mmzone.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/config.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/list.h>
  8. #include <linux/wait.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <asm/atomic.h>
  15. /* Free memory management - zoned buddy allocator. */
  16. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  17. #define MAX_ORDER 11
  18. #else
  19. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  20. #endif
  21. struct free_area {
  22. struct list_head free_list;
  23. unsigned long nr_free;
  24. };
  25. struct pglist_data;
  26. /*
  27. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  28. * So add a wild amount of padding here to ensure that they fall into separate
  29. * cachelines. There are very few zone structures in the machine, so space
  30. * consumption is not a concern here.
  31. */
  32. #if defined(CONFIG_SMP)
  33. struct zone_padding {
  34. char x[0];
  35. } ____cacheline_maxaligned_in_smp;
  36. #define ZONE_PADDING(name) struct zone_padding name;
  37. #else
  38. #define ZONE_PADDING(name)
  39. #endif
  40. struct per_cpu_pages {
  41. int count; /* number of pages in the list */
  42. int low; /* low watermark, refill needed */
  43. int high; /* high watermark, emptying needed */
  44. int batch; /* chunk size for buddy add/remove */
  45. struct list_head list; /* the list of pages */
  46. };
  47. struct per_cpu_pageset {
  48. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  49. #ifdef CONFIG_NUMA
  50. unsigned long numa_hit; /* allocated in intended node */
  51. unsigned long numa_miss; /* allocated in non intended node */
  52. unsigned long numa_foreign; /* was intended here, hit elsewhere */
  53. unsigned long interleave_hit; /* interleaver prefered this zone */
  54. unsigned long local_node; /* allocation from local node */
  55. unsigned long other_node; /* allocation from other node */
  56. #endif
  57. } ____cacheline_aligned_in_smp;
  58. #ifdef CONFIG_NUMA
  59. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  60. #else
  61. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  62. #endif
  63. #define ZONE_DMA 0
  64. #define ZONE_NORMAL 1
  65. #define ZONE_HIGHMEM 2
  66. #define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */
  67. #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
  68. /*
  69. * When a memory allocation must conform to specific limitations (such
  70. * as being suitable for DMA) the caller will pass in hints to the
  71. * allocator in the gfp_mask, in the zone modifier bits. These bits
  72. * are used to select a priority ordered list of memory zones which
  73. * match the requested limits. GFP_ZONEMASK defines which bits within
  74. * the gfp_mask should be considered as zone modifiers. Each valid
  75. * combination of the zone modifier bits has a corresponding list
  76. * of zones (in node_zonelists). Thus for two zone modifiers there
  77. * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
  78. * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
  79. * combinations of zone modifiers in "zone modifier space".
  80. */
  81. #define GFP_ZONEMASK 0x03
  82. /*
  83. * As an optimisation any zone modifier bits which are only valid when
  84. * no other zone modifier bits are set (loners) should be placed in
  85. * the highest order bits of this field. This allows us to reduce the
  86. * extent of the zonelists thus saving space. For example in the case
  87. * of three zone modifier bits, we could require up to eight zonelists.
  88. * If the left most zone modifier is a "loner" then the highest valid
  89. * zonelist would be four allowing us to allocate only five zonelists.
  90. * Use the first form when the left most bit is not a "loner", otherwise
  91. * use the second.
  92. */
  93. /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
  94. #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
  95. /*
  96. * On machines where it is needed (eg PCs) we divide physical memory
  97. * into multiple physical zones. On a PC we have 3 zones:
  98. *
  99. * ZONE_DMA < 16 MB ISA DMA capable memory
  100. * ZONE_NORMAL 16-896 MB direct mapped by the kernel
  101. * ZONE_HIGHMEM > 896 MB only page cache and user processes
  102. */
  103. struct zone {
  104. /* Fields commonly accessed by the page allocator */
  105. unsigned long free_pages;
  106. unsigned long pages_min, pages_low, pages_high;
  107. /*
  108. * We don't know if the memory that we're going to allocate will be freeable
  109. * or/and it will be released eventually, so to avoid totally wasting several
  110. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  111. * to run OOM on the lower zones despite there's tons of freeable ram
  112. * on the higher zones). This array is recalculated at runtime if the
  113. * sysctl_lowmem_reserve_ratio sysctl changes.
  114. */
  115. unsigned long lowmem_reserve[MAX_NR_ZONES];
  116. #ifdef CONFIG_NUMA
  117. struct per_cpu_pageset *pageset[NR_CPUS];
  118. #else
  119. struct per_cpu_pageset pageset[NR_CPUS];
  120. #endif
  121. /*
  122. * free areas of different sizes
  123. */
  124. spinlock_t lock;
  125. #ifdef CONFIG_MEMORY_HOTPLUG
  126. /* see spanned/present_pages for more description */
  127. seqlock_t span_seqlock;
  128. #endif
  129. struct free_area free_area[MAX_ORDER];
  130. ZONE_PADDING(_pad1_)
  131. /* Fields commonly accessed by the page reclaim scanner */
  132. spinlock_t lru_lock;
  133. struct list_head active_list;
  134. struct list_head inactive_list;
  135. unsigned long nr_scan_active;
  136. unsigned long nr_scan_inactive;
  137. unsigned long nr_active;
  138. unsigned long nr_inactive;
  139. unsigned long pages_scanned; /* since last reclaim */
  140. int all_unreclaimable; /* All pages pinned */
  141. /*
  142. * Does the allocator try to reclaim pages from the zone as soon
  143. * as it fails a watermark_ok() in __alloc_pages?
  144. */
  145. int reclaim_pages;
  146. /* A count of how many reclaimers are scanning this zone */
  147. atomic_t reclaim_in_progress;
  148. /*
  149. * prev_priority holds the scanning priority for this zone. It is
  150. * defined as the scanning priority at which we achieved our reclaim
  151. * target at the previous try_to_free_pages() or balance_pgdat()
  152. * invokation.
  153. *
  154. * We use prev_priority as a measure of how much stress page reclaim is
  155. * under - it drives the swappiness decision: whether to unmap mapped
  156. * pages.
  157. *
  158. * temp_priority is used to remember the scanning priority at which
  159. * this zone was successfully refilled to free_pages == pages_high.
  160. *
  161. * Access to both these fields is quite racy even on uniprocessor. But
  162. * it is expected to average out OK.
  163. */
  164. int temp_priority;
  165. int prev_priority;
  166. ZONE_PADDING(_pad2_)
  167. /* Rarely used or read-mostly fields */
  168. /*
  169. * wait_table -- the array holding the hash table
  170. * wait_table_size -- the size of the hash table array
  171. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  172. *
  173. * The purpose of all these is to keep track of the people
  174. * waiting for a page to become available and make them
  175. * runnable again when possible. The trouble is that this
  176. * consumes a lot of space, especially when so few things
  177. * wait on pages at a given time. So instead of using
  178. * per-page waitqueues, we use a waitqueue hash table.
  179. *
  180. * The bucket discipline is to sleep on the same queue when
  181. * colliding and wake all in that wait queue when removing.
  182. * When something wakes, it must check to be sure its page is
  183. * truly available, a la thundering herd. The cost of a
  184. * collision is great, but given the expected load of the
  185. * table, they should be so rare as to be outweighed by the
  186. * benefits from the saved space.
  187. *
  188. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  189. * primary users of these fields, and in mm/page_alloc.c
  190. * free_area_init_core() performs the initialization of them.
  191. */
  192. wait_queue_head_t * wait_table;
  193. unsigned long wait_table_size;
  194. unsigned long wait_table_bits;
  195. /*
  196. * Discontig memory support fields.
  197. */
  198. struct pglist_data *zone_pgdat;
  199. struct page *zone_mem_map;
  200. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  201. unsigned long zone_start_pfn;
  202. /*
  203. * zone_start_pfn, spanned_pages and present_pages are all
  204. * protected by span_seqlock. It is a seqlock because it has
  205. * to be read outside of zone->lock, and it is done in the main
  206. * allocator path. But, it is written quite infrequently.
  207. *
  208. * The lock is declared along with zone->lock because it is
  209. * frequently read in proximity to zone->lock. It's good to
  210. * give them a chance of being in the same cacheline.
  211. */
  212. unsigned long spanned_pages; /* total size, including holes */
  213. unsigned long present_pages; /* amount of memory (excluding holes) */
  214. /*
  215. * rarely used fields:
  216. */
  217. char *name;
  218. } ____cacheline_maxaligned_in_smp;
  219. /*
  220. * The "priority" of VM scanning is how much of the queues we will scan in one
  221. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  222. * queues ("queue_length >> 12") during an aging round.
  223. */
  224. #define DEF_PRIORITY 12
  225. /*
  226. * One allocation request operates on a zonelist. A zonelist
  227. * is a list of zones, the first one is the 'goal' of the
  228. * allocation, the other zones are fallback zones, in decreasing
  229. * priority.
  230. *
  231. * Right now a zonelist takes up less than a cacheline. We never
  232. * modify it apart from boot-up, and only a few indices are used,
  233. * so despite the zonelist table being relatively big, the cache
  234. * footprint of this construct is very small.
  235. */
  236. struct zonelist {
  237. struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
  238. };
  239. /*
  240. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  241. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  242. * zone denotes.
  243. *
  244. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  245. * it's memory layout.
  246. *
  247. * Memory statistics and page replacement data structures are maintained on a
  248. * per-zone basis.
  249. */
  250. struct bootmem_data;
  251. typedef struct pglist_data {
  252. struct zone node_zones[MAX_NR_ZONES];
  253. struct zonelist node_zonelists[GFP_ZONETYPES];
  254. int nr_zones;
  255. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  256. struct page *node_mem_map;
  257. #endif
  258. struct bootmem_data *bdata;
  259. #ifdef CONFIG_MEMORY_HOTPLUG
  260. /*
  261. * Must be held any time you expect node_start_pfn, node_present_pages
  262. * or node_spanned_pages stay constant. Holding this will also
  263. * guarantee that any pfn_valid() stays that way.
  264. *
  265. * Nests above zone->lock and zone->size_seqlock.
  266. */
  267. spinlock_t node_size_lock;
  268. #endif
  269. unsigned long node_start_pfn;
  270. unsigned long node_present_pages; /* total number of physical pages */
  271. unsigned long node_spanned_pages; /* total size of physical page
  272. range, including holes */
  273. int node_id;
  274. struct pglist_data *pgdat_next;
  275. wait_queue_head_t kswapd_wait;
  276. struct task_struct *kswapd;
  277. int kswapd_max_order;
  278. } pg_data_t;
  279. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  280. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  281. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  282. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  283. #else
  284. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  285. #endif
  286. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  287. #include <linux/memory_hotplug.h>
  288. extern struct pglist_data *pgdat_list;
  289. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  290. unsigned long *free, struct pglist_data *pgdat);
  291. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  292. unsigned long *free);
  293. void build_all_zonelists(void);
  294. void wakeup_kswapd(struct zone *zone, int order);
  295. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  296. int alloc_type, int can_try_harder, gfp_t gfp_high);
  297. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  298. void memory_present(int nid, unsigned long start, unsigned long end);
  299. #else
  300. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  301. #endif
  302. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  303. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  304. #endif
  305. /*
  306. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  307. */
  308. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  309. /**
  310. * for_each_pgdat - helper macro to iterate over all nodes
  311. * @pgdat - pointer to a pg_data_t variable
  312. *
  313. * Meant to help with common loops of the form
  314. * pgdat = pgdat_list;
  315. * while(pgdat) {
  316. * ...
  317. * pgdat = pgdat->pgdat_next;
  318. * }
  319. */
  320. #define for_each_pgdat(pgdat) \
  321. for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
  322. /*
  323. * next_zone - helper magic for for_each_zone()
  324. * Thanks to William Lee Irwin III for this piece of ingenuity.
  325. */
  326. static inline struct zone *next_zone(struct zone *zone)
  327. {
  328. pg_data_t *pgdat = zone->zone_pgdat;
  329. if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
  330. zone++;
  331. else if (pgdat->pgdat_next) {
  332. pgdat = pgdat->pgdat_next;
  333. zone = pgdat->node_zones;
  334. } else
  335. zone = NULL;
  336. return zone;
  337. }
  338. /**
  339. * for_each_zone - helper macro to iterate over all memory zones
  340. * @zone - pointer to struct zone variable
  341. *
  342. * The user only needs to declare the zone variable, for_each_zone
  343. * fills it in. This basically means for_each_zone() is an
  344. * easier to read version of this piece of code:
  345. *
  346. * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
  347. * for (i = 0; i < MAX_NR_ZONES; ++i) {
  348. * struct zone * z = pgdat->node_zones + i;
  349. * ...
  350. * }
  351. * }
  352. */
  353. #define for_each_zone(zone) \
  354. for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
  355. static inline int is_highmem_idx(int idx)
  356. {
  357. return (idx == ZONE_HIGHMEM);
  358. }
  359. static inline int is_normal_idx(int idx)
  360. {
  361. return (idx == ZONE_NORMAL);
  362. }
  363. /**
  364. * is_highmem - helper function to quickly check if a struct zone is a
  365. * highmem zone or not. This is an attempt to keep references
  366. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  367. * @zone - pointer to struct zone variable
  368. */
  369. static inline int is_highmem(struct zone *zone)
  370. {
  371. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  372. }
  373. static inline int is_normal(struct zone *zone)
  374. {
  375. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  376. }
  377. /* These two functions are used to setup the per zone pages min values */
  378. struct ctl_table;
  379. struct file;
  380. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  381. void __user *, size_t *, loff_t *);
  382. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  383. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  384. void __user *, size_t *, loff_t *);
  385. #include <linux/topology.h>
  386. /* Returns the number of the current Node. */
  387. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  388. #ifndef CONFIG_NEED_MULTIPLE_NODES
  389. extern struct pglist_data contig_page_data;
  390. #define NODE_DATA(nid) (&contig_page_data)
  391. #define NODE_MEM_MAP(nid) mem_map
  392. #define MAX_NODES_SHIFT 1
  393. #define pfn_to_nid(pfn) (0)
  394. #else /* CONFIG_NEED_MULTIPLE_NODES */
  395. #include <asm/mmzone.h>
  396. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  397. #ifdef CONFIG_SPARSEMEM
  398. #include <asm/sparsemem.h>
  399. #endif
  400. #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
  401. /*
  402. * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
  403. * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
  404. */
  405. #define FLAGS_RESERVED 8
  406. #elif BITS_PER_LONG == 64
  407. /*
  408. * with 64 bit flags field, there's plenty of room.
  409. */
  410. #define FLAGS_RESERVED 32
  411. #else
  412. #error BITS_PER_LONG not defined
  413. #endif
  414. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  415. #define early_pfn_to_nid(nid) (0UL)
  416. #endif
  417. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  418. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  419. #ifdef CONFIG_SPARSEMEM
  420. /*
  421. * SECTION_SHIFT #bits space required to store a section #
  422. *
  423. * PA_SECTION_SHIFT physical address to/from section number
  424. * PFN_SECTION_SHIFT pfn to/from section number
  425. */
  426. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  427. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  428. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  429. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  430. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  431. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  432. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  433. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  434. #endif
  435. struct page;
  436. struct mem_section {
  437. /*
  438. * This is, logically, a pointer to an array of struct
  439. * pages. However, it is stored with some other magic.
  440. * (see sparse.c::sparse_init_one_section())
  441. *
  442. * Making it a UL at least makes someone do a cast
  443. * before using it wrong.
  444. */
  445. unsigned long section_mem_map;
  446. };
  447. #ifdef CONFIG_SPARSEMEM_EXTREME
  448. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  449. #else
  450. #define SECTIONS_PER_ROOT 1
  451. #endif
  452. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  453. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  454. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  455. #ifdef CONFIG_SPARSEMEM_EXTREME
  456. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  457. #else
  458. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  459. #endif
  460. static inline struct mem_section *__nr_to_section(unsigned long nr)
  461. {
  462. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  463. return NULL;
  464. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  465. }
  466. extern int __section_nr(struct mem_section* ms);
  467. /*
  468. * We use the lower bits of the mem_map pointer to store
  469. * a little bit of information. There should be at least
  470. * 3 bits here due to 32-bit alignment.
  471. */
  472. #define SECTION_MARKED_PRESENT (1UL<<0)
  473. #define SECTION_HAS_MEM_MAP (1UL<<1)
  474. #define SECTION_MAP_LAST_BIT (1UL<<2)
  475. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  476. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  477. {
  478. unsigned long map = section->section_mem_map;
  479. map &= SECTION_MAP_MASK;
  480. return (struct page *)map;
  481. }
  482. static inline int valid_section(struct mem_section *section)
  483. {
  484. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  485. }
  486. static inline int section_has_mem_map(struct mem_section *section)
  487. {
  488. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  489. }
  490. static inline int valid_section_nr(unsigned long nr)
  491. {
  492. return valid_section(__nr_to_section(nr));
  493. }
  494. /*
  495. * Given a kernel address, find the home node of the underlying memory.
  496. */
  497. #define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT)
  498. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  499. {
  500. return __nr_to_section(pfn_to_section_nr(pfn));
  501. }
  502. #define pfn_to_page(pfn) \
  503. ({ \
  504. unsigned long __pfn = (pfn); \
  505. __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
  506. })
  507. #define page_to_pfn(page) \
  508. ({ \
  509. page - __section_mem_map_addr(__nr_to_section( \
  510. page_to_section(page))); \
  511. })
  512. static inline int pfn_valid(unsigned long pfn)
  513. {
  514. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  515. return 0;
  516. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  517. }
  518. /*
  519. * These are _only_ used during initialisation, therefore they
  520. * can use __initdata ... They could have names to indicate
  521. * this restriction.
  522. */
  523. #ifdef CONFIG_NUMA
  524. #define pfn_to_nid early_pfn_to_nid
  525. #endif
  526. #define pfn_to_pgdat(pfn) \
  527. ({ \
  528. NODE_DATA(pfn_to_nid(pfn)); \
  529. })
  530. #define early_pfn_valid(pfn) pfn_valid(pfn)
  531. void sparse_init(void);
  532. #else
  533. #define sparse_init() do {} while (0)
  534. #define sparse_index_init(_sec, _nid) do {} while (0)
  535. #endif /* CONFIG_SPARSEMEM */
  536. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  537. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  538. #else
  539. #define early_pfn_in_nid(pfn, nid) (1)
  540. #endif
  541. #ifndef early_pfn_valid
  542. #define early_pfn_valid(pfn) (1)
  543. #endif
  544. void memory_present(int nid, unsigned long start, unsigned long end);
  545. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  546. #endif /* !__ASSEMBLY__ */
  547. #endif /* __KERNEL__ */
  548. #endif /* _LINUX_MMZONE_H */