEC |
  5778. SD_SHARE_CPUPOWER |
  5779. SD_SHARE_PKG_RESOURCES);
  5780. }
  5781. if (~cflags & pflags)
  5782. return 0;
  5783. return 1;
  5784. }
  5785. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5786. {
  5787. unsigned long flags;
  5788. spin_lock_irqsave(&rq->lock, flags);
  5789. if (rq->rd) {
  5790. struct root_domain *old_rd = rq->rd;
  5791. if (cpu_isset(rq->cpu, old_rd->online))
  5792. set_rq_offline(rq);
  5793. cpu_clear(rq->cpu, old_rd->span);
  5794. if (atomic_dec_and_test(&old_rd->refcount))
  5795. kfree(old_rd);
  5796. }
  5797. atomic_inc(&rd->refcount);
  5798. rq->rd = rd;
  5799. cpu_set(rq->cpu, rd->span);
  5800. if (cpu_isset(rq->cpu, cpu_online_map))
  5801. set_rq_online(rq);
  5802. spin_unlock_irqrestore(&rq->lock, flags);
  5803. }
  5804. static void init_rootdomain(struct root_domain *rd)
  5805. {
  5806. memset(rd, 0, sizeof(*rd));
  5807. cpus_clear(rd->span);
  5808. cpus_clear(rd->online);
  5809. cpupri_init(&rd->cpupri);
  5810. }
  5811. static void init_defrootdomain(void)
  5812. {
  5813. init_rootdomain(&def_root_domain);
  5814. atomic_set(&def_root_domain.refcount, 1);
  5815. }
  5816. static struct root_domain *alloc_rootdomain(void)
  5817. {
  5818. struct root_domain *rd;
  5819. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5820. if (!rd)
  5821. return NULL;
  5822. init_rootdomain(rd);
  5823. return rd;
  5824. }
  5825. /*
  5826. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5827. * hold the hotplug lock.
  5828. */
  5829. static void
  5830. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5831. {
  5832. struct rq *rq = cpu_rq(cpu);
  5833. struct sched_domain *tmp;
  5834. /* Remove the sched domains which do not contribute to scheduling. */
  5835. for (tmp = sd; tmp; ) {
  5836. struct sched_domain *parent = tmp->parent;
  5837. if (!parent)
  5838. break;
  5839. if (sd_parent_degenerate(tmp, parent)) {
  5840. tmp->parent = parent->parent;
  5841. if (parent->parent)
  5842. parent->parent->child = tmp;
  5843. } else
  5844. tmp = tmp->parent;
  5845. }
  5846. if (sd && sd_degenerate(sd)) {
  5847. sd = sd->parent;
  5848. if (sd)
  5849. sd->child = NULL;
  5850. }
  5851. sched_domain_debug(sd, cpu);
  5852. rq_attach_root(rq, rd);
  5853. rcu_assign_pointer(rq->sd, sd);
  5854. }
  5855. /* cpus with isolated domains */
  5856. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5857. /* Setup the mask of cpus configured for isolated domains */
  5858. static int __init isolated_cpu_setup(char *str)
  5859. {
  5860. static int __initdata ints[NR_CPUS];
  5861. int i;
  5862. str = get_options(str, ARRAY_SIZE(ints), ints);
  5863. cpus_clear(cpu_isolated_map);
  5864. for (i = 1; i <= ints[0]; i++)
  5865. if (ints[i] < NR_CPUS)
  5866. cpu_set(ints[i], cpu_isolated_map);
  5867. return 1;
  5868. }
  5869. __setup("isolcpus=", isolated_cpu_setup);
  5870. /*
  5871. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5872. * to a function which identifies what group(along with sched group) a CPU
  5873. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5874. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5875. *
  5876. * init_sched_build_groups will build a circular linked list of the groups
  5877. * covered by the given span, and will set each group's ->cpumask correctly,
  5878. * and ->cpu_power to 0.
  5879. */
  5880. static void
  5881. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5882. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5883. struct sched_group **sg,
  5884. cpumask_t *tmpmask),
  5885. cpumask_t *covered, cpumask_t *tmpmask)
  5886. {
  5887. struct sched_group *first = NULL, *last = NULL;
  5888. int i;
  5889. cpus_clear(*covered);
  5890. for_each_cpu_mask_nr(i, *span) {
  5891. struct sched_group *sg;
  5892. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5893. int j;
  5894. if (cpu_isset(i, *covered))
  5895. continue;
  5896. cpus_clear(sg->cpumask);
  5897. sg->__cpu_power = 0;
  5898. for_each_cpu_mask_nr(j, *span) {
  5899. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5900. continue;
  5901. cpu_set(j, *covered);
  5902. cpu_set(j, sg->cpumask);
  5903. }
  5904. if (!first)
  5905. first = sg;
  5906. if (last)
  5907. last->next = sg;
  5908. last = sg;
  5909. }
  5910. last->next = first;
  5911. }
  5912. #define SD_NODES_PER_DOMAIN 16
  5913. #ifdef CONFIG_NUMA
  5914. /**
  5915. * find_next_best_node - find the next node to include in a sched_domain
  5916. * @node: node whose sched_domain we're building
  5917. * @used_nodes: nodes already in the sched_domain
  5918. *
  5919. * Find the next node to include in a given scheduling domain. Simply
  5920. * finds the closest node not already in the @used_nodes map.
  5921. *
  5922. * Should use nodemask_t.
  5923. */
  5924. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5925. {
  5926. int i, n, val, min_val, best_node = 0;
  5927. min_val = INT_MAX;
  5928. for (i = 0; i < nr_node_ids; i++) {
  5929. /* Start at @node */
  5930. n = (node + i) % nr_node_ids;
  5931. if (!nr_cpus_node(n))
  5932. continue;
  5933. /* Skip already used nodes */
  5934. if (node_isset(n, *used_nodes))
  5935. continue;
  5936. /* Simple min distance search */
  5937. val = node_distance(node, n);
  5938. if (val < min_val) {
  5939. min_val = val;
  5940. best_node = n;
  5941. }
  5942. }
  5943. node_set(best_node, *used_nodes);
  5944. return best_node;
  5945. }
  5946. /**
  5947. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5948. * @node: node whose cpumask we're constructing
  5949. * @span: resulting cpumask
  5950. *
  5951. * Given a node, construct a good cpumask for its sched_domain to span. It
  5952. * should be one that prevents unnecessary balancing, but also spreads tasks
  5953. * out optimally.
  5954. */
  5955. static void sched_domain_node_span(int node, cpumask_t *span)
  5956. {
  5957. nodemask_t used_nodes;
  5958. node_to_cpumask_ptr(nodemask, node);
  5959. int i;
  5960. cpus_clear(*span);
  5961. nodes_clear(used_nodes);
  5962. cpus_or(*span, *span, *nodemask);
  5963. node_set(node, used_nodes);
  5964. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5965. int next_node = find_next_best_node(node, &used_nodes);
  5966. node_to_cpumask_ptr_next(nodemask, next_node);
  5967. cpus_or(*span, *span, *nodemask);
  5968. }
  5969. }
  5970. #endif /* CONFIG_NUMA */
  5971. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5972. /*
  5973. * SMT sched-domains:
  5974. */
  5975. #ifdef CONFIG_SCHED_SMT
  5976. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5977. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5978. static int
  5979. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5980. cpumask_t *unused)
  5981. {
  5982. if (sg)
  5983. *sg = &per_cpu(sched_group_cpus, cpu);
  5984. return cpu;
  5985. }
  5986. #endif /* CONFIG_SCHED_SMT */
  5987. /*
  5988. * multi-core sched-domains:
  5989. */
  5990. #ifdef CONFIG_SCHED_MC
  5991. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5992. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5993. #endif /* CONFIG_SCHED_MC */
  5994. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5995. static int
  5996. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5997. cpumask_t *mask)
  5998. {
  5999. int group;
  6000. *mask = per_cpu(cpu_sibling_map, cpu);
  6001. cpus_and(*mask, *mask, *cpu_map);
  6002. group = first_cpu(*mask);
  6003. if (sg)
  6004. *sg = &per_cpu(sched_group_core, group);
  6005. return group;
  6006. }
  6007. #elif defined(CONFIG_SCHED_MC)
  6008. static int
  6009. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6010. cpumask_t *unused)
  6011. {
  6012. if (sg)
  6013. *sg = &per_cpu(sched_group_core, cpu);
  6014. return cpu;
  6015. }
  6016. #endif
  6017. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6018. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6019. static int
  6020. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6021. cpumask_t *mask)
  6022. {
  6023. int group;
  6024. #ifdef CONFIG_SCHED_MC
  6025. *mask = cpu_coregroup_map(cpu);
  6026. cpus_and(*mask, *mask, *cpu_map);
  6027. group = first_cpu(*mask);
  6028. #elif defined(CONFIG_SCHED_SMT)
  6029. *mask = per_cpu(cpu_sibling_map, cpu);
  6030. cpus_and(*mask, *mask, *cpu_map);
  6031. group = first_cpu(*mask);
  6032. #else
  6033. group = cpu;
  6034. #endif
  6035. if (sg)
  6036. *sg = &per_cpu(sched_group_phys, group);
  6037. return group;
  6038. }
  6039. #ifdef CONFIG_NUMA
  6040. /*
  6041. * The init_sched_build_groups can't handle what we want to do with node
  6042. * groups, so roll our own. Now each node has its own list of groups which
  6043. * gets dynamically allocated.
  6044. */
  6045. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6046. static struct sched_group ***sched_group_nodes_bycpu;
  6047. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6048. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6049. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6050. struct sched_group **sg, cpumask_t *nodemask)
  6051. {
  6052. int group;
  6053. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6054. cpus_and(*nodemask, *nodemask, *cpu_map);
  6055. group = first_cpu(*nodemask);
  6056. if (sg)
  6057. *sg = &per_cpu(sched_group_allnodes, group);
  6058. return group;
  6059. }
  6060. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6061. {
  6062. struct sched_group *sg = group_head;
  6063. int j;
  6064. if (!sg)
  6065. return;
  6066. do {
  6067. for_each_cpu_mask_nr(j, sg->cpumask) {
  6068. struct sched_domain *sd;
  6069. sd = &per_cpu(phys_domains, j);
  6070. if (j != first_cpu(sd->groups->cpumask)) {
  6071. /*
  6072. * Only add "power" once for each
  6073. * physical package.
  6074. */
  6075. continue;
  6076. }
  6077. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6078. }
  6079. sg = sg->next;
  6080. } while (sg != group_head);
  6081. }
  6082. #endif /* CONFIG_NUMA */
  6083. #ifdef CONFIG_NUMA
  6084. /* Free memory allocated for various sched_group structures */
  6085. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6086. {
  6087. int cpu, i;
  6088. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6089. struct sched_group **sched_group_nodes
  6090. = sched_group_nodes_bycpu[cpu];
  6091. if (!sched_group_nodes)
  6092. continue;
  6093. for (i = 0; i < nr_node_ids; i++) {
  6094. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6095. *nodemask = node_to_cpumask(i);
  6096. cpus_and(*nodemask, *nodemask, *cpu_map);
  6097. if (cpus_empty(*nodemask))
  6098. continue;
  6099. if (sg == NULL)
  6100. continue;
  6101. sg = sg->next;
  6102. next_sg:
  6103. oldsg = sg;
  6104. sg = sg->next;
  6105. kfree(oldsg);
  6106. if (oldsg != sched_group_nodes[i])
  6107. goto next_sg;
  6108. }
  6109. kfree(sched_group_nodes);
  6110. sched_group_nodes_bycpu[cpu] = NULL;
  6111. }
  6112. }
  6113. #else /* !CONFIG_NUMA */
  6114. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6115. {
  6116. }
  6117. #endif /* CONFIG_NUMA */
  6118. /*
  6119. * Initialize sched groups cpu_power.
  6120. *
  6121. * cpu_power indicates the capacity of sched group, which is used while
  6122. * distributing the load between different sched groups in a sched domain.
  6123. * Typically cpu_power for all the groups in a sched domain will be same unless
  6124. * there are asymmetries in the topology. If there are asymmetries, group
  6125. * having more cpu_power will pickup more load compared to the group having
  6126. * less cpu_power.
  6127. *
  6128. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6129. * the maximum number of tasks a group can handle in the presence of other idle
  6130. * or lightly loaded groups in the same sched domain.
  6131. */
  6132. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6133. {
  6134. struct sched_domain *child;
  6135. struct sched_group *group;
  6136. WARN_ON(!sd || !sd->groups);
  6137. if (cpu != first_cpu(sd->groups->cpumask))
  6138. return;
  6139. child = sd->child;
  6140. sd->groups->__cpu_power = 0;
  6141. /*
  6142. * For perf policy, if the groups in child domain share resources
  6143. * (for example cores sharing some portions of the cache hierarchy
  6144. * or SMT), then set this domain groups cpu_power such that each group
  6145. * can handle only one task, when there are other idle groups in the
  6146. * same sched domain.
  6147. */
  6148. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6149. (child->flags &
  6150. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6151. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6152. return;
  6153. }
  6154. /*
  6155. * add cpu_power of each child group to this groups cpu_power
  6156. */
  6157. group = child->groups;
  6158. do {
  6159. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6160. group = group->next;
  6161. } while (group != child->groups);
  6162. }
  6163. /*
  6164. * Initializers for schedule domains
  6165. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6166. */
  6167. #ifdef CONFIG_SCHED_DEBUG
  6168. # define SD_INIT_NAME(sd, type) sd->name = #type
  6169. #else
  6170. # define SD_INIT_NAME(sd, type) do { } while (0)
  6171. #endif
  6172. #define SD_INIT(sd, type) sd_init_##type(sd)
  6173. #define SD_INIT_FUNC(type) \
  6174. static noinline void sd_init_##type(struct sched_domain *sd) \
  6175. { \
  6176. memset(sd, 0, sizeof(*sd)); \
  6177. *sd = SD_##type##_INIT; \
  6178. sd->level = SD_LV_##type; \
  6179. SD_INIT_NAME(sd, type); \
  6180. }
  6181. SD_INIT_FUNC(CPU)
  6182. #ifdef CONFIG_NUMA
  6183. SD_INIT_FUNC(ALLNODES)
  6184. SD_INIT_FUNC(NODE)
  6185. #endif
  6186. #ifdef CONFIG_SCHED_SMT
  6187. SD_INIT_FUNC(SIBLING)
  6188. #endif
  6189. #ifdef CONFIG_SCHED_MC
  6190. SD_INIT_FUNC(MC)
  6191. #endif
  6192. /*
  6193. * To minimize stack usage kmalloc room for cpumasks and share the
  6194. * space as the usage in build_sched_domains() dictates. Used only
  6195. * if the amount of space is significant.
  6196. */
  6197. struct allmasks {
  6198. cpumask_t tmpmask; /* make this one first */
  6199. union {
  6200. cpumask_t nodemask;
  6201. cpumask_t this_sibling_map;
  6202. cpumask_t this_core_map;
  6203. };
  6204. cpumask_t send_covered;
  6205. #ifdef CONFIG_NUMA
  6206. cpumask_t domainspan;
  6207. cpumask_t covered;
  6208. cpumask_t notcovered;
  6209. #endif
  6210. };
  6211. #if NR_CPUS > 128
  6212. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6213. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6214. {
  6215. *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
  6216. }
  6217. static inline void sched_cpumask_free(struct allmasks *masks)
  6218. {
  6219. kfree(masks);
  6220. }
  6221. #else
  6222. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6223. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6224. { }
  6225. static inline void sched_cpumask_free(struct allmasks *masks)
  6226. { }
  6227. #endif
  6228. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6229. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6230. static int default_relax_domain_level = -1;
  6231. static int __init setup_relax_domain_level(char *str)
  6232. {
  6233. unsigned long val;
  6234. val = simple_strtoul(str, NULL, 0);
  6235. if (val < SD_LV_MAX)
  6236. default_relax_domain_level = val;
  6237. return 1;
  6238. }
  6239. __setup("relax_domain_level=", setup_relax_domain_level);
  6240. static void set_domain_attribute(struct sched_domain *sd,
  6241. struct sched_domain_attr *attr)
  6242. {
  6243. int request;
  6244. if (!attr || attr->relax_domain_level < 0) {
  6245. if (default_relax_domain_level < 0)
  6246. return;
  6247. else
  6248. request = default_relax_domain_level;
  6249. } else
  6250. request = attr->relax_domain_level;
  6251. if (request < sd->level) {
  6252. /* turn off idle balance on this domain */
  6253. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6254. } else {
  6255. /* turn on idle balance on this domain */
  6256. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6257. }
  6258. }
  6259. /*
  6260. * Build sched domains for a given set of cpus and attach the sched domains
  6261. * to the individual cpus
  6262. */
  6263. static int __build_sched_domains(const cpumask_t *cpu_map,
  6264. struct sched_domain_attr *attr)
  6265. {
  6266. int i;
  6267. struct root_domain *rd;
  6268. SCHED_CPUMASK_DECLARE(allmasks);
  6269. cpumask_t *tmpmask;
  6270. #ifdef CONFIG_NUMA
  6271. struct sched_group **sched_group_nodes = NULL;
  6272. int sd_allnodes = 0;
  6273. /*
  6274. * Allocate the per-node list of sched groups
  6275. */
  6276. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6277. GFP_KERNEL);
  6278. if (!sched_group_nodes) {
  6279. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6280. return -ENOMEM;
  6281. }
  6282. #endif
  6283. rd = alloc_rootdomain();
  6284. if (!rd) {
  6285. printk(KERN_WARNING "Cannot alloc root domain\n");
  6286. #ifdef CONFIG_NUMA
  6287. kfree(sched_group_nodes);
  6288. #endif
  6289. return -ENOMEM;
  6290. }
  6291. /* get space for all scratch cpumask variables */
  6292. sched_cpumask_alloc(&allmasks);
  6293. if (!allmasks) {
  6294. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6295. kfree(rd);
  6296. #ifdef CONFIG_NUMA
  6297. kfree(sched_group_nodes);
  6298. #endif
  6299. return -ENOMEM;
  6300. }
  6301. tmpmask = (cpumask_t *)allmasks;
  6302. #ifdef CONFIG_NUMA
  6303. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6304. #endif
  6305. /*
  6306. * Set up domains for cpus specified by the cpu_map.
  6307. */
  6308. for_each_cpu_mask_nr(i, *cpu_map) {
  6309. struct sched_domain *sd = NULL, *p;
  6310. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6311. *nodemask = node_to_cpumask(cpu_to_node(i));
  6312. cpus_and(*nodemask, *nodemask, *cpu_map);
  6313. #ifdef CONFIG_NUMA
  6314. if (cpus_weight(*cpu_map) >
  6315. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6316. sd = &per_cpu(allnodes_domains, i);
  6317. SD_INIT(sd, ALLNODES);
  6318. set_domain_attribute(sd, attr);
  6319. sd->span = *cpu_map;
  6320. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6321. p = sd;
  6322. sd_allnodes = 1;
  6323. } else
  6324. p = NULL;
  6325. sd = &per_cpu(node_domains, i);
  6326. SD_INIT(sd, NODE);
  6327. set_domain_attribute(sd, attr);
  6328. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6329. sd->parent = p;
  6330. if (p)
  6331. p->child = sd;
  6332. cpus_and(sd->span, sd->span, *cpu_map);
  6333. #endif
  6334. p = sd;
  6335. sd = &per_cpu(phys_domains, i);
  6336. SD_INIT(sd, CPU);
  6337. set_domain_attribute(sd, attr);
  6338. sd->span = *nodemask;
  6339. sd->parent = p;
  6340. if (p)
  6341. p->child = sd;
  6342. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6343. #ifdef CONFIG_SCHED_MC
  6344. p = sd;
  6345. sd = &per_cpu(core_domains, i);
  6346. SD_INIT(sd, MC);
  6347. set_domain_attribute(sd, attr);
  6348. sd->span = cpu_coregroup_map(i);
  6349. cpus_and(sd->span, sd->span, *cpu_map);
  6350. sd->parent = p;
  6351. p->child = sd;
  6352. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6353. #endif
  6354. #ifdef CONFIG_SCHED_SMT
  6355. p = sd;
  6356. sd = &per_cpu(cpu_domains, i);
  6357. SD_INIT(sd, SIBLING);
  6358. set_domain_attribute(sd, attr);
  6359. sd->span = per_cpu(cpu_sibling_map, i);
  6360. cpus_and(sd->span, sd->span, *cpu_map);
  6361. sd->parent = p;
  6362. p->child = sd;
  6363. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6364. #endif
  6365. }
  6366. #ifdef CONFIG_SCHED_SMT
  6367. /* Set up CPU (sibling) groups */
  6368. for_each_cpu_mask_nr(i, *cpu_map) {
  6369. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6370. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6371. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6372. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6373. if (i != first_cpu(*this_sibling_map))
  6374. continue;
  6375. init_sched_build_groups(this_sibling_map, cpu_map,
  6376. &cpu_to_cpu_group,
  6377. send_covered, tmpmask);
  6378. }
  6379. #endif
  6380. #ifdef CONFIG_SCHED_MC
  6381. /* Set up multi-core groups */
  6382. for_each_cpu_mask_nr(i, *cpu_map) {
  6383. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6384. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6385. *this_core_map = cpu_coregroup_map(i);
  6386. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6387. if (i != first_cpu(*this_core_map))
  6388. continue;
  6389. init_sched_build_groups(this_core_map, cpu_map,
  6390. &cpu_to_core_group,
  6391. send_covered, tmpmask);
  6392. }
  6393. #endif
  6394. /* Set up physical groups */
  6395. for (i = 0; i < nr_node_ids; i++) {
  6396. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6397. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6398. *nodemask = node_to_cpumask(i);
  6399. cpus_and(*nodemask, *nodemask, *cpu_map);
  6400. if (cpus_empty(*nodemask))
  6401. continue;
  6402. init_sched_build_groups(nodemask, cpu_map,
  6403. &cpu_to_phys_group,
  6404. send_covered, tmpmask);
  6405. }
  6406. #ifdef CONFIG_NUMA
  6407. /* Set up node groups */
  6408. if (sd_allnodes) {
  6409. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6410. init_sched_build_groups(cpu_map, cpu_map,
  6411. &cpu_to_allnodes_group,
  6412. send_covered, tmpmask);
  6413. }
  6414. for (i = 0; i < nr_node_ids; i++) {
  6415. /* Set up node groups */
  6416. struct sched_group *sg, *prev;
  6417. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6418. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6419. SCHED_CPUMASK_VAR(covered, allmasks);
  6420. int j;
  6421. *nodemask = node_to_cpumask(i);
  6422. cpus_clear(*covered);
  6423. cpus_and(*nodemask, *nodemask, *cpu_map);
  6424. if (cpus_empty(*nodemask)) {
  6425. sched_group_nodes[i] = NULL;
  6426. continue;
  6427. }
  6428. sched_domain_node_span(i, domainspan);
  6429. cpus_and(*domainspan, *domainspan, *cpu_map);
  6430. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6431. if (!sg) {
  6432. printk(KERN_WARNING "Can not alloc domain group for "
  6433. "node %d\n", i);
  6434. goto error;
  6435. }
  6436. sched_group_nodes[i] = sg;
  6437. for_each_cpu_mask_nr(j, *nodemask) {
  6438. struct sched_domain *sd;
  6439. sd = &per_cpu(node_domains, j);
  6440. sd->groups = sg;
  6441. }
  6442. sg->__cpu_power = 0;
  6443. sg->cpumask = *nodemask;
  6444. sg->next = sg;
  6445. cpus_or(*covered, *covered, *nodemask);
  6446. prev = sg;
  6447. for (j = 0; j < nr_node_ids; j++) {
  6448. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6449. int n = (i + j) % nr_node_ids;
  6450. node_to_cpumask_ptr(pnodemask, n);
  6451. cpus_complement(*notcovered, *covered);
  6452. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6453. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6454. if (cpus_empty(*tmpmask))
  6455. break;
  6456. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6457. if (cpus_empty(*tmpmask))
  6458. continue;
  6459. sg = kmalloc_node(sizeof(struct sched_group),
  6460. GFP_KERNEL, i);
  6461. if (!sg) {
  6462. printk(KERN_WARNING
  6463. "Can not alloc domain group for node %d\n", j);
  6464. goto error;
  6465. }
  6466. sg->__cpu_power = 0;
  6467. sg->cpumask = *tmpmask;
  6468. sg->next = prev->next;
  6469. cpus_or(*covered, *covered, *tmpmask);
  6470. prev->next = sg;
  6471. prev = sg;
  6472. }
  6473. }
  6474. #endif
  6475. /* Calculate CPU power for physical packages and nodes */
  6476. #ifdef CONFIG_SCHED_SMT
  6477. for_each_cpu_mask_nr(i, *cpu_map) {
  6478. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6479. init_sched_groups_power(i, sd);
  6480. }
  6481. #endif
  6482. #ifdef CONFIG_SCHED_MC
  6483. for_each_cpu_mask_nr(i, *cpu_map) {
  6484. struct sched_domain *sd = &per_cpu(core_domains, i);
  6485. init_sched_groups_power(i, sd);
  6486. }
  6487. #endif
  6488. for_each_cpu_mask_nr(i, *cpu_map) {
  6489. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6490. init_sched_groups_power(i, sd);
  6491. }
  6492. #ifdef CONFIG_NUMA
  6493. for (i = 0; i < nr_node_ids; i++)
  6494. init_numa_sched_groups_power(sched_group_nodes[i]);
  6495. if (sd_allnodes) {
  6496. struct sched_group *sg;
  6497. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6498. tmpmask);
  6499. init_numa_sched_groups_power(sg);
  6500. }
  6501. #endif
  6502. /* Attach the domains */
  6503. for_each_cpu_mask_nr(i, *cpu_map) {
  6504. struct sched_domain *sd;
  6505. #ifdef CONFIG_SCHED_SMT
  6506. sd = &per_cpu(cpu_domains, i);
  6507. #elif defined(CONFIG_SCHED_MC)
  6508. sd = &per_cpu(core_domains, i);
  6509. #else
  6510. sd = &per_cpu(phys_domains, i);
  6511. #endif
  6512. cpu_attach_domain(sd, rd, i);
  6513. }
  6514. sched_cpumask_free(allmasks);
  6515. return 0;
  6516. #ifdef CONFIG_NUMA
  6517. error:
  6518. free_sched_groups(cpu_map, tmpmask);
  6519. sched_cpumask_free(allmasks);
  6520. kfree(rd);
  6521. return -ENOMEM;
  6522. #endif
  6523. }
  6524. static int build_sched_domains(const cpumask_t *cpu_map)
  6525. {
  6526. return __build_sched_domains(cpu_map, NULL);
  6527. }
  6528. static cpumask_t *doms_cur; /* current sched domains */
  6529. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6530. static struct sched_domain_attr *dattr_cur;
  6531. /* attribues of custom domains in 'doms_cur' */
  6532. /*
  6533. * Special case: If a kmalloc of a doms_cur partition (array of
  6534. * cpumask_t) fails, then fallback to a single sched domain,
  6535. * as determined by the single cpumask_t fallback_doms.
  6536. */
  6537. static cpumask_t fallback_doms;
  6538. void __attribute__((weak)) arch_update_cpu_topology(void)
  6539. {
  6540. }
  6541. /*
  6542. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6543. * For now this just excludes isolated cpus, but could be used to
  6544. * exclude other special cases in the future.
  6545. */
  6546. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6547. {
  6548. int err;
  6549. arch_update_cpu_topology();
  6550. ndoms_cur = 1;
  6551. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6552. if (!doms_cur)
  6553. doms_cur = &fallback_doms;
  6554. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6555. dattr_cur = NULL;
  6556. err = build_sched_domains(doms_cur);
  6557. register_sched_domain_sysctl();
  6558. return err;
  6559. }
  6560. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6561. cpumask_t *tmpmask)
  6562. {
  6563. free_sched_groups(cpu_map, tmpmask);
  6564. }
  6565. /*
  6566. * Detach sched domains from a group of cpus specified in cpu_map
  6567. * These cpus will now be attached to the NULL domain
  6568. */
  6569. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6570. {
  6571. cpumask_t tmpmask;
  6572. int i;
  6573. for_each_cpu_mask_nr(i, *cpu_map)
  6574. cpu_attach_domain(NULL, &def_root_domain, i);
  6575. synchronize_sched();
  6576. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6577. }
  6578. /* handle null as "default" */
  6579. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6580. struct sched_domain_attr *new, int idx_new)
  6581. {
  6582. struct sched_domain_attr tmp;
  6583. /* fast path */
  6584. if (!new && !cur)
  6585. return 1;
  6586. tmp = SD_ATTR_INIT;
  6587. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6588. new ? (new + idx_new) : &tmp,
  6589. sizeof(struct sched_domain_attr));
  6590. }
  6591. /*
  6592. * Partition sched domains as specified by the 'ndoms_new'
  6593. * cpumasks in the array doms_new[] of cpumasks. This compares
  6594. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6595. * It destroys each deleted domain and builds each new domain.
  6596. *
  6597. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6598. * The masks don't intersect (don't overlap.) We should setup one
  6599. * sched domain for each mask. CPUs not in any of the cpumasks will
  6600. * not be load balanced. If the same cpumask appears both in the
  6601. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6602. * it as it is.
  6603. *
  6604. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6605. * ownership of it and will kfree it when done with it. If the caller
  6606. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6607. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6608. * the single partition 'fallback_doms', it also forces the domains
  6609. * to be rebuilt.
  6610. *
  6611. * If doms_new == NULL it will be replaced with cpu_online_map.
  6612. * ndoms_new == 0 is a special case for destroying existing domains,
  6613. * and it will not create the default domain.
  6614. *
  6615. * Call with hotplug lock held
  6616. */
  6617. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6618. struct sched_domain_attr *dattr_new)
  6619. {
  6620. int i, j, n;
  6621. mutex_lock(&sched_domains_mutex);
  6622. /* always unregister in case we don't destroy any domains */
  6623. unregister_sched_domain_sysctl();
  6624. n = doms_new ? ndoms_new : 0;
  6625. /* Destroy deleted domains */
  6626. for (i = 0; i < ndoms_cur; i++) {
  6627. for (j = 0; j < n; j++) {
  6628. if (cpus_equal(doms_cur[i], doms_new[j])
  6629. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6630. goto match1;
  6631. }
  6632. /* no match - a current sched domain not in new doms_new[] */
  6633. detach_destroy_domains(doms_cur + i);
  6634. match1:
  6635. ;
  6636. }
  6637. if (doms_new == NULL) {
  6638. ndoms_cur = 0;
  6639. doms_new = &fallback_doms;
  6640. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6641. WARN_ON_ONCE(dattr_new);
  6642. }
  6643. /* Build new domains */
  6644. for (i = 0; i < ndoms_new; i++) {
  6645. for (j = 0; j < ndoms_cur; j++) {
  6646. if (cpus_equal(doms_new[i], doms_cur[j])
  6647. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6648. goto match2;
  6649. }
  6650. /* no match - add a new doms_new */
  6651. __build_sched_domains(doms_new + i,
  6652. dattr_new ? dattr_new + i : NULL);
  6653. match2:
  6654. ;
  6655. }
  6656. /* Remember the new sched domains */
  6657. if (doms_cur != &fallback_doms)
  6658. kfree(doms_cur);
  6659. kfree(dattr_cur); /* kfree(NULL) is safe */
  6660. doms_cur = doms_new;
  6661. dattr_cur = dattr_new;
  6662. ndoms_cur = ndoms_new;
  6663. register_sched_domain_sysctl();
  6664. mutex_unlock(&sched_domains_mutex);
  6665. }
  6666. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6667. int arch_reinit_sched_domains(void)
  6668. {
  6669. get_online_cpus();
  6670. /* Destroy domains first to force the rebuild */
  6671. partition_sched_domains(0, NULL, NULL);
  6672. rebuild_sched_domains();
  6673. put_online_cpus();
  6674. return 0;
  6675. }
  6676. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6677. {
  6678. int ret;
  6679. if (buf[0] != '0' && buf[0] != '1')
  6680. return -EINVAL;
  6681. if (smt)
  6682. sched_smt_power_savings = (buf[0] == '1');
  6683. else
  6684. sched_mc_power_savings = (buf[0] == '1');
  6685. ret = arch_reinit_sched_domains();
  6686. return ret ? ret : count;
  6687. }
  6688. #ifdef CONFIG_SCHED_MC
  6689. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6690. char *page)
  6691. {
  6692. return sprintf(page, "%u\n", sched_mc_power_savings);
  6693. }
  6694. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6695. const char *buf, size_t count)
  6696. {
  6697. return sched_power_savings_store(buf, count, 0);
  6698. }
  6699. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6700. sched_mc_power_savings_show,
  6701. sched_mc_power_savings_store);
  6702. #endif
  6703. #ifdef CONFIG_SCHED_SMT
  6704. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6705. char *page)
  6706. {
  6707. return sprintf(page, "%u\n", sched_smt_power_savings);
  6708. }
  6709. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6710. const char *buf, size_t count)
  6711. {
  6712. return sched_power_savings_store(buf, count, 1);
  6713. }
  6714. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6715. sched_smt_power_savings_show,
  6716. sched_smt_power_savings_store);
  6717. #endif
  6718. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6719. {
  6720. int err = 0;
  6721. #ifdef CONFIG_SCHED_SMT
  6722. if (smt_capable())
  6723. err = sysfs_create_file(&cls->kset.kobj,
  6724. &attr_sched_smt_power_savings.attr);
  6725. #endif
  6726. #ifdef CONFIG_SCHED_MC
  6727. if (!err && mc_capable())
  6728. err = sysfs_create_file(&cls->kset.kobj,
  6729. &attr_sched_mc_power_savings.attr);
  6730. #endif
  6731. return err;
  6732. }
  6733. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6734. #ifndef CONFIG_CPUSETS
  6735. /*
  6736. * Add online and remove offline CPUs from the scheduler domains.
  6737. * When cpusets are enabled they take over this function.
  6738. */
  6739. static int update_sched_domains(struct notifier_block *nfb,
  6740. unsigned long action, void *hcpu)
  6741. {
  6742. switch (action) {
  6743. case CPU_ONLINE:
  6744. case CPU_ONLINE_FROZEN:
  6745. case CPU_DEAD:
  6746. case CPU_DEAD_FROZEN:
  6747. partition_sched_domains(1, NULL, NULL);
  6748. return NOTIFY_OK;
  6749. default:
  6750. return NOTIFY_DONE;
  6751. }
  6752. }
  6753. #endif
  6754. static int update_runtime(struct notifier_block *nfb,
  6755. unsigned long action, void *hcpu)
  6756. {
  6757. int cpu = (int)(long)hcpu;
  6758. switch (action) {
  6759. case CPU_DOWN_PREPARE:
  6760. case CPU_DOWN_PREPARE_FROZEN:
  6761. disable_runtime(cpu_rq(cpu));
  6762. return NOTIFY_OK;
  6763. case CPU_DOWN_FAILED:
  6764. case CPU_DOWN_FAILED_FROZEN:
  6765. case CPU_ONLINE:
  6766. case CPU_ONLINE_FROZEN:
  6767. enable_runtime(cpu_rq(cpu));
  6768. return NOTIFY_OK;
  6769. default:
  6770. return NOTIFY_DONE;
  6771. }
  6772. }
  6773. void __init sched_init_smp(void)
  6774. {
  6775. cpumask_t non_isolated_cpus;
  6776. #if defined(CONFIG_NUMA)
  6777. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6778. GFP_KERNEL);
  6779. BUG_ON(sched_group_nodes_bycpu == NULL);
  6780. #endif
  6781. get_online_cpus();
  6782. mutex_lock(&sched_domains_mutex);
  6783. arch_init_sched_domains(&cpu_online_map);
  6784. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6785. if (cpus_empty(non_isolated_cpus))
  6786. cpu_set(smp_processor_id(), non_isolated_cpus);
  6787. mutex_unlock(&sched_domains_mutex);
  6788. put_online_cpus();
  6789. #ifndef CONFIG_CPUSETS
  6790. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6791. hotcpu_notifier(update_sched_domains, 0);
  6792. #endif
  6793. /* RT runtime code needs to handle some hotplug events */
  6794. hotcpu_notifier(update_runtime, 0);
  6795. init_hrtick();
  6796. /* Move init over to a non-isolated CPU */
  6797. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6798. BUG();
  6799. sched_init_granularity();
  6800. }
  6801. #else
  6802. void __init sched_init_smp(void)
  6803. {
  6804. sched_init_granularity();
  6805. }
  6806. #endif /* CONFIG_SMP */
  6807. int in_sched_functions(unsigned long addr)
  6808. {
  6809. return in_lock_functions(addr) ||
  6810. (addr >= (unsigned long)__sched_text_start
  6811. && addr < (unsigned long)__sched_text_end);
  6812. }
  6813. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6814. {
  6815. cfs_rq->tasks_timeline = RB_ROOT;
  6816. INIT_LIST_HEAD(&cfs_rq->tasks);
  6817. #ifdef CONFIG_FAIR_GROUP_SCHED
  6818. cfs_rq->rq = rq;
  6819. #endif
  6820. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6821. }
  6822. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6823. {
  6824. struct rt_prio_array *array;
  6825. int i;
  6826. array = &rt_rq->active;
  6827. for (i = 0; i < MAX_RT_PRIO; i++) {
  6828. INIT_LIST_HEAD(array->queue + i);
  6829. __clear_bit(i, array->bitmap);
  6830. }
  6831. /* delimiter for bitsearch: */
  6832. __set_bit(MAX_RT_PRIO, array->bitmap);
  6833. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6834. rt_rq->highest_prio = MAX_RT_PRIO;
  6835. #endif
  6836. #ifdef CONFIG_SMP
  6837. rt_rq->rt_nr_migratory = 0;
  6838. rt_rq->overloaded = 0;
  6839. #endif
  6840. rt_rq->rt_time = 0;
  6841. rt_rq->rt_throttled = 0;
  6842. rt_rq->rt_runtime = 0;
  6843. spin_lock_init(&rt_rq->rt_runtime_lock);
  6844. #ifdef CONFIG_RT_GROUP_SCHED
  6845. rt_rq->rt_nr_boosted = 0;
  6846. rt_rq->rq = rq;
  6847. #endif
  6848. }
  6849. #ifdef CONFIG_FAIR_GROUP_SCHED
  6850. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6851. struct sched_entity *se, int cpu, int add,
  6852. struct sched_entity *parent)
  6853. {
  6854. struct rq *rq = cpu_rq(cpu);
  6855. tg->cfs_rq[cpu] = cfs_rq;
  6856. init_cfs_rq(cfs_rq, rq);
  6857. cfs_rq->tg = tg;
  6858. if (add)
  6859. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6860. tg->se[cpu] = se;
  6861. /* se could be NULL for init_task_group */
  6862. if (!se)
  6863. return;
  6864. if (!parent)
  6865. se->cfs_rq = &rq->cfs;
  6866. else
  6867. se->cfs_rq = parent->my_q;
  6868. se->my_q = cfs_rq;
  6869. se->load.weight = tg->shares;
  6870. se->load.inv_weight = 0;
  6871. se->parent = parent;
  6872. }
  6873. #endif
  6874. #ifdef CONFIG_RT_GROUP_SCHED
  6875. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6876. struct sched_rt_entity *rt_se, int cpu, int add,
  6877. struct sched_rt_entity *parent)
  6878. {
  6879. struct rq *rq = cpu_rq(cpu);
  6880. tg->rt_rq[cpu] = rt_rq;
  6881. init_rt_rq(rt_rq, rq);
  6882. rt_rq->tg = tg;
  6883. rt_rq->rt_se = rt_se;
  6884. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6885. if (add)
  6886. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6887. tg->rt_se[cpu] = rt_se;
  6888. if (!rt_se)
  6889. return;
  6890. if (!parent)
  6891. rt_se->rt_rq = &rq->rt;
  6892. else
  6893. rt_se->rt_rq = parent->my_q;
  6894. rt_se->my_q = rt_rq;
  6895. rt_se->parent = parent;
  6896. INIT_LIST_HEAD(&rt_se->run_list);
  6897. }
  6898. #endif
  6899. void __init sched_init(void)
  6900. {
  6901. int i, j;
  6902. unsigned long alloc_size = 0, ptr;
  6903. #ifdef CONFIG_FAIR_GROUP_SCHED
  6904. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6905. #endif
  6906. #ifdef CONFIG_RT_GROUP_SCHED
  6907. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6908. #endif
  6909. #ifdef CONFIG_USER_SCHED
  6910. alloc_size *= 2;
  6911. #endif
  6912. /*
  6913. * As sched_init() is called before page_alloc is setup,
  6914. * we use alloc_bootmem().
  6915. */
  6916. if (alloc_size) {
  6917. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6918. #ifdef CONFIG_FAIR_GROUP_SCHED
  6919. init_task_group.se = (struct sched_entity **)ptr;
  6920. ptr += nr_cpu_ids * sizeof(void **);
  6921. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6922. ptr += nr_cpu_ids * sizeof(void **);
  6923. #ifdef CONFIG_USER_SCHED
  6924. root_task_group.se = (struct sched_entity **)ptr;
  6925. ptr += nr_cpu_ids * sizeof(void **);
  6926. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6927. ptr += nr_cpu_ids * sizeof(void **);
  6928. #endif /* CONFIG_USER_SCHED */
  6929. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6930. #ifdef CONFIG_RT_GROUP_SCHED
  6931. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6932. ptr += nr_cpu_ids * sizeof(void **);
  6933. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6934. ptr += nr_cpu_ids * sizeof(void **);
  6935. #ifdef CONFIG_USER_SCHED
  6936. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6939. ptr += nr_cpu_ids * sizeof(void **);
  6940. #endif /* CONFIG_USER_SCHED */
  6941. #endif /* CONFIG_RT_GROUP_SCHED */
  6942. }
  6943. #ifdef CONFIG_SMP
  6944. init_defrootdomain();
  6945. #endif
  6946. init_rt_bandwidth(&def_rt_bandwidth,
  6947. global_rt_period(), global_rt_runtime());
  6948. #ifdef CONFIG_RT_GROUP_SCHED
  6949. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6950. global_rt_period(), global_rt_runtime());
  6951. #ifdef CONFIG_USER_SCHED
  6952. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6953. global_rt_period(), RUNTIME_INF);
  6954. #endif /* CONFIG_USER_SCHED */
  6955. #endif /* CONFIG_RT_GROUP_SCHED */
  6956. #ifdef CONFIG_GROUP_SCHED
  6957. list_add(&init_task_group.list, &task_groups);
  6958. INIT_LIST_HEAD(&init_task_group.children);
  6959. #ifdef CONFIG_USER_SCHED
  6960. INIT_LIST_HEAD(&root_task_group.children);
  6961. init_task_group.parent = &root_task_group;
  6962. list_add(&init_task_group.siblings, &root_task_group.children);
  6963. #endif /* CONFIG_USER_SCHED */
  6964. #endif /* CONFIG_GROUP_SCHED */
  6965. for_each_possible_cpu(i) {
  6966. struct rq *rq;
  6967. rq = cpu_rq(i);
  6968. spin_lock_init(&rq->lock);
  6969. rq->nr_running = 0;
  6970. init_cfs_rq(&rq->cfs, rq);
  6971. init_rt_rq(&rq->rt, rq);
  6972. #ifdef CONFIG_FAIR_GROUP_SCHED
  6973. init_task_group.shares = init_task_group_load;
  6974. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6975. #ifdef CONFIG_CGROUP_SCHED
  6976. /*
  6977. * How much cpu bandwidth does init_task_group get?
  6978. *
  6979. * In case of task-groups formed thr' the cgroup filesystem, it
  6980. * gets 100% of the cpu resources in the system. This overall
  6981. * system cpu resource is divided among the tasks of
  6982. * init_task_group and its child task-groups in a fair manner,
  6983. * based on each entity's (task or task-group's) weight
  6984. * (se->load.weight).
  6985. *
  6986. * In other words, if init_task_group has 10 tasks of weight
  6987. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6988. * then A0's share of the cpu resource is:
  6989. *
  6990. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6991. *
  6992. * We achieve this by letting init_task_group's tasks sit
  6993. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6994. */
  6995. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6996. #elif defined CONFIG_USER_SCHED
  6997. root_task_group.shares = NICE_0_LOAD;
  6998. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6999. /*
  7000. * In case of task-groups formed thr' the user id of tasks,
  7001. * init_task_group represents tasks belonging to root user.
  7002. * Hence it forms a sibling of all subsequent groups formed.
  7003. * In this case, init_task_group gets only a fraction of overall
  7004. * system cpu resource, based on the weight assigned to root
  7005. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7006. * by letting tasks of init_task_group sit in a separate cfs_rq
  7007. * (init_cfs_rq) and having one entity represent this group of
  7008. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7009. */
  7010. init_tg_cfs_entry(&init_task_group,
  7011. &per_cpu(init_cfs_rq, i),
  7012. &per_cpu(init_sched_entity, i), i, 1,
  7013. root_task_group.se[i]);
  7014. #endif
  7015. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7016. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7017. #ifdef CONFIG_RT_GROUP_SCHED
  7018. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7019. #ifdef CONFIG_CGROUP_SCHED
  7020. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7021. #elif defined CONFIG_USER_SCHED
  7022. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7023. init_tg_rt_entry(&init_task_group,
  7024. &per_cpu(init_rt_rq, i),
  7025. &per_cpu(init_sched_rt_entity, i), i, 1,
  7026. root_task_group.rt_se[i]);
  7027. #endif
  7028. #endif
  7029. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7030. rq->cpu_load[j] = 0;
  7031. #ifdef CONFIG_SMP
  7032. rq->sd = NULL;
  7033. rq->rd = NULL;
  7034. rq->active_balance = 0;
  7035. rq->next_balance = jiffies;
  7036. rq->push_cpu = 0;
  7037. rq->cpu = i;
  7038. rq->online = 0;
  7039. rq->migration_thread = NULL;
  7040. INIT_LIST_HEAD(&rq->migration_queue);
  7041. rq_attach_root(rq, &def_root_domain);
  7042. #endif
  7043. init_rq_hrtick(rq);
  7044. atomic_set(&rq->nr_iowait, 0);
  7045. }
  7046. set_load_weight(&init_task);
  7047. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7048. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7049. #endif
  7050. #ifdef CONFIG_SMP
  7051. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7052. #endif
  7053. #ifdef CONFIG_RT_MUTEXES
  7054. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7055. #endif
  7056. /*
  7057. * The boot idle thread does lazy MMU switching as well:
  7058. */
  7059. atomic_inc(&init_mm.mm_count);
  7060. enter_lazy_tlb(&init_mm, current);
  7061. /*
  7062. * Make us the idle thread. Technically, schedule() should not be
  7063. * called from this thread, however somewhere below it might be,
  7064. * but because we are the idle thread, we just pick up running again
  7065. * when this runqueue becomes "idle".
  7066. */
  7067. init_idle(current, smp_processor_id());
  7068. /*
  7069. * During early bootup we pretend to be a normal task:
  7070. */
  7071. current->sched_class = &fair_sched_class;
  7072. scheduler_running = 1;
  7073. }
  7074. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7075. void __might_sleep(char *file, int line)
  7076. {
  7077. #ifdef in_atomic
  7078. static unsigned long prev_jiffy; /* ratelimiting */
  7079. if ((!in_atomic() && !irqs_disabled()) ||
  7080. system_state != SYSTEM_RUNNING || oops_in_progress)
  7081. return;
  7082. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7083. return;
  7084. prev_jiffy = jiffies;
  7085. printk(KERN_ERR
  7086. "BUG: sleeping function called from invalid context at %s:%d\n",
  7087. file, line);
  7088. printk(KERN_ERR
  7089. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7090. in_atomic(), irqs_disabled(),
  7091. current->pid, current->comm);
  7092. debug_show_held_locks(current);
  7093. if (irqs_disabled())
  7094. print_irqtrace_events(current);
  7095. dump_stack();
  7096. #endif
  7097. }
  7098. EXPORT_SYMBOL(__might_sleep);
  7099. #endif
  7100. #ifdef CONFIG_MAGIC_SYSRQ
  7101. static void normalize_task(struct rq *rq, struct task_struct *p)
  7102. {
  7103. int on_rq;
  7104. update_rq_clock(rq);
  7105. on_rq = p->se.on_rq;
  7106. if (on_rq)
  7107. deactivate_task(rq, p, 0);
  7108. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7109. if (on_rq) {
  7110. activate_task(rq, p, 0);
  7111. resched_task(rq->curr);
  7112. }
  7113. }
  7114. void normalize_rt_tasks(void)
  7115. {
  7116. struct task_struct *g, *p;
  7117. unsigned long flags;
  7118. struct rq *rq;
  7119. read_lock_irqsave(&tasklist_lock, flags);
  7120. do_each_thread(g, p) {
  7121. /*
  7122. * Only normalize user tasks:
  7123. */
  7124. if (!p->mm)
  7125. continue;
  7126. p->se.exec_start = 0;
  7127. #ifdef CONFIG_SCHEDSTATS
  7128. p->se.wait_start = 0;
  7129. p->se.sleep_start = 0;
  7130. p->se.block_start = 0;
  7131. #endif
  7132. if (!rt_task(p)) {
  7133. /*
  7134. * Renice negative nice level userspace
  7135. * tasks back to 0:
  7136. */
  7137. if (TASK_NICE(p) < 0 && p->mm)
  7138. set_user_nice(p, 0);
  7139. continue;
  7140. }
  7141. spin_lock(&p->pi_lock);
  7142. rq = __task_rq_lock(p);
  7143. normalize_task(rq, p);
  7144. __task_rq_unlock(rq);
  7145. spin_unlock(&p->pi_lock);
  7146. } while_each_thread(g, p);
  7147. read_unlock_irqrestore(&tasklist_lock, flags);
  7148. }
  7149. #endif /* CONFIG_MAGIC_SYSRQ */
  7150. #ifdef CONFIG_IA64
  7151. /*
  7152. * These functions are only useful for the IA64 MCA handling.
  7153. *
  7154. * They can only be called when the whole system has been
  7155. * stopped - every CPU needs to be quiescent, and no scheduling
  7156. * activity can take place. Using them for anything else would
  7157. * be a serious bug, and as a result, they aren't even visible
  7158. * under any other configuration.
  7159. */
  7160. /**
  7161. * curr_task - return the current task for a given cpu.
  7162. * @cpu: the processor in question.
  7163. *
  7164. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7165. */
  7166. struct task_struct *curr_task(int cpu)
  7167. {
  7168. return cpu_curr(cpu);
  7169. }
  7170. /**
  7171. * set_curr_task - set the current task for a given cpu.
  7172. * @cpu: the processor in question.
  7173. * @p: the task pointer to set.
  7174. *
  7175. * Description: This function must only be used when non-maskable interrupts
  7176. * are serviced on a separate stack. It allows the architecture to switch the
  7177. * notion of the current task on a cpu in a non-blocking manner. This function
  7178. * must be called with all CPU's synchronized, and interrupts disabled, the
  7179. * and caller must save the original value of the current task (see
  7180. * curr_task() above) and restore that value before reenabling interrupts and
  7181. * re-starting the system.
  7182. *
  7183. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7184. */
  7185. void set_curr_task(int cpu, struct task_struct *p)
  7186. {
  7187. cpu_curr(cpu) = p;
  7188. }
  7189. #endif
  7190. #ifdef CONFIG_FAIR_GROUP_SCHED
  7191. static void free_fair_sched_group(struct task_group *tg)
  7192. {
  7193. int i;
  7194. for_each_possible_cpu(i) {
  7195. if (tg->cfs_rq)
  7196. kfree(tg->cfs_rq[i]);
  7197. if (tg->se)
  7198. kfree(tg->se[i]);
  7199. }
  7200. kfree(tg->cfs_rq);
  7201. kfree(tg->se);
  7202. }
  7203. static
  7204. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7205. {
  7206. struct cfs_rq *cfs_rq;
  7207. struct sched_entity *se;
  7208. struct rq *rq;
  7209. int i;
  7210. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7211. if (!tg->cfs_rq)
  7212. goto err;
  7213. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7214. if (!tg->se)
  7215. goto err;
  7216. tg->shares = NICE_0_LOAD;
  7217. for_each_possible_cpu(i) {
  7218. rq = cpu_rq(i);
  7219. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7220. GFP_KERNEL, cpu_to_node(i));
  7221. if (!cfs_rq)
  7222. goto err;
  7223. se = kzalloc_node(sizeof(struct sched_entity),
  7224. GFP_KERNEL, cpu_to_node(i));
  7225. if (!se)
  7226. goto err;
  7227. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7228. }
  7229. return 1;
  7230. err:
  7231. return 0;
  7232. }
  7233. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7234. {
  7235. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7236. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7237. }
  7238. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7239. {
  7240. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7241. }
  7242. #else /* !CONFG_FAIR_GROUP_SCHED */
  7243. static inline void free_fair_sched_group(struct task_group *tg)
  7244. {
  7245. }
  7246. static inline
  7247. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7248. {
  7249. return 1;
  7250. }
  7251. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7252. {
  7253. }
  7254. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7255. {
  7256. }
  7257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7258. #ifdef CONFIG_RT_GROUP_SCHED
  7259. static void free_rt_sched_group(struct task_group *tg)
  7260. {
  7261. int i;
  7262. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7263. for_each_possible_cpu(i) {
  7264. if (tg->rt_rq)
  7265. kfree(tg->rt_rq[i]);
  7266. if (tg->rt_se)
  7267. kfree(tg->rt_se[i]);
  7268. }
  7269. kfree(tg->rt_rq);
  7270. kfree(tg->rt_se);
  7271. }
  7272. static
  7273. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7274. {
  7275. struct rt_rq *rt_rq;
  7276. struct sched_rt_entity *rt_se;
  7277. struct rq *rq;
  7278. int i;
  7279. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7280. if (!tg->rt_rq)
  7281. goto err;
  7282. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7283. if (!tg->rt_se)
  7284. goto err;
  7285. init_rt_bandwidth(&tg->rt_bandwidth,
  7286. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7287. for_each_possible_cpu(i) {
  7288. rq = cpu_rq(i);
  7289. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7290. GFP_KERNEL, cpu_to_node(i));
  7291. if (!rt_rq)
  7292. goto err;
  7293. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7294. GFP_KERNEL, cpu_to_node(i));
  7295. if (!rt_se)
  7296. goto err;
  7297. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7298. }
  7299. return 1;
  7300. err:
  7301. return 0;
  7302. }
  7303. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7304. {
  7305. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7306. &cpu_rq(cpu)->leaf_rt_rq_list);
  7307. }
  7308. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7309. {
  7310. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7311. }
  7312. #else /* !CONFIG_RT_GROUP_SCHED */
  7313. static inline void free_rt_sched_group(struct task_group *tg)
  7314. {
  7315. }
  7316. static inline
  7317. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7318. {
  7319. return 1;
  7320. }
  7321. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7322. {
  7323. }
  7324. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7325. {
  7326. }
  7327. #endif /* CONFIG_RT_GROUP_SCHED */
  7328. #ifdef CONFIG_GROUP_SCHED
  7329. static void free_sched_group(struct task_group *tg)
  7330. {
  7331. free_fair_sched_group(tg);
  7332. free_rt_sched_group(tg);
  7333. kfree(tg);
  7334. }
  7335. /* allocate runqueue etc for a new task group */
  7336. struct task_group *sched_create_group(struct task_group *parent)
  7337. {
  7338. struct task_group *tg;
  7339. unsigned long flags;
  7340. int i;
  7341. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7342. if (!tg)
  7343. return ERR_PTR(-ENOMEM);
  7344. if (!alloc_fair_sched_group(tg, parent))
  7345. goto err;
  7346. if (!alloc_rt_sched_group(tg, parent))
  7347. goto err;
  7348. spin_lock_irqsave(&task_group_lock, flags);
  7349. for_each_possible_cpu(i) {
  7350. register_fair_sched_group(tg, i);
  7351. register_rt_sched_group(tg, i);
  7352. }
  7353. list_add_rcu(&tg->list, &task_groups);
  7354. WARN_ON(!parent); /* root should already exist */
  7355. tg->parent = parent;
  7356. INIT_LIST_HEAD(&tg->children);
  7357. list_add_rcu(&tg->siblings, &parent->children);
  7358. spin_unlock_irqrestore(&task_group_lock, flags);
  7359. return tg;
  7360. err:
  7361. free_sched_group(tg);
  7362. return ERR_PTR(-ENOMEM);
  7363. }
  7364. /* rcu callback to free various structures associated with a task group */
  7365. static void free_sched_group_rcu(struct rcu_head *rhp)
  7366. {
  7367. /* now it should be safe to free those cfs_rqs */
  7368. free_sched_group(container_of(rhp, struct task_group, rcu));
  7369. }
  7370. /* Destroy runqueue etc associated with a task group */
  7371. void sched_destroy_group(struct task_group *tg)
  7372. {
  7373. unsigned long flags;
  7374. int i;
  7375. spin_lock_irqsave(&task_group_lock, flags);
  7376. for_each_possible_cpu(i) {
  7377. unregister_fair_sched_group(tg, i);
  7378. unregister_rt_sched_group(tg, i);
  7379. }
  7380. list_del_rcu(&tg->list);
  7381. list_del_rcu(&tg->siblings);
  7382. spin_unlock_irqrestore(&task_group_lock, flags);
  7383. /* wait for possible concurrent references to cfs_rqs complete */
  7384. call_rcu(&tg->rcu, free_sched_group_rcu);
  7385. }
  7386. /* change task's runqueue when it moves between groups.
  7387. * The caller of this function should have put the task in its new group
  7388. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7389. * reflect its new group.
  7390. */
  7391. void sched_move_task(struct task_struct *tsk)
  7392. {
  7393. int on_rq, running;
  7394. unsigned long flags;
  7395. struct rq *rq;
  7396. rq = task_rq_lock(tsk, &flags);
  7397. update_rq_clock(rq);
  7398. running = task_current(rq, tsk);
  7399. on_rq = tsk->se.on_rq;
  7400. if (on_rq)
  7401. dequeue_task(rq, tsk, 0);
  7402. if (unlikely(running))
  7403. tsk->sched_class->put_prev_task(rq, tsk);
  7404. set_task_rq(tsk, task_cpu(tsk));
  7405. #ifdef CONFIG_FAIR_GROUP_SCHED
  7406. if (tsk->sched_class->moved_group)
  7407. tsk->sched_class->moved_group(tsk);
  7408. #endif
  7409. if (unlikely(running))
  7410. tsk->sched_class->set_curr_task(rq);
  7411. if (on_rq)
  7412. enqueue_task(rq, tsk, 0);
  7413. task_rq_unlock(rq, &flags);
  7414. }
  7415. #endif /* CONFIG_GROUP_SCHED */
  7416. #ifdef CONFIG_FAIR_GROUP_SCHED
  7417. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7418. {
  7419. struct cfs_rq *cfs_rq = se->cfs_rq;
  7420. int on_rq;
  7421. on_rq = se->on_rq;
  7422. if (on_rq)
  7423. dequeue_entity(cfs_rq, se, 0);
  7424. se->load.weight = shares;
  7425. se->load.inv_weight = 0;
  7426. if (on_rq)
  7427. enqueue_entity(cfs_rq, se, 0);
  7428. }
  7429. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7430. {
  7431. struct cfs_rq *cfs_rq = se->cfs_rq;
  7432. struct rq *rq = cfs_rq->rq;
  7433. unsigned long flags;
  7434. spin_lock_irqsave(&rq->lock, flags);
  7435. __set_se_shares(se, shares);
  7436. spin_unlock_irqrestore(&rq->lock, flags);
  7437. }
  7438. static DEFINE_MUTEX(shares_mutex);
  7439. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7440. {
  7441. int i;
  7442. unsigned long flags;
  7443. /*
  7444. * We can't change the weight of the root cgroup.
  7445. */
  7446. if (!tg->se[0])
  7447. return -EINVAL;
  7448. if (shares < MIN_SHARES)
  7449. shares = MIN_SHARES;
  7450. else if (shares > MAX_SHARES)
  7451. shares = MAX_SHARES;
  7452. mutex_lock(&shares_mutex);
  7453. if (tg->shares == shares)
  7454. goto done;
  7455. spin_lock_irqsave(&task_group_lock, flags);
  7456. for_each_possible_cpu(i)
  7457. unregister_fair_sched_group(tg, i);
  7458. list_del_rcu(&tg->siblings);
  7459. spin_unlock_irqrestore(&task_group_lock, flags);
  7460. /* wait for any ongoing reference to this group to finish */
  7461. synchronize_sched();
  7462. /*
  7463. * Now we are free to modify the group's share on each cpu
  7464. * w/o tripping rebalance_share or load_balance_fair.
  7465. */
  7466. tg->shares = shares;
  7467. for_each_possible_cpu(i) {
  7468. /*
  7469. * force a rebalance
  7470. */
  7471. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7472. set_se_shares(tg->se[i], shares);
  7473. }
  7474. /*
  7475. * Enable load balance activity on this group, by inserting it back on
  7476. * each cpu's rq->leaf_cfs_rq_list.
  7477. */
  7478. spin_lock_irqsave(&task_group_lock, flags);
  7479. for_each_possible_cpu(i)
  7480. register_fair_sched_group(tg, i);
  7481. list_add_rcu(&tg->siblings, &tg->parent->children);
  7482. spin_unlock_irqrestore(&task_group_lock, flags);
  7483. done:
  7484. mutex_unlock(&shares_mutex);
  7485. return 0;
  7486. }
  7487. unsigned long sched_group_shares(struct task_group *tg)
  7488. {
  7489. return tg->shares;
  7490. }
  7491. #endif
  7492. #ifdef CONFIG_RT_GROUP_SCHED
  7493. /*
  7494. * Ensure that the real time constraints are schedulable.
  7495. */
  7496. static DEFINE_MUTEX(rt_constraints_mutex);
  7497. static unsigned long to_ratio(u64 period, u64 runtime)
  7498. {
  7499. if (runtime == RUNTIME_INF)
  7500. return 1ULL << 20;
  7501. return div64_u64(runtime << 20, period);
  7502. }
  7503. /* Must be called with tasklist_lock held */
  7504. static inline int tg_has_rt_tasks(struct task_group *tg)
  7505. {
  7506. struct task_struct *g, *p;
  7507. do_each_thread(g, p) {
  7508. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7509. return 1;
  7510. } while_each_thread(g, p);
  7511. return 0;
  7512. }
  7513. struct rt_schedulable_data {
  7514. struct task_group *tg;
  7515. u64 rt_period;
  7516. u64 rt_runtime;
  7517. };
  7518. static int tg_schedulable(struct task_group *tg, void *data)
  7519. {
  7520. struct rt_schedulable_data *d = data;
  7521. struct task_group *child;
  7522. unsigned long total, sum = 0;
  7523. u64 period, runtime;
  7524. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7525. runtime = tg->rt_bandwidth.rt_runtime;
  7526. if (tg == d->tg) {
  7527. period = d->rt_period;
  7528. runtime = d->rt_runtime;
  7529. }
  7530. /*
  7531. * Cannot have more runtime than the period.
  7532. */
  7533. if (runtime > period && runtime != RUNTIME_INF)
  7534. return -EINVAL;
  7535. /*
  7536. * Ensure we don't starve existing RT tasks.
  7537. */
  7538. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7539. return -EBUSY;
  7540. total = to_ratio(period, runtime);
  7541. /*
  7542. * Nobody can have more than the global setting allows.
  7543. */
  7544. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7545. return -EINVAL;
  7546. /*
  7547. * The sum of our children's runtime should not exceed our own.
  7548. */
  7549. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7550. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7551. runtime = child->rt_bandwidth.rt_runtime;
  7552. if (child == d->tg) {
  7553. period = d->rt_period;
  7554. runtime = d->rt_runtime;
  7555. }
  7556. sum += to_ratio(period, runtime);
  7557. }
  7558. if (sum > total)
  7559. return -EINVAL;
  7560. return 0;
  7561. }
  7562. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7563. {
  7564. struct rt_schedulable_data data = {
  7565. .tg = tg,
  7566. .rt_period = period,
  7567. .rt_runtime = runtime,
  7568. };
  7569. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7570. }
  7571. static int tg_set_bandwidth(struct task_group *tg,
  7572. u64 rt_period, u64 rt_runtime)
  7573. {
  7574. int i, err = 0;
  7575. mutex_lock(&rt_constraints_mutex);
  7576. read_lock(&tasklist_lock);
  7577. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7578. if (err)
  7579. goto unlock;
  7580. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7581. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7582. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7583. for_each_possible_cpu(i) {
  7584. struct rt_rq *rt_rq = tg->rt_rq[i];
  7585. spin_lock(&rt_rq->rt_runtime_lock);
  7586. rt_rq->rt_runtime = rt_runtime;
  7587. spin_unlock(&rt_rq->rt_runtime_lock);
  7588. }
  7589. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7590. unlock:
  7591. read_unlock(&tasklist_lock);
  7592. mutex_unlock(&rt_constraints_mutex);
  7593. return err;
  7594. }
  7595. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7596. {
  7597. u64 rt_runtime, rt_period;
  7598. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7599. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7600. if (rt_runtime_us < 0)
  7601. rt_runtime = RUNTIME_INF;
  7602. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7603. }
  7604. long sched_group_rt_runtime(struct task_group *tg)
  7605. {
  7606. u64 rt_runtime_us;
  7607. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7608. return -1;
  7609. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7610. do_div(rt_runtime_us, NSEC_PER_USEC);
  7611. return rt_runtime_us;
  7612. }
  7613. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7614. {
  7615. u64 rt_runtime, rt_period;
  7616. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7617. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7618. if (rt_period == 0)
  7619. return -EINVAL;
  7620. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7621. }
  7622. long sched_group_rt_period(struct task_group *tg)
  7623. {
  7624. u64 rt_period_us;
  7625. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7626. do_div(rt_period_us, NSEC_PER_USEC);
  7627. return rt_period_us;
  7628. }
  7629. static int sched_rt_global_constraints(void)
  7630. {
  7631. u64 runtime, period;
  7632. int ret = 0;
  7633. if (sysctl_sched_rt_period <= 0)
  7634. return -EINVAL;
  7635. runtime = global_rt_runtime();
  7636. period = global_rt_period();
  7637. /*
  7638. * Sanity check on the sysctl variables.
  7639. */
  7640. if (runtime > period && runtime != RUNTIME_INF)
  7641. return -EINVAL;
  7642. mutex_lock(&rt_constraints_mutex);
  7643. read_lock(&tasklist_lock);
  7644. ret = __rt_schedulable(NULL, 0, 0);
  7645. read_unlock(&tasklist_lock);
  7646. mutex_unlock(&rt_constraints_mutex);
  7647. return ret;
  7648. }
  7649. #else /* !CONFIG_RT_GROUP_SCHED */
  7650. static int sched_rt_global_constraints(void)
  7651. {
  7652. unsigned long flags;
  7653. int i;
  7654. if (sysctl_sched_rt_period <= 0)
  7655. return -EINVAL;
  7656. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7657. for_each_possible_cpu(i) {
  7658. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7659. spin_lock(&rt_rq->rt_runtime_lock);
  7660. rt_rq->rt_runtime = global_rt_runtime();
  7661. spin_unlock(&rt_rq->rt_runtime_lock);
  7662. }
  7663. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7664. return 0;
  7665. }
  7666. #endif /* CONFIG_RT_GROUP_SCHED */
  7667. int sched_rt_handler(struct ctl_table *table, int write,
  7668. struct file *filp, void __user *buffer, size_t *lenp,
  7669. loff_t *ppos)
  7670. {
  7671. int ret;
  7672. int old_period, old_runtime;
  7673. static DEFINE_MUTEX(mutex);
  7674. mutex_lock(&mutex);
  7675. old_period = sysctl_sched_rt_period;
  7676. old_runtime = sysctl_sched_rt_runtime;
  7677. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7678. if (!ret && write) {
  7679. ret = sched_rt_global_constraints();
  7680. if (ret) {
  7681. sysctl_sched_rt_period = old_period;
  7682. sysctl_sched_rt_runtime = old_runtime;
  7683. } else {
  7684. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7685. def_rt_bandwidth.rt_period =
  7686. ns_to_ktime(global_rt_period());
  7687. }
  7688. }
  7689. mutex_unlock(&mutex);
  7690. return ret;
  7691. }
  7692. #ifdef CONFIG_CGROUP_SCHED
  7693. /* return corresponding task_group object of a cgroup */
  7694. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7695. {
  7696. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7697. struct task_group, css);
  7698. }
  7699. static struct cgroup_subsys_state *
  7700. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7701. {
  7702. struct task_group *tg, *parent;
  7703. if (!cgrp->parent) {
  7704. /* This is early initialization for the top cgroup */
  7705. return &init_task_group.css;
  7706. }
  7707. parent = cgroup_tg(cgrp->parent);
  7708. tg = sched_create_group(parent);
  7709. if (IS_ERR(tg))
  7710. return ERR_PTR(-ENOMEM);
  7711. return &tg->css;
  7712. }
  7713. static void
  7714. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7715. {
  7716. struct task_group *tg = cgroup_tg(cgrp);
  7717. sched_destroy_group(tg);
  7718. }
  7719. static int
  7720. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7721. struct task_struct *tsk)
  7722. {
  7723. #ifdef CONFIG_RT_GROUP_SCHED
  7724. /* Don't accept realtime tasks when there is no way for them to run */
  7725. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7726. return -EINVAL;
  7727. #else
  7728. /* We don't support RT-tasks being in separate groups */
  7729. if (tsk->sched_class != &fair_sched_class)
  7730. return -EINVAL;
  7731. #endif
  7732. return 0;
  7733. }
  7734. static void
  7735. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7736. struct cgroup *old_cont, struct task_struct *tsk)
  7737. {
  7738. sched_move_task(tsk);
  7739. }
  7740. #ifdef CONFIG_FAIR_GROUP_SCHED
  7741. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7742. u64 shareval)
  7743. {
  7744. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7745. }
  7746. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7747. {
  7748. struct task_group *tg = cgroup_tg(cgrp);
  7749. return (u64) tg->shares;
  7750. }
  7751. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7752. #ifdef CONFIG_RT_GROUP_SCHED
  7753. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7754. s64 val)
  7755. {
  7756. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7757. }
  7758. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7759. {
  7760. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7761. }
  7762. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7763. u64 rt_period_us)
  7764. {
  7765. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7766. }
  7767. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7768. {
  7769. return sched_group_rt_period(cgroup_tg(cgrp));
  7770. }
  7771. #endif /* CONFIG_RT_GROUP_SCHED */
  7772. static struct cftype cpu_files[] = {
  7773. #ifdef CONFIG_FAIR_GROUP_SCHED
  7774. {
  7775. .name = "shares",
  7776. .read_u64 = cpu_shares_read_u64,
  7777. .write_u64 = cpu_shares_write_u64,
  7778. },
  7779. #endif
  7780. #ifdef CONFIG_RT_GROUP_SCHED
  7781. {
  7782. .name = "rt_runtime_us",
  7783. .read_s64 = cpu_rt_runtime_read,
  7784. .write_s64 = cpu_rt_runtime_write,
  7785. },
  7786. {
  7787. .name = "rt_period_us",
  7788. .read_u64 = cpu_rt_period_read_uint,
  7789. .write_u64 = cpu_rt_period_write_uint,
  7790. },
  7791. #endif
  7792. };
  7793. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7794. {
  7795. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7796. }
  7797. struct cgroup_subsys cpu_cgroup_subsys = {
  7798. .name = "cpu",
  7799. .create = cpu_cgroup_create,
  7800. .destroy = cpu_cgroup_destroy,
  7801. .can_attach = cpu_cgroup_can_attach,
  7802. .attach = cpu_cgroup_attach,
  7803. .populate = cpu_cgroup_populate,
  7804. .subsys_id = cpu_cgroup_subsys_id,
  7805. .early_init = 1,
  7806. };
  7807. #endif /* CONFIG_CGROUP_SCHED */
  7808. #ifdef CONFIG_CGROUP_CPUACCT
  7809. /*
  7810. * CPU accounting code for task groups.
  7811. *
  7812. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7813. * (balbir@in.ibm.com).
  7814. */
  7815. /* track cpu usage of a group of tasks and its child groups */
  7816. struct cpuacct {
  7817. struct cgroup_subsys_state css;
  7818. /* cpuusage holds pointer to a u64-type object on every cpu */
  7819. u64 *cpuusage;
  7820. struct cpuacct *parent;
  7821. };
  7822. struct cgroup_subsys cpuacct_subsys;
  7823. /* return cpu accounting group corresponding to this container */
  7824. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7825. {
  7826. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7827. struct cpuacct, css);
  7828. }
  7829. /* return cpu accounting group to which this task belongs */
  7830. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7831. {
  7832. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7833. struct cpuacct, css);
  7834. }
  7835. /* create a new cpu accounting group */
  7836. static struct cgroup_subsys_state *cpuacct_create(
  7837. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7838. {
  7839. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7840. if (!ca)
  7841. return ERR_PTR(-ENOMEM);
  7842. ca->cpuusage = alloc_percpu(u64);
  7843. if (!ca->cpuusage) {
  7844. kfree(ca);
  7845. return ERR_PTR(-ENOMEM);
  7846. }
  7847. if (cgrp->parent)
  7848. ca->parent = cgroup_ca(cgrp->parent);
  7849. return &ca->css;
  7850. }
  7851. /* destroy an existing cpu accounting group */
  7852. static void
  7853. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7854. {
  7855. struct cpuacct *ca = cgroup_ca(cgrp);
  7856. free_percpu(ca->cpuusage);
  7857. kfree(ca);
  7858. }
  7859. /* return total cpu usage (in nanoseconds) of a group */
  7860. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7861. {
  7862. struct cpuacct *ca = cgroup_ca(cgrp);
  7863. u64 totalcpuusage = 0;
  7864. int i;
  7865. for_each_possible_cpu(i) {
  7866. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7867. /*
  7868. * Take rq->lock to make 64-bit addition safe on 32-bit
  7869. * platforms.
  7870. */
  7871. spin_lock_irq(&cpu_rq(i)->lock);
  7872. totalcpuusage += *cpuusage;
  7873. spin_unlock_irq(&cpu_rq(i)->lock);
  7874. }
  7875. return totalcpuusage;
  7876. }
  7877. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7878. u64 reset)
  7879. {
  7880. struct cpuacct *ca = cgroup_ca(cgrp);
  7881. int err = 0;
  7882. int i;
  7883. if (reset) {
  7884. err = -EINVAL;
  7885. goto out;
  7886. }
  7887. for_each_possible_cpu(i) {
  7888. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7889. spin_lock_irq(&cpu_rq(i)->lock);
  7890. *cpuusage = 0;
  7891. spin_unlock_irq(&cpu_rq(i)->lock);
  7892. }
  7893. out:
  7894. return err;
  7895. }
  7896. static struct cftype files[] = {
  7897. {
  7898. .name = "usage",
  7899. .read_u64 = cpuusage_read,
  7900. .write_u64 = cpuusage_write,
  7901. },
  7902. };
  7903. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7904. {
  7905. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7906. }
  7907. /*
  7908. * charge this task's execution time to its accounting group.
  7909. *
  7910. * called with rq->lock held.
  7911. */
  7912. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7913. {
  7914. struct cpuacct *ca;
  7915. int cpu;
  7916. if (!cpuacct_subsys.active)
  7917. return;
  7918. cpu = task_cpu(tsk);
  7919. ca = task_ca(tsk);
  7920. for (; ca; ca = ca->parent) {
  7921. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7922. *cpuusage += cputime;
  7923. }
  7924. }
  7925. struct cgroup_subsys cpuacct_subsys = {
  7926. .name = "cpuacct",
  7927. .create = cpuacct_create,
  7928. .destroy = cpuacct_destroy,
  7929. .populate = cpuacct_populate,
  7930. .subsys_id = cpuacct_subsys_id,
  7931. };
  7932. #endif /* CONFIG_CGROUP_CPUACCT */