rt2500usb.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2500usb_register_read and rt2500usb_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. * If the usb_cache_mutex is already held then the _lock variants must
  44. * be used instead.
  45. */
  46. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  47. const unsigned int offset,
  48. u16 *value)
  49. {
  50. __le16 reg;
  51. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52. USB_VENDOR_REQUEST_IN, offset,
  53. &reg, sizeof(u16), REGISTER_TIMEOUT);
  54. *value = le16_to_cpu(reg);
  55. }
  56. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int offset,
  58. u16 *value)
  59. {
  60. __le16 reg;
  61. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62. USB_VENDOR_REQUEST_IN, offset,
  63. &reg, sizeof(u16), REGISTER_TIMEOUT);
  64. *value = le16_to_cpu(reg);
  65. }
  66. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  67. const unsigned int offset,
  68. void *value, const u16 length)
  69. {
  70. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  71. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  72. USB_VENDOR_REQUEST_IN, offset,
  73. value, length, timeout);
  74. }
  75. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int offset,
  77. u16 value)
  78. {
  79. __le16 reg = cpu_to_le16(value);
  80. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  81. USB_VENDOR_REQUEST_OUT, offset,
  82. &reg, sizeof(u16), REGISTER_TIMEOUT);
  83. }
  84. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  85. const unsigned int offset,
  86. u16 value)
  87. {
  88. __le16 reg = cpu_to_le16(value);
  89. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  90. USB_VENDOR_REQUEST_OUT, offset,
  91. &reg, sizeof(u16), REGISTER_TIMEOUT);
  92. }
  93. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int offset,
  95. void *value, const u16 length)
  96. {
  97. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  98. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  99. USB_VENDOR_REQUEST_OUT, offset,
  100. value, length, timeout);
  101. }
  102. static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
  103. {
  104. u16 reg;
  105. unsigned int i;
  106. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  107. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
  108. if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
  109. break;
  110. udelay(REGISTER_BUSY_DELAY);
  111. }
  112. return reg;
  113. }
  114. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u8 value)
  116. {
  117. u16 reg;
  118. mutex_lock(&rt2x00dev->usb_cache_mutex);
  119. /*
  120. * Wait until the BBP becomes ready.
  121. */
  122. reg = rt2500usb_bbp_check(rt2x00dev);
  123. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  124. ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
  125. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  126. return;
  127. }
  128. /*
  129. * Write the data into the BBP.
  130. */
  131. reg = 0;
  132. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  133. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  134. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  135. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  136. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  137. }
  138. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  139. const unsigned int word, u8 *value)
  140. {
  141. u16 reg;
  142. mutex_lock(&rt2x00dev->usb_cache_mutex);
  143. /*
  144. * Wait until the BBP becomes ready.
  145. */
  146. reg = rt2500usb_bbp_check(rt2x00dev);
  147. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  148. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  149. return;
  150. }
  151. /*
  152. * Write the request into the BBP.
  153. */
  154. reg = 0;
  155. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  156. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  157. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  158. /*
  159. * Wait until the BBP becomes ready.
  160. */
  161. reg = rt2500usb_bbp_check(rt2x00dev);
  162. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  163. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  164. *value = 0xff;
  165. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  166. return;
  167. }
  168. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  169. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  170. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  171. }
  172. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  173. const unsigned int word, const u32 value)
  174. {
  175. u16 reg;
  176. unsigned int i;
  177. if (!word)
  178. return;
  179. mutex_lock(&rt2x00dev->usb_cache_mutex);
  180. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  181. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
  182. if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
  183. goto rf_write;
  184. udelay(REGISTER_BUSY_DELAY);
  185. }
  186. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  187. ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
  188. return;
  189. rf_write:
  190. reg = 0;
  191. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  192. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  193. reg = 0;
  194. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  195. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  196. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  197. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  198. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  199. rt2x00_rf_write(rt2x00dev, word, value);
  200. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  201. }
  202. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  203. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
  204. static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
  205. const unsigned int word, u32 *data)
  206. {
  207. rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
  208. }
  209. static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
  210. const unsigned int word, u32 data)
  211. {
  212. rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
  213. }
  214. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  215. .owner = THIS_MODULE,
  216. .csr = {
  217. .read = rt2500usb_read_csr,
  218. .write = rt2500usb_write_csr,
  219. .word_size = sizeof(u16),
  220. .word_count = CSR_REG_SIZE / sizeof(u16),
  221. },
  222. .eeprom = {
  223. .read = rt2x00_eeprom_read,
  224. .write = rt2x00_eeprom_write,
  225. .word_size = sizeof(u16),
  226. .word_count = EEPROM_SIZE / sizeof(u16),
  227. },
  228. .bbp = {
  229. .read = rt2500usb_bbp_read,
  230. .write = rt2500usb_bbp_write,
  231. .word_size = sizeof(u8),
  232. .word_count = BBP_SIZE / sizeof(u8),
  233. },
  234. .rf = {
  235. .read = rt2x00_rf_read,
  236. .write = rt2500usb_rf_write,
  237. .word_size = sizeof(u32),
  238. .word_count = RF_SIZE / sizeof(u32),
  239. },
  240. };
  241. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  242. /*
  243. * Configuration handlers.
  244. */
  245. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  246. struct rt2x00_intf *intf,
  247. struct rt2x00intf_conf *conf,
  248. const unsigned int flags)
  249. {
  250. unsigned int bcn_preload;
  251. u16 reg;
  252. if (flags & CONFIG_UPDATE_TYPE) {
  253. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  254. /*
  255. * Enable beacon config
  256. */
  257. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  258. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  259. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  260. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  261. 2 * (conf->type != IEEE80211_IF_TYPE_STA));
  262. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  263. /*
  264. * Enable synchronisation.
  265. */
  266. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  267. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  268. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  269. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  270. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  271. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
  272. (conf->sync == TSF_SYNC_BEACON));
  273. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  274. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  275. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  276. }
  277. if (flags & CONFIG_UPDATE_MAC)
  278. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  279. (3 * sizeof(__le16)));
  280. if (flags & CONFIG_UPDATE_BSSID)
  281. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  282. (3 * sizeof(__le16)));
  283. }
  284. static int rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
  285. const int short_preamble,
  286. const int ack_timeout,
  287. const int ack_consume_time)
  288. {
  289. u16 reg;
  290. /*
  291. * When in atomic context, we should let rt2x00lib
  292. * try this configuration again later.
  293. */
  294. if (in_atomic())
  295. return -EAGAIN;
  296. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  297. rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
  298. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  299. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  300. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  301. !!short_preamble);
  302. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  303. return 0;
  304. }
  305. static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
  306. const int phymode,
  307. const int basic_rate_mask)
  308. {
  309. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
  310. if (phymode == HWMODE_B) {
  311. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
  312. rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
  313. } else {
  314. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
  315. rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
  316. }
  317. }
  318. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  319. struct rf_channel *rf, const int txpower)
  320. {
  321. /*
  322. * Set TXpower.
  323. */
  324. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  325. /*
  326. * For RT2525E we should first set the channel to half band higher.
  327. */
  328. if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  329. static const u32 vals[] = {
  330. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  331. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  332. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  333. 0x00000902, 0x00000906
  334. };
  335. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  336. if (rf->rf4)
  337. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  338. }
  339. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  340. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  341. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  342. if (rf->rf4)
  343. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  344. }
  345. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  346. const int txpower)
  347. {
  348. u32 rf3;
  349. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  350. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  351. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  352. }
  353. static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
  354. struct antenna_setup *ant)
  355. {
  356. u8 r2;
  357. u8 r14;
  358. u16 csr5;
  359. u16 csr6;
  360. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  361. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  362. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  363. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  364. /*
  365. * Configure the TX antenna.
  366. */
  367. switch (ant->tx) {
  368. case ANTENNA_HW_DIVERSITY:
  369. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  370. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  371. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  372. break;
  373. case ANTENNA_A:
  374. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  375. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  376. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  377. break;
  378. case ANTENNA_SW_DIVERSITY:
  379. /*
  380. * NOTE: We should never come here because rt2x00lib is
  381. * supposed to catch this and send us the correct antenna
  382. * explicitely. However we are nog going to bug about this.
  383. * Instead, just default to antenna B.
  384. */
  385. case ANTENNA_B:
  386. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  387. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  388. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  389. break;
  390. }
  391. /*
  392. * Configure the RX antenna.
  393. */
  394. switch (ant->rx) {
  395. case ANTENNA_HW_DIVERSITY:
  396. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  397. break;
  398. case ANTENNA_A:
  399. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  400. break;
  401. case ANTENNA_SW_DIVERSITY:
  402. /*
  403. * NOTE: We should never come here because rt2x00lib is
  404. * supposed to catch this and send us the correct antenna
  405. * explicitely. However we are nog going to bug about this.
  406. * Instead, just default to antenna B.
  407. */
  408. case ANTENNA_B:
  409. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  410. break;
  411. }
  412. /*
  413. * RT2525E and RT5222 need to flip TX I/Q
  414. */
  415. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  416. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  417. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  418. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  419. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  420. /*
  421. * RT2525E does not need RX I/Q Flip.
  422. */
  423. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  424. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  425. } else {
  426. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  427. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  428. }
  429. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  430. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  431. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  432. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  433. }
  434. static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
  435. struct rt2x00lib_conf *libconf)
  436. {
  437. u16 reg;
  438. rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
  439. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  440. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
  441. libconf->conf->beacon_int * 4);
  442. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  443. }
  444. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  445. struct rt2x00lib_conf *libconf,
  446. const unsigned int flags)
  447. {
  448. if (flags & CONFIG_UPDATE_PHYMODE)
  449. rt2500usb_config_phymode(rt2x00dev, libconf->phymode,
  450. libconf->basic_rates);
  451. if (flags & CONFIG_UPDATE_CHANNEL)
  452. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  453. libconf->conf->power_level);
  454. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  455. rt2500usb_config_txpower(rt2x00dev,
  456. libconf->conf->power_level);
  457. if (flags & CONFIG_UPDATE_ANTENNA)
  458. rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
  459. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  460. rt2500usb_config_duration(rt2x00dev, libconf);
  461. }
  462. /*
  463. * LED functions.
  464. */
  465. static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
  466. {
  467. u16 reg;
  468. rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
  469. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
  470. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
  471. rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
  472. rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
  473. rt2x00_set_field16(&reg, MAC_CSR20_LINK,
  474. (rt2x00dev->led_mode != LED_MODE_ASUS));
  475. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY,
  476. (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
  477. rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
  478. }
  479. static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
  480. {
  481. u16 reg;
  482. rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
  483. rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
  484. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
  485. rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
  486. }
  487. /*
  488. * Link tuning
  489. */
  490. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  491. struct link_qual *qual)
  492. {
  493. u16 reg;
  494. /*
  495. * Update FCS error count from register.
  496. */
  497. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  498. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  499. /*
  500. * Update False CCA count from register.
  501. */
  502. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  503. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  504. }
  505. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
  506. {
  507. u16 eeprom;
  508. u16 value;
  509. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  510. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  511. rt2500usb_bbp_write(rt2x00dev, 24, value);
  512. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  513. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  514. rt2500usb_bbp_write(rt2x00dev, 25, value);
  515. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  516. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  517. rt2500usb_bbp_write(rt2x00dev, 61, value);
  518. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  519. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  520. rt2500usb_bbp_write(rt2x00dev, 17, value);
  521. rt2x00dev->link.vgc_level = value;
  522. }
  523. static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  524. {
  525. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  526. u16 bbp_thresh;
  527. u16 vgc_bound;
  528. u16 sens;
  529. u16 r24;
  530. u16 r25;
  531. u16 r61;
  532. u16 r17_sens;
  533. u8 r17;
  534. u8 up_bound;
  535. u8 low_bound;
  536. /*
  537. * Read current r17 value, as well as the sensitivity values
  538. * for the r17 register.
  539. */
  540. rt2500usb_bbp_read(rt2x00dev, 17, &r17);
  541. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
  542. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
  543. up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
  544. low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
  545. /*
  546. * If we are not associated, we should go straight to the
  547. * dynamic CCA tuning.
  548. */
  549. if (!rt2x00dev->intf_associated)
  550. goto dynamic_cca_tune;
  551. /*
  552. * Determine the BBP tuning threshold and correctly
  553. * set BBP 24, 25 and 61.
  554. */
  555. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
  556. bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
  557. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
  558. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
  559. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
  560. if ((rssi + bbp_thresh) > 0) {
  561. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
  562. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
  563. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
  564. } else {
  565. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
  566. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
  567. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
  568. }
  569. rt2500usb_bbp_write(rt2x00dev, 24, r24);
  570. rt2500usb_bbp_write(rt2x00dev, 25, r25);
  571. rt2500usb_bbp_write(rt2x00dev, 61, r61);
  572. /*
  573. * A too low RSSI will cause too much false CCA which will
  574. * then corrupt the R17 tuning. To remidy this the tuning should
  575. * be stopped (While making sure the R17 value will not exceed limits)
  576. */
  577. if (rssi >= -40) {
  578. if (r17 != 0x60)
  579. rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
  580. return;
  581. }
  582. /*
  583. * Special big-R17 for short distance
  584. */
  585. if (rssi >= -58) {
  586. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
  587. if (r17 != sens)
  588. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  589. return;
  590. }
  591. /*
  592. * Special mid-R17 for middle distance
  593. */
  594. if (rssi >= -74) {
  595. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
  596. if (r17 != sens)
  597. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  598. return;
  599. }
  600. /*
  601. * Leave short or middle distance condition, restore r17
  602. * to the dynamic tuning range.
  603. */
  604. low_bound = 0x32;
  605. if (rssi < -77)
  606. up_bound -= (-77 - rssi);
  607. if (up_bound < low_bound)
  608. up_bound = low_bound;
  609. if (r17 > up_bound) {
  610. rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
  611. rt2x00dev->link.vgc_level = up_bound;
  612. return;
  613. }
  614. dynamic_cca_tune:
  615. /*
  616. * R17 is inside the dynamic tuning range,
  617. * start tuning the link based on the false cca counter.
  618. */
  619. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  620. rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
  621. rt2x00dev->link.vgc_level = r17;
  622. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  623. rt2500usb_bbp_write(rt2x00dev, 17, --r17);
  624. rt2x00dev->link.vgc_level = r17;
  625. }
  626. }
  627. /*
  628. * Initialization functions.
  629. */
  630. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  631. {
  632. u16 reg;
  633. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  634. USB_MODE_TEST, REGISTER_TIMEOUT);
  635. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  636. 0x00f0, REGISTER_TIMEOUT);
  637. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  638. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  639. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  640. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  641. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  642. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  643. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  644. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  645. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  646. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  647. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  648. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  649. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  650. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  651. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  652. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  653. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  654. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  655. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  656. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  657. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  658. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  659. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  660. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  661. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  662. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  663. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  664. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  665. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  666. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  667. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  668. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  669. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  670. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  671. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  672. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  673. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  674. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  675. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  676. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  677. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  678. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  679. return -EBUSY;
  680. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  681. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  682. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  683. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  684. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  685. if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
  686. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  687. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  688. } else {
  689. reg = 0;
  690. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  691. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  692. }
  693. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  694. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  695. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  696. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  697. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  698. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  699. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  700. rt2x00dev->rx->data_size);
  701. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  702. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  703. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  704. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
  705. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  706. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  707. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  708. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  709. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  710. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  711. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  712. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  713. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  714. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  715. return 0;
  716. }
  717. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  718. {
  719. unsigned int i;
  720. u16 eeprom;
  721. u8 value;
  722. u8 reg_id;
  723. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  724. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  725. if ((value != 0xff) && (value != 0x00))
  726. goto continue_csr_init;
  727. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  728. udelay(REGISTER_BUSY_DELAY);
  729. }
  730. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  731. return -EACCES;
  732. continue_csr_init:
  733. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  734. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  735. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  736. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  737. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  738. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  739. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  740. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  741. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  742. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  743. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  744. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  745. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  746. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  747. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  748. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  749. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  750. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  751. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  752. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  753. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  754. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  755. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  756. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  757. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  758. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  759. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  760. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  761. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  762. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  763. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  764. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  765. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  766. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  767. if (eeprom != 0xffff && eeprom != 0x0000) {
  768. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  769. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  770. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  771. reg_id, value);
  772. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  773. }
  774. }
  775. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  776. return 0;
  777. }
  778. /*
  779. * Device state switch handlers.
  780. */
  781. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  782. enum dev_state state)
  783. {
  784. u16 reg;
  785. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  786. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  787. state == STATE_RADIO_RX_OFF);
  788. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  789. }
  790. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  791. {
  792. /*
  793. * Initialize all registers.
  794. */
  795. if (rt2500usb_init_registers(rt2x00dev) ||
  796. rt2500usb_init_bbp(rt2x00dev)) {
  797. ERROR(rt2x00dev, "Register initialization failed.\n");
  798. return -EIO;
  799. }
  800. /*
  801. * Enable LED
  802. */
  803. rt2500usb_enable_led(rt2x00dev);
  804. return 0;
  805. }
  806. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  807. {
  808. /*
  809. * Disable LED
  810. */
  811. rt2500usb_disable_led(rt2x00dev);
  812. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  813. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  814. /*
  815. * Disable synchronisation.
  816. */
  817. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  818. rt2x00usb_disable_radio(rt2x00dev);
  819. }
  820. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  821. enum dev_state state)
  822. {
  823. u16 reg;
  824. u16 reg2;
  825. unsigned int i;
  826. char put_to_sleep;
  827. char bbp_state;
  828. char rf_state;
  829. put_to_sleep = (state != STATE_AWAKE);
  830. reg = 0;
  831. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  832. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  833. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  834. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  835. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  836. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  837. /*
  838. * Device is not guaranteed to be in the requested state yet.
  839. * We must wait until the register indicates that the
  840. * device has entered the correct state.
  841. */
  842. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  843. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  844. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  845. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  846. if (bbp_state == state && rf_state == state)
  847. return 0;
  848. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  849. msleep(30);
  850. }
  851. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  852. "current device state: bbp %d and rf %d.\n",
  853. state, bbp_state, rf_state);
  854. return -EBUSY;
  855. }
  856. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  857. enum dev_state state)
  858. {
  859. int retval = 0;
  860. switch (state) {
  861. case STATE_RADIO_ON:
  862. retval = rt2500usb_enable_radio(rt2x00dev);
  863. break;
  864. case STATE_RADIO_OFF:
  865. rt2500usb_disable_radio(rt2x00dev);
  866. break;
  867. case STATE_RADIO_RX_ON:
  868. case STATE_RADIO_RX_ON_LINK:
  869. rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  870. break;
  871. case STATE_RADIO_RX_OFF:
  872. case STATE_RADIO_RX_OFF_LINK:
  873. rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  874. break;
  875. case STATE_DEEP_SLEEP:
  876. case STATE_SLEEP:
  877. case STATE_STANDBY:
  878. case STATE_AWAKE:
  879. retval = rt2500usb_set_state(rt2x00dev, state);
  880. break;
  881. default:
  882. retval = -ENOTSUPP;
  883. break;
  884. }
  885. return retval;
  886. }
  887. /*
  888. * TX descriptor initialization
  889. */
  890. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  891. struct sk_buff *skb,
  892. struct txentry_desc *txdesc,
  893. struct ieee80211_tx_control *control)
  894. {
  895. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  896. __le32 *txd = skbdesc->desc;
  897. u32 word;
  898. /*
  899. * Start writing the descriptor words.
  900. */
  901. rt2x00_desc_read(txd, 1, &word);
  902. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  903. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  904. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  905. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  906. rt2x00_desc_write(txd, 1, word);
  907. rt2x00_desc_read(txd, 2, &word);
  908. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  909. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  910. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  911. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  912. rt2x00_desc_write(txd, 2, word);
  913. rt2x00_desc_read(txd, 0, &word);
  914. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
  915. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  916. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  917. rt2x00_set_field32(&word, TXD_W0_ACK,
  918. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  919. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  920. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  921. rt2x00_set_field32(&word, TXD_W0_OFDM,
  922. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  923. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  924. !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
  925. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  926. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  927. rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
  928. rt2x00_desc_write(txd, 0, word);
  929. }
  930. static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
  931. struct sk_buff *skb)
  932. {
  933. int length;
  934. /*
  935. * The length _must_ be a multiple of 2,
  936. * but it must _not_ be a multiple of the USB packet size.
  937. */
  938. length = roundup(skb->len, 2);
  939. length += (2 * !(length % rt2x00dev->usb_maxpacket));
  940. return length;
  941. }
  942. /*
  943. * TX data initialization
  944. */
  945. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  946. unsigned int queue)
  947. {
  948. u16 reg;
  949. if (queue != IEEE80211_TX_QUEUE_BEACON)
  950. return;
  951. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  952. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  953. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  954. /*
  955. * Beacon generation will fail initially.
  956. * To prevent this we need to register the TXRX_CSR19
  957. * register several times.
  958. */
  959. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  960. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  961. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  962. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  963. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  964. }
  965. }
  966. /*
  967. * RX control handlers
  968. */
  969. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  970. struct rxdone_entry_desc *rxdesc)
  971. {
  972. struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
  973. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  974. __le32 *rxd =
  975. (__le32 *)(entry->skb->data +
  976. (priv_rx->urb->actual_length - entry->queue->desc_size));
  977. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  978. int header_size = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
  979. u32 word0;
  980. u32 word1;
  981. rt2x00_desc_read(rxd, 0, &word0);
  982. rt2x00_desc_read(rxd, 1, &word1);
  983. rxdesc->flags = 0;
  984. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  985. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  986. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  987. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  988. /*
  989. * Obtain the status about this packet.
  990. */
  991. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  992. rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
  993. entry->queue->rt2x00dev->rssi_offset;
  994. rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  995. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  996. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  997. /*
  998. * The data behind the ieee80211 header must be
  999. * aligned on a 4 byte boundary.
  1000. */
  1001. if (header_size % 4 == 0) {
  1002. skb_push(entry->skb, 2);
  1003. memmove(entry->skb->data, entry->skb->data + 2,
  1004. entry->skb->len - 2);
  1005. }
  1006. /*
  1007. * Set descriptor pointer.
  1008. */
  1009. skbdesc->data = entry->skb->data;
  1010. skbdesc->data_len = entry->queue->data_size;
  1011. skbdesc->desc = entry->skb->data + rxdesc->size;
  1012. skbdesc->desc_len = entry->queue->desc_size;
  1013. /*
  1014. * Remove descriptor from skb buffer and trim the whole thing
  1015. * down to only contain data.
  1016. */
  1017. skb_trim(entry->skb, rxdesc->size);
  1018. }
  1019. /*
  1020. * Interrupt functions.
  1021. */
  1022. static void rt2500usb_beacondone(struct urb *urb)
  1023. {
  1024. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1025. struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
  1026. if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1027. return;
  1028. /*
  1029. * Check if this was the guardian beacon,
  1030. * if that was the case we need to send the real beacon now.
  1031. * Otherwise we should free the sk_buffer, the device
  1032. * should be doing the rest of the work now.
  1033. */
  1034. if (priv_bcn->guardian_urb == urb) {
  1035. usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
  1036. } else if (priv_bcn->urb == urb) {
  1037. dev_kfree_skb(entry->skb);
  1038. entry->skb = NULL;
  1039. }
  1040. }
  1041. /*
  1042. * Device probe functions.
  1043. */
  1044. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1045. {
  1046. u16 word;
  1047. u8 *mac;
  1048. u8 bbp;
  1049. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1050. /*
  1051. * Start validation of the data that has been read.
  1052. */
  1053. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1054. if (!is_valid_ether_addr(mac)) {
  1055. DECLARE_MAC_BUF(macbuf);
  1056. random_ether_addr(mac);
  1057. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1058. }
  1059. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1060. if (word == 0xffff) {
  1061. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1062. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1063. ANTENNA_SW_DIVERSITY);
  1064. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1065. ANTENNA_SW_DIVERSITY);
  1066. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1067. LED_MODE_DEFAULT);
  1068. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1069. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1070. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1071. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1072. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1073. }
  1074. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1075. if (word == 0xffff) {
  1076. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1077. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1078. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1079. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1080. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1081. }
  1082. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1083. if (word == 0xffff) {
  1084. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1085. DEFAULT_RSSI_OFFSET);
  1086. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1087. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1088. }
  1089. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1090. if (word == 0xffff) {
  1091. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1092. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1093. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1094. }
  1095. /*
  1096. * Switch lower vgc bound to current BBP R17 value,
  1097. * lower the value a bit for better quality.
  1098. */
  1099. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1100. bbp -= 6;
  1101. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1102. if (word == 0xffff) {
  1103. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1104. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1105. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1106. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1107. }
  1108. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1109. if (word == 0xffff) {
  1110. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1111. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1112. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1113. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1114. } else {
  1115. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1116. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1117. }
  1118. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1119. if (word == 0xffff) {
  1120. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1121. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1122. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1123. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1124. }
  1125. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1126. if (word == 0xffff) {
  1127. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1128. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1129. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1130. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1131. }
  1132. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1133. if (word == 0xffff) {
  1134. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1135. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1136. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1137. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1138. }
  1139. return 0;
  1140. }
  1141. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1142. {
  1143. u16 reg;
  1144. u16 value;
  1145. u16 eeprom;
  1146. /*
  1147. * Read EEPROM word for configuration.
  1148. */
  1149. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1150. /*
  1151. * Identify RF chipset.
  1152. */
  1153. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1154. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1155. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1156. if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
  1157. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1158. return -ENODEV;
  1159. }
  1160. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1161. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1162. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1163. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1164. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1165. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1166. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1167. return -ENODEV;
  1168. }
  1169. /*
  1170. * Identify default antenna configuration.
  1171. */
  1172. rt2x00dev->default_ant.tx =
  1173. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1174. rt2x00dev->default_ant.rx =
  1175. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1176. /*
  1177. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1178. * I am not 100% sure about this, but the legacy drivers do not
  1179. * indicate antenna swapping in software is required when
  1180. * diversity is enabled.
  1181. */
  1182. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1183. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1184. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1185. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1186. /*
  1187. * Store led mode, for correct led behaviour.
  1188. */
  1189. rt2x00dev->led_mode =
  1190. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1191. /*
  1192. * Check if the BBP tuning should be disabled.
  1193. */
  1194. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1195. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1196. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1197. /*
  1198. * Read the RSSI <-> dBm offset information.
  1199. */
  1200. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1201. rt2x00dev->rssi_offset =
  1202. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1203. return 0;
  1204. }
  1205. /*
  1206. * RF value list for RF2522
  1207. * Supports: 2.4 GHz
  1208. */
  1209. static const struct rf_channel rf_vals_bg_2522[] = {
  1210. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1211. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1212. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1213. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1214. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1215. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1216. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1217. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1218. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1219. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1220. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1221. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1222. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1223. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1224. };
  1225. /*
  1226. * RF value list for RF2523
  1227. * Supports: 2.4 GHz
  1228. */
  1229. static const struct rf_channel rf_vals_bg_2523[] = {
  1230. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1231. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1232. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1233. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1234. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1235. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1236. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1237. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1238. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1239. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1240. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1241. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1242. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1243. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1244. };
  1245. /*
  1246. * RF value list for RF2524
  1247. * Supports: 2.4 GHz
  1248. */
  1249. static const struct rf_channel rf_vals_bg_2524[] = {
  1250. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1251. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1252. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1253. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1254. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1255. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1256. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1257. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1258. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1259. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1260. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1261. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1262. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1263. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1264. };
  1265. /*
  1266. * RF value list for RF2525
  1267. * Supports: 2.4 GHz
  1268. */
  1269. static const struct rf_channel rf_vals_bg_2525[] = {
  1270. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1271. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1272. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1273. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1274. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1275. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1276. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1277. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1278. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1279. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1280. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1281. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1282. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1283. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1284. };
  1285. /*
  1286. * RF value list for RF2525e
  1287. * Supports: 2.4 GHz
  1288. */
  1289. static const struct rf_channel rf_vals_bg_2525e[] = {
  1290. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1291. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1292. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1293. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1294. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1295. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1296. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1297. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1298. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1299. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1300. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1301. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1302. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1303. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1304. };
  1305. /*
  1306. * RF value list for RF5222
  1307. * Supports: 2.4 GHz & 5.2 GHz
  1308. */
  1309. static const struct rf_channel rf_vals_5222[] = {
  1310. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1311. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1312. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1313. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1314. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1315. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1316. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1317. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1318. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1319. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1320. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1321. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1322. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1323. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1324. /* 802.11 UNI / HyperLan 2 */
  1325. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1326. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1327. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1328. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1329. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1330. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1331. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1332. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1333. /* 802.11 HyperLan 2 */
  1334. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1335. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1336. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1337. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1338. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1339. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1340. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1341. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1342. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1343. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1344. /* 802.11 UNII */
  1345. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1346. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1347. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1348. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1349. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1350. };
  1351. static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1352. {
  1353. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1354. u8 *txpower;
  1355. unsigned int i;
  1356. /*
  1357. * Initialize all hw fields.
  1358. */
  1359. rt2x00dev->hw->flags =
  1360. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1361. IEEE80211_HW_RX_INCLUDES_FCS |
  1362. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1363. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1364. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1365. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1366. rt2x00dev->hw->queues = 2;
  1367. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
  1368. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1369. rt2x00_eeprom_addr(rt2x00dev,
  1370. EEPROM_MAC_ADDR_0));
  1371. /*
  1372. * Convert tx_power array in eeprom.
  1373. */
  1374. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1375. for (i = 0; i < 14; i++)
  1376. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1377. /*
  1378. * Initialize hw_mode information.
  1379. */
  1380. spec->num_modes = 2;
  1381. spec->num_rates = 12;
  1382. spec->tx_power_a = NULL;
  1383. spec->tx_power_bg = txpower;
  1384. spec->tx_power_default = DEFAULT_TXPOWER;
  1385. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1386. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1387. spec->channels = rf_vals_bg_2522;
  1388. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1389. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1390. spec->channels = rf_vals_bg_2523;
  1391. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1392. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1393. spec->channels = rf_vals_bg_2524;
  1394. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1395. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1396. spec->channels = rf_vals_bg_2525;
  1397. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1398. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1399. spec->channels = rf_vals_bg_2525e;
  1400. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1401. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1402. spec->channels = rf_vals_5222;
  1403. spec->num_modes = 3;
  1404. }
  1405. }
  1406. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1407. {
  1408. int retval;
  1409. /*
  1410. * Allocate eeprom data.
  1411. */
  1412. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1413. if (retval)
  1414. return retval;
  1415. retval = rt2500usb_init_eeprom(rt2x00dev);
  1416. if (retval)
  1417. return retval;
  1418. /*
  1419. * Initialize hw specifications.
  1420. */
  1421. rt2500usb_probe_hw_mode(rt2x00dev);
  1422. /*
  1423. * This device requires the atim queue
  1424. */
  1425. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1426. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1427. /*
  1428. * Set the rssi offset.
  1429. */
  1430. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1431. return 0;
  1432. }
  1433. /*
  1434. * IEEE80211 stack callback functions.
  1435. */
  1436. static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
  1437. unsigned int changed_flags,
  1438. unsigned int *total_flags,
  1439. int mc_count,
  1440. struct dev_addr_list *mc_list)
  1441. {
  1442. struct rt2x00_dev *rt2x00dev = hw->priv;
  1443. u16 reg;
  1444. /*
  1445. * Mask off any flags we are going to ignore from
  1446. * the total_flags field.
  1447. */
  1448. *total_flags &=
  1449. FIF_ALLMULTI |
  1450. FIF_FCSFAIL |
  1451. FIF_PLCPFAIL |
  1452. FIF_CONTROL |
  1453. FIF_OTHER_BSS |
  1454. FIF_PROMISC_IN_BSS;
  1455. /*
  1456. * Apply some rules to the filters:
  1457. * - Some filters imply different filters to be set.
  1458. * - Some things we can't filter out at all.
  1459. */
  1460. if (mc_count)
  1461. *total_flags |= FIF_ALLMULTI;
  1462. if (*total_flags & FIF_OTHER_BSS ||
  1463. *total_flags & FIF_PROMISC_IN_BSS)
  1464. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1465. /*
  1466. * Check if there is any work left for us.
  1467. */
  1468. if (rt2x00dev->packet_filter == *total_flags)
  1469. return;
  1470. rt2x00dev->packet_filter = *total_flags;
  1471. /*
  1472. * When in atomic context, reschedule and let rt2x00lib
  1473. * call this function again.
  1474. */
  1475. if (in_atomic()) {
  1476. queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
  1477. return;
  1478. }
  1479. /*
  1480. * Start configuration steps.
  1481. * Note that the version error will always be dropped
  1482. * and broadcast frames will always be accepted since
  1483. * there is no filter for it at this time.
  1484. */
  1485. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  1486. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  1487. !(*total_flags & FIF_FCSFAIL));
  1488. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  1489. !(*total_flags & FIF_PLCPFAIL));
  1490. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  1491. !(*total_flags & FIF_CONTROL));
  1492. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  1493. !(*total_flags & FIF_PROMISC_IN_BSS));
  1494. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  1495. !(*total_flags & FIF_PROMISC_IN_BSS));
  1496. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  1497. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  1498. !(*total_flags & FIF_ALLMULTI));
  1499. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  1500. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  1501. }
  1502. static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
  1503. struct sk_buff *skb,
  1504. struct ieee80211_tx_control *control)
  1505. {
  1506. struct rt2x00_dev *rt2x00dev = hw->priv;
  1507. struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
  1508. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1509. struct queue_entry_priv_usb_bcn *priv_bcn;
  1510. struct skb_frame_desc *skbdesc;
  1511. int pipe = usb_sndbulkpipe(usb_dev, 1);
  1512. int length;
  1513. if (unlikely(!intf->beacon))
  1514. return -ENOBUFS;
  1515. priv_bcn = intf->beacon->priv_data;
  1516. /*
  1517. * Add the descriptor in front of the skb.
  1518. */
  1519. skb_push(skb, intf->beacon->queue->desc_size);
  1520. memset(skb->data, 0, intf->beacon->queue->desc_size);
  1521. /*
  1522. * Fill in skb descriptor
  1523. */
  1524. skbdesc = get_skb_frame_desc(skb);
  1525. memset(skbdesc, 0, sizeof(*skbdesc));
  1526. skbdesc->data = skb->data + intf->beacon->queue->desc_size;
  1527. skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
  1528. skbdesc->desc = skb->data;
  1529. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1530. skbdesc->entry = intf->beacon;
  1531. /*
  1532. * Just in case mac80211 doesn't set this correctly,
  1533. * but we need this queue set for the descriptor
  1534. * initialization.
  1535. */
  1536. control->queue = IEEE80211_TX_QUEUE_BEACON;
  1537. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1538. /*
  1539. * USB devices cannot blindly pass the skb->len as the
  1540. * length of the data to usb_fill_bulk_urb. Pass the skb
  1541. * to the driver to determine what the length should be.
  1542. */
  1543. length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
  1544. usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
  1545. skb->data, length, rt2500usb_beacondone,
  1546. intf->beacon);
  1547. /*
  1548. * Second we need to create the guardian byte.
  1549. * We only need a single byte, so lets recycle
  1550. * the 'flags' field we are not using for beacons.
  1551. */
  1552. priv_bcn->guardian_data = 0;
  1553. usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
  1554. &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
  1555. intf->beacon);
  1556. /*
  1557. * Send out the guardian byte.
  1558. */
  1559. usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
  1560. /*
  1561. * Enable beacon generation.
  1562. */
  1563. rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
  1564. return 0;
  1565. }
  1566. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1567. .tx = rt2x00mac_tx,
  1568. .start = rt2x00mac_start,
  1569. .stop = rt2x00mac_stop,
  1570. .add_interface = rt2x00mac_add_interface,
  1571. .remove_interface = rt2x00mac_remove_interface,
  1572. .config = rt2x00mac_config,
  1573. .config_interface = rt2x00mac_config_interface,
  1574. .configure_filter = rt2500usb_configure_filter,
  1575. .get_stats = rt2x00mac_get_stats,
  1576. .bss_info_changed = rt2x00mac_bss_info_changed,
  1577. .conf_tx = rt2x00mac_conf_tx,
  1578. .get_tx_stats = rt2x00mac_get_tx_stats,
  1579. .beacon_update = rt2500usb_beacon_update,
  1580. };
  1581. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1582. .probe_hw = rt2500usb_probe_hw,
  1583. .initialize = rt2x00usb_initialize,
  1584. .uninitialize = rt2x00usb_uninitialize,
  1585. .init_rxentry = rt2x00usb_init_rxentry,
  1586. .init_txentry = rt2x00usb_init_txentry,
  1587. .set_device_state = rt2500usb_set_device_state,
  1588. .link_stats = rt2500usb_link_stats,
  1589. .reset_tuner = rt2500usb_reset_tuner,
  1590. .link_tuner = rt2500usb_link_tuner,
  1591. .write_tx_desc = rt2500usb_write_tx_desc,
  1592. .write_tx_data = rt2x00usb_write_tx_data,
  1593. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1594. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1595. .fill_rxdone = rt2500usb_fill_rxdone,
  1596. .config_intf = rt2500usb_config_intf,
  1597. .config_preamble = rt2500usb_config_preamble,
  1598. .config = rt2500usb_config,
  1599. };
  1600. static const struct data_queue_desc rt2500usb_queue_rx = {
  1601. .entry_num = RX_ENTRIES,
  1602. .data_size = DATA_FRAME_SIZE,
  1603. .desc_size = RXD_DESC_SIZE,
  1604. .priv_size = sizeof(struct queue_entry_priv_usb_rx),
  1605. };
  1606. static const struct data_queue_desc rt2500usb_queue_tx = {
  1607. .entry_num = TX_ENTRIES,
  1608. .data_size = DATA_FRAME_SIZE,
  1609. .desc_size = TXD_DESC_SIZE,
  1610. .priv_size = sizeof(struct queue_entry_priv_usb_tx),
  1611. };
  1612. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1613. .entry_num = BEACON_ENTRIES,
  1614. .data_size = MGMT_FRAME_SIZE,
  1615. .desc_size = TXD_DESC_SIZE,
  1616. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1617. };
  1618. static const struct data_queue_desc rt2500usb_queue_atim = {
  1619. .entry_num = ATIM_ENTRIES,
  1620. .data_size = DATA_FRAME_SIZE,
  1621. .desc_size = TXD_DESC_SIZE,
  1622. .priv_size = sizeof(struct queue_entry_priv_usb_tx),
  1623. };
  1624. static const struct rt2x00_ops rt2500usb_ops = {
  1625. .name = KBUILD_MODNAME,
  1626. .max_sta_intf = 1,
  1627. .max_ap_intf = 1,
  1628. .eeprom_size = EEPROM_SIZE,
  1629. .rf_size = RF_SIZE,
  1630. .rx = &rt2500usb_queue_rx,
  1631. .tx = &rt2500usb_queue_tx,
  1632. .bcn = &rt2500usb_queue_bcn,
  1633. .atim = &rt2500usb_queue_atim,
  1634. .lib = &rt2500usb_rt2x00_ops,
  1635. .hw = &rt2500usb_mac80211_ops,
  1636. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1637. .debugfs = &rt2500usb_rt2x00debug,
  1638. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1639. };
  1640. /*
  1641. * rt2500usb module information.
  1642. */
  1643. static struct usb_device_id rt2500usb_device_table[] = {
  1644. /* ASUS */
  1645. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1646. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1647. /* Belkin */
  1648. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1649. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1650. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1651. /* Cisco Systems */
  1652. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1653. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1654. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1655. /* Conceptronic */
  1656. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1657. /* D-LINK */
  1658. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1659. /* Gigabyte */
  1660. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1661. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1662. /* Hercules */
  1663. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1664. /* Melco */
  1665. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1666. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1667. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1668. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1669. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1670. /* MSI */
  1671. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1672. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1673. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1674. /* Ralink */
  1675. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1676. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1677. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1678. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1679. /* Siemens */
  1680. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1681. /* SMC */
  1682. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1683. /* Spairon */
  1684. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1685. /* Trust */
  1686. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1687. /* Zinwell */
  1688. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1689. { 0, }
  1690. };
  1691. MODULE_AUTHOR(DRV_PROJECT);
  1692. MODULE_VERSION(DRV_VERSION);
  1693. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1694. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1695. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1696. MODULE_LICENSE("GPL");
  1697. static struct usb_driver rt2500usb_driver = {
  1698. .name = KBUILD_MODNAME,
  1699. .id_table = rt2500usb_device_table,
  1700. .probe = rt2x00usb_probe,
  1701. .disconnect = rt2x00usb_disconnect,
  1702. .suspend = rt2x00usb_suspend,
  1703. .resume = rt2x00usb_resume,
  1704. };
  1705. static int __init rt2500usb_init(void)
  1706. {
  1707. return usb_register(&rt2500usb_driver);
  1708. }
  1709. static void __exit rt2500usb_exit(void)
  1710. {
  1711. usb_deregister(&rt2500usb_driver);
  1712. }
  1713. module_init(rt2500usb_init);
  1714. module_exit(rt2500usb_exit);