perfmon.c 169 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846
  1. /*
  2. * This file implements the perfmon-2 subsystem which is used
  3. * to program the IA-64 Performance Monitoring Unit (PMU).
  4. *
  5. * The initial version of perfmon.c was written by
  6. * Ganesh Venkitachalam, IBM Corp.
  7. *
  8. * Then it was modified for perfmon-1.x by Stephane Eranian and
  9. * David Mosberger, Hewlett Packard Co.
  10. *
  11. * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12. * by Stephane Eranian, Hewlett Packard Co.
  13. *
  14. * Copyright (C) 1999-2005 Hewlett Packard Co
  15. * Stephane Eranian <eranian@hpl.hp.com>
  16. * David Mosberger-Tang <davidm@hpl.hp.com>
  17. *
  18. * More information about perfmon available at:
  19. * http://www.hpl.hp.com/research/linux/perfmon
  20. */
  21. #include <linux/config.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/sched.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/smp_lock.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/seq_file.h>
  29. #include <linux/init.h>
  30. #include <linux/vmalloc.h>
  31. #include <linux/mm.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/list.h>
  34. #include <linux/file.h>
  35. #include <linux/poll.h>
  36. #include <linux/vfs.h>
  37. #include <linux/pagemap.h>
  38. #include <linux/mount.h>
  39. #include <linux/bitops.h>
  40. #include <linux/rcupdate.h>
  41. #include <asm/errno.h>
  42. #include <asm/intrinsics.h>
  43. #include <asm/page.h>
  44. #include <asm/perfmon.h>
  45. #include <asm/processor.h>
  46. #include <asm/signal.h>
  47. #include <asm/system.h>
  48. #include <asm/uaccess.h>
  49. #include <asm/delay.h>
  50. #ifdef CONFIG_PERFMON
  51. /*
  52. * perfmon context state
  53. */
  54. #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
  55. #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
  56. #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
  57. #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
  58. #define PFM_INVALID_ACTIVATION (~0UL)
  59. /*
  60. * depth of message queue
  61. */
  62. #define PFM_MAX_MSGS 32
  63. #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  64. /*
  65. * type of a PMU register (bitmask).
  66. * bitmask structure:
  67. * bit0 : register implemented
  68. * bit1 : end marker
  69. * bit2-3 : reserved
  70. * bit4 : pmc has pmc.pm
  71. * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
  72. * bit6-7 : register type
  73. * bit8-31: reserved
  74. */
  75. #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
  76. #define PFM_REG_IMPL 0x1 /* register implemented */
  77. #define PFM_REG_END 0x2 /* end marker */
  78. #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  79. #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  80. #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  81. #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
  82. #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  83. #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  84. #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  85. #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
  86. /* i assumed unsigned */
  87. #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
  88. #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
  89. /* XXX: these assume that register i is implemented */
  90. #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  91. #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  92. #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
  93. #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
  94. #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
  95. #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
  96. #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
  97. #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
  98. #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
  99. #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
  100. #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
  101. #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
  102. #define PFM_CTX_TASK(h) (h)->ctx_task
  103. #define PMU_PMC_OI 5 /* position of pmc.oi bit */
  104. /* XXX: does not support more than 64 PMDs */
  105. #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
  106. #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
  107. #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
  108. #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
  109. #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
  110. #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
  111. #define PFM_CODE_RR 0 /* requesting code range restriction */
  112. #define PFM_DATA_RR 1 /* requestion data range restriction */
  113. #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
  114. #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
  115. #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
  116. #define RDEP(x) (1UL<<(x))
  117. /*
  118. * context protection macros
  119. * in SMP:
  120. * - we need to protect against CPU concurrency (spin_lock)
  121. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  122. * in UP:
  123. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  124. *
  125. * spin_lock_irqsave()/spin_lock_irqrestore():
  126. * in SMP: local_irq_disable + spin_lock
  127. * in UP : local_irq_disable
  128. *
  129. * spin_lock()/spin_lock():
  130. * in UP : removed automatically
  131. * in SMP: protect against context accesses from other CPU. interrupts
  132. * are not masked. This is useful for the PMU interrupt handler
  133. * because we know we will not get PMU concurrency in that code.
  134. */
  135. #define PROTECT_CTX(c, f) \
  136. do { \
  137. DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
  138. spin_lock_irqsave(&(c)->ctx_lock, f); \
  139. DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
  140. } while(0)
  141. #define UNPROTECT_CTX(c, f) \
  142. do { \
  143. DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
  144. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  145. } while(0)
  146. #define PROTECT_CTX_NOPRINT(c, f) \
  147. do { \
  148. spin_lock_irqsave(&(c)->ctx_lock, f); \
  149. } while(0)
  150. #define UNPROTECT_CTX_NOPRINT(c, f) \
  151. do { \
  152. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  153. } while(0)
  154. #define PROTECT_CTX_NOIRQ(c) \
  155. do { \
  156. spin_lock(&(c)->ctx_lock); \
  157. } while(0)
  158. #define UNPROTECT_CTX_NOIRQ(c) \
  159. do { \
  160. spin_unlock(&(c)->ctx_lock); \
  161. } while(0)
  162. #ifdef CONFIG_SMP
  163. #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
  164. #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
  165. #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
  166. #else /* !CONFIG_SMP */
  167. #define SET_ACTIVATION(t) do {} while(0)
  168. #define GET_ACTIVATION(t) do {} while(0)
  169. #define INC_ACTIVATION(t) do {} while(0)
  170. #endif /* CONFIG_SMP */
  171. #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
  172. #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
  173. #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
  174. #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
  175. #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
  176. #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
  177. /*
  178. * cmp0 must be the value of pmc0
  179. */
  180. #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
  181. #define PFMFS_MAGIC 0xa0b4d889
  182. /*
  183. * debugging
  184. */
  185. #define PFM_DEBUGGING 1
  186. #ifdef PFM_DEBUGGING
  187. #define DPRINT(a) \
  188. do { \
  189. if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  190. } while (0)
  191. #define DPRINT_ovfl(a) \
  192. do { \
  193. if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  194. } while (0)
  195. #endif
  196. /*
  197. * 64-bit software counter structure
  198. *
  199. * the next_reset_type is applied to the next call to pfm_reset_regs()
  200. */
  201. typedef struct {
  202. unsigned long val; /* virtual 64bit counter value */
  203. unsigned long lval; /* last reset value */
  204. unsigned long long_reset; /* reset value on sampling overflow */
  205. unsigned long short_reset; /* reset value on overflow */
  206. unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
  207. unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
  208. unsigned long seed; /* seed for random-number generator */
  209. unsigned long mask; /* mask for random-number generator */
  210. unsigned int flags; /* notify/do not notify */
  211. unsigned long eventid; /* overflow event identifier */
  212. } pfm_counter_t;
  213. /*
  214. * context flags
  215. */
  216. typedef struct {
  217. unsigned int block:1; /* when 1, task will blocked on user notifications */
  218. unsigned int system:1; /* do system wide monitoring */
  219. unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
  220. unsigned int is_sampling:1; /* true if using a custom format */
  221. unsigned int excl_idle:1; /* exclude idle task in system wide session */
  222. unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
  223. unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
  224. unsigned int no_msg:1; /* no message sent on overflow */
  225. unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
  226. unsigned int reserved:22;
  227. } pfm_context_flags_t;
  228. #define PFM_TRAP_REASON_NONE 0x0 /* default value */
  229. #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
  230. #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
  231. /*
  232. * perfmon context: encapsulates all the state of a monitoring session
  233. */
  234. typedef struct pfm_context {
  235. spinlock_t ctx_lock; /* context protection */
  236. pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
  237. unsigned int ctx_state; /* state: active/inactive (no bitfield) */
  238. struct task_struct *ctx_task; /* task to which context is attached */
  239. unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
  240. struct semaphore ctx_restart_sem; /* use for blocking notification mode */
  241. unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
  242. unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
  243. unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
  244. unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
  245. unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
  246. unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
  247. unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
  248. unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
  249. unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
  250. unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
  251. unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
  252. pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
  253. u64 ctx_saved_psr_up; /* only contains psr.up value */
  254. unsigned long ctx_last_activation; /* context last activation number for last_cpu */
  255. unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
  256. unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
  257. int ctx_fd; /* file descriptor used my this context */
  258. pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
  259. pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
  260. void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
  261. unsigned long ctx_smpl_size; /* size of sampling buffer */
  262. void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
  263. wait_queue_head_t ctx_msgq_wait;
  264. pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
  265. int ctx_msgq_head;
  266. int ctx_msgq_tail;
  267. struct fasync_struct *ctx_async_queue;
  268. wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
  269. } pfm_context_t;
  270. /*
  271. * magic number used to verify that structure is really
  272. * a perfmon context
  273. */
  274. #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
  275. #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
  276. #ifdef CONFIG_SMP
  277. #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
  278. #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
  279. #else
  280. #define SET_LAST_CPU(ctx, v) do {} while(0)
  281. #define GET_LAST_CPU(ctx) do {} while(0)
  282. #endif
  283. #define ctx_fl_block ctx_flags.block
  284. #define ctx_fl_system ctx_flags.system
  285. #define ctx_fl_using_dbreg ctx_flags.using_dbreg
  286. #define ctx_fl_is_sampling ctx_flags.is_sampling
  287. #define ctx_fl_excl_idle ctx_flags.excl_idle
  288. #define ctx_fl_going_zombie ctx_flags.going_zombie
  289. #define ctx_fl_trap_reason ctx_flags.trap_reason
  290. #define ctx_fl_no_msg ctx_flags.no_msg
  291. #define ctx_fl_can_restart ctx_flags.can_restart
  292. #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
  293. #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
  294. /*
  295. * global information about all sessions
  296. * mostly used to synchronize between system wide and per-process
  297. */
  298. typedef struct {
  299. spinlock_t pfs_lock; /* lock the structure */
  300. unsigned int pfs_task_sessions; /* number of per task sessions */
  301. unsigned int pfs_sys_sessions; /* number of per system wide sessions */
  302. unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
  303. unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
  304. struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
  305. } pfm_session_t;
  306. /*
  307. * information about a PMC or PMD.
  308. * dep_pmd[]: a bitmask of dependent PMD registers
  309. * dep_pmc[]: a bitmask of dependent PMC registers
  310. */
  311. typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
  312. typedef struct {
  313. unsigned int type;
  314. int pm_pos;
  315. unsigned long default_value; /* power-on default value */
  316. unsigned long reserved_mask; /* bitmask of reserved bits */
  317. pfm_reg_check_t read_check;
  318. pfm_reg_check_t write_check;
  319. unsigned long dep_pmd[4];
  320. unsigned long dep_pmc[4];
  321. } pfm_reg_desc_t;
  322. /* assume cnum is a valid monitor */
  323. #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
  324. /*
  325. * This structure is initialized at boot time and contains
  326. * a description of the PMU main characteristics.
  327. *
  328. * If the probe function is defined, detection is based
  329. * on its return value:
  330. * - 0 means recognized PMU
  331. * - anything else means not supported
  332. * When the probe function is not defined, then the pmu_family field
  333. * is used and it must match the host CPU family such that:
  334. * - cpu->family & config->pmu_family != 0
  335. */
  336. typedef struct {
  337. unsigned long ovfl_val; /* overflow value for counters */
  338. pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
  339. pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
  340. unsigned int num_pmcs; /* number of PMCS: computed at init time */
  341. unsigned int num_pmds; /* number of PMDS: computed at init time */
  342. unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
  343. unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
  344. char *pmu_name; /* PMU family name */
  345. unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
  346. unsigned int flags; /* pmu specific flags */
  347. unsigned int num_ibrs; /* number of IBRS: computed at init time */
  348. unsigned int num_dbrs; /* number of DBRS: computed at init time */
  349. unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
  350. int (*probe)(void); /* customized probe routine */
  351. unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
  352. } pmu_config_t;
  353. /*
  354. * PMU specific flags
  355. */
  356. #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
  357. /*
  358. * debug register related type definitions
  359. */
  360. typedef struct {
  361. unsigned long ibr_mask:56;
  362. unsigned long ibr_plm:4;
  363. unsigned long ibr_ig:3;
  364. unsigned long ibr_x:1;
  365. } ibr_mask_reg_t;
  366. typedef struct {
  367. unsigned long dbr_mask:56;
  368. unsigned long dbr_plm:4;
  369. unsigned long dbr_ig:2;
  370. unsigned long dbr_w:1;
  371. unsigned long dbr_r:1;
  372. } dbr_mask_reg_t;
  373. typedef union {
  374. unsigned long val;
  375. ibr_mask_reg_t ibr;
  376. dbr_mask_reg_t dbr;
  377. } dbreg_t;
  378. /*
  379. * perfmon command descriptions
  380. */
  381. typedef struct {
  382. int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  383. char *cmd_name;
  384. int cmd_flags;
  385. unsigned int cmd_narg;
  386. size_t cmd_argsize;
  387. int (*cmd_getsize)(void *arg, size_t *sz);
  388. } pfm_cmd_desc_t;
  389. #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
  390. #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
  391. #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
  392. #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
  393. #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
  394. #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
  395. #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
  396. #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
  397. #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
  398. #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
  399. typedef struct {
  400. unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
  401. unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
  402. unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
  403. unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
  404. unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
  405. unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
  406. unsigned long pfm_smpl_handler_calls;
  407. unsigned long pfm_smpl_handler_cycles;
  408. char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
  409. } pfm_stats_t;
  410. /*
  411. * perfmon internal variables
  412. */
  413. static pfm_stats_t pfm_stats[NR_CPUS];
  414. static pfm_session_t pfm_sessions; /* global sessions information */
  415. static DEFINE_SPINLOCK(pfm_alt_install_check);
  416. static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
  417. static struct proc_dir_entry *perfmon_dir;
  418. static pfm_uuid_t pfm_null_uuid = {0,};
  419. static spinlock_t pfm_buffer_fmt_lock;
  420. static LIST_HEAD(pfm_buffer_fmt_list);
  421. static pmu_config_t *pmu_conf;
  422. /* sysctl() controls */
  423. pfm_sysctl_t pfm_sysctl;
  424. EXPORT_SYMBOL(pfm_sysctl);
  425. static ctl_table pfm_ctl_table[]={
  426. {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
  427. {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
  428. {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
  429. {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
  430. { 0, },
  431. };
  432. static ctl_table pfm_sysctl_dir[] = {
  433. {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
  434. {0,},
  435. };
  436. static ctl_table pfm_sysctl_root[] = {
  437. {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
  438. {0,},
  439. };
  440. static struct ctl_table_header *pfm_sysctl_header;
  441. static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  442. static int pfm_flush(struct file *filp);
  443. #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
  444. #define pfm_get_cpu_data(a,b) per_cpu(a, b)
  445. static inline void
  446. pfm_put_task(struct task_struct *task)
  447. {
  448. if (task != current) put_task_struct(task);
  449. }
  450. static inline void
  451. pfm_set_task_notify(struct task_struct *task)
  452. {
  453. struct thread_info *info;
  454. info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
  455. set_bit(TIF_NOTIFY_RESUME, &info->flags);
  456. }
  457. static inline void
  458. pfm_clear_task_notify(void)
  459. {
  460. clear_thread_flag(TIF_NOTIFY_RESUME);
  461. }
  462. static inline void
  463. pfm_reserve_page(unsigned long a)
  464. {
  465. SetPageReserved(vmalloc_to_page((void *)a));
  466. }
  467. static inline void
  468. pfm_unreserve_page(unsigned long a)
  469. {
  470. ClearPageReserved(vmalloc_to_page((void*)a));
  471. }
  472. static inline unsigned long
  473. pfm_protect_ctx_ctxsw(pfm_context_t *x)
  474. {
  475. spin_lock(&(x)->ctx_lock);
  476. return 0UL;
  477. }
  478. static inline void
  479. pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
  480. {
  481. spin_unlock(&(x)->ctx_lock);
  482. }
  483. static inline unsigned int
  484. pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
  485. {
  486. return do_munmap(mm, addr, len);
  487. }
  488. static inline unsigned long
  489. pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
  490. {
  491. return get_unmapped_area(file, addr, len, pgoff, flags);
  492. }
  493. static struct super_block *
  494. pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
  495. {
  496. return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
  497. }
  498. static struct file_system_type pfm_fs_type = {
  499. .name = "pfmfs",
  500. .get_sb = pfmfs_get_sb,
  501. .kill_sb = kill_anon_super,
  502. };
  503. DEFINE_PER_CPU(unsigned long, pfm_syst_info);
  504. DEFINE_PER_CPU(struct task_struct *, pmu_owner);
  505. DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
  506. DEFINE_PER_CPU(unsigned long, pmu_activation_number);
  507. EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
  508. /* forward declaration */
  509. static struct file_operations pfm_file_ops;
  510. /*
  511. * forward declarations
  512. */
  513. #ifndef CONFIG_SMP
  514. static void pfm_lazy_save_regs (struct task_struct *ta);
  515. #endif
  516. void dump_pmu_state(const char *);
  517. static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  518. #include "perfmon_itanium.h"
  519. #include "perfmon_mckinley.h"
  520. #include "perfmon_generic.h"
  521. static pmu_config_t *pmu_confs[]={
  522. &pmu_conf_mck,
  523. &pmu_conf_ita,
  524. &pmu_conf_gen, /* must be last */
  525. NULL
  526. };
  527. static int pfm_end_notify_user(pfm_context_t *ctx);
  528. static inline void
  529. pfm_clear_psr_pp(void)
  530. {
  531. ia64_rsm(IA64_PSR_PP);
  532. ia64_srlz_i();
  533. }
  534. static inline void
  535. pfm_set_psr_pp(void)
  536. {
  537. ia64_ssm(IA64_PSR_PP);
  538. ia64_srlz_i();
  539. }
  540. static inline void
  541. pfm_clear_psr_up(void)
  542. {
  543. ia64_rsm(IA64_PSR_UP);
  544. ia64_srlz_i();
  545. }
  546. static inline void
  547. pfm_set_psr_up(void)
  548. {
  549. ia64_ssm(IA64_PSR_UP);
  550. ia64_srlz_i();
  551. }
  552. static inline unsigned long
  553. pfm_get_psr(void)
  554. {
  555. unsigned long tmp;
  556. tmp = ia64_getreg(_IA64_REG_PSR);
  557. ia64_srlz_i();
  558. return tmp;
  559. }
  560. static inline void
  561. pfm_set_psr_l(unsigned long val)
  562. {
  563. ia64_setreg(_IA64_REG_PSR_L, val);
  564. ia64_srlz_i();
  565. }
  566. static inline void
  567. pfm_freeze_pmu(void)
  568. {
  569. ia64_set_pmc(0,1UL);
  570. ia64_srlz_d();
  571. }
  572. static inline void
  573. pfm_unfreeze_pmu(void)
  574. {
  575. ia64_set_pmc(0,0UL);
  576. ia64_srlz_d();
  577. }
  578. static inline void
  579. pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
  580. {
  581. int i;
  582. for (i=0; i < nibrs; i++) {
  583. ia64_set_ibr(i, ibrs[i]);
  584. ia64_dv_serialize_instruction();
  585. }
  586. ia64_srlz_i();
  587. }
  588. static inline void
  589. pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
  590. {
  591. int i;
  592. for (i=0; i < ndbrs; i++) {
  593. ia64_set_dbr(i, dbrs[i]);
  594. ia64_dv_serialize_data();
  595. }
  596. ia64_srlz_d();
  597. }
  598. /*
  599. * PMD[i] must be a counter. no check is made
  600. */
  601. static inline unsigned long
  602. pfm_read_soft_counter(pfm_context_t *ctx, int i)
  603. {
  604. return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
  605. }
  606. /*
  607. * PMD[i] must be a counter. no check is made
  608. */
  609. static inline void
  610. pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
  611. {
  612. unsigned long ovfl_val = pmu_conf->ovfl_val;
  613. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  614. /*
  615. * writing to unimplemented part is ignore, so we do not need to
  616. * mask off top part
  617. */
  618. ia64_set_pmd(i, val & ovfl_val);
  619. }
  620. static pfm_msg_t *
  621. pfm_get_new_msg(pfm_context_t *ctx)
  622. {
  623. int idx, next;
  624. next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
  625. DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  626. if (next == ctx->ctx_msgq_head) return NULL;
  627. idx = ctx->ctx_msgq_tail;
  628. ctx->ctx_msgq_tail = next;
  629. DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
  630. return ctx->ctx_msgq+idx;
  631. }
  632. static pfm_msg_t *
  633. pfm_get_next_msg(pfm_context_t *ctx)
  634. {
  635. pfm_msg_t *msg;
  636. DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  637. if (PFM_CTXQ_EMPTY(ctx)) return NULL;
  638. /*
  639. * get oldest message
  640. */
  641. msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
  642. /*
  643. * and move forward
  644. */
  645. ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
  646. DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
  647. return msg;
  648. }
  649. static void
  650. pfm_reset_msgq(pfm_context_t *ctx)
  651. {
  652. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  653. DPRINT(("ctx=%p msgq reset\n", ctx));
  654. }
  655. static void *
  656. pfm_rvmalloc(unsigned long size)
  657. {
  658. void *mem;
  659. unsigned long addr;
  660. size = PAGE_ALIGN(size);
  661. mem = vmalloc(size);
  662. if (mem) {
  663. //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
  664. memset(mem, 0, size);
  665. addr = (unsigned long)mem;
  666. while (size > 0) {
  667. pfm_reserve_page(addr);
  668. addr+=PAGE_SIZE;
  669. size-=PAGE_SIZE;
  670. }
  671. }
  672. return mem;
  673. }
  674. static void
  675. pfm_rvfree(void *mem, unsigned long size)
  676. {
  677. unsigned long addr;
  678. if (mem) {
  679. DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
  680. addr = (unsigned long) mem;
  681. while ((long) size > 0) {
  682. pfm_unreserve_page(addr);
  683. addr+=PAGE_SIZE;
  684. size-=PAGE_SIZE;
  685. }
  686. vfree(mem);
  687. }
  688. return;
  689. }
  690. static pfm_context_t *
  691. pfm_context_alloc(void)
  692. {
  693. pfm_context_t *ctx;
  694. /*
  695. * allocate context descriptor
  696. * must be able to free with interrupts disabled
  697. */
  698. ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
  699. if (ctx) {
  700. memset(ctx, 0, sizeof(pfm_context_t));
  701. DPRINT(("alloc ctx @%p\n", ctx));
  702. }
  703. return ctx;
  704. }
  705. static void
  706. pfm_context_free(pfm_context_t *ctx)
  707. {
  708. if (ctx) {
  709. DPRINT(("free ctx @%p\n", ctx));
  710. kfree(ctx);
  711. }
  712. }
  713. static void
  714. pfm_mask_monitoring(struct task_struct *task)
  715. {
  716. pfm_context_t *ctx = PFM_GET_CTX(task);
  717. struct thread_struct *th = &task->thread;
  718. unsigned long mask, val, ovfl_mask;
  719. int i;
  720. DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
  721. ovfl_mask = pmu_conf->ovfl_val;
  722. /*
  723. * monitoring can only be masked as a result of a valid
  724. * counter overflow. In UP, it means that the PMU still
  725. * has an owner. Note that the owner can be different
  726. * from the current task. However the PMU state belongs
  727. * to the owner.
  728. * In SMP, a valid overflow only happens when task is
  729. * current. Therefore if we come here, we know that
  730. * the PMU state belongs to the current task, therefore
  731. * we can access the live registers.
  732. *
  733. * So in both cases, the live register contains the owner's
  734. * state. We can ONLY touch the PMU registers and NOT the PSR.
  735. *
  736. * As a consequence to this call, the thread->pmds[] array
  737. * contains stale information which must be ignored
  738. * when context is reloaded AND monitoring is active (see
  739. * pfm_restart).
  740. */
  741. mask = ctx->ctx_used_pmds[0];
  742. for (i = 0; mask; i++, mask>>=1) {
  743. /* skip non used pmds */
  744. if ((mask & 0x1) == 0) continue;
  745. val = ia64_get_pmd(i);
  746. if (PMD_IS_COUNTING(i)) {
  747. /*
  748. * we rebuild the full 64 bit value of the counter
  749. */
  750. ctx->ctx_pmds[i].val += (val & ovfl_mask);
  751. } else {
  752. ctx->ctx_pmds[i].val = val;
  753. }
  754. DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  755. i,
  756. ctx->ctx_pmds[i].val,
  757. val & ovfl_mask));
  758. }
  759. /*
  760. * mask monitoring by setting the privilege level to 0
  761. * we cannot use psr.pp/psr.up for this, it is controlled by
  762. * the user
  763. *
  764. * if task is current, modify actual registers, otherwise modify
  765. * thread save state, i.e., what will be restored in pfm_load_regs()
  766. */
  767. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  768. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  769. if ((mask & 0x1) == 0UL) continue;
  770. ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
  771. th->pmcs[i] &= ~0xfUL;
  772. DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
  773. }
  774. /*
  775. * make all of this visible
  776. */
  777. ia64_srlz_d();
  778. }
  779. /*
  780. * must always be done with task == current
  781. *
  782. * context must be in MASKED state when calling
  783. */
  784. static void
  785. pfm_restore_monitoring(struct task_struct *task)
  786. {
  787. pfm_context_t *ctx = PFM_GET_CTX(task);
  788. struct thread_struct *th = &task->thread;
  789. unsigned long mask, ovfl_mask;
  790. unsigned long psr, val;
  791. int i, is_system;
  792. is_system = ctx->ctx_fl_system;
  793. ovfl_mask = pmu_conf->ovfl_val;
  794. if (task != current) {
  795. printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
  796. return;
  797. }
  798. if (ctx->ctx_state != PFM_CTX_MASKED) {
  799. printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
  800. task->pid, current->pid, ctx->ctx_state);
  801. return;
  802. }
  803. psr = pfm_get_psr();
  804. /*
  805. * monitoring is masked via the PMC.
  806. * As we restore their value, we do not want each counter to
  807. * restart right away. We stop monitoring using the PSR,
  808. * restore the PMC (and PMD) and then re-establish the psr
  809. * as it was. Note that there can be no pending overflow at
  810. * this point, because monitoring was MASKED.
  811. *
  812. * system-wide session are pinned and self-monitoring
  813. */
  814. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  815. /* disable dcr pp */
  816. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  817. pfm_clear_psr_pp();
  818. } else {
  819. pfm_clear_psr_up();
  820. }
  821. /*
  822. * first, we restore the PMD
  823. */
  824. mask = ctx->ctx_used_pmds[0];
  825. for (i = 0; mask; i++, mask>>=1) {
  826. /* skip non used pmds */
  827. if ((mask & 0x1) == 0) continue;
  828. if (PMD_IS_COUNTING(i)) {
  829. /*
  830. * we split the 64bit value according to
  831. * counter width
  832. */
  833. val = ctx->ctx_pmds[i].val & ovfl_mask;
  834. ctx->ctx_pmds[i].val &= ~ovfl_mask;
  835. } else {
  836. val = ctx->ctx_pmds[i].val;
  837. }
  838. ia64_set_pmd(i, val);
  839. DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  840. i,
  841. ctx->ctx_pmds[i].val,
  842. val));
  843. }
  844. /*
  845. * restore the PMCs
  846. */
  847. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  848. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  849. if ((mask & 0x1) == 0UL) continue;
  850. th->pmcs[i] = ctx->ctx_pmcs[i];
  851. ia64_set_pmc(i, th->pmcs[i]);
  852. DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
  853. }
  854. ia64_srlz_d();
  855. /*
  856. * must restore DBR/IBR because could be modified while masked
  857. * XXX: need to optimize
  858. */
  859. if (ctx->ctx_fl_using_dbreg) {
  860. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  861. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  862. }
  863. /*
  864. * now restore PSR
  865. */
  866. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  867. /* enable dcr pp */
  868. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  869. ia64_srlz_i();
  870. }
  871. pfm_set_psr_l(psr);
  872. }
  873. static inline void
  874. pfm_save_pmds(unsigned long *pmds, unsigned long mask)
  875. {
  876. int i;
  877. ia64_srlz_d();
  878. for (i=0; mask; i++, mask>>=1) {
  879. if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
  880. }
  881. }
  882. /*
  883. * reload from thread state (used for ctxw only)
  884. */
  885. static inline void
  886. pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
  887. {
  888. int i;
  889. unsigned long val, ovfl_val = pmu_conf->ovfl_val;
  890. for (i=0; mask; i++, mask>>=1) {
  891. if ((mask & 0x1) == 0) continue;
  892. val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
  893. ia64_set_pmd(i, val);
  894. }
  895. ia64_srlz_d();
  896. }
  897. /*
  898. * propagate PMD from context to thread-state
  899. */
  900. static inline void
  901. pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
  902. {
  903. struct thread_struct *thread = &task->thread;
  904. unsigned long ovfl_val = pmu_conf->ovfl_val;
  905. unsigned long mask = ctx->ctx_all_pmds[0];
  906. unsigned long val;
  907. int i;
  908. DPRINT(("mask=0x%lx\n", mask));
  909. for (i=0; mask; i++, mask>>=1) {
  910. val = ctx->ctx_pmds[i].val;
  911. /*
  912. * We break up the 64 bit value into 2 pieces
  913. * the lower bits go to the machine state in the
  914. * thread (will be reloaded on ctxsw in).
  915. * The upper part stays in the soft-counter.
  916. */
  917. if (PMD_IS_COUNTING(i)) {
  918. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  919. val &= ovfl_val;
  920. }
  921. thread->pmds[i] = val;
  922. DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
  923. i,
  924. thread->pmds[i],
  925. ctx->ctx_pmds[i].val));
  926. }
  927. }
  928. /*
  929. * propagate PMC from context to thread-state
  930. */
  931. static inline void
  932. pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
  933. {
  934. struct thread_struct *thread = &task->thread;
  935. unsigned long mask = ctx->ctx_all_pmcs[0];
  936. int i;
  937. DPRINT(("mask=0x%lx\n", mask));
  938. for (i=0; mask; i++, mask>>=1) {
  939. /* masking 0 with ovfl_val yields 0 */
  940. thread->pmcs[i] = ctx->ctx_pmcs[i];
  941. DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
  942. }
  943. }
  944. static inline void
  945. pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
  946. {
  947. int i;
  948. for (i=0; mask; i++, mask>>=1) {
  949. if ((mask & 0x1) == 0) continue;
  950. ia64_set_pmc(i, pmcs[i]);
  951. }
  952. ia64_srlz_d();
  953. }
  954. static inline int
  955. pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
  956. {
  957. return memcmp(a, b, sizeof(pfm_uuid_t));
  958. }
  959. static inline int
  960. pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
  961. {
  962. int ret = 0;
  963. if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
  964. return ret;
  965. }
  966. static inline int
  967. pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
  968. {
  969. int ret = 0;
  970. if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
  971. return ret;
  972. }
  973. static inline int
  974. pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
  975. int cpu, void *arg)
  976. {
  977. int ret = 0;
  978. if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
  979. return ret;
  980. }
  981. static inline int
  982. pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
  983. int cpu, void *arg)
  984. {
  985. int ret = 0;
  986. if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
  987. return ret;
  988. }
  989. static inline int
  990. pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  991. {
  992. int ret = 0;
  993. if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
  994. return ret;
  995. }
  996. static inline int
  997. pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  998. {
  999. int ret = 0;
  1000. if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
  1001. return ret;
  1002. }
  1003. static pfm_buffer_fmt_t *
  1004. __pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1005. {
  1006. struct list_head * pos;
  1007. pfm_buffer_fmt_t * entry;
  1008. list_for_each(pos, &pfm_buffer_fmt_list) {
  1009. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  1010. if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
  1011. return entry;
  1012. }
  1013. return NULL;
  1014. }
  1015. /*
  1016. * find a buffer format based on its uuid
  1017. */
  1018. static pfm_buffer_fmt_t *
  1019. pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1020. {
  1021. pfm_buffer_fmt_t * fmt;
  1022. spin_lock(&pfm_buffer_fmt_lock);
  1023. fmt = __pfm_find_buffer_fmt(uuid);
  1024. spin_unlock(&pfm_buffer_fmt_lock);
  1025. return fmt;
  1026. }
  1027. int
  1028. pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
  1029. {
  1030. int ret = 0;
  1031. /* some sanity checks */
  1032. if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
  1033. /* we need at least a handler */
  1034. if (fmt->fmt_handler == NULL) return -EINVAL;
  1035. /*
  1036. * XXX: need check validity of fmt_arg_size
  1037. */
  1038. spin_lock(&pfm_buffer_fmt_lock);
  1039. if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
  1040. printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
  1041. ret = -EBUSY;
  1042. goto out;
  1043. }
  1044. list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
  1045. printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
  1046. out:
  1047. spin_unlock(&pfm_buffer_fmt_lock);
  1048. return ret;
  1049. }
  1050. EXPORT_SYMBOL(pfm_register_buffer_fmt);
  1051. int
  1052. pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
  1053. {
  1054. pfm_buffer_fmt_t *fmt;
  1055. int ret = 0;
  1056. spin_lock(&pfm_buffer_fmt_lock);
  1057. fmt = __pfm_find_buffer_fmt(uuid);
  1058. if (!fmt) {
  1059. printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
  1060. ret = -EINVAL;
  1061. goto out;
  1062. }
  1063. list_del_init(&fmt->fmt_list);
  1064. printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
  1065. out:
  1066. spin_unlock(&pfm_buffer_fmt_lock);
  1067. return ret;
  1068. }
  1069. EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
  1070. extern void update_pal_halt_status(int);
  1071. static int
  1072. pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
  1073. {
  1074. unsigned long flags;
  1075. /*
  1076. * validy checks on cpu_mask have been done upstream
  1077. */
  1078. LOCK_PFS(flags);
  1079. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1080. pfm_sessions.pfs_sys_sessions,
  1081. pfm_sessions.pfs_task_sessions,
  1082. pfm_sessions.pfs_sys_use_dbregs,
  1083. is_syswide,
  1084. cpu));
  1085. if (is_syswide) {
  1086. /*
  1087. * cannot mix system wide and per-task sessions
  1088. */
  1089. if (pfm_sessions.pfs_task_sessions > 0UL) {
  1090. DPRINT(("system wide not possible, %u conflicting task_sessions\n",
  1091. pfm_sessions.pfs_task_sessions));
  1092. goto abort;
  1093. }
  1094. if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
  1095. DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
  1096. pfm_sessions.pfs_sys_session[cpu] = task;
  1097. pfm_sessions.pfs_sys_sessions++ ;
  1098. } else {
  1099. if (pfm_sessions.pfs_sys_sessions) goto abort;
  1100. pfm_sessions.pfs_task_sessions++;
  1101. }
  1102. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1103. pfm_sessions.pfs_sys_sessions,
  1104. pfm_sessions.pfs_task_sessions,
  1105. pfm_sessions.pfs_sys_use_dbregs,
  1106. is_syswide,
  1107. cpu));
  1108. /*
  1109. * disable default_idle() to go to PAL_HALT
  1110. */
  1111. update_pal_halt_status(0);
  1112. UNLOCK_PFS(flags);
  1113. return 0;
  1114. error_conflict:
  1115. DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
  1116. pfm_sessions.pfs_sys_session[cpu]->pid,
  1117. cpu));
  1118. abort:
  1119. UNLOCK_PFS(flags);
  1120. return -EBUSY;
  1121. }
  1122. static int
  1123. pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
  1124. {
  1125. unsigned long flags;
  1126. /*
  1127. * validy checks on cpu_mask have been done upstream
  1128. */
  1129. LOCK_PFS(flags);
  1130. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1131. pfm_sessions.pfs_sys_sessions,
  1132. pfm_sessions.pfs_task_sessions,
  1133. pfm_sessions.pfs_sys_use_dbregs,
  1134. is_syswide,
  1135. cpu));
  1136. if (is_syswide) {
  1137. pfm_sessions.pfs_sys_session[cpu] = NULL;
  1138. /*
  1139. * would not work with perfmon+more than one bit in cpu_mask
  1140. */
  1141. if (ctx && ctx->ctx_fl_using_dbreg) {
  1142. if (pfm_sessions.pfs_sys_use_dbregs == 0) {
  1143. printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
  1144. } else {
  1145. pfm_sessions.pfs_sys_use_dbregs--;
  1146. }
  1147. }
  1148. pfm_sessions.pfs_sys_sessions--;
  1149. } else {
  1150. pfm_sessions.pfs_task_sessions--;
  1151. }
  1152. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1153. pfm_sessions.pfs_sys_sessions,
  1154. pfm_sessions.pfs_task_sessions,
  1155. pfm_sessions.pfs_sys_use_dbregs,
  1156. is_syswide,
  1157. cpu));
  1158. /*
  1159. * if possible, enable default_idle() to go into PAL_HALT
  1160. */
  1161. if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
  1162. update_pal_halt_status(1);
  1163. UNLOCK_PFS(flags);
  1164. return 0;
  1165. }
  1166. /*
  1167. * removes virtual mapping of the sampling buffer.
  1168. * IMPORTANT: cannot be called with interrupts disable, e.g. inside
  1169. * a PROTECT_CTX() section.
  1170. */
  1171. static int
  1172. pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
  1173. {
  1174. int r;
  1175. /* sanity checks */
  1176. if (task->mm == NULL || size == 0UL || vaddr == NULL) {
  1177. printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
  1178. return -EINVAL;
  1179. }
  1180. DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
  1181. /*
  1182. * does the actual unmapping
  1183. */
  1184. down_write(&task->mm->mmap_sem);
  1185. DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
  1186. r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
  1187. up_write(&task->mm->mmap_sem);
  1188. if (r !=0) {
  1189. printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
  1190. }
  1191. DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
  1192. return 0;
  1193. }
  1194. /*
  1195. * free actual physical storage used by sampling buffer
  1196. */
  1197. #if 0
  1198. static int
  1199. pfm_free_smpl_buffer(pfm_context_t *ctx)
  1200. {
  1201. pfm_buffer_fmt_t *fmt;
  1202. if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
  1203. /*
  1204. * we won't use the buffer format anymore
  1205. */
  1206. fmt = ctx->ctx_buf_fmt;
  1207. DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
  1208. ctx->ctx_smpl_hdr,
  1209. ctx->ctx_smpl_size,
  1210. ctx->ctx_smpl_vaddr));
  1211. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1212. /*
  1213. * free the buffer
  1214. */
  1215. pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
  1216. ctx->ctx_smpl_hdr = NULL;
  1217. ctx->ctx_smpl_size = 0UL;
  1218. return 0;
  1219. invalid_free:
  1220. printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
  1221. return -EINVAL;
  1222. }
  1223. #endif
  1224. static inline void
  1225. pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
  1226. {
  1227. if (fmt == NULL) return;
  1228. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1229. }
  1230. /*
  1231. * pfmfs should _never_ be mounted by userland - too much of security hassle,
  1232. * no real gain from having the whole whorehouse mounted. So we don't need
  1233. * any operations on the root directory. However, we need a non-trivial
  1234. * d_name - pfm: will go nicely and kill the special-casing in procfs.
  1235. */
  1236. static struct vfsmount *pfmfs_mnt;
  1237. static int __init
  1238. init_pfm_fs(void)
  1239. {
  1240. int err = register_filesystem(&pfm_fs_type);
  1241. if (!err) {
  1242. pfmfs_mnt = kern_mount(&pfm_fs_type);
  1243. err = PTR_ERR(pfmfs_mnt);
  1244. if (IS_ERR(pfmfs_mnt))
  1245. unregister_filesystem(&pfm_fs_type);
  1246. else
  1247. err = 0;
  1248. }
  1249. return err;
  1250. }
  1251. static void __exit
  1252. exit_pfm_fs(void)
  1253. {
  1254. unregister_filesystem(&pfm_fs_type);
  1255. mntput(pfmfs_mnt);
  1256. }
  1257. static ssize_t
  1258. pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
  1259. {
  1260. pfm_context_t *ctx;
  1261. pfm_msg_t *msg;
  1262. ssize_t ret;
  1263. unsigned long flags;
  1264. DECLARE_WAITQUEUE(wait, current);
  1265. if (PFM_IS_FILE(filp) == 0) {
  1266. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1267. return -EINVAL;
  1268. }
  1269. ctx = (pfm_context_t *)filp->private_data;
  1270. if (ctx == NULL) {
  1271. printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
  1272. return -EINVAL;
  1273. }
  1274. /*
  1275. * check even when there is no message
  1276. */
  1277. if (size < sizeof(pfm_msg_t)) {
  1278. DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
  1279. return -EINVAL;
  1280. }
  1281. PROTECT_CTX(ctx, flags);
  1282. /*
  1283. * put ourselves on the wait queue
  1284. */
  1285. add_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1286. for(;;) {
  1287. /*
  1288. * check wait queue
  1289. */
  1290. set_current_state(TASK_INTERRUPTIBLE);
  1291. DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  1292. ret = 0;
  1293. if(PFM_CTXQ_EMPTY(ctx) == 0) break;
  1294. UNPROTECT_CTX(ctx, flags);
  1295. /*
  1296. * check non-blocking read
  1297. */
  1298. ret = -EAGAIN;
  1299. if(filp->f_flags & O_NONBLOCK) break;
  1300. /*
  1301. * check pending signals
  1302. */
  1303. if(signal_pending(current)) {
  1304. ret = -EINTR;
  1305. break;
  1306. }
  1307. /*
  1308. * no message, so wait
  1309. */
  1310. schedule();
  1311. PROTECT_CTX(ctx, flags);
  1312. }
  1313. DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
  1314. set_current_state(TASK_RUNNING);
  1315. remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1316. if (ret < 0) goto abort;
  1317. ret = -EINVAL;
  1318. msg = pfm_get_next_msg(ctx);
  1319. if (msg == NULL) {
  1320. printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
  1321. goto abort_locked;
  1322. }
  1323. DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
  1324. ret = -EFAULT;
  1325. if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
  1326. abort_locked:
  1327. UNPROTECT_CTX(ctx, flags);
  1328. abort:
  1329. return ret;
  1330. }
  1331. static ssize_t
  1332. pfm_write(struct file *file, const char __user *ubuf,
  1333. size_t size, loff_t *ppos)
  1334. {
  1335. DPRINT(("pfm_write called\n"));
  1336. return -EINVAL;
  1337. }
  1338. static unsigned int
  1339. pfm_poll(struct file *filp, poll_table * wait)
  1340. {
  1341. pfm_context_t *ctx;
  1342. unsigned long flags;
  1343. unsigned int mask = 0;
  1344. if (PFM_IS_FILE(filp) == 0) {
  1345. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1346. return 0;
  1347. }
  1348. ctx = (pfm_context_t *)filp->private_data;
  1349. if (ctx == NULL) {
  1350. printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
  1351. return 0;
  1352. }
  1353. DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
  1354. poll_wait(filp, &ctx->ctx_msgq_wait, wait);
  1355. PROTECT_CTX(ctx, flags);
  1356. if (PFM_CTXQ_EMPTY(ctx) == 0)
  1357. mask = POLLIN | POLLRDNORM;
  1358. UNPROTECT_CTX(ctx, flags);
  1359. DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
  1360. return mask;
  1361. }
  1362. static int
  1363. pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1364. {
  1365. DPRINT(("pfm_ioctl called\n"));
  1366. return -EINVAL;
  1367. }
  1368. /*
  1369. * interrupt cannot be masked when coming here
  1370. */
  1371. static inline int
  1372. pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
  1373. {
  1374. int ret;
  1375. ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
  1376. DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1377. current->pid,
  1378. fd,
  1379. on,
  1380. ctx->ctx_async_queue, ret));
  1381. return ret;
  1382. }
  1383. static int
  1384. pfm_fasync(int fd, struct file *filp, int on)
  1385. {
  1386. pfm_context_t *ctx;
  1387. int ret;
  1388. if (PFM_IS_FILE(filp) == 0) {
  1389. printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
  1390. return -EBADF;
  1391. }
  1392. ctx = (pfm_context_t *)filp->private_data;
  1393. if (ctx == NULL) {
  1394. printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
  1395. return -EBADF;
  1396. }
  1397. /*
  1398. * we cannot mask interrupts during this call because this may
  1399. * may go to sleep if memory is not readily avalaible.
  1400. *
  1401. * We are protected from the conetxt disappearing by the get_fd()/put_fd()
  1402. * done in caller. Serialization of this function is ensured by caller.
  1403. */
  1404. ret = pfm_do_fasync(fd, filp, ctx, on);
  1405. DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1406. fd,
  1407. on,
  1408. ctx->ctx_async_queue, ret));
  1409. return ret;
  1410. }
  1411. #ifdef CONFIG_SMP
  1412. /*
  1413. * this function is exclusively called from pfm_close().
  1414. * The context is not protected at that time, nor are interrupts
  1415. * on the remote CPU. That's necessary to avoid deadlocks.
  1416. */
  1417. static void
  1418. pfm_syswide_force_stop(void *info)
  1419. {
  1420. pfm_context_t *ctx = (pfm_context_t *)info;
  1421. struct pt_regs *regs = ia64_task_regs(current);
  1422. struct task_struct *owner;
  1423. unsigned long flags;
  1424. int ret;
  1425. if (ctx->ctx_cpu != smp_processor_id()) {
  1426. printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
  1427. ctx->ctx_cpu,
  1428. smp_processor_id());
  1429. return;
  1430. }
  1431. owner = GET_PMU_OWNER();
  1432. if (owner != ctx->ctx_task) {
  1433. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
  1434. smp_processor_id(),
  1435. owner->pid, ctx->ctx_task->pid);
  1436. return;
  1437. }
  1438. if (GET_PMU_CTX() != ctx) {
  1439. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
  1440. smp_processor_id(),
  1441. GET_PMU_CTX(), ctx);
  1442. return;
  1443. }
  1444. DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
  1445. /*
  1446. * the context is already protected in pfm_close(), we simply
  1447. * need to mask interrupts to avoid a PMU interrupt race on
  1448. * this CPU
  1449. */
  1450. local_irq_save(flags);
  1451. ret = pfm_context_unload(ctx, NULL, 0, regs);
  1452. if (ret) {
  1453. DPRINT(("context_unload returned %d\n", ret));
  1454. }
  1455. /*
  1456. * unmask interrupts, PMU interrupts are now spurious here
  1457. */
  1458. local_irq_restore(flags);
  1459. }
  1460. static void
  1461. pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
  1462. {
  1463. int ret;
  1464. DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
  1465. ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
  1466. DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
  1467. }
  1468. #endif /* CONFIG_SMP */
  1469. /*
  1470. * called for each close(). Partially free resources.
  1471. * When caller is self-monitoring, the context is unloaded.
  1472. */
  1473. static int
  1474. pfm_flush(struct file *filp)
  1475. {
  1476. pfm_context_t *ctx;
  1477. struct task_struct *task;
  1478. struct pt_regs *regs;
  1479. unsigned long flags;
  1480. unsigned long smpl_buf_size = 0UL;
  1481. void *smpl_buf_vaddr = NULL;
  1482. int state, is_system;
  1483. if (PFM_IS_FILE(filp) == 0) {
  1484. DPRINT(("bad magic for\n"));
  1485. return -EBADF;
  1486. }
  1487. ctx = (pfm_context_t *)filp->private_data;
  1488. if (ctx == NULL) {
  1489. printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
  1490. return -EBADF;
  1491. }
  1492. /*
  1493. * remove our file from the async queue, if we use this mode.
  1494. * This can be done without the context being protected. We come
  1495. * here when the context has become unreacheable by other tasks.
  1496. *
  1497. * We may still have active monitoring at this point and we may
  1498. * end up in pfm_overflow_handler(). However, fasync_helper()
  1499. * operates with interrupts disabled and it cleans up the
  1500. * queue. If the PMU handler is called prior to entering
  1501. * fasync_helper() then it will send a signal. If it is
  1502. * invoked after, it will find an empty queue and no
  1503. * signal will be sent. In both case, we are safe
  1504. */
  1505. if (filp->f_flags & FASYNC) {
  1506. DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
  1507. pfm_do_fasync (-1, filp, ctx, 0);
  1508. }
  1509. PROTECT_CTX(ctx, flags);
  1510. state = ctx->ctx_state;
  1511. is_system = ctx->ctx_fl_system;
  1512. task = PFM_CTX_TASK(ctx);
  1513. regs = ia64_task_regs(task);
  1514. DPRINT(("ctx_state=%d is_current=%d\n",
  1515. state,
  1516. task == current ? 1 : 0));
  1517. /*
  1518. * if state == UNLOADED, then task is NULL
  1519. */
  1520. /*
  1521. * we must stop and unload because we are losing access to the context.
  1522. */
  1523. if (task == current) {
  1524. #ifdef CONFIG_SMP
  1525. /*
  1526. * the task IS the owner but it migrated to another CPU: that's bad
  1527. * but we must handle this cleanly. Unfortunately, the kernel does
  1528. * not provide a mechanism to block migration (while the context is loaded).
  1529. *
  1530. * We need to release the resource on the ORIGINAL cpu.
  1531. */
  1532. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  1533. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  1534. /*
  1535. * keep context protected but unmask interrupt for IPI
  1536. */
  1537. local_irq_restore(flags);
  1538. pfm_syswide_cleanup_other_cpu(ctx);
  1539. /*
  1540. * restore interrupt masking
  1541. */
  1542. local_irq_save(flags);
  1543. /*
  1544. * context is unloaded at this point
  1545. */
  1546. } else
  1547. #endif /* CONFIG_SMP */
  1548. {
  1549. DPRINT(("forcing unload\n"));
  1550. /*
  1551. * stop and unload, returning with state UNLOADED
  1552. * and session unreserved.
  1553. */
  1554. pfm_context_unload(ctx, NULL, 0, regs);
  1555. DPRINT(("ctx_state=%d\n", ctx->ctx_state));
  1556. }
  1557. }
  1558. /*
  1559. * remove virtual mapping, if any, for the calling task.
  1560. * cannot reset ctx field until last user is calling close().
  1561. *
  1562. * ctx_smpl_vaddr must never be cleared because it is needed
  1563. * by every task with access to the context
  1564. *
  1565. * When called from do_exit(), the mm context is gone already, therefore
  1566. * mm is NULL, i.e., the VMA is already gone and we do not have to
  1567. * do anything here
  1568. */
  1569. if (ctx->ctx_smpl_vaddr && current->mm) {
  1570. smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
  1571. smpl_buf_size = ctx->ctx_smpl_size;
  1572. }
  1573. UNPROTECT_CTX(ctx, flags);
  1574. /*
  1575. * if there was a mapping, then we systematically remove it
  1576. * at this point. Cannot be done inside critical section
  1577. * because some VM function reenables interrupts.
  1578. *
  1579. */
  1580. if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
  1581. return 0;
  1582. }
  1583. /*
  1584. * called either on explicit close() or from exit_files().
  1585. * Only the LAST user of the file gets to this point, i.e., it is
  1586. * called only ONCE.
  1587. *
  1588. * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
  1589. * (fput()),i.e, last task to access the file. Nobody else can access the
  1590. * file at this point.
  1591. *
  1592. * When called from exit_files(), the VMA has been freed because exit_mm()
  1593. * is executed before exit_files().
  1594. *
  1595. * When called from exit_files(), the current task is not yet ZOMBIE but we
  1596. * flush the PMU state to the context.
  1597. */
  1598. static int
  1599. pfm_close(struct inode *inode, struct file *filp)
  1600. {
  1601. pfm_context_t *ctx;
  1602. struct task_struct *task;
  1603. struct pt_regs *regs;
  1604. DECLARE_WAITQUEUE(wait, current);
  1605. unsigned long flags;
  1606. unsigned long smpl_buf_size = 0UL;
  1607. void *smpl_buf_addr = NULL;
  1608. int free_possible = 1;
  1609. int state, is_system;
  1610. DPRINT(("pfm_close called private=%p\n", filp->private_data));
  1611. if (PFM_IS_FILE(filp) == 0) {
  1612. DPRINT(("bad magic\n"));
  1613. return -EBADF;
  1614. }
  1615. ctx = (pfm_context_t *)filp->private_data;
  1616. if (ctx == NULL) {
  1617. printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
  1618. return -EBADF;
  1619. }
  1620. PROTECT_CTX(ctx, flags);
  1621. state = ctx->ctx_state;
  1622. is_system = ctx->ctx_fl_system;
  1623. task = PFM_CTX_TASK(ctx);
  1624. regs = ia64_task_regs(task);
  1625. DPRINT(("ctx_state=%d is_current=%d\n",
  1626. state,
  1627. task == current ? 1 : 0));
  1628. /*
  1629. * if task == current, then pfm_flush() unloaded the context
  1630. */
  1631. if (state == PFM_CTX_UNLOADED) goto doit;
  1632. /*
  1633. * context is loaded/masked and task != current, we need to
  1634. * either force an unload or go zombie
  1635. */
  1636. /*
  1637. * The task is currently blocked or will block after an overflow.
  1638. * we must force it to wakeup to get out of the
  1639. * MASKED state and transition to the unloaded state by itself.
  1640. *
  1641. * This situation is only possible for per-task mode
  1642. */
  1643. if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
  1644. /*
  1645. * set a "partial" zombie state to be checked
  1646. * upon return from down() in pfm_handle_work().
  1647. *
  1648. * We cannot use the ZOMBIE state, because it is checked
  1649. * by pfm_load_regs() which is called upon wakeup from down().
  1650. * In such case, it would free the context and then we would
  1651. * return to pfm_handle_work() which would access the
  1652. * stale context. Instead, we set a flag invisible to pfm_load_regs()
  1653. * but visible to pfm_handle_work().
  1654. *
  1655. * For some window of time, we have a zombie context with
  1656. * ctx_state = MASKED and not ZOMBIE
  1657. */
  1658. ctx->ctx_fl_going_zombie = 1;
  1659. /*
  1660. * force task to wake up from MASKED state
  1661. */
  1662. up(&ctx->ctx_restart_sem);
  1663. DPRINT(("waking up ctx_state=%d\n", state));
  1664. /*
  1665. * put ourself to sleep waiting for the other
  1666. * task to report completion
  1667. *
  1668. * the context is protected by mutex, therefore there
  1669. * is no risk of being notified of completion before
  1670. * begin actually on the waitq.
  1671. */
  1672. set_current_state(TASK_INTERRUPTIBLE);
  1673. add_wait_queue(&ctx->ctx_zombieq, &wait);
  1674. UNPROTECT_CTX(ctx, flags);
  1675. /*
  1676. * XXX: check for signals :
  1677. * - ok for explicit close
  1678. * - not ok when coming from exit_files()
  1679. */
  1680. schedule();
  1681. PROTECT_CTX(ctx, flags);
  1682. remove_wait_queue(&ctx->ctx_zombieq, &wait);
  1683. set_current_state(TASK_RUNNING);
  1684. /*
  1685. * context is unloaded at this point
  1686. */
  1687. DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
  1688. }
  1689. else if (task != current) {
  1690. #ifdef CONFIG_SMP
  1691. /*
  1692. * switch context to zombie state
  1693. */
  1694. ctx->ctx_state = PFM_CTX_ZOMBIE;
  1695. DPRINT(("zombie ctx for [%d]\n", task->pid));
  1696. /*
  1697. * cannot free the context on the spot. deferred until
  1698. * the task notices the ZOMBIE state
  1699. */
  1700. free_possible = 0;
  1701. #else
  1702. pfm_context_unload(ctx, NULL, 0, regs);
  1703. #endif
  1704. }
  1705. doit:
  1706. /* reload state, may have changed during opening of critical section */
  1707. state = ctx->ctx_state;
  1708. /*
  1709. * the context is still attached to a task (possibly current)
  1710. * we cannot destroy it right now
  1711. */
  1712. /*
  1713. * we must free the sampling buffer right here because
  1714. * we cannot rely on it being cleaned up later by the
  1715. * monitored task. It is not possible to free vmalloc'ed
  1716. * memory in pfm_load_regs(). Instead, we remove the buffer
  1717. * now. should there be subsequent PMU overflow originally
  1718. * meant for sampling, the will be converted to spurious
  1719. * and that's fine because the monitoring tools is gone anyway.
  1720. */
  1721. if (ctx->ctx_smpl_hdr) {
  1722. smpl_buf_addr = ctx->ctx_smpl_hdr;
  1723. smpl_buf_size = ctx->ctx_smpl_size;
  1724. /* no more sampling */
  1725. ctx->ctx_smpl_hdr = NULL;
  1726. ctx->ctx_fl_is_sampling = 0;
  1727. }
  1728. DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
  1729. state,
  1730. free_possible,
  1731. smpl_buf_addr,
  1732. smpl_buf_size));
  1733. if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
  1734. /*
  1735. * UNLOADED that the session has already been unreserved.
  1736. */
  1737. if (state == PFM_CTX_ZOMBIE) {
  1738. pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
  1739. }
  1740. /*
  1741. * disconnect file descriptor from context must be done
  1742. * before we unlock.
  1743. */
  1744. filp->private_data = NULL;
  1745. /*
  1746. * if we free on the spot, the context is now completely unreacheable
  1747. * from the callers side. The monitored task side is also cut, so we
  1748. * can freely cut.
  1749. *
  1750. * If we have a deferred free, only the caller side is disconnected.
  1751. */
  1752. UNPROTECT_CTX(ctx, flags);
  1753. /*
  1754. * All memory free operations (especially for vmalloc'ed memory)
  1755. * MUST be done with interrupts ENABLED.
  1756. */
  1757. if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
  1758. /*
  1759. * return the memory used by the context
  1760. */
  1761. if (free_possible) pfm_context_free(ctx);
  1762. return 0;
  1763. }
  1764. static int
  1765. pfm_no_open(struct inode *irrelevant, struct file *dontcare)
  1766. {
  1767. DPRINT(("pfm_no_open called\n"));
  1768. return -ENXIO;
  1769. }
  1770. static struct file_operations pfm_file_ops = {
  1771. .llseek = no_llseek,
  1772. .read = pfm_read,
  1773. .write = pfm_write,
  1774. .poll = pfm_poll,
  1775. .ioctl = pfm_ioctl,
  1776. .open = pfm_no_open, /* special open code to disallow open via /proc */
  1777. .fasync = pfm_fasync,
  1778. .release = pfm_close,
  1779. .flush = pfm_flush
  1780. };
  1781. static int
  1782. pfmfs_delete_dentry(struct dentry *dentry)
  1783. {
  1784. return 1;
  1785. }
  1786. static struct dentry_operations pfmfs_dentry_operations = {
  1787. .d_delete = pfmfs_delete_dentry,
  1788. };
  1789. static int
  1790. pfm_alloc_fd(struct file **cfile)
  1791. {
  1792. int fd, ret = 0;
  1793. struct file *file = NULL;
  1794. struct inode * inode;
  1795. char name[32];
  1796. struct qstr this;
  1797. fd = get_unused_fd();
  1798. if (fd < 0) return -ENFILE;
  1799. ret = -ENFILE;
  1800. file = get_empty_filp();
  1801. if (!file) goto out;
  1802. /*
  1803. * allocate a new inode
  1804. */
  1805. inode = new_inode(pfmfs_mnt->mnt_sb);
  1806. if (!inode) goto out;
  1807. DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
  1808. inode->i_mode = S_IFCHR|S_IRUGO;
  1809. inode->i_uid = current->fsuid;
  1810. inode->i_gid = current->fsgid;
  1811. sprintf(name, "[%lu]", inode->i_ino);
  1812. this.name = name;
  1813. this.len = strlen(name);
  1814. this.hash = inode->i_ino;
  1815. ret = -ENOMEM;
  1816. /*
  1817. * allocate a new dcache entry
  1818. */
  1819. file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
  1820. if (!file->f_dentry) goto out;
  1821. file->f_dentry->d_op = &pfmfs_dentry_operations;
  1822. d_add(file->f_dentry, inode);
  1823. file->f_vfsmnt = mntget(pfmfs_mnt);
  1824. file->f_mapping = inode->i_mapping;
  1825. file->f_op = &pfm_file_ops;
  1826. file->f_mode = FMODE_READ;
  1827. file->f_flags = O_RDONLY;
  1828. file->f_pos = 0;
  1829. /*
  1830. * may have to delay until context is attached?
  1831. */
  1832. fd_install(fd, file);
  1833. /*
  1834. * the file structure we will use
  1835. */
  1836. *cfile = file;
  1837. return fd;
  1838. out:
  1839. if (file) put_filp(file);
  1840. put_unused_fd(fd);
  1841. return ret;
  1842. }
  1843. static void
  1844. pfm_free_fd(int fd, struct file *file)
  1845. {
  1846. struct files_struct *files = current->files;
  1847. struct fdtable *fdt;
  1848. /*
  1849. * there ie no fd_uninstall(), so we do it here
  1850. */
  1851. spin_lock(&files->file_lock);
  1852. fdt = files_fdtable(files);
  1853. rcu_assign_pointer(fdt->fd[fd], NULL);
  1854. spin_unlock(&files->file_lock);
  1855. if (file)
  1856. put_filp(file);
  1857. put_unused_fd(fd);
  1858. }
  1859. static int
  1860. pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
  1861. {
  1862. DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
  1863. while (size > 0) {
  1864. unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
  1865. if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
  1866. return -ENOMEM;
  1867. addr += PAGE_SIZE;
  1868. buf += PAGE_SIZE;
  1869. size -= PAGE_SIZE;
  1870. }
  1871. return 0;
  1872. }
  1873. /*
  1874. * allocate a sampling buffer and remaps it into the user address space of the task
  1875. */
  1876. static int
  1877. pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
  1878. {
  1879. struct mm_struct *mm = task->mm;
  1880. struct vm_area_struct *vma = NULL;
  1881. unsigned long size;
  1882. void *smpl_buf;
  1883. /*
  1884. * the fixed header + requested size and align to page boundary
  1885. */
  1886. size = PAGE_ALIGN(rsize);
  1887. DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
  1888. /*
  1889. * check requested size to avoid Denial-of-service attacks
  1890. * XXX: may have to refine this test
  1891. * Check against address space limit.
  1892. *
  1893. * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
  1894. * return -ENOMEM;
  1895. */
  1896. if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
  1897. return -ENOMEM;
  1898. /*
  1899. * We do the easy to undo allocations first.
  1900. *
  1901. * pfm_rvmalloc(), clears the buffer, so there is no leak
  1902. */
  1903. smpl_buf = pfm_rvmalloc(size);
  1904. if (smpl_buf == NULL) {
  1905. DPRINT(("Can't allocate sampling buffer\n"));
  1906. return -ENOMEM;
  1907. }
  1908. DPRINT(("smpl_buf @%p\n", smpl_buf));
  1909. /* allocate vma */
  1910. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  1911. if (!vma) {
  1912. DPRINT(("Cannot allocate vma\n"));
  1913. goto error_kmem;
  1914. }
  1915. memset(vma, 0, sizeof(*vma));
  1916. /*
  1917. * partially initialize the vma for the sampling buffer
  1918. */
  1919. vma->vm_mm = mm;
  1920. vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
  1921. vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
  1922. /*
  1923. * Now we have everything we need and we can initialize
  1924. * and connect all the data structures
  1925. */
  1926. ctx->ctx_smpl_hdr = smpl_buf;
  1927. ctx->ctx_smpl_size = size; /* aligned size */
  1928. /*
  1929. * Let's do the difficult operations next.
  1930. *
  1931. * now we atomically find some area in the address space and
  1932. * remap the buffer in it.
  1933. */
  1934. down_write(&task->mm->mmap_sem);
  1935. /* find some free area in address space, must have mmap sem held */
  1936. vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
  1937. if (vma->vm_start == 0UL) {
  1938. DPRINT(("Cannot find unmapped area for size %ld\n", size));
  1939. up_write(&task->mm->mmap_sem);
  1940. goto error;
  1941. }
  1942. vma->vm_end = vma->vm_start + size;
  1943. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  1944. DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
  1945. /* can only be applied to current task, need to have the mm semaphore held when called */
  1946. if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
  1947. DPRINT(("Can't remap buffer\n"));
  1948. up_write(&task->mm->mmap_sem);
  1949. goto error;
  1950. }
  1951. /*
  1952. * now insert the vma in the vm list for the process, must be
  1953. * done with mmap lock held
  1954. */
  1955. insert_vm_struct(mm, vma);
  1956. mm->total_vm += size >> PAGE_SHIFT;
  1957. vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
  1958. vma_pages(vma));
  1959. up_write(&task->mm->mmap_sem);
  1960. /*
  1961. * keep track of user level virtual address
  1962. */
  1963. ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
  1964. *(unsigned long *)user_vaddr = vma->vm_start;
  1965. return 0;
  1966. error:
  1967. kmem_cache_free(vm_area_cachep, vma);
  1968. error_kmem:
  1969. pfm_rvfree(smpl_buf, size);
  1970. return -ENOMEM;
  1971. }
  1972. /*
  1973. * XXX: do something better here
  1974. */
  1975. static int
  1976. pfm_bad_permissions(struct task_struct *task)
  1977. {
  1978. /* inspired by ptrace_attach() */
  1979. DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
  1980. current->uid,
  1981. current->gid,
  1982. task->euid,
  1983. task->suid,
  1984. task->uid,
  1985. task->egid,
  1986. task->sgid));
  1987. return ((current->uid != task->euid)
  1988. || (current->uid != task->suid)
  1989. || (current->uid != task->uid)
  1990. || (current->gid != task->egid)
  1991. || (current->gid != task->sgid)
  1992. || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
  1993. }
  1994. static int
  1995. pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
  1996. {
  1997. int ctx_flags;
  1998. /* valid signal */
  1999. ctx_flags = pfx->ctx_flags;
  2000. if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
  2001. /*
  2002. * cannot block in this mode
  2003. */
  2004. if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
  2005. DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
  2006. return -EINVAL;
  2007. }
  2008. } else {
  2009. }
  2010. /* probably more to add here */
  2011. return 0;
  2012. }
  2013. static int
  2014. pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
  2015. unsigned int cpu, pfarg_context_t *arg)
  2016. {
  2017. pfm_buffer_fmt_t *fmt = NULL;
  2018. unsigned long size = 0UL;
  2019. void *uaddr = NULL;
  2020. void *fmt_arg = NULL;
  2021. int ret = 0;
  2022. #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
  2023. /* invoke and lock buffer format, if found */
  2024. fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
  2025. if (fmt == NULL) {
  2026. DPRINT(("[%d] cannot find buffer format\n", task->pid));
  2027. return -EINVAL;
  2028. }
  2029. /*
  2030. * buffer argument MUST be contiguous to pfarg_context_t
  2031. */
  2032. if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
  2033. ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
  2034. DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
  2035. if (ret) goto error;
  2036. /* link buffer format and context */
  2037. ctx->ctx_buf_fmt = fmt;
  2038. /*
  2039. * check if buffer format wants to use perfmon buffer allocation/mapping service
  2040. */
  2041. ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
  2042. if (ret) goto error;
  2043. if (size) {
  2044. /*
  2045. * buffer is always remapped into the caller's address space
  2046. */
  2047. ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
  2048. if (ret) goto error;
  2049. /* keep track of user address of buffer */
  2050. arg->ctx_smpl_vaddr = uaddr;
  2051. }
  2052. ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
  2053. error:
  2054. return ret;
  2055. }
  2056. static void
  2057. pfm_reset_pmu_state(pfm_context_t *ctx)
  2058. {
  2059. int i;
  2060. /*
  2061. * install reset values for PMC.
  2062. */
  2063. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  2064. if (PMC_IS_IMPL(i) == 0) continue;
  2065. ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
  2066. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
  2067. }
  2068. /*
  2069. * PMD registers are set to 0UL when the context in memset()
  2070. */
  2071. /*
  2072. * On context switched restore, we must restore ALL pmc and ALL pmd even
  2073. * when they are not actively used by the task. In UP, the incoming process
  2074. * may otherwise pick up left over PMC, PMD state from the previous process.
  2075. * As opposed to PMD, stale PMC can cause harm to the incoming
  2076. * process because they may change what is being measured.
  2077. * Therefore, we must systematically reinstall the entire
  2078. * PMC state. In SMP, the same thing is possible on the
  2079. * same CPU but also on between 2 CPUs.
  2080. *
  2081. * The problem with PMD is information leaking especially
  2082. * to user level when psr.sp=0
  2083. *
  2084. * There is unfortunately no easy way to avoid this problem
  2085. * on either UP or SMP. This definitively slows down the
  2086. * pfm_load_regs() function.
  2087. */
  2088. /*
  2089. * bitmask of all PMCs accessible to this context
  2090. *
  2091. * PMC0 is treated differently.
  2092. */
  2093. ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
  2094. /*
  2095. * bitmask of all PMDs that are accesible to this context
  2096. */
  2097. ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
  2098. DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
  2099. /*
  2100. * useful in case of re-enable after disable
  2101. */
  2102. ctx->ctx_used_ibrs[0] = 0UL;
  2103. ctx->ctx_used_dbrs[0] = 0UL;
  2104. }
  2105. static int
  2106. pfm_ctx_getsize(void *arg, size_t *sz)
  2107. {
  2108. pfarg_context_t *req = (pfarg_context_t *)arg;
  2109. pfm_buffer_fmt_t *fmt;
  2110. *sz = 0;
  2111. if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
  2112. fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
  2113. if (fmt == NULL) {
  2114. DPRINT(("cannot find buffer format\n"));
  2115. return -EINVAL;
  2116. }
  2117. /* get just enough to copy in user parameters */
  2118. *sz = fmt->fmt_arg_size;
  2119. DPRINT(("arg_size=%lu\n", *sz));
  2120. return 0;
  2121. }
  2122. /*
  2123. * cannot attach if :
  2124. * - kernel task
  2125. * - task not owned by caller
  2126. * - task incompatible with context mode
  2127. */
  2128. static int
  2129. pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
  2130. {
  2131. /*
  2132. * no kernel task or task not owner by caller
  2133. */
  2134. if (task->mm == NULL) {
  2135. DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
  2136. return -EPERM;
  2137. }
  2138. if (pfm_bad_permissions(task)) {
  2139. DPRINT(("no permission to attach to [%d]\n", task->pid));
  2140. return -EPERM;
  2141. }
  2142. /*
  2143. * cannot block in self-monitoring mode
  2144. */
  2145. if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
  2146. DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
  2147. return -EINVAL;
  2148. }
  2149. if (task->exit_state == EXIT_ZOMBIE) {
  2150. DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
  2151. return -EBUSY;
  2152. }
  2153. /*
  2154. * always ok for self
  2155. */
  2156. if (task == current) return 0;
  2157. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  2158. DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
  2159. return -EBUSY;
  2160. }
  2161. /*
  2162. * make sure the task is off any CPU
  2163. */
  2164. wait_task_inactive(task);
  2165. /* more to come... */
  2166. return 0;
  2167. }
  2168. static int
  2169. pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
  2170. {
  2171. struct task_struct *p = current;
  2172. int ret;
  2173. /* XXX: need to add more checks here */
  2174. if (pid < 2) return -EPERM;
  2175. if (pid != current->pid) {
  2176. read_lock(&tasklist_lock);
  2177. p = find_task_by_pid(pid);
  2178. /* make sure task cannot go away while we operate on it */
  2179. if (p) get_task_struct(p);
  2180. read_unlock(&tasklist_lock);
  2181. if (p == NULL) return -ESRCH;
  2182. }
  2183. ret = pfm_task_incompatible(ctx, p);
  2184. if (ret == 0) {
  2185. *task = p;
  2186. } else if (p != current) {
  2187. pfm_put_task(p);
  2188. }
  2189. return ret;
  2190. }
  2191. static int
  2192. pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2193. {
  2194. pfarg_context_t *req = (pfarg_context_t *)arg;
  2195. struct file *filp;
  2196. int ctx_flags;
  2197. int ret;
  2198. /* let's check the arguments first */
  2199. ret = pfarg_is_sane(current, req);
  2200. if (ret < 0) return ret;
  2201. ctx_flags = req->ctx_flags;
  2202. ret = -ENOMEM;
  2203. ctx = pfm_context_alloc();
  2204. if (!ctx) goto error;
  2205. ret = pfm_alloc_fd(&filp);
  2206. if (ret < 0) goto error_file;
  2207. req->ctx_fd = ctx->ctx_fd = ret;
  2208. /*
  2209. * attach context to file
  2210. */
  2211. filp->private_data = ctx;
  2212. /*
  2213. * does the user want to sample?
  2214. */
  2215. if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
  2216. ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
  2217. if (ret) goto buffer_error;
  2218. }
  2219. /*
  2220. * init context protection lock
  2221. */
  2222. spin_lock_init(&ctx->ctx_lock);
  2223. /*
  2224. * context is unloaded
  2225. */
  2226. ctx->ctx_state = PFM_CTX_UNLOADED;
  2227. /*
  2228. * initialization of context's flags
  2229. */
  2230. ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
  2231. ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
  2232. ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
  2233. ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
  2234. /*
  2235. * will move to set properties
  2236. * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
  2237. */
  2238. /*
  2239. * init restart semaphore to locked
  2240. */
  2241. sema_init(&ctx->ctx_restart_sem, 0);
  2242. /*
  2243. * activation is used in SMP only
  2244. */
  2245. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  2246. SET_LAST_CPU(ctx, -1);
  2247. /*
  2248. * initialize notification message queue
  2249. */
  2250. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  2251. init_waitqueue_head(&ctx->ctx_msgq_wait);
  2252. init_waitqueue_head(&ctx->ctx_zombieq);
  2253. DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
  2254. ctx,
  2255. ctx_flags,
  2256. ctx->ctx_fl_system,
  2257. ctx->ctx_fl_block,
  2258. ctx->ctx_fl_excl_idle,
  2259. ctx->ctx_fl_no_msg,
  2260. ctx->ctx_fd));
  2261. /*
  2262. * initialize soft PMU state
  2263. */
  2264. pfm_reset_pmu_state(ctx);
  2265. return 0;
  2266. buffer_error:
  2267. pfm_free_fd(ctx->ctx_fd, filp);
  2268. if (ctx->ctx_buf_fmt) {
  2269. pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
  2270. }
  2271. error_file:
  2272. pfm_context_free(ctx);
  2273. error:
  2274. return ret;
  2275. }
  2276. static inline unsigned long
  2277. pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
  2278. {
  2279. unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
  2280. unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
  2281. extern unsigned long carta_random32 (unsigned long seed);
  2282. if (reg->flags & PFM_REGFL_RANDOM) {
  2283. new_seed = carta_random32(old_seed);
  2284. val -= (old_seed & mask); /* counter values are negative numbers! */
  2285. if ((mask >> 32) != 0)
  2286. /* construct a full 64-bit random value: */
  2287. new_seed |= carta_random32(old_seed >> 32) << 32;
  2288. reg->seed = new_seed;
  2289. }
  2290. reg->lval = val;
  2291. return val;
  2292. }
  2293. static void
  2294. pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2295. {
  2296. unsigned long mask = ovfl_regs[0];
  2297. unsigned long reset_others = 0UL;
  2298. unsigned long val;
  2299. int i;
  2300. /*
  2301. * now restore reset value on sampling overflowed counters
  2302. */
  2303. mask >>= PMU_FIRST_COUNTER;
  2304. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2305. if ((mask & 0x1UL) == 0UL) continue;
  2306. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2307. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2308. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2309. }
  2310. /*
  2311. * Now take care of resetting the other registers
  2312. */
  2313. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2314. if ((reset_others & 0x1) == 0) continue;
  2315. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2316. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2317. is_long_reset ? "long" : "short", i, val));
  2318. }
  2319. }
  2320. static void
  2321. pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2322. {
  2323. unsigned long mask = ovfl_regs[0];
  2324. unsigned long reset_others = 0UL;
  2325. unsigned long val;
  2326. int i;
  2327. DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
  2328. if (ctx->ctx_state == PFM_CTX_MASKED) {
  2329. pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
  2330. return;
  2331. }
  2332. /*
  2333. * now restore reset value on sampling overflowed counters
  2334. */
  2335. mask >>= PMU_FIRST_COUNTER;
  2336. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2337. if ((mask & 0x1UL) == 0UL) continue;
  2338. val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2339. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2340. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2341. pfm_write_soft_counter(ctx, i, val);
  2342. }
  2343. /*
  2344. * Now take care of resetting the other registers
  2345. */
  2346. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2347. if ((reset_others & 0x1) == 0) continue;
  2348. val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2349. if (PMD_IS_COUNTING(i)) {
  2350. pfm_write_soft_counter(ctx, i, val);
  2351. } else {
  2352. ia64_set_pmd(i, val);
  2353. }
  2354. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2355. is_long_reset ? "long" : "short", i, val));
  2356. }
  2357. ia64_srlz_d();
  2358. }
  2359. static int
  2360. pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2361. {
  2362. struct thread_struct *thread = NULL;
  2363. struct task_struct *task;
  2364. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2365. unsigned long value, pmc_pm;
  2366. unsigned long smpl_pmds, reset_pmds, impl_pmds;
  2367. unsigned int cnum, reg_flags, flags, pmc_type;
  2368. int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
  2369. int is_monitor, is_counting, state;
  2370. int ret = -EINVAL;
  2371. pfm_reg_check_t wr_func;
  2372. #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
  2373. state = ctx->ctx_state;
  2374. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2375. is_system = ctx->ctx_fl_system;
  2376. task = ctx->ctx_task;
  2377. impl_pmds = pmu_conf->impl_pmds[0];
  2378. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2379. if (is_loaded) {
  2380. thread = &task->thread;
  2381. /*
  2382. * In system wide and when the context is loaded, access can only happen
  2383. * when the caller is running on the CPU being monitored by the session.
  2384. * It does not have to be the owner (ctx_task) of the context per se.
  2385. */
  2386. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2387. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2388. return -EBUSY;
  2389. }
  2390. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2391. }
  2392. expert_mode = pfm_sysctl.expert_mode;
  2393. for (i = 0; i < count; i++, req++) {
  2394. cnum = req->reg_num;
  2395. reg_flags = req->reg_flags;
  2396. value = req->reg_value;
  2397. smpl_pmds = req->reg_smpl_pmds[0];
  2398. reset_pmds = req->reg_reset_pmds[0];
  2399. flags = 0;
  2400. if (cnum >= PMU_MAX_PMCS) {
  2401. DPRINT(("pmc%u is invalid\n", cnum));
  2402. goto error;
  2403. }
  2404. pmc_type = pmu_conf->pmc_desc[cnum].type;
  2405. pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
  2406. is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
  2407. is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
  2408. /*
  2409. * we reject all non implemented PMC as well
  2410. * as attempts to modify PMC[0-3] which are used
  2411. * as status registers by the PMU
  2412. */
  2413. if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
  2414. DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
  2415. goto error;
  2416. }
  2417. wr_func = pmu_conf->pmc_desc[cnum].write_check;
  2418. /*
  2419. * If the PMC is a monitor, then if the value is not the default:
  2420. * - system-wide session: PMCx.pm=1 (privileged monitor)
  2421. * - per-task : PMCx.pm=0 (user monitor)
  2422. */
  2423. if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
  2424. DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
  2425. cnum,
  2426. pmc_pm,
  2427. is_system));
  2428. goto error;
  2429. }
  2430. if (is_counting) {
  2431. /*
  2432. * enforce generation of overflow interrupt. Necessary on all
  2433. * CPUs.
  2434. */
  2435. value |= 1 << PMU_PMC_OI;
  2436. if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
  2437. flags |= PFM_REGFL_OVFL_NOTIFY;
  2438. }
  2439. if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
  2440. /* verify validity of smpl_pmds */
  2441. if ((smpl_pmds & impl_pmds) != smpl_pmds) {
  2442. DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
  2443. goto error;
  2444. }
  2445. /* verify validity of reset_pmds */
  2446. if ((reset_pmds & impl_pmds) != reset_pmds) {
  2447. DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
  2448. goto error;
  2449. }
  2450. } else {
  2451. if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
  2452. DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
  2453. goto error;
  2454. }
  2455. /* eventid on non-counting monitors are ignored */
  2456. }
  2457. /*
  2458. * execute write checker, if any
  2459. */
  2460. if (likely(expert_mode == 0 && wr_func)) {
  2461. ret = (*wr_func)(task, ctx, cnum, &value, regs);
  2462. if (ret) goto error;
  2463. ret = -EINVAL;
  2464. }
  2465. /*
  2466. * no error on this register
  2467. */
  2468. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2469. /*
  2470. * Now we commit the changes to the software state
  2471. */
  2472. /*
  2473. * update overflow information
  2474. */
  2475. if (is_counting) {
  2476. /*
  2477. * full flag update each time a register is programmed
  2478. */
  2479. ctx->ctx_pmds[cnum].flags = flags;
  2480. ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
  2481. ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
  2482. ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
  2483. /*
  2484. * Mark all PMDS to be accessed as used.
  2485. *
  2486. * We do not keep track of PMC because we have to
  2487. * systematically restore ALL of them.
  2488. *
  2489. * We do not update the used_monitors mask, because
  2490. * if we have not programmed them, then will be in
  2491. * a quiescent state, therefore we will not need to
  2492. * mask/restore then when context is MASKED.
  2493. */
  2494. CTX_USED_PMD(ctx, reset_pmds);
  2495. CTX_USED_PMD(ctx, smpl_pmds);
  2496. /*
  2497. * make sure we do not try to reset on
  2498. * restart because we have established new values
  2499. */
  2500. if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2501. }
  2502. /*
  2503. * Needed in case the user does not initialize the equivalent
  2504. * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
  2505. * possible leak here.
  2506. */
  2507. CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
  2508. /*
  2509. * keep track of the monitor PMC that we are using.
  2510. * we save the value of the pmc in ctx_pmcs[] and if
  2511. * the monitoring is not stopped for the context we also
  2512. * place it in the saved state area so that it will be
  2513. * picked up later by the context switch code.
  2514. *
  2515. * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
  2516. *
  2517. * The value in thread->pmcs[] may be modified on overflow, i.e., when
  2518. * monitoring needs to be stopped.
  2519. */
  2520. if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
  2521. /*
  2522. * update context state
  2523. */
  2524. ctx->ctx_pmcs[cnum] = value;
  2525. if (is_loaded) {
  2526. /*
  2527. * write thread state
  2528. */
  2529. if (is_system == 0) thread->pmcs[cnum] = value;
  2530. /*
  2531. * write hardware register if we can
  2532. */
  2533. if (can_access_pmu) {
  2534. ia64_set_pmc(cnum, value);
  2535. }
  2536. #ifdef CONFIG_SMP
  2537. else {
  2538. /*
  2539. * per-task SMP only here
  2540. *
  2541. * we are guaranteed that the task is not running on the other CPU,
  2542. * we indicate that this PMD will need to be reloaded if the task
  2543. * is rescheduled on the CPU it ran last on.
  2544. */
  2545. ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
  2546. }
  2547. #endif
  2548. }
  2549. DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
  2550. cnum,
  2551. value,
  2552. is_loaded,
  2553. can_access_pmu,
  2554. flags,
  2555. ctx->ctx_all_pmcs[0],
  2556. ctx->ctx_used_pmds[0],
  2557. ctx->ctx_pmds[cnum].eventid,
  2558. smpl_pmds,
  2559. reset_pmds,
  2560. ctx->ctx_reload_pmcs[0],
  2561. ctx->ctx_used_monitors[0],
  2562. ctx->ctx_ovfl_regs[0]));
  2563. }
  2564. /*
  2565. * make sure the changes are visible
  2566. */
  2567. if (can_access_pmu) ia64_srlz_d();
  2568. return 0;
  2569. error:
  2570. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2571. return ret;
  2572. }
  2573. static int
  2574. pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2575. {
  2576. struct thread_struct *thread = NULL;
  2577. struct task_struct *task;
  2578. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2579. unsigned long value, hw_value, ovfl_mask;
  2580. unsigned int cnum;
  2581. int i, can_access_pmu = 0, state;
  2582. int is_counting, is_loaded, is_system, expert_mode;
  2583. int ret = -EINVAL;
  2584. pfm_reg_check_t wr_func;
  2585. state = ctx->ctx_state;
  2586. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2587. is_system = ctx->ctx_fl_system;
  2588. ovfl_mask = pmu_conf->ovfl_val;
  2589. task = ctx->ctx_task;
  2590. if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
  2591. /*
  2592. * on both UP and SMP, we can only write to the PMC when the task is
  2593. * the owner of the local PMU.
  2594. */
  2595. if (likely(is_loaded)) {
  2596. thread = &task->thread;
  2597. /*
  2598. * In system wide and when the context is loaded, access can only happen
  2599. * when the caller is running on the CPU being monitored by the session.
  2600. * It does not have to be the owner (ctx_task) of the context per se.
  2601. */
  2602. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2603. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2604. return -EBUSY;
  2605. }
  2606. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2607. }
  2608. expert_mode = pfm_sysctl.expert_mode;
  2609. for (i = 0; i < count; i++, req++) {
  2610. cnum = req->reg_num;
  2611. value = req->reg_value;
  2612. if (!PMD_IS_IMPL(cnum)) {
  2613. DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
  2614. goto abort_mission;
  2615. }
  2616. is_counting = PMD_IS_COUNTING(cnum);
  2617. wr_func = pmu_conf->pmd_desc[cnum].write_check;
  2618. /*
  2619. * execute write checker, if any
  2620. */
  2621. if (unlikely(expert_mode == 0 && wr_func)) {
  2622. unsigned long v = value;
  2623. ret = (*wr_func)(task, ctx, cnum, &v, regs);
  2624. if (ret) goto abort_mission;
  2625. value = v;
  2626. ret = -EINVAL;
  2627. }
  2628. /*
  2629. * no error on this register
  2630. */
  2631. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2632. /*
  2633. * now commit changes to software state
  2634. */
  2635. hw_value = value;
  2636. /*
  2637. * update virtualized (64bits) counter
  2638. */
  2639. if (is_counting) {
  2640. /*
  2641. * write context state
  2642. */
  2643. ctx->ctx_pmds[cnum].lval = value;
  2644. /*
  2645. * when context is load we use the split value
  2646. */
  2647. if (is_loaded) {
  2648. hw_value = value & ovfl_mask;
  2649. value = value & ~ovfl_mask;
  2650. }
  2651. }
  2652. /*
  2653. * update reset values (not just for counters)
  2654. */
  2655. ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
  2656. ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
  2657. /*
  2658. * update randomization parameters (not just for counters)
  2659. */
  2660. ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
  2661. ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
  2662. /*
  2663. * update context value
  2664. */
  2665. ctx->ctx_pmds[cnum].val = value;
  2666. /*
  2667. * Keep track of what we use
  2668. *
  2669. * We do not keep track of PMC because we have to
  2670. * systematically restore ALL of them.
  2671. */
  2672. CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
  2673. /*
  2674. * mark this PMD register used as well
  2675. */
  2676. CTX_USED_PMD(ctx, RDEP(cnum));
  2677. /*
  2678. * make sure we do not try to reset on
  2679. * restart because we have established new values
  2680. */
  2681. if (is_counting && state == PFM_CTX_MASKED) {
  2682. ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2683. }
  2684. if (is_loaded) {
  2685. /*
  2686. * write thread state
  2687. */
  2688. if (is_system == 0) thread->pmds[cnum] = hw_value;
  2689. /*
  2690. * write hardware register if we can
  2691. */
  2692. if (can_access_pmu) {
  2693. ia64_set_pmd(cnum, hw_value);
  2694. } else {
  2695. #ifdef CONFIG_SMP
  2696. /*
  2697. * we are guaranteed that the task is not running on the other CPU,
  2698. * we indicate that this PMD will need to be reloaded if the task
  2699. * is rescheduled on the CPU it ran last on.
  2700. */
  2701. ctx->ctx_reload_pmds[0] |= 1UL << cnum;
  2702. #endif
  2703. }
  2704. }
  2705. DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
  2706. "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
  2707. cnum,
  2708. value,
  2709. is_loaded,
  2710. can_access_pmu,
  2711. hw_value,
  2712. ctx->ctx_pmds[cnum].val,
  2713. ctx->ctx_pmds[cnum].short_reset,
  2714. ctx->ctx_pmds[cnum].long_reset,
  2715. PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
  2716. ctx->ctx_pmds[cnum].seed,
  2717. ctx->ctx_pmds[cnum].mask,
  2718. ctx->ctx_used_pmds[0],
  2719. ctx->ctx_pmds[cnum].reset_pmds[0],
  2720. ctx->ctx_reload_pmds[0],
  2721. ctx->ctx_all_pmds[0],
  2722. ctx->ctx_ovfl_regs[0]));
  2723. }
  2724. /*
  2725. * make changes visible
  2726. */
  2727. if (can_access_pmu) ia64_srlz_d();
  2728. return 0;
  2729. abort_mission:
  2730. /*
  2731. * for now, we have only one possibility for error
  2732. */
  2733. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2734. return ret;
  2735. }
  2736. /*
  2737. * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
  2738. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
  2739. * interrupt is delivered during the call, it will be kept pending until we leave, making
  2740. * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
  2741. * guaranteed to return consistent data to the user, it may simply be old. It is not
  2742. * trivial to treat the overflow while inside the call because you may end up in
  2743. * some module sampling buffer code causing deadlocks.
  2744. */
  2745. static int
  2746. pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2747. {
  2748. struct thread_struct *thread = NULL;
  2749. struct task_struct *task;
  2750. unsigned long val = 0UL, lval, ovfl_mask, sval;
  2751. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2752. unsigned int cnum, reg_flags = 0;
  2753. int i, can_access_pmu = 0, state;
  2754. int is_loaded, is_system, is_counting, expert_mode;
  2755. int ret = -EINVAL;
  2756. pfm_reg_check_t rd_func;
  2757. /*
  2758. * access is possible when loaded only for
  2759. * self-monitoring tasks or in UP mode
  2760. */
  2761. state = ctx->ctx_state;
  2762. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2763. is_system = ctx->ctx_fl_system;
  2764. ovfl_mask = pmu_conf->ovfl_val;
  2765. task = ctx->ctx_task;
  2766. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2767. if (likely(is_loaded)) {
  2768. thread = &task->thread;
  2769. /*
  2770. * In system wide and when the context is loaded, access can only happen
  2771. * when the caller is running on the CPU being monitored by the session.
  2772. * It does not have to be the owner (ctx_task) of the context per se.
  2773. */
  2774. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2775. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2776. return -EBUSY;
  2777. }
  2778. /*
  2779. * this can be true when not self-monitoring only in UP
  2780. */
  2781. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2782. if (can_access_pmu) ia64_srlz_d();
  2783. }
  2784. expert_mode = pfm_sysctl.expert_mode;
  2785. DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
  2786. is_loaded,
  2787. can_access_pmu,
  2788. state));
  2789. /*
  2790. * on both UP and SMP, we can only read the PMD from the hardware register when
  2791. * the task is the owner of the local PMU.
  2792. */
  2793. for (i = 0; i < count; i++, req++) {
  2794. cnum = req->reg_num;
  2795. reg_flags = req->reg_flags;
  2796. if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
  2797. /*
  2798. * we can only read the register that we use. That includes
  2799. * the one we explicitely initialize AND the one we want included
  2800. * in the sampling buffer (smpl_regs).
  2801. *
  2802. * Having this restriction allows optimization in the ctxsw routine
  2803. * without compromising security (leaks)
  2804. */
  2805. if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
  2806. sval = ctx->ctx_pmds[cnum].val;
  2807. lval = ctx->ctx_pmds[cnum].lval;
  2808. is_counting = PMD_IS_COUNTING(cnum);
  2809. /*
  2810. * If the task is not the current one, then we check if the
  2811. * PMU state is still in the local live register due to lazy ctxsw.
  2812. * If true, then we read directly from the registers.
  2813. */
  2814. if (can_access_pmu){
  2815. val = ia64_get_pmd(cnum);
  2816. } else {
  2817. /*
  2818. * context has been saved
  2819. * if context is zombie, then task does not exist anymore.
  2820. * In this case, we use the full value saved in the context (pfm_flush_regs()).
  2821. */
  2822. val = is_loaded ? thread->pmds[cnum] : 0UL;
  2823. }
  2824. rd_func = pmu_conf->pmd_desc[cnum].read_check;
  2825. if (is_counting) {
  2826. /*
  2827. * XXX: need to check for overflow when loaded
  2828. */
  2829. val &= ovfl_mask;
  2830. val += sval;
  2831. }
  2832. /*
  2833. * execute read checker, if any
  2834. */
  2835. if (unlikely(expert_mode == 0 && rd_func)) {
  2836. unsigned long v = val;
  2837. ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
  2838. if (ret) goto error;
  2839. val = v;
  2840. ret = -EINVAL;
  2841. }
  2842. PFM_REG_RETFLAG_SET(reg_flags, 0);
  2843. DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
  2844. /*
  2845. * update register return value, abort all if problem during copy.
  2846. * we only modify the reg_flags field. no check mode is fine because
  2847. * access has been verified upfront in sys_perfmonctl().
  2848. */
  2849. req->reg_value = val;
  2850. req->reg_flags = reg_flags;
  2851. req->reg_last_reset_val = lval;
  2852. }
  2853. return 0;
  2854. error:
  2855. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2856. return ret;
  2857. }
  2858. int
  2859. pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2860. {
  2861. pfm_context_t *ctx;
  2862. if (req == NULL) return -EINVAL;
  2863. ctx = GET_PMU_CTX();
  2864. if (ctx == NULL) return -EINVAL;
  2865. /*
  2866. * for now limit to current task, which is enough when calling
  2867. * from overflow handler
  2868. */
  2869. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2870. return pfm_write_pmcs(ctx, req, nreq, regs);
  2871. }
  2872. EXPORT_SYMBOL(pfm_mod_write_pmcs);
  2873. int
  2874. pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2875. {
  2876. pfm_context_t *ctx;
  2877. if (req == NULL) return -EINVAL;
  2878. ctx = GET_PMU_CTX();
  2879. if (ctx == NULL) return -EINVAL;
  2880. /*
  2881. * for now limit to current task, which is enough when calling
  2882. * from overflow handler
  2883. */
  2884. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2885. return pfm_read_pmds(ctx, req, nreq, regs);
  2886. }
  2887. EXPORT_SYMBOL(pfm_mod_read_pmds);
  2888. /*
  2889. * Only call this function when a process it trying to
  2890. * write the debug registers (reading is always allowed)
  2891. */
  2892. int
  2893. pfm_use_debug_registers(struct task_struct *task)
  2894. {
  2895. pfm_context_t *ctx = task->thread.pfm_context;
  2896. unsigned long flags;
  2897. int ret = 0;
  2898. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2899. DPRINT(("called for [%d]\n", task->pid));
  2900. /*
  2901. * do it only once
  2902. */
  2903. if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
  2904. /*
  2905. * Even on SMP, we do not need to use an atomic here because
  2906. * the only way in is via ptrace() and this is possible only when the
  2907. * process is stopped. Even in the case where the ctxsw out is not totally
  2908. * completed by the time we come here, there is no way the 'stopped' process
  2909. * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
  2910. * So this is always safe.
  2911. */
  2912. if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
  2913. LOCK_PFS(flags);
  2914. /*
  2915. * We cannot allow setting breakpoints when system wide monitoring
  2916. * sessions are using the debug registers.
  2917. */
  2918. if (pfm_sessions.pfs_sys_use_dbregs> 0)
  2919. ret = -1;
  2920. else
  2921. pfm_sessions.pfs_ptrace_use_dbregs++;
  2922. DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
  2923. pfm_sessions.pfs_ptrace_use_dbregs,
  2924. pfm_sessions.pfs_sys_use_dbregs,
  2925. task->pid, ret));
  2926. UNLOCK_PFS(flags);
  2927. return ret;
  2928. }
  2929. /*
  2930. * This function is called for every task that exits with the
  2931. * IA64_THREAD_DBG_VALID set. This indicates a task which was
  2932. * able to use the debug registers for debugging purposes via
  2933. * ptrace(). Therefore we know it was not using them for
  2934. * perfmormance monitoring, so we only decrement the number
  2935. * of "ptraced" debug register users to keep the count up to date
  2936. */
  2937. int
  2938. pfm_release_debug_registers(struct task_struct *task)
  2939. {
  2940. unsigned long flags;
  2941. int ret;
  2942. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2943. LOCK_PFS(flags);
  2944. if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
  2945. printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
  2946. ret = -1;
  2947. } else {
  2948. pfm_sessions.pfs_ptrace_use_dbregs--;
  2949. ret = 0;
  2950. }
  2951. UNLOCK_PFS(flags);
  2952. return ret;
  2953. }
  2954. static int
  2955. pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2956. {
  2957. struct task_struct *task;
  2958. pfm_buffer_fmt_t *fmt;
  2959. pfm_ovfl_ctrl_t rst_ctrl;
  2960. int state, is_system;
  2961. int ret = 0;
  2962. state = ctx->ctx_state;
  2963. fmt = ctx->ctx_buf_fmt;
  2964. is_system = ctx->ctx_fl_system;
  2965. task = PFM_CTX_TASK(ctx);
  2966. switch(state) {
  2967. case PFM_CTX_MASKED:
  2968. break;
  2969. case PFM_CTX_LOADED:
  2970. if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
  2971. /* fall through */
  2972. case PFM_CTX_UNLOADED:
  2973. case PFM_CTX_ZOMBIE:
  2974. DPRINT(("invalid state=%d\n", state));
  2975. return -EBUSY;
  2976. default:
  2977. DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
  2978. return -EINVAL;
  2979. }
  2980. /*
  2981. * In system wide and when the context is loaded, access can only happen
  2982. * when the caller is running on the CPU being monitored by the session.
  2983. * It does not have to be the owner (ctx_task) of the context per se.
  2984. */
  2985. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2986. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2987. return -EBUSY;
  2988. }
  2989. /* sanity check */
  2990. if (unlikely(task == NULL)) {
  2991. printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
  2992. return -EINVAL;
  2993. }
  2994. if (task == current || is_system) {
  2995. fmt = ctx->ctx_buf_fmt;
  2996. DPRINT(("restarting self %d ovfl=0x%lx\n",
  2997. task->pid,
  2998. ctx->ctx_ovfl_regs[0]));
  2999. if (CTX_HAS_SMPL(ctx)) {
  3000. prefetch(ctx->ctx_smpl_hdr);
  3001. rst_ctrl.bits.mask_monitoring = 0;
  3002. rst_ctrl.bits.reset_ovfl_pmds = 0;
  3003. if (state == PFM_CTX_LOADED)
  3004. ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3005. else
  3006. ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3007. } else {
  3008. rst_ctrl.bits.mask_monitoring = 0;
  3009. rst_ctrl.bits.reset_ovfl_pmds = 1;
  3010. }
  3011. if (ret == 0) {
  3012. if (rst_ctrl.bits.reset_ovfl_pmds)
  3013. pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
  3014. if (rst_ctrl.bits.mask_monitoring == 0) {
  3015. DPRINT(("resuming monitoring for [%d]\n", task->pid));
  3016. if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
  3017. } else {
  3018. DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
  3019. // cannot use pfm_stop_monitoring(task, regs);
  3020. }
  3021. }
  3022. /*
  3023. * clear overflowed PMD mask to remove any stale information
  3024. */
  3025. ctx->ctx_ovfl_regs[0] = 0UL;
  3026. /*
  3027. * back to LOADED state
  3028. */
  3029. ctx->ctx_state = PFM_CTX_LOADED;
  3030. /*
  3031. * XXX: not really useful for self monitoring
  3032. */
  3033. ctx->ctx_fl_can_restart = 0;
  3034. return 0;
  3035. }
  3036. /*
  3037. * restart another task
  3038. */
  3039. /*
  3040. * When PFM_CTX_MASKED, we cannot issue a restart before the previous
  3041. * one is seen by the task.
  3042. */
  3043. if (state == PFM_CTX_MASKED) {
  3044. if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
  3045. /*
  3046. * will prevent subsequent restart before this one is
  3047. * seen by other task
  3048. */
  3049. ctx->ctx_fl_can_restart = 0;
  3050. }
  3051. /*
  3052. * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
  3053. * the task is blocked or on its way to block. That's the normal
  3054. * restart path. If the monitoring is not masked, then the task
  3055. * can be actively monitoring and we cannot directly intervene.
  3056. * Therefore we use the trap mechanism to catch the task and
  3057. * force it to reset the buffer/reset PMDs.
  3058. *
  3059. * if non-blocking, then we ensure that the task will go into
  3060. * pfm_handle_work() before returning to user mode.
  3061. *
  3062. * We cannot explicitely reset another task, it MUST always
  3063. * be done by the task itself. This works for system wide because
  3064. * the tool that is controlling the session is logically doing
  3065. * "self-monitoring".
  3066. */
  3067. if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
  3068. DPRINT(("unblocking [%d] \n", task->pid));
  3069. up(&ctx->ctx_restart_sem);
  3070. } else {
  3071. DPRINT(("[%d] armed exit trap\n", task->pid));
  3072. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
  3073. PFM_SET_WORK_PENDING(task, 1);
  3074. pfm_set_task_notify(task);
  3075. /*
  3076. * XXX: send reschedule if task runs on another CPU
  3077. */
  3078. }
  3079. return 0;
  3080. }
  3081. static int
  3082. pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3083. {
  3084. unsigned int m = *(unsigned int *)arg;
  3085. pfm_sysctl.debug = m == 0 ? 0 : 1;
  3086. printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
  3087. if (m == 0) {
  3088. memset(pfm_stats, 0, sizeof(pfm_stats));
  3089. for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
  3090. }
  3091. return 0;
  3092. }
  3093. /*
  3094. * arg can be NULL and count can be zero for this function
  3095. */
  3096. static int
  3097. pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3098. {
  3099. struct thread_struct *thread = NULL;
  3100. struct task_struct *task;
  3101. pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
  3102. unsigned long flags;
  3103. dbreg_t dbreg;
  3104. unsigned int rnum;
  3105. int first_time;
  3106. int ret = 0, state;
  3107. int i, can_access_pmu = 0;
  3108. int is_system, is_loaded;
  3109. if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
  3110. state = ctx->ctx_state;
  3111. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  3112. is_system = ctx->ctx_fl_system;
  3113. task = ctx->ctx_task;
  3114. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  3115. /*
  3116. * on both UP and SMP, we can only write to the PMC when the task is
  3117. * the owner of the local PMU.
  3118. */
  3119. if (is_loaded) {
  3120. thread = &task->thread;
  3121. /*
  3122. * In system wide and when the context is loaded, access can only happen
  3123. * when the caller is running on the CPU being monitored by the session.
  3124. * It does not have to be the owner (ctx_task) of the context per se.
  3125. */
  3126. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  3127. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3128. return -EBUSY;
  3129. }
  3130. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  3131. }
  3132. /*
  3133. * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
  3134. * ensuring that no real breakpoint can be installed via this call.
  3135. *
  3136. * IMPORTANT: regs can be NULL in this function
  3137. */
  3138. first_time = ctx->ctx_fl_using_dbreg == 0;
  3139. /*
  3140. * don't bother if we are loaded and task is being debugged
  3141. */
  3142. if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
  3143. DPRINT(("debug registers already in use for [%d]\n", task->pid));
  3144. return -EBUSY;
  3145. }
  3146. /*
  3147. * check for debug registers in system wide mode
  3148. *
  3149. * If though a check is done in pfm_context_load(),
  3150. * we must repeat it here, in case the registers are
  3151. * written after the context is loaded
  3152. */
  3153. if (is_loaded) {
  3154. LOCK_PFS(flags);
  3155. if (first_time && is_system) {
  3156. if (pfm_sessions.pfs_ptrace_use_dbregs)
  3157. ret = -EBUSY;
  3158. else
  3159. pfm_sessions.pfs_sys_use_dbregs++;
  3160. }
  3161. UNLOCK_PFS(flags);
  3162. }
  3163. if (ret != 0) return ret;
  3164. /*
  3165. * mark ourself as user of the debug registers for
  3166. * perfmon purposes.
  3167. */
  3168. ctx->ctx_fl_using_dbreg = 1;
  3169. /*
  3170. * clear hardware registers to make sure we don't
  3171. * pick up stale state.
  3172. *
  3173. * for a system wide session, we do not use
  3174. * thread.dbr, thread.ibr because this process
  3175. * never leaves the current CPU and the state
  3176. * is shared by all processes running on it
  3177. */
  3178. if (first_time && can_access_pmu) {
  3179. DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
  3180. for (i=0; i < pmu_conf->num_ibrs; i++) {
  3181. ia64_set_ibr(i, 0UL);
  3182. ia64_dv_serialize_instruction();
  3183. }
  3184. ia64_srlz_i();
  3185. for (i=0; i < pmu_conf->num_dbrs; i++) {
  3186. ia64_set_dbr(i, 0UL);
  3187. ia64_dv_serialize_data();
  3188. }
  3189. ia64_srlz_d();
  3190. }
  3191. /*
  3192. * Now install the values into the registers
  3193. */
  3194. for (i = 0; i < count; i++, req++) {
  3195. rnum = req->dbreg_num;
  3196. dbreg.val = req->dbreg_value;
  3197. ret = -EINVAL;
  3198. if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
  3199. DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
  3200. rnum, dbreg.val, mode, i, count));
  3201. goto abort_mission;
  3202. }
  3203. /*
  3204. * make sure we do not install enabled breakpoint
  3205. */
  3206. if (rnum & 0x1) {
  3207. if (mode == PFM_CODE_RR)
  3208. dbreg.ibr.ibr_x = 0;
  3209. else
  3210. dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
  3211. }
  3212. PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
  3213. /*
  3214. * Debug registers, just like PMC, can only be modified
  3215. * by a kernel call. Moreover, perfmon() access to those
  3216. * registers are centralized in this routine. The hardware
  3217. * does not modify the value of these registers, therefore,
  3218. * if we save them as they are written, we can avoid having
  3219. * to save them on context switch out. This is made possible
  3220. * by the fact that when perfmon uses debug registers, ptrace()
  3221. * won't be able to modify them concurrently.
  3222. */
  3223. if (mode == PFM_CODE_RR) {
  3224. CTX_USED_IBR(ctx, rnum);
  3225. if (can_access_pmu) {
  3226. ia64_set_ibr(rnum, dbreg.val);
  3227. ia64_dv_serialize_instruction();
  3228. }
  3229. ctx->ctx_ibrs[rnum] = dbreg.val;
  3230. DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
  3231. rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
  3232. } else {
  3233. CTX_USED_DBR(ctx, rnum);
  3234. if (can_access_pmu) {
  3235. ia64_set_dbr(rnum, dbreg.val);
  3236. ia64_dv_serialize_data();
  3237. }
  3238. ctx->ctx_dbrs[rnum] = dbreg.val;
  3239. DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
  3240. rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
  3241. }
  3242. }
  3243. return 0;
  3244. abort_mission:
  3245. /*
  3246. * in case it was our first attempt, we undo the global modifications
  3247. */
  3248. if (first_time) {
  3249. LOCK_PFS(flags);
  3250. if (ctx->ctx_fl_system) {
  3251. pfm_sessions.pfs_sys_use_dbregs--;
  3252. }
  3253. UNLOCK_PFS(flags);
  3254. ctx->ctx_fl_using_dbreg = 0;
  3255. }
  3256. /*
  3257. * install error return flag
  3258. */
  3259. PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
  3260. return ret;
  3261. }
  3262. static int
  3263. pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3264. {
  3265. return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
  3266. }
  3267. static int
  3268. pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3269. {
  3270. return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
  3271. }
  3272. int
  3273. pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3274. {
  3275. pfm_context_t *ctx;
  3276. if (req == NULL) return -EINVAL;
  3277. ctx = GET_PMU_CTX();
  3278. if (ctx == NULL) return -EINVAL;
  3279. /*
  3280. * for now limit to current task, which is enough when calling
  3281. * from overflow handler
  3282. */
  3283. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3284. return pfm_write_ibrs(ctx, req, nreq, regs);
  3285. }
  3286. EXPORT_SYMBOL(pfm_mod_write_ibrs);
  3287. int
  3288. pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3289. {
  3290. pfm_context_t *ctx;
  3291. if (req == NULL) return -EINVAL;
  3292. ctx = GET_PMU_CTX();
  3293. if (ctx == NULL) return -EINVAL;
  3294. /*
  3295. * for now limit to current task, which is enough when calling
  3296. * from overflow handler
  3297. */
  3298. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3299. return pfm_write_dbrs(ctx, req, nreq, regs);
  3300. }
  3301. EXPORT_SYMBOL(pfm_mod_write_dbrs);
  3302. static int
  3303. pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3304. {
  3305. pfarg_features_t *req = (pfarg_features_t *)arg;
  3306. req->ft_version = PFM_VERSION;
  3307. return 0;
  3308. }
  3309. static int
  3310. pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3311. {
  3312. struct pt_regs *tregs;
  3313. struct task_struct *task = PFM_CTX_TASK(ctx);
  3314. int state, is_system;
  3315. state = ctx->ctx_state;
  3316. is_system = ctx->ctx_fl_system;
  3317. /*
  3318. * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
  3319. */
  3320. if (state == PFM_CTX_UNLOADED) return -EINVAL;
  3321. /*
  3322. * In system wide and when the context is loaded, access can only happen
  3323. * when the caller is running on the CPU being monitored by the session.
  3324. * It does not have to be the owner (ctx_task) of the context per se.
  3325. */
  3326. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3327. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3328. return -EBUSY;
  3329. }
  3330. DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
  3331. PFM_CTX_TASK(ctx)->pid,
  3332. state,
  3333. is_system));
  3334. /*
  3335. * in system mode, we need to update the PMU directly
  3336. * and the user level state of the caller, which may not
  3337. * necessarily be the creator of the context.
  3338. */
  3339. if (is_system) {
  3340. /*
  3341. * Update local PMU first
  3342. *
  3343. * disable dcr pp
  3344. */
  3345. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  3346. ia64_srlz_i();
  3347. /*
  3348. * update local cpuinfo
  3349. */
  3350. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3351. /*
  3352. * stop monitoring, does srlz.i
  3353. */
  3354. pfm_clear_psr_pp();
  3355. /*
  3356. * stop monitoring in the caller
  3357. */
  3358. ia64_psr(regs)->pp = 0;
  3359. return 0;
  3360. }
  3361. /*
  3362. * per-task mode
  3363. */
  3364. if (task == current) {
  3365. /* stop monitoring at kernel level */
  3366. pfm_clear_psr_up();
  3367. /*
  3368. * stop monitoring at the user level
  3369. */
  3370. ia64_psr(regs)->up = 0;
  3371. } else {
  3372. tregs = ia64_task_regs(task);
  3373. /*
  3374. * stop monitoring at the user level
  3375. */
  3376. ia64_psr(tregs)->up = 0;
  3377. /*
  3378. * monitoring disabled in kernel at next reschedule
  3379. */
  3380. ctx->ctx_saved_psr_up = 0;
  3381. DPRINT(("task=[%d]\n", task->pid));
  3382. }
  3383. return 0;
  3384. }
  3385. static int
  3386. pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3387. {
  3388. struct pt_regs *tregs;
  3389. int state, is_system;
  3390. state = ctx->ctx_state;
  3391. is_system = ctx->ctx_fl_system;
  3392. if (state != PFM_CTX_LOADED) return -EINVAL;
  3393. /*
  3394. * In system wide and when the context is loaded, access can only happen
  3395. * when the caller is running on the CPU being monitored by the session.
  3396. * It does not have to be the owner (ctx_task) of the context per se.
  3397. */
  3398. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3399. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3400. return -EBUSY;
  3401. }
  3402. /*
  3403. * in system mode, we need to update the PMU directly
  3404. * and the user level state of the caller, which may not
  3405. * necessarily be the creator of the context.
  3406. */
  3407. if (is_system) {
  3408. /*
  3409. * set user level psr.pp for the caller
  3410. */
  3411. ia64_psr(regs)->pp = 1;
  3412. /*
  3413. * now update the local PMU and cpuinfo
  3414. */
  3415. PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
  3416. /*
  3417. * start monitoring at kernel level
  3418. */
  3419. pfm_set_psr_pp();
  3420. /* enable dcr pp */
  3421. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  3422. ia64_srlz_i();
  3423. return 0;
  3424. }
  3425. /*
  3426. * per-process mode
  3427. */
  3428. if (ctx->ctx_task == current) {
  3429. /* start monitoring at kernel level */
  3430. pfm_set_psr_up();
  3431. /*
  3432. * activate monitoring at user level
  3433. */
  3434. ia64_psr(regs)->up = 1;
  3435. } else {
  3436. tregs = ia64_task_regs(ctx->ctx_task);
  3437. /*
  3438. * start monitoring at the kernel level the next
  3439. * time the task is scheduled
  3440. */
  3441. ctx->ctx_saved_psr_up = IA64_PSR_UP;
  3442. /*
  3443. * activate monitoring at user level
  3444. */
  3445. ia64_psr(tregs)->up = 1;
  3446. }
  3447. return 0;
  3448. }
  3449. static int
  3450. pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3451. {
  3452. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  3453. unsigned int cnum;
  3454. int i;
  3455. int ret = -EINVAL;
  3456. for (i = 0; i < count; i++, req++) {
  3457. cnum = req->reg_num;
  3458. if (!PMC_IS_IMPL(cnum)) goto abort_mission;
  3459. req->reg_value = PMC_DFL_VAL(cnum);
  3460. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  3461. DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
  3462. }
  3463. return 0;
  3464. abort_mission:
  3465. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  3466. return ret;
  3467. }
  3468. static int
  3469. pfm_check_task_exist(pfm_context_t *ctx)
  3470. {
  3471. struct task_struct *g, *t;
  3472. int ret = -ESRCH;
  3473. read_lock(&tasklist_lock);
  3474. do_each_thread (g, t) {
  3475. if (t->thread.pfm_context == ctx) {
  3476. ret = 0;
  3477. break;
  3478. }
  3479. } while_each_thread (g, t);
  3480. read_unlock(&tasklist_lock);
  3481. DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
  3482. return ret;
  3483. }
  3484. static int
  3485. pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3486. {
  3487. struct task_struct *task;
  3488. struct thread_struct *thread;
  3489. struct pfm_context_t *old;
  3490. unsigned long flags;
  3491. #ifndef CONFIG_SMP
  3492. struct task_struct *owner_task = NULL;
  3493. #endif
  3494. pfarg_load_t *req = (pfarg_load_t *)arg;
  3495. unsigned long *pmcs_source, *pmds_source;
  3496. int the_cpu;
  3497. int ret = 0;
  3498. int state, is_system, set_dbregs = 0;
  3499. state = ctx->ctx_state;
  3500. is_system = ctx->ctx_fl_system;
  3501. /*
  3502. * can only load from unloaded or terminated state
  3503. */
  3504. if (state != PFM_CTX_UNLOADED) {
  3505. DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
  3506. req->load_pid,
  3507. ctx->ctx_state));
  3508. return -EBUSY;
  3509. }
  3510. DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
  3511. if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
  3512. DPRINT(("cannot use blocking mode on self\n"));
  3513. return -EINVAL;
  3514. }
  3515. ret = pfm_get_task(ctx, req->load_pid, &task);
  3516. if (ret) {
  3517. DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
  3518. return ret;
  3519. }
  3520. ret = -EINVAL;
  3521. /*
  3522. * system wide is self monitoring only
  3523. */
  3524. if (is_system && task != current) {
  3525. DPRINT(("system wide is self monitoring only load_pid=%d\n",
  3526. req->load_pid));
  3527. goto error;
  3528. }
  3529. thread = &task->thread;
  3530. ret = 0;
  3531. /*
  3532. * cannot load a context which is using range restrictions,
  3533. * into a task that is being debugged.
  3534. */
  3535. if (ctx->ctx_fl_using_dbreg) {
  3536. if (thread->flags & IA64_THREAD_DBG_VALID) {
  3537. ret = -EBUSY;
  3538. DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
  3539. goto error;
  3540. }
  3541. LOCK_PFS(flags);
  3542. if (is_system) {
  3543. if (pfm_sessions.pfs_ptrace_use_dbregs) {
  3544. DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
  3545. ret = -EBUSY;
  3546. } else {
  3547. pfm_sessions.pfs_sys_use_dbregs++;
  3548. DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
  3549. set_dbregs = 1;
  3550. }
  3551. }
  3552. UNLOCK_PFS(flags);
  3553. if (ret) goto error;
  3554. }
  3555. /*
  3556. * SMP system-wide monitoring implies self-monitoring.
  3557. *
  3558. * The programming model expects the task to
  3559. * be pinned on a CPU throughout the session.
  3560. * Here we take note of the current CPU at the
  3561. * time the context is loaded. No call from
  3562. * another CPU will be allowed.
  3563. *
  3564. * The pinning via shed_setaffinity()
  3565. * must be done by the calling task prior
  3566. * to this call.
  3567. *
  3568. * systemwide: keep track of CPU this session is supposed to run on
  3569. */
  3570. the_cpu = ctx->ctx_cpu = smp_processor_id();
  3571. ret = -EBUSY;
  3572. /*
  3573. * now reserve the session
  3574. */
  3575. ret = pfm_reserve_session(current, is_system, the_cpu);
  3576. if (ret) goto error;
  3577. /*
  3578. * task is necessarily stopped at this point.
  3579. *
  3580. * If the previous context was zombie, then it got removed in
  3581. * pfm_save_regs(). Therefore we should not see it here.
  3582. * If we see a context, then this is an active context
  3583. *
  3584. * XXX: needs to be atomic
  3585. */
  3586. DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
  3587. thread->pfm_context, ctx));
  3588. ret = -EBUSY;
  3589. old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
  3590. if (old != NULL) {
  3591. DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
  3592. goto error_unres;
  3593. }
  3594. pfm_reset_msgq(ctx);
  3595. ctx->ctx_state = PFM_CTX_LOADED;
  3596. /*
  3597. * link context to task
  3598. */
  3599. ctx->ctx_task = task;
  3600. if (is_system) {
  3601. /*
  3602. * we load as stopped
  3603. */
  3604. PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
  3605. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3606. if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
  3607. } else {
  3608. thread->flags |= IA64_THREAD_PM_VALID;
  3609. }
  3610. /*
  3611. * propagate into thread-state
  3612. */
  3613. pfm_copy_pmds(task, ctx);
  3614. pfm_copy_pmcs(task, ctx);
  3615. pmcs_source = thread->pmcs;
  3616. pmds_source = thread->pmds;
  3617. /*
  3618. * always the case for system-wide
  3619. */
  3620. if (task == current) {
  3621. if (is_system == 0) {
  3622. /* allow user level control */
  3623. ia64_psr(regs)->sp = 0;
  3624. DPRINT(("clearing psr.sp for [%d]\n", task->pid));
  3625. SET_LAST_CPU(ctx, smp_processor_id());
  3626. INC_ACTIVATION();
  3627. SET_ACTIVATION(ctx);
  3628. #ifndef CONFIG_SMP
  3629. /*
  3630. * push the other task out, if any
  3631. */
  3632. owner_task = GET_PMU_OWNER();
  3633. if (owner_task) pfm_lazy_save_regs(owner_task);
  3634. #endif
  3635. }
  3636. /*
  3637. * load all PMD from ctx to PMU (as opposed to thread state)
  3638. * restore all PMC from ctx to PMU
  3639. */
  3640. pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
  3641. pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
  3642. ctx->ctx_reload_pmcs[0] = 0UL;
  3643. ctx->ctx_reload_pmds[0] = 0UL;
  3644. /*
  3645. * guaranteed safe by earlier check against DBG_VALID
  3646. */
  3647. if (ctx->ctx_fl_using_dbreg) {
  3648. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  3649. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  3650. }
  3651. /*
  3652. * set new ownership
  3653. */
  3654. SET_PMU_OWNER(task, ctx);
  3655. DPRINT(("context loaded on PMU for [%d]\n", task->pid));
  3656. } else {
  3657. /*
  3658. * when not current, task MUST be stopped, so this is safe
  3659. */
  3660. regs = ia64_task_regs(task);
  3661. /* force a full reload */
  3662. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3663. SET_LAST_CPU(ctx, -1);
  3664. /* initial saved psr (stopped) */
  3665. ctx->ctx_saved_psr_up = 0UL;
  3666. ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
  3667. }
  3668. ret = 0;
  3669. error_unres:
  3670. if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
  3671. error:
  3672. /*
  3673. * we must undo the dbregs setting (for system-wide)
  3674. */
  3675. if (ret && set_dbregs) {
  3676. LOCK_PFS(flags);
  3677. pfm_sessions.pfs_sys_use_dbregs--;
  3678. UNLOCK_PFS(flags);
  3679. }
  3680. /*
  3681. * release task, there is now a link with the context
  3682. */
  3683. if (is_system == 0 && task != current) {
  3684. pfm_put_task(task);
  3685. if (ret == 0) {
  3686. ret = pfm_check_task_exist(ctx);
  3687. if (ret) {
  3688. ctx->ctx_state = PFM_CTX_UNLOADED;
  3689. ctx->ctx_task = NULL;
  3690. }
  3691. }
  3692. }
  3693. return ret;
  3694. }
  3695. /*
  3696. * in this function, we do not need to increase the use count
  3697. * for the task via get_task_struct(), because we hold the
  3698. * context lock. If the task were to disappear while having
  3699. * a context attached, it would go through pfm_exit_thread()
  3700. * which also grabs the context lock and would therefore be blocked
  3701. * until we are here.
  3702. */
  3703. static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
  3704. static int
  3705. pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3706. {
  3707. struct task_struct *task = PFM_CTX_TASK(ctx);
  3708. struct pt_regs *tregs;
  3709. int prev_state, is_system;
  3710. int ret;
  3711. DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
  3712. prev_state = ctx->ctx_state;
  3713. is_system = ctx->ctx_fl_system;
  3714. /*
  3715. * unload only when necessary
  3716. */
  3717. if (prev_state == PFM_CTX_UNLOADED) {
  3718. DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
  3719. return 0;
  3720. }
  3721. /*
  3722. * clear psr and dcr bits
  3723. */
  3724. ret = pfm_stop(ctx, NULL, 0, regs);
  3725. if (ret) return ret;
  3726. ctx->ctx_state = PFM_CTX_UNLOADED;
  3727. /*
  3728. * in system mode, we need to update the PMU directly
  3729. * and the user level state of the caller, which may not
  3730. * necessarily be the creator of the context.
  3731. */
  3732. if (is_system) {
  3733. /*
  3734. * Update cpuinfo
  3735. *
  3736. * local PMU is taken care of in pfm_stop()
  3737. */
  3738. PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
  3739. PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
  3740. /*
  3741. * save PMDs in context
  3742. * release ownership
  3743. */
  3744. pfm_flush_pmds(current, ctx);
  3745. /*
  3746. * at this point we are done with the PMU
  3747. * so we can unreserve the resource.
  3748. */
  3749. if (prev_state != PFM_CTX_ZOMBIE)
  3750. pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
  3751. /*
  3752. * disconnect context from task
  3753. */
  3754. task->thread.pfm_context = NULL;
  3755. /*
  3756. * disconnect task from context
  3757. */
  3758. ctx->ctx_task = NULL;
  3759. /*
  3760. * There is nothing more to cleanup here.
  3761. */
  3762. return 0;
  3763. }
  3764. /*
  3765. * per-task mode
  3766. */
  3767. tregs = task == current ? regs : ia64_task_regs(task);
  3768. if (task == current) {
  3769. /*
  3770. * cancel user level control
  3771. */
  3772. ia64_psr(regs)->sp = 1;
  3773. DPRINT(("setting psr.sp for [%d]\n", task->pid));
  3774. }
  3775. /*
  3776. * save PMDs to context
  3777. * release ownership
  3778. */
  3779. pfm_flush_pmds(task, ctx);
  3780. /*
  3781. * at this point we are done with the PMU
  3782. * so we can unreserve the resource.
  3783. *
  3784. * when state was ZOMBIE, we have already unreserved.
  3785. */
  3786. if (prev_state != PFM_CTX_ZOMBIE)
  3787. pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
  3788. /*
  3789. * reset activation counter and psr
  3790. */
  3791. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3792. SET_LAST_CPU(ctx, -1);
  3793. /*
  3794. * PMU state will not be restored
  3795. */
  3796. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  3797. /*
  3798. * break links between context and task
  3799. */
  3800. task->thread.pfm_context = NULL;
  3801. ctx->ctx_task = NULL;
  3802. PFM_SET_WORK_PENDING(task, 0);
  3803. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  3804. ctx->ctx_fl_can_restart = 0;
  3805. ctx->ctx_fl_going_zombie = 0;
  3806. DPRINT(("disconnected [%d] from context\n", task->pid));
  3807. return 0;
  3808. }
  3809. /*
  3810. * called only from exit_thread(): task == current
  3811. * we come here only if current has a context attached (loaded or masked)
  3812. */
  3813. void
  3814. pfm_exit_thread(struct task_struct *task)
  3815. {
  3816. pfm_context_t *ctx;
  3817. unsigned long flags;
  3818. struct pt_regs *regs = ia64_task_regs(task);
  3819. int ret, state;
  3820. int free_ok = 0;
  3821. ctx = PFM_GET_CTX(task);
  3822. PROTECT_CTX(ctx, flags);
  3823. DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
  3824. state = ctx->ctx_state;
  3825. switch(state) {
  3826. case PFM_CTX_UNLOADED:
  3827. /*
  3828. * only comes to thios function if pfm_context is not NULL, i.e., cannot
  3829. * be in unloaded state
  3830. */
  3831. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
  3832. break;
  3833. case PFM_CTX_LOADED:
  3834. case PFM_CTX_MASKED:
  3835. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3836. if (ret) {
  3837. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3838. }
  3839. DPRINT(("ctx unloaded for current state was %d\n", state));
  3840. pfm_end_notify_user(ctx);
  3841. break;
  3842. case PFM_CTX_ZOMBIE:
  3843. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3844. if (ret) {
  3845. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3846. }
  3847. free_ok = 1;
  3848. break;
  3849. default:
  3850. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
  3851. break;
  3852. }
  3853. UNPROTECT_CTX(ctx, flags);
  3854. { u64 psr = pfm_get_psr();
  3855. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  3856. BUG_ON(GET_PMU_OWNER());
  3857. BUG_ON(ia64_psr(regs)->up);
  3858. BUG_ON(ia64_psr(regs)->pp);
  3859. }
  3860. /*
  3861. * All memory free operations (especially for vmalloc'ed memory)
  3862. * MUST be done with interrupts ENABLED.
  3863. */
  3864. if (free_ok) pfm_context_free(ctx);
  3865. }
  3866. /*
  3867. * functions MUST be listed in the increasing order of their index (see permfon.h)
  3868. */
  3869. #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
  3870. #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
  3871. #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
  3872. #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
  3873. #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
  3874. static pfm_cmd_desc_t pfm_cmd_tab[]={
  3875. /* 0 */PFM_CMD_NONE,
  3876. /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3877. /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3878. /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3879. /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
  3880. /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
  3881. /* 6 */PFM_CMD_NONE,
  3882. /* 7 */PFM_CMD_NONE,
  3883. /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
  3884. /* 9 */PFM_CMD_NONE,
  3885. /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
  3886. /* 11 */PFM_CMD_NONE,
  3887. /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
  3888. /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
  3889. /* 14 */PFM_CMD_NONE,
  3890. /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3891. /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
  3892. /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
  3893. /* 18 */PFM_CMD_NONE,
  3894. /* 19 */PFM_CMD_NONE,
  3895. /* 20 */PFM_CMD_NONE,
  3896. /* 21 */PFM_CMD_NONE,
  3897. /* 22 */PFM_CMD_NONE,
  3898. /* 23 */PFM_CMD_NONE,
  3899. /* 24 */PFM_CMD_NONE,
  3900. /* 25 */PFM_CMD_NONE,
  3901. /* 26 */PFM_CMD_NONE,
  3902. /* 27 */PFM_CMD_NONE,
  3903. /* 28 */PFM_CMD_NONE,
  3904. /* 29 */PFM_CMD_NONE,
  3905. /* 30 */PFM_CMD_NONE,
  3906. /* 31 */PFM_CMD_NONE,
  3907. /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
  3908. /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
  3909. };
  3910. #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
  3911. static int
  3912. pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
  3913. {
  3914. struct task_struct *task;
  3915. int state, old_state;
  3916. recheck:
  3917. state = ctx->ctx_state;
  3918. task = ctx->ctx_task;
  3919. if (task == NULL) {
  3920. DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
  3921. return 0;
  3922. }
  3923. DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
  3924. ctx->ctx_fd,
  3925. state,
  3926. task->pid,
  3927. task->state, PFM_CMD_STOPPED(cmd)));
  3928. /*
  3929. * self-monitoring always ok.
  3930. *
  3931. * for system-wide the caller can either be the creator of the
  3932. * context (to one to which the context is attached to) OR
  3933. * a task running on the same CPU as the session.
  3934. */
  3935. if (task == current || ctx->ctx_fl_system) return 0;
  3936. /*
  3937. * we are monitoring another thread
  3938. */
  3939. switch(state) {
  3940. case PFM_CTX_UNLOADED:
  3941. /*
  3942. * if context is UNLOADED we are safe to go
  3943. */
  3944. return 0;
  3945. case PFM_CTX_ZOMBIE:
  3946. /*
  3947. * no command can operate on a zombie context
  3948. */
  3949. DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
  3950. return -EINVAL;
  3951. case PFM_CTX_MASKED:
  3952. /*
  3953. * PMU state has been saved to software even though
  3954. * the thread may still be running.
  3955. */
  3956. if (cmd != PFM_UNLOAD_CONTEXT) return 0;
  3957. }
  3958. /*
  3959. * context is LOADED or MASKED. Some commands may need to have
  3960. * the task stopped.
  3961. *
  3962. * We could lift this restriction for UP but it would mean that
  3963. * the user has no guarantee the task would not run between
  3964. * two successive calls to perfmonctl(). That's probably OK.
  3965. * If this user wants to ensure the task does not run, then
  3966. * the task must be stopped.
  3967. */
  3968. if (PFM_CMD_STOPPED(cmd)) {
  3969. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  3970. DPRINT(("[%d] task not in stopped state\n", task->pid));
  3971. return -EBUSY;
  3972. }
  3973. /*
  3974. * task is now stopped, wait for ctxsw out
  3975. *
  3976. * This is an interesting point in the code.
  3977. * We need to unprotect the context because
  3978. * the pfm_save_regs() routines needs to grab
  3979. * the same lock. There are danger in doing
  3980. * this because it leaves a window open for
  3981. * another task to get access to the context
  3982. * and possibly change its state. The one thing
  3983. * that is not possible is for the context to disappear
  3984. * because we are protected by the VFS layer, i.e.,
  3985. * get_fd()/put_fd().
  3986. */
  3987. old_state = state;
  3988. UNPROTECT_CTX(ctx, flags);
  3989. wait_task_inactive(task);
  3990. PROTECT_CTX(ctx, flags);
  3991. /*
  3992. * we must recheck to verify if state has changed
  3993. */
  3994. if (ctx->ctx_state != old_state) {
  3995. DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
  3996. goto recheck;
  3997. }
  3998. }
  3999. return 0;
  4000. }
  4001. /*
  4002. * system-call entry point (must return long)
  4003. */
  4004. asmlinkage long
  4005. sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
  4006. {
  4007. struct file *file = NULL;
  4008. pfm_context_t *ctx = NULL;
  4009. unsigned long flags = 0UL;
  4010. void *args_k = NULL;
  4011. long ret; /* will expand int return types */
  4012. size_t base_sz, sz, xtra_sz = 0;
  4013. int narg, completed_args = 0, call_made = 0, cmd_flags;
  4014. int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  4015. int (*getsize)(void *arg, size_t *sz);
  4016. #define PFM_MAX_ARGSIZE 4096
  4017. /*
  4018. * reject any call if perfmon was disabled at initialization
  4019. */
  4020. if (unlikely(pmu_conf == NULL)) return -ENOSYS;
  4021. if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
  4022. DPRINT(("invalid cmd=%d\n", cmd));
  4023. return -EINVAL;
  4024. }
  4025. func = pfm_cmd_tab[cmd].cmd_func;
  4026. narg = pfm_cmd_tab[cmd].cmd_narg;
  4027. base_sz = pfm_cmd_tab[cmd].cmd_argsize;
  4028. getsize = pfm_cmd_tab[cmd].cmd_getsize;
  4029. cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
  4030. if (unlikely(func == NULL)) {
  4031. DPRINT(("invalid cmd=%d\n", cmd));
  4032. return -EINVAL;
  4033. }
  4034. DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
  4035. PFM_CMD_NAME(cmd),
  4036. cmd,
  4037. narg,
  4038. base_sz,
  4039. count));
  4040. /*
  4041. * check if number of arguments matches what the command expects
  4042. */
  4043. if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
  4044. return -EINVAL;
  4045. restart_args:
  4046. sz = xtra_sz + base_sz*count;
  4047. /*
  4048. * limit abuse to min page size
  4049. */
  4050. if (unlikely(sz > PFM_MAX_ARGSIZE)) {
  4051. printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
  4052. return -E2BIG;
  4053. }
  4054. /*
  4055. * allocate default-sized argument buffer
  4056. */
  4057. if (likely(count && args_k == NULL)) {
  4058. args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
  4059. if (args_k == NULL) return -ENOMEM;
  4060. }
  4061. ret = -EFAULT;
  4062. /*
  4063. * copy arguments
  4064. *
  4065. * assume sz = 0 for command without parameters
  4066. */
  4067. if (sz && copy_from_user(args_k, arg, sz)) {
  4068. DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
  4069. goto error_args;
  4070. }
  4071. /*
  4072. * check if command supports extra parameters
  4073. */
  4074. if (completed_args == 0 && getsize) {
  4075. /*
  4076. * get extra parameters size (based on main argument)
  4077. */
  4078. ret = (*getsize)(args_k, &xtra_sz);
  4079. if (ret) goto error_args;
  4080. completed_args = 1;
  4081. DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
  4082. /* retry if necessary */
  4083. if (likely(xtra_sz)) goto restart_args;
  4084. }
  4085. if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
  4086. ret = -EBADF;
  4087. file = fget(fd);
  4088. if (unlikely(file == NULL)) {
  4089. DPRINT(("invalid fd %d\n", fd));
  4090. goto error_args;
  4091. }
  4092. if (unlikely(PFM_IS_FILE(file) == 0)) {
  4093. DPRINT(("fd %d not related to perfmon\n", fd));
  4094. goto error_args;
  4095. }
  4096. ctx = (pfm_context_t *)file->private_data;
  4097. if (unlikely(ctx == NULL)) {
  4098. DPRINT(("no context for fd %d\n", fd));
  4099. goto error_args;
  4100. }
  4101. prefetch(&ctx->ctx_state);
  4102. PROTECT_CTX(ctx, flags);
  4103. /*
  4104. * check task is stopped
  4105. */
  4106. ret = pfm_check_task_state(ctx, cmd, flags);
  4107. if (unlikely(ret)) goto abort_locked;
  4108. skip_fd:
  4109. ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
  4110. call_made = 1;
  4111. abort_locked:
  4112. if (likely(ctx)) {
  4113. DPRINT(("context unlocked\n"));
  4114. UNPROTECT_CTX(ctx, flags);
  4115. fput(file);
  4116. }
  4117. /* copy argument back to user, if needed */
  4118. if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
  4119. error_args:
  4120. kfree(args_k);
  4121. DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
  4122. return ret;
  4123. }
  4124. static void
  4125. pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
  4126. {
  4127. pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
  4128. pfm_ovfl_ctrl_t rst_ctrl;
  4129. int state;
  4130. int ret = 0;
  4131. state = ctx->ctx_state;
  4132. /*
  4133. * Unlock sampling buffer and reset index atomically
  4134. * XXX: not really needed when blocking
  4135. */
  4136. if (CTX_HAS_SMPL(ctx)) {
  4137. rst_ctrl.bits.mask_monitoring = 0;
  4138. rst_ctrl.bits.reset_ovfl_pmds = 0;
  4139. if (state == PFM_CTX_LOADED)
  4140. ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4141. else
  4142. ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4143. } else {
  4144. rst_ctrl.bits.mask_monitoring = 0;
  4145. rst_ctrl.bits.reset_ovfl_pmds = 1;
  4146. }
  4147. if (ret == 0) {
  4148. if (rst_ctrl.bits.reset_ovfl_pmds) {
  4149. pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
  4150. }
  4151. if (rst_ctrl.bits.mask_monitoring == 0) {
  4152. DPRINT(("resuming monitoring\n"));
  4153. if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
  4154. } else {
  4155. DPRINT(("stopping monitoring\n"));
  4156. //pfm_stop_monitoring(current, regs);
  4157. }
  4158. ctx->ctx_state = PFM_CTX_LOADED;
  4159. }
  4160. }
  4161. /*
  4162. * context MUST BE LOCKED when calling
  4163. * can only be called for current
  4164. */
  4165. static void
  4166. pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
  4167. {
  4168. int ret;
  4169. DPRINT(("entering for [%d]\n", current->pid));
  4170. ret = pfm_context_unload(ctx, NULL, 0, regs);
  4171. if (ret) {
  4172. printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
  4173. }
  4174. /*
  4175. * and wakeup controlling task, indicating we are now disconnected
  4176. */
  4177. wake_up_interruptible(&ctx->ctx_zombieq);
  4178. /*
  4179. * given that context is still locked, the controlling
  4180. * task will only get access when we return from
  4181. * pfm_handle_work().
  4182. */
  4183. }
  4184. static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
  4185. /*
  4186. * pfm_handle_work() can be called with interrupts enabled
  4187. * (TIF_NEED_RESCHED) or disabled. The down_interruptible
  4188. * call may sleep, therefore we must re-enable interrupts
  4189. * to avoid deadlocks. It is safe to do so because this function
  4190. * is called ONLY when returning to user level (PUStk=1), in which case
  4191. * there is no risk of kernel stack overflow due to deep
  4192. * interrupt nesting.
  4193. */
  4194. void
  4195. pfm_handle_work(void)
  4196. {
  4197. pfm_context_t *ctx;
  4198. struct pt_regs *regs;
  4199. unsigned long flags, dummy_flags;
  4200. unsigned long ovfl_regs;
  4201. unsigned int reason;
  4202. int ret;
  4203. ctx = PFM_GET_CTX(current);
  4204. if (ctx == NULL) {
  4205. printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
  4206. return;
  4207. }
  4208. PROTECT_CTX(ctx, flags);
  4209. PFM_SET_WORK_PENDING(current, 0);
  4210. pfm_clear_task_notify();
  4211. regs = ia64_task_regs(current);
  4212. /*
  4213. * extract reason for being here and clear
  4214. */
  4215. reason = ctx->ctx_fl_trap_reason;
  4216. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  4217. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4218. DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
  4219. /*
  4220. * must be done before we check for simple-reset mode
  4221. */
  4222. if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
  4223. //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
  4224. if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
  4225. /*
  4226. * restore interrupt mask to what it was on entry.
  4227. * Could be enabled/diasbled.
  4228. */
  4229. UNPROTECT_CTX(ctx, flags);
  4230. /*
  4231. * force interrupt enable because of down_interruptible()
  4232. */
  4233. local_irq_enable();
  4234. DPRINT(("before block sleeping\n"));
  4235. /*
  4236. * may go through without blocking on SMP systems
  4237. * if restart has been received already by the time we call down()
  4238. */
  4239. ret = down_interruptible(&ctx->ctx_restart_sem);
  4240. DPRINT(("after block sleeping ret=%d\n", ret));
  4241. /*
  4242. * lock context and mask interrupts again
  4243. * We save flags into a dummy because we may have
  4244. * altered interrupts mask compared to entry in this
  4245. * function.
  4246. */
  4247. PROTECT_CTX(ctx, dummy_flags);
  4248. /*
  4249. * we need to read the ovfl_regs only after wake-up
  4250. * because we may have had pfm_write_pmds() in between
  4251. * and that can changed PMD values and therefore
  4252. * ovfl_regs is reset for these new PMD values.
  4253. */
  4254. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4255. if (ctx->ctx_fl_going_zombie) {
  4256. do_zombie:
  4257. DPRINT(("context is zombie, bailing out\n"));
  4258. pfm_context_force_terminate(ctx, regs);
  4259. goto nothing_to_do;
  4260. }
  4261. /*
  4262. * in case of interruption of down() we don't restart anything
  4263. */
  4264. if (ret < 0) goto nothing_to_do;
  4265. skip_blocking:
  4266. pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
  4267. ctx->ctx_ovfl_regs[0] = 0UL;
  4268. nothing_to_do:
  4269. /*
  4270. * restore flags as they were upon entry
  4271. */
  4272. UNPROTECT_CTX(ctx, flags);
  4273. }
  4274. static int
  4275. pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
  4276. {
  4277. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4278. DPRINT(("ignoring overflow notification, owner is zombie\n"));
  4279. return 0;
  4280. }
  4281. DPRINT(("waking up somebody\n"));
  4282. if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
  4283. /*
  4284. * safe, we are not in intr handler, nor in ctxsw when
  4285. * we come here
  4286. */
  4287. kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
  4288. return 0;
  4289. }
  4290. static int
  4291. pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
  4292. {
  4293. pfm_msg_t *msg = NULL;
  4294. if (ctx->ctx_fl_no_msg == 0) {
  4295. msg = pfm_get_new_msg(ctx);
  4296. if (msg == NULL) {
  4297. printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
  4298. return -1;
  4299. }
  4300. msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
  4301. msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
  4302. msg->pfm_ovfl_msg.msg_active_set = 0;
  4303. msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
  4304. msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
  4305. msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
  4306. msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
  4307. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4308. }
  4309. DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
  4310. msg,
  4311. ctx->ctx_fl_no_msg,
  4312. ctx->ctx_fd,
  4313. ovfl_pmds));
  4314. return pfm_notify_user(ctx, msg);
  4315. }
  4316. static int
  4317. pfm_end_notify_user(pfm_context_t *ctx)
  4318. {
  4319. pfm_msg_t *msg;
  4320. msg = pfm_get_new_msg(ctx);
  4321. if (msg == NULL) {
  4322. printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
  4323. return -1;
  4324. }
  4325. /* no leak */
  4326. memset(msg, 0, sizeof(*msg));
  4327. msg->pfm_end_msg.msg_type = PFM_MSG_END;
  4328. msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
  4329. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4330. DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
  4331. msg,
  4332. ctx->ctx_fl_no_msg,
  4333. ctx->ctx_fd));
  4334. return pfm_notify_user(ctx, msg);
  4335. }
  4336. /*
  4337. * main overflow processing routine.
  4338. * it can be called from the interrupt path or explicitely during the context switch code
  4339. */
  4340. static void
  4341. pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
  4342. {
  4343. pfm_ovfl_arg_t *ovfl_arg;
  4344. unsigned long mask;
  4345. unsigned long old_val, ovfl_val, new_val;
  4346. unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
  4347. unsigned long tstamp;
  4348. pfm_ovfl_ctrl_t ovfl_ctrl;
  4349. unsigned int i, has_smpl;
  4350. int must_notify = 0;
  4351. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
  4352. /*
  4353. * sanity test. Should never happen
  4354. */
  4355. if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
  4356. tstamp = ia64_get_itc();
  4357. mask = pmc0 >> PMU_FIRST_COUNTER;
  4358. ovfl_val = pmu_conf->ovfl_val;
  4359. has_smpl = CTX_HAS_SMPL(ctx);
  4360. DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
  4361. "used_pmds=0x%lx\n",
  4362. pmc0,
  4363. task ? task->pid: -1,
  4364. (regs ? regs->cr_iip : 0),
  4365. CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
  4366. ctx->ctx_used_pmds[0]));
  4367. /*
  4368. * first we update the virtual counters
  4369. * assume there was a prior ia64_srlz_d() issued
  4370. */
  4371. for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
  4372. /* skip pmd which did not overflow */
  4373. if ((mask & 0x1) == 0) continue;
  4374. /*
  4375. * Note that the pmd is not necessarily 0 at this point as qualified events
  4376. * may have happened before the PMU was frozen. The residual count is not
  4377. * taken into consideration here but will be with any read of the pmd via
  4378. * pfm_read_pmds().
  4379. */
  4380. old_val = new_val = ctx->ctx_pmds[i].val;
  4381. new_val += 1 + ovfl_val;
  4382. ctx->ctx_pmds[i].val = new_val;
  4383. /*
  4384. * check for overflow condition
  4385. */
  4386. if (likely(old_val > new_val)) {
  4387. ovfl_pmds |= 1UL << i;
  4388. if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
  4389. }
  4390. DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
  4391. i,
  4392. new_val,
  4393. old_val,
  4394. ia64_get_pmd(i) & ovfl_val,
  4395. ovfl_pmds,
  4396. ovfl_notify));
  4397. }
  4398. /*
  4399. * there was no 64-bit overflow, nothing else to do
  4400. */
  4401. if (ovfl_pmds == 0UL) return;
  4402. /*
  4403. * reset all control bits
  4404. */
  4405. ovfl_ctrl.val = 0;
  4406. reset_pmds = 0UL;
  4407. /*
  4408. * if a sampling format module exists, then we "cache" the overflow by
  4409. * calling the module's handler() routine.
  4410. */
  4411. if (has_smpl) {
  4412. unsigned long start_cycles, end_cycles;
  4413. unsigned long pmd_mask;
  4414. int j, k, ret = 0;
  4415. int this_cpu = smp_processor_id();
  4416. pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
  4417. ovfl_arg = &ctx->ctx_ovfl_arg;
  4418. prefetch(ctx->ctx_smpl_hdr);
  4419. for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
  4420. mask = 1UL << i;
  4421. if ((pmd_mask & 0x1) == 0) continue;
  4422. ovfl_arg->ovfl_pmd = (unsigned char )i;
  4423. ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
  4424. ovfl_arg->active_set = 0;
  4425. ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
  4426. ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
  4427. ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
  4428. ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
  4429. ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
  4430. /*
  4431. * copy values of pmds of interest. Sampling format may copy them
  4432. * into sampling buffer.
  4433. */
  4434. if (smpl_pmds) {
  4435. for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
  4436. if ((smpl_pmds & 0x1) == 0) continue;
  4437. ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
  4438. DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
  4439. }
  4440. }
  4441. pfm_stats[this_cpu].pfm_smpl_handler_calls++;
  4442. start_cycles = ia64_get_itc();
  4443. /*
  4444. * call custom buffer format record (handler) routine
  4445. */
  4446. ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
  4447. end_cycles = ia64_get_itc();
  4448. /*
  4449. * For those controls, we take the union because they have
  4450. * an all or nothing behavior.
  4451. */
  4452. ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
  4453. ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
  4454. ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
  4455. /*
  4456. * build the bitmask of pmds to reset now
  4457. */
  4458. if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
  4459. pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
  4460. }
  4461. /*
  4462. * when the module cannot handle the rest of the overflows, we abort right here
  4463. */
  4464. if (ret && pmd_mask) {
  4465. DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
  4466. pmd_mask<<PMU_FIRST_COUNTER));
  4467. }
  4468. /*
  4469. * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
  4470. */
  4471. ovfl_pmds &= ~reset_pmds;
  4472. } else {
  4473. /*
  4474. * when no sampling module is used, then the default
  4475. * is to notify on overflow if requested by user
  4476. */
  4477. ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
  4478. ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
  4479. ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
  4480. ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
  4481. /*
  4482. * if needed, we reset all overflowed pmds
  4483. */
  4484. if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
  4485. }
  4486. DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
  4487. /*
  4488. * reset the requested PMD registers using the short reset values
  4489. */
  4490. if (reset_pmds) {
  4491. unsigned long bm = reset_pmds;
  4492. pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
  4493. }
  4494. if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
  4495. /*
  4496. * keep track of what to reset when unblocking
  4497. */
  4498. ctx->ctx_ovfl_regs[0] = ovfl_pmds;
  4499. /*
  4500. * check for blocking context
  4501. */
  4502. if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
  4503. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
  4504. /*
  4505. * set the perfmon specific checking pending work for the task
  4506. */
  4507. PFM_SET_WORK_PENDING(task, 1);
  4508. /*
  4509. * when coming from ctxsw, current still points to the
  4510. * previous task, therefore we must work with task and not current.
  4511. */
  4512. pfm_set_task_notify(task);
  4513. }
  4514. /*
  4515. * defer until state is changed (shorten spin window). the context is locked
  4516. * anyway, so the signal receiver would come spin for nothing.
  4517. */
  4518. must_notify = 1;
  4519. }
  4520. DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
  4521. GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
  4522. PFM_GET_WORK_PENDING(task),
  4523. ctx->ctx_fl_trap_reason,
  4524. ovfl_pmds,
  4525. ovfl_notify,
  4526. ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
  4527. /*
  4528. * in case monitoring must be stopped, we toggle the psr bits
  4529. */
  4530. if (ovfl_ctrl.bits.mask_monitoring) {
  4531. pfm_mask_monitoring(task);
  4532. ctx->ctx_state = PFM_CTX_MASKED;
  4533. ctx->ctx_fl_can_restart = 1;
  4534. }
  4535. /*
  4536. * send notification now
  4537. */
  4538. if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
  4539. return;
  4540. sanity_check:
  4541. printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
  4542. smp_processor_id(),
  4543. task ? task->pid : -1,
  4544. pmc0);
  4545. return;
  4546. stop_monitoring:
  4547. /*
  4548. * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
  4549. * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
  4550. * come here as zombie only if the task is the current task. In which case, we
  4551. * can access the PMU hardware directly.
  4552. *
  4553. * Note that zombies do have PM_VALID set. So here we do the minimal.
  4554. *
  4555. * In case the context was zombified it could not be reclaimed at the time
  4556. * the monitoring program exited. At this point, the PMU reservation has been
  4557. * returned, the sampiing buffer has been freed. We must convert this call
  4558. * into a spurious interrupt. However, we must also avoid infinite overflows
  4559. * by stopping monitoring for this task. We can only come here for a per-task
  4560. * context. All we need to do is to stop monitoring using the psr bits which
  4561. * are always task private. By re-enabling secure montioring, we ensure that
  4562. * the monitored task will not be able to re-activate monitoring.
  4563. * The task will eventually be context switched out, at which point the context
  4564. * will be reclaimed (that includes releasing ownership of the PMU).
  4565. *
  4566. * So there might be a window of time where the number of per-task session is zero
  4567. * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
  4568. * context. This is safe because if a per-task session comes in, it will push this one
  4569. * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
  4570. * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
  4571. * also push our zombie context out.
  4572. *
  4573. * Overall pretty hairy stuff....
  4574. */
  4575. DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
  4576. pfm_clear_psr_up();
  4577. ia64_psr(regs)->up = 0;
  4578. ia64_psr(regs)->sp = 1;
  4579. return;
  4580. }
  4581. static int
  4582. pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
  4583. {
  4584. struct task_struct *task;
  4585. pfm_context_t *ctx;
  4586. unsigned long flags;
  4587. u64 pmc0;
  4588. int this_cpu = smp_processor_id();
  4589. int retval = 0;
  4590. pfm_stats[this_cpu].pfm_ovfl_intr_count++;
  4591. /*
  4592. * srlz.d done before arriving here
  4593. */
  4594. pmc0 = ia64_get_pmc(0);
  4595. task = GET_PMU_OWNER();
  4596. ctx = GET_PMU_CTX();
  4597. /*
  4598. * if we have some pending bits set
  4599. * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
  4600. */
  4601. if (PMC0_HAS_OVFL(pmc0) && task) {
  4602. /*
  4603. * we assume that pmc0.fr is always set here
  4604. */
  4605. /* sanity check */
  4606. if (!ctx) goto report_spurious1;
  4607. if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
  4608. goto report_spurious2;
  4609. PROTECT_CTX_NOPRINT(ctx, flags);
  4610. pfm_overflow_handler(task, ctx, pmc0, regs);
  4611. UNPROTECT_CTX_NOPRINT(ctx, flags);
  4612. } else {
  4613. pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
  4614. retval = -1;
  4615. }
  4616. /*
  4617. * keep it unfrozen at all times
  4618. */
  4619. pfm_unfreeze_pmu();
  4620. return retval;
  4621. report_spurious1:
  4622. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
  4623. this_cpu, task->pid);
  4624. pfm_unfreeze_pmu();
  4625. return -1;
  4626. report_spurious2:
  4627. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
  4628. this_cpu,
  4629. task->pid);
  4630. pfm_unfreeze_pmu();
  4631. return -1;
  4632. }
  4633. static irqreturn_t
  4634. pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
  4635. {
  4636. unsigned long start_cycles, total_cycles;
  4637. unsigned long min, max;
  4638. int this_cpu;
  4639. int ret;
  4640. this_cpu = get_cpu();
  4641. if (likely(!pfm_alt_intr_handler)) {
  4642. min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
  4643. max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
  4644. start_cycles = ia64_get_itc();
  4645. ret = pfm_do_interrupt_handler(irq, arg, regs);
  4646. total_cycles = ia64_get_itc();
  4647. /*
  4648. * don't measure spurious interrupts
  4649. */
  4650. if (likely(ret == 0)) {
  4651. total_cycles -= start_cycles;
  4652. if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
  4653. if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
  4654. pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
  4655. }
  4656. }
  4657. else {
  4658. (*pfm_alt_intr_handler->handler)(irq, arg, regs);
  4659. }
  4660. put_cpu_no_resched();
  4661. return IRQ_HANDLED;
  4662. }
  4663. /*
  4664. * /proc/perfmon interface, for debug only
  4665. */
  4666. #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
  4667. static void *
  4668. pfm_proc_start(struct seq_file *m, loff_t *pos)
  4669. {
  4670. if (*pos == 0) {
  4671. return PFM_PROC_SHOW_HEADER;
  4672. }
  4673. while (*pos <= NR_CPUS) {
  4674. if (cpu_online(*pos - 1)) {
  4675. return (void *)*pos;
  4676. }
  4677. ++*pos;
  4678. }
  4679. return NULL;
  4680. }
  4681. static void *
  4682. pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
  4683. {
  4684. ++*pos;
  4685. return pfm_proc_start(m, pos);
  4686. }
  4687. static void
  4688. pfm_proc_stop(struct seq_file *m, void *v)
  4689. {
  4690. }
  4691. static void
  4692. pfm_proc_show_header(struct seq_file *m)
  4693. {
  4694. struct list_head * pos;
  4695. pfm_buffer_fmt_t * entry;
  4696. unsigned long flags;
  4697. seq_printf(m,
  4698. "perfmon version : %u.%u\n"
  4699. "model : %s\n"
  4700. "fastctxsw : %s\n"
  4701. "expert mode : %s\n"
  4702. "ovfl_mask : 0x%lx\n"
  4703. "PMU flags : 0x%x\n",
  4704. PFM_VERSION_MAJ, PFM_VERSION_MIN,
  4705. pmu_conf->pmu_name,
  4706. pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
  4707. pfm_sysctl.expert_mode > 0 ? "Yes": "No",
  4708. pmu_conf->ovfl_val,
  4709. pmu_conf->flags);
  4710. LOCK_PFS(flags);
  4711. seq_printf(m,
  4712. "proc_sessions : %u\n"
  4713. "sys_sessions : %u\n"
  4714. "sys_use_dbregs : %u\n"
  4715. "ptrace_use_dbregs : %u\n",
  4716. pfm_sessions.pfs_task_sessions,
  4717. pfm_sessions.pfs_sys_sessions,
  4718. pfm_sessions.pfs_sys_use_dbregs,
  4719. pfm_sessions.pfs_ptrace_use_dbregs);
  4720. UNLOCK_PFS(flags);
  4721. spin_lock(&pfm_buffer_fmt_lock);
  4722. list_for_each(pos, &pfm_buffer_fmt_list) {
  4723. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  4724. seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
  4725. entry->fmt_uuid[0],
  4726. entry->fmt_uuid[1],
  4727. entry->fmt_uuid[2],
  4728. entry->fmt_uuid[3],
  4729. entry->fmt_uuid[4],
  4730. entry->fmt_uuid[5],
  4731. entry->fmt_uuid[6],
  4732. entry->fmt_uuid[7],
  4733. entry->fmt_uuid[8],
  4734. entry->fmt_uuid[9],
  4735. entry->fmt_uuid[10],
  4736. entry->fmt_uuid[11],
  4737. entry->fmt_uuid[12],
  4738. entry->fmt_uuid[13],
  4739. entry->fmt_uuid[14],
  4740. entry->fmt_uuid[15],
  4741. entry->fmt_name);
  4742. }
  4743. spin_unlock(&pfm_buffer_fmt_lock);
  4744. }
  4745. static int
  4746. pfm_proc_show(struct seq_file *m, void *v)
  4747. {
  4748. unsigned long psr;
  4749. unsigned int i;
  4750. int cpu;
  4751. if (v == PFM_PROC_SHOW_HEADER) {
  4752. pfm_proc_show_header(m);
  4753. return 0;
  4754. }
  4755. /* show info for CPU (v - 1) */
  4756. cpu = (long)v - 1;
  4757. seq_printf(m,
  4758. "CPU%-2d overflow intrs : %lu\n"
  4759. "CPU%-2d overflow cycles : %lu\n"
  4760. "CPU%-2d overflow min : %lu\n"
  4761. "CPU%-2d overflow max : %lu\n"
  4762. "CPU%-2d smpl handler calls : %lu\n"
  4763. "CPU%-2d smpl handler cycles : %lu\n"
  4764. "CPU%-2d spurious intrs : %lu\n"
  4765. "CPU%-2d replay intrs : %lu\n"
  4766. "CPU%-2d syst_wide : %d\n"
  4767. "CPU%-2d dcr_pp : %d\n"
  4768. "CPU%-2d exclude idle : %d\n"
  4769. "CPU%-2d owner : %d\n"
  4770. "CPU%-2d context : %p\n"
  4771. "CPU%-2d activations : %lu\n",
  4772. cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
  4773. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
  4774. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
  4775. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
  4776. cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
  4777. cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
  4778. cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
  4779. cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
  4780. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
  4781. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
  4782. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
  4783. cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
  4784. cpu, pfm_get_cpu_data(pmu_ctx, cpu),
  4785. cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
  4786. if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
  4787. psr = pfm_get_psr();
  4788. ia64_srlz_d();
  4789. seq_printf(m,
  4790. "CPU%-2d psr : 0x%lx\n"
  4791. "CPU%-2d pmc0 : 0x%lx\n",
  4792. cpu, psr,
  4793. cpu, ia64_get_pmc(0));
  4794. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  4795. if (PMC_IS_COUNTING(i) == 0) continue;
  4796. seq_printf(m,
  4797. "CPU%-2d pmc%u : 0x%lx\n"
  4798. "CPU%-2d pmd%u : 0x%lx\n",
  4799. cpu, i, ia64_get_pmc(i),
  4800. cpu, i, ia64_get_pmd(i));
  4801. }
  4802. }
  4803. return 0;
  4804. }
  4805. struct seq_operations pfm_seq_ops = {
  4806. .start = pfm_proc_start,
  4807. .next = pfm_proc_next,
  4808. .stop = pfm_proc_stop,
  4809. .show = pfm_proc_show
  4810. };
  4811. static int
  4812. pfm_proc_open(struct inode *inode, struct file *file)
  4813. {
  4814. return seq_open(file, &pfm_seq_ops);
  4815. }
  4816. /*
  4817. * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
  4818. * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
  4819. * is active or inactive based on mode. We must rely on the value in
  4820. * local_cpu_data->pfm_syst_info
  4821. */
  4822. void
  4823. pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
  4824. {
  4825. struct pt_regs *regs;
  4826. unsigned long dcr;
  4827. unsigned long dcr_pp;
  4828. dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
  4829. /*
  4830. * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
  4831. * on every CPU, so we can rely on the pid to identify the idle task.
  4832. */
  4833. if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
  4834. regs = ia64_task_regs(task);
  4835. ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
  4836. return;
  4837. }
  4838. /*
  4839. * if monitoring has started
  4840. */
  4841. if (dcr_pp) {
  4842. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  4843. /*
  4844. * context switching in?
  4845. */
  4846. if (is_ctxswin) {
  4847. /* mask monitoring for the idle task */
  4848. ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
  4849. pfm_clear_psr_pp();
  4850. ia64_srlz_i();
  4851. return;
  4852. }
  4853. /*
  4854. * context switching out
  4855. * restore monitoring for next task
  4856. *
  4857. * Due to inlining this odd if-then-else construction generates
  4858. * better code.
  4859. */
  4860. ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
  4861. pfm_set_psr_pp();
  4862. ia64_srlz_i();
  4863. }
  4864. }
  4865. #ifdef CONFIG_SMP
  4866. static void
  4867. pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
  4868. {
  4869. struct task_struct *task = ctx->ctx_task;
  4870. ia64_psr(regs)->up = 0;
  4871. ia64_psr(regs)->sp = 1;
  4872. if (GET_PMU_OWNER() == task) {
  4873. DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
  4874. SET_PMU_OWNER(NULL, NULL);
  4875. }
  4876. /*
  4877. * disconnect the task from the context and vice-versa
  4878. */
  4879. PFM_SET_WORK_PENDING(task, 0);
  4880. task->thread.pfm_context = NULL;
  4881. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  4882. DPRINT(("force cleanup for [%d]\n", task->pid));
  4883. }
  4884. /*
  4885. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  4886. */
  4887. void
  4888. pfm_save_regs(struct task_struct *task)
  4889. {
  4890. pfm_context_t *ctx;
  4891. struct thread_struct *t;
  4892. unsigned long flags;
  4893. u64 psr;
  4894. ctx = PFM_GET_CTX(task);
  4895. if (ctx == NULL) return;
  4896. t = &task->thread;
  4897. /*
  4898. * we always come here with interrupts ALREADY disabled by
  4899. * the scheduler. So we simply need to protect against concurrent
  4900. * access, not CPU concurrency.
  4901. */
  4902. flags = pfm_protect_ctx_ctxsw(ctx);
  4903. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4904. struct pt_regs *regs = ia64_task_regs(task);
  4905. pfm_clear_psr_up();
  4906. pfm_force_cleanup(ctx, regs);
  4907. BUG_ON(ctx->ctx_smpl_hdr);
  4908. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4909. pfm_context_free(ctx);
  4910. return;
  4911. }
  4912. /*
  4913. * save current PSR: needed because we modify it
  4914. */
  4915. ia64_srlz_d();
  4916. psr = pfm_get_psr();
  4917. BUG_ON(psr & (IA64_PSR_I));
  4918. /*
  4919. * stop monitoring:
  4920. * This is the last instruction which may generate an overflow
  4921. *
  4922. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4923. * It will be restored from ipsr when going back to user level
  4924. */
  4925. pfm_clear_psr_up();
  4926. /*
  4927. * keep a copy of psr.up (for reload)
  4928. */
  4929. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4930. /*
  4931. * release ownership of this PMU.
  4932. * PM interrupts are masked, so nothing
  4933. * can happen.
  4934. */
  4935. SET_PMU_OWNER(NULL, NULL);
  4936. /*
  4937. * we systematically save the PMD as we have no
  4938. * guarantee we will be schedule at that same
  4939. * CPU again.
  4940. */
  4941. pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
  4942. /*
  4943. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  4944. * we will need it on the restore path to check
  4945. * for pending overflow.
  4946. */
  4947. t->pmcs[0] = ia64_get_pmc(0);
  4948. /*
  4949. * unfreeze PMU if had pending overflows
  4950. */
  4951. if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  4952. /*
  4953. * finally, allow context access.
  4954. * interrupts will still be masked after this call.
  4955. */
  4956. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4957. }
  4958. #else /* !CONFIG_SMP */
  4959. void
  4960. pfm_save_regs(struct task_struct *task)
  4961. {
  4962. pfm_context_t *ctx;
  4963. u64 psr;
  4964. ctx = PFM_GET_CTX(task);
  4965. if (ctx == NULL) return;
  4966. /*
  4967. * save current PSR: needed because we modify it
  4968. */
  4969. psr = pfm_get_psr();
  4970. BUG_ON(psr & (IA64_PSR_I));
  4971. /*
  4972. * stop monitoring:
  4973. * This is the last instruction which may generate an overflow
  4974. *
  4975. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4976. * It will be restored from ipsr when going back to user level
  4977. */
  4978. pfm_clear_psr_up();
  4979. /*
  4980. * keep a copy of psr.up (for reload)
  4981. */
  4982. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4983. }
  4984. static void
  4985. pfm_lazy_save_regs (struct task_struct *task)
  4986. {
  4987. pfm_context_t *ctx;
  4988. struct thread_struct *t;
  4989. unsigned long flags;
  4990. { u64 psr = pfm_get_psr();
  4991. BUG_ON(psr & IA64_PSR_UP);
  4992. }
  4993. ctx = PFM_GET_CTX(task);
  4994. t = &task->thread;
  4995. /*
  4996. * we need to mask PMU overflow here to
  4997. * make sure that we maintain pmc0 until
  4998. * we save it. overflow interrupts are
  4999. * treated as spurious if there is no
  5000. * owner.
  5001. *
  5002. * XXX: I don't think this is necessary
  5003. */
  5004. PROTECT_CTX(ctx,flags);
  5005. /*
  5006. * release ownership of this PMU.
  5007. * must be done before we save the registers.
  5008. *
  5009. * after this call any PMU interrupt is treated
  5010. * as spurious.
  5011. */
  5012. SET_PMU_OWNER(NULL, NULL);
  5013. /*
  5014. * save all the pmds we use
  5015. */
  5016. pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
  5017. /*
  5018. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  5019. * it is needed to check for pended overflow
  5020. * on the restore path
  5021. */
  5022. t->pmcs[0] = ia64_get_pmc(0);
  5023. /*
  5024. * unfreeze PMU if had pending overflows
  5025. */
  5026. if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  5027. /*
  5028. * now get can unmask PMU interrupts, they will
  5029. * be treated as purely spurious and we will not
  5030. * lose any information
  5031. */
  5032. UNPROTECT_CTX(ctx,flags);
  5033. }
  5034. #endif /* CONFIG_SMP */
  5035. #ifdef CONFIG_SMP
  5036. /*
  5037. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  5038. */
  5039. void
  5040. pfm_load_regs (struct task_struct *task)
  5041. {
  5042. pfm_context_t *ctx;
  5043. struct thread_struct *t;
  5044. unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
  5045. unsigned long flags;
  5046. u64 psr, psr_up;
  5047. int need_irq_resend;
  5048. ctx = PFM_GET_CTX(task);
  5049. if (unlikely(ctx == NULL)) return;
  5050. BUG_ON(GET_PMU_OWNER());
  5051. t = &task->thread;
  5052. /*
  5053. * possible on unload
  5054. */
  5055. if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
  5056. /*
  5057. * we always come here with interrupts ALREADY disabled by
  5058. * the scheduler. So we simply need to protect against concurrent
  5059. * access, not CPU concurrency.
  5060. */
  5061. flags = pfm_protect_ctx_ctxsw(ctx);
  5062. psr = pfm_get_psr();
  5063. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5064. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5065. BUG_ON(psr & IA64_PSR_I);
  5066. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
  5067. struct pt_regs *regs = ia64_task_regs(task);
  5068. BUG_ON(ctx->ctx_smpl_hdr);
  5069. pfm_force_cleanup(ctx, regs);
  5070. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5071. /*
  5072. * this one (kmalloc'ed) is fine with interrupts disabled
  5073. */
  5074. pfm_context_free(ctx);
  5075. return;
  5076. }
  5077. /*
  5078. * we restore ALL the debug registers to avoid picking up
  5079. * stale state.
  5080. */
  5081. if (ctx->ctx_fl_using_dbreg) {
  5082. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5083. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5084. }
  5085. /*
  5086. * retrieve saved psr.up
  5087. */
  5088. psr_up = ctx->ctx_saved_psr_up;
  5089. /*
  5090. * if we were the last user of the PMU on that CPU,
  5091. * then nothing to do except restore psr
  5092. */
  5093. if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
  5094. /*
  5095. * retrieve partial reload masks (due to user modifications)
  5096. */
  5097. pmc_mask = ctx->ctx_reload_pmcs[0];
  5098. pmd_mask = ctx->ctx_reload_pmds[0];
  5099. } else {
  5100. /*
  5101. * To avoid leaking information to the user level when psr.sp=0,
  5102. * we must reload ALL implemented pmds (even the ones we don't use).
  5103. * In the kernel we only allow PFM_READ_PMDS on registers which
  5104. * we initialized or requested (sampling) so there is no risk there.
  5105. */
  5106. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5107. /*
  5108. * ALL accessible PMCs are systematically reloaded, unused registers
  5109. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5110. * up stale configuration.
  5111. *
  5112. * PMC0 is never in the mask. It is always restored separately.
  5113. */
  5114. pmc_mask = ctx->ctx_all_pmcs[0];
  5115. }
  5116. /*
  5117. * when context is MASKED, we will restore PMC with plm=0
  5118. * and PMD with stale information, but that's ok, nothing
  5119. * will be captured.
  5120. *
  5121. * XXX: optimize here
  5122. */
  5123. if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
  5124. if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
  5125. /*
  5126. * check for pending overflow at the time the state
  5127. * was saved.
  5128. */
  5129. if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
  5130. /*
  5131. * reload pmc0 with the overflow information
  5132. * On McKinley PMU, this will trigger a PMU interrupt
  5133. */
  5134. ia64_set_pmc(0, t->pmcs[0]);
  5135. ia64_srlz_d();
  5136. t->pmcs[0] = 0UL;
  5137. /*
  5138. * will replay the PMU interrupt
  5139. */
  5140. if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
  5141. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5142. }
  5143. /*
  5144. * we just did a reload, so we reset the partial reload fields
  5145. */
  5146. ctx->ctx_reload_pmcs[0] = 0UL;
  5147. ctx->ctx_reload_pmds[0] = 0UL;
  5148. SET_LAST_CPU(ctx, smp_processor_id());
  5149. /*
  5150. * dump activation value for this PMU
  5151. */
  5152. INC_ACTIVATION();
  5153. /*
  5154. * record current activation for this context
  5155. */
  5156. SET_ACTIVATION(ctx);
  5157. /*
  5158. * establish new ownership.
  5159. */
  5160. SET_PMU_OWNER(task, ctx);
  5161. /*
  5162. * restore the psr.up bit. measurement
  5163. * is active again.
  5164. * no PMU interrupt can happen at this point
  5165. * because we still have interrupts disabled.
  5166. */
  5167. if (likely(psr_up)) pfm_set_psr_up();
  5168. /*
  5169. * allow concurrent access to context
  5170. */
  5171. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5172. }
  5173. #else /* !CONFIG_SMP */
  5174. /*
  5175. * reload PMU state for UP kernels
  5176. * in 2.5 we come here with interrupts disabled
  5177. */
  5178. void
  5179. pfm_load_regs (struct task_struct *task)
  5180. {
  5181. struct thread_struct *t;
  5182. pfm_context_t *ctx;
  5183. struct task_struct *owner;
  5184. unsigned long pmd_mask, pmc_mask;
  5185. u64 psr, psr_up;
  5186. int need_irq_resend;
  5187. owner = GET_PMU_OWNER();
  5188. ctx = PFM_GET_CTX(task);
  5189. t = &task->thread;
  5190. psr = pfm_get_psr();
  5191. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5192. BUG_ON(psr & IA64_PSR_I);
  5193. /*
  5194. * we restore ALL the debug registers to avoid picking up
  5195. * stale state.
  5196. *
  5197. * This must be done even when the task is still the owner
  5198. * as the registers may have been modified via ptrace()
  5199. * (not perfmon) by the previous task.
  5200. */
  5201. if (ctx->ctx_fl_using_dbreg) {
  5202. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5203. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5204. }
  5205. /*
  5206. * retrieved saved psr.up
  5207. */
  5208. psr_up = ctx->ctx_saved_psr_up;
  5209. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5210. /*
  5211. * short path, our state is still there, just
  5212. * need to restore psr and we go
  5213. *
  5214. * we do not touch either PMC nor PMD. the psr is not touched
  5215. * by the overflow_handler. So we are safe w.r.t. to interrupt
  5216. * concurrency even without interrupt masking.
  5217. */
  5218. if (likely(owner == task)) {
  5219. if (likely(psr_up)) pfm_set_psr_up();
  5220. return;
  5221. }
  5222. /*
  5223. * someone else is still using the PMU, first push it out and
  5224. * then we'll be able to install our stuff !
  5225. *
  5226. * Upon return, there will be no owner for the current PMU
  5227. */
  5228. if (owner) pfm_lazy_save_regs(owner);
  5229. /*
  5230. * To avoid leaking information to the user level when psr.sp=0,
  5231. * we must reload ALL implemented pmds (even the ones we don't use).
  5232. * In the kernel we only allow PFM_READ_PMDS on registers which
  5233. * we initialized or requested (sampling) so there is no risk there.
  5234. */
  5235. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5236. /*
  5237. * ALL accessible PMCs are systematically reloaded, unused registers
  5238. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5239. * up stale configuration.
  5240. *
  5241. * PMC0 is never in the mask. It is always restored separately
  5242. */
  5243. pmc_mask = ctx->ctx_all_pmcs[0];
  5244. pfm_restore_pmds(t->pmds, pmd_mask);
  5245. pfm_restore_pmcs(t->pmcs, pmc_mask);
  5246. /*
  5247. * check for pending overflow at the time the state
  5248. * was saved.
  5249. */
  5250. if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
  5251. /*
  5252. * reload pmc0 with the overflow information
  5253. * On McKinley PMU, this will trigger a PMU interrupt
  5254. */
  5255. ia64_set_pmc(0, t->pmcs[0]);
  5256. ia64_srlz_d();
  5257. t->pmcs[0] = 0UL;
  5258. /*
  5259. * will replay the PMU interrupt
  5260. */
  5261. if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
  5262. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5263. }
  5264. /*
  5265. * establish new ownership.
  5266. */
  5267. SET_PMU_OWNER(task, ctx);
  5268. /*
  5269. * restore the psr.up bit. measurement
  5270. * is active again.
  5271. * no PMU interrupt can happen at this point
  5272. * because we still have interrupts disabled.
  5273. */
  5274. if (likely(psr_up)) pfm_set_psr_up();
  5275. }
  5276. #endif /* CONFIG_SMP */
  5277. /*
  5278. * this function assumes monitoring is stopped
  5279. */
  5280. static void
  5281. pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
  5282. {
  5283. u64 pmc0;
  5284. unsigned long mask2, val, pmd_val, ovfl_val;
  5285. int i, can_access_pmu = 0;
  5286. int is_self;
  5287. /*
  5288. * is the caller the task being monitored (or which initiated the
  5289. * session for system wide measurements)
  5290. */
  5291. is_self = ctx->ctx_task == task ? 1 : 0;
  5292. /*
  5293. * can access PMU is task is the owner of the PMU state on the current CPU
  5294. * or if we are running on the CPU bound to the context in system-wide mode
  5295. * (that is not necessarily the task the context is attached to in this mode).
  5296. * In system-wide we always have can_access_pmu true because a task running on an
  5297. * invalid processor is flagged earlier in the call stack (see pfm_stop).
  5298. */
  5299. can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
  5300. if (can_access_pmu) {
  5301. /*
  5302. * Mark the PMU as not owned
  5303. * This will cause the interrupt handler to do nothing in case an overflow
  5304. * interrupt was in-flight
  5305. * This also guarantees that pmc0 will contain the final state
  5306. * It virtually gives us full control on overflow processing from that point
  5307. * on.
  5308. */
  5309. SET_PMU_OWNER(NULL, NULL);
  5310. DPRINT(("releasing ownership\n"));
  5311. /*
  5312. * read current overflow status:
  5313. *
  5314. * we are guaranteed to read the final stable state
  5315. */
  5316. ia64_srlz_d();
  5317. pmc0 = ia64_get_pmc(0); /* slow */
  5318. /*
  5319. * reset freeze bit, overflow status information destroyed
  5320. */
  5321. pfm_unfreeze_pmu();
  5322. } else {
  5323. pmc0 = task->thread.pmcs[0];
  5324. /*
  5325. * clear whatever overflow status bits there were
  5326. */
  5327. task->thread.pmcs[0] = 0;
  5328. }
  5329. ovfl_val = pmu_conf->ovfl_val;
  5330. /*
  5331. * we save all the used pmds
  5332. * we take care of overflows for counting PMDs
  5333. *
  5334. * XXX: sampling situation is not taken into account here
  5335. */
  5336. mask2 = ctx->ctx_used_pmds[0];
  5337. DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
  5338. for (i = 0; mask2; i++, mask2>>=1) {
  5339. /* skip non used pmds */
  5340. if ((mask2 & 0x1) == 0) continue;
  5341. /*
  5342. * can access PMU always true in system wide mode
  5343. */
  5344. val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
  5345. if (PMD_IS_COUNTING(i)) {
  5346. DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
  5347. task->pid,
  5348. i,
  5349. ctx->ctx_pmds[i].val,
  5350. val & ovfl_val));
  5351. /*
  5352. * we rebuild the full 64 bit value of the counter
  5353. */
  5354. val = ctx->ctx_pmds[i].val + (val & ovfl_val);
  5355. /*
  5356. * now everything is in ctx_pmds[] and we need
  5357. * to clear the saved context from save_regs() such that
  5358. * pfm_read_pmds() gets the correct value
  5359. */
  5360. pmd_val = 0UL;
  5361. /*
  5362. * take care of overflow inline
  5363. */
  5364. if (pmc0 & (1UL << i)) {
  5365. val += 1 + ovfl_val;
  5366. DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
  5367. }
  5368. }
  5369. DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
  5370. if (is_self) task->thread.pmds[i] = pmd_val;
  5371. ctx->ctx_pmds[i].val = val;
  5372. }
  5373. }
  5374. static struct irqaction perfmon_irqaction = {
  5375. .handler = pfm_interrupt_handler,
  5376. .flags = SA_INTERRUPT,
  5377. .name = "perfmon"
  5378. };
  5379. static void
  5380. pfm_alt_save_pmu_state(void *data)
  5381. {
  5382. struct pt_regs *regs;
  5383. regs = ia64_task_regs(current);
  5384. DPRINT(("called\n"));
  5385. /*
  5386. * should not be necessary but
  5387. * let's take not risk
  5388. */
  5389. pfm_clear_psr_up();
  5390. pfm_clear_psr_pp();
  5391. ia64_psr(regs)->pp = 0;
  5392. /*
  5393. * This call is required
  5394. * May cause a spurious interrupt on some processors
  5395. */
  5396. pfm_freeze_pmu();
  5397. ia64_srlz_d();
  5398. }
  5399. void
  5400. pfm_alt_restore_pmu_state(void *data)
  5401. {
  5402. struct pt_regs *regs;
  5403. regs = ia64_task_regs(current);
  5404. DPRINT(("called\n"));
  5405. /*
  5406. * put PMU back in state expected
  5407. * by perfmon
  5408. */
  5409. pfm_clear_psr_up();
  5410. pfm_clear_psr_pp();
  5411. ia64_psr(regs)->pp = 0;
  5412. /*
  5413. * perfmon runs with PMU unfrozen at all times
  5414. */
  5415. pfm_unfreeze_pmu();
  5416. ia64_srlz_d();
  5417. }
  5418. int
  5419. pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5420. {
  5421. int ret, i;
  5422. int reserve_cpu;
  5423. /* some sanity checks */
  5424. if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
  5425. /* do the easy test first */
  5426. if (pfm_alt_intr_handler) return -EBUSY;
  5427. /* one at a time in the install or remove, just fail the others */
  5428. if (!spin_trylock(&pfm_alt_install_check)) {
  5429. return -EBUSY;
  5430. }
  5431. /* reserve our session */
  5432. for_each_online_cpu(reserve_cpu) {
  5433. ret = pfm_reserve_session(NULL, 1, reserve_cpu);
  5434. if (ret) goto cleanup_reserve;
  5435. }
  5436. /* save the current system wide pmu states */
  5437. ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
  5438. if (ret) {
  5439. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5440. goto cleanup_reserve;
  5441. }
  5442. /* officially change to the alternate interrupt handler */
  5443. pfm_alt_intr_handler = hdl;
  5444. spin_unlock(&pfm_alt_install_check);
  5445. return 0;
  5446. cleanup_reserve:
  5447. for_each_online_cpu(i) {
  5448. /* don't unreserve more than we reserved */
  5449. if (i >= reserve_cpu) break;
  5450. pfm_unreserve_session(NULL, 1, i);
  5451. }
  5452. spin_unlock(&pfm_alt_install_check);
  5453. return ret;
  5454. }
  5455. EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
  5456. int
  5457. pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5458. {
  5459. int i;
  5460. int ret;
  5461. if (hdl == NULL) return -EINVAL;
  5462. /* cannot remove someone else's handler! */
  5463. if (pfm_alt_intr_handler != hdl) return -EINVAL;
  5464. /* one at a time in the install or remove, just fail the others */
  5465. if (!spin_trylock(&pfm_alt_install_check)) {
  5466. return -EBUSY;
  5467. }
  5468. pfm_alt_intr_handler = NULL;
  5469. ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
  5470. if (ret) {
  5471. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5472. }
  5473. for_each_online_cpu(i) {
  5474. pfm_unreserve_session(NULL, 1, i);
  5475. }
  5476. spin_unlock(&pfm_alt_install_check);
  5477. return 0;
  5478. }
  5479. EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
  5480. /*
  5481. * perfmon initialization routine, called from the initcall() table
  5482. */
  5483. static int init_pfm_fs(void);
  5484. static int __init
  5485. pfm_probe_pmu(void)
  5486. {
  5487. pmu_config_t **p;
  5488. int family;
  5489. family = local_cpu_data->family;
  5490. p = pmu_confs;
  5491. while(*p) {
  5492. if ((*p)->probe) {
  5493. if ((*p)->probe() == 0) goto found;
  5494. } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
  5495. goto found;
  5496. }
  5497. p++;
  5498. }
  5499. return -1;
  5500. found:
  5501. pmu_conf = *p;
  5502. return 0;
  5503. }
  5504. static struct file_operations pfm_proc_fops = {
  5505. .open = pfm_proc_open,
  5506. .read = seq_read,
  5507. .llseek = seq_lseek,
  5508. .release = seq_release,
  5509. };
  5510. int __init
  5511. pfm_init(void)
  5512. {
  5513. unsigned int n, n_counters, i;
  5514. printk("perfmon: version %u.%u IRQ %u\n",
  5515. PFM_VERSION_MAJ,
  5516. PFM_VERSION_MIN,
  5517. IA64_PERFMON_VECTOR);
  5518. if (pfm_probe_pmu()) {
  5519. printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
  5520. local_cpu_data->family);
  5521. return -ENODEV;
  5522. }
  5523. /*
  5524. * compute the number of implemented PMD/PMC from the
  5525. * description tables
  5526. */
  5527. n = 0;
  5528. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  5529. if (PMC_IS_IMPL(i) == 0) continue;
  5530. pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
  5531. n++;
  5532. }
  5533. pmu_conf->num_pmcs = n;
  5534. n = 0; n_counters = 0;
  5535. for (i=0; PMD_IS_LAST(i) == 0; i++) {
  5536. if (PMD_IS_IMPL(i) == 0) continue;
  5537. pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
  5538. n++;
  5539. if (PMD_IS_COUNTING(i)) n_counters++;
  5540. }
  5541. pmu_conf->num_pmds = n;
  5542. pmu_conf->num_counters = n_counters;
  5543. /*
  5544. * sanity checks on the number of debug registers
  5545. */
  5546. if (pmu_conf->use_rr_dbregs) {
  5547. if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
  5548. printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
  5549. pmu_conf = NULL;
  5550. return -1;
  5551. }
  5552. if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
  5553. printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
  5554. pmu_conf = NULL;
  5555. return -1;
  5556. }
  5557. }
  5558. printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
  5559. pmu_conf->pmu_name,
  5560. pmu_conf->num_pmcs,
  5561. pmu_conf->num_pmds,
  5562. pmu_conf->num_counters,
  5563. ffz(pmu_conf->ovfl_val));
  5564. /* sanity check */
  5565. if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
  5566. printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
  5567. pmu_conf = NULL;
  5568. return -1;
  5569. }
  5570. /*
  5571. * create /proc/perfmon (mostly for debugging purposes)
  5572. */
  5573. perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
  5574. if (perfmon_dir == NULL) {
  5575. printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
  5576. pmu_conf = NULL;
  5577. return -1;
  5578. }
  5579. /*
  5580. * install customized file operations for /proc/perfmon entry
  5581. */
  5582. perfmon_dir->proc_fops = &pfm_proc_fops;
  5583. /*
  5584. * create /proc/sys/kernel/perfmon (for debugging purposes)
  5585. */
  5586. pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
  5587. /*
  5588. * initialize all our spinlocks
  5589. */
  5590. spin_lock_init(&pfm_sessions.pfs_lock);
  5591. spin_lock_init(&pfm_buffer_fmt_lock);
  5592. init_pfm_fs();
  5593. for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
  5594. return 0;
  5595. }
  5596. __initcall(pfm_init);
  5597. /*
  5598. * this function is called before pfm_init()
  5599. */
  5600. void
  5601. pfm_init_percpu (void)
  5602. {
  5603. /*
  5604. * make sure no measurement is active
  5605. * (may inherit programmed PMCs from EFI).
  5606. */
  5607. pfm_clear_psr_pp();
  5608. pfm_clear_psr_up();
  5609. /*
  5610. * we run with the PMU not frozen at all times
  5611. */
  5612. pfm_unfreeze_pmu();
  5613. if (smp_processor_id() == 0)
  5614. register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
  5615. ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
  5616. ia64_srlz_d();
  5617. }
  5618. /*
  5619. * used for debug purposes only
  5620. */
  5621. void
  5622. dump_pmu_state(const char *from)
  5623. {
  5624. struct task_struct *task;
  5625. struct thread_struct *t;
  5626. struct pt_regs *regs;
  5627. pfm_context_t *ctx;
  5628. unsigned long psr, dcr, info, flags;
  5629. int i, this_cpu;
  5630. local_irq_save(flags);
  5631. this_cpu = smp_processor_id();
  5632. regs = ia64_task_regs(current);
  5633. info = PFM_CPUINFO_GET();
  5634. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  5635. if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
  5636. local_irq_restore(flags);
  5637. return;
  5638. }
  5639. printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
  5640. this_cpu,
  5641. from,
  5642. current->pid,
  5643. regs->cr_iip,
  5644. current->comm);
  5645. task = GET_PMU_OWNER();
  5646. ctx = GET_PMU_CTX();
  5647. printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
  5648. psr = pfm_get_psr();
  5649. printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
  5650. this_cpu,
  5651. ia64_get_pmc(0),
  5652. psr & IA64_PSR_PP ? 1 : 0,
  5653. psr & IA64_PSR_UP ? 1 : 0,
  5654. dcr & IA64_DCR_PP ? 1 : 0,
  5655. info,
  5656. ia64_psr(regs)->up,
  5657. ia64_psr(regs)->pp);
  5658. ia64_psr(regs)->up = 0;
  5659. ia64_psr(regs)->pp = 0;
  5660. t = &current->thread;
  5661. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  5662. if (PMC_IS_IMPL(i) == 0) continue;
  5663. printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
  5664. }
  5665. for (i=1; PMD_IS_LAST(i) == 0; i++) {
  5666. if (PMD_IS_IMPL(i) == 0) continue;
  5667. printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
  5668. }
  5669. if (ctx) {
  5670. printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
  5671. this_cpu,
  5672. ctx->ctx_state,
  5673. ctx->ctx_smpl_vaddr,
  5674. ctx->ctx_smpl_hdr,
  5675. ctx->ctx_msgq_head,
  5676. ctx->ctx_msgq_tail,
  5677. ctx->ctx_saved_psr_up);
  5678. }
  5679. local_irq_restore(flags);
  5680. }
  5681. /*
  5682. * called from process.c:copy_thread(). task is new child.
  5683. */
  5684. void
  5685. pfm_inherit(struct task_struct *task, struct pt_regs *regs)
  5686. {
  5687. struct thread_struct *thread;
  5688. DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
  5689. thread = &task->thread;
  5690. /*
  5691. * cut links inherited from parent (current)
  5692. */
  5693. thread->pfm_context = NULL;
  5694. PFM_SET_WORK_PENDING(task, 0);
  5695. /*
  5696. * the psr bits are already set properly in copy_threads()
  5697. */
  5698. }
  5699. #else /* !CONFIG_PERFMON */
  5700. asmlinkage long
  5701. sys_perfmonctl (int fd, int cmd, void *arg, int count)
  5702. {
  5703. return -ENOSYS;
  5704. }
  5705. #endif /* CONFIG_PERFMON */