amd64_edac.c 90 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
  16. /*
  17. * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
  18. * for DDR2 DRAM mapping.
  19. */
  20. u32 revf_quad_ddr2_shift[] = {
  21. 0, /* 0000b NULL DIMM (128mb) */
  22. 28, /* 0001b 256mb */
  23. 29, /* 0010b 512mb */
  24. 29, /* 0011b 512mb */
  25. 29, /* 0100b 512mb */
  26. 30, /* 0101b 1gb */
  27. 30, /* 0110b 1gb */
  28. 31, /* 0111b 2gb */
  29. 31, /* 1000b 2gb */
  30. 32, /* 1001b 4gb */
  31. 32, /* 1010b 4gb */
  32. 33, /* 1011b 8gb */
  33. 0, /* 1100b future */
  34. 0, /* 1101b future */
  35. 0, /* 1110b future */
  36. 0 /* 1111b future */
  37. };
  38. /*
  39. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  40. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  41. * or higher value'.
  42. *
  43. *FIXME: Produce a better mapping/linearisation.
  44. */
  45. struct scrubrate scrubrates[] = {
  46. { 0x01, 1600000000UL},
  47. { 0x02, 800000000UL},
  48. { 0x03, 400000000UL},
  49. { 0x04, 200000000UL},
  50. { 0x05, 100000000UL},
  51. { 0x06, 50000000UL},
  52. { 0x07, 25000000UL},
  53. { 0x08, 12284069UL},
  54. { 0x09, 6274509UL},
  55. { 0x0A, 3121951UL},
  56. { 0x0B, 1560975UL},
  57. { 0x0C, 781440UL},
  58. { 0x0D, 390720UL},
  59. { 0x0E, 195300UL},
  60. { 0x0F, 97650UL},
  61. { 0x10, 48854UL},
  62. { 0x11, 24427UL},
  63. { 0x12, 12213UL},
  64. { 0x13, 6101UL},
  65. { 0x14, 3051UL},
  66. { 0x15, 1523UL},
  67. { 0x16, 761UL},
  68. { 0x00, 0UL}, /* scrubbing off */
  69. };
  70. /*
  71. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  72. * hardware and can involve L2 cache, dcache as well as the main memory. With
  73. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  74. * functionality.
  75. *
  76. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  77. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  78. * bytes/sec for the setting.
  79. *
  80. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  81. * other archs, we might not have access to the caches directly.
  82. */
  83. /*
  84. * scan the scrub rate mapping table for a close or matching bandwidth value to
  85. * issue. If requested is too big, then use last maximum value found.
  86. */
  87. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  88. u32 min_scrubrate)
  89. {
  90. u32 scrubval;
  91. int i;
  92. /*
  93. * map the configured rate (new_bw) to a value specific to the AMD64
  94. * memory controller and apply to register. Search for the first
  95. * bandwidth entry that is greater or equal than the setting requested
  96. * and program that. If at last entry, turn off DRAM scrubbing.
  97. */
  98. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  99. /*
  100. * skip scrub rates which aren't recommended
  101. * (see F10 BKDG, F3x58)
  102. */
  103. if (scrubrates[i].scrubval < min_scrubrate)
  104. continue;
  105. if (scrubrates[i].bandwidth <= new_bw)
  106. break;
  107. /*
  108. * if no suitable bandwidth found, turn off DRAM scrubbing
  109. * entirely by falling back to the last element in the
  110. * scrubrates array.
  111. */
  112. }
  113. scrubval = scrubrates[i].scrubval;
  114. if (scrubval)
  115. edac_printk(KERN_DEBUG, EDAC_MC,
  116. "Setting scrub rate bandwidth: %u\n",
  117. scrubrates[i].bandwidth);
  118. else
  119. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  120. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  121. return 0;
  122. }
  123. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  124. {
  125. struct amd64_pvt *pvt = mci->pvt_info;
  126. u32 min_scrubrate = 0x0;
  127. switch (boot_cpu_data.x86) {
  128. case 0xf:
  129. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  130. break;
  131. case 0x10:
  132. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  133. break;
  134. case 0x11:
  135. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  136. break;
  137. default:
  138. amd64_printk(KERN_ERR, "Unsupported family!\n");
  139. break;
  140. }
  141. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  142. min_scrubrate);
  143. }
  144. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  145. {
  146. struct amd64_pvt *pvt = mci->pvt_info;
  147. u32 scrubval = 0;
  148. int status = -1, i;
  149. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  150. scrubval = scrubval & 0x001F;
  151. edac_printk(KERN_DEBUG, EDAC_MC,
  152. "pci-read, sdram scrub control value: %d \n", scrubval);
  153. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  154. if (scrubrates[i].scrubval == scrubval) {
  155. *bw = scrubrates[i].bandwidth;
  156. status = 0;
  157. break;
  158. }
  159. }
  160. return status;
  161. }
  162. /* Map from a CSROW entry to the mask entry that operates on it */
  163. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  164. {
  165. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
  166. return csrow;
  167. else
  168. return csrow >> 1;
  169. }
  170. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  171. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  172. {
  173. if (dct == 0)
  174. return pvt->dcsb0[csrow];
  175. else
  176. return pvt->dcsb1[csrow];
  177. }
  178. /*
  179. * Return the 'mask' address the i'th CS entry. This function is needed because
  180. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  181. * different.
  182. */
  183. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  184. {
  185. if (dct == 0)
  186. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  187. else
  188. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  189. }
  190. /*
  191. * In *base and *limit, pass back the full 40-bit base and limit physical
  192. * addresses for the node given by node_id. This information is obtained from
  193. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  194. * base and limit addresses are of type SysAddr, as defined at the start of
  195. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  196. * in the address range they represent.
  197. */
  198. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  199. u64 *base, u64 *limit)
  200. {
  201. *base = pvt->dram_base[node_id];
  202. *limit = pvt->dram_limit[node_id];
  203. }
  204. /*
  205. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  206. * with node_id
  207. */
  208. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  209. u64 sys_addr, int node_id)
  210. {
  211. u64 base, limit, addr;
  212. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  213. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  214. * all ones if the most significant implemented address bit is 1.
  215. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  216. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  217. * Application Programming.
  218. */
  219. addr = sys_addr & 0x000000ffffffffffull;
  220. return (addr >= base) && (addr <= limit);
  221. }
  222. /*
  223. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  224. * mem_ctl_info structure for the node that the SysAddr maps to.
  225. *
  226. * On failure, return NULL.
  227. */
  228. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  229. u64 sys_addr)
  230. {
  231. struct amd64_pvt *pvt;
  232. int node_id;
  233. u32 intlv_en, bits;
  234. /*
  235. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  236. * 3.4.4.2) registers to map the SysAddr to a node ID.
  237. */
  238. pvt = mci->pvt_info;
  239. /*
  240. * The value of this field should be the same for all DRAM Base
  241. * registers. Therefore we arbitrarily choose to read it from the
  242. * register for node 0.
  243. */
  244. intlv_en = pvt->dram_IntlvEn[0];
  245. if (intlv_en == 0) {
  246. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  247. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  248. goto found;
  249. }
  250. goto err_no_match;
  251. }
  252. if (unlikely((intlv_en != 0x01) &&
  253. (intlv_en != 0x03) &&
  254. (intlv_en != 0x07))) {
  255. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  256. "IntlvEn field of DRAM Base Register for node 0: "
  257. "this probably indicates a BIOS bug.\n", intlv_en);
  258. return NULL;
  259. }
  260. bits = (((u32) sys_addr) >> 12) & intlv_en;
  261. for (node_id = 0; ; ) {
  262. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  263. break; /* intlv_sel field matches */
  264. if (++node_id >= DRAM_REG_COUNT)
  265. goto err_no_match;
  266. }
  267. /* sanity test for sys_addr */
  268. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  269. amd64_printk(KERN_WARNING,
  270. "%s(): sys_addr 0x%llx falls outside base/limit "
  271. "address range for node %d with node interleaving "
  272. "enabled.\n",
  273. __func__, sys_addr, node_id);
  274. return NULL;
  275. }
  276. found:
  277. return edac_mc_find(node_id);
  278. err_no_match:
  279. debugf2("sys_addr 0x%lx doesn't match any node\n",
  280. (unsigned long)sys_addr);
  281. return NULL;
  282. }
  283. /*
  284. * Extract the DRAM CS base address from selected csrow register.
  285. */
  286. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  287. {
  288. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  289. pvt->dcs_shift;
  290. }
  291. /*
  292. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  293. */
  294. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  295. {
  296. u64 dcsm_bits, other_bits;
  297. u64 mask;
  298. /* Extract bits from DRAM CS Mask. */
  299. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  300. other_bits = pvt->dcsm_mask;
  301. other_bits = ~(other_bits << pvt->dcs_shift);
  302. /*
  303. * The extracted bits from DCSM belong in the spaces represented by
  304. * the cleared bits in other_bits.
  305. */
  306. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  307. return mask;
  308. }
  309. /*
  310. * @input_addr is an InputAddr associated with the node given by mci. Return the
  311. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  312. */
  313. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  314. {
  315. struct amd64_pvt *pvt;
  316. int csrow;
  317. u64 base, mask;
  318. pvt = mci->pvt_info;
  319. /*
  320. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  321. * base/mask register pair, test the condition shown near the start of
  322. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  323. */
  324. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  325. /* This DRAM chip select is disabled on this node */
  326. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  327. continue;
  328. base = base_from_dct_base(pvt, csrow);
  329. mask = ~mask_from_dct_mask(pvt, csrow);
  330. if ((input_addr & mask) == (base & mask)) {
  331. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  332. (unsigned long)input_addr, csrow,
  333. pvt->mc_node_id);
  334. return csrow;
  335. }
  336. }
  337. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  338. (unsigned long)input_addr, pvt->mc_node_id);
  339. return -1;
  340. }
  341. /*
  342. * Return the base value defined by the DRAM Base register for the node
  343. * represented by mci. This function returns the full 40-bit value despite the
  344. * fact that the register only stores bits 39-24 of the value. See section
  345. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  346. */
  347. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  348. {
  349. struct amd64_pvt *pvt = mci->pvt_info;
  350. return pvt->dram_base[pvt->mc_node_id];
  351. }
  352. /*
  353. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  354. * for the node represented by mci. Info is passed back in *hole_base,
  355. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  356. * info is invalid. Info may be invalid for either of the following reasons:
  357. *
  358. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  359. * Address Register does not exist.
  360. *
  361. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  362. * indicating that its contents are not valid.
  363. *
  364. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  365. * complete 32-bit values despite the fact that the bitfields in the DHAR
  366. * only represent bits 31-24 of the base and offset values.
  367. */
  368. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  369. u64 *hole_offset, u64 *hole_size)
  370. {
  371. struct amd64_pvt *pvt = mci->pvt_info;
  372. u64 base;
  373. /* only revE and later have the DRAM Hole Address Register */
  374. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  375. debugf1(" revision %d for node %d does not support DHAR\n",
  376. pvt->ext_model, pvt->mc_node_id);
  377. return 1;
  378. }
  379. /* only valid for Fam10h */
  380. if (boot_cpu_data.x86 == 0x10 &&
  381. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  382. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  383. return 1;
  384. }
  385. if ((pvt->dhar & DHAR_VALID) == 0) {
  386. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  387. pvt->mc_node_id);
  388. return 1;
  389. }
  390. /* This node has Memory Hoisting */
  391. /* +------------------+--------------------+--------------------+-----
  392. * | memory | DRAM hole | relocated |
  393. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  394. * | | | DRAM hole |
  395. * | | | [0x100000000, |
  396. * | | | (0x100000000+ |
  397. * | | | (0xffffffff-x))] |
  398. * +------------------+--------------------+--------------------+-----
  399. *
  400. * Above is a diagram of physical memory showing the DRAM hole and the
  401. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  402. * starts at address x (the base address) and extends through address
  403. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  404. * addresses in the hole so that they start at 0x100000000.
  405. */
  406. base = dhar_base(pvt->dhar);
  407. *hole_base = base;
  408. *hole_size = (0x1ull << 32) - base;
  409. if (boot_cpu_data.x86 > 0xf)
  410. *hole_offset = f10_dhar_offset(pvt->dhar);
  411. else
  412. *hole_offset = k8_dhar_offset(pvt->dhar);
  413. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  414. pvt->mc_node_id, (unsigned long)*hole_base,
  415. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  416. return 0;
  417. }
  418. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  419. /*
  420. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  421. * assumed that sys_addr maps to the node given by mci.
  422. *
  423. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  424. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  425. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  426. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  427. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  428. * These parts of the documentation are unclear. I interpret them as follows:
  429. *
  430. * When node n receives a SysAddr, it processes the SysAddr as follows:
  431. *
  432. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  433. * Limit registers for node n. If the SysAddr is not within the range
  434. * specified by the base and limit values, then node n ignores the Sysaddr
  435. * (since it does not map to node n). Otherwise continue to step 2 below.
  436. *
  437. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  438. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  439. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  440. * hole. If not, skip to step 3 below. Else get the value of the
  441. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  442. * offset defined by this value from the SysAddr.
  443. *
  444. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  445. * Base register for node n. To obtain the DramAddr, subtract the base
  446. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  447. */
  448. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  449. {
  450. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  451. int ret = 0;
  452. dram_base = get_dram_base(mci);
  453. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  454. &hole_size);
  455. if (!ret) {
  456. if ((sys_addr >= (1ull << 32)) &&
  457. (sys_addr < ((1ull << 32) + hole_size))) {
  458. /* use DHAR to translate SysAddr to DramAddr */
  459. dram_addr = sys_addr - hole_offset;
  460. debugf2("using DHAR to translate SysAddr 0x%lx to "
  461. "DramAddr 0x%lx\n",
  462. (unsigned long)sys_addr,
  463. (unsigned long)dram_addr);
  464. return dram_addr;
  465. }
  466. }
  467. /*
  468. * Translate the SysAddr to a DramAddr as shown near the start of
  469. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  470. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  471. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  472. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  473. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  474. * Programmer's Manual Volume 1 Application Programming.
  475. */
  476. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  477. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  478. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  479. (unsigned long)dram_addr);
  480. return dram_addr;
  481. }
  482. /*
  483. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  484. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  485. * for node interleaving.
  486. */
  487. static int num_node_interleave_bits(unsigned intlv_en)
  488. {
  489. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  490. int n;
  491. BUG_ON(intlv_en > 7);
  492. n = intlv_shift_table[intlv_en];
  493. return n;
  494. }
  495. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  496. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  497. {
  498. struct amd64_pvt *pvt;
  499. int intlv_shift;
  500. u64 input_addr;
  501. pvt = mci->pvt_info;
  502. /*
  503. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  504. * concerning translating a DramAddr to an InputAddr.
  505. */
  506. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  507. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  508. (dram_addr & 0xfff);
  509. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  510. intlv_shift, (unsigned long)dram_addr,
  511. (unsigned long)input_addr);
  512. return input_addr;
  513. }
  514. /*
  515. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  516. * assumed that @sys_addr maps to the node given by mci.
  517. */
  518. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  519. {
  520. u64 input_addr;
  521. input_addr =
  522. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  523. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  524. (unsigned long)sys_addr, (unsigned long)input_addr);
  525. return input_addr;
  526. }
  527. /*
  528. * @input_addr is an InputAddr associated with the node represented by mci.
  529. * Translate @input_addr to a DramAddr and return the result.
  530. */
  531. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  532. {
  533. struct amd64_pvt *pvt;
  534. int node_id, intlv_shift;
  535. u64 bits, dram_addr;
  536. u32 intlv_sel;
  537. /*
  538. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  539. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  540. * this procedure. When translating from a DramAddr to an InputAddr, the
  541. * bits used for node interleaving are discarded. Here we recover these
  542. * bits from the IntlvSel field of the DRAM Limit register (section
  543. * 3.4.4.2) for the node that input_addr is associated with.
  544. */
  545. pvt = mci->pvt_info;
  546. node_id = pvt->mc_node_id;
  547. BUG_ON((node_id < 0) || (node_id > 7));
  548. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  549. if (intlv_shift == 0) {
  550. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  551. "same value\n", (unsigned long)input_addr);
  552. return input_addr;
  553. }
  554. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  555. (input_addr & 0xfff);
  556. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  557. dram_addr = bits + (intlv_sel << 12);
  558. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  559. "(%d node interleave bits)\n", (unsigned long)input_addr,
  560. (unsigned long)dram_addr, intlv_shift);
  561. return dram_addr;
  562. }
  563. /*
  564. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  565. * @dram_addr to a SysAddr.
  566. */
  567. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  568. {
  569. struct amd64_pvt *pvt = mci->pvt_info;
  570. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  571. int ret = 0;
  572. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  573. &hole_size);
  574. if (!ret) {
  575. if ((dram_addr >= hole_base) &&
  576. (dram_addr < (hole_base + hole_size))) {
  577. sys_addr = dram_addr + hole_offset;
  578. debugf1("using DHAR to translate DramAddr 0x%lx to "
  579. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  580. (unsigned long)sys_addr);
  581. return sys_addr;
  582. }
  583. }
  584. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  585. sys_addr = dram_addr + base;
  586. /*
  587. * The sys_addr we have computed up to this point is a 40-bit value
  588. * because the k8 deals with 40-bit values. However, the value we are
  589. * supposed to return is a full 64-bit physical address. The AMD
  590. * x86-64 architecture specifies that the most significant implemented
  591. * address bit through bit 63 of a physical address must be either all
  592. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  593. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  594. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  595. * Programming.
  596. */
  597. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  598. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  599. pvt->mc_node_id, (unsigned long)dram_addr,
  600. (unsigned long)sys_addr);
  601. return sys_addr;
  602. }
  603. /*
  604. * @input_addr is an InputAddr associated with the node given by mci. Translate
  605. * @input_addr to a SysAddr.
  606. */
  607. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  608. u64 input_addr)
  609. {
  610. return dram_addr_to_sys_addr(mci,
  611. input_addr_to_dram_addr(mci, input_addr));
  612. }
  613. /*
  614. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  615. * Pass back these values in *input_addr_min and *input_addr_max.
  616. */
  617. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  618. u64 *input_addr_min, u64 *input_addr_max)
  619. {
  620. struct amd64_pvt *pvt;
  621. u64 base, mask;
  622. pvt = mci->pvt_info;
  623. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  624. base = base_from_dct_base(pvt, csrow);
  625. mask = mask_from_dct_mask(pvt, csrow);
  626. *input_addr_min = base & ~mask;
  627. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  628. }
  629. /*
  630. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  631. * Address High (section 3.6.4.6) register values and return the result. Address
  632. * is located in the info structure (nbeah and nbeal), the encoding is device
  633. * specific.
  634. */
  635. static u64 extract_error_address(struct mem_ctl_info *mci,
  636. struct err_regs *info)
  637. {
  638. struct amd64_pvt *pvt = mci->pvt_info;
  639. return pvt->ops->get_error_address(mci, info);
  640. }
  641. /* Map the Error address to a PAGE and PAGE OFFSET. */
  642. static inline void error_address_to_page_and_offset(u64 error_address,
  643. u32 *page, u32 *offset)
  644. {
  645. *page = (u32) (error_address >> PAGE_SHIFT);
  646. *offset = ((u32) error_address) & ~PAGE_MASK;
  647. }
  648. /*
  649. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  650. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  651. * of a node that detected an ECC memory error. mci represents the node that
  652. * the error address maps to (possibly different from the node that detected
  653. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  654. * error.
  655. */
  656. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  657. {
  658. int csrow;
  659. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  660. if (csrow == -1)
  661. amd64_mc_printk(mci, KERN_ERR,
  662. "Failed to translate InputAddr to csrow for "
  663. "address 0x%lx\n", (unsigned long)sys_addr);
  664. return csrow;
  665. }
  666. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  667. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  668. {
  669. if (boot_cpu_data.x86 == 0x11)
  670. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  671. else if (boot_cpu_data.x86 == 0x10)
  672. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  673. else if (boot_cpu_data.x86 == 0xf)
  674. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  675. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  676. "Rev F or later" : "Rev E or earlier");
  677. else
  678. /* we'll hardly ever ever get here */
  679. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  680. }
  681. /*
  682. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  683. * are ECC capable.
  684. */
  685. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  686. {
  687. int bit;
  688. enum dev_type edac_cap = EDAC_FLAG_NONE;
  689. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  690. ? 19
  691. : 17;
  692. if (pvt->dclr0 & BIT(bit))
  693. edac_cap = EDAC_FLAG_SECDED;
  694. return edac_cap;
  695. }
  696. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  697. int ganged);
  698. /* Display and decode various NB registers for debug purposes. */
  699. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  700. {
  701. int ganged;
  702. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  703. pvt->nbcap,
  704. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  705. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  706. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  707. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  708. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  709. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  710. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  711. pvt->dclr0,
  712. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  713. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  714. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  715. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  716. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  717. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  718. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  719. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  720. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  721. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  722. if (boot_cpu_data.x86 == 0xf) {
  723. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  724. pvt->dhar, dhar_base(pvt->dhar),
  725. k8_dhar_offset(pvt->dhar));
  726. debugf1(" DramHoleValid=%s\n",
  727. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  728. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  729. /* everything below this point is Fam10h and above */
  730. return;
  731. } else {
  732. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  733. pvt->dhar, dhar_base(pvt->dhar),
  734. f10_dhar_offset(pvt->dhar));
  735. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  736. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  737. "True" : "False",
  738. (pvt->dhar & DHAR_VALID) ?
  739. "True" : "False");
  740. }
  741. /* Only if NOT ganged does dcl1 have valid info */
  742. if (!dct_ganging_enabled(pvt)) {
  743. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  744. "Width=%s\n", pvt->dclr1,
  745. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  746. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  747. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  748. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  749. "DIMM Type=%s\n",
  750. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  751. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  752. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  753. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  754. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  755. }
  756. /*
  757. * Determine if ganged and then dump memory sizes for first controller,
  758. * and if NOT ganged dump info for 2nd controller.
  759. */
  760. ganged = dct_ganging_enabled(pvt);
  761. f10_debug_display_dimm_sizes(0, pvt, ganged);
  762. if (!ganged)
  763. f10_debug_display_dimm_sizes(1, pvt, ganged);
  764. }
  765. /* Read in both of DBAM registers */
  766. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  767. {
  768. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
  769. if (boot_cpu_data.x86 >= 0x10)
  770. amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
  771. }
  772. /*
  773. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  774. *
  775. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  776. * set the shift factor for the DCSB and DCSM values.
  777. *
  778. * ->dcs_mask_notused, RevE:
  779. *
  780. * To find the max InputAddr for the csrow, start with the base address and set
  781. * all bits that are "don't care" bits in the test at the start of section
  782. * 3.5.4 (p. 84).
  783. *
  784. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  785. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  786. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  787. * gaps.
  788. *
  789. * ->dcs_mask_notused, RevF and later:
  790. *
  791. * To find the max InputAddr for the csrow, start with the base address and set
  792. * all bits that are "don't care" bits in the test at the start of NPT section
  793. * 4.5.4 (p. 87).
  794. *
  795. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  796. * between bit ranges [36:27] and [21:13].
  797. *
  798. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  799. * which are all bits in the above-mentioned gaps.
  800. */
  801. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  802. {
  803. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
  804. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  805. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  806. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  807. pvt->dcs_shift = REV_E_DCS_SHIFT;
  808. pvt->cs_count = 8;
  809. pvt->num_dcsm = 8;
  810. } else {
  811. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  812. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  813. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  814. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  815. if (boot_cpu_data.x86 == 0x11) {
  816. pvt->cs_count = 4;
  817. pvt->num_dcsm = 2;
  818. } else {
  819. pvt->cs_count = 8;
  820. pvt->num_dcsm = 4;
  821. }
  822. }
  823. }
  824. /*
  825. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  826. */
  827. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  828. {
  829. int cs, reg;
  830. amd64_set_dct_base_and_mask(pvt);
  831. for (cs = 0; cs < pvt->cs_count; cs++) {
  832. reg = K8_DCSB0 + (cs * 4);
  833. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
  834. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  835. cs, pvt->dcsb0[cs], reg);
  836. /* If DCT are NOT ganged, then read in DCT1's base */
  837. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  838. reg = F10_DCSB1 + (cs * 4);
  839. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  840. &pvt->dcsb1[cs]))
  841. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  842. cs, pvt->dcsb1[cs], reg);
  843. } else {
  844. pvt->dcsb1[cs] = 0;
  845. }
  846. }
  847. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  848. reg = K8_DCSM0 + (cs * 4);
  849. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
  850. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  851. cs, pvt->dcsm0[cs], reg);
  852. /* If DCT are NOT ganged, then read in DCT1's mask */
  853. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  854. reg = F10_DCSM1 + (cs * 4);
  855. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
  856. &pvt->dcsm1[cs]))
  857. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  858. cs, pvt->dcsm1[cs], reg);
  859. } else {
  860. pvt->dcsm1[cs] = 0;
  861. }
  862. }
  863. }
  864. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  865. {
  866. enum mem_type type;
  867. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  868. /* Rev F and later */
  869. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  870. } else {
  871. /* Rev E and earlier */
  872. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  873. }
  874. debugf1(" Memory type is: %s\n",
  875. (type == MEM_DDR2) ? "MEM_DDR2" :
  876. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  877. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  878. return type;
  879. }
  880. /*
  881. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  882. * and the later RevF memory controllers (DDR vs DDR2)
  883. *
  884. * Return:
  885. * number of memory channels in operation
  886. * Pass back:
  887. * contents of the DCL0_LOW register
  888. */
  889. static int k8_early_channel_count(struct amd64_pvt *pvt)
  890. {
  891. int flag, err = 0;
  892. err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  893. if (err)
  894. return err;
  895. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  896. /* RevF (NPT) and later */
  897. flag = pvt->dclr0 & F10_WIDTH_128;
  898. } else {
  899. /* RevE and earlier */
  900. flag = pvt->dclr0 & REVE_WIDTH_128;
  901. }
  902. /* not used */
  903. pvt->dclr1 = 0;
  904. return (flag) ? 2 : 1;
  905. }
  906. /* extract the ERROR ADDRESS for the K8 CPUs */
  907. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  908. struct err_regs *info)
  909. {
  910. return (((u64) (info->nbeah & 0xff)) << 32) +
  911. (info->nbeal & ~0x03);
  912. }
  913. /*
  914. * Read the Base and Limit registers for K8 based Memory controllers; extract
  915. * fields from the 'raw' reg into separate data fields
  916. *
  917. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  918. */
  919. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  920. {
  921. u32 low;
  922. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  923. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
  924. /* Extract parts into separate data entries */
  925. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  926. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  927. pvt->dram_rw_en[dram] = (low & 0x3);
  928. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
  929. /*
  930. * Extract parts into separate data entries. Limit is the HIGHEST memory
  931. * location of the region, so lower 24 bits need to be all ones
  932. */
  933. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  934. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  935. pvt->dram_DstNode[dram] = (low & 0x7);
  936. }
  937. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  938. struct err_regs *info,
  939. u64 SystemAddress)
  940. {
  941. struct mem_ctl_info *src_mci;
  942. unsigned short syndrome;
  943. int channel, csrow;
  944. u32 page, offset;
  945. /* Extract the syndrome parts and form a 16-bit syndrome */
  946. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  947. syndrome |= LOW_SYNDROME(info->nbsh);
  948. /* CHIPKILL enabled */
  949. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  950. channel = get_channel_from_ecc_syndrome(syndrome);
  951. if (channel < 0) {
  952. /*
  953. * Syndrome didn't map, so we don't know which of the
  954. * 2 DIMMs is in error. So we need to ID 'both' of them
  955. * as suspect.
  956. */
  957. amd64_mc_printk(mci, KERN_WARNING,
  958. "unknown syndrome 0x%x - possible error "
  959. "reporting race\n", syndrome);
  960. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  961. return;
  962. }
  963. } else {
  964. /*
  965. * non-chipkill ecc mode
  966. *
  967. * The k8 documentation is unclear about how to determine the
  968. * channel number when using non-chipkill memory. This method
  969. * was obtained from email communication with someone at AMD.
  970. * (Wish the email was placed in this comment - norsk)
  971. */
  972. channel = ((SystemAddress & BIT(3)) != 0);
  973. }
  974. /*
  975. * Find out which node the error address belongs to. This may be
  976. * different from the node that detected the error.
  977. */
  978. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  979. if (!src_mci) {
  980. amd64_mc_printk(mci, KERN_ERR,
  981. "failed to map error address 0x%lx to a node\n",
  982. (unsigned long)SystemAddress);
  983. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  984. return;
  985. }
  986. /* Now map the SystemAddress to a CSROW */
  987. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  988. if (csrow < 0) {
  989. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  990. } else {
  991. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  992. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  993. channel, EDAC_MOD_STR);
  994. }
  995. }
  996. /*
  997. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  998. * Address Mapping.
  999. *
  1000. * First step is to calc the number of bits to shift a value of 1 left to
  1001. * indicate show many pages. Start with the DBAM value as the starting bits,
  1002. * then proceed to adjust those shift bits, based on CPU rev and the table.
  1003. * See BKDG on the DBAM
  1004. */
  1005. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1006. {
  1007. int nr_pages;
  1008. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  1009. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1010. } else {
  1011. /*
  1012. * RevE and less section; this line is tricky. It collapses the
  1013. * table used by RevD and later to one that matches revisions CG
  1014. * and earlier.
  1015. */
  1016. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1017. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1018. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1019. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1020. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1021. }
  1022. return nr_pages;
  1023. }
  1024. /*
  1025. * Get the number of DCT channels in use.
  1026. *
  1027. * Return:
  1028. * number of Memory Channels in operation
  1029. * Pass back:
  1030. * contents of the DCL0_LOW register
  1031. */
  1032. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1033. {
  1034. int dbams[] = { DBAM0, DBAM1 };
  1035. int i, j, channels = 0;
  1036. u32 dbam;
  1037. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0))
  1038. goto err_reg;
  1039. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1))
  1040. goto err_reg;
  1041. /* If we are in 128 bit mode, then we are using 2 channels */
  1042. if (pvt->dclr0 & F10_WIDTH_128) {
  1043. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1044. channels = 2;
  1045. return channels;
  1046. }
  1047. /*
  1048. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1049. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1050. * will be OFF.
  1051. *
  1052. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1053. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1054. */
  1055. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1056. /*
  1057. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1058. * is more than just one DIMM present in unganged mode. Need to check
  1059. * both controllers since DIMMs can be placed in either one.
  1060. */
  1061. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  1062. if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
  1063. goto err_reg;
  1064. for (j = 0; j < 4; j++) {
  1065. if (DBAM_DIMM(j, dbam) > 0) {
  1066. channels++;
  1067. break;
  1068. }
  1069. }
  1070. }
  1071. debugf0("MCT channel count: %d\n", channels);
  1072. return channels;
  1073. err_reg:
  1074. return -1;
  1075. }
  1076. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1077. {
  1078. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1079. }
  1080. /* Enable extended configuration access via 0xCF8 feature */
  1081. static void amd64_setup(struct amd64_pvt *pvt)
  1082. {
  1083. u32 reg;
  1084. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1085. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1086. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1087. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1088. }
  1089. /* Restore the extended configuration access via 0xCF8 feature */
  1090. static void amd64_teardown(struct amd64_pvt *pvt)
  1091. {
  1092. u32 reg;
  1093. amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1094. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1095. if (pvt->flags.cf8_extcfg)
  1096. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1097. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1098. }
  1099. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1100. struct err_regs *info)
  1101. {
  1102. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1103. (info->nbeal & ~0x01);
  1104. }
  1105. /*
  1106. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1107. * fields from the 'raw' reg into separate data fields.
  1108. *
  1109. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1110. */
  1111. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1112. {
  1113. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1114. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1115. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1116. /* read the 'raw' DRAM BASE Address register */
  1117. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
  1118. /* Read from the ECS data register */
  1119. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
  1120. /* Extract parts into separate data entries */
  1121. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1122. if (pvt->dram_rw_en[dram] == 0)
  1123. return;
  1124. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1125. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1126. (((u64)low_base & 0xFFFF0000) << 8);
  1127. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1128. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1129. /* read the 'raw' LIMIT registers */
  1130. amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
  1131. /* Read from the ECS data register for the HIGH portion */
  1132. amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
  1133. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1134. high_base, low_base, high_limit, low_limit);
  1135. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1136. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1137. /*
  1138. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1139. * memory location of the region, so low 24 bits need to be all ones.
  1140. */
  1141. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1142. (((u64) low_limit & 0xFFFF0000) << 8) |
  1143. 0x00FFFFFF;
  1144. }
  1145. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1146. {
  1147. if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1148. &pvt->dram_ctl_select_low)) {
  1149. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1150. "High range addresses at: 0x%x\n",
  1151. pvt->dram_ctl_select_low,
  1152. dct_sel_baseaddr(pvt));
  1153. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1154. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1155. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1156. if (!dct_ganging_enabled(pvt))
  1157. debugf0(" Address range split per DCT: %s\n",
  1158. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1159. debugf0(" DCT data interleave for ECC: %s, "
  1160. "DRAM cleared since last warm reset: %s\n",
  1161. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1162. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1163. debugf0(" DCT channel interleave: %s, "
  1164. "DCT interleave bits selector: 0x%x\n",
  1165. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1166. dct_sel_interleave_addr(pvt));
  1167. }
  1168. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1169. &pvt->dram_ctl_select_high);
  1170. }
  1171. /*
  1172. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1173. * Interleaving Modes.
  1174. */
  1175. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1176. int hi_range_sel, u32 intlv_en)
  1177. {
  1178. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1179. if (dct_ganging_enabled(pvt))
  1180. cs = 0;
  1181. else if (hi_range_sel)
  1182. cs = dct_sel_high;
  1183. else if (dct_interleave_enabled(pvt)) {
  1184. /*
  1185. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1186. */
  1187. if (dct_sel_interleave_addr(pvt) == 0)
  1188. cs = sys_addr >> 6 & 1;
  1189. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1190. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1191. if (dct_sel_interleave_addr(pvt) & 1)
  1192. cs = (sys_addr >> 9 & 1) ^ temp;
  1193. else
  1194. cs = (sys_addr >> 6 & 1) ^ temp;
  1195. } else if (intlv_en & 4)
  1196. cs = sys_addr >> 15 & 1;
  1197. else if (intlv_en & 2)
  1198. cs = sys_addr >> 14 & 1;
  1199. else if (intlv_en & 1)
  1200. cs = sys_addr >> 13 & 1;
  1201. else
  1202. cs = sys_addr >> 12 & 1;
  1203. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1204. cs = ~dct_sel_high & 1;
  1205. else
  1206. cs = 0;
  1207. return cs;
  1208. }
  1209. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1210. {
  1211. if (intlv_en == 1)
  1212. return 1;
  1213. else if (intlv_en == 3)
  1214. return 2;
  1215. else if (intlv_en == 7)
  1216. return 3;
  1217. return 0;
  1218. }
  1219. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1220. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1221. u32 dct_sel_base_addr,
  1222. u64 dct_sel_base_off,
  1223. u32 hole_valid, u32 hole_off,
  1224. u64 dram_base)
  1225. {
  1226. u64 chan_off;
  1227. if (hi_range_sel) {
  1228. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1229. hole_valid && (sys_addr >= 0x100000000ULL))
  1230. chan_off = hole_off << 16;
  1231. else
  1232. chan_off = dct_sel_base_off;
  1233. } else {
  1234. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1235. chan_off = hole_off << 16;
  1236. else
  1237. chan_off = dram_base & 0xFFFFF8000000ULL;
  1238. }
  1239. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1240. (chan_off & 0x0000FFFFFF800000ULL);
  1241. }
  1242. /* Hack for the time being - Can we get this from BIOS?? */
  1243. #define CH0SPARE_RANK 0
  1244. #define CH1SPARE_RANK 1
  1245. /*
  1246. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1247. * spare row
  1248. */
  1249. static inline int f10_process_possible_spare(int csrow,
  1250. u32 cs, struct amd64_pvt *pvt)
  1251. {
  1252. u32 swap_done;
  1253. u32 bad_dram_cs;
  1254. /* Depending on channel, isolate respective SPARING info */
  1255. if (cs) {
  1256. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1257. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1258. if (swap_done && (csrow == bad_dram_cs))
  1259. csrow = CH1SPARE_RANK;
  1260. } else {
  1261. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1262. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1263. if (swap_done && (csrow == bad_dram_cs))
  1264. csrow = CH0SPARE_RANK;
  1265. }
  1266. return csrow;
  1267. }
  1268. /*
  1269. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1270. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1271. *
  1272. * Return:
  1273. * -EINVAL: NOT FOUND
  1274. * 0..csrow = Chip-Select Row
  1275. */
  1276. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1277. {
  1278. struct mem_ctl_info *mci;
  1279. struct amd64_pvt *pvt;
  1280. u32 cs_base, cs_mask;
  1281. int cs_found = -EINVAL;
  1282. int csrow;
  1283. mci = mci_lookup[nid];
  1284. if (!mci)
  1285. return cs_found;
  1286. pvt = mci->pvt_info;
  1287. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1288. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1289. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1290. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1291. continue;
  1292. /*
  1293. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1294. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1295. * of the actual address.
  1296. */
  1297. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1298. /*
  1299. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1300. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1301. */
  1302. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1303. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1304. csrow, cs_base, cs_mask);
  1305. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1306. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1307. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1308. "(CSBase & ~CSMask)=0x%x\n",
  1309. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1310. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1311. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1312. debugf1(" MATCH csrow=%d\n", cs_found);
  1313. break;
  1314. }
  1315. }
  1316. return cs_found;
  1317. }
  1318. /* For a given @dram_range, check if @sys_addr falls within it. */
  1319. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1320. u64 sys_addr, int *nid, int *chan_sel)
  1321. {
  1322. int node_id, cs_found = -EINVAL, high_range = 0;
  1323. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1324. u32 hole_valid, tmp, dct_sel_base, channel;
  1325. u64 dram_base, chan_addr, dct_sel_base_off;
  1326. dram_base = pvt->dram_base[dram_range];
  1327. intlv_en = pvt->dram_IntlvEn[dram_range];
  1328. node_id = pvt->dram_DstNode[dram_range];
  1329. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1330. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1331. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1332. /*
  1333. * This assumes that one node's DHAR is the same as all the other
  1334. * nodes' DHAR.
  1335. */
  1336. hole_off = (pvt->dhar & 0x0000FF80);
  1337. hole_valid = (pvt->dhar & 0x1);
  1338. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1339. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1340. hole_off, hole_valid, intlv_sel);
  1341. if (intlv_en ||
  1342. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1343. return -EINVAL;
  1344. dct_sel_base = dct_sel_baseaddr(pvt);
  1345. /*
  1346. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1347. * select between DCT0 and DCT1.
  1348. */
  1349. if (dct_high_range_enabled(pvt) &&
  1350. !dct_ganging_enabled(pvt) &&
  1351. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1352. high_range = 1;
  1353. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1354. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1355. dct_sel_base_off, hole_valid,
  1356. hole_off, dram_base);
  1357. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1358. /* remove Node ID (in case of memory interleaving) */
  1359. tmp = chan_addr & 0xFC0;
  1360. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1361. /* remove channel interleave and hash */
  1362. if (dct_interleave_enabled(pvt) &&
  1363. !dct_high_range_enabled(pvt) &&
  1364. !dct_ganging_enabled(pvt)) {
  1365. if (dct_sel_interleave_addr(pvt) != 1)
  1366. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1367. else {
  1368. tmp = chan_addr & 0xFC0;
  1369. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1370. | tmp;
  1371. }
  1372. }
  1373. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1374. chan_addr, (u32)(chan_addr >> 8));
  1375. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1376. if (cs_found >= 0) {
  1377. *nid = node_id;
  1378. *chan_sel = channel;
  1379. }
  1380. return cs_found;
  1381. }
  1382. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1383. int *node, int *chan_sel)
  1384. {
  1385. int dram_range, cs_found = -EINVAL;
  1386. u64 dram_base, dram_limit;
  1387. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1388. if (!pvt->dram_rw_en[dram_range])
  1389. continue;
  1390. dram_base = pvt->dram_base[dram_range];
  1391. dram_limit = pvt->dram_limit[dram_range];
  1392. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1393. cs_found = f10_match_to_this_node(pvt, dram_range,
  1394. sys_addr, node,
  1395. chan_sel);
  1396. if (cs_found >= 0)
  1397. break;
  1398. }
  1399. }
  1400. return cs_found;
  1401. }
  1402. /*
  1403. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1404. * CSROW, Channel.
  1405. *
  1406. * The @sys_addr is usually an error address received from the hardware.
  1407. */
  1408. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1409. struct err_regs *info,
  1410. u64 sys_addr)
  1411. {
  1412. struct amd64_pvt *pvt = mci->pvt_info;
  1413. u32 page, offset;
  1414. unsigned short syndrome;
  1415. int nid, csrow, chan = 0;
  1416. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1417. if (csrow >= 0) {
  1418. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1419. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1420. syndrome |= LOW_SYNDROME(info->nbsh);
  1421. /*
  1422. * Is CHIPKILL on? If so, then we can attempt to use the
  1423. * syndrome to isolate which channel the error was on.
  1424. */
  1425. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1426. chan = get_channel_from_ecc_syndrome(syndrome);
  1427. if (chan >= 0) {
  1428. edac_mc_handle_ce(mci, page, offset, syndrome,
  1429. csrow, chan, EDAC_MOD_STR);
  1430. } else {
  1431. /*
  1432. * Channel unknown, report all channels on this
  1433. * CSROW as failed.
  1434. */
  1435. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1436. chan++) {
  1437. edac_mc_handle_ce(mci, page, offset,
  1438. syndrome,
  1439. csrow, chan,
  1440. EDAC_MOD_STR);
  1441. }
  1442. }
  1443. } else {
  1444. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1445. }
  1446. }
  1447. /*
  1448. * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
  1449. * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
  1450. * indicates an empty DIMM slot, as reported by Hardware on empty slots.
  1451. *
  1452. * Normalize to 128MB by subracting 27 bit shift.
  1453. */
  1454. static int map_dbam_to_csrow_size(int index)
  1455. {
  1456. int mega_bytes = 0;
  1457. if (index > 0 && index <= DBAM_MAX_VALUE)
  1458. mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
  1459. return mega_bytes;
  1460. }
  1461. /*
  1462. * debug routine to display the memory sizes of a DIMM (ganged or not) and it
  1463. * CSROWs as well
  1464. */
  1465. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  1466. int ganged)
  1467. {
  1468. int dimm, size0, size1;
  1469. u32 dbam;
  1470. u32 *dcsb;
  1471. debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
  1472. ctrl ? pvt->dbam1 : pvt->dbam0,
  1473. ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
  1474. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1475. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1476. /* Dump memory sizes for DIMM and its CSROWs */
  1477. for (dimm = 0; dimm < 4; dimm++) {
  1478. size0 = 0;
  1479. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1480. size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1481. size1 = 0;
  1482. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1483. size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1484. debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
  1485. "CSROW-%d=%5dMB\n",
  1486. ctrl,
  1487. dimm,
  1488. size0 + size1,
  1489. dimm * 2,
  1490. size0,
  1491. dimm * 2 + 1,
  1492. size1);
  1493. }
  1494. }
  1495. /*
  1496. * Very early hardware probe on pci_probe thread to determine if this module
  1497. * supports the hardware.
  1498. *
  1499. * Return:
  1500. * 0 for OK
  1501. * 1 for error
  1502. */
  1503. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1504. {
  1505. int ret = 0;
  1506. /*
  1507. * If we are on a DDR3 machine, we don't know yet if
  1508. * we support that properly at this time
  1509. */
  1510. if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
  1511. (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
  1512. amd64_printk(KERN_WARNING,
  1513. "%s() This machine is running with DDR3 memory. "
  1514. "This is not currently supported. "
  1515. "DCHR0=0x%x DCHR1=0x%x\n",
  1516. __func__, pvt->dchr0, pvt->dchr1);
  1517. amd64_printk(KERN_WARNING,
  1518. " Contact '%s' module MAINTAINER to help add"
  1519. " support.\n",
  1520. EDAC_MOD_STR);
  1521. ret = 1;
  1522. }
  1523. return ret;
  1524. }
  1525. /*
  1526. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1527. * (as per PCI DEVICE_IDs):
  1528. *
  1529. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1530. * DEVICE ID, even though there is differences between the different Revisions
  1531. * (CG,D,E,F).
  1532. *
  1533. * Family F10h and F11h.
  1534. *
  1535. */
  1536. static struct amd64_family_type amd64_family_types[] = {
  1537. [K8_CPUS] = {
  1538. .ctl_name = "RevF",
  1539. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1540. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1541. .ops = {
  1542. .early_channel_count = k8_early_channel_count,
  1543. .get_error_address = k8_get_error_address,
  1544. .read_dram_base_limit = k8_read_dram_base_limit,
  1545. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1546. .dbam_map_to_pages = k8_dbam_map_to_pages,
  1547. }
  1548. },
  1549. [F10_CPUS] = {
  1550. .ctl_name = "Family 10h",
  1551. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1552. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1553. .ops = {
  1554. .probe_valid_hardware = f10_probe_valid_hardware,
  1555. .early_channel_count = f10_early_channel_count,
  1556. .get_error_address = f10_get_error_address,
  1557. .read_dram_base_limit = f10_read_dram_base_limit,
  1558. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1559. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1560. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1561. }
  1562. },
  1563. [F11_CPUS] = {
  1564. .ctl_name = "Family 11h",
  1565. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1566. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1567. .ops = {
  1568. .probe_valid_hardware = f10_probe_valid_hardware,
  1569. .early_channel_count = f10_early_channel_count,
  1570. .get_error_address = f10_get_error_address,
  1571. .read_dram_base_limit = f10_read_dram_base_limit,
  1572. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1573. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1574. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1575. }
  1576. },
  1577. };
  1578. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1579. unsigned int device,
  1580. struct pci_dev *related)
  1581. {
  1582. struct pci_dev *dev = NULL;
  1583. dev = pci_get_device(vendor, device, dev);
  1584. while (dev) {
  1585. if ((dev->bus->number == related->bus->number) &&
  1586. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1587. break;
  1588. dev = pci_get_device(vendor, device, dev);
  1589. }
  1590. return dev;
  1591. }
  1592. /*
  1593. * syndrome mapping table for ECC ChipKill devices
  1594. *
  1595. * The comment in each row is the token (nibble) number that is in error.
  1596. * The least significant nibble of the syndrome is the mask for the bits
  1597. * that are in error (need to be toggled) for the particular nibble.
  1598. *
  1599. * Each row contains 16 entries.
  1600. * The first entry (0th) is the channel number for that row of syndromes.
  1601. * The remaining 15 entries are the syndromes for the respective Error
  1602. * bit mask index.
  1603. *
  1604. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1605. * bit in error.
  1606. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1607. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1608. * are damaged.
  1609. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1610. * indicating that all 4 bits are damaged.
  1611. *
  1612. * A search is performed on this table looking for a given syndrome.
  1613. *
  1614. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1615. * across all the versions of the AMD64 processors.
  1616. *
  1617. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1618. * COLUMN index, then search all ROWS of that column, looking for a match
  1619. * with the input syndrome. The ROW value will be the token number.
  1620. *
  1621. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1622. * error.
  1623. */
  1624. #define NUMBER_ECC_ROWS 36
  1625. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1626. /* Channel 0 syndromes */
  1627. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1628. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1629. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1630. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1631. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1632. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1633. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1634. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1635. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1636. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1637. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1638. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1639. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1640. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1641. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1642. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1643. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1644. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1645. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1646. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1647. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1648. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1649. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1650. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1651. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1652. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1653. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1654. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1655. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1656. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1657. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1658. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1659. /* Channel 1 syndromes */
  1660. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1661. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1662. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1663. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1664. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1665. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1666. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1667. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1668. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1669. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1670. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1671. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1672. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1673. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1674. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1675. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1676. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1677. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1678. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1679. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1680. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1681. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1682. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1683. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1684. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1685. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1686. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1687. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1688. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1689. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1690. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1691. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1692. /* ECC bits are also in the set of tokens and they too can go bad
  1693. * first 2 cover channel 0, while the second 2 cover channel 1
  1694. */
  1695. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1696. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1697. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1698. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1699. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1700. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1701. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1702. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1703. };
  1704. /*
  1705. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1706. * match. Depending on which table it is found, return the channel number.
  1707. */
  1708. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1709. {
  1710. int row;
  1711. int column;
  1712. /* Determine column to scan */
  1713. column = syndrome & 0xF;
  1714. /* Scan all rows, looking for syndrome, or end of table */
  1715. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1716. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1717. return ecc_chipkill_syndromes[row][0];
  1718. }
  1719. debugf0("syndrome(%x) not found\n", syndrome);
  1720. return -1;
  1721. }
  1722. /*
  1723. * Check for valid error in the NB Status High register. If so, proceed to read
  1724. * NB Status Low, NB Address Low and NB Address High registers and store data
  1725. * into error structure.
  1726. *
  1727. * Returns:
  1728. * - 1: if hardware regs contains valid error info
  1729. * - 0: if no valid error is indicated
  1730. */
  1731. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1732. struct err_regs *regs)
  1733. {
  1734. struct amd64_pvt *pvt;
  1735. struct pci_dev *misc_f3_ctl;
  1736. pvt = mci->pvt_info;
  1737. misc_f3_ctl = pvt->misc_f3_ctl;
  1738. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
  1739. return 0;
  1740. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1741. return 0;
  1742. /* valid error, read remaining error information registers */
  1743. if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
  1744. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
  1745. amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
  1746. amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
  1747. return 0;
  1748. return 1;
  1749. }
  1750. /*
  1751. * This function is called to retrieve the error data from hardware and store it
  1752. * in the info structure.
  1753. *
  1754. * Returns:
  1755. * - 1: if a valid error is found
  1756. * - 0: if no error is found
  1757. */
  1758. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1759. struct err_regs *info)
  1760. {
  1761. struct amd64_pvt *pvt;
  1762. struct err_regs regs;
  1763. pvt = mci->pvt_info;
  1764. if (!amd64_get_error_info_regs(mci, info))
  1765. return 0;
  1766. /*
  1767. * Here's the problem with the K8's EDAC reporting: There are four
  1768. * registers which report pieces of error information. They are shared
  1769. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1770. * BKDG, the overflow bit is never used! Every error always updates the
  1771. * reporting registers.
  1772. *
  1773. * Can you see the race condition? All four error reporting registers
  1774. * must be read before a new error updates them! There is no way to read
  1775. * all four registers atomically. The best than can be done is to detect
  1776. * that a race has occured and then report the error without any kind of
  1777. * precision.
  1778. *
  1779. * What is still positive is that errors are still reported and thus
  1780. * problems can still be detected - just not localized because the
  1781. * syndrome and address are spread out across registers.
  1782. *
  1783. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1784. * UEs and CEs should have separate register sets with proper overflow
  1785. * bits that are used! At very least the problem can be fixed by
  1786. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1787. * set the overflow bit - unless the current error is CE and the new
  1788. * error is UE which would be the only situation for overwriting the
  1789. * current values.
  1790. */
  1791. regs = *info;
  1792. /* Use info from the second read - most current */
  1793. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1794. return 0;
  1795. /* clear the error bits in hardware */
  1796. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1797. /* Check for the possible race condition */
  1798. if ((regs.nbsh != info->nbsh) ||
  1799. (regs.nbsl != info->nbsl) ||
  1800. (regs.nbeah != info->nbeah) ||
  1801. (regs.nbeal != info->nbeal)) {
  1802. amd64_mc_printk(mci, KERN_WARNING,
  1803. "hardware STATUS read access race condition "
  1804. "detected!\n");
  1805. return 0;
  1806. }
  1807. return 1;
  1808. }
  1809. /*
  1810. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1811. * ADDRESS and process.
  1812. */
  1813. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1814. struct err_regs *info)
  1815. {
  1816. struct amd64_pvt *pvt = mci->pvt_info;
  1817. u64 SystemAddress;
  1818. /* Ensure that the Error Address is VALID */
  1819. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1820. amd64_mc_printk(mci, KERN_ERR,
  1821. "HW has no ERROR_ADDRESS available\n");
  1822. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1823. return;
  1824. }
  1825. SystemAddress = extract_error_address(mci, info);
  1826. amd64_mc_printk(mci, KERN_ERR,
  1827. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1828. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1829. }
  1830. /* Handle any Un-correctable Errors (UEs) */
  1831. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1832. struct err_regs *info)
  1833. {
  1834. int csrow;
  1835. u64 SystemAddress;
  1836. u32 page, offset;
  1837. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1838. log_mci = mci;
  1839. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1840. amd64_mc_printk(mci, KERN_CRIT,
  1841. "HW has no ERROR_ADDRESS available\n");
  1842. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1843. return;
  1844. }
  1845. SystemAddress = extract_error_address(mci, info);
  1846. /*
  1847. * Find out which node the error address belongs to. This may be
  1848. * different from the node that detected the error.
  1849. */
  1850. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1851. if (!src_mci) {
  1852. amd64_mc_printk(mci, KERN_CRIT,
  1853. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1854. (unsigned long)SystemAddress);
  1855. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1856. return;
  1857. }
  1858. log_mci = src_mci;
  1859. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1860. if (csrow < 0) {
  1861. amd64_mc_printk(mci, KERN_CRIT,
  1862. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1863. (unsigned long)SystemAddress);
  1864. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1865. } else {
  1866. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1867. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1868. }
  1869. }
  1870. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1871. struct err_regs *info)
  1872. {
  1873. u32 ec = ERROR_CODE(info->nbsl);
  1874. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1875. int ecc_type = (info->nbsh >> 13) & 0x3;
  1876. /* Bail early out if this was an 'observed' error */
  1877. if (PP(ec) == K8_NBSL_PP_OBS)
  1878. return;
  1879. /* Do only ECC errors */
  1880. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1881. return;
  1882. if (ecc_type == 2)
  1883. amd64_handle_ce(mci, info);
  1884. else if (ecc_type == 1)
  1885. amd64_handle_ue(mci, info);
  1886. /*
  1887. * If main error is CE then overflow must be CE. If main error is UE
  1888. * then overflow is unknown. We'll call the overflow a CE - if
  1889. * panic_on_ue is set then we're already panic'ed and won't arrive
  1890. * here. Else, then apparently someone doesn't think that UE's are
  1891. * catastrophic.
  1892. */
  1893. if (info->nbsh & K8_NBSH_OVERFLOW)
  1894. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1895. }
  1896. void amd64_decode_bus_error(int node_id, struct err_regs *regs)
  1897. {
  1898. struct mem_ctl_info *mci = mci_lookup[node_id];
  1899. __amd64_decode_bus_error(mci, regs);
  1900. /*
  1901. * Check the UE bit of the NB status high register, if set generate some
  1902. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1903. * If it was a GART error, skip that process.
  1904. *
  1905. * FIXME: this should go somewhere else, if at all.
  1906. */
  1907. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1908. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1909. }
  1910. /*
  1911. * The main polling 'check' function, called FROM the edac core to perform the
  1912. * error checking and if an error is encountered, error processing.
  1913. */
  1914. static void amd64_check(struct mem_ctl_info *mci)
  1915. {
  1916. struct err_regs regs;
  1917. if (amd64_get_error_info(mci, &regs)) {
  1918. struct amd64_pvt *pvt = mci->pvt_info;
  1919. amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
  1920. }
  1921. }
  1922. /*
  1923. * Input:
  1924. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  1925. * 2) AMD Family index value
  1926. *
  1927. * Ouput:
  1928. * Upon return of 0, the following filled in:
  1929. *
  1930. * struct pvt->addr_f1_ctl
  1931. * struct pvt->misc_f3_ctl
  1932. *
  1933. * Filled in with related device funcitions of 'dram_f2_ctl'
  1934. * These devices are "reserved" via the pci_get_device()
  1935. *
  1936. * Upon return of 1 (error status):
  1937. *
  1938. * Nothing reserved
  1939. */
  1940. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  1941. {
  1942. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  1943. /* Reserve the ADDRESS MAP Device */
  1944. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1945. amd64_dev->addr_f1_ctl,
  1946. pvt->dram_f2_ctl);
  1947. if (!pvt->addr_f1_ctl) {
  1948. amd64_printk(KERN_ERR, "error address map device not found: "
  1949. "vendor %x device 0x%x (broken BIOS?)\n",
  1950. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  1951. return 1;
  1952. }
  1953. /* Reserve the MISC Device */
  1954. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1955. amd64_dev->misc_f3_ctl,
  1956. pvt->dram_f2_ctl);
  1957. if (!pvt->misc_f3_ctl) {
  1958. pci_dev_put(pvt->addr_f1_ctl);
  1959. pvt->addr_f1_ctl = NULL;
  1960. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  1961. "vendor %x device 0x%x (broken BIOS?)\n",
  1962. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  1963. return 1;
  1964. }
  1965. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  1966. pci_name(pvt->addr_f1_ctl));
  1967. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  1968. pci_name(pvt->dram_f2_ctl));
  1969. debugf1(" Misc device PCI Bus ID:\t%s\n",
  1970. pci_name(pvt->misc_f3_ctl));
  1971. return 0;
  1972. }
  1973. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1974. {
  1975. pci_dev_put(pvt->addr_f1_ctl);
  1976. pci_dev_put(pvt->misc_f3_ctl);
  1977. }
  1978. /*
  1979. * Retrieve the hardware registers of the memory controller (this includes the
  1980. * 'Address Map' and 'Misc' device regs)
  1981. */
  1982. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1983. {
  1984. u64 msr_val;
  1985. int dram;
  1986. /*
  1987. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1988. * those are Read-As-Zero
  1989. */
  1990. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1991. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1992. /* check first whether TOP_MEM2 is enabled */
  1993. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1994. if (msr_val & (1U << 21)) {
  1995. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1996. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1997. } else
  1998. debugf0(" TOP_MEM2 disabled.\n");
  1999. amd64_cpu_display_info(pvt);
  2000. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  2001. if (pvt->ops->read_dram_ctl_register)
  2002. pvt->ops->read_dram_ctl_register(pvt);
  2003. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  2004. /*
  2005. * Call CPU specific READ function to get the DRAM Base and
  2006. * Limit values from the DCT.
  2007. */
  2008. pvt->ops->read_dram_base_limit(pvt, dram);
  2009. /*
  2010. * Only print out debug info on rows with both R and W Enabled.
  2011. * Normal processing, compiler should optimize this whole 'if'
  2012. * debug output block away.
  2013. */
  2014. if (pvt->dram_rw_en[dram] != 0) {
  2015. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  2016. "DRAM-LIMIT: 0x%016llx\n",
  2017. dram,
  2018. pvt->dram_base[dram],
  2019. pvt->dram_limit[dram]);
  2020. debugf1(" IntlvEn=%s %s %s "
  2021. "IntlvSel=%d DstNode=%d\n",
  2022. pvt->dram_IntlvEn[dram] ?
  2023. "Enabled" : "Disabled",
  2024. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  2025. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2026. pvt->dram_IntlvSel[dram],
  2027. pvt->dram_DstNode[dram]);
  2028. }
  2029. }
  2030. amd64_read_dct_base_mask(pvt);
  2031. amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2032. amd64_read_dbam_reg(pvt);
  2033. amd64_read_pci_cfg(pvt->misc_f3_ctl,
  2034. F10_ONLINE_SPARE, &pvt->online_spare);
  2035. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2036. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2037. if (!dct_ganging_enabled(pvt)) {
  2038. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  2039. amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
  2040. }
  2041. amd64_dump_misc_regs(pvt);
  2042. }
  2043. /*
  2044. * NOTE: CPU Revision Dependent code
  2045. *
  2046. * Input:
  2047. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  2048. * k8 private pointer to -->
  2049. * DRAM Bank Address mapping register
  2050. * node_id
  2051. * DCL register where dual_channel_active is
  2052. *
  2053. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2054. *
  2055. * Bits: CSROWs
  2056. * 0-3 CSROWs 0 and 1
  2057. * 4-7 CSROWs 2 and 3
  2058. * 8-11 CSROWs 4 and 5
  2059. * 12-15 CSROWs 6 and 7
  2060. *
  2061. * Values range from: 0 to 15
  2062. * The meaning of the values depends on CPU revision and dual-channel state,
  2063. * see relevant BKDG more info.
  2064. *
  2065. * The memory controller provides for total of only 8 CSROWs in its current
  2066. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2067. * single channel or two (2) DIMMs in dual channel mode.
  2068. *
  2069. * The following code logic collapses the various tables for CSROW based on CPU
  2070. * revision.
  2071. *
  2072. * Returns:
  2073. * The number of PAGE_SIZE pages on the specified CSROW number it
  2074. * encompasses
  2075. *
  2076. */
  2077. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2078. {
  2079. u32 dram_map, nr_pages;
  2080. /*
  2081. * The math on this doesn't look right on the surface because x/2*4 can
  2082. * be simplified to x*2 but this expression makes use of the fact that
  2083. * it is integral math where 1/2=0. This intermediate value becomes the
  2084. * number of bits to shift the DBAM register to extract the proper CSROW
  2085. * field.
  2086. */
  2087. dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2088. nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
  2089. /*
  2090. * If dual channel then double the memory size of single channel.
  2091. * Channel count is 1 or 2
  2092. */
  2093. nr_pages <<= (pvt->channel_count - 1);
  2094. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
  2095. debugf0(" nr_pages= %u channel-count = %d\n",
  2096. nr_pages, pvt->channel_count);
  2097. return nr_pages;
  2098. }
  2099. /*
  2100. * Initialize the array of csrow attribute instances, based on the values
  2101. * from pci config hardware registers.
  2102. */
  2103. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2104. {
  2105. struct csrow_info *csrow;
  2106. struct amd64_pvt *pvt;
  2107. u64 input_addr_min, input_addr_max, sys_addr;
  2108. int i, empty = 1;
  2109. pvt = mci->pvt_info;
  2110. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2111. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2112. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2113. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2114. );
  2115. for (i = 0; i < pvt->cs_count; i++) {
  2116. csrow = &mci->csrows[i];
  2117. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2118. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2119. pvt->mc_node_id);
  2120. continue;
  2121. }
  2122. debugf1("----CSROW %d VALID for MC node %d\n",
  2123. i, pvt->mc_node_id);
  2124. empty = 0;
  2125. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2126. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2127. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2128. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2129. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2130. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2131. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2132. /* 8 bytes of resolution */
  2133. csrow->mtype = amd64_determine_memory_type(pvt);
  2134. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2135. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2136. (unsigned long)input_addr_min,
  2137. (unsigned long)input_addr_max);
  2138. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2139. (unsigned long)sys_addr, csrow->page_mask);
  2140. debugf1(" nr_pages: %u first_page: 0x%lx "
  2141. "last_page: 0x%lx\n",
  2142. (unsigned)csrow->nr_pages,
  2143. csrow->first_page, csrow->last_page);
  2144. /*
  2145. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2146. */
  2147. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2148. csrow->edac_mode =
  2149. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2150. EDAC_S4ECD4ED : EDAC_SECDED;
  2151. else
  2152. csrow->edac_mode = EDAC_NONE;
  2153. }
  2154. return empty;
  2155. }
  2156. /* get all cores on this DCT */
  2157. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  2158. {
  2159. int cpu;
  2160. for_each_online_cpu(cpu)
  2161. if (amd_get_nb_id(cpu) == nid)
  2162. cpumask_set_cpu(cpu, mask);
  2163. }
  2164. /* check MCG_CTL on all the cpus on this node */
  2165. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  2166. {
  2167. cpumask_var_t mask;
  2168. struct msr *msrs;
  2169. int cpu, nbe, idx = 0;
  2170. bool ret = false;
  2171. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2172. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2173. __func__);
  2174. return false;
  2175. }
  2176. get_cpus_on_this_dct_cpumask(mask, nid);
  2177. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
  2178. if (!msrs) {
  2179. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2180. __func__);
  2181. free_cpumask_var(mask);
  2182. return false;
  2183. }
  2184. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2185. for_each_cpu(cpu, mask) {
  2186. nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
  2187. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2188. cpu, msrs[idx].q,
  2189. (nbe ? "enabled" : "disabled"));
  2190. if (!nbe)
  2191. goto out;
  2192. idx++;
  2193. }
  2194. ret = true;
  2195. out:
  2196. kfree(msrs);
  2197. free_cpumask_var(mask);
  2198. return ret;
  2199. }
  2200. static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
  2201. {
  2202. cpumask_var_t cmask;
  2203. struct msr *msrs = NULL;
  2204. int cpu, idx = 0;
  2205. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2206. amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
  2207. __func__);
  2208. return false;
  2209. }
  2210. get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
  2211. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
  2212. if (!msrs) {
  2213. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2214. __func__);
  2215. return -ENOMEM;
  2216. }
  2217. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2218. for_each_cpu(cpu, cmask) {
  2219. if (on) {
  2220. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2221. pvt->flags.ecc_report = 1;
  2222. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2223. } else {
  2224. /*
  2225. * Turn off ECC reporting only when it was off before
  2226. */
  2227. if (!pvt->flags.ecc_report)
  2228. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2229. }
  2230. idx++;
  2231. }
  2232. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2233. kfree(msrs);
  2234. free_cpumask_var(cmask);
  2235. return 0;
  2236. }
  2237. /*
  2238. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2239. * enable it.
  2240. */
  2241. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2242. {
  2243. struct amd64_pvt *pvt = mci->pvt_info;
  2244. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2245. if (!ecc_enable_override)
  2246. return;
  2247. amd64_printk(KERN_WARNING,
  2248. "'ecc_enable_override' parameter is active, "
  2249. "Enabling AMD ECC hardware now: CAUTION\n");
  2250. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2251. /* turn on UECCn and CECCEn bits */
  2252. pvt->old_nbctl = value & mask;
  2253. pvt->nbctl_mcgctl_saved = 1;
  2254. value |= mask;
  2255. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2256. if (amd64_toggle_ecc_err_reporting(pvt, ON))
  2257. amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
  2258. "MCGCTL!\n");
  2259. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2260. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2261. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2262. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2263. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2264. amd64_printk(KERN_WARNING,
  2265. "This node reports that DRAM ECC is "
  2266. "currently Disabled; ENABLING now\n");
  2267. /* Attempt to turn on DRAM ECC Enable */
  2268. value |= K8_NBCFG_ECC_ENABLE;
  2269. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2270. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2271. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2272. amd64_printk(KERN_WARNING,
  2273. "Hardware rejects Enabling DRAM ECC checking\n"
  2274. "Check memory DIMM configuration\n");
  2275. } else {
  2276. amd64_printk(KERN_DEBUG,
  2277. "Hardware accepted DRAM ECC Enable\n");
  2278. }
  2279. }
  2280. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2281. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2282. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2283. pvt->ctl_error_info.nbcfg = value;
  2284. }
  2285. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2286. {
  2287. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2288. if (!pvt->nbctl_mcgctl_saved)
  2289. return;
  2290. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2291. value &= ~mask;
  2292. value |= pvt->old_nbctl;
  2293. /* restore the NB Enable MCGCTL bit */
  2294. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2295. if (amd64_toggle_ecc_err_reporting(pvt, OFF))
  2296. amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
  2297. "MCGCTL!\n");
  2298. }
  2299. /*
  2300. * EDAC requires that the BIOS have ECC enabled before taking over the
  2301. * processing of ECC errors. This is because the BIOS can properly initialize
  2302. * the memory system completely. A command line option allows to force-enable
  2303. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2304. */
  2305. static const char *ecc_warning =
  2306. "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
  2307. " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
  2308. " Also, use of the override can cause unknown side effects.\n";
  2309. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2310. {
  2311. u32 value;
  2312. u8 ecc_enabled = 0;
  2313. bool nb_mce_en = false;
  2314. amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2315. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2316. if (!ecc_enabled)
  2317. amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
  2318. "is currently disabled, set F3x%x[22] (%s).\n",
  2319. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2320. else
  2321. amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
  2322. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2323. if (!nb_mce_en)
  2324. amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
  2325. "0x%08x[4] on node %d to enable.\n",
  2326. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2327. if (!ecc_enabled || !nb_mce_en) {
  2328. if (!ecc_enable_override) {
  2329. amd64_printk(KERN_WARNING, "%s", ecc_warning);
  2330. return -ENODEV;
  2331. }
  2332. } else
  2333. /* CLEAR the override, since BIOS controlled it */
  2334. ecc_enable_override = 0;
  2335. return 0;
  2336. }
  2337. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2338. ARRAY_SIZE(amd64_inj_attrs) +
  2339. 1];
  2340. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2341. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2342. {
  2343. unsigned int i = 0, j = 0;
  2344. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2345. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2346. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2347. sysfs_attrs[i] = amd64_inj_attrs[j];
  2348. sysfs_attrs[i] = terminator;
  2349. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2350. }
  2351. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2352. {
  2353. struct amd64_pvt *pvt = mci->pvt_info;
  2354. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2355. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2356. if (pvt->nbcap & K8_NBCAP_SECDED)
  2357. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2358. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2359. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2360. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2361. mci->mod_name = EDAC_MOD_STR;
  2362. mci->mod_ver = EDAC_AMD64_VERSION;
  2363. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2364. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2365. mci->ctl_page_to_phys = NULL;
  2366. /* IMPORTANT: Set the polling 'check' function in this module */
  2367. mci->edac_check = amd64_check;
  2368. /* memory scrubber interface */
  2369. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2370. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2371. }
  2372. /*
  2373. * Init stuff for this DRAM Controller device.
  2374. *
  2375. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2376. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2377. * from the ECS registers. Since the loading of the module can occur on any
  2378. * 'core', and cores don't 'see' all the other processors ECS data when the
  2379. * others are NOT enabled. Our solution is to first enable ECS access in this
  2380. * routine on all processors, gather some data in a amd64_pvt structure and
  2381. * later come back in a finish-setup function to perform that final
  2382. * initialization. See also amd64_init_2nd_stage() for that.
  2383. */
  2384. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2385. int mc_type_index)
  2386. {
  2387. struct amd64_pvt *pvt = NULL;
  2388. int err = 0, ret;
  2389. ret = -ENOMEM;
  2390. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2391. if (!pvt)
  2392. goto err_exit;
  2393. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2394. pvt->dram_f2_ctl = dram_f2_ctl;
  2395. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2396. pvt->mc_type_index = mc_type_index;
  2397. pvt->ops = family_ops(mc_type_index);
  2398. /*
  2399. * We have the dram_f2_ctl device as an argument, now go reserve its
  2400. * sibling devices from the PCI system.
  2401. */
  2402. ret = -ENODEV;
  2403. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2404. if (err)
  2405. goto err_free;
  2406. ret = -EINVAL;
  2407. err = amd64_check_ecc_enabled(pvt);
  2408. if (err)
  2409. goto err_put;
  2410. /*
  2411. * Key operation here: setup of HW prior to performing ops on it. Some
  2412. * setup is required to access ECS data. After this is performed, the
  2413. * 'teardown' function must be called upon error and normal exit paths.
  2414. */
  2415. if (boot_cpu_data.x86 >= 0x10)
  2416. amd64_setup(pvt);
  2417. /*
  2418. * Save the pointer to the private data for use in 2nd initialization
  2419. * stage
  2420. */
  2421. pvt_lookup[pvt->mc_node_id] = pvt;
  2422. return 0;
  2423. err_put:
  2424. amd64_free_mc_sibling_devices(pvt);
  2425. err_free:
  2426. kfree(pvt);
  2427. err_exit:
  2428. return ret;
  2429. }
  2430. /*
  2431. * This is the finishing stage of the init code. Needs to be performed after all
  2432. * MCs' hardware have been prepped for accessing extended config space.
  2433. */
  2434. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2435. {
  2436. int node_id = pvt->mc_node_id;
  2437. struct mem_ctl_info *mci;
  2438. int ret, err = 0;
  2439. amd64_read_mc_registers(pvt);
  2440. ret = -ENODEV;
  2441. if (pvt->ops->probe_valid_hardware) {
  2442. err = pvt->ops->probe_valid_hardware(pvt);
  2443. if (err)
  2444. goto err_exit;
  2445. }
  2446. /*
  2447. * We need to determine how many memory channels there are. Then use
  2448. * that information for calculating the size of the dynamic instance
  2449. * tables in the 'mci' structure
  2450. */
  2451. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2452. if (pvt->channel_count < 0)
  2453. goto err_exit;
  2454. ret = -ENOMEM;
  2455. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2456. if (!mci)
  2457. goto err_exit;
  2458. mci->pvt_info = pvt;
  2459. mci->dev = &pvt->dram_f2_ctl->dev;
  2460. amd64_setup_mci_misc_attributes(mci);
  2461. if (amd64_init_csrows(mci))
  2462. mci->edac_cap = EDAC_FLAG_NONE;
  2463. amd64_enable_ecc_error_reporting(mci);
  2464. amd64_set_mc_sysfs_attributes(mci);
  2465. ret = -ENODEV;
  2466. if (edac_mc_add_mc(mci)) {
  2467. debugf1("failed edac_mc_add_mc()\n");
  2468. goto err_add_mc;
  2469. }
  2470. mci_lookup[node_id] = mci;
  2471. pvt_lookup[node_id] = NULL;
  2472. /* register stuff with EDAC MCE */
  2473. if (report_gart_errors)
  2474. amd_report_gart_errors(true);
  2475. amd_register_ecc_decoder(amd64_decode_bus_error);
  2476. return 0;
  2477. err_add_mc:
  2478. edac_mc_free(mci);
  2479. err_exit:
  2480. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2481. amd64_restore_ecc_error_reporting(pvt);
  2482. if (boot_cpu_data.x86 > 0xf)
  2483. amd64_teardown(pvt);
  2484. amd64_free_mc_sibling_devices(pvt);
  2485. kfree(pvt_lookup[pvt->mc_node_id]);
  2486. pvt_lookup[node_id] = NULL;
  2487. return ret;
  2488. }
  2489. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2490. const struct pci_device_id *mc_type)
  2491. {
  2492. int ret = 0;
  2493. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2494. get_amd_family_name(mc_type->driver_data));
  2495. ret = pci_enable_device(pdev);
  2496. if (ret < 0)
  2497. ret = -EIO;
  2498. else
  2499. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2500. if (ret < 0)
  2501. debugf0("ret=%d\n", ret);
  2502. return ret;
  2503. }
  2504. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2505. {
  2506. struct mem_ctl_info *mci;
  2507. struct amd64_pvt *pvt;
  2508. /* Remove from EDAC CORE tracking list */
  2509. mci = edac_mc_del_mc(&pdev->dev);
  2510. if (!mci)
  2511. return;
  2512. pvt = mci->pvt_info;
  2513. amd64_restore_ecc_error_reporting(pvt);
  2514. if (boot_cpu_data.x86 > 0xf)
  2515. amd64_teardown(pvt);
  2516. amd64_free_mc_sibling_devices(pvt);
  2517. kfree(pvt);
  2518. mci->pvt_info = NULL;
  2519. mci_lookup[pvt->mc_node_id] = NULL;
  2520. /* unregister from EDAC MCE */
  2521. amd_report_gart_errors(false);
  2522. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2523. /* Free the EDAC CORE resources */
  2524. edac_mc_free(mci);
  2525. }
  2526. /*
  2527. * This table is part of the interface for loading drivers for PCI devices. The
  2528. * PCI core identifies what devices are on a system during boot, and then
  2529. * inquiry this table to see if this driver is for a given device found.
  2530. */
  2531. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2532. {
  2533. .vendor = PCI_VENDOR_ID_AMD,
  2534. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2535. .subvendor = PCI_ANY_ID,
  2536. .subdevice = PCI_ANY_ID,
  2537. .class = 0,
  2538. .class_mask = 0,
  2539. .driver_data = K8_CPUS
  2540. },
  2541. {
  2542. .vendor = PCI_VENDOR_ID_AMD,
  2543. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2544. .subvendor = PCI_ANY_ID,
  2545. .subdevice = PCI_ANY_ID,
  2546. .class = 0,
  2547. .class_mask = 0,
  2548. .driver_data = F10_CPUS
  2549. },
  2550. {
  2551. .vendor = PCI_VENDOR_ID_AMD,
  2552. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2553. .subvendor = PCI_ANY_ID,
  2554. .subdevice = PCI_ANY_ID,
  2555. .class = 0,
  2556. .class_mask = 0,
  2557. .driver_data = F11_CPUS
  2558. },
  2559. {0, }
  2560. };
  2561. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2562. static struct pci_driver amd64_pci_driver = {
  2563. .name = EDAC_MOD_STR,
  2564. .probe = amd64_init_one_instance,
  2565. .remove = __devexit_p(amd64_remove_one_instance),
  2566. .id_table = amd64_pci_table,
  2567. };
  2568. static void amd64_setup_pci_device(void)
  2569. {
  2570. struct mem_ctl_info *mci;
  2571. struct amd64_pvt *pvt;
  2572. if (amd64_ctl_pci)
  2573. return;
  2574. mci = mci_lookup[0];
  2575. if (mci) {
  2576. pvt = mci->pvt_info;
  2577. amd64_ctl_pci =
  2578. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2579. EDAC_MOD_STR);
  2580. if (!amd64_ctl_pci) {
  2581. pr_warning("%s(): Unable to create PCI control\n",
  2582. __func__);
  2583. pr_warning("%s(): PCI error report via EDAC not set\n",
  2584. __func__);
  2585. }
  2586. }
  2587. }
  2588. static int __init amd64_edac_init(void)
  2589. {
  2590. int nb, err = -ENODEV;
  2591. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2592. opstate_init();
  2593. if (cache_k8_northbridges() < 0)
  2594. return err;
  2595. err = pci_register_driver(&amd64_pci_driver);
  2596. if (err)
  2597. return err;
  2598. /*
  2599. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2600. * amd64_pvt structs. These will be used in the 2nd stage init function
  2601. * to finish initialization of the MC instances.
  2602. */
  2603. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2604. if (!pvt_lookup[nb])
  2605. continue;
  2606. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2607. if (err)
  2608. goto err_2nd_stage;
  2609. }
  2610. amd64_setup_pci_device();
  2611. return 0;
  2612. err_2nd_stage:
  2613. debugf0("2nd stage failed\n");
  2614. pci_unregister_driver(&amd64_pci_driver);
  2615. return err;
  2616. }
  2617. static void __exit amd64_edac_exit(void)
  2618. {
  2619. if (amd64_ctl_pci)
  2620. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2621. pci_unregister_driver(&amd64_pci_driver);
  2622. }
  2623. module_init(amd64_edac_init);
  2624. module_exit(amd64_edac_exit);
  2625. MODULE_LICENSE("GPL");
  2626. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2627. "Dave Peterson, Thayne Harbaugh");
  2628. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2629. EDAC_AMD64_VERSION);
  2630. module_param(edac_op_state, int, 0444);
  2631. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");