tcp_input.c 175 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 3;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  102. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  103. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  104. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  105. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. /* Adapt the MSS value used to make delayed ack decision to the
  115. * real world.
  116. */
  117. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  118. {
  119. struct inet_connection_sock *icsk = inet_csk(sk);
  120. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  121. unsigned int len;
  122. icsk->icsk_ack.last_seg_size = 0;
  123. /* skb->len may jitter because of SACKs, even if peer
  124. * sends good full-sized frames.
  125. */
  126. len = skb_shinfo(skb)->gso_size ? : skb->len;
  127. if (len >= icsk->icsk_ack.rcv_mss) {
  128. icsk->icsk_ack.rcv_mss = len;
  129. } else {
  130. /* Otherwise, we make more careful check taking into account,
  131. * that SACKs block is variable.
  132. *
  133. * "len" is invariant segment length, including TCP header.
  134. */
  135. len += skb->data - skb_transport_header(skb);
  136. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  137. /* If PSH is not set, packet should be
  138. * full sized, provided peer TCP is not badly broken.
  139. * This observation (if it is correct 8)) allows
  140. * to handle super-low mtu links fairly.
  141. */
  142. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  143. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  144. /* Subtract also invariant (if peer is RFC compliant),
  145. * tcp header plus fixed timestamp option length.
  146. * Resulting "len" is MSS free of SACK jitter.
  147. */
  148. len -= tcp_sk(sk)->tcp_header_len;
  149. icsk->icsk_ack.last_seg_size = len;
  150. if (len == lss) {
  151. icsk->icsk_ack.rcv_mss = len;
  152. return;
  153. }
  154. }
  155. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  156. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  158. }
  159. }
  160. static void tcp_incr_quickack(struct sock *sk)
  161. {
  162. struct inet_connection_sock *icsk = inet_csk(sk);
  163. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  164. if (quickacks == 0)
  165. quickacks = 2;
  166. if (quickacks > icsk->icsk_ack.quick)
  167. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  168. }
  169. static void tcp_enter_quickack_mode(struct sock *sk)
  170. {
  171. struct inet_connection_sock *icsk = inet_csk(sk);
  172. tcp_incr_quickack(sk);
  173. icsk->icsk_ack.pingpong = 0;
  174. icsk->icsk_ack.ato = TCP_ATO_MIN;
  175. }
  176. /* Send ACKs quickly, if "quick" count is not exhausted
  177. * and the session is not interactive.
  178. */
  179. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  180. {
  181. const struct inet_connection_sock *icsk = inet_csk(sk);
  182. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  183. }
  184. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  185. {
  186. if (tp->ecn_flags & TCP_ECN_OK)
  187. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  188. }
  189. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  190. {
  191. if (tcp_hdr(skb)->cwr)
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  195. {
  196. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  197. }
  198. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  199. {
  200. if (!(tp->ecn_flags & TCP_ECN_OK))
  201. return;
  202. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  203. case INET_ECN_NOT_ECT:
  204. /* Funny extension: if ECT is not set on a segment,
  205. * and we already seen ECT on a previous segment,
  206. * it is probably a retransmit.
  207. */
  208. if (tp->ecn_flags & TCP_ECN_SEEN)
  209. tcp_enter_quickack_mode((struct sock *)tp);
  210. break;
  211. case INET_ECN_CE:
  212. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  213. /* Better not delay acks, sender can have a very low cwnd */
  214. tcp_enter_quickack_mode((struct sock *)tp);
  215. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  216. }
  217. /* fallinto */
  218. default:
  219. tp->ecn_flags |= TCP_ECN_SEEN;
  220. }
  221. }
  222. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  223. {
  224. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  225. tp->ecn_flags &= ~TCP_ECN_OK;
  226. }
  227. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  228. {
  229. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  230. tp->ecn_flags &= ~TCP_ECN_OK;
  231. }
  232. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  233. {
  234. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  235. return true;
  236. return false;
  237. }
  238. /* Buffer size and advertised window tuning.
  239. *
  240. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  241. */
  242. static void tcp_fixup_sndbuf(struct sock *sk)
  243. {
  244. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  245. sndmem *= TCP_INIT_CWND;
  246. if (sk->sk_sndbuf < sndmem)
  247. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  248. }
  249. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  250. *
  251. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  252. * forward and advertised in receiver window (tp->rcv_wnd) and
  253. * "application buffer", required to isolate scheduling/application
  254. * latencies from network.
  255. * window_clamp is maximal advertised window. It can be less than
  256. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  257. * is reserved for "application" buffer. The less window_clamp is
  258. * the smoother our behaviour from viewpoint of network, but the lower
  259. * throughput and the higher sensitivity of the connection to losses. 8)
  260. *
  261. * rcv_ssthresh is more strict window_clamp used at "slow start"
  262. * phase to predict further behaviour of this connection.
  263. * It is used for two goals:
  264. * - to enforce header prediction at sender, even when application
  265. * requires some significant "application buffer". It is check #1.
  266. * - to prevent pruning of receive queue because of misprediction
  267. * of receiver window. Check #2.
  268. *
  269. * The scheme does not work when sender sends good segments opening
  270. * window and then starts to feed us spaghetti. But it should work
  271. * in common situations. Otherwise, we have to rely on queue collapsing.
  272. */
  273. /* Slow part of check#2. */
  274. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. /* Optimize this! */
  278. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  279. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  280. while (tp->rcv_ssthresh <= window) {
  281. if (truesize <= skb->len)
  282. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  283. truesize >>= 1;
  284. window >>= 1;
  285. }
  286. return 0;
  287. }
  288. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  289. {
  290. struct tcp_sock *tp = tcp_sk(sk);
  291. /* Check #1 */
  292. if (tp->rcv_ssthresh < tp->window_clamp &&
  293. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  294. !sk_under_memory_pressure(sk)) {
  295. int incr;
  296. /* Check #2. Increase window, if skb with such overhead
  297. * will fit to rcvbuf in future.
  298. */
  299. if (tcp_win_from_space(skb->truesize) <= skb->len)
  300. incr = 2 * tp->advmss;
  301. else
  302. incr = __tcp_grow_window(sk, skb);
  303. if (incr) {
  304. incr = max_t(int, incr, 2 * skb->len);
  305. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  306. tp->window_clamp);
  307. inet_csk(sk)->icsk_ack.quick |= 1;
  308. }
  309. }
  310. }
  311. /* 3. Tuning rcvbuf, when connection enters established state. */
  312. static void tcp_fixup_rcvbuf(struct sock *sk)
  313. {
  314. u32 mss = tcp_sk(sk)->advmss;
  315. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  316. int rcvmem;
  317. /* Limit to 10 segments if mss <= 1460,
  318. * or 14600/mss segments, with a minimum of two segments.
  319. */
  320. if (mss > 1460)
  321. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  322. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  323. while (tcp_win_from_space(rcvmem) < mss)
  324. rcvmem += 128;
  325. rcvmem *= icwnd;
  326. if (sk->sk_rcvbuf < rcvmem)
  327. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  328. }
  329. /* 4. Try to fixup all. It is made immediately after connection enters
  330. * established state.
  331. */
  332. void tcp_init_buffer_space(struct sock *sk)
  333. {
  334. struct tcp_sock *tp = tcp_sk(sk);
  335. int maxwin;
  336. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  337. tcp_fixup_rcvbuf(sk);
  338. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  339. tcp_fixup_sndbuf(sk);
  340. tp->rcvq_space.space = tp->rcv_wnd;
  341. maxwin = tcp_full_space(sk);
  342. if (tp->window_clamp >= maxwin) {
  343. tp->window_clamp = maxwin;
  344. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  345. tp->window_clamp = max(maxwin -
  346. (maxwin >> sysctl_tcp_app_win),
  347. 4 * tp->advmss);
  348. }
  349. /* Force reservation of one segment. */
  350. if (sysctl_tcp_app_win &&
  351. tp->window_clamp > 2 * tp->advmss &&
  352. tp->window_clamp + tp->advmss > maxwin)
  353. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  354. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  355. tp->snd_cwnd_stamp = tcp_time_stamp;
  356. }
  357. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  358. static void tcp_clamp_window(struct sock *sk)
  359. {
  360. struct tcp_sock *tp = tcp_sk(sk);
  361. struct inet_connection_sock *icsk = inet_csk(sk);
  362. icsk->icsk_ack.quick = 0;
  363. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  364. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  365. !sk_under_memory_pressure(sk) &&
  366. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  367. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  368. sysctl_tcp_rmem[2]);
  369. }
  370. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  371. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  372. }
  373. /* Initialize RCV_MSS value.
  374. * RCV_MSS is an our guess about MSS used by the peer.
  375. * We haven't any direct information about the MSS.
  376. * It's better to underestimate the RCV_MSS rather than overestimate.
  377. * Overestimations make us ACKing less frequently than needed.
  378. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  379. */
  380. void tcp_initialize_rcv_mss(struct sock *sk)
  381. {
  382. const struct tcp_sock *tp = tcp_sk(sk);
  383. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  384. hint = min(hint, tp->rcv_wnd / 2);
  385. hint = min(hint, TCP_MSS_DEFAULT);
  386. hint = max(hint, TCP_MIN_MSS);
  387. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  388. }
  389. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  390. /* Receiver "autotuning" code.
  391. *
  392. * The algorithm for RTT estimation w/o timestamps is based on
  393. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  394. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  395. *
  396. * More detail on this code can be found at
  397. * <http://staff.psc.edu/jheffner/>,
  398. * though this reference is out of date. A new paper
  399. * is pending.
  400. */
  401. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  402. {
  403. u32 new_sample = tp->rcv_rtt_est.rtt;
  404. long m = sample;
  405. if (m == 0)
  406. m = 1;
  407. if (new_sample != 0) {
  408. /* If we sample in larger samples in the non-timestamp
  409. * case, we could grossly overestimate the RTT especially
  410. * with chatty applications or bulk transfer apps which
  411. * are stalled on filesystem I/O.
  412. *
  413. * Also, since we are only going for a minimum in the
  414. * non-timestamp case, we do not smooth things out
  415. * else with timestamps disabled convergence takes too
  416. * long.
  417. */
  418. if (!win_dep) {
  419. m -= (new_sample >> 3);
  420. new_sample += m;
  421. } else {
  422. m <<= 3;
  423. if (m < new_sample)
  424. new_sample = m;
  425. }
  426. } else {
  427. /* No previous measure. */
  428. new_sample = m << 3;
  429. }
  430. if (tp->rcv_rtt_est.rtt != new_sample)
  431. tp->rcv_rtt_est.rtt = new_sample;
  432. }
  433. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  434. {
  435. if (tp->rcv_rtt_est.time == 0)
  436. goto new_measure;
  437. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  438. return;
  439. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  440. new_measure:
  441. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  442. tp->rcv_rtt_est.time = tcp_time_stamp;
  443. }
  444. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  445. const struct sk_buff *skb)
  446. {
  447. struct tcp_sock *tp = tcp_sk(sk);
  448. if (tp->rx_opt.rcv_tsecr &&
  449. (TCP_SKB_CB(skb)->end_seq -
  450. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  451. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  452. }
  453. /*
  454. * This function should be called every time data is copied to user space.
  455. * It calculates the appropriate TCP receive buffer space.
  456. */
  457. void tcp_rcv_space_adjust(struct sock *sk)
  458. {
  459. struct tcp_sock *tp = tcp_sk(sk);
  460. int time;
  461. int space;
  462. if (tp->rcvq_space.time == 0)
  463. goto new_measure;
  464. time = tcp_time_stamp - tp->rcvq_space.time;
  465. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  466. return;
  467. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  468. space = max(tp->rcvq_space.space, space);
  469. if (tp->rcvq_space.space != space) {
  470. int rcvmem;
  471. tp->rcvq_space.space = space;
  472. if (sysctl_tcp_moderate_rcvbuf &&
  473. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  474. int new_clamp = space;
  475. /* Receive space grows, normalize in order to
  476. * take into account packet headers and sk_buff
  477. * structure overhead.
  478. */
  479. space /= tp->advmss;
  480. if (!space)
  481. space = 1;
  482. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  483. while (tcp_win_from_space(rcvmem) < tp->advmss)
  484. rcvmem += 128;
  485. space *= rcvmem;
  486. space = min(space, sysctl_tcp_rmem[2]);
  487. if (space > sk->sk_rcvbuf) {
  488. sk->sk_rcvbuf = space;
  489. /* Make the window clamp follow along. */
  490. tp->window_clamp = new_clamp;
  491. }
  492. }
  493. }
  494. new_measure:
  495. tp->rcvq_space.seq = tp->copied_seq;
  496. tp->rcvq_space.time = tcp_time_stamp;
  497. }
  498. /* There is something which you must keep in mind when you analyze the
  499. * behavior of the tp->ato delayed ack timeout interval. When a
  500. * connection starts up, we want to ack as quickly as possible. The
  501. * problem is that "good" TCP's do slow start at the beginning of data
  502. * transmission. The means that until we send the first few ACK's the
  503. * sender will sit on his end and only queue most of his data, because
  504. * he can only send snd_cwnd unacked packets at any given time. For
  505. * each ACK we send, he increments snd_cwnd and transmits more of his
  506. * queue. -DaveM
  507. */
  508. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  509. {
  510. struct tcp_sock *tp = tcp_sk(sk);
  511. struct inet_connection_sock *icsk = inet_csk(sk);
  512. u32 now;
  513. inet_csk_schedule_ack(sk);
  514. tcp_measure_rcv_mss(sk, skb);
  515. tcp_rcv_rtt_measure(tp);
  516. now = tcp_time_stamp;
  517. if (!icsk->icsk_ack.ato) {
  518. /* The _first_ data packet received, initialize
  519. * delayed ACK engine.
  520. */
  521. tcp_incr_quickack(sk);
  522. icsk->icsk_ack.ato = TCP_ATO_MIN;
  523. } else {
  524. int m = now - icsk->icsk_ack.lrcvtime;
  525. if (m <= TCP_ATO_MIN / 2) {
  526. /* The fastest case is the first. */
  527. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  528. } else if (m < icsk->icsk_ack.ato) {
  529. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  530. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  531. icsk->icsk_ack.ato = icsk->icsk_rto;
  532. } else if (m > icsk->icsk_rto) {
  533. /* Too long gap. Apparently sender failed to
  534. * restart window, so that we send ACKs quickly.
  535. */
  536. tcp_incr_quickack(sk);
  537. sk_mem_reclaim(sk);
  538. }
  539. }
  540. icsk->icsk_ack.lrcvtime = now;
  541. TCP_ECN_check_ce(tp, skb);
  542. if (skb->len >= 128)
  543. tcp_grow_window(sk, skb);
  544. }
  545. /* Called to compute a smoothed rtt estimate. The data fed to this
  546. * routine either comes from timestamps, or from segments that were
  547. * known _not_ to have been retransmitted [see Karn/Partridge
  548. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  549. * piece by Van Jacobson.
  550. * NOTE: the next three routines used to be one big routine.
  551. * To save cycles in the RFC 1323 implementation it was better to break
  552. * it up into three procedures. -- erics
  553. */
  554. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  555. {
  556. struct tcp_sock *tp = tcp_sk(sk);
  557. long m = mrtt; /* RTT */
  558. /* The following amusing code comes from Jacobson's
  559. * article in SIGCOMM '88. Note that rtt and mdev
  560. * are scaled versions of rtt and mean deviation.
  561. * This is designed to be as fast as possible
  562. * m stands for "measurement".
  563. *
  564. * On a 1990 paper the rto value is changed to:
  565. * RTO = rtt + 4 * mdev
  566. *
  567. * Funny. This algorithm seems to be very broken.
  568. * These formulae increase RTO, when it should be decreased, increase
  569. * too slowly, when it should be increased quickly, decrease too quickly
  570. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  571. * does not matter how to _calculate_ it. Seems, it was trap
  572. * that VJ failed to avoid. 8)
  573. */
  574. if (m == 0)
  575. m = 1;
  576. if (tp->srtt != 0) {
  577. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  578. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  579. if (m < 0) {
  580. m = -m; /* m is now abs(error) */
  581. m -= (tp->mdev >> 2); /* similar update on mdev */
  582. /* This is similar to one of Eifel findings.
  583. * Eifel blocks mdev updates when rtt decreases.
  584. * This solution is a bit different: we use finer gain
  585. * for mdev in this case (alpha*beta).
  586. * Like Eifel it also prevents growth of rto,
  587. * but also it limits too fast rto decreases,
  588. * happening in pure Eifel.
  589. */
  590. if (m > 0)
  591. m >>= 3;
  592. } else {
  593. m -= (tp->mdev >> 2); /* similar update on mdev */
  594. }
  595. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  596. if (tp->mdev > tp->mdev_max) {
  597. tp->mdev_max = tp->mdev;
  598. if (tp->mdev_max > tp->rttvar)
  599. tp->rttvar = tp->mdev_max;
  600. }
  601. if (after(tp->snd_una, tp->rtt_seq)) {
  602. if (tp->mdev_max < tp->rttvar)
  603. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  604. tp->rtt_seq = tp->snd_nxt;
  605. tp->mdev_max = tcp_rto_min(sk);
  606. }
  607. } else {
  608. /* no previous measure. */
  609. tp->srtt = m << 3; /* take the measured time to be rtt */
  610. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  611. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  612. tp->rtt_seq = tp->snd_nxt;
  613. }
  614. }
  615. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  616. * routine referred to above.
  617. */
  618. void tcp_set_rto(struct sock *sk)
  619. {
  620. const struct tcp_sock *tp = tcp_sk(sk);
  621. /* Old crap is replaced with new one. 8)
  622. *
  623. * More seriously:
  624. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  625. * It cannot be less due to utterly erratic ACK generation made
  626. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  627. * to do with delayed acks, because at cwnd>2 true delack timeout
  628. * is invisible. Actually, Linux-2.4 also generates erratic
  629. * ACKs in some circumstances.
  630. */
  631. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  632. /* 2. Fixups made earlier cannot be right.
  633. * If we do not estimate RTO correctly without them,
  634. * all the algo is pure shit and should be replaced
  635. * with correct one. It is exactly, which we pretend to do.
  636. */
  637. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  638. * guarantees that rto is higher.
  639. */
  640. tcp_bound_rto(sk);
  641. }
  642. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  643. {
  644. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  645. if (!cwnd)
  646. cwnd = TCP_INIT_CWND;
  647. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  648. }
  649. /*
  650. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  651. * disables it when reordering is detected
  652. */
  653. void tcp_disable_fack(struct tcp_sock *tp)
  654. {
  655. /* RFC3517 uses different metric in lost marker => reset on change */
  656. if (tcp_is_fack(tp))
  657. tp->lost_skb_hint = NULL;
  658. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  659. }
  660. /* Take a notice that peer is sending D-SACKs */
  661. static void tcp_dsack_seen(struct tcp_sock *tp)
  662. {
  663. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  664. }
  665. static void tcp_update_reordering(struct sock *sk, const int metric,
  666. const int ts)
  667. {
  668. struct tcp_sock *tp = tcp_sk(sk);
  669. if (metric > tp->reordering) {
  670. int mib_idx;
  671. tp->reordering = min(TCP_MAX_REORDERING, metric);
  672. /* This exciting event is worth to be remembered. 8) */
  673. if (ts)
  674. mib_idx = LINUX_MIB_TCPTSREORDER;
  675. else if (tcp_is_reno(tp))
  676. mib_idx = LINUX_MIB_TCPRENOREORDER;
  677. else if (tcp_is_fack(tp))
  678. mib_idx = LINUX_MIB_TCPFACKREORDER;
  679. else
  680. mib_idx = LINUX_MIB_TCPSACKREORDER;
  681. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  682. #if FASTRETRANS_DEBUG > 1
  683. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  684. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  685. tp->reordering,
  686. tp->fackets_out,
  687. tp->sacked_out,
  688. tp->undo_marker ? tp->undo_retrans : 0);
  689. #endif
  690. tcp_disable_fack(tp);
  691. }
  692. if (metric > 0)
  693. tcp_disable_early_retrans(tp);
  694. }
  695. /* This must be called before lost_out is incremented */
  696. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  697. {
  698. if ((tp->retransmit_skb_hint == NULL) ||
  699. before(TCP_SKB_CB(skb)->seq,
  700. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  701. tp->retransmit_skb_hint = skb;
  702. if (!tp->lost_out ||
  703. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  704. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  705. }
  706. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  707. {
  708. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  709. tcp_verify_retransmit_hint(tp, skb);
  710. tp->lost_out += tcp_skb_pcount(skb);
  711. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  712. }
  713. }
  714. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  715. struct sk_buff *skb)
  716. {
  717. tcp_verify_retransmit_hint(tp, skb);
  718. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  719. tp->lost_out += tcp_skb_pcount(skb);
  720. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  721. }
  722. }
  723. /* This procedure tags the retransmission queue when SACKs arrive.
  724. *
  725. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  726. * Packets in queue with these bits set are counted in variables
  727. * sacked_out, retrans_out and lost_out, correspondingly.
  728. *
  729. * Valid combinations are:
  730. * Tag InFlight Description
  731. * 0 1 - orig segment is in flight.
  732. * S 0 - nothing flies, orig reached receiver.
  733. * L 0 - nothing flies, orig lost by net.
  734. * R 2 - both orig and retransmit are in flight.
  735. * L|R 1 - orig is lost, retransmit is in flight.
  736. * S|R 1 - orig reached receiver, retrans is still in flight.
  737. * (L|S|R is logically valid, it could occur when L|R is sacked,
  738. * but it is equivalent to plain S and code short-curcuits it to S.
  739. * L|S is logically invalid, it would mean -1 packet in flight 8))
  740. *
  741. * These 6 states form finite state machine, controlled by the following events:
  742. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  743. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  744. * 3. Loss detection event of two flavors:
  745. * A. Scoreboard estimator decided the packet is lost.
  746. * A'. Reno "three dupacks" marks head of queue lost.
  747. * A''. Its FACK modification, head until snd.fack is lost.
  748. * B. SACK arrives sacking SND.NXT at the moment, when the
  749. * segment was retransmitted.
  750. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  751. *
  752. * It is pleasant to note, that state diagram turns out to be commutative,
  753. * so that we are allowed not to be bothered by order of our actions,
  754. * when multiple events arrive simultaneously. (see the function below).
  755. *
  756. * Reordering detection.
  757. * --------------------
  758. * Reordering metric is maximal distance, which a packet can be displaced
  759. * in packet stream. With SACKs we can estimate it:
  760. *
  761. * 1. SACK fills old hole and the corresponding segment was not
  762. * ever retransmitted -> reordering. Alas, we cannot use it
  763. * when segment was retransmitted.
  764. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  765. * for retransmitted and already SACKed segment -> reordering..
  766. * Both of these heuristics are not used in Loss state, when we cannot
  767. * account for retransmits accurately.
  768. *
  769. * SACK block validation.
  770. * ----------------------
  771. *
  772. * SACK block range validation checks that the received SACK block fits to
  773. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  774. * Note that SND.UNA is not included to the range though being valid because
  775. * it means that the receiver is rather inconsistent with itself reporting
  776. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  777. * perfectly valid, however, in light of RFC2018 which explicitly states
  778. * that "SACK block MUST reflect the newest segment. Even if the newest
  779. * segment is going to be discarded ...", not that it looks very clever
  780. * in case of head skb. Due to potentional receiver driven attacks, we
  781. * choose to avoid immediate execution of a walk in write queue due to
  782. * reneging and defer head skb's loss recovery to standard loss recovery
  783. * procedure that will eventually trigger (nothing forbids us doing this).
  784. *
  785. * Implements also blockage to start_seq wrap-around. Problem lies in the
  786. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  787. * there's no guarantee that it will be before snd_nxt (n). The problem
  788. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  789. * wrap (s_w):
  790. *
  791. * <- outs wnd -> <- wrapzone ->
  792. * u e n u_w e_w s n_w
  793. * | | | | | | |
  794. * |<------------+------+----- TCP seqno space --------------+---------->|
  795. * ...-- <2^31 ->| |<--------...
  796. * ...---- >2^31 ------>| |<--------...
  797. *
  798. * Current code wouldn't be vulnerable but it's better still to discard such
  799. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  800. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  801. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  802. * equal to the ideal case (infinite seqno space without wrap caused issues).
  803. *
  804. * With D-SACK the lower bound is extended to cover sequence space below
  805. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  806. * again, D-SACK block must not to go across snd_una (for the same reason as
  807. * for the normal SACK blocks, explained above). But there all simplicity
  808. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  809. * fully below undo_marker they do not affect behavior in anyway and can
  810. * therefore be safely ignored. In rare cases (which are more or less
  811. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  812. * fragmentation and packet reordering past skb's retransmission. To consider
  813. * them correctly, the acceptable range must be extended even more though
  814. * the exact amount is rather hard to quantify. However, tp->max_window can
  815. * be used as an exaggerated estimate.
  816. */
  817. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  818. u32 start_seq, u32 end_seq)
  819. {
  820. /* Too far in future, or reversed (interpretation is ambiguous) */
  821. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  822. return false;
  823. /* Nasty start_seq wrap-around check (see comments above) */
  824. if (!before(start_seq, tp->snd_nxt))
  825. return false;
  826. /* In outstanding window? ...This is valid exit for D-SACKs too.
  827. * start_seq == snd_una is non-sensical (see comments above)
  828. */
  829. if (after(start_seq, tp->snd_una))
  830. return true;
  831. if (!is_dsack || !tp->undo_marker)
  832. return false;
  833. /* ...Then it's D-SACK, and must reside below snd_una completely */
  834. if (after(end_seq, tp->snd_una))
  835. return false;
  836. if (!before(start_seq, tp->undo_marker))
  837. return true;
  838. /* Too old */
  839. if (!after(end_seq, tp->undo_marker))
  840. return false;
  841. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  842. * start_seq < undo_marker and end_seq >= undo_marker.
  843. */
  844. return !before(start_seq, end_seq - tp->max_window);
  845. }
  846. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  847. * Event "B". Later note: FACK people cheated me again 8), we have to account
  848. * for reordering! Ugly, but should help.
  849. *
  850. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  851. * less than what is now known to be received by the other end (derived from
  852. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  853. * retransmitted skbs to avoid some costly processing per ACKs.
  854. */
  855. static void tcp_mark_lost_retrans(struct sock *sk)
  856. {
  857. const struct inet_connection_sock *icsk = inet_csk(sk);
  858. struct tcp_sock *tp = tcp_sk(sk);
  859. struct sk_buff *skb;
  860. int cnt = 0;
  861. u32 new_low_seq = tp->snd_nxt;
  862. u32 received_upto = tcp_highest_sack_seq(tp);
  863. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  864. !after(received_upto, tp->lost_retrans_low) ||
  865. icsk->icsk_ca_state != TCP_CA_Recovery)
  866. return;
  867. tcp_for_write_queue(skb, sk) {
  868. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  869. if (skb == tcp_send_head(sk))
  870. break;
  871. if (cnt == tp->retrans_out)
  872. break;
  873. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  874. continue;
  875. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  876. continue;
  877. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  878. * constraint here (see above) but figuring out that at
  879. * least tp->reordering SACK blocks reside between ack_seq
  880. * and received_upto is not easy task to do cheaply with
  881. * the available datastructures.
  882. *
  883. * Whether FACK should check here for tp->reordering segs
  884. * in-between one could argue for either way (it would be
  885. * rather simple to implement as we could count fack_count
  886. * during the walk and do tp->fackets_out - fack_count).
  887. */
  888. if (after(received_upto, ack_seq)) {
  889. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  890. tp->retrans_out -= tcp_skb_pcount(skb);
  891. tcp_skb_mark_lost_uncond_verify(tp, skb);
  892. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  893. } else {
  894. if (before(ack_seq, new_low_seq))
  895. new_low_seq = ack_seq;
  896. cnt += tcp_skb_pcount(skb);
  897. }
  898. }
  899. if (tp->retrans_out)
  900. tp->lost_retrans_low = new_low_seq;
  901. }
  902. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  903. struct tcp_sack_block_wire *sp, int num_sacks,
  904. u32 prior_snd_una)
  905. {
  906. struct tcp_sock *tp = tcp_sk(sk);
  907. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  908. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  909. bool dup_sack = false;
  910. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  911. dup_sack = true;
  912. tcp_dsack_seen(tp);
  913. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  914. } else if (num_sacks > 1) {
  915. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  916. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  917. if (!after(end_seq_0, end_seq_1) &&
  918. !before(start_seq_0, start_seq_1)) {
  919. dup_sack = true;
  920. tcp_dsack_seen(tp);
  921. NET_INC_STATS_BH(sock_net(sk),
  922. LINUX_MIB_TCPDSACKOFORECV);
  923. }
  924. }
  925. /* D-SACK for already forgotten data... Do dumb counting. */
  926. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  927. !after(end_seq_0, prior_snd_una) &&
  928. after(end_seq_0, tp->undo_marker))
  929. tp->undo_retrans--;
  930. return dup_sack;
  931. }
  932. struct tcp_sacktag_state {
  933. int reord;
  934. int fack_count;
  935. int flag;
  936. };
  937. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  938. * the incoming SACK may not exactly match but we can find smaller MSS
  939. * aligned portion of it that matches. Therefore we might need to fragment
  940. * which may fail and creates some hassle (caller must handle error case
  941. * returns).
  942. *
  943. * FIXME: this could be merged to shift decision code
  944. */
  945. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  946. u32 start_seq, u32 end_seq)
  947. {
  948. int err;
  949. bool in_sack;
  950. unsigned int pkt_len;
  951. unsigned int mss;
  952. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  953. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  954. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  955. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  956. mss = tcp_skb_mss(skb);
  957. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  958. if (!in_sack) {
  959. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  960. if (pkt_len < mss)
  961. pkt_len = mss;
  962. } else {
  963. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  964. if (pkt_len < mss)
  965. return -EINVAL;
  966. }
  967. /* Round if necessary so that SACKs cover only full MSSes
  968. * and/or the remaining small portion (if present)
  969. */
  970. if (pkt_len > mss) {
  971. unsigned int new_len = (pkt_len / mss) * mss;
  972. if (!in_sack && new_len < pkt_len) {
  973. new_len += mss;
  974. if (new_len > skb->len)
  975. return 0;
  976. }
  977. pkt_len = new_len;
  978. }
  979. err = tcp_fragment(sk, skb, pkt_len, mss);
  980. if (err < 0)
  981. return err;
  982. }
  983. return in_sack;
  984. }
  985. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  986. static u8 tcp_sacktag_one(struct sock *sk,
  987. struct tcp_sacktag_state *state, u8 sacked,
  988. u32 start_seq, u32 end_seq,
  989. bool dup_sack, int pcount)
  990. {
  991. struct tcp_sock *tp = tcp_sk(sk);
  992. int fack_count = state->fack_count;
  993. /* Account D-SACK for retransmitted packet. */
  994. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  995. if (tp->undo_marker && tp->undo_retrans &&
  996. after(end_seq, tp->undo_marker))
  997. tp->undo_retrans--;
  998. if (sacked & TCPCB_SACKED_ACKED)
  999. state->reord = min(fack_count, state->reord);
  1000. }
  1001. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1002. if (!after(end_seq, tp->snd_una))
  1003. return sacked;
  1004. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1005. if (sacked & TCPCB_SACKED_RETRANS) {
  1006. /* If the segment is not tagged as lost,
  1007. * we do not clear RETRANS, believing
  1008. * that retransmission is still in flight.
  1009. */
  1010. if (sacked & TCPCB_LOST) {
  1011. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1012. tp->lost_out -= pcount;
  1013. tp->retrans_out -= pcount;
  1014. }
  1015. } else {
  1016. if (!(sacked & TCPCB_RETRANS)) {
  1017. /* New sack for not retransmitted frame,
  1018. * which was in hole. It is reordering.
  1019. */
  1020. if (before(start_seq,
  1021. tcp_highest_sack_seq(tp)))
  1022. state->reord = min(fack_count,
  1023. state->reord);
  1024. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1025. if (!after(end_seq, tp->frto_highmark))
  1026. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1027. }
  1028. if (sacked & TCPCB_LOST) {
  1029. sacked &= ~TCPCB_LOST;
  1030. tp->lost_out -= pcount;
  1031. }
  1032. }
  1033. sacked |= TCPCB_SACKED_ACKED;
  1034. state->flag |= FLAG_DATA_SACKED;
  1035. tp->sacked_out += pcount;
  1036. fack_count += pcount;
  1037. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1038. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1039. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1040. tp->lost_cnt_hint += pcount;
  1041. if (fack_count > tp->fackets_out)
  1042. tp->fackets_out = fack_count;
  1043. }
  1044. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1045. * frames and clear it. undo_retrans is decreased above, L|R frames
  1046. * are accounted above as well.
  1047. */
  1048. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1049. sacked &= ~TCPCB_SACKED_RETRANS;
  1050. tp->retrans_out -= pcount;
  1051. }
  1052. return sacked;
  1053. }
  1054. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1055. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1056. */
  1057. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1058. struct tcp_sacktag_state *state,
  1059. unsigned int pcount, int shifted, int mss,
  1060. bool dup_sack)
  1061. {
  1062. struct tcp_sock *tp = tcp_sk(sk);
  1063. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1064. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1065. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1066. BUG_ON(!pcount);
  1067. /* Adjust counters and hints for the newly sacked sequence
  1068. * range but discard the return value since prev is already
  1069. * marked. We must tag the range first because the seq
  1070. * advancement below implicitly advances
  1071. * tcp_highest_sack_seq() when skb is highest_sack.
  1072. */
  1073. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1074. start_seq, end_seq, dup_sack, pcount);
  1075. if (skb == tp->lost_skb_hint)
  1076. tp->lost_cnt_hint += pcount;
  1077. TCP_SKB_CB(prev)->end_seq += shifted;
  1078. TCP_SKB_CB(skb)->seq += shifted;
  1079. skb_shinfo(prev)->gso_segs += pcount;
  1080. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1081. skb_shinfo(skb)->gso_segs -= pcount;
  1082. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1083. * in theory this shouldn't be necessary but as long as DSACK
  1084. * code can come after this skb later on it's better to keep
  1085. * setting gso_size to something.
  1086. */
  1087. if (!skb_shinfo(prev)->gso_size) {
  1088. skb_shinfo(prev)->gso_size = mss;
  1089. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1090. }
  1091. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1092. if (skb_shinfo(skb)->gso_segs <= 1) {
  1093. skb_shinfo(skb)->gso_size = 0;
  1094. skb_shinfo(skb)->gso_type = 0;
  1095. }
  1096. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1097. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1098. if (skb->len > 0) {
  1099. BUG_ON(!tcp_skb_pcount(skb));
  1100. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1101. return false;
  1102. }
  1103. /* Whole SKB was eaten :-) */
  1104. if (skb == tp->retransmit_skb_hint)
  1105. tp->retransmit_skb_hint = prev;
  1106. if (skb == tp->scoreboard_skb_hint)
  1107. tp->scoreboard_skb_hint = prev;
  1108. if (skb == tp->lost_skb_hint) {
  1109. tp->lost_skb_hint = prev;
  1110. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1111. }
  1112. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1113. if (skb == tcp_highest_sack(sk))
  1114. tcp_advance_highest_sack(sk, skb);
  1115. tcp_unlink_write_queue(skb, sk);
  1116. sk_wmem_free_skb(sk, skb);
  1117. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1118. return true;
  1119. }
  1120. /* I wish gso_size would have a bit more sane initialization than
  1121. * something-or-zero which complicates things
  1122. */
  1123. static int tcp_skb_seglen(const struct sk_buff *skb)
  1124. {
  1125. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1126. }
  1127. /* Shifting pages past head area doesn't work */
  1128. static int skb_can_shift(const struct sk_buff *skb)
  1129. {
  1130. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1131. }
  1132. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1133. * skb.
  1134. */
  1135. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1136. struct tcp_sacktag_state *state,
  1137. u32 start_seq, u32 end_seq,
  1138. bool dup_sack)
  1139. {
  1140. struct tcp_sock *tp = tcp_sk(sk);
  1141. struct sk_buff *prev;
  1142. int mss;
  1143. int pcount = 0;
  1144. int len;
  1145. int in_sack;
  1146. if (!sk_can_gso(sk))
  1147. goto fallback;
  1148. /* Normally R but no L won't result in plain S */
  1149. if (!dup_sack &&
  1150. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1151. goto fallback;
  1152. if (!skb_can_shift(skb))
  1153. goto fallback;
  1154. /* This frame is about to be dropped (was ACKed). */
  1155. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1156. goto fallback;
  1157. /* Can only happen with delayed DSACK + discard craziness */
  1158. if (unlikely(skb == tcp_write_queue_head(sk)))
  1159. goto fallback;
  1160. prev = tcp_write_queue_prev(sk, skb);
  1161. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1162. goto fallback;
  1163. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1164. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1165. if (in_sack) {
  1166. len = skb->len;
  1167. pcount = tcp_skb_pcount(skb);
  1168. mss = tcp_skb_seglen(skb);
  1169. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1170. * drop this restriction as unnecessary
  1171. */
  1172. if (mss != tcp_skb_seglen(prev))
  1173. goto fallback;
  1174. } else {
  1175. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1176. goto noop;
  1177. /* CHECKME: This is non-MSS split case only?, this will
  1178. * cause skipped skbs due to advancing loop btw, original
  1179. * has that feature too
  1180. */
  1181. if (tcp_skb_pcount(skb) <= 1)
  1182. goto noop;
  1183. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1184. if (!in_sack) {
  1185. /* TODO: head merge to next could be attempted here
  1186. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1187. * though it might not be worth of the additional hassle
  1188. *
  1189. * ...we can probably just fallback to what was done
  1190. * previously. We could try merging non-SACKed ones
  1191. * as well but it probably isn't going to buy off
  1192. * because later SACKs might again split them, and
  1193. * it would make skb timestamp tracking considerably
  1194. * harder problem.
  1195. */
  1196. goto fallback;
  1197. }
  1198. len = end_seq - TCP_SKB_CB(skb)->seq;
  1199. BUG_ON(len < 0);
  1200. BUG_ON(len > skb->len);
  1201. /* MSS boundaries should be honoured or else pcount will
  1202. * severely break even though it makes things bit trickier.
  1203. * Optimize common case to avoid most of the divides
  1204. */
  1205. mss = tcp_skb_mss(skb);
  1206. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1207. * drop this restriction as unnecessary
  1208. */
  1209. if (mss != tcp_skb_seglen(prev))
  1210. goto fallback;
  1211. if (len == mss) {
  1212. pcount = 1;
  1213. } else if (len < mss) {
  1214. goto noop;
  1215. } else {
  1216. pcount = len / mss;
  1217. len = pcount * mss;
  1218. }
  1219. }
  1220. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1221. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1222. goto fallback;
  1223. if (!skb_shift(prev, skb, len))
  1224. goto fallback;
  1225. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1226. goto out;
  1227. /* Hole filled allows collapsing with the next as well, this is very
  1228. * useful when hole on every nth skb pattern happens
  1229. */
  1230. if (prev == tcp_write_queue_tail(sk))
  1231. goto out;
  1232. skb = tcp_write_queue_next(sk, prev);
  1233. if (!skb_can_shift(skb) ||
  1234. (skb == tcp_send_head(sk)) ||
  1235. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1236. (mss != tcp_skb_seglen(skb)))
  1237. goto out;
  1238. len = skb->len;
  1239. if (skb_shift(prev, skb, len)) {
  1240. pcount += tcp_skb_pcount(skb);
  1241. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1242. }
  1243. out:
  1244. state->fack_count += pcount;
  1245. return prev;
  1246. noop:
  1247. return skb;
  1248. fallback:
  1249. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1250. return NULL;
  1251. }
  1252. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1253. struct tcp_sack_block *next_dup,
  1254. struct tcp_sacktag_state *state,
  1255. u32 start_seq, u32 end_seq,
  1256. bool dup_sack_in)
  1257. {
  1258. struct tcp_sock *tp = tcp_sk(sk);
  1259. struct sk_buff *tmp;
  1260. tcp_for_write_queue_from(skb, sk) {
  1261. int in_sack = 0;
  1262. bool dup_sack = dup_sack_in;
  1263. if (skb == tcp_send_head(sk))
  1264. break;
  1265. /* queue is in-order => we can short-circuit the walk early */
  1266. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1267. break;
  1268. if ((next_dup != NULL) &&
  1269. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1270. in_sack = tcp_match_skb_to_sack(sk, skb,
  1271. next_dup->start_seq,
  1272. next_dup->end_seq);
  1273. if (in_sack > 0)
  1274. dup_sack = true;
  1275. }
  1276. /* skb reference here is a bit tricky to get right, since
  1277. * shifting can eat and free both this skb and the next,
  1278. * so not even _safe variant of the loop is enough.
  1279. */
  1280. if (in_sack <= 0) {
  1281. tmp = tcp_shift_skb_data(sk, skb, state,
  1282. start_seq, end_seq, dup_sack);
  1283. if (tmp != NULL) {
  1284. if (tmp != skb) {
  1285. skb = tmp;
  1286. continue;
  1287. }
  1288. in_sack = 0;
  1289. } else {
  1290. in_sack = tcp_match_skb_to_sack(sk, skb,
  1291. start_seq,
  1292. end_seq);
  1293. }
  1294. }
  1295. if (unlikely(in_sack < 0))
  1296. break;
  1297. if (in_sack) {
  1298. TCP_SKB_CB(skb)->sacked =
  1299. tcp_sacktag_one(sk,
  1300. state,
  1301. TCP_SKB_CB(skb)->sacked,
  1302. TCP_SKB_CB(skb)->seq,
  1303. TCP_SKB_CB(skb)->end_seq,
  1304. dup_sack,
  1305. tcp_skb_pcount(skb));
  1306. if (!before(TCP_SKB_CB(skb)->seq,
  1307. tcp_highest_sack_seq(tp)))
  1308. tcp_advance_highest_sack(sk, skb);
  1309. }
  1310. state->fack_count += tcp_skb_pcount(skb);
  1311. }
  1312. return skb;
  1313. }
  1314. /* Avoid all extra work that is being done by sacktag while walking in
  1315. * a normal way
  1316. */
  1317. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1318. struct tcp_sacktag_state *state,
  1319. u32 skip_to_seq)
  1320. {
  1321. tcp_for_write_queue_from(skb, sk) {
  1322. if (skb == tcp_send_head(sk))
  1323. break;
  1324. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1325. break;
  1326. state->fack_count += tcp_skb_pcount(skb);
  1327. }
  1328. return skb;
  1329. }
  1330. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1331. struct sock *sk,
  1332. struct tcp_sack_block *next_dup,
  1333. struct tcp_sacktag_state *state,
  1334. u32 skip_to_seq)
  1335. {
  1336. if (next_dup == NULL)
  1337. return skb;
  1338. if (before(next_dup->start_seq, skip_to_seq)) {
  1339. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1340. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1341. next_dup->start_seq, next_dup->end_seq,
  1342. 1);
  1343. }
  1344. return skb;
  1345. }
  1346. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1347. {
  1348. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1349. }
  1350. static int
  1351. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1352. u32 prior_snd_una)
  1353. {
  1354. const struct inet_connection_sock *icsk = inet_csk(sk);
  1355. struct tcp_sock *tp = tcp_sk(sk);
  1356. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1357. TCP_SKB_CB(ack_skb)->sacked);
  1358. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1359. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1360. struct tcp_sack_block *cache;
  1361. struct tcp_sacktag_state state;
  1362. struct sk_buff *skb;
  1363. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1364. int used_sacks;
  1365. bool found_dup_sack = false;
  1366. int i, j;
  1367. int first_sack_index;
  1368. state.flag = 0;
  1369. state.reord = tp->packets_out;
  1370. if (!tp->sacked_out) {
  1371. if (WARN_ON(tp->fackets_out))
  1372. tp->fackets_out = 0;
  1373. tcp_highest_sack_reset(sk);
  1374. }
  1375. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1376. num_sacks, prior_snd_una);
  1377. if (found_dup_sack)
  1378. state.flag |= FLAG_DSACKING_ACK;
  1379. /* Eliminate too old ACKs, but take into
  1380. * account more or less fresh ones, they can
  1381. * contain valid SACK info.
  1382. */
  1383. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1384. return 0;
  1385. if (!tp->packets_out)
  1386. goto out;
  1387. used_sacks = 0;
  1388. first_sack_index = 0;
  1389. for (i = 0; i < num_sacks; i++) {
  1390. bool dup_sack = !i && found_dup_sack;
  1391. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1392. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1393. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1394. sp[used_sacks].start_seq,
  1395. sp[used_sacks].end_seq)) {
  1396. int mib_idx;
  1397. if (dup_sack) {
  1398. if (!tp->undo_marker)
  1399. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1400. else
  1401. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1402. } else {
  1403. /* Don't count olds caused by ACK reordering */
  1404. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1405. !after(sp[used_sacks].end_seq, tp->snd_una))
  1406. continue;
  1407. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1408. }
  1409. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1410. if (i == 0)
  1411. first_sack_index = -1;
  1412. continue;
  1413. }
  1414. /* Ignore very old stuff early */
  1415. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1416. continue;
  1417. used_sacks++;
  1418. }
  1419. /* order SACK blocks to allow in order walk of the retrans queue */
  1420. for (i = used_sacks - 1; i > 0; i--) {
  1421. for (j = 0; j < i; j++) {
  1422. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1423. swap(sp[j], sp[j + 1]);
  1424. /* Track where the first SACK block goes to */
  1425. if (j == first_sack_index)
  1426. first_sack_index = j + 1;
  1427. }
  1428. }
  1429. }
  1430. skb = tcp_write_queue_head(sk);
  1431. state.fack_count = 0;
  1432. i = 0;
  1433. if (!tp->sacked_out) {
  1434. /* It's already past, so skip checking against it */
  1435. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1436. } else {
  1437. cache = tp->recv_sack_cache;
  1438. /* Skip empty blocks in at head of the cache */
  1439. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1440. !cache->end_seq)
  1441. cache++;
  1442. }
  1443. while (i < used_sacks) {
  1444. u32 start_seq = sp[i].start_seq;
  1445. u32 end_seq = sp[i].end_seq;
  1446. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1447. struct tcp_sack_block *next_dup = NULL;
  1448. if (found_dup_sack && ((i + 1) == first_sack_index))
  1449. next_dup = &sp[i + 1];
  1450. /* Skip too early cached blocks */
  1451. while (tcp_sack_cache_ok(tp, cache) &&
  1452. !before(start_seq, cache->end_seq))
  1453. cache++;
  1454. /* Can skip some work by looking recv_sack_cache? */
  1455. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1456. after(end_seq, cache->start_seq)) {
  1457. /* Head todo? */
  1458. if (before(start_seq, cache->start_seq)) {
  1459. skb = tcp_sacktag_skip(skb, sk, &state,
  1460. start_seq);
  1461. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1462. &state,
  1463. start_seq,
  1464. cache->start_seq,
  1465. dup_sack);
  1466. }
  1467. /* Rest of the block already fully processed? */
  1468. if (!after(end_seq, cache->end_seq))
  1469. goto advance_sp;
  1470. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1471. &state,
  1472. cache->end_seq);
  1473. /* ...tail remains todo... */
  1474. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1475. /* ...but better entrypoint exists! */
  1476. skb = tcp_highest_sack(sk);
  1477. if (skb == NULL)
  1478. break;
  1479. state.fack_count = tp->fackets_out;
  1480. cache++;
  1481. goto walk;
  1482. }
  1483. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1484. /* Check overlap against next cached too (past this one already) */
  1485. cache++;
  1486. continue;
  1487. }
  1488. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1489. skb = tcp_highest_sack(sk);
  1490. if (skb == NULL)
  1491. break;
  1492. state.fack_count = tp->fackets_out;
  1493. }
  1494. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1495. walk:
  1496. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1497. start_seq, end_seq, dup_sack);
  1498. advance_sp:
  1499. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1500. * due to in-order walk
  1501. */
  1502. if (after(end_seq, tp->frto_highmark))
  1503. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1504. i++;
  1505. }
  1506. /* Clear the head of the cache sack blocks so we can skip it next time */
  1507. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1508. tp->recv_sack_cache[i].start_seq = 0;
  1509. tp->recv_sack_cache[i].end_seq = 0;
  1510. }
  1511. for (j = 0; j < used_sacks; j++)
  1512. tp->recv_sack_cache[i++] = sp[j];
  1513. tcp_mark_lost_retrans(sk);
  1514. tcp_verify_left_out(tp);
  1515. if ((state.reord < tp->fackets_out) &&
  1516. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1517. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1518. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1519. out:
  1520. #if FASTRETRANS_DEBUG > 0
  1521. WARN_ON((int)tp->sacked_out < 0);
  1522. WARN_ON((int)tp->lost_out < 0);
  1523. WARN_ON((int)tp->retrans_out < 0);
  1524. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1525. #endif
  1526. return state.flag;
  1527. }
  1528. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1529. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1530. */
  1531. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1532. {
  1533. u32 holes;
  1534. holes = max(tp->lost_out, 1U);
  1535. holes = min(holes, tp->packets_out);
  1536. if ((tp->sacked_out + holes) > tp->packets_out) {
  1537. tp->sacked_out = tp->packets_out - holes;
  1538. return true;
  1539. }
  1540. return false;
  1541. }
  1542. /* If we receive more dupacks than we expected counting segments
  1543. * in assumption of absent reordering, interpret this as reordering.
  1544. * The only another reason could be bug in receiver TCP.
  1545. */
  1546. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1547. {
  1548. struct tcp_sock *tp = tcp_sk(sk);
  1549. if (tcp_limit_reno_sacked(tp))
  1550. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1551. }
  1552. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1553. static void tcp_add_reno_sack(struct sock *sk)
  1554. {
  1555. struct tcp_sock *tp = tcp_sk(sk);
  1556. tp->sacked_out++;
  1557. tcp_check_reno_reordering(sk, 0);
  1558. tcp_verify_left_out(tp);
  1559. }
  1560. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1561. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1562. {
  1563. struct tcp_sock *tp = tcp_sk(sk);
  1564. if (acked > 0) {
  1565. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1566. if (acked - 1 >= tp->sacked_out)
  1567. tp->sacked_out = 0;
  1568. else
  1569. tp->sacked_out -= acked - 1;
  1570. }
  1571. tcp_check_reno_reordering(sk, acked);
  1572. tcp_verify_left_out(tp);
  1573. }
  1574. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1575. {
  1576. tp->sacked_out = 0;
  1577. }
  1578. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1579. {
  1580. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1581. }
  1582. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1583. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1584. */
  1585. bool tcp_use_frto(struct sock *sk)
  1586. {
  1587. const struct tcp_sock *tp = tcp_sk(sk);
  1588. const struct inet_connection_sock *icsk = inet_csk(sk);
  1589. struct sk_buff *skb;
  1590. if (!sysctl_tcp_frto)
  1591. return false;
  1592. /* MTU probe and F-RTO won't really play nicely along currently */
  1593. if (icsk->icsk_mtup.probe_size)
  1594. return false;
  1595. if (tcp_is_sackfrto(tp))
  1596. return true;
  1597. /* Avoid expensive walking of rexmit queue if possible */
  1598. if (tp->retrans_out > 1)
  1599. return false;
  1600. skb = tcp_write_queue_head(sk);
  1601. if (tcp_skb_is_last(sk, skb))
  1602. return true;
  1603. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1604. tcp_for_write_queue_from(skb, sk) {
  1605. if (skb == tcp_send_head(sk))
  1606. break;
  1607. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1608. return false;
  1609. /* Short-circuit when first non-SACKed skb has been checked */
  1610. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1611. break;
  1612. }
  1613. return true;
  1614. }
  1615. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1616. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1617. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1618. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1619. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1620. * bits are handled if the Loss state is really to be entered (in
  1621. * tcp_enter_frto_loss).
  1622. *
  1623. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1624. * does:
  1625. * "Reduce ssthresh if it has not yet been made inside this window."
  1626. */
  1627. void tcp_enter_frto(struct sock *sk)
  1628. {
  1629. const struct inet_connection_sock *icsk = inet_csk(sk);
  1630. struct tcp_sock *tp = tcp_sk(sk);
  1631. struct sk_buff *skb;
  1632. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1633. tp->snd_una == tp->high_seq ||
  1634. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1635. !icsk->icsk_retransmits)) {
  1636. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1637. /* Our state is too optimistic in ssthresh() call because cwnd
  1638. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1639. * recovery has not yet completed. Pattern would be this: RTO,
  1640. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1641. * up here twice).
  1642. * RFC4138 should be more specific on what to do, even though
  1643. * RTO is quite unlikely to occur after the first Cumulative ACK
  1644. * due to back-off and complexity of triggering events ...
  1645. */
  1646. if (tp->frto_counter) {
  1647. u32 stored_cwnd;
  1648. stored_cwnd = tp->snd_cwnd;
  1649. tp->snd_cwnd = 2;
  1650. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1651. tp->snd_cwnd = stored_cwnd;
  1652. } else {
  1653. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1654. }
  1655. /* ... in theory, cong.control module could do "any tricks" in
  1656. * ssthresh(), which means that ca_state, lost bits and lost_out
  1657. * counter would have to be faked before the call occurs. We
  1658. * consider that too expensive, unlikely and hacky, so modules
  1659. * using these in ssthresh() must deal these incompatibility
  1660. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1661. */
  1662. tcp_ca_event(sk, CA_EVENT_FRTO);
  1663. }
  1664. tp->undo_marker = tp->snd_una;
  1665. tp->undo_retrans = 0;
  1666. skb = tcp_write_queue_head(sk);
  1667. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1668. tp->undo_marker = 0;
  1669. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1670. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1671. tp->retrans_out -= tcp_skb_pcount(skb);
  1672. }
  1673. tcp_verify_left_out(tp);
  1674. /* Too bad if TCP was application limited */
  1675. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1676. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1677. * The last condition is necessary at least in tp->frto_counter case.
  1678. */
  1679. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1680. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1681. after(tp->high_seq, tp->snd_una)) {
  1682. tp->frto_highmark = tp->high_seq;
  1683. } else {
  1684. tp->frto_highmark = tp->snd_nxt;
  1685. }
  1686. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1687. tp->high_seq = tp->snd_nxt;
  1688. tp->frto_counter = 1;
  1689. }
  1690. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1691. * which indicates that we should follow the traditional RTO recovery,
  1692. * i.e. mark everything lost and do go-back-N retransmission.
  1693. */
  1694. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1695. {
  1696. struct tcp_sock *tp = tcp_sk(sk);
  1697. struct sk_buff *skb;
  1698. tp->lost_out = 0;
  1699. tp->retrans_out = 0;
  1700. if (tcp_is_reno(tp))
  1701. tcp_reset_reno_sack(tp);
  1702. tcp_for_write_queue(skb, sk) {
  1703. if (skb == tcp_send_head(sk))
  1704. break;
  1705. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1706. /*
  1707. * Count the retransmission made on RTO correctly (only when
  1708. * waiting for the first ACK and did not get it)...
  1709. */
  1710. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1711. /* For some reason this R-bit might get cleared? */
  1712. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1713. tp->retrans_out += tcp_skb_pcount(skb);
  1714. /* ...enter this if branch just for the first segment */
  1715. flag |= FLAG_DATA_ACKED;
  1716. } else {
  1717. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1718. tp->undo_marker = 0;
  1719. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1720. }
  1721. /* Marking forward transmissions that were made after RTO lost
  1722. * can cause unnecessary retransmissions in some scenarios,
  1723. * SACK blocks will mitigate that in some but not in all cases.
  1724. * We used to not mark them but it was causing break-ups with
  1725. * receivers that do only in-order receival.
  1726. *
  1727. * TODO: we could detect presence of such receiver and select
  1728. * different behavior per flow.
  1729. */
  1730. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1731. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1732. tp->lost_out += tcp_skb_pcount(skb);
  1733. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1734. }
  1735. }
  1736. tcp_verify_left_out(tp);
  1737. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1738. tp->snd_cwnd_cnt = 0;
  1739. tp->snd_cwnd_stamp = tcp_time_stamp;
  1740. tp->frto_counter = 0;
  1741. tp->reordering = min_t(unsigned int, tp->reordering,
  1742. sysctl_tcp_reordering);
  1743. tcp_set_ca_state(sk, TCP_CA_Loss);
  1744. tp->high_seq = tp->snd_nxt;
  1745. TCP_ECN_queue_cwr(tp);
  1746. tcp_clear_all_retrans_hints(tp);
  1747. }
  1748. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1749. {
  1750. tp->retrans_out = 0;
  1751. tp->lost_out = 0;
  1752. tp->undo_marker = 0;
  1753. tp->undo_retrans = 0;
  1754. }
  1755. void tcp_clear_retrans(struct tcp_sock *tp)
  1756. {
  1757. tcp_clear_retrans_partial(tp);
  1758. tp->fackets_out = 0;
  1759. tp->sacked_out = 0;
  1760. }
  1761. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1762. * and reset tags completely, otherwise preserve SACKs. If receiver
  1763. * dropped its ofo queue, we will know this due to reneging detection.
  1764. */
  1765. void tcp_enter_loss(struct sock *sk, int how)
  1766. {
  1767. const struct inet_connection_sock *icsk = inet_csk(sk);
  1768. struct tcp_sock *tp = tcp_sk(sk);
  1769. struct sk_buff *skb;
  1770. /* Reduce ssthresh if it has not yet been made inside this window. */
  1771. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1772. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1773. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1774. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1775. tcp_ca_event(sk, CA_EVENT_LOSS);
  1776. }
  1777. tp->snd_cwnd = 1;
  1778. tp->snd_cwnd_cnt = 0;
  1779. tp->snd_cwnd_stamp = tcp_time_stamp;
  1780. tcp_clear_retrans_partial(tp);
  1781. if (tcp_is_reno(tp))
  1782. tcp_reset_reno_sack(tp);
  1783. if (!how) {
  1784. /* Push undo marker, if it was plain RTO and nothing
  1785. * was retransmitted. */
  1786. tp->undo_marker = tp->snd_una;
  1787. } else {
  1788. tp->sacked_out = 0;
  1789. tp->fackets_out = 0;
  1790. }
  1791. tcp_clear_all_retrans_hints(tp);
  1792. tcp_for_write_queue(skb, sk) {
  1793. if (skb == tcp_send_head(sk))
  1794. break;
  1795. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1796. tp->undo_marker = 0;
  1797. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1798. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1799. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1800. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1801. tp->lost_out += tcp_skb_pcount(skb);
  1802. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1803. }
  1804. }
  1805. tcp_verify_left_out(tp);
  1806. tp->reordering = min_t(unsigned int, tp->reordering,
  1807. sysctl_tcp_reordering);
  1808. tcp_set_ca_state(sk, TCP_CA_Loss);
  1809. tp->high_seq = tp->snd_nxt;
  1810. TCP_ECN_queue_cwr(tp);
  1811. /* Abort F-RTO algorithm if one is in progress */
  1812. tp->frto_counter = 0;
  1813. }
  1814. /* If ACK arrived pointing to a remembered SACK, it means that our
  1815. * remembered SACKs do not reflect real state of receiver i.e.
  1816. * receiver _host_ is heavily congested (or buggy).
  1817. *
  1818. * Do processing similar to RTO timeout.
  1819. */
  1820. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1821. {
  1822. if (flag & FLAG_SACK_RENEGING) {
  1823. struct inet_connection_sock *icsk = inet_csk(sk);
  1824. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1825. tcp_enter_loss(sk, 1);
  1826. icsk->icsk_retransmits++;
  1827. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1828. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1829. icsk->icsk_rto, TCP_RTO_MAX);
  1830. return true;
  1831. }
  1832. return false;
  1833. }
  1834. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1835. {
  1836. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1837. }
  1838. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1839. * counter when SACK is enabled (without SACK, sacked_out is used for
  1840. * that purpose).
  1841. *
  1842. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1843. * segments up to the highest received SACK block so far and holes in
  1844. * between them.
  1845. *
  1846. * With reordering, holes may still be in flight, so RFC3517 recovery
  1847. * uses pure sacked_out (total number of SACKed segments) even though
  1848. * it violates the RFC that uses duplicate ACKs, often these are equal
  1849. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1850. * they differ. Since neither occurs due to loss, TCP should really
  1851. * ignore them.
  1852. */
  1853. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1854. {
  1855. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1856. }
  1857. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1858. {
  1859. struct tcp_sock *tp = tcp_sk(sk);
  1860. unsigned long delay;
  1861. /* Delay early retransmit and entering fast recovery for
  1862. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1863. * available, or RTO is scheduled to fire first.
  1864. */
  1865. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1866. (flag & FLAG_ECE) || !tp->srtt)
  1867. return false;
  1868. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1869. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1870. return false;
  1871. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1872. TCP_RTO_MAX);
  1873. return true;
  1874. }
  1875. static inline int tcp_skb_timedout(const struct sock *sk,
  1876. const struct sk_buff *skb)
  1877. {
  1878. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1879. }
  1880. static inline int tcp_head_timedout(const struct sock *sk)
  1881. {
  1882. const struct tcp_sock *tp = tcp_sk(sk);
  1883. return tp->packets_out &&
  1884. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1885. }
  1886. /* Linux NewReno/SACK/FACK/ECN state machine.
  1887. * --------------------------------------
  1888. *
  1889. * "Open" Normal state, no dubious events, fast path.
  1890. * "Disorder" In all the respects it is "Open",
  1891. * but requires a bit more attention. It is entered when
  1892. * we see some SACKs or dupacks. It is split of "Open"
  1893. * mainly to move some processing from fast path to slow one.
  1894. * "CWR" CWND was reduced due to some Congestion Notification event.
  1895. * It can be ECN, ICMP source quench, local device congestion.
  1896. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1897. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1898. *
  1899. * tcp_fastretrans_alert() is entered:
  1900. * - each incoming ACK, if state is not "Open"
  1901. * - when arrived ACK is unusual, namely:
  1902. * * SACK
  1903. * * Duplicate ACK.
  1904. * * ECN ECE.
  1905. *
  1906. * Counting packets in flight is pretty simple.
  1907. *
  1908. * in_flight = packets_out - left_out + retrans_out
  1909. *
  1910. * packets_out is SND.NXT-SND.UNA counted in packets.
  1911. *
  1912. * retrans_out is number of retransmitted segments.
  1913. *
  1914. * left_out is number of segments left network, but not ACKed yet.
  1915. *
  1916. * left_out = sacked_out + lost_out
  1917. *
  1918. * sacked_out: Packets, which arrived to receiver out of order
  1919. * and hence not ACKed. With SACKs this number is simply
  1920. * amount of SACKed data. Even without SACKs
  1921. * it is easy to give pretty reliable estimate of this number,
  1922. * counting duplicate ACKs.
  1923. *
  1924. * lost_out: Packets lost by network. TCP has no explicit
  1925. * "loss notification" feedback from network (for now).
  1926. * It means that this number can be only _guessed_.
  1927. * Actually, it is the heuristics to predict lossage that
  1928. * distinguishes different algorithms.
  1929. *
  1930. * F.e. after RTO, when all the queue is considered as lost,
  1931. * lost_out = packets_out and in_flight = retrans_out.
  1932. *
  1933. * Essentially, we have now two algorithms counting
  1934. * lost packets.
  1935. *
  1936. * FACK: It is the simplest heuristics. As soon as we decided
  1937. * that something is lost, we decide that _all_ not SACKed
  1938. * packets until the most forward SACK are lost. I.e.
  1939. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1940. * It is absolutely correct estimate, if network does not reorder
  1941. * packets. And it loses any connection to reality when reordering
  1942. * takes place. We use FACK by default until reordering
  1943. * is suspected on the path to this destination.
  1944. *
  1945. * NewReno: when Recovery is entered, we assume that one segment
  1946. * is lost (classic Reno). While we are in Recovery and
  1947. * a partial ACK arrives, we assume that one more packet
  1948. * is lost (NewReno). This heuristics are the same in NewReno
  1949. * and SACK.
  1950. *
  1951. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1952. * deflation etc. CWND is real congestion window, never inflated, changes
  1953. * only according to classic VJ rules.
  1954. *
  1955. * Really tricky (and requiring careful tuning) part of algorithm
  1956. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1957. * The first determines the moment _when_ we should reduce CWND and,
  1958. * hence, slow down forward transmission. In fact, it determines the moment
  1959. * when we decide that hole is caused by loss, rather than by a reorder.
  1960. *
  1961. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1962. * holes, caused by lost packets.
  1963. *
  1964. * And the most logically complicated part of algorithm is undo
  1965. * heuristics. We detect false retransmits due to both too early
  1966. * fast retransmit (reordering) and underestimated RTO, analyzing
  1967. * timestamps and D-SACKs. When we detect that some segments were
  1968. * retransmitted by mistake and CWND reduction was wrong, we undo
  1969. * window reduction and abort recovery phase. This logic is hidden
  1970. * inside several functions named tcp_try_undo_<something>.
  1971. */
  1972. /* This function decides, when we should leave Disordered state
  1973. * and enter Recovery phase, reducing congestion window.
  1974. *
  1975. * Main question: may we further continue forward transmission
  1976. * with the same cwnd?
  1977. */
  1978. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1979. {
  1980. struct tcp_sock *tp = tcp_sk(sk);
  1981. __u32 packets_out;
  1982. /* Do not perform any recovery during F-RTO algorithm */
  1983. if (tp->frto_counter)
  1984. return false;
  1985. /* Trick#1: The loss is proven. */
  1986. if (tp->lost_out)
  1987. return true;
  1988. /* Not-A-Trick#2 : Classic rule... */
  1989. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1990. return true;
  1991. /* Trick#3 : when we use RFC2988 timer restart, fast
  1992. * retransmit can be triggered by timeout of queue head.
  1993. */
  1994. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1995. return true;
  1996. /* Trick#4: It is still not OK... But will it be useful to delay
  1997. * recovery more?
  1998. */
  1999. packets_out = tp->packets_out;
  2000. if (packets_out <= tp->reordering &&
  2001. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2002. !tcp_may_send_now(sk)) {
  2003. /* We have nothing to send. This connection is limited
  2004. * either by receiver window or by application.
  2005. */
  2006. return true;
  2007. }
  2008. /* If a thin stream is detected, retransmit after first
  2009. * received dupack. Employ only if SACK is supported in order
  2010. * to avoid possible corner-case series of spurious retransmissions
  2011. * Use only if there are no unsent data.
  2012. */
  2013. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2014. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2015. tcp_is_sack(tp) && !tcp_send_head(sk))
  2016. return true;
  2017. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2018. * retransmissions due to small network reorderings, we implement
  2019. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2020. * interval if appropriate.
  2021. */
  2022. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2023. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2024. !tcp_may_send_now(sk))
  2025. return !tcp_pause_early_retransmit(sk, flag);
  2026. return false;
  2027. }
  2028. /* New heuristics: it is possible only after we switched to restart timer
  2029. * each time when something is ACKed. Hence, we can detect timed out packets
  2030. * during fast retransmit without falling to slow start.
  2031. *
  2032. * Usefulness of this as is very questionable, since we should know which of
  2033. * the segments is the next to timeout which is relatively expensive to find
  2034. * in general case unless we add some data structure just for that. The
  2035. * current approach certainly won't find the right one too often and when it
  2036. * finally does find _something_ it usually marks large part of the window
  2037. * right away (because a retransmission with a larger timestamp blocks the
  2038. * loop from advancing). -ij
  2039. */
  2040. static void tcp_timeout_skbs(struct sock *sk)
  2041. {
  2042. struct tcp_sock *tp = tcp_sk(sk);
  2043. struct sk_buff *skb;
  2044. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2045. return;
  2046. skb = tp->scoreboard_skb_hint;
  2047. if (tp->scoreboard_skb_hint == NULL)
  2048. skb = tcp_write_queue_head(sk);
  2049. tcp_for_write_queue_from(skb, sk) {
  2050. if (skb == tcp_send_head(sk))
  2051. break;
  2052. if (!tcp_skb_timedout(sk, skb))
  2053. break;
  2054. tcp_skb_mark_lost(tp, skb);
  2055. }
  2056. tp->scoreboard_skb_hint = skb;
  2057. tcp_verify_left_out(tp);
  2058. }
  2059. /* Detect loss in event "A" above by marking head of queue up as lost.
  2060. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2061. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2062. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2063. * the maximum SACKed segments to pass before reaching this limit.
  2064. */
  2065. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2066. {
  2067. struct tcp_sock *tp = tcp_sk(sk);
  2068. struct sk_buff *skb;
  2069. int cnt, oldcnt;
  2070. int err;
  2071. unsigned int mss;
  2072. /* Use SACK to deduce losses of new sequences sent during recovery */
  2073. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2074. WARN_ON(packets > tp->packets_out);
  2075. if (tp->lost_skb_hint) {
  2076. skb = tp->lost_skb_hint;
  2077. cnt = tp->lost_cnt_hint;
  2078. /* Head already handled? */
  2079. if (mark_head && skb != tcp_write_queue_head(sk))
  2080. return;
  2081. } else {
  2082. skb = tcp_write_queue_head(sk);
  2083. cnt = 0;
  2084. }
  2085. tcp_for_write_queue_from(skb, sk) {
  2086. if (skb == tcp_send_head(sk))
  2087. break;
  2088. /* TODO: do this better */
  2089. /* this is not the most efficient way to do this... */
  2090. tp->lost_skb_hint = skb;
  2091. tp->lost_cnt_hint = cnt;
  2092. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2093. break;
  2094. oldcnt = cnt;
  2095. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2096. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2097. cnt += tcp_skb_pcount(skb);
  2098. if (cnt > packets) {
  2099. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2100. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2101. (oldcnt >= packets))
  2102. break;
  2103. mss = skb_shinfo(skb)->gso_size;
  2104. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2105. if (err < 0)
  2106. break;
  2107. cnt = packets;
  2108. }
  2109. tcp_skb_mark_lost(tp, skb);
  2110. if (mark_head)
  2111. break;
  2112. }
  2113. tcp_verify_left_out(tp);
  2114. }
  2115. /* Account newly detected lost packet(s) */
  2116. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2117. {
  2118. struct tcp_sock *tp = tcp_sk(sk);
  2119. if (tcp_is_reno(tp)) {
  2120. tcp_mark_head_lost(sk, 1, 1);
  2121. } else if (tcp_is_fack(tp)) {
  2122. int lost = tp->fackets_out - tp->reordering;
  2123. if (lost <= 0)
  2124. lost = 1;
  2125. tcp_mark_head_lost(sk, lost, 0);
  2126. } else {
  2127. int sacked_upto = tp->sacked_out - tp->reordering;
  2128. if (sacked_upto >= 0)
  2129. tcp_mark_head_lost(sk, sacked_upto, 0);
  2130. else if (fast_rexmit)
  2131. tcp_mark_head_lost(sk, 1, 1);
  2132. }
  2133. tcp_timeout_skbs(sk);
  2134. }
  2135. /* CWND moderation, preventing bursts due to too big ACKs
  2136. * in dubious situations.
  2137. */
  2138. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2139. {
  2140. tp->snd_cwnd = min(tp->snd_cwnd,
  2141. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2142. tp->snd_cwnd_stamp = tcp_time_stamp;
  2143. }
  2144. /* Nothing was retransmitted or returned timestamp is less
  2145. * than timestamp of the first retransmission.
  2146. */
  2147. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2148. {
  2149. return !tp->retrans_stamp ||
  2150. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2151. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2152. }
  2153. /* Undo procedures. */
  2154. #if FASTRETRANS_DEBUG > 1
  2155. static void DBGUNDO(struct sock *sk, const char *msg)
  2156. {
  2157. struct tcp_sock *tp = tcp_sk(sk);
  2158. struct inet_sock *inet = inet_sk(sk);
  2159. if (sk->sk_family == AF_INET) {
  2160. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2161. msg,
  2162. &inet->inet_daddr, ntohs(inet->inet_dport),
  2163. tp->snd_cwnd, tcp_left_out(tp),
  2164. tp->snd_ssthresh, tp->prior_ssthresh,
  2165. tp->packets_out);
  2166. }
  2167. #if IS_ENABLED(CONFIG_IPV6)
  2168. else if (sk->sk_family == AF_INET6) {
  2169. struct ipv6_pinfo *np = inet6_sk(sk);
  2170. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2171. msg,
  2172. &np->daddr, ntohs(inet->inet_dport),
  2173. tp->snd_cwnd, tcp_left_out(tp),
  2174. tp->snd_ssthresh, tp->prior_ssthresh,
  2175. tp->packets_out);
  2176. }
  2177. #endif
  2178. }
  2179. #else
  2180. #define DBGUNDO(x...) do { } while (0)
  2181. #endif
  2182. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2183. {
  2184. struct tcp_sock *tp = tcp_sk(sk);
  2185. if (tp->prior_ssthresh) {
  2186. const struct inet_connection_sock *icsk = inet_csk(sk);
  2187. if (icsk->icsk_ca_ops->undo_cwnd)
  2188. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2189. else
  2190. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2191. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2192. tp->snd_ssthresh = tp->prior_ssthresh;
  2193. TCP_ECN_withdraw_cwr(tp);
  2194. }
  2195. } else {
  2196. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2197. }
  2198. tp->snd_cwnd_stamp = tcp_time_stamp;
  2199. }
  2200. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2201. {
  2202. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2203. }
  2204. /* People celebrate: "We love our President!" */
  2205. static bool tcp_try_undo_recovery(struct sock *sk)
  2206. {
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. if (tcp_may_undo(tp)) {
  2209. int mib_idx;
  2210. /* Happy end! We did not retransmit anything
  2211. * or our original transmission succeeded.
  2212. */
  2213. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2214. tcp_undo_cwr(sk, true);
  2215. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2216. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2217. else
  2218. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2219. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2220. tp->undo_marker = 0;
  2221. }
  2222. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2223. /* Hold old state until something *above* high_seq
  2224. * is ACKed. For Reno it is MUST to prevent false
  2225. * fast retransmits (RFC2582). SACK TCP is safe. */
  2226. tcp_moderate_cwnd(tp);
  2227. return true;
  2228. }
  2229. tcp_set_ca_state(sk, TCP_CA_Open);
  2230. return false;
  2231. }
  2232. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2233. static void tcp_try_undo_dsack(struct sock *sk)
  2234. {
  2235. struct tcp_sock *tp = tcp_sk(sk);
  2236. if (tp->undo_marker && !tp->undo_retrans) {
  2237. DBGUNDO(sk, "D-SACK");
  2238. tcp_undo_cwr(sk, true);
  2239. tp->undo_marker = 0;
  2240. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2241. }
  2242. }
  2243. /* We can clear retrans_stamp when there are no retransmissions in the
  2244. * window. It would seem that it is trivially available for us in
  2245. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2246. * what will happen if errors occur when sending retransmission for the
  2247. * second time. ...It could the that such segment has only
  2248. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2249. * the head skb is enough except for some reneging corner cases that
  2250. * are not worth the effort.
  2251. *
  2252. * Main reason for all this complexity is the fact that connection dying
  2253. * time now depends on the validity of the retrans_stamp, in particular,
  2254. * that successive retransmissions of a segment must not advance
  2255. * retrans_stamp under any conditions.
  2256. */
  2257. static bool tcp_any_retrans_done(const struct sock *sk)
  2258. {
  2259. const struct tcp_sock *tp = tcp_sk(sk);
  2260. struct sk_buff *skb;
  2261. if (tp->retrans_out)
  2262. return true;
  2263. skb = tcp_write_queue_head(sk);
  2264. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2265. return true;
  2266. return false;
  2267. }
  2268. /* Undo during fast recovery after partial ACK. */
  2269. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2270. {
  2271. struct tcp_sock *tp = tcp_sk(sk);
  2272. /* Partial ACK arrived. Force Hoe's retransmit. */
  2273. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2274. if (tcp_may_undo(tp)) {
  2275. /* Plain luck! Hole if filled with delayed
  2276. * packet, rather than with a retransmit.
  2277. */
  2278. if (!tcp_any_retrans_done(sk))
  2279. tp->retrans_stamp = 0;
  2280. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2281. DBGUNDO(sk, "Hoe");
  2282. tcp_undo_cwr(sk, false);
  2283. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2284. /* So... Do not make Hoe's retransmit yet.
  2285. * If the first packet was delayed, the rest
  2286. * ones are most probably delayed as well.
  2287. */
  2288. failed = 0;
  2289. }
  2290. return failed;
  2291. }
  2292. /* Undo during loss recovery after partial ACK. */
  2293. static bool tcp_try_undo_loss(struct sock *sk)
  2294. {
  2295. struct tcp_sock *tp = tcp_sk(sk);
  2296. if (tcp_may_undo(tp)) {
  2297. struct sk_buff *skb;
  2298. tcp_for_write_queue(skb, sk) {
  2299. if (skb == tcp_send_head(sk))
  2300. break;
  2301. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2302. }
  2303. tcp_clear_all_retrans_hints(tp);
  2304. DBGUNDO(sk, "partial loss");
  2305. tp->lost_out = 0;
  2306. tcp_undo_cwr(sk, true);
  2307. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2308. inet_csk(sk)->icsk_retransmits = 0;
  2309. tp->undo_marker = 0;
  2310. if (tcp_is_sack(tp))
  2311. tcp_set_ca_state(sk, TCP_CA_Open);
  2312. return true;
  2313. }
  2314. return false;
  2315. }
  2316. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2317. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2318. * It computes the number of packets to send (sndcnt) based on packets newly
  2319. * delivered:
  2320. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2321. * cwnd reductions across a full RTT.
  2322. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2323. * losses and/or application stalls), do not perform any further cwnd
  2324. * reductions, but instead slow start up to ssthresh.
  2325. */
  2326. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2327. {
  2328. struct tcp_sock *tp = tcp_sk(sk);
  2329. tp->high_seq = tp->snd_nxt;
  2330. tp->snd_cwnd_cnt = 0;
  2331. tp->prior_cwnd = tp->snd_cwnd;
  2332. tp->prr_delivered = 0;
  2333. tp->prr_out = 0;
  2334. if (set_ssthresh)
  2335. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2336. TCP_ECN_queue_cwr(tp);
  2337. }
  2338. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2339. int fast_rexmit)
  2340. {
  2341. struct tcp_sock *tp = tcp_sk(sk);
  2342. int sndcnt = 0;
  2343. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2344. tp->prr_delivered += newly_acked_sacked;
  2345. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2346. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2347. tp->prior_cwnd - 1;
  2348. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2349. } else {
  2350. sndcnt = min_t(int, delta,
  2351. max_t(int, tp->prr_delivered - tp->prr_out,
  2352. newly_acked_sacked) + 1);
  2353. }
  2354. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2355. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2356. }
  2357. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2358. {
  2359. struct tcp_sock *tp = tcp_sk(sk);
  2360. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2361. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2362. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2363. tp->snd_cwnd = tp->snd_ssthresh;
  2364. tp->snd_cwnd_stamp = tcp_time_stamp;
  2365. }
  2366. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2367. }
  2368. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2369. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2370. {
  2371. struct tcp_sock *tp = tcp_sk(sk);
  2372. tp->prior_ssthresh = 0;
  2373. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2374. tp->undo_marker = 0;
  2375. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2376. tcp_set_ca_state(sk, TCP_CA_CWR);
  2377. }
  2378. }
  2379. static void tcp_try_keep_open(struct sock *sk)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. int state = TCP_CA_Open;
  2383. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2384. state = TCP_CA_Disorder;
  2385. if (inet_csk(sk)->icsk_ca_state != state) {
  2386. tcp_set_ca_state(sk, state);
  2387. tp->high_seq = tp->snd_nxt;
  2388. }
  2389. }
  2390. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2391. {
  2392. struct tcp_sock *tp = tcp_sk(sk);
  2393. tcp_verify_left_out(tp);
  2394. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2395. tp->retrans_stamp = 0;
  2396. if (flag & FLAG_ECE)
  2397. tcp_enter_cwr(sk, 1);
  2398. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2399. tcp_try_keep_open(sk);
  2400. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2401. tcp_moderate_cwnd(tp);
  2402. } else {
  2403. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2404. }
  2405. }
  2406. static void tcp_mtup_probe_failed(struct sock *sk)
  2407. {
  2408. struct inet_connection_sock *icsk = inet_csk(sk);
  2409. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2410. icsk->icsk_mtup.probe_size = 0;
  2411. }
  2412. static void tcp_mtup_probe_success(struct sock *sk)
  2413. {
  2414. struct tcp_sock *tp = tcp_sk(sk);
  2415. struct inet_connection_sock *icsk = inet_csk(sk);
  2416. /* FIXME: breaks with very large cwnd */
  2417. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2418. tp->snd_cwnd = tp->snd_cwnd *
  2419. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2420. icsk->icsk_mtup.probe_size;
  2421. tp->snd_cwnd_cnt = 0;
  2422. tp->snd_cwnd_stamp = tcp_time_stamp;
  2423. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2424. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2425. icsk->icsk_mtup.probe_size = 0;
  2426. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2427. }
  2428. /* Do a simple retransmit without using the backoff mechanisms in
  2429. * tcp_timer. This is used for path mtu discovery.
  2430. * The socket is already locked here.
  2431. */
  2432. void tcp_simple_retransmit(struct sock *sk)
  2433. {
  2434. const struct inet_connection_sock *icsk = inet_csk(sk);
  2435. struct tcp_sock *tp = tcp_sk(sk);
  2436. struct sk_buff *skb;
  2437. unsigned int mss = tcp_current_mss(sk);
  2438. u32 prior_lost = tp->lost_out;
  2439. tcp_for_write_queue(skb, sk) {
  2440. if (skb == tcp_send_head(sk))
  2441. break;
  2442. if (tcp_skb_seglen(skb) > mss &&
  2443. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2444. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2445. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2446. tp->retrans_out -= tcp_skb_pcount(skb);
  2447. }
  2448. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2449. }
  2450. }
  2451. tcp_clear_retrans_hints_partial(tp);
  2452. if (prior_lost == tp->lost_out)
  2453. return;
  2454. if (tcp_is_reno(tp))
  2455. tcp_limit_reno_sacked(tp);
  2456. tcp_verify_left_out(tp);
  2457. /* Don't muck with the congestion window here.
  2458. * Reason is that we do not increase amount of _data_
  2459. * in network, but units changed and effective
  2460. * cwnd/ssthresh really reduced now.
  2461. */
  2462. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2463. tp->high_seq = tp->snd_nxt;
  2464. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2465. tp->prior_ssthresh = 0;
  2466. tp->undo_marker = 0;
  2467. tcp_set_ca_state(sk, TCP_CA_Loss);
  2468. }
  2469. tcp_xmit_retransmit_queue(sk);
  2470. }
  2471. EXPORT_SYMBOL(tcp_simple_retransmit);
  2472. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2473. {
  2474. struct tcp_sock *tp = tcp_sk(sk);
  2475. int mib_idx;
  2476. if (tcp_is_reno(tp))
  2477. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2478. else
  2479. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2480. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2481. tp->prior_ssthresh = 0;
  2482. tp->undo_marker = tp->snd_una;
  2483. tp->undo_retrans = tp->retrans_out;
  2484. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2485. if (!ece_ack)
  2486. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2487. tcp_init_cwnd_reduction(sk, true);
  2488. }
  2489. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2490. }
  2491. /* Process an event, which can update packets-in-flight not trivially.
  2492. * Main goal of this function is to calculate new estimate for left_out,
  2493. * taking into account both packets sitting in receiver's buffer and
  2494. * packets lost by network.
  2495. *
  2496. * Besides that it does CWND reduction, when packet loss is detected
  2497. * and changes state of machine.
  2498. *
  2499. * It does _not_ decide what to send, it is made in function
  2500. * tcp_xmit_retransmit_queue().
  2501. */
  2502. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2503. int prior_sacked, bool is_dupack,
  2504. int flag)
  2505. {
  2506. struct inet_connection_sock *icsk = inet_csk(sk);
  2507. struct tcp_sock *tp = tcp_sk(sk);
  2508. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2509. (tcp_fackets_out(tp) > tp->reordering));
  2510. int newly_acked_sacked = 0;
  2511. int fast_rexmit = 0;
  2512. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2513. tp->sacked_out = 0;
  2514. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2515. tp->fackets_out = 0;
  2516. /* Now state machine starts.
  2517. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2518. if (flag & FLAG_ECE)
  2519. tp->prior_ssthresh = 0;
  2520. /* B. In all the states check for reneging SACKs. */
  2521. if (tcp_check_sack_reneging(sk, flag))
  2522. return;
  2523. /* C. Check consistency of the current state. */
  2524. tcp_verify_left_out(tp);
  2525. /* D. Check state exit conditions. State can be terminated
  2526. * when high_seq is ACKed. */
  2527. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2528. WARN_ON(tp->retrans_out != 0);
  2529. tp->retrans_stamp = 0;
  2530. } else if (!before(tp->snd_una, tp->high_seq)) {
  2531. switch (icsk->icsk_ca_state) {
  2532. case TCP_CA_Loss:
  2533. icsk->icsk_retransmits = 0;
  2534. if (tcp_try_undo_recovery(sk))
  2535. return;
  2536. break;
  2537. case TCP_CA_CWR:
  2538. /* CWR is to be held something *above* high_seq
  2539. * is ACKed for CWR bit to reach receiver. */
  2540. if (tp->snd_una != tp->high_seq) {
  2541. tcp_end_cwnd_reduction(sk);
  2542. tcp_set_ca_state(sk, TCP_CA_Open);
  2543. }
  2544. break;
  2545. case TCP_CA_Recovery:
  2546. if (tcp_is_reno(tp))
  2547. tcp_reset_reno_sack(tp);
  2548. if (tcp_try_undo_recovery(sk))
  2549. return;
  2550. tcp_end_cwnd_reduction(sk);
  2551. break;
  2552. }
  2553. }
  2554. /* E. Process state. */
  2555. switch (icsk->icsk_ca_state) {
  2556. case TCP_CA_Recovery:
  2557. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2558. if (tcp_is_reno(tp) && is_dupack)
  2559. tcp_add_reno_sack(sk);
  2560. } else
  2561. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2562. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2563. break;
  2564. case TCP_CA_Loss:
  2565. if (flag & FLAG_DATA_ACKED)
  2566. icsk->icsk_retransmits = 0;
  2567. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2568. tcp_reset_reno_sack(tp);
  2569. if (!tcp_try_undo_loss(sk)) {
  2570. tcp_moderate_cwnd(tp);
  2571. tcp_xmit_retransmit_queue(sk);
  2572. return;
  2573. }
  2574. if (icsk->icsk_ca_state != TCP_CA_Open)
  2575. return;
  2576. /* Loss is undone; fall through to processing in Open state. */
  2577. default:
  2578. if (tcp_is_reno(tp)) {
  2579. if (flag & FLAG_SND_UNA_ADVANCED)
  2580. tcp_reset_reno_sack(tp);
  2581. if (is_dupack)
  2582. tcp_add_reno_sack(sk);
  2583. }
  2584. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2585. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2586. tcp_try_undo_dsack(sk);
  2587. if (!tcp_time_to_recover(sk, flag)) {
  2588. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2589. return;
  2590. }
  2591. /* MTU probe failure: don't reduce cwnd */
  2592. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2593. icsk->icsk_mtup.probe_size &&
  2594. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2595. tcp_mtup_probe_failed(sk);
  2596. /* Restores the reduction we did in tcp_mtup_probe() */
  2597. tp->snd_cwnd++;
  2598. tcp_simple_retransmit(sk);
  2599. return;
  2600. }
  2601. /* Otherwise enter Recovery state */
  2602. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2603. fast_rexmit = 1;
  2604. }
  2605. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2606. tcp_update_scoreboard(sk, fast_rexmit);
  2607. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2608. tcp_xmit_retransmit_queue(sk);
  2609. }
  2610. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2611. {
  2612. tcp_rtt_estimator(sk, seq_rtt);
  2613. tcp_set_rto(sk);
  2614. inet_csk(sk)->icsk_backoff = 0;
  2615. }
  2616. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2617. /* Read draft-ietf-tcplw-high-performance before mucking
  2618. * with this code. (Supersedes RFC1323)
  2619. */
  2620. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2621. {
  2622. /* RTTM Rule: A TSecr value received in a segment is used to
  2623. * update the averaged RTT measurement only if the segment
  2624. * acknowledges some new data, i.e., only if it advances the
  2625. * left edge of the send window.
  2626. *
  2627. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2628. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2629. *
  2630. * Changed: reset backoff as soon as we see the first valid sample.
  2631. * If we do not, we get strongly overestimated rto. With timestamps
  2632. * samples are accepted even from very old segments: f.e., when rtt=1
  2633. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2634. * answer arrives rto becomes 120 seconds! If at least one of segments
  2635. * in window is lost... Voila. --ANK (010210)
  2636. */
  2637. struct tcp_sock *tp = tcp_sk(sk);
  2638. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2639. }
  2640. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2641. {
  2642. /* We don't have a timestamp. Can only use
  2643. * packets that are not retransmitted to determine
  2644. * rtt estimates. Also, we must not reset the
  2645. * backoff for rto until we get a non-retransmitted
  2646. * packet. This allows us to deal with a situation
  2647. * where the network delay has increased suddenly.
  2648. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2649. */
  2650. if (flag & FLAG_RETRANS_DATA_ACKED)
  2651. return;
  2652. tcp_valid_rtt_meas(sk, seq_rtt);
  2653. }
  2654. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2655. const s32 seq_rtt)
  2656. {
  2657. const struct tcp_sock *tp = tcp_sk(sk);
  2658. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2659. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2660. tcp_ack_saw_tstamp(sk, flag);
  2661. else if (seq_rtt >= 0)
  2662. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2663. }
  2664. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2665. {
  2666. const struct inet_connection_sock *icsk = inet_csk(sk);
  2667. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2668. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2669. }
  2670. /* Restart timer after forward progress on connection.
  2671. * RFC2988 recommends to restart timer to now+rto.
  2672. */
  2673. void tcp_rearm_rto(struct sock *sk)
  2674. {
  2675. const struct inet_connection_sock *icsk = inet_csk(sk);
  2676. struct tcp_sock *tp = tcp_sk(sk);
  2677. /* If the retrans timer is currently being used by Fast Open
  2678. * for SYN-ACK retrans purpose, stay put.
  2679. */
  2680. if (tp->fastopen_rsk)
  2681. return;
  2682. if (!tp->packets_out) {
  2683. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2684. } else {
  2685. u32 rto = inet_csk(sk)->icsk_rto;
  2686. /* Offset the time elapsed after installing regular RTO */
  2687. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2688. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2689. struct sk_buff *skb = tcp_write_queue_head(sk);
  2690. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2691. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2692. /* delta may not be positive if the socket is locked
  2693. * when the retrans timer fires and is rescheduled.
  2694. */
  2695. if (delta > 0)
  2696. rto = delta;
  2697. }
  2698. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2699. TCP_RTO_MAX);
  2700. }
  2701. }
  2702. /* This function is called when the delayed ER timer fires. TCP enters
  2703. * fast recovery and performs fast-retransmit.
  2704. */
  2705. void tcp_resume_early_retransmit(struct sock *sk)
  2706. {
  2707. struct tcp_sock *tp = tcp_sk(sk);
  2708. tcp_rearm_rto(sk);
  2709. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2710. if (!tp->do_early_retrans)
  2711. return;
  2712. tcp_enter_recovery(sk, false);
  2713. tcp_update_scoreboard(sk, 1);
  2714. tcp_xmit_retransmit_queue(sk);
  2715. }
  2716. /* If we get here, the whole TSO packet has not been acked. */
  2717. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2718. {
  2719. struct tcp_sock *tp = tcp_sk(sk);
  2720. u32 packets_acked;
  2721. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2722. packets_acked = tcp_skb_pcount(skb);
  2723. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2724. return 0;
  2725. packets_acked -= tcp_skb_pcount(skb);
  2726. if (packets_acked) {
  2727. BUG_ON(tcp_skb_pcount(skb) == 0);
  2728. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2729. }
  2730. return packets_acked;
  2731. }
  2732. /* Remove acknowledged frames from the retransmission queue. If our packet
  2733. * is before the ack sequence we can discard it as it's confirmed to have
  2734. * arrived at the other end.
  2735. */
  2736. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2737. u32 prior_snd_una)
  2738. {
  2739. struct tcp_sock *tp = tcp_sk(sk);
  2740. const struct inet_connection_sock *icsk = inet_csk(sk);
  2741. struct sk_buff *skb;
  2742. u32 now = tcp_time_stamp;
  2743. int fully_acked = true;
  2744. int flag = 0;
  2745. u32 pkts_acked = 0;
  2746. u32 reord = tp->packets_out;
  2747. u32 prior_sacked = tp->sacked_out;
  2748. s32 seq_rtt = -1;
  2749. s32 ca_seq_rtt = -1;
  2750. ktime_t last_ackt = net_invalid_timestamp();
  2751. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2752. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2753. u32 acked_pcount;
  2754. u8 sacked = scb->sacked;
  2755. /* Determine how many packets and what bytes were acked, tso and else */
  2756. if (after(scb->end_seq, tp->snd_una)) {
  2757. if (tcp_skb_pcount(skb) == 1 ||
  2758. !after(tp->snd_una, scb->seq))
  2759. break;
  2760. acked_pcount = tcp_tso_acked(sk, skb);
  2761. if (!acked_pcount)
  2762. break;
  2763. fully_acked = false;
  2764. } else {
  2765. acked_pcount = tcp_skb_pcount(skb);
  2766. }
  2767. if (sacked & TCPCB_RETRANS) {
  2768. if (sacked & TCPCB_SACKED_RETRANS)
  2769. tp->retrans_out -= acked_pcount;
  2770. flag |= FLAG_RETRANS_DATA_ACKED;
  2771. ca_seq_rtt = -1;
  2772. seq_rtt = -1;
  2773. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2774. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2775. } else {
  2776. ca_seq_rtt = now - scb->when;
  2777. last_ackt = skb->tstamp;
  2778. if (seq_rtt < 0) {
  2779. seq_rtt = ca_seq_rtt;
  2780. }
  2781. if (!(sacked & TCPCB_SACKED_ACKED))
  2782. reord = min(pkts_acked, reord);
  2783. }
  2784. if (sacked & TCPCB_SACKED_ACKED)
  2785. tp->sacked_out -= acked_pcount;
  2786. if (sacked & TCPCB_LOST)
  2787. tp->lost_out -= acked_pcount;
  2788. tp->packets_out -= acked_pcount;
  2789. pkts_acked += acked_pcount;
  2790. /* Initial outgoing SYN's get put onto the write_queue
  2791. * just like anything else we transmit. It is not
  2792. * true data, and if we misinform our callers that
  2793. * this ACK acks real data, we will erroneously exit
  2794. * connection startup slow start one packet too
  2795. * quickly. This is severely frowned upon behavior.
  2796. */
  2797. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2798. flag |= FLAG_DATA_ACKED;
  2799. } else {
  2800. flag |= FLAG_SYN_ACKED;
  2801. tp->retrans_stamp = 0;
  2802. }
  2803. if (!fully_acked)
  2804. break;
  2805. tcp_unlink_write_queue(skb, sk);
  2806. sk_wmem_free_skb(sk, skb);
  2807. tp->scoreboard_skb_hint = NULL;
  2808. if (skb == tp->retransmit_skb_hint)
  2809. tp->retransmit_skb_hint = NULL;
  2810. if (skb == tp->lost_skb_hint)
  2811. tp->lost_skb_hint = NULL;
  2812. }
  2813. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2814. tp->snd_up = tp->snd_una;
  2815. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2816. flag |= FLAG_SACK_RENEGING;
  2817. if (flag & FLAG_ACKED) {
  2818. const struct tcp_congestion_ops *ca_ops
  2819. = inet_csk(sk)->icsk_ca_ops;
  2820. if (unlikely(icsk->icsk_mtup.probe_size &&
  2821. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2822. tcp_mtup_probe_success(sk);
  2823. }
  2824. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2825. tcp_rearm_rto(sk);
  2826. if (tcp_is_reno(tp)) {
  2827. tcp_remove_reno_sacks(sk, pkts_acked);
  2828. } else {
  2829. int delta;
  2830. /* Non-retransmitted hole got filled? That's reordering */
  2831. if (reord < prior_fackets)
  2832. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2833. delta = tcp_is_fack(tp) ? pkts_acked :
  2834. prior_sacked - tp->sacked_out;
  2835. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2836. }
  2837. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2838. if (ca_ops->pkts_acked) {
  2839. s32 rtt_us = -1;
  2840. /* Is the ACK triggering packet unambiguous? */
  2841. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2842. /* High resolution needed and available? */
  2843. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2844. !ktime_equal(last_ackt,
  2845. net_invalid_timestamp()))
  2846. rtt_us = ktime_us_delta(ktime_get_real(),
  2847. last_ackt);
  2848. else if (ca_seq_rtt >= 0)
  2849. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2850. }
  2851. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2852. }
  2853. }
  2854. #if FASTRETRANS_DEBUG > 0
  2855. WARN_ON((int)tp->sacked_out < 0);
  2856. WARN_ON((int)tp->lost_out < 0);
  2857. WARN_ON((int)tp->retrans_out < 0);
  2858. if (!tp->packets_out && tcp_is_sack(tp)) {
  2859. icsk = inet_csk(sk);
  2860. if (tp->lost_out) {
  2861. pr_debug("Leak l=%u %d\n",
  2862. tp->lost_out, icsk->icsk_ca_state);
  2863. tp->lost_out = 0;
  2864. }
  2865. if (tp->sacked_out) {
  2866. pr_debug("Leak s=%u %d\n",
  2867. tp->sacked_out, icsk->icsk_ca_state);
  2868. tp->sacked_out = 0;
  2869. }
  2870. if (tp->retrans_out) {
  2871. pr_debug("Leak r=%u %d\n",
  2872. tp->retrans_out, icsk->icsk_ca_state);
  2873. tp->retrans_out = 0;
  2874. }
  2875. }
  2876. #endif
  2877. return flag;
  2878. }
  2879. static void tcp_ack_probe(struct sock *sk)
  2880. {
  2881. const struct tcp_sock *tp = tcp_sk(sk);
  2882. struct inet_connection_sock *icsk = inet_csk(sk);
  2883. /* Was it a usable window open? */
  2884. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2885. icsk->icsk_backoff = 0;
  2886. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2887. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2888. * This function is not for random using!
  2889. */
  2890. } else {
  2891. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2892. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2893. TCP_RTO_MAX);
  2894. }
  2895. }
  2896. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2897. {
  2898. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2899. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2900. }
  2901. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2902. {
  2903. const struct tcp_sock *tp = tcp_sk(sk);
  2904. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2905. !tcp_in_cwnd_reduction(sk);
  2906. }
  2907. /* Check that window update is acceptable.
  2908. * The function assumes that snd_una<=ack<=snd_next.
  2909. */
  2910. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2911. const u32 ack, const u32 ack_seq,
  2912. const u32 nwin)
  2913. {
  2914. return after(ack, tp->snd_una) ||
  2915. after(ack_seq, tp->snd_wl1) ||
  2916. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2917. }
  2918. /* Update our send window.
  2919. *
  2920. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2921. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2922. */
  2923. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2924. u32 ack_seq)
  2925. {
  2926. struct tcp_sock *tp = tcp_sk(sk);
  2927. int flag = 0;
  2928. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2929. if (likely(!tcp_hdr(skb)->syn))
  2930. nwin <<= tp->rx_opt.snd_wscale;
  2931. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2932. flag |= FLAG_WIN_UPDATE;
  2933. tcp_update_wl(tp, ack_seq);
  2934. if (tp->snd_wnd != nwin) {
  2935. tp->snd_wnd = nwin;
  2936. /* Note, it is the only place, where
  2937. * fast path is recovered for sending TCP.
  2938. */
  2939. tp->pred_flags = 0;
  2940. tcp_fast_path_check(sk);
  2941. if (nwin > tp->max_window) {
  2942. tp->max_window = nwin;
  2943. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2944. }
  2945. }
  2946. }
  2947. tp->snd_una = ack;
  2948. return flag;
  2949. }
  2950. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2951. * continue in congestion avoidance.
  2952. */
  2953. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2954. {
  2955. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2956. tp->snd_cwnd_cnt = 0;
  2957. TCP_ECN_queue_cwr(tp);
  2958. tcp_moderate_cwnd(tp);
  2959. }
  2960. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2961. * PRR and continue in congestion avoidance.
  2962. */
  2963. static void tcp_cwr_spur_to_response(struct sock *sk)
  2964. {
  2965. tcp_enter_cwr(sk, 0);
  2966. }
  2967. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2968. {
  2969. if (flag & FLAG_ECE)
  2970. tcp_cwr_spur_to_response(sk);
  2971. else
  2972. tcp_undo_cwr(sk, true);
  2973. }
  2974. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2975. *
  2976. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2977. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2978. * window (but not to or beyond highest sequence sent before RTO):
  2979. * On First ACK, send two new segments out.
  2980. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2981. * algorithm is not part of the F-RTO detection algorithm
  2982. * given in RFC4138 but can be selected separately).
  2983. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2984. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2985. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2986. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2987. *
  2988. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2989. * original window even after we transmit two new data segments.
  2990. *
  2991. * SACK version:
  2992. * on first step, wait until first cumulative ACK arrives, then move to
  2993. * the second step. In second step, the next ACK decides.
  2994. *
  2995. * F-RTO is implemented (mainly) in four functions:
  2996. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2997. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2998. * called when tcp_use_frto() showed green light
  2999. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3000. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3001. * to prove that the RTO is indeed spurious. It transfers the control
  3002. * from F-RTO to the conventional RTO recovery
  3003. */
  3004. static bool tcp_process_frto(struct sock *sk, int flag)
  3005. {
  3006. struct tcp_sock *tp = tcp_sk(sk);
  3007. tcp_verify_left_out(tp);
  3008. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3009. if (flag & FLAG_DATA_ACKED)
  3010. inet_csk(sk)->icsk_retransmits = 0;
  3011. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3012. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3013. tp->undo_marker = 0;
  3014. if (!before(tp->snd_una, tp->frto_highmark)) {
  3015. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3016. return true;
  3017. }
  3018. if (!tcp_is_sackfrto(tp)) {
  3019. /* RFC4138 shortcoming in step 2; should also have case c):
  3020. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3021. * data, winupdate
  3022. */
  3023. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3024. return true;
  3025. if (!(flag & FLAG_DATA_ACKED)) {
  3026. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3027. flag);
  3028. return true;
  3029. }
  3030. } else {
  3031. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3032. if (!tcp_packets_in_flight(tp)) {
  3033. tcp_enter_frto_loss(sk, 2, flag);
  3034. return true;
  3035. }
  3036. /* Prevent sending of new data. */
  3037. tp->snd_cwnd = min(tp->snd_cwnd,
  3038. tcp_packets_in_flight(tp));
  3039. return true;
  3040. }
  3041. if ((tp->frto_counter >= 2) &&
  3042. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3043. ((flag & FLAG_DATA_SACKED) &&
  3044. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3045. /* RFC4138 shortcoming (see comment above) */
  3046. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3047. (flag & FLAG_NOT_DUP))
  3048. return true;
  3049. tcp_enter_frto_loss(sk, 3, flag);
  3050. return true;
  3051. }
  3052. }
  3053. if (tp->frto_counter == 1) {
  3054. /* tcp_may_send_now needs to see updated state */
  3055. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3056. tp->frto_counter = 2;
  3057. if (!tcp_may_send_now(sk))
  3058. tcp_enter_frto_loss(sk, 2, flag);
  3059. return true;
  3060. } else {
  3061. switch (sysctl_tcp_frto_response) {
  3062. case 2:
  3063. tcp_undo_spur_to_response(sk, flag);
  3064. break;
  3065. case 1:
  3066. tcp_conservative_spur_to_response(tp);
  3067. break;
  3068. default:
  3069. tcp_cwr_spur_to_response(sk);
  3070. break;
  3071. }
  3072. tp->frto_counter = 0;
  3073. tp->undo_marker = 0;
  3074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3075. }
  3076. return false;
  3077. }
  3078. /* RFC 5961 7 [ACK Throttling] */
  3079. static void tcp_send_challenge_ack(struct sock *sk)
  3080. {
  3081. /* unprotected vars, we dont care of overwrites */
  3082. static u32 challenge_timestamp;
  3083. static unsigned int challenge_count;
  3084. u32 now = jiffies / HZ;
  3085. if (now != challenge_timestamp) {
  3086. challenge_timestamp = now;
  3087. challenge_count = 0;
  3088. }
  3089. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  3090. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3091. tcp_send_ack(sk);
  3092. }
  3093. }
  3094. /* This routine deals with incoming acks, but not outgoing ones. */
  3095. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3096. {
  3097. struct inet_connection_sock *icsk = inet_csk(sk);
  3098. struct tcp_sock *tp = tcp_sk(sk);
  3099. u32 prior_snd_una = tp->snd_una;
  3100. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3101. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3102. bool is_dupack = false;
  3103. u32 prior_in_flight;
  3104. u32 prior_fackets;
  3105. int prior_packets;
  3106. int prior_sacked = tp->sacked_out;
  3107. int pkts_acked = 0;
  3108. bool frto_cwnd = false;
  3109. /* If the ack is older than previous acks
  3110. * then we can probably ignore it.
  3111. */
  3112. if (before(ack, prior_snd_una)) {
  3113. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3114. if (before(ack, prior_snd_una - tp->max_window)) {
  3115. tcp_send_challenge_ack(sk);
  3116. return -1;
  3117. }
  3118. goto old_ack;
  3119. }
  3120. /* If the ack includes data we haven't sent yet, discard
  3121. * this segment (RFC793 Section 3.9).
  3122. */
  3123. if (after(ack, tp->snd_nxt))
  3124. goto invalid_ack;
  3125. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3126. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3127. tcp_rearm_rto(sk);
  3128. if (after(ack, prior_snd_una))
  3129. flag |= FLAG_SND_UNA_ADVANCED;
  3130. prior_fackets = tp->fackets_out;
  3131. prior_in_flight = tcp_packets_in_flight(tp);
  3132. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3133. /* Window is constant, pure forward advance.
  3134. * No more checks are required.
  3135. * Note, we use the fact that SND.UNA>=SND.WL2.
  3136. */
  3137. tcp_update_wl(tp, ack_seq);
  3138. tp->snd_una = ack;
  3139. flag |= FLAG_WIN_UPDATE;
  3140. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3141. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3142. } else {
  3143. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3144. flag |= FLAG_DATA;
  3145. else
  3146. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3147. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3148. if (TCP_SKB_CB(skb)->sacked)
  3149. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3150. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3151. flag |= FLAG_ECE;
  3152. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3153. }
  3154. /* We passed data and got it acked, remove any soft error
  3155. * log. Something worked...
  3156. */
  3157. sk->sk_err_soft = 0;
  3158. icsk->icsk_probes_out = 0;
  3159. tp->rcv_tstamp = tcp_time_stamp;
  3160. prior_packets = tp->packets_out;
  3161. if (!prior_packets)
  3162. goto no_queue;
  3163. /* See if we can take anything off of the retransmit queue. */
  3164. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3165. pkts_acked = prior_packets - tp->packets_out;
  3166. if (tp->frto_counter)
  3167. frto_cwnd = tcp_process_frto(sk, flag);
  3168. /* Guarantee sacktag reordering detection against wrap-arounds */
  3169. if (before(tp->frto_highmark, tp->snd_una))
  3170. tp->frto_highmark = 0;
  3171. if (tcp_ack_is_dubious(sk, flag)) {
  3172. /* Advance CWND, if state allows this. */
  3173. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3174. tcp_may_raise_cwnd(sk, flag))
  3175. tcp_cong_avoid(sk, ack, prior_in_flight);
  3176. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3177. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3178. is_dupack, flag);
  3179. } else {
  3180. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3181. tcp_cong_avoid(sk, ack, prior_in_flight);
  3182. }
  3183. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3184. struct dst_entry *dst = __sk_dst_get(sk);
  3185. if (dst)
  3186. dst_confirm(dst);
  3187. }
  3188. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3189. tcp_schedule_loss_probe(sk);
  3190. return 1;
  3191. no_queue:
  3192. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3193. if (flag & FLAG_DSACKING_ACK)
  3194. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3195. is_dupack, flag);
  3196. /* If this ack opens up a zero window, clear backoff. It was
  3197. * being used to time the probes, and is probably far higher than
  3198. * it needs to be for normal retransmission.
  3199. */
  3200. if (tcp_send_head(sk))
  3201. tcp_ack_probe(sk);
  3202. return 1;
  3203. invalid_ack:
  3204. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3205. return -1;
  3206. old_ack:
  3207. /* If data was SACKed, tag it and see if we should send more data.
  3208. * If data was DSACKed, see if we can undo a cwnd reduction.
  3209. */
  3210. if (TCP_SKB_CB(skb)->sacked) {
  3211. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3212. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3213. is_dupack, flag);
  3214. }
  3215. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3216. return 0;
  3217. }
  3218. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3219. * But, this can also be called on packets in the established flow when
  3220. * the fast version below fails.
  3221. */
  3222. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3223. const u8 **hvpp, int estab,
  3224. struct tcp_fastopen_cookie *foc)
  3225. {
  3226. const unsigned char *ptr;
  3227. const struct tcphdr *th = tcp_hdr(skb);
  3228. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3229. ptr = (const unsigned char *)(th + 1);
  3230. opt_rx->saw_tstamp = 0;
  3231. while (length > 0) {
  3232. int opcode = *ptr++;
  3233. int opsize;
  3234. switch (opcode) {
  3235. case TCPOPT_EOL:
  3236. return;
  3237. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3238. length--;
  3239. continue;
  3240. default:
  3241. opsize = *ptr++;
  3242. if (opsize < 2) /* "silly options" */
  3243. return;
  3244. if (opsize > length)
  3245. return; /* don't parse partial options */
  3246. switch (opcode) {
  3247. case TCPOPT_MSS:
  3248. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3249. u16 in_mss = get_unaligned_be16(ptr);
  3250. if (in_mss) {
  3251. if (opt_rx->user_mss &&
  3252. opt_rx->user_mss < in_mss)
  3253. in_mss = opt_rx->user_mss;
  3254. opt_rx->mss_clamp = in_mss;
  3255. }
  3256. }
  3257. break;
  3258. case TCPOPT_WINDOW:
  3259. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3260. !estab && sysctl_tcp_window_scaling) {
  3261. __u8 snd_wscale = *(__u8 *)ptr;
  3262. opt_rx->wscale_ok = 1;
  3263. if (snd_wscale > 14) {
  3264. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3265. __func__,
  3266. snd_wscale);
  3267. snd_wscale = 14;
  3268. }
  3269. opt_rx->snd_wscale = snd_wscale;
  3270. }
  3271. break;
  3272. case TCPOPT_TIMESTAMP:
  3273. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3274. ((estab && opt_rx->tstamp_ok) ||
  3275. (!estab && sysctl_tcp_timestamps))) {
  3276. opt_rx->saw_tstamp = 1;
  3277. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3278. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3279. }
  3280. break;
  3281. case TCPOPT_SACK_PERM:
  3282. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3283. !estab && sysctl_tcp_sack) {
  3284. opt_rx->sack_ok = TCP_SACK_SEEN;
  3285. tcp_sack_reset(opt_rx);
  3286. }
  3287. break;
  3288. case TCPOPT_SACK:
  3289. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3290. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3291. opt_rx->sack_ok) {
  3292. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3293. }
  3294. break;
  3295. #ifdef CONFIG_TCP_MD5SIG
  3296. case TCPOPT_MD5SIG:
  3297. /*
  3298. * The MD5 Hash has already been
  3299. * checked (see tcp_v{4,6}_do_rcv()).
  3300. */
  3301. break;
  3302. #endif
  3303. case TCPOPT_COOKIE:
  3304. /* This option is variable length.
  3305. */
  3306. switch (opsize) {
  3307. case TCPOLEN_COOKIE_BASE:
  3308. /* not yet implemented */
  3309. break;
  3310. case TCPOLEN_COOKIE_PAIR:
  3311. /* not yet implemented */
  3312. break;
  3313. case TCPOLEN_COOKIE_MIN+0:
  3314. case TCPOLEN_COOKIE_MIN+2:
  3315. case TCPOLEN_COOKIE_MIN+4:
  3316. case TCPOLEN_COOKIE_MIN+6:
  3317. case TCPOLEN_COOKIE_MAX:
  3318. /* 16-bit multiple */
  3319. opt_rx->cookie_plus = opsize;
  3320. *hvpp = ptr;
  3321. break;
  3322. default:
  3323. /* ignore option */
  3324. break;
  3325. }
  3326. break;
  3327. case TCPOPT_EXP:
  3328. /* Fast Open option shares code 254 using a
  3329. * 16 bits magic number. It's valid only in
  3330. * SYN or SYN-ACK with an even size.
  3331. */
  3332. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3333. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3334. foc == NULL || !th->syn || (opsize & 1))
  3335. break;
  3336. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3337. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3338. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3339. memcpy(foc->val, ptr + 2, foc->len);
  3340. else if (foc->len != 0)
  3341. foc->len = -1;
  3342. break;
  3343. }
  3344. ptr += opsize-2;
  3345. length -= opsize;
  3346. }
  3347. }
  3348. }
  3349. EXPORT_SYMBOL(tcp_parse_options);
  3350. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3351. {
  3352. const __be32 *ptr = (const __be32 *)(th + 1);
  3353. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3354. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3355. tp->rx_opt.saw_tstamp = 1;
  3356. ++ptr;
  3357. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3358. ++ptr;
  3359. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3360. return true;
  3361. }
  3362. return false;
  3363. }
  3364. /* Fast parse options. This hopes to only see timestamps.
  3365. * If it is wrong it falls back on tcp_parse_options().
  3366. */
  3367. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3368. const struct tcphdr *th,
  3369. struct tcp_sock *tp, const u8 **hvpp)
  3370. {
  3371. /* In the spirit of fast parsing, compare doff directly to constant
  3372. * values. Because equality is used, short doff can be ignored here.
  3373. */
  3374. if (th->doff == (sizeof(*th) / 4)) {
  3375. tp->rx_opt.saw_tstamp = 0;
  3376. return false;
  3377. } else if (tp->rx_opt.tstamp_ok &&
  3378. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3379. if (tcp_parse_aligned_timestamp(tp, th))
  3380. return true;
  3381. }
  3382. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
  3383. if (tp->rx_opt.saw_tstamp)
  3384. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3385. return true;
  3386. }
  3387. #ifdef CONFIG_TCP_MD5SIG
  3388. /*
  3389. * Parse MD5 Signature option
  3390. */
  3391. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3392. {
  3393. int length = (th->doff << 2) - sizeof(*th);
  3394. const u8 *ptr = (const u8 *)(th + 1);
  3395. /* If the TCP option is too short, we can short cut */
  3396. if (length < TCPOLEN_MD5SIG)
  3397. return NULL;
  3398. while (length > 0) {
  3399. int opcode = *ptr++;
  3400. int opsize;
  3401. switch(opcode) {
  3402. case TCPOPT_EOL:
  3403. return NULL;
  3404. case TCPOPT_NOP:
  3405. length--;
  3406. continue;
  3407. default:
  3408. opsize = *ptr++;
  3409. if (opsize < 2 || opsize > length)
  3410. return NULL;
  3411. if (opcode == TCPOPT_MD5SIG)
  3412. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3413. }
  3414. ptr += opsize - 2;
  3415. length -= opsize;
  3416. }
  3417. return NULL;
  3418. }
  3419. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3420. #endif
  3421. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3422. {
  3423. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3424. tp->rx_opt.ts_recent_stamp = get_seconds();
  3425. }
  3426. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3427. {
  3428. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3429. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3430. * extra check below makes sure this can only happen
  3431. * for pure ACK frames. -DaveM
  3432. *
  3433. * Not only, also it occurs for expired timestamps.
  3434. */
  3435. if (tcp_paws_check(&tp->rx_opt, 0))
  3436. tcp_store_ts_recent(tp);
  3437. }
  3438. }
  3439. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3440. *
  3441. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3442. * it can pass through stack. So, the following predicate verifies that
  3443. * this segment is not used for anything but congestion avoidance or
  3444. * fast retransmit. Moreover, we even are able to eliminate most of such
  3445. * second order effects, if we apply some small "replay" window (~RTO)
  3446. * to timestamp space.
  3447. *
  3448. * All these measures still do not guarantee that we reject wrapped ACKs
  3449. * on networks with high bandwidth, when sequence space is recycled fastly,
  3450. * but it guarantees that such events will be very rare and do not affect
  3451. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3452. * buggy extension.
  3453. *
  3454. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3455. * states that events when retransmit arrives after original data are rare.
  3456. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3457. * the biggest problem on large power networks even with minor reordering.
  3458. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3459. * up to bandwidth of 18Gigabit/sec. 8) ]
  3460. */
  3461. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3462. {
  3463. const struct tcp_sock *tp = tcp_sk(sk);
  3464. const struct tcphdr *th = tcp_hdr(skb);
  3465. u32 seq = TCP_SKB_CB(skb)->seq;
  3466. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3467. return (/* 1. Pure ACK with correct sequence number. */
  3468. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3469. /* 2. ... and duplicate ACK. */
  3470. ack == tp->snd_una &&
  3471. /* 3. ... and does not update window. */
  3472. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3473. /* 4. ... and sits in replay window. */
  3474. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3475. }
  3476. static inline bool tcp_paws_discard(const struct sock *sk,
  3477. const struct sk_buff *skb)
  3478. {
  3479. const struct tcp_sock *tp = tcp_sk(sk);
  3480. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3481. !tcp_disordered_ack(sk, skb);
  3482. }
  3483. /* Check segment sequence number for validity.
  3484. *
  3485. * Segment controls are considered valid, if the segment
  3486. * fits to the window after truncation to the window. Acceptability
  3487. * of data (and SYN, FIN, of course) is checked separately.
  3488. * See tcp_data_queue(), for example.
  3489. *
  3490. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3491. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3492. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3493. * (borrowed from freebsd)
  3494. */
  3495. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3496. {
  3497. return !before(end_seq, tp->rcv_wup) &&
  3498. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3499. }
  3500. /* When we get a reset we do this. */
  3501. void tcp_reset(struct sock *sk)
  3502. {
  3503. /* We want the right error as BSD sees it (and indeed as we do). */
  3504. switch (sk->sk_state) {
  3505. case TCP_SYN_SENT:
  3506. sk->sk_err = ECONNREFUSED;
  3507. break;
  3508. case TCP_CLOSE_WAIT:
  3509. sk->sk_err = EPIPE;
  3510. break;
  3511. case TCP_CLOSE:
  3512. return;
  3513. default:
  3514. sk->sk_err = ECONNRESET;
  3515. }
  3516. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3517. smp_wmb();
  3518. if (!sock_flag(sk, SOCK_DEAD))
  3519. sk->sk_error_report(sk);
  3520. tcp_done(sk);
  3521. }
  3522. /*
  3523. * Process the FIN bit. This now behaves as it is supposed to work
  3524. * and the FIN takes effect when it is validly part of sequence
  3525. * space. Not before when we get holes.
  3526. *
  3527. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3528. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3529. * TIME-WAIT)
  3530. *
  3531. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3532. * close and we go into CLOSING (and later onto TIME-WAIT)
  3533. *
  3534. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3535. */
  3536. static void tcp_fin(struct sock *sk)
  3537. {
  3538. struct tcp_sock *tp = tcp_sk(sk);
  3539. inet_csk_schedule_ack(sk);
  3540. sk->sk_shutdown |= RCV_SHUTDOWN;
  3541. sock_set_flag(sk, SOCK_DONE);
  3542. switch (sk->sk_state) {
  3543. case TCP_SYN_RECV:
  3544. case TCP_ESTABLISHED:
  3545. /* Move to CLOSE_WAIT */
  3546. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3547. inet_csk(sk)->icsk_ack.pingpong = 1;
  3548. break;
  3549. case TCP_CLOSE_WAIT:
  3550. case TCP_CLOSING:
  3551. /* Received a retransmission of the FIN, do
  3552. * nothing.
  3553. */
  3554. break;
  3555. case TCP_LAST_ACK:
  3556. /* RFC793: Remain in the LAST-ACK state. */
  3557. break;
  3558. case TCP_FIN_WAIT1:
  3559. /* This case occurs when a simultaneous close
  3560. * happens, we must ack the received FIN and
  3561. * enter the CLOSING state.
  3562. */
  3563. tcp_send_ack(sk);
  3564. tcp_set_state(sk, TCP_CLOSING);
  3565. break;
  3566. case TCP_FIN_WAIT2:
  3567. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3568. tcp_send_ack(sk);
  3569. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3570. break;
  3571. default:
  3572. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3573. * cases we should never reach this piece of code.
  3574. */
  3575. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3576. __func__, sk->sk_state);
  3577. break;
  3578. }
  3579. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3580. * Probably, we should reset in this case. For now drop them.
  3581. */
  3582. __skb_queue_purge(&tp->out_of_order_queue);
  3583. if (tcp_is_sack(tp))
  3584. tcp_sack_reset(&tp->rx_opt);
  3585. sk_mem_reclaim(sk);
  3586. if (!sock_flag(sk, SOCK_DEAD)) {
  3587. sk->sk_state_change(sk);
  3588. /* Do not send POLL_HUP for half duplex close. */
  3589. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3590. sk->sk_state == TCP_CLOSE)
  3591. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3592. else
  3593. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3594. }
  3595. }
  3596. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3597. u32 end_seq)
  3598. {
  3599. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3600. if (before(seq, sp->start_seq))
  3601. sp->start_seq = seq;
  3602. if (after(end_seq, sp->end_seq))
  3603. sp->end_seq = end_seq;
  3604. return true;
  3605. }
  3606. return false;
  3607. }
  3608. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3609. {
  3610. struct tcp_sock *tp = tcp_sk(sk);
  3611. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3612. int mib_idx;
  3613. if (before(seq, tp->rcv_nxt))
  3614. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3615. else
  3616. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3617. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3618. tp->rx_opt.dsack = 1;
  3619. tp->duplicate_sack[0].start_seq = seq;
  3620. tp->duplicate_sack[0].end_seq = end_seq;
  3621. }
  3622. }
  3623. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3624. {
  3625. struct tcp_sock *tp = tcp_sk(sk);
  3626. if (!tp->rx_opt.dsack)
  3627. tcp_dsack_set(sk, seq, end_seq);
  3628. else
  3629. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3630. }
  3631. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3632. {
  3633. struct tcp_sock *tp = tcp_sk(sk);
  3634. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3635. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3636. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3637. tcp_enter_quickack_mode(sk);
  3638. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3639. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3640. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3641. end_seq = tp->rcv_nxt;
  3642. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3643. }
  3644. }
  3645. tcp_send_ack(sk);
  3646. }
  3647. /* These routines update the SACK block as out-of-order packets arrive or
  3648. * in-order packets close up the sequence space.
  3649. */
  3650. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3651. {
  3652. int this_sack;
  3653. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3654. struct tcp_sack_block *swalk = sp + 1;
  3655. /* See if the recent change to the first SACK eats into
  3656. * or hits the sequence space of other SACK blocks, if so coalesce.
  3657. */
  3658. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3659. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3660. int i;
  3661. /* Zap SWALK, by moving every further SACK up by one slot.
  3662. * Decrease num_sacks.
  3663. */
  3664. tp->rx_opt.num_sacks--;
  3665. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3666. sp[i] = sp[i + 1];
  3667. continue;
  3668. }
  3669. this_sack++, swalk++;
  3670. }
  3671. }
  3672. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3673. {
  3674. struct tcp_sock *tp = tcp_sk(sk);
  3675. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3676. int cur_sacks = tp->rx_opt.num_sacks;
  3677. int this_sack;
  3678. if (!cur_sacks)
  3679. goto new_sack;
  3680. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3681. if (tcp_sack_extend(sp, seq, end_seq)) {
  3682. /* Rotate this_sack to the first one. */
  3683. for (; this_sack > 0; this_sack--, sp--)
  3684. swap(*sp, *(sp - 1));
  3685. if (cur_sacks > 1)
  3686. tcp_sack_maybe_coalesce(tp);
  3687. return;
  3688. }
  3689. }
  3690. /* Could not find an adjacent existing SACK, build a new one,
  3691. * put it at the front, and shift everyone else down. We
  3692. * always know there is at least one SACK present already here.
  3693. *
  3694. * If the sack array is full, forget about the last one.
  3695. */
  3696. if (this_sack >= TCP_NUM_SACKS) {
  3697. this_sack--;
  3698. tp->rx_opt.num_sacks--;
  3699. sp--;
  3700. }
  3701. for (; this_sack > 0; this_sack--, sp--)
  3702. *sp = *(sp - 1);
  3703. new_sack:
  3704. /* Build the new head SACK, and we're done. */
  3705. sp->start_seq = seq;
  3706. sp->end_seq = end_seq;
  3707. tp->rx_opt.num_sacks++;
  3708. }
  3709. /* RCV.NXT advances, some SACKs should be eaten. */
  3710. static void tcp_sack_remove(struct tcp_sock *tp)
  3711. {
  3712. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3713. int num_sacks = tp->rx_opt.num_sacks;
  3714. int this_sack;
  3715. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3716. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3717. tp->rx_opt.num_sacks = 0;
  3718. return;
  3719. }
  3720. for (this_sack = 0; this_sack < num_sacks;) {
  3721. /* Check if the start of the sack is covered by RCV.NXT. */
  3722. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3723. int i;
  3724. /* RCV.NXT must cover all the block! */
  3725. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3726. /* Zap this SACK, by moving forward any other SACKS. */
  3727. for (i=this_sack+1; i < num_sacks; i++)
  3728. tp->selective_acks[i-1] = tp->selective_acks[i];
  3729. num_sacks--;
  3730. continue;
  3731. }
  3732. this_sack++;
  3733. sp++;
  3734. }
  3735. tp->rx_opt.num_sacks = num_sacks;
  3736. }
  3737. /* This one checks to see if we can put data from the
  3738. * out_of_order queue into the receive_queue.
  3739. */
  3740. static void tcp_ofo_queue(struct sock *sk)
  3741. {
  3742. struct tcp_sock *tp = tcp_sk(sk);
  3743. __u32 dsack_high = tp->rcv_nxt;
  3744. struct sk_buff *skb;
  3745. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3746. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3747. break;
  3748. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3749. __u32 dsack = dsack_high;
  3750. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3751. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3752. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3753. }
  3754. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3755. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3756. __skb_unlink(skb, &tp->out_of_order_queue);
  3757. __kfree_skb(skb);
  3758. continue;
  3759. }
  3760. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3761. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3762. TCP_SKB_CB(skb)->end_seq);
  3763. __skb_unlink(skb, &tp->out_of_order_queue);
  3764. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3765. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3766. if (tcp_hdr(skb)->fin)
  3767. tcp_fin(sk);
  3768. }
  3769. }
  3770. static bool tcp_prune_ofo_queue(struct sock *sk);
  3771. static int tcp_prune_queue(struct sock *sk);
  3772. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3773. unsigned int size)
  3774. {
  3775. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3776. !sk_rmem_schedule(sk, skb, size)) {
  3777. if (tcp_prune_queue(sk) < 0)
  3778. return -1;
  3779. if (!sk_rmem_schedule(sk, skb, size)) {
  3780. if (!tcp_prune_ofo_queue(sk))
  3781. return -1;
  3782. if (!sk_rmem_schedule(sk, skb, size))
  3783. return -1;
  3784. }
  3785. }
  3786. return 0;
  3787. }
  3788. /**
  3789. * tcp_try_coalesce - try to merge skb to prior one
  3790. * @sk: socket
  3791. * @to: prior buffer
  3792. * @from: buffer to add in queue
  3793. * @fragstolen: pointer to boolean
  3794. *
  3795. * Before queueing skb @from after @to, try to merge them
  3796. * to reduce overall memory use and queue lengths, if cost is small.
  3797. * Packets in ofo or receive queues can stay a long time.
  3798. * Better try to coalesce them right now to avoid future collapses.
  3799. * Returns true if caller should free @from instead of queueing it
  3800. */
  3801. static bool tcp_try_coalesce(struct sock *sk,
  3802. struct sk_buff *to,
  3803. struct sk_buff *from,
  3804. bool *fragstolen)
  3805. {
  3806. int delta;
  3807. *fragstolen = false;
  3808. if (tcp_hdr(from)->fin)
  3809. return false;
  3810. /* Its possible this segment overlaps with prior segment in queue */
  3811. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3812. return false;
  3813. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3814. return false;
  3815. atomic_add(delta, &sk->sk_rmem_alloc);
  3816. sk_mem_charge(sk, delta);
  3817. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3818. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3819. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3820. return true;
  3821. }
  3822. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3823. {
  3824. struct tcp_sock *tp = tcp_sk(sk);
  3825. struct sk_buff *skb1;
  3826. u32 seq, end_seq;
  3827. TCP_ECN_check_ce(tp, skb);
  3828. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3829. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3830. __kfree_skb(skb);
  3831. return;
  3832. }
  3833. /* Disable header prediction. */
  3834. tp->pred_flags = 0;
  3835. inet_csk_schedule_ack(sk);
  3836. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3837. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3838. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3839. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3840. if (!skb1) {
  3841. /* Initial out of order segment, build 1 SACK. */
  3842. if (tcp_is_sack(tp)) {
  3843. tp->rx_opt.num_sacks = 1;
  3844. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3845. tp->selective_acks[0].end_seq =
  3846. TCP_SKB_CB(skb)->end_seq;
  3847. }
  3848. __skb_queue_head(&tp->out_of_order_queue, skb);
  3849. goto end;
  3850. }
  3851. seq = TCP_SKB_CB(skb)->seq;
  3852. end_seq = TCP_SKB_CB(skb)->end_seq;
  3853. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3854. bool fragstolen;
  3855. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3856. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3857. } else {
  3858. kfree_skb_partial(skb, fragstolen);
  3859. skb = NULL;
  3860. }
  3861. if (!tp->rx_opt.num_sacks ||
  3862. tp->selective_acks[0].end_seq != seq)
  3863. goto add_sack;
  3864. /* Common case: data arrive in order after hole. */
  3865. tp->selective_acks[0].end_seq = end_seq;
  3866. goto end;
  3867. }
  3868. /* Find place to insert this segment. */
  3869. while (1) {
  3870. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3871. break;
  3872. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3873. skb1 = NULL;
  3874. break;
  3875. }
  3876. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3877. }
  3878. /* Do skb overlap to previous one? */
  3879. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3880. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3881. /* All the bits are present. Drop. */
  3882. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3883. __kfree_skb(skb);
  3884. skb = NULL;
  3885. tcp_dsack_set(sk, seq, end_seq);
  3886. goto add_sack;
  3887. }
  3888. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3889. /* Partial overlap. */
  3890. tcp_dsack_set(sk, seq,
  3891. TCP_SKB_CB(skb1)->end_seq);
  3892. } else {
  3893. if (skb_queue_is_first(&tp->out_of_order_queue,
  3894. skb1))
  3895. skb1 = NULL;
  3896. else
  3897. skb1 = skb_queue_prev(
  3898. &tp->out_of_order_queue,
  3899. skb1);
  3900. }
  3901. }
  3902. if (!skb1)
  3903. __skb_queue_head(&tp->out_of_order_queue, skb);
  3904. else
  3905. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3906. /* And clean segments covered by new one as whole. */
  3907. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3908. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3909. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3910. break;
  3911. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3912. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3913. end_seq);
  3914. break;
  3915. }
  3916. __skb_unlink(skb1, &tp->out_of_order_queue);
  3917. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3918. TCP_SKB_CB(skb1)->end_seq);
  3919. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3920. __kfree_skb(skb1);
  3921. }
  3922. add_sack:
  3923. if (tcp_is_sack(tp))
  3924. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3925. end:
  3926. if (skb)
  3927. skb_set_owner_r(skb, sk);
  3928. }
  3929. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3930. bool *fragstolen)
  3931. {
  3932. int eaten;
  3933. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3934. __skb_pull(skb, hdrlen);
  3935. eaten = (tail &&
  3936. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3937. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3938. if (!eaten) {
  3939. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3940. skb_set_owner_r(skb, sk);
  3941. }
  3942. return eaten;
  3943. }
  3944. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3945. {
  3946. struct sk_buff *skb = NULL;
  3947. struct tcphdr *th;
  3948. bool fragstolen;
  3949. if (size == 0)
  3950. return 0;
  3951. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3952. if (!skb)
  3953. goto err;
  3954. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3955. goto err_free;
  3956. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3957. skb_reset_transport_header(skb);
  3958. memset(th, 0, sizeof(*th));
  3959. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3960. goto err_free;
  3961. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3962. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3963. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3964. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3965. WARN_ON_ONCE(fragstolen); /* should not happen */
  3966. __kfree_skb(skb);
  3967. }
  3968. return size;
  3969. err_free:
  3970. kfree_skb(skb);
  3971. err:
  3972. return -ENOMEM;
  3973. }
  3974. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3975. {
  3976. const struct tcphdr *th = tcp_hdr(skb);
  3977. struct tcp_sock *tp = tcp_sk(sk);
  3978. int eaten = -1;
  3979. bool fragstolen = false;
  3980. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3981. goto drop;
  3982. skb_dst_drop(skb);
  3983. __skb_pull(skb, th->doff * 4);
  3984. TCP_ECN_accept_cwr(tp, skb);
  3985. tp->rx_opt.dsack = 0;
  3986. /* Queue data for delivery to the user.
  3987. * Packets in sequence go to the receive queue.
  3988. * Out of sequence packets to the out_of_order_queue.
  3989. */
  3990. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3991. if (tcp_receive_window(tp) == 0)
  3992. goto out_of_window;
  3993. /* Ok. In sequence. In window. */
  3994. if (tp->ucopy.task == current &&
  3995. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3996. sock_owned_by_user(sk) && !tp->urg_data) {
  3997. int chunk = min_t(unsigned int, skb->len,
  3998. tp->ucopy.len);
  3999. __set_current_state(TASK_RUNNING);
  4000. local_bh_enable();
  4001. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4002. tp->ucopy.len -= chunk;
  4003. tp->copied_seq += chunk;
  4004. eaten = (chunk == skb->len);
  4005. tcp_rcv_space_adjust(sk);
  4006. }
  4007. local_bh_disable();
  4008. }
  4009. if (eaten <= 0) {
  4010. queue_and_out:
  4011. if (eaten < 0 &&
  4012. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4013. goto drop;
  4014. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4015. }
  4016. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4017. if (skb->len)
  4018. tcp_event_data_recv(sk, skb);
  4019. if (th->fin)
  4020. tcp_fin(sk);
  4021. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4022. tcp_ofo_queue(sk);
  4023. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4024. * gap in queue is filled.
  4025. */
  4026. if (skb_queue_empty(&tp->out_of_order_queue))
  4027. inet_csk(sk)->icsk_ack.pingpong = 0;
  4028. }
  4029. if (tp->rx_opt.num_sacks)
  4030. tcp_sack_remove(tp);
  4031. tcp_fast_path_check(sk);
  4032. if (eaten > 0)
  4033. kfree_skb_partial(skb, fragstolen);
  4034. if (!sock_flag(sk, SOCK_DEAD))
  4035. sk->sk_data_ready(sk, 0);
  4036. return;
  4037. }
  4038. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4039. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4040. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4041. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4042. out_of_window:
  4043. tcp_enter_quickack_mode(sk);
  4044. inet_csk_schedule_ack(sk);
  4045. drop:
  4046. __kfree_skb(skb);
  4047. return;
  4048. }
  4049. /* Out of window. F.e. zero window probe. */
  4050. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4051. goto out_of_window;
  4052. tcp_enter_quickack_mode(sk);
  4053. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4054. /* Partial packet, seq < rcv_next < end_seq */
  4055. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4056. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4057. TCP_SKB_CB(skb)->end_seq);
  4058. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4059. /* If window is closed, drop tail of packet. But after
  4060. * remembering D-SACK for its head made in previous line.
  4061. */
  4062. if (!tcp_receive_window(tp))
  4063. goto out_of_window;
  4064. goto queue_and_out;
  4065. }
  4066. tcp_data_queue_ofo(sk, skb);
  4067. }
  4068. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4069. struct sk_buff_head *list)
  4070. {
  4071. struct sk_buff *next = NULL;
  4072. if (!skb_queue_is_last(list, skb))
  4073. next = skb_queue_next(list, skb);
  4074. __skb_unlink(skb, list);
  4075. __kfree_skb(skb);
  4076. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4077. return next;
  4078. }
  4079. /* Collapse contiguous sequence of skbs head..tail with
  4080. * sequence numbers start..end.
  4081. *
  4082. * If tail is NULL, this means until the end of the list.
  4083. *
  4084. * Segments with FIN/SYN are not collapsed (only because this
  4085. * simplifies code)
  4086. */
  4087. static void
  4088. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4089. struct sk_buff *head, struct sk_buff *tail,
  4090. u32 start, u32 end)
  4091. {
  4092. struct sk_buff *skb, *n;
  4093. bool end_of_skbs;
  4094. /* First, check that queue is collapsible and find
  4095. * the point where collapsing can be useful. */
  4096. skb = head;
  4097. restart:
  4098. end_of_skbs = true;
  4099. skb_queue_walk_from_safe(list, skb, n) {
  4100. if (skb == tail)
  4101. break;
  4102. /* No new bits? It is possible on ofo queue. */
  4103. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4104. skb = tcp_collapse_one(sk, skb, list);
  4105. if (!skb)
  4106. break;
  4107. goto restart;
  4108. }
  4109. /* The first skb to collapse is:
  4110. * - not SYN/FIN and
  4111. * - bloated or contains data before "start" or
  4112. * overlaps to the next one.
  4113. */
  4114. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4115. (tcp_win_from_space(skb->truesize) > skb->len ||
  4116. before(TCP_SKB_CB(skb)->seq, start))) {
  4117. end_of_skbs = false;
  4118. break;
  4119. }
  4120. if (!skb_queue_is_last(list, skb)) {
  4121. struct sk_buff *next = skb_queue_next(list, skb);
  4122. if (next != tail &&
  4123. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4124. end_of_skbs = false;
  4125. break;
  4126. }
  4127. }
  4128. /* Decided to skip this, advance start seq. */
  4129. start = TCP_SKB_CB(skb)->end_seq;
  4130. }
  4131. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4132. return;
  4133. while (before(start, end)) {
  4134. struct sk_buff *nskb;
  4135. unsigned int header = skb_headroom(skb);
  4136. int copy = SKB_MAX_ORDER(header, 0);
  4137. /* Too big header? This can happen with IPv6. */
  4138. if (copy < 0)
  4139. return;
  4140. if (end - start < copy)
  4141. copy = end - start;
  4142. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4143. if (!nskb)
  4144. return;
  4145. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4146. skb_set_network_header(nskb, (skb_network_header(skb) -
  4147. skb->head));
  4148. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4149. skb->head));
  4150. skb_reserve(nskb, header);
  4151. memcpy(nskb->head, skb->head, header);
  4152. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4153. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4154. __skb_queue_before(list, skb, nskb);
  4155. skb_set_owner_r(nskb, sk);
  4156. /* Copy data, releasing collapsed skbs. */
  4157. while (copy > 0) {
  4158. int offset = start - TCP_SKB_CB(skb)->seq;
  4159. int size = TCP_SKB_CB(skb)->end_seq - start;
  4160. BUG_ON(offset < 0);
  4161. if (size > 0) {
  4162. size = min(copy, size);
  4163. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4164. BUG();
  4165. TCP_SKB_CB(nskb)->end_seq += size;
  4166. copy -= size;
  4167. start += size;
  4168. }
  4169. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4170. skb = tcp_collapse_one(sk, skb, list);
  4171. if (!skb ||
  4172. skb == tail ||
  4173. tcp_hdr(skb)->syn ||
  4174. tcp_hdr(skb)->fin)
  4175. return;
  4176. }
  4177. }
  4178. }
  4179. }
  4180. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4181. * and tcp_collapse() them until all the queue is collapsed.
  4182. */
  4183. static void tcp_collapse_ofo_queue(struct sock *sk)
  4184. {
  4185. struct tcp_sock *tp = tcp_sk(sk);
  4186. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4187. struct sk_buff *head;
  4188. u32 start, end;
  4189. if (skb == NULL)
  4190. return;
  4191. start = TCP_SKB_CB(skb)->seq;
  4192. end = TCP_SKB_CB(skb)->end_seq;
  4193. head = skb;
  4194. for (;;) {
  4195. struct sk_buff *next = NULL;
  4196. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4197. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4198. skb = next;
  4199. /* Segment is terminated when we see gap or when
  4200. * we are at the end of all the queue. */
  4201. if (!skb ||
  4202. after(TCP_SKB_CB(skb)->seq, end) ||
  4203. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4204. tcp_collapse(sk, &tp->out_of_order_queue,
  4205. head, skb, start, end);
  4206. head = skb;
  4207. if (!skb)
  4208. break;
  4209. /* Start new segment */
  4210. start = TCP_SKB_CB(skb)->seq;
  4211. end = TCP_SKB_CB(skb)->end_seq;
  4212. } else {
  4213. if (before(TCP_SKB_CB(skb)->seq, start))
  4214. start = TCP_SKB_CB(skb)->seq;
  4215. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4216. end = TCP_SKB_CB(skb)->end_seq;
  4217. }
  4218. }
  4219. }
  4220. /*
  4221. * Purge the out-of-order queue.
  4222. * Return true if queue was pruned.
  4223. */
  4224. static bool tcp_prune_ofo_queue(struct sock *sk)
  4225. {
  4226. struct tcp_sock *tp = tcp_sk(sk);
  4227. bool res = false;
  4228. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4229. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4230. __skb_queue_purge(&tp->out_of_order_queue);
  4231. /* Reset SACK state. A conforming SACK implementation will
  4232. * do the same at a timeout based retransmit. When a connection
  4233. * is in a sad state like this, we care only about integrity
  4234. * of the connection not performance.
  4235. */
  4236. if (tp->rx_opt.sack_ok)
  4237. tcp_sack_reset(&tp->rx_opt);
  4238. sk_mem_reclaim(sk);
  4239. res = true;
  4240. }
  4241. return res;
  4242. }
  4243. /* Reduce allocated memory if we can, trying to get
  4244. * the socket within its memory limits again.
  4245. *
  4246. * Return less than zero if we should start dropping frames
  4247. * until the socket owning process reads some of the data
  4248. * to stabilize the situation.
  4249. */
  4250. static int tcp_prune_queue(struct sock *sk)
  4251. {
  4252. struct tcp_sock *tp = tcp_sk(sk);
  4253. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4254. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4255. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4256. tcp_clamp_window(sk);
  4257. else if (sk_under_memory_pressure(sk))
  4258. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4259. tcp_collapse_ofo_queue(sk);
  4260. if (!skb_queue_empty(&sk->sk_receive_queue))
  4261. tcp_collapse(sk, &sk->sk_receive_queue,
  4262. skb_peek(&sk->sk_receive_queue),
  4263. NULL,
  4264. tp->copied_seq, tp->rcv_nxt);
  4265. sk_mem_reclaim(sk);
  4266. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4267. return 0;
  4268. /* Collapsing did not help, destructive actions follow.
  4269. * This must not ever occur. */
  4270. tcp_prune_ofo_queue(sk);
  4271. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4272. return 0;
  4273. /* If we are really being abused, tell the caller to silently
  4274. * drop receive data on the floor. It will get retransmitted
  4275. * and hopefully then we'll have sufficient space.
  4276. */
  4277. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4278. /* Massive buffer overcommit. */
  4279. tp->pred_flags = 0;
  4280. return -1;
  4281. }
  4282. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4283. * As additional protections, we do not touch cwnd in retransmission phases,
  4284. * and if application hit its sndbuf limit recently.
  4285. */
  4286. void tcp_cwnd_application_limited(struct sock *sk)
  4287. {
  4288. struct tcp_sock *tp = tcp_sk(sk);
  4289. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4290. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4291. /* Limited by application or receiver window. */
  4292. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4293. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4294. if (win_used < tp->snd_cwnd) {
  4295. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4296. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4297. }
  4298. tp->snd_cwnd_used = 0;
  4299. }
  4300. tp->snd_cwnd_stamp = tcp_time_stamp;
  4301. }
  4302. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4303. {
  4304. const struct tcp_sock *tp = tcp_sk(sk);
  4305. /* If the user specified a specific send buffer setting, do
  4306. * not modify it.
  4307. */
  4308. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4309. return false;
  4310. /* If we are under global TCP memory pressure, do not expand. */
  4311. if (sk_under_memory_pressure(sk))
  4312. return false;
  4313. /* If we are under soft global TCP memory pressure, do not expand. */
  4314. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4315. return false;
  4316. /* If we filled the congestion window, do not expand. */
  4317. if (tp->packets_out >= tp->snd_cwnd)
  4318. return false;
  4319. return true;
  4320. }
  4321. /* When incoming ACK allowed to free some skb from write_queue,
  4322. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4323. * on the exit from tcp input handler.
  4324. *
  4325. * PROBLEM: sndbuf expansion does not work well with largesend.
  4326. */
  4327. static void tcp_new_space(struct sock *sk)
  4328. {
  4329. struct tcp_sock *tp = tcp_sk(sk);
  4330. if (tcp_should_expand_sndbuf(sk)) {
  4331. int sndmem = SKB_TRUESIZE(max_t(u32,
  4332. tp->rx_opt.mss_clamp,
  4333. tp->mss_cache) +
  4334. MAX_TCP_HEADER);
  4335. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4336. tp->reordering + 1);
  4337. sndmem *= 2 * demanded;
  4338. if (sndmem > sk->sk_sndbuf)
  4339. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4340. tp->snd_cwnd_stamp = tcp_time_stamp;
  4341. }
  4342. sk->sk_write_space(sk);
  4343. }
  4344. static void tcp_check_space(struct sock *sk)
  4345. {
  4346. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4347. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4348. if (sk->sk_socket &&
  4349. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4350. tcp_new_space(sk);
  4351. }
  4352. }
  4353. static inline void tcp_data_snd_check(struct sock *sk)
  4354. {
  4355. tcp_push_pending_frames(sk);
  4356. tcp_check_space(sk);
  4357. }
  4358. /*
  4359. * Check if sending an ack is needed.
  4360. */
  4361. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4362. {
  4363. struct tcp_sock *tp = tcp_sk(sk);
  4364. /* More than one full frame received... */
  4365. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4366. /* ... and right edge of window advances far enough.
  4367. * (tcp_recvmsg() will send ACK otherwise). Or...
  4368. */
  4369. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4370. /* We ACK each frame or... */
  4371. tcp_in_quickack_mode(sk) ||
  4372. /* We have out of order data. */
  4373. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4374. /* Then ack it now */
  4375. tcp_send_ack(sk);
  4376. } else {
  4377. /* Else, send delayed ack. */
  4378. tcp_send_delayed_ack(sk);
  4379. }
  4380. }
  4381. static inline void tcp_ack_snd_check(struct sock *sk)
  4382. {
  4383. if (!inet_csk_ack_scheduled(sk)) {
  4384. /* We sent a data segment already. */
  4385. return;
  4386. }
  4387. __tcp_ack_snd_check(sk, 1);
  4388. }
  4389. /*
  4390. * This routine is only called when we have urgent data
  4391. * signaled. Its the 'slow' part of tcp_urg. It could be
  4392. * moved inline now as tcp_urg is only called from one
  4393. * place. We handle URGent data wrong. We have to - as
  4394. * BSD still doesn't use the correction from RFC961.
  4395. * For 1003.1g we should support a new option TCP_STDURG to permit
  4396. * either form (or just set the sysctl tcp_stdurg).
  4397. */
  4398. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4399. {
  4400. struct tcp_sock *tp = tcp_sk(sk);
  4401. u32 ptr = ntohs(th->urg_ptr);
  4402. if (ptr && !sysctl_tcp_stdurg)
  4403. ptr--;
  4404. ptr += ntohl(th->seq);
  4405. /* Ignore urgent data that we've already seen and read. */
  4406. if (after(tp->copied_seq, ptr))
  4407. return;
  4408. /* Do not replay urg ptr.
  4409. *
  4410. * NOTE: interesting situation not covered by specs.
  4411. * Misbehaving sender may send urg ptr, pointing to segment,
  4412. * which we already have in ofo queue. We are not able to fetch
  4413. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4414. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4415. * situations. But it is worth to think about possibility of some
  4416. * DoSes using some hypothetical application level deadlock.
  4417. */
  4418. if (before(ptr, tp->rcv_nxt))
  4419. return;
  4420. /* Do we already have a newer (or duplicate) urgent pointer? */
  4421. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4422. return;
  4423. /* Tell the world about our new urgent pointer. */
  4424. sk_send_sigurg(sk);
  4425. /* We may be adding urgent data when the last byte read was
  4426. * urgent. To do this requires some care. We cannot just ignore
  4427. * tp->copied_seq since we would read the last urgent byte again
  4428. * as data, nor can we alter copied_seq until this data arrives
  4429. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4430. *
  4431. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4432. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4433. * and expect that both A and B disappear from stream. This is _wrong_.
  4434. * Though this happens in BSD with high probability, this is occasional.
  4435. * Any application relying on this is buggy. Note also, that fix "works"
  4436. * only in this artificial test. Insert some normal data between A and B and we will
  4437. * decline of BSD again. Verdict: it is better to remove to trap
  4438. * buggy users.
  4439. */
  4440. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4441. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4442. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4443. tp->copied_seq++;
  4444. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4445. __skb_unlink(skb, &sk->sk_receive_queue);
  4446. __kfree_skb(skb);
  4447. }
  4448. }
  4449. tp->urg_data = TCP_URG_NOTYET;
  4450. tp->urg_seq = ptr;
  4451. /* Disable header prediction. */
  4452. tp->pred_flags = 0;
  4453. }
  4454. /* This is the 'fast' part of urgent handling. */
  4455. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4456. {
  4457. struct tcp_sock *tp = tcp_sk(sk);
  4458. /* Check if we get a new urgent pointer - normally not. */
  4459. if (th->urg)
  4460. tcp_check_urg(sk, th);
  4461. /* Do we wait for any urgent data? - normally not... */
  4462. if (tp->urg_data == TCP_URG_NOTYET) {
  4463. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4464. th->syn;
  4465. /* Is the urgent pointer pointing into this packet? */
  4466. if (ptr < skb->len) {
  4467. u8 tmp;
  4468. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4469. BUG();
  4470. tp->urg_data = TCP_URG_VALID | tmp;
  4471. if (!sock_flag(sk, SOCK_DEAD))
  4472. sk->sk_data_ready(sk, 0);
  4473. }
  4474. }
  4475. }
  4476. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4477. {
  4478. struct tcp_sock *tp = tcp_sk(sk);
  4479. int chunk = skb->len - hlen;
  4480. int err;
  4481. local_bh_enable();
  4482. if (skb_csum_unnecessary(skb))
  4483. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4484. else
  4485. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4486. tp->ucopy.iov);
  4487. if (!err) {
  4488. tp->ucopy.len -= chunk;
  4489. tp->copied_seq += chunk;
  4490. tcp_rcv_space_adjust(sk);
  4491. }
  4492. local_bh_disable();
  4493. return err;
  4494. }
  4495. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4496. struct sk_buff *skb)
  4497. {
  4498. __sum16 result;
  4499. if (sock_owned_by_user(sk)) {
  4500. local_bh_enable();
  4501. result = __tcp_checksum_complete(skb);
  4502. local_bh_disable();
  4503. } else {
  4504. result = __tcp_checksum_complete(skb);
  4505. }
  4506. return result;
  4507. }
  4508. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4509. struct sk_buff *skb)
  4510. {
  4511. return !skb_csum_unnecessary(skb) &&
  4512. __tcp_checksum_complete_user(sk, skb);
  4513. }
  4514. #ifdef CONFIG_NET_DMA
  4515. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4516. int hlen)
  4517. {
  4518. struct tcp_sock *tp = tcp_sk(sk);
  4519. int chunk = skb->len - hlen;
  4520. int dma_cookie;
  4521. bool copied_early = false;
  4522. if (tp->ucopy.wakeup)
  4523. return false;
  4524. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4525. tp->ucopy.dma_chan = net_dma_find_channel();
  4526. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4527. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4528. skb, hlen,
  4529. tp->ucopy.iov, chunk,
  4530. tp->ucopy.pinned_list);
  4531. if (dma_cookie < 0)
  4532. goto out;
  4533. tp->ucopy.dma_cookie = dma_cookie;
  4534. copied_early = true;
  4535. tp->ucopy.len -= chunk;
  4536. tp->copied_seq += chunk;
  4537. tcp_rcv_space_adjust(sk);
  4538. if ((tp->ucopy.len == 0) ||
  4539. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4540. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4541. tp->ucopy.wakeup = 1;
  4542. sk->sk_data_ready(sk, 0);
  4543. }
  4544. } else if (chunk > 0) {
  4545. tp->ucopy.wakeup = 1;
  4546. sk->sk_data_ready(sk, 0);
  4547. }
  4548. out:
  4549. return copied_early;
  4550. }
  4551. #endif /* CONFIG_NET_DMA */
  4552. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4553. * play significant role here.
  4554. */
  4555. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4556. const struct tcphdr *th, int syn_inerr)
  4557. {
  4558. const u8 *hash_location;
  4559. struct tcp_sock *tp = tcp_sk(sk);
  4560. /* RFC1323: H1. Apply PAWS check first. */
  4561. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4562. tp->rx_opt.saw_tstamp &&
  4563. tcp_paws_discard(sk, skb)) {
  4564. if (!th->rst) {
  4565. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4566. tcp_send_dupack(sk, skb);
  4567. goto discard;
  4568. }
  4569. /* Reset is accepted even if it did not pass PAWS. */
  4570. }
  4571. /* Step 1: check sequence number */
  4572. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4573. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4574. * (RST) segments are validated by checking their SEQ-fields."
  4575. * And page 69: "If an incoming segment is not acceptable,
  4576. * an acknowledgment should be sent in reply (unless the RST
  4577. * bit is set, if so drop the segment and return)".
  4578. */
  4579. if (!th->rst) {
  4580. if (th->syn)
  4581. goto syn_challenge;
  4582. tcp_send_dupack(sk, skb);
  4583. }
  4584. goto discard;
  4585. }
  4586. /* Step 2: check RST bit */
  4587. if (th->rst) {
  4588. /* RFC 5961 3.2 :
  4589. * If sequence number exactly matches RCV.NXT, then
  4590. * RESET the connection
  4591. * else
  4592. * Send a challenge ACK
  4593. */
  4594. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4595. tcp_reset(sk);
  4596. else
  4597. tcp_send_challenge_ack(sk);
  4598. goto discard;
  4599. }
  4600. /* step 3: check security and precedence [ignored] */
  4601. /* step 4: Check for a SYN
  4602. * RFC 5691 4.2 : Send a challenge ack
  4603. */
  4604. if (th->syn) {
  4605. syn_challenge:
  4606. if (syn_inerr)
  4607. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4608. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4609. tcp_send_challenge_ack(sk);
  4610. goto discard;
  4611. }
  4612. return true;
  4613. discard:
  4614. __kfree_skb(skb);
  4615. return false;
  4616. }
  4617. /*
  4618. * TCP receive function for the ESTABLISHED state.
  4619. *
  4620. * It is split into a fast path and a slow path. The fast path is
  4621. * disabled when:
  4622. * - A zero window was announced from us - zero window probing
  4623. * is only handled properly in the slow path.
  4624. * - Out of order segments arrived.
  4625. * - Urgent data is expected.
  4626. * - There is no buffer space left
  4627. * - Unexpected TCP flags/window values/header lengths are received
  4628. * (detected by checking the TCP header against pred_flags)
  4629. * - Data is sent in both directions. Fast path only supports pure senders
  4630. * or pure receivers (this means either the sequence number or the ack
  4631. * value must stay constant)
  4632. * - Unexpected TCP option.
  4633. *
  4634. * When these conditions are not satisfied it drops into a standard
  4635. * receive procedure patterned after RFC793 to handle all cases.
  4636. * The first three cases are guaranteed by proper pred_flags setting,
  4637. * the rest is checked inline. Fast processing is turned on in
  4638. * tcp_data_queue when everything is OK.
  4639. */
  4640. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4641. const struct tcphdr *th, unsigned int len)
  4642. {
  4643. struct tcp_sock *tp = tcp_sk(sk);
  4644. if (unlikely(sk->sk_rx_dst == NULL))
  4645. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4646. /*
  4647. * Header prediction.
  4648. * The code loosely follows the one in the famous
  4649. * "30 instruction TCP receive" Van Jacobson mail.
  4650. *
  4651. * Van's trick is to deposit buffers into socket queue
  4652. * on a device interrupt, to call tcp_recv function
  4653. * on the receive process context and checksum and copy
  4654. * the buffer to user space. smart...
  4655. *
  4656. * Our current scheme is not silly either but we take the
  4657. * extra cost of the net_bh soft interrupt processing...
  4658. * We do checksum and copy also but from device to kernel.
  4659. */
  4660. tp->rx_opt.saw_tstamp = 0;
  4661. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4662. * if header_prediction is to be made
  4663. * 'S' will always be tp->tcp_header_len >> 2
  4664. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4665. * turn it off (when there are holes in the receive
  4666. * space for instance)
  4667. * PSH flag is ignored.
  4668. */
  4669. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4670. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4671. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4672. int tcp_header_len = tp->tcp_header_len;
  4673. /* Timestamp header prediction: tcp_header_len
  4674. * is automatically equal to th->doff*4 due to pred_flags
  4675. * match.
  4676. */
  4677. /* Check timestamp */
  4678. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4679. /* No? Slow path! */
  4680. if (!tcp_parse_aligned_timestamp(tp, th))
  4681. goto slow_path;
  4682. /* If PAWS failed, check it more carefully in slow path */
  4683. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4684. goto slow_path;
  4685. /* DO NOT update ts_recent here, if checksum fails
  4686. * and timestamp was corrupted part, it will result
  4687. * in a hung connection since we will drop all
  4688. * future packets due to the PAWS test.
  4689. */
  4690. }
  4691. if (len <= tcp_header_len) {
  4692. /* Bulk data transfer: sender */
  4693. if (len == tcp_header_len) {
  4694. /* Predicted packet is in window by definition.
  4695. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4696. * Hence, check seq<=rcv_wup reduces to:
  4697. */
  4698. if (tcp_header_len ==
  4699. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4700. tp->rcv_nxt == tp->rcv_wup)
  4701. tcp_store_ts_recent(tp);
  4702. /* We know that such packets are checksummed
  4703. * on entry.
  4704. */
  4705. tcp_ack(sk, skb, 0);
  4706. __kfree_skb(skb);
  4707. tcp_data_snd_check(sk);
  4708. return 0;
  4709. } else { /* Header too small */
  4710. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4711. goto discard;
  4712. }
  4713. } else {
  4714. int eaten = 0;
  4715. int copied_early = 0;
  4716. bool fragstolen = false;
  4717. if (tp->copied_seq == tp->rcv_nxt &&
  4718. len - tcp_header_len <= tp->ucopy.len) {
  4719. #ifdef CONFIG_NET_DMA
  4720. if (tp->ucopy.task == current &&
  4721. sock_owned_by_user(sk) &&
  4722. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4723. copied_early = 1;
  4724. eaten = 1;
  4725. }
  4726. #endif
  4727. if (tp->ucopy.task == current &&
  4728. sock_owned_by_user(sk) && !copied_early) {
  4729. __set_current_state(TASK_RUNNING);
  4730. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4731. eaten = 1;
  4732. }
  4733. if (eaten) {
  4734. /* Predicted packet is in window by definition.
  4735. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4736. * Hence, check seq<=rcv_wup reduces to:
  4737. */
  4738. if (tcp_header_len ==
  4739. (sizeof(struct tcphdr) +
  4740. TCPOLEN_TSTAMP_ALIGNED) &&
  4741. tp->rcv_nxt == tp->rcv_wup)
  4742. tcp_store_ts_recent(tp);
  4743. tcp_rcv_rtt_measure_ts(sk, skb);
  4744. __skb_pull(skb, tcp_header_len);
  4745. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4746. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4747. }
  4748. if (copied_early)
  4749. tcp_cleanup_rbuf(sk, skb->len);
  4750. }
  4751. if (!eaten) {
  4752. if (tcp_checksum_complete_user(sk, skb))
  4753. goto csum_error;
  4754. if ((int)skb->truesize > sk->sk_forward_alloc)
  4755. goto step5;
  4756. /* Predicted packet is in window by definition.
  4757. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4758. * Hence, check seq<=rcv_wup reduces to:
  4759. */
  4760. if (tcp_header_len ==
  4761. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4762. tp->rcv_nxt == tp->rcv_wup)
  4763. tcp_store_ts_recent(tp);
  4764. tcp_rcv_rtt_measure_ts(sk, skb);
  4765. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4766. /* Bulk data transfer: receiver */
  4767. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4768. &fragstolen);
  4769. }
  4770. tcp_event_data_recv(sk, skb);
  4771. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4772. /* Well, only one small jumplet in fast path... */
  4773. tcp_ack(sk, skb, FLAG_DATA);
  4774. tcp_data_snd_check(sk);
  4775. if (!inet_csk_ack_scheduled(sk))
  4776. goto no_ack;
  4777. }
  4778. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4779. __tcp_ack_snd_check(sk, 0);
  4780. no_ack:
  4781. #ifdef CONFIG_NET_DMA
  4782. if (copied_early)
  4783. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4784. else
  4785. #endif
  4786. if (eaten)
  4787. kfree_skb_partial(skb, fragstolen);
  4788. sk->sk_data_ready(sk, 0);
  4789. return 0;
  4790. }
  4791. }
  4792. slow_path:
  4793. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4794. goto csum_error;
  4795. if (!th->ack && !th->rst)
  4796. goto discard;
  4797. /*
  4798. * Standard slow path.
  4799. */
  4800. if (!tcp_validate_incoming(sk, skb, th, 1))
  4801. return 0;
  4802. step5:
  4803. if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4804. goto discard;
  4805. /* ts_recent update must be made after we are sure that the packet
  4806. * is in window.
  4807. */
  4808. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4809. tcp_rcv_rtt_measure_ts(sk, skb);
  4810. /* Process urgent data. */
  4811. tcp_urg(sk, skb, th);
  4812. /* step 7: process the segment text */
  4813. tcp_data_queue(sk, skb);
  4814. tcp_data_snd_check(sk);
  4815. tcp_ack_snd_check(sk);
  4816. return 0;
  4817. csum_error:
  4818. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4819. discard:
  4820. __kfree_skb(skb);
  4821. return 0;
  4822. }
  4823. EXPORT_SYMBOL(tcp_rcv_established);
  4824. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4825. {
  4826. struct tcp_sock *tp = tcp_sk(sk);
  4827. struct inet_connection_sock *icsk = inet_csk(sk);
  4828. tcp_set_state(sk, TCP_ESTABLISHED);
  4829. if (skb != NULL) {
  4830. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4831. security_inet_conn_established(sk, skb);
  4832. }
  4833. /* Make sure socket is routed, for correct metrics. */
  4834. icsk->icsk_af_ops->rebuild_header(sk);
  4835. tcp_init_metrics(sk);
  4836. tcp_init_congestion_control(sk);
  4837. /* Prevent spurious tcp_cwnd_restart() on first data
  4838. * packet.
  4839. */
  4840. tp->lsndtime = tcp_time_stamp;
  4841. tcp_init_buffer_space(sk);
  4842. if (sock_flag(sk, SOCK_KEEPOPEN))
  4843. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4844. if (!tp->rx_opt.snd_wscale)
  4845. __tcp_fast_path_on(tp, tp->snd_wnd);
  4846. else
  4847. tp->pred_flags = 0;
  4848. if (!sock_flag(sk, SOCK_DEAD)) {
  4849. sk->sk_state_change(sk);
  4850. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4851. }
  4852. }
  4853. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4854. struct tcp_fastopen_cookie *cookie)
  4855. {
  4856. struct tcp_sock *tp = tcp_sk(sk);
  4857. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4858. u16 mss = tp->rx_opt.mss_clamp;
  4859. bool syn_drop;
  4860. if (mss == tp->rx_opt.user_mss) {
  4861. struct tcp_options_received opt;
  4862. const u8 *hash_location;
  4863. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4864. tcp_clear_options(&opt);
  4865. opt.user_mss = opt.mss_clamp = 0;
  4866. tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
  4867. mss = opt.mss_clamp;
  4868. }
  4869. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4870. cookie->len = -1;
  4871. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4872. * the remote receives only the retransmitted (regular) SYNs: either
  4873. * the original SYN-data or the corresponding SYN-ACK is lost.
  4874. */
  4875. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4876. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4877. if (data) { /* Retransmit unacked data in SYN */
  4878. tcp_for_write_queue_from(data, sk) {
  4879. if (data == tcp_send_head(sk) ||
  4880. __tcp_retransmit_skb(sk, data))
  4881. break;
  4882. }
  4883. tcp_rearm_rto(sk);
  4884. return true;
  4885. }
  4886. tp->syn_data_acked = tp->syn_data;
  4887. return false;
  4888. }
  4889. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4890. const struct tcphdr *th, unsigned int len)
  4891. {
  4892. const u8 *hash_location;
  4893. struct inet_connection_sock *icsk = inet_csk(sk);
  4894. struct tcp_sock *tp = tcp_sk(sk);
  4895. struct tcp_cookie_values *cvp = tp->cookie_values;
  4896. struct tcp_fastopen_cookie foc = { .len = -1 };
  4897. int saved_clamp = tp->rx_opt.mss_clamp;
  4898. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
  4899. if (tp->rx_opt.saw_tstamp)
  4900. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4901. if (th->ack) {
  4902. /* rfc793:
  4903. * "If the state is SYN-SENT then
  4904. * first check the ACK bit
  4905. * If the ACK bit is set
  4906. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4907. * a reset (unless the RST bit is set, if so drop
  4908. * the segment and return)"
  4909. */
  4910. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4911. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4912. goto reset_and_undo;
  4913. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4914. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4915. tcp_time_stamp)) {
  4916. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4917. goto reset_and_undo;
  4918. }
  4919. /* Now ACK is acceptable.
  4920. *
  4921. * "If the RST bit is set
  4922. * If the ACK was acceptable then signal the user "error:
  4923. * connection reset", drop the segment, enter CLOSED state,
  4924. * delete TCB, and return."
  4925. */
  4926. if (th->rst) {
  4927. tcp_reset(sk);
  4928. goto discard;
  4929. }
  4930. /* rfc793:
  4931. * "fifth, if neither of the SYN or RST bits is set then
  4932. * drop the segment and return."
  4933. *
  4934. * See note below!
  4935. * --ANK(990513)
  4936. */
  4937. if (!th->syn)
  4938. goto discard_and_undo;
  4939. /* rfc793:
  4940. * "If the SYN bit is on ...
  4941. * are acceptable then ...
  4942. * (our SYN has been ACKed), change the connection
  4943. * state to ESTABLISHED..."
  4944. */
  4945. TCP_ECN_rcv_synack(tp, th);
  4946. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4947. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4948. /* Ok.. it's good. Set up sequence numbers and
  4949. * move to established.
  4950. */
  4951. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4952. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4953. /* RFC1323: The window in SYN & SYN/ACK segments is
  4954. * never scaled.
  4955. */
  4956. tp->snd_wnd = ntohs(th->window);
  4957. if (!tp->rx_opt.wscale_ok) {
  4958. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4959. tp->window_clamp = min(tp->window_clamp, 65535U);
  4960. }
  4961. if (tp->rx_opt.saw_tstamp) {
  4962. tp->rx_opt.tstamp_ok = 1;
  4963. tp->tcp_header_len =
  4964. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4965. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4966. tcp_store_ts_recent(tp);
  4967. } else {
  4968. tp->tcp_header_len = sizeof(struct tcphdr);
  4969. }
  4970. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4971. tcp_enable_fack(tp);
  4972. tcp_mtup_init(sk);
  4973. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4974. tcp_initialize_rcv_mss(sk);
  4975. /* Remember, tcp_poll() does not lock socket!
  4976. * Change state from SYN-SENT only after copied_seq
  4977. * is initialized. */
  4978. tp->copied_seq = tp->rcv_nxt;
  4979. if (cvp != NULL &&
  4980. cvp->cookie_pair_size > 0 &&
  4981. tp->rx_opt.cookie_plus > 0) {
  4982. int cookie_size = tp->rx_opt.cookie_plus
  4983. - TCPOLEN_COOKIE_BASE;
  4984. int cookie_pair_size = cookie_size
  4985. + cvp->cookie_desired;
  4986. /* A cookie extension option was sent and returned.
  4987. * Note that each incoming SYNACK replaces the
  4988. * Responder cookie. The initial exchange is most
  4989. * fragile, as protection against spoofing relies
  4990. * entirely upon the sequence and timestamp (above).
  4991. * This replacement strategy allows the correct pair to
  4992. * pass through, while any others will be filtered via
  4993. * Responder verification later.
  4994. */
  4995. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4996. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4997. hash_location, cookie_size);
  4998. cvp->cookie_pair_size = cookie_pair_size;
  4999. }
  5000. }
  5001. smp_mb();
  5002. tcp_finish_connect(sk, skb);
  5003. if ((tp->syn_fastopen || tp->syn_data) &&
  5004. tcp_rcv_fastopen_synack(sk, skb, &foc))
  5005. return -1;
  5006. if (sk->sk_write_pending ||
  5007. icsk->icsk_accept_queue.rskq_defer_accept ||
  5008. icsk->icsk_ack.pingpong) {
  5009. /* Save one ACK. Data will be ready after
  5010. * several ticks, if write_pending is set.
  5011. *
  5012. * It may be deleted, but with this feature tcpdumps
  5013. * look so _wonderfully_ clever, that I was not able
  5014. * to stand against the temptation 8) --ANK
  5015. */
  5016. inet_csk_schedule_ack(sk);
  5017. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5018. tcp_enter_quickack_mode(sk);
  5019. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5020. TCP_DELACK_MAX, TCP_RTO_MAX);
  5021. discard:
  5022. __kfree_skb(skb);
  5023. return 0;
  5024. } else {
  5025. tcp_send_ack(sk);
  5026. }
  5027. return -1;
  5028. }
  5029. /* No ACK in the segment */
  5030. if (th->rst) {
  5031. /* rfc793:
  5032. * "If the RST bit is set
  5033. *
  5034. * Otherwise (no ACK) drop the segment and return."
  5035. */
  5036. goto discard_and_undo;
  5037. }
  5038. /* PAWS check. */
  5039. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5040. tcp_paws_reject(&tp->rx_opt, 0))
  5041. goto discard_and_undo;
  5042. if (th->syn) {
  5043. /* We see SYN without ACK. It is attempt of
  5044. * simultaneous connect with crossed SYNs.
  5045. * Particularly, it can be connect to self.
  5046. */
  5047. tcp_set_state(sk, TCP_SYN_RECV);
  5048. if (tp->rx_opt.saw_tstamp) {
  5049. tp->rx_opt.tstamp_ok = 1;
  5050. tcp_store_ts_recent(tp);
  5051. tp->tcp_header_len =
  5052. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5053. } else {
  5054. tp->tcp_header_len = sizeof(struct tcphdr);
  5055. }
  5056. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5057. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5058. /* RFC1323: The window in SYN & SYN/ACK segments is
  5059. * never scaled.
  5060. */
  5061. tp->snd_wnd = ntohs(th->window);
  5062. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5063. tp->max_window = tp->snd_wnd;
  5064. TCP_ECN_rcv_syn(tp, th);
  5065. tcp_mtup_init(sk);
  5066. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5067. tcp_initialize_rcv_mss(sk);
  5068. tcp_send_synack(sk);
  5069. #if 0
  5070. /* Note, we could accept data and URG from this segment.
  5071. * There are no obstacles to make this (except that we must
  5072. * either change tcp_recvmsg() to prevent it from returning data
  5073. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5074. *
  5075. * However, if we ignore data in ACKless segments sometimes,
  5076. * we have no reasons to accept it sometimes.
  5077. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5078. * is not flawless. So, discard packet for sanity.
  5079. * Uncomment this return to process the data.
  5080. */
  5081. return -1;
  5082. #else
  5083. goto discard;
  5084. #endif
  5085. }
  5086. /* "fifth, if neither of the SYN or RST bits is set then
  5087. * drop the segment and return."
  5088. */
  5089. discard_and_undo:
  5090. tcp_clear_options(&tp->rx_opt);
  5091. tp->rx_opt.mss_clamp = saved_clamp;
  5092. goto discard;
  5093. reset_and_undo:
  5094. tcp_clear_options(&tp->rx_opt);
  5095. tp->rx_opt.mss_clamp = saved_clamp;
  5096. return 1;
  5097. }
  5098. /*
  5099. * This function implements the receiving procedure of RFC 793 for
  5100. * all states except ESTABLISHED and TIME_WAIT.
  5101. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5102. * address independent.
  5103. */
  5104. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5105. const struct tcphdr *th, unsigned int len)
  5106. {
  5107. struct tcp_sock *tp = tcp_sk(sk);
  5108. struct inet_connection_sock *icsk = inet_csk(sk);
  5109. struct request_sock *req;
  5110. int queued = 0;
  5111. tp->rx_opt.saw_tstamp = 0;
  5112. switch (sk->sk_state) {
  5113. case TCP_CLOSE:
  5114. goto discard;
  5115. case TCP_LISTEN:
  5116. if (th->ack)
  5117. return 1;
  5118. if (th->rst)
  5119. goto discard;
  5120. if (th->syn) {
  5121. if (th->fin)
  5122. goto discard;
  5123. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5124. return 1;
  5125. /* Now we have several options: In theory there is
  5126. * nothing else in the frame. KA9Q has an option to
  5127. * send data with the syn, BSD accepts data with the
  5128. * syn up to the [to be] advertised window and
  5129. * Solaris 2.1 gives you a protocol error. For now
  5130. * we just ignore it, that fits the spec precisely
  5131. * and avoids incompatibilities. It would be nice in
  5132. * future to drop through and process the data.
  5133. *
  5134. * Now that TTCP is starting to be used we ought to
  5135. * queue this data.
  5136. * But, this leaves one open to an easy denial of
  5137. * service attack, and SYN cookies can't defend
  5138. * against this problem. So, we drop the data
  5139. * in the interest of security over speed unless
  5140. * it's still in use.
  5141. */
  5142. kfree_skb(skb);
  5143. return 0;
  5144. }
  5145. goto discard;
  5146. case TCP_SYN_SENT:
  5147. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5148. if (queued >= 0)
  5149. return queued;
  5150. /* Do step6 onward by hand. */
  5151. tcp_urg(sk, skb, th);
  5152. __kfree_skb(skb);
  5153. tcp_data_snd_check(sk);
  5154. return 0;
  5155. }
  5156. req = tp->fastopen_rsk;
  5157. if (req != NULL) {
  5158. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5159. sk->sk_state != TCP_FIN_WAIT1);
  5160. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  5161. goto discard;
  5162. }
  5163. if (!th->ack && !th->rst)
  5164. goto discard;
  5165. if (!tcp_validate_incoming(sk, skb, th, 0))
  5166. return 0;
  5167. /* step 5: check the ACK field */
  5168. if (true) {
  5169. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5170. switch (sk->sk_state) {
  5171. case TCP_SYN_RECV:
  5172. if (acceptable) {
  5173. /* Once we leave TCP_SYN_RECV, we no longer
  5174. * need req so release it.
  5175. */
  5176. if (req) {
  5177. tcp_synack_rtt_meas(sk, req);
  5178. tp->total_retrans = req->num_retrans;
  5179. reqsk_fastopen_remove(sk, req, false);
  5180. } else {
  5181. /* Make sure socket is routed, for
  5182. * correct metrics.
  5183. */
  5184. icsk->icsk_af_ops->rebuild_header(sk);
  5185. tcp_init_congestion_control(sk);
  5186. tcp_mtup_init(sk);
  5187. tcp_init_buffer_space(sk);
  5188. tp->copied_seq = tp->rcv_nxt;
  5189. }
  5190. smp_mb();
  5191. tcp_set_state(sk, TCP_ESTABLISHED);
  5192. sk->sk_state_change(sk);
  5193. /* Note, that this wakeup is only for marginal
  5194. * crossed SYN case. Passively open sockets
  5195. * are not waked up, because sk->sk_sleep ==
  5196. * NULL and sk->sk_socket == NULL.
  5197. */
  5198. if (sk->sk_socket)
  5199. sk_wake_async(sk,
  5200. SOCK_WAKE_IO, POLL_OUT);
  5201. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5202. tp->snd_wnd = ntohs(th->window) <<
  5203. tp->rx_opt.snd_wscale;
  5204. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5205. if (tp->rx_opt.tstamp_ok)
  5206. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5207. if (req) {
  5208. /* Re-arm the timer because data may
  5209. * have been sent out. This is similar
  5210. * to the regular data transmission case
  5211. * when new data has just been ack'ed.
  5212. *
  5213. * (TFO) - we could try to be more
  5214. * aggressive and retranmitting any data
  5215. * sooner based on when they were sent
  5216. * out.
  5217. */
  5218. tcp_rearm_rto(sk);
  5219. } else
  5220. tcp_init_metrics(sk);
  5221. /* Prevent spurious tcp_cwnd_restart() on
  5222. * first data packet.
  5223. */
  5224. tp->lsndtime = tcp_time_stamp;
  5225. tcp_initialize_rcv_mss(sk);
  5226. tcp_fast_path_on(tp);
  5227. } else {
  5228. return 1;
  5229. }
  5230. break;
  5231. case TCP_FIN_WAIT1:
  5232. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5233. * Fast Open socket and this is the first acceptable
  5234. * ACK we have received, this would have acknowledged
  5235. * our SYNACK so stop the SYNACK timer.
  5236. */
  5237. if (req != NULL) {
  5238. /* Return RST if ack_seq is invalid.
  5239. * Note that RFC793 only says to generate a
  5240. * DUPACK for it but for TCP Fast Open it seems
  5241. * better to treat this case like TCP_SYN_RECV
  5242. * above.
  5243. */
  5244. if (!acceptable)
  5245. return 1;
  5246. /* We no longer need the request sock. */
  5247. reqsk_fastopen_remove(sk, req, false);
  5248. tcp_rearm_rto(sk);
  5249. }
  5250. if (tp->snd_una == tp->write_seq) {
  5251. struct dst_entry *dst;
  5252. tcp_set_state(sk, TCP_FIN_WAIT2);
  5253. sk->sk_shutdown |= SEND_SHUTDOWN;
  5254. dst = __sk_dst_get(sk);
  5255. if (dst)
  5256. dst_confirm(dst);
  5257. if (!sock_flag(sk, SOCK_DEAD))
  5258. /* Wake up lingering close() */
  5259. sk->sk_state_change(sk);
  5260. else {
  5261. int tmo;
  5262. if (tp->linger2 < 0 ||
  5263. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5264. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5265. tcp_done(sk);
  5266. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5267. return 1;
  5268. }
  5269. tmo = tcp_fin_time(sk);
  5270. if (tmo > TCP_TIMEWAIT_LEN) {
  5271. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5272. } else if (th->fin || sock_owned_by_user(sk)) {
  5273. /* Bad case. We could lose such FIN otherwise.
  5274. * It is not a big problem, but it looks confusing
  5275. * and not so rare event. We still can lose it now,
  5276. * if it spins in bh_lock_sock(), but it is really
  5277. * marginal case.
  5278. */
  5279. inet_csk_reset_keepalive_timer(sk, tmo);
  5280. } else {
  5281. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5282. goto discard;
  5283. }
  5284. }
  5285. }
  5286. break;
  5287. case TCP_CLOSING:
  5288. if (tp->snd_una == tp->write_seq) {
  5289. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5290. goto discard;
  5291. }
  5292. break;
  5293. case TCP_LAST_ACK:
  5294. if (tp->snd_una == tp->write_seq) {
  5295. tcp_update_metrics(sk);
  5296. tcp_done(sk);
  5297. goto discard;
  5298. }
  5299. break;
  5300. }
  5301. }
  5302. /* ts_recent update must be made after we are sure that the packet
  5303. * is in window.
  5304. */
  5305. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  5306. /* step 6: check the URG bit */
  5307. tcp_urg(sk, skb, th);
  5308. /* step 7: process the segment text */
  5309. switch (sk->sk_state) {
  5310. case TCP_CLOSE_WAIT:
  5311. case TCP_CLOSING:
  5312. case TCP_LAST_ACK:
  5313. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5314. break;
  5315. case TCP_FIN_WAIT1:
  5316. case TCP_FIN_WAIT2:
  5317. /* RFC 793 says to queue data in these states,
  5318. * RFC 1122 says we MUST send a reset.
  5319. * BSD 4.4 also does reset.
  5320. */
  5321. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5322. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5323. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5324. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5325. tcp_reset(sk);
  5326. return 1;
  5327. }
  5328. }
  5329. /* Fall through */
  5330. case TCP_ESTABLISHED:
  5331. tcp_data_queue(sk, skb);
  5332. queued = 1;
  5333. break;
  5334. }
  5335. /* tcp_data could move socket to TIME-WAIT */
  5336. if (sk->sk_state != TCP_CLOSE) {
  5337. tcp_data_snd_check(sk);
  5338. tcp_ack_snd_check(sk);
  5339. }
  5340. if (!queued) {
  5341. discard:
  5342. __kfree_skb(skb);
  5343. }
  5344. return 0;
  5345. }
  5346. EXPORT_SYMBOL(tcp_rcv_state_process);