core.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. /*
  2. * arch/arm/mach-ixp2000/core.c
  3. *
  4. * Common routines used by all IXP2400/2800 based platforms.
  5. *
  6. * Author: Deepak Saxena <dsaxena@plexity.net>
  7. *
  8. * Copyright 2004 (C) MontaVista Software, Inc.
  9. *
  10. * Based on work Copyright (C) 2002-2003 Intel Corporation
  11. *
  12. * This file is licensed under the terms of the GNU General Public
  13. * License version 2. This program is licensed "as is" without any
  14. * warranty of any kind, whether express or implied.
  15. */
  16. #include <linux/config.h>
  17. #include <linux/kernel.h>
  18. #include <linux/init.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/sched.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/serial.h>
  23. #include <linux/tty.h>
  24. #include <linux/bitops.h>
  25. #include <linux/serial_8250.h>
  26. #include <linux/mm.h>
  27. #include <asm/types.h>
  28. #include <asm/setup.h>
  29. #include <asm/memory.h>
  30. #include <asm/hardware.h>
  31. #include <asm/irq.h>
  32. #include <asm/system.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/mach/map.h>
  36. #include <asm/mach/time.h>
  37. #include <asm/mach/irq.h>
  38. #include <asm/arch/gpio.h>
  39. static DEFINE_SPINLOCK(ixp2000_slowport_lock);
  40. static unsigned long ixp2000_slowport_irq_flags;
  41. /*************************************************************************
  42. * Slowport access routines
  43. *************************************************************************/
  44. void ixp2000_acquire_slowport(struct slowport_cfg *new_cfg, struct slowport_cfg *old_cfg)
  45. {
  46. spin_lock_irqsave(&ixp2000_slowport_lock, ixp2000_slowport_irq_flags);
  47. old_cfg->CCR = *IXP2000_SLOWPORT_CCR;
  48. old_cfg->WTC = *IXP2000_SLOWPORT_WTC2;
  49. old_cfg->RTC = *IXP2000_SLOWPORT_RTC2;
  50. old_cfg->PCR = *IXP2000_SLOWPORT_PCR;
  51. old_cfg->ADC = *IXP2000_SLOWPORT_ADC;
  52. ixp2000_reg_write(IXP2000_SLOWPORT_CCR, new_cfg->CCR);
  53. ixp2000_reg_write(IXP2000_SLOWPORT_WTC2, new_cfg->WTC);
  54. ixp2000_reg_write(IXP2000_SLOWPORT_RTC2, new_cfg->RTC);
  55. ixp2000_reg_write(IXP2000_SLOWPORT_PCR, new_cfg->PCR);
  56. ixp2000_reg_wrb(IXP2000_SLOWPORT_ADC, new_cfg->ADC);
  57. }
  58. void ixp2000_release_slowport(struct slowport_cfg *old_cfg)
  59. {
  60. ixp2000_reg_write(IXP2000_SLOWPORT_CCR, old_cfg->CCR);
  61. ixp2000_reg_write(IXP2000_SLOWPORT_WTC2, old_cfg->WTC);
  62. ixp2000_reg_write(IXP2000_SLOWPORT_RTC2, old_cfg->RTC);
  63. ixp2000_reg_write(IXP2000_SLOWPORT_PCR, old_cfg->PCR);
  64. ixp2000_reg_wrb(IXP2000_SLOWPORT_ADC, old_cfg->ADC);
  65. spin_unlock_irqrestore(&ixp2000_slowport_lock,
  66. ixp2000_slowport_irq_flags);
  67. }
  68. /*************************************************************************
  69. * Chip specific mappings shared by all IXP2000 systems
  70. *************************************************************************/
  71. static struct map_desc ixp2000_io_desc[] __initdata = {
  72. {
  73. .virtual = IXP2000_CAP_VIRT_BASE,
  74. .pfn = __phys_to_pfn(IXP2000_CAP_PHYS_BASE),
  75. .length = IXP2000_CAP_SIZE,
  76. .type = MT_IXP2000_DEVICE,
  77. }, {
  78. .virtual = IXP2000_INTCTL_VIRT_BASE,
  79. .pfn = __phys_to_pfn(IXP2000_INTCTL_PHYS_BASE),
  80. .length = IXP2000_INTCTL_SIZE,
  81. .type = MT_IXP2000_DEVICE,
  82. }, {
  83. .virtual = IXP2000_PCI_CREG_VIRT_BASE,
  84. .pfn = __phys_to_pfn(IXP2000_PCI_CREG_PHYS_BASE),
  85. .length = IXP2000_PCI_CREG_SIZE,
  86. .type = MT_IXP2000_DEVICE,
  87. }, {
  88. .virtual = IXP2000_PCI_CSR_VIRT_BASE,
  89. .pfn = __phys_to_pfn(IXP2000_PCI_CSR_PHYS_BASE),
  90. .length = IXP2000_PCI_CSR_SIZE,
  91. .type = MT_IXP2000_DEVICE,
  92. }, {
  93. .virtual = IXP2000_MSF_VIRT_BASE,
  94. .pfn = __phys_to_pfn(IXP2000_MSF_PHYS_BASE),
  95. .length = IXP2000_MSF_SIZE,
  96. .type = MT_IXP2000_DEVICE,
  97. }, {
  98. .virtual = IXP2000_PCI_IO_VIRT_BASE,
  99. .pfn = __phys_to_pfn(IXP2000_PCI_IO_PHYS_BASE),
  100. .length = IXP2000_PCI_IO_SIZE,
  101. .type = MT_IXP2000_DEVICE,
  102. }, {
  103. .virtual = IXP2000_PCI_CFG0_VIRT_BASE,
  104. .pfn = __phys_to_pfn(IXP2000_PCI_CFG0_PHYS_BASE),
  105. .length = IXP2000_PCI_CFG0_SIZE,
  106. .type = MT_IXP2000_DEVICE,
  107. }, {
  108. .virtual = IXP2000_PCI_CFG1_VIRT_BASE,
  109. .pfn = __phys_to_pfn(IXP2000_PCI_CFG1_PHYS_BASE),
  110. .length = IXP2000_PCI_CFG1_SIZE,
  111. .type = MT_IXP2000_DEVICE,
  112. }
  113. };
  114. void __init ixp2000_map_io(void)
  115. {
  116. /*
  117. * On IXP2400 CPUs we need to use MT_IXP2000_DEVICE so that
  118. * XCB=101 (to avoid triggering erratum #66), and given that
  119. * this mode speeds up I/O accesses and we have write buffer
  120. * flushes in the right places anyway, it doesn't hurt to use
  121. * XCB=101 for all IXP2000s.
  122. */
  123. iotable_init(ixp2000_io_desc, ARRAY_SIZE(ixp2000_io_desc));
  124. /* Set slowport to 8-bit mode. */
  125. ixp2000_reg_wrb(IXP2000_SLOWPORT_FRM, 1);
  126. }
  127. /*************************************************************************
  128. * Serial port support for IXP2000
  129. *************************************************************************/
  130. static struct plat_serial8250_port ixp2000_serial_port[] = {
  131. {
  132. .mapbase = IXP2000_UART_PHYS_BASE,
  133. .membase = (char *)(IXP2000_UART_VIRT_BASE + 3),
  134. .irq = IRQ_IXP2000_UART,
  135. .flags = UPF_BOOT_AUTOCONF | UPF_SKIP_TEST,
  136. .iotype = UPIO_MEM,
  137. .regshift = 2,
  138. .uartclk = 50000000,
  139. },
  140. { },
  141. };
  142. static struct resource ixp2000_uart_resource = {
  143. .start = IXP2000_UART_PHYS_BASE,
  144. .end = IXP2000_UART_PHYS_BASE + 0x1f,
  145. .flags = IORESOURCE_MEM,
  146. };
  147. static struct platform_device ixp2000_serial_device = {
  148. .name = "serial8250",
  149. .id = PLAT8250_DEV_PLATFORM,
  150. .dev = {
  151. .platform_data = ixp2000_serial_port,
  152. },
  153. .num_resources = 1,
  154. .resource = &ixp2000_uart_resource,
  155. };
  156. void __init ixp2000_uart_init(void)
  157. {
  158. platform_device_register(&ixp2000_serial_device);
  159. }
  160. /*************************************************************************
  161. * Timer-tick functions for IXP2000
  162. *************************************************************************/
  163. static unsigned ticks_per_jiffy;
  164. static unsigned ticks_per_usec;
  165. static unsigned next_jiffy_time;
  166. static volatile unsigned long *missing_jiffy_timer_csr;
  167. unsigned long ixp2000_gettimeoffset (void)
  168. {
  169. unsigned long offset;
  170. offset = next_jiffy_time - *missing_jiffy_timer_csr;
  171. return offset / ticks_per_usec;
  172. }
  173. static int ixp2000_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  174. {
  175. write_seqlock(&xtime_lock);
  176. /* clear timer 1 */
  177. ixp2000_reg_wrb(IXP2000_T1_CLR, 1);
  178. while ((next_jiffy_time - *missing_jiffy_timer_csr) > ticks_per_jiffy) {
  179. timer_tick(regs);
  180. next_jiffy_time -= ticks_per_jiffy;
  181. }
  182. write_sequnlock(&xtime_lock);
  183. return IRQ_HANDLED;
  184. }
  185. static struct irqaction ixp2000_timer_irq = {
  186. .name = "IXP2000 Timer Tick",
  187. .flags = SA_INTERRUPT | SA_TIMER,
  188. .handler = ixp2000_timer_interrupt,
  189. };
  190. void __init ixp2000_init_time(unsigned long tick_rate)
  191. {
  192. ticks_per_jiffy = (tick_rate + HZ/2) / HZ;
  193. ticks_per_usec = tick_rate / 1000000;
  194. /*
  195. * We use timer 1 as our timer interrupt.
  196. */
  197. ixp2000_reg_write(IXP2000_T1_CLR, 0);
  198. ixp2000_reg_write(IXP2000_T1_CLD, ticks_per_jiffy - 1);
  199. ixp2000_reg_write(IXP2000_T1_CTL, (1 << 7));
  200. /*
  201. * We use a second timer as a monotonic counter for tracking
  202. * missed jiffies. The IXP2000 has four timers, but if we're
  203. * on an A-step IXP2800, timer 2 and 3 don't work, so on those
  204. * chips we use timer 4. Timer 4 is the only timer that can
  205. * be used for the watchdog, so we use timer 2 if we're on a
  206. * non-buggy chip.
  207. */
  208. if ((*IXP2000_PRODUCT_ID & 0x001ffef0) == 0x00000000) {
  209. printk(KERN_INFO "Enabling IXP2800 erratum #25 workaround\n");
  210. ixp2000_reg_write(IXP2000_T4_CLR, 0);
  211. ixp2000_reg_write(IXP2000_T4_CLD, -1);
  212. ixp2000_reg_wrb(IXP2000_T4_CTL, (1 << 7));
  213. missing_jiffy_timer_csr = IXP2000_T4_CSR;
  214. } else {
  215. ixp2000_reg_write(IXP2000_T2_CLR, 0);
  216. ixp2000_reg_write(IXP2000_T2_CLD, -1);
  217. ixp2000_reg_wrb(IXP2000_T2_CTL, (1 << 7));
  218. missing_jiffy_timer_csr = IXP2000_T2_CSR;
  219. }
  220. next_jiffy_time = 0xffffffff;
  221. /* register for interrupt */
  222. setup_irq(IRQ_IXP2000_TIMER1, &ixp2000_timer_irq);
  223. }
  224. /*************************************************************************
  225. * GPIO helpers
  226. *************************************************************************/
  227. static unsigned long GPIO_IRQ_falling_edge;
  228. static unsigned long GPIO_IRQ_rising_edge;
  229. static unsigned long GPIO_IRQ_level_low;
  230. static unsigned long GPIO_IRQ_level_high;
  231. static void update_gpio_int_csrs(void)
  232. {
  233. ixp2000_reg_write(IXP2000_GPIO_FEDR, GPIO_IRQ_falling_edge);
  234. ixp2000_reg_write(IXP2000_GPIO_REDR, GPIO_IRQ_rising_edge);
  235. ixp2000_reg_write(IXP2000_GPIO_LSLR, GPIO_IRQ_level_low);
  236. ixp2000_reg_wrb(IXP2000_GPIO_LSHR, GPIO_IRQ_level_high);
  237. }
  238. void gpio_line_config(int line, int direction)
  239. {
  240. unsigned long flags;
  241. local_irq_save(flags);
  242. if (direction == GPIO_OUT) {
  243. irq_desc[line + IRQ_IXP2000_GPIO0].valid = 0;
  244. /* if it's an output, it ain't an interrupt anymore */
  245. GPIO_IRQ_falling_edge &= ~(1 << line);
  246. GPIO_IRQ_rising_edge &= ~(1 << line);
  247. GPIO_IRQ_level_low &= ~(1 << line);
  248. GPIO_IRQ_level_high &= ~(1 << line);
  249. update_gpio_int_csrs();
  250. ixp2000_reg_wrb(IXP2000_GPIO_PDSR, 1 << line);
  251. } else if (direction == GPIO_IN) {
  252. ixp2000_reg_wrb(IXP2000_GPIO_PDCR, 1 << line);
  253. }
  254. local_irq_restore(flags);
  255. }
  256. /*************************************************************************
  257. * IRQ handling IXP2000
  258. *************************************************************************/
  259. static void ixp2000_GPIO_irq_handler(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  260. {
  261. int i;
  262. unsigned long status = *IXP2000_GPIO_INST;
  263. for (i = 0; i <= 7; i++) {
  264. if (status & (1<<i)) {
  265. desc = irq_desc + i + IRQ_IXP2000_GPIO0;
  266. desc_handle_irq(i + IRQ_IXP2000_GPIO0, desc, regs);
  267. }
  268. }
  269. }
  270. static int ixp2000_GPIO_irq_type(unsigned int irq, unsigned int type)
  271. {
  272. int line = irq - IRQ_IXP2000_GPIO0;
  273. /*
  274. * First, configure this GPIO line as an input.
  275. */
  276. ixp2000_reg_write(IXP2000_GPIO_PDCR, 1 << line);
  277. /*
  278. * Then, set the proper trigger type.
  279. */
  280. if (type & IRQT_FALLING)
  281. GPIO_IRQ_falling_edge |= 1 << line;
  282. else
  283. GPIO_IRQ_falling_edge &= ~(1 << line);
  284. if (type & IRQT_RISING)
  285. GPIO_IRQ_rising_edge |= 1 << line;
  286. else
  287. GPIO_IRQ_rising_edge &= ~(1 << line);
  288. if (type & IRQT_LOW)
  289. GPIO_IRQ_level_low |= 1 << line;
  290. else
  291. GPIO_IRQ_level_low &= ~(1 << line);
  292. if (type & IRQT_HIGH)
  293. GPIO_IRQ_level_high |= 1 << line;
  294. else
  295. GPIO_IRQ_level_high &= ~(1 << line);
  296. update_gpio_int_csrs();
  297. /*
  298. * Finally, mark the corresponding IRQ as valid.
  299. */
  300. irq_desc[irq].valid = 1;
  301. return 0;
  302. }
  303. static void ixp2000_GPIO_irq_mask_ack(unsigned int irq)
  304. {
  305. ixp2000_reg_write(IXP2000_GPIO_INCR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  306. ixp2000_reg_write(IXP2000_GPIO_EDSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  307. ixp2000_reg_write(IXP2000_GPIO_LDSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  308. ixp2000_reg_wrb(IXP2000_GPIO_INST, (1 << (irq - IRQ_IXP2000_GPIO0)));
  309. }
  310. static void ixp2000_GPIO_irq_mask(unsigned int irq)
  311. {
  312. ixp2000_reg_wrb(IXP2000_GPIO_INCR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  313. }
  314. static void ixp2000_GPIO_irq_unmask(unsigned int irq)
  315. {
  316. ixp2000_reg_write(IXP2000_GPIO_INSR, (1 << (irq - IRQ_IXP2000_GPIO0)));
  317. }
  318. static struct irqchip ixp2000_GPIO_irq_chip = {
  319. .ack = ixp2000_GPIO_irq_mask_ack,
  320. .mask = ixp2000_GPIO_irq_mask,
  321. .unmask = ixp2000_GPIO_irq_unmask,
  322. .set_type = ixp2000_GPIO_irq_type,
  323. };
  324. static void ixp2000_pci_irq_mask(unsigned int irq)
  325. {
  326. unsigned long temp = *IXP2000_PCI_XSCALE_INT_ENABLE;
  327. if (irq == IRQ_IXP2000_PCIA)
  328. ixp2000_reg_wrb(IXP2000_PCI_XSCALE_INT_ENABLE, (temp & ~(1 << 26)));
  329. else if (irq == IRQ_IXP2000_PCIB)
  330. ixp2000_reg_wrb(IXP2000_PCI_XSCALE_INT_ENABLE, (temp & ~(1 << 27)));
  331. }
  332. static void ixp2000_pci_irq_unmask(unsigned int irq)
  333. {
  334. unsigned long temp = *IXP2000_PCI_XSCALE_INT_ENABLE;
  335. if (irq == IRQ_IXP2000_PCIA)
  336. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp | (1 << 26)));
  337. else if (irq == IRQ_IXP2000_PCIB)
  338. ixp2000_reg_write(IXP2000_PCI_XSCALE_INT_ENABLE, (temp | (1 << 27)));
  339. }
  340. /*
  341. * Error interrupts. These are used extensively by the microengine drivers
  342. */
  343. static void ixp2000_err_irq_handler(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  344. {
  345. int i;
  346. unsigned long status = *IXP2000_IRQ_ERR_STATUS;
  347. for(i = 31; i >= 0; i--) {
  348. if(status & (1 << i)) {
  349. desc = irq_desc + IRQ_IXP2000_DRAM0_MIN_ERR + i;
  350. desc->handle(IRQ_IXP2000_DRAM0_MIN_ERR + i, desc, regs);
  351. }
  352. }
  353. }
  354. static void ixp2000_err_irq_mask(unsigned int irq)
  355. {
  356. ixp2000_reg_write(IXP2000_IRQ_ERR_ENABLE_CLR,
  357. (1 << (irq - IRQ_IXP2000_DRAM0_MIN_ERR)));
  358. }
  359. static void ixp2000_err_irq_unmask(unsigned int irq)
  360. {
  361. ixp2000_reg_write(IXP2000_IRQ_ERR_ENABLE_SET,
  362. (1 << (irq - IRQ_IXP2000_DRAM0_MIN_ERR)));
  363. }
  364. static struct irqchip ixp2000_err_irq_chip = {
  365. .ack = ixp2000_err_irq_mask,
  366. .mask = ixp2000_err_irq_mask,
  367. .unmask = ixp2000_err_irq_unmask
  368. };
  369. static struct irqchip ixp2000_pci_irq_chip = {
  370. .ack = ixp2000_pci_irq_mask,
  371. .mask = ixp2000_pci_irq_mask,
  372. .unmask = ixp2000_pci_irq_unmask
  373. };
  374. static void ixp2000_irq_mask(unsigned int irq)
  375. {
  376. ixp2000_reg_wrb(IXP2000_IRQ_ENABLE_CLR, (1 << irq));
  377. }
  378. static void ixp2000_irq_unmask(unsigned int irq)
  379. {
  380. ixp2000_reg_write(IXP2000_IRQ_ENABLE_SET, (1 << irq));
  381. }
  382. static struct irqchip ixp2000_irq_chip = {
  383. .ack = ixp2000_irq_mask,
  384. .mask = ixp2000_irq_mask,
  385. .unmask = ixp2000_irq_unmask
  386. };
  387. void __init ixp2000_init_irq(void)
  388. {
  389. int irq;
  390. /*
  391. * Mask all sources
  392. */
  393. ixp2000_reg_write(IXP2000_IRQ_ENABLE_CLR, 0xffffffff);
  394. ixp2000_reg_write(IXP2000_FIQ_ENABLE_CLR, 0xffffffff);
  395. /* clear all GPIO edge/level detects */
  396. ixp2000_reg_write(IXP2000_GPIO_REDR, 0);
  397. ixp2000_reg_write(IXP2000_GPIO_FEDR, 0);
  398. ixp2000_reg_write(IXP2000_GPIO_LSHR, 0);
  399. ixp2000_reg_write(IXP2000_GPIO_LSLR, 0);
  400. ixp2000_reg_write(IXP2000_GPIO_INCR, -1);
  401. /* clear PCI interrupt sources */
  402. ixp2000_reg_wrb(IXP2000_PCI_XSCALE_INT_ENABLE, 0);
  403. /*
  404. * Certain bits in the IRQ status register of the
  405. * IXP2000 are reserved. Instead of trying to map
  406. * things non 1:1 from bit position to IRQ number,
  407. * we mark the reserved IRQs as invalid. This makes
  408. * our mask/unmask code much simpler.
  409. */
  410. for (irq = IRQ_IXP2000_SOFT_INT; irq <= IRQ_IXP2000_THDB3; irq++) {
  411. if ((1 << irq) & IXP2000_VALID_IRQ_MASK) {
  412. set_irq_chip(irq, &ixp2000_irq_chip);
  413. set_irq_handler(irq, do_level_IRQ);
  414. set_irq_flags(irq, IRQF_VALID);
  415. } else set_irq_flags(irq, 0);
  416. }
  417. for (irq = IRQ_IXP2000_DRAM0_MIN_ERR; irq <= IRQ_IXP2000_SP_INT; irq++) {
  418. if((1 << (irq - IRQ_IXP2000_DRAM0_MIN_ERR)) &
  419. IXP2000_VALID_ERR_IRQ_MASK) {
  420. set_irq_chip(irq, &ixp2000_err_irq_chip);
  421. set_irq_handler(irq, do_level_IRQ);
  422. set_irq_flags(irq, IRQF_VALID);
  423. }
  424. else
  425. set_irq_flags(irq, 0);
  426. }
  427. set_irq_chained_handler(IRQ_IXP2000_ERRSUM, ixp2000_err_irq_handler);
  428. /*
  429. * GPIO IRQs are invalid until someone sets the interrupt mode
  430. * by calling set_irq_type().
  431. */
  432. for (irq = IRQ_IXP2000_GPIO0; irq <= IRQ_IXP2000_GPIO7; irq++) {
  433. set_irq_chip(irq, &ixp2000_GPIO_irq_chip);
  434. set_irq_handler(irq, do_level_IRQ);
  435. set_irq_flags(irq, 0);
  436. }
  437. set_irq_chained_handler(IRQ_IXP2000_GPIO, ixp2000_GPIO_irq_handler);
  438. /*
  439. * Enable PCI irqs. The actual PCI[AB] decoding is done in
  440. * entry-macro.S, so we don't need a chained handler for the
  441. * PCI interrupt source.
  442. */
  443. ixp2000_reg_write(IXP2000_IRQ_ENABLE_SET, (1 << IRQ_IXP2000_PCI));
  444. for (irq = IRQ_IXP2000_PCIA; irq <= IRQ_IXP2000_PCIB; irq++) {
  445. set_irq_chip(irq, &ixp2000_pci_irq_chip);
  446. set_irq_handler(irq, do_level_IRQ);
  447. set_irq_flags(irq, IRQF_VALID);
  448. }
  449. }