extent-tree.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include "compat.h"
  27. #include "hash.h"
  28. #include "ctree.h"
  29. #include "disk-io.h"
  30. #include "print-tree.h"
  31. #include "transaction.h"
  32. #include "volumes.h"
  33. #include "locking.h"
  34. #include "free-space-cache.h"
  35. static int update_block_group(struct btrfs_trans_handle *trans,
  36. struct btrfs_root *root,
  37. u64 bytenr, u64 num_bytes, int alloc);
  38. static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
  39. u64 num_bytes, int reserve, int sinfo);
  40. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  41. struct btrfs_root *root,
  42. u64 bytenr, u64 num_bytes, u64 parent,
  43. u64 root_objectid, u64 owner_objectid,
  44. u64 owner_offset, int refs_to_drop,
  45. struct btrfs_delayed_extent_op *extra_op);
  46. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  47. struct extent_buffer *leaf,
  48. struct btrfs_extent_item *ei);
  49. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  50. struct btrfs_root *root,
  51. u64 parent, u64 root_objectid,
  52. u64 flags, u64 owner, u64 offset,
  53. struct btrfs_key *ins, int ref_mod);
  54. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  55. struct btrfs_root *root,
  56. u64 parent, u64 root_objectid,
  57. u64 flags, struct btrfs_disk_key *key,
  58. int level, struct btrfs_key *ins);
  59. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  60. struct btrfs_root *extent_root, u64 alloc_bytes,
  61. u64 flags, int force);
  62. static int find_next_key(struct btrfs_path *path, int level,
  63. struct btrfs_key *key);
  64. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  65. int dump_block_groups);
  66. static noinline int
  67. block_group_cache_done(struct btrfs_block_group_cache *cache)
  68. {
  69. smp_mb();
  70. return cache->cached == BTRFS_CACHE_FINISHED;
  71. }
  72. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  73. {
  74. return (cache->flags & bits) == bits;
  75. }
  76. void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  77. {
  78. atomic_inc(&cache->count);
  79. }
  80. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  81. {
  82. if (atomic_dec_and_test(&cache->count)) {
  83. WARN_ON(cache->pinned > 0);
  84. WARN_ON(cache->reserved > 0);
  85. WARN_ON(cache->reserved_pinned > 0);
  86. kfree(cache);
  87. }
  88. }
  89. /*
  90. * this adds the block group to the fs_info rb tree for the block group
  91. * cache
  92. */
  93. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  94. struct btrfs_block_group_cache *block_group)
  95. {
  96. struct rb_node **p;
  97. struct rb_node *parent = NULL;
  98. struct btrfs_block_group_cache *cache;
  99. spin_lock(&info->block_group_cache_lock);
  100. p = &info->block_group_cache_tree.rb_node;
  101. while (*p) {
  102. parent = *p;
  103. cache = rb_entry(parent, struct btrfs_block_group_cache,
  104. cache_node);
  105. if (block_group->key.objectid < cache->key.objectid) {
  106. p = &(*p)->rb_left;
  107. } else if (block_group->key.objectid > cache->key.objectid) {
  108. p = &(*p)->rb_right;
  109. } else {
  110. spin_unlock(&info->block_group_cache_lock);
  111. return -EEXIST;
  112. }
  113. }
  114. rb_link_node(&block_group->cache_node, parent, p);
  115. rb_insert_color(&block_group->cache_node,
  116. &info->block_group_cache_tree);
  117. spin_unlock(&info->block_group_cache_lock);
  118. return 0;
  119. }
  120. /*
  121. * This will return the block group at or after bytenr if contains is 0, else
  122. * it will return the block group that contains the bytenr
  123. */
  124. static struct btrfs_block_group_cache *
  125. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  126. int contains)
  127. {
  128. struct btrfs_block_group_cache *cache, *ret = NULL;
  129. struct rb_node *n;
  130. u64 end, start;
  131. spin_lock(&info->block_group_cache_lock);
  132. n = info->block_group_cache_tree.rb_node;
  133. while (n) {
  134. cache = rb_entry(n, struct btrfs_block_group_cache,
  135. cache_node);
  136. end = cache->key.objectid + cache->key.offset - 1;
  137. start = cache->key.objectid;
  138. if (bytenr < start) {
  139. if (!contains && (!ret || start < ret->key.objectid))
  140. ret = cache;
  141. n = n->rb_left;
  142. } else if (bytenr > start) {
  143. if (contains && bytenr <= end) {
  144. ret = cache;
  145. break;
  146. }
  147. n = n->rb_right;
  148. } else {
  149. ret = cache;
  150. break;
  151. }
  152. }
  153. if (ret)
  154. btrfs_get_block_group(ret);
  155. spin_unlock(&info->block_group_cache_lock);
  156. return ret;
  157. }
  158. static int add_excluded_extent(struct btrfs_root *root,
  159. u64 start, u64 num_bytes)
  160. {
  161. u64 end = start + num_bytes - 1;
  162. set_extent_bits(&root->fs_info->freed_extents[0],
  163. start, end, EXTENT_UPTODATE, GFP_NOFS);
  164. set_extent_bits(&root->fs_info->freed_extents[1],
  165. start, end, EXTENT_UPTODATE, GFP_NOFS);
  166. return 0;
  167. }
  168. static void free_excluded_extents(struct btrfs_root *root,
  169. struct btrfs_block_group_cache *cache)
  170. {
  171. u64 start, end;
  172. start = cache->key.objectid;
  173. end = start + cache->key.offset - 1;
  174. clear_extent_bits(&root->fs_info->freed_extents[0],
  175. start, end, EXTENT_UPTODATE, GFP_NOFS);
  176. clear_extent_bits(&root->fs_info->freed_extents[1],
  177. start, end, EXTENT_UPTODATE, GFP_NOFS);
  178. }
  179. static int exclude_super_stripes(struct btrfs_root *root,
  180. struct btrfs_block_group_cache *cache)
  181. {
  182. u64 bytenr;
  183. u64 *logical;
  184. int stripe_len;
  185. int i, nr, ret;
  186. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  187. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  188. cache->bytes_super += stripe_len;
  189. ret = add_excluded_extent(root, cache->key.objectid,
  190. stripe_len);
  191. BUG_ON(ret);
  192. }
  193. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  194. bytenr = btrfs_sb_offset(i);
  195. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  196. cache->key.objectid, bytenr,
  197. 0, &logical, &nr, &stripe_len);
  198. BUG_ON(ret);
  199. while (nr--) {
  200. cache->bytes_super += stripe_len;
  201. ret = add_excluded_extent(root, logical[nr],
  202. stripe_len);
  203. BUG_ON(ret);
  204. }
  205. kfree(logical);
  206. }
  207. return 0;
  208. }
  209. static struct btrfs_caching_control *
  210. get_caching_control(struct btrfs_block_group_cache *cache)
  211. {
  212. struct btrfs_caching_control *ctl;
  213. spin_lock(&cache->lock);
  214. if (cache->cached != BTRFS_CACHE_STARTED) {
  215. spin_unlock(&cache->lock);
  216. return NULL;
  217. }
  218. /* We're loading it the fast way, so we don't have a caching_ctl. */
  219. if (!cache->caching_ctl) {
  220. spin_unlock(&cache->lock);
  221. return NULL;
  222. }
  223. ctl = cache->caching_ctl;
  224. atomic_inc(&ctl->count);
  225. spin_unlock(&cache->lock);
  226. return ctl;
  227. }
  228. static void put_caching_control(struct btrfs_caching_control *ctl)
  229. {
  230. if (atomic_dec_and_test(&ctl->count))
  231. kfree(ctl);
  232. }
  233. /*
  234. * this is only called by cache_block_group, since we could have freed extents
  235. * we need to check the pinned_extents for any extents that can't be used yet
  236. * since their free space will be released as soon as the transaction commits.
  237. */
  238. static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  239. struct btrfs_fs_info *info, u64 start, u64 end)
  240. {
  241. u64 extent_start, extent_end, size, total_added = 0;
  242. int ret;
  243. while (start < end) {
  244. ret = find_first_extent_bit(info->pinned_extents, start,
  245. &extent_start, &extent_end,
  246. EXTENT_DIRTY | EXTENT_UPTODATE);
  247. if (ret)
  248. break;
  249. if (extent_start <= start) {
  250. start = extent_end + 1;
  251. } else if (extent_start > start && extent_start < end) {
  252. size = extent_start - start;
  253. total_added += size;
  254. ret = btrfs_add_free_space(block_group, start,
  255. size);
  256. BUG_ON(ret);
  257. start = extent_end + 1;
  258. } else {
  259. break;
  260. }
  261. }
  262. if (start < end) {
  263. size = end - start;
  264. total_added += size;
  265. ret = btrfs_add_free_space(block_group, start, size);
  266. BUG_ON(ret);
  267. }
  268. return total_added;
  269. }
  270. static int caching_kthread(void *data)
  271. {
  272. struct btrfs_block_group_cache *block_group = data;
  273. struct btrfs_fs_info *fs_info = block_group->fs_info;
  274. struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
  275. struct btrfs_root *extent_root = fs_info->extent_root;
  276. struct btrfs_path *path;
  277. struct extent_buffer *leaf;
  278. struct btrfs_key key;
  279. u64 total_found = 0;
  280. u64 last = 0;
  281. u32 nritems;
  282. int ret = 0;
  283. path = btrfs_alloc_path();
  284. if (!path)
  285. return -ENOMEM;
  286. exclude_super_stripes(extent_root, block_group);
  287. spin_lock(&block_group->space_info->lock);
  288. block_group->space_info->bytes_readonly += block_group->bytes_super;
  289. spin_unlock(&block_group->space_info->lock);
  290. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  291. /*
  292. * We don't want to deadlock with somebody trying to allocate a new
  293. * extent for the extent root while also trying to search the extent
  294. * root to add free space. So we skip locking and search the commit
  295. * root, since its read-only
  296. */
  297. path->skip_locking = 1;
  298. path->search_commit_root = 1;
  299. path->reada = 2;
  300. key.objectid = last;
  301. key.offset = 0;
  302. key.type = BTRFS_EXTENT_ITEM_KEY;
  303. again:
  304. mutex_lock(&caching_ctl->mutex);
  305. /* need to make sure the commit_root doesn't disappear */
  306. down_read(&fs_info->extent_commit_sem);
  307. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  308. if (ret < 0)
  309. goto err;
  310. leaf = path->nodes[0];
  311. nritems = btrfs_header_nritems(leaf);
  312. while (1) {
  313. smp_mb();
  314. if (fs_info->closing > 1) {
  315. last = (u64)-1;
  316. break;
  317. }
  318. if (path->slots[0] < nritems) {
  319. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  320. } else {
  321. ret = find_next_key(path, 0, &key);
  322. if (ret)
  323. break;
  324. caching_ctl->progress = last;
  325. btrfs_release_path(extent_root, path);
  326. up_read(&fs_info->extent_commit_sem);
  327. mutex_unlock(&caching_ctl->mutex);
  328. if (btrfs_transaction_in_commit(fs_info))
  329. schedule_timeout(1);
  330. else
  331. cond_resched();
  332. goto again;
  333. }
  334. if (key.objectid < block_group->key.objectid) {
  335. path->slots[0]++;
  336. continue;
  337. }
  338. if (key.objectid >= block_group->key.objectid +
  339. block_group->key.offset)
  340. break;
  341. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  342. total_found += add_new_free_space(block_group,
  343. fs_info, last,
  344. key.objectid);
  345. last = key.objectid + key.offset;
  346. if (total_found > (1024 * 1024 * 2)) {
  347. total_found = 0;
  348. wake_up(&caching_ctl->wait);
  349. }
  350. }
  351. path->slots[0]++;
  352. }
  353. ret = 0;
  354. total_found += add_new_free_space(block_group, fs_info, last,
  355. block_group->key.objectid +
  356. block_group->key.offset);
  357. caching_ctl->progress = (u64)-1;
  358. spin_lock(&block_group->lock);
  359. block_group->caching_ctl = NULL;
  360. block_group->cached = BTRFS_CACHE_FINISHED;
  361. spin_unlock(&block_group->lock);
  362. err:
  363. btrfs_free_path(path);
  364. up_read(&fs_info->extent_commit_sem);
  365. free_excluded_extents(extent_root, block_group);
  366. mutex_unlock(&caching_ctl->mutex);
  367. wake_up(&caching_ctl->wait);
  368. put_caching_control(caching_ctl);
  369. atomic_dec(&block_group->space_info->caching_threads);
  370. btrfs_put_block_group(block_group);
  371. return 0;
  372. }
  373. static int cache_block_group(struct btrfs_block_group_cache *cache,
  374. struct btrfs_trans_handle *trans,
  375. struct btrfs_root *root,
  376. int load_cache_only)
  377. {
  378. struct btrfs_fs_info *fs_info = cache->fs_info;
  379. struct btrfs_caching_control *caching_ctl;
  380. struct task_struct *tsk;
  381. int ret = 0;
  382. smp_mb();
  383. if (cache->cached != BTRFS_CACHE_NO)
  384. return 0;
  385. /*
  386. * We can't do the read from on-disk cache during a commit since we need
  387. * to have the normal tree locking. Also if we are currently trying to
  388. * allocate blocks for the tree root we can't do the fast caching since
  389. * we likely hold important locks.
  390. */
  391. if (!trans->transaction->in_commit &&
  392. (root && root != root->fs_info->tree_root)) {
  393. spin_lock(&cache->lock);
  394. if (cache->cached != BTRFS_CACHE_NO) {
  395. spin_unlock(&cache->lock);
  396. return 0;
  397. }
  398. cache->cached = BTRFS_CACHE_STARTED;
  399. spin_unlock(&cache->lock);
  400. ret = load_free_space_cache(fs_info, cache);
  401. spin_lock(&cache->lock);
  402. if (ret == 1) {
  403. cache->cached = BTRFS_CACHE_FINISHED;
  404. cache->last_byte_to_unpin = (u64)-1;
  405. } else {
  406. cache->cached = BTRFS_CACHE_NO;
  407. }
  408. spin_unlock(&cache->lock);
  409. if (ret == 1)
  410. return 0;
  411. }
  412. if (load_cache_only)
  413. return 0;
  414. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
  415. BUG_ON(!caching_ctl);
  416. INIT_LIST_HEAD(&caching_ctl->list);
  417. mutex_init(&caching_ctl->mutex);
  418. init_waitqueue_head(&caching_ctl->wait);
  419. caching_ctl->block_group = cache;
  420. caching_ctl->progress = cache->key.objectid;
  421. /* one for caching kthread, one for caching block group list */
  422. atomic_set(&caching_ctl->count, 2);
  423. spin_lock(&cache->lock);
  424. if (cache->cached != BTRFS_CACHE_NO) {
  425. spin_unlock(&cache->lock);
  426. kfree(caching_ctl);
  427. return 0;
  428. }
  429. cache->caching_ctl = caching_ctl;
  430. cache->cached = BTRFS_CACHE_STARTED;
  431. spin_unlock(&cache->lock);
  432. down_write(&fs_info->extent_commit_sem);
  433. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  434. up_write(&fs_info->extent_commit_sem);
  435. atomic_inc(&cache->space_info->caching_threads);
  436. btrfs_get_block_group(cache);
  437. tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
  438. cache->key.objectid);
  439. if (IS_ERR(tsk)) {
  440. ret = PTR_ERR(tsk);
  441. printk(KERN_ERR "error running thread %d\n", ret);
  442. BUG();
  443. }
  444. return ret;
  445. }
  446. /*
  447. * return the block group that starts at or after bytenr
  448. */
  449. static struct btrfs_block_group_cache *
  450. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  451. {
  452. struct btrfs_block_group_cache *cache;
  453. cache = block_group_cache_tree_search(info, bytenr, 0);
  454. return cache;
  455. }
  456. /*
  457. * return the block group that contains the given bytenr
  458. */
  459. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  460. struct btrfs_fs_info *info,
  461. u64 bytenr)
  462. {
  463. struct btrfs_block_group_cache *cache;
  464. cache = block_group_cache_tree_search(info, bytenr, 1);
  465. return cache;
  466. }
  467. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  468. u64 flags)
  469. {
  470. struct list_head *head = &info->space_info;
  471. struct btrfs_space_info *found;
  472. flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
  473. BTRFS_BLOCK_GROUP_METADATA;
  474. rcu_read_lock();
  475. list_for_each_entry_rcu(found, head, list) {
  476. if (found->flags & flags) {
  477. rcu_read_unlock();
  478. return found;
  479. }
  480. }
  481. rcu_read_unlock();
  482. return NULL;
  483. }
  484. /*
  485. * after adding space to the filesystem, we need to clear the full flags
  486. * on all the space infos.
  487. */
  488. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  489. {
  490. struct list_head *head = &info->space_info;
  491. struct btrfs_space_info *found;
  492. rcu_read_lock();
  493. list_for_each_entry_rcu(found, head, list)
  494. found->full = 0;
  495. rcu_read_unlock();
  496. }
  497. static u64 div_factor(u64 num, int factor)
  498. {
  499. if (factor == 10)
  500. return num;
  501. num *= factor;
  502. do_div(num, 10);
  503. return num;
  504. }
  505. static u64 div_factor_fine(u64 num, int factor)
  506. {
  507. if (factor == 100)
  508. return num;
  509. num *= factor;
  510. do_div(num, 100);
  511. return num;
  512. }
  513. u64 btrfs_find_block_group(struct btrfs_root *root,
  514. u64 search_start, u64 search_hint, int owner)
  515. {
  516. struct btrfs_block_group_cache *cache;
  517. u64 used;
  518. u64 last = max(search_hint, search_start);
  519. u64 group_start = 0;
  520. int full_search = 0;
  521. int factor = 9;
  522. int wrapped = 0;
  523. again:
  524. while (1) {
  525. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  526. if (!cache)
  527. break;
  528. spin_lock(&cache->lock);
  529. last = cache->key.objectid + cache->key.offset;
  530. used = btrfs_block_group_used(&cache->item);
  531. if ((full_search || !cache->ro) &&
  532. block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
  533. if (used + cache->pinned + cache->reserved <
  534. div_factor(cache->key.offset, factor)) {
  535. group_start = cache->key.objectid;
  536. spin_unlock(&cache->lock);
  537. btrfs_put_block_group(cache);
  538. goto found;
  539. }
  540. }
  541. spin_unlock(&cache->lock);
  542. btrfs_put_block_group(cache);
  543. cond_resched();
  544. }
  545. if (!wrapped) {
  546. last = search_start;
  547. wrapped = 1;
  548. goto again;
  549. }
  550. if (!full_search && factor < 10) {
  551. last = search_start;
  552. full_search = 1;
  553. factor = 10;
  554. goto again;
  555. }
  556. found:
  557. return group_start;
  558. }
  559. /* simple helper to search for an existing extent at a given offset */
  560. int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
  561. {
  562. int ret;
  563. struct btrfs_key key;
  564. struct btrfs_path *path;
  565. path = btrfs_alloc_path();
  566. BUG_ON(!path);
  567. key.objectid = start;
  568. key.offset = len;
  569. btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
  570. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  571. 0, 0);
  572. btrfs_free_path(path);
  573. return ret;
  574. }
  575. /*
  576. * helper function to lookup reference count and flags of extent.
  577. *
  578. * the head node for delayed ref is used to store the sum of all the
  579. * reference count modifications queued up in the rbtree. the head
  580. * node may also store the extent flags to set. This way you can check
  581. * to see what the reference count and extent flags would be if all of
  582. * the delayed refs are not processed.
  583. */
  584. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  585. struct btrfs_root *root, u64 bytenr,
  586. u64 num_bytes, u64 *refs, u64 *flags)
  587. {
  588. struct btrfs_delayed_ref_head *head;
  589. struct btrfs_delayed_ref_root *delayed_refs;
  590. struct btrfs_path *path;
  591. struct btrfs_extent_item *ei;
  592. struct extent_buffer *leaf;
  593. struct btrfs_key key;
  594. u32 item_size;
  595. u64 num_refs;
  596. u64 extent_flags;
  597. int ret;
  598. path = btrfs_alloc_path();
  599. if (!path)
  600. return -ENOMEM;
  601. key.objectid = bytenr;
  602. key.type = BTRFS_EXTENT_ITEM_KEY;
  603. key.offset = num_bytes;
  604. if (!trans) {
  605. path->skip_locking = 1;
  606. path->search_commit_root = 1;
  607. }
  608. again:
  609. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  610. &key, path, 0, 0);
  611. if (ret < 0)
  612. goto out_free;
  613. if (ret == 0) {
  614. leaf = path->nodes[0];
  615. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  616. if (item_size >= sizeof(*ei)) {
  617. ei = btrfs_item_ptr(leaf, path->slots[0],
  618. struct btrfs_extent_item);
  619. num_refs = btrfs_extent_refs(leaf, ei);
  620. extent_flags = btrfs_extent_flags(leaf, ei);
  621. } else {
  622. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  623. struct btrfs_extent_item_v0 *ei0;
  624. BUG_ON(item_size != sizeof(*ei0));
  625. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  626. struct btrfs_extent_item_v0);
  627. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  628. /* FIXME: this isn't correct for data */
  629. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  630. #else
  631. BUG();
  632. #endif
  633. }
  634. BUG_ON(num_refs == 0);
  635. } else {
  636. num_refs = 0;
  637. extent_flags = 0;
  638. ret = 0;
  639. }
  640. if (!trans)
  641. goto out;
  642. delayed_refs = &trans->transaction->delayed_refs;
  643. spin_lock(&delayed_refs->lock);
  644. head = btrfs_find_delayed_ref_head(trans, bytenr);
  645. if (head) {
  646. if (!mutex_trylock(&head->mutex)) {
  647. atomic_inc(&head->node.refs);
  648. spin_unlock(&delayed_refs->lock);
  649. btrfs_release_path(root->fs_info->extent_root, path);
  650. mutex_lock(&head->mutex);
  651. mutex_unlock(&head->mutex);
  652. btrfs_put_delayed_ref(&head->node);
  653. goto again;
  654. }
  655. if (head->extent_op && head->extent_op->update_flags)
  656. extent_flags |= head->extent_op->flags_to_set;
  657. else
  658. BUG_ON(num_refs == 0);
  659. num_refs += head->node.ref_mod;
  660. mutex_unlock(&head->mutex);
  661. }
  662. spin_unlock(&delayed_refs->lock);
  663. out:
  664. WARN_ON(num_refs == 0);
  665. if (refs)
  666. *refs = num_refs;
  667. if (flags)
  668. *flags = extent_flags;
  669. out_free:
  670. btrfs_free_path(path);
  671. return ret;
  672. }
  673. /*
  674. * Back reference rules. Back refs have three main goals:
  675. *
  676. * 1) differentiate between all holders of references to an extent so that
  677. * when a reference is dropped we can make sure it was a valid reference
  678. * before freeing the extent.
  679. *
  680. * 2) Provide enough information to quickly find the holders of an extent
  681. * if we notice a given block is corrupted or bad.
  682. *
  683. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  684. * maintenance. This is actually the same as #2, but with a slightly
  685. * different use case.
  686. *
  687. * There are two kinds of back refs. The implicit back refs is optimized
  688. * for pointers in non-shared tree blocks. For a given pointer in a block,
  689. * back refs of this kind provide information about the block's owner tree
  690. * and the pointer's key. These information allow us to find the block by
  691. * b-tree searching. The full back refs is for pointers in tree blocks not
  692. * referenced by their owner trees. The location of tree block is recorded
  693. * in the back refs. Actually the full back refs is generic, and can be
  694. * used in all cases the implicit back refs is used. The major shortcoming
  695. * of the full back refs is its overhead. Every time a tree block gets
  696. * COWed, we have to update back refs entry for all pointers in it.
  697. *
  698. * For a newly allocated tree block, we use implicit back refs for
  699. * pointers in it. This means most tree related operations only involve
  700. * implicit back refs. For a tree block created in old transaction, the
  701. * only way to drop a reference to it is COW it. So we can detect the
  702. * event that tree block loses its owner tree's reference and do the
  703. * back refs conversion.
  704. *
  705. * When a tree block is COW'd through a tree, there are four cases:
  706. *
  707. * The reference count of the block is one and the tree is the block's
  708. * owner tree. Nothing to do in this case.
  709. *
  710. * The reference count of the block is one and the tree is not the
  711. * block's owner tree. In this case, full back refs is used for pointers
  712. * in the block. Remove these full back refs, add implicit back refs for
  713. * every pointers in the new block.
  714. *
  715. * The reference count of the block is greater than one and the tree is
  716. * the block's owner tree. In this case, implicit back refs is used for
  717. * pointers in the block. Add full back refs for every pointers in the
  718. * block, increase lower level extents' reference counts. The original
  719. * implicit back refs are entailed to the new block.
  720. *
  721. * The reference count of the block is greater than one and the tree is
  722. * not the block's owner tree. Add implicit back refs for every pointer in
  723. * the new block, increase lower level extents' reference count.
  724. *
  725. * Back Reference Key composing:
  726. *
  727. * The key objectid corresponds to the first byte in the extent,
  728. * The key type is used to differentiate between types of back refs.
  729. * There are different meanings of the key offset for different types
  730. * of back refs.
  731. *
  732. * File extents can be referenced by:
  733. *
  734. * - multiple snapshots, subvolumes, or different generations in one subvol
  735. * - different files inside a single subvolume
  736. * - different offsets inside a file (bookend extents in file.c)
  737. *
  738. * The extent ref structure for the implicit back refs has fields for:
  739. *
  740. * - Objectid of the subvolume root
  741. * - objectid of the file holding the reference
  742. * - original offset in the file
  743. * - how many bookend extents
  744. *
  745. * The key offset for the implicit back refs is hash of the first
  746. * three fields.
  747. *
  748. * The extent ref structure for the full back refs has field for:
  749. *
  750. * - number of pointers in the tree leaf
  751. *
  752. * The key offset for the implicit back refs is the first byte of
  753. * the tree leaf
  754. *
  755. * When a file extent is allocated, The implicit back refs is used.
  756. * the fields are filled in:
  757. *
  758. * (root_key.objectid, inode objectid, offset in file, 1)
  759. *
  760. * When a file extent is removed file truncation, we find the
  761. * corresponding implicit back refs and check the following fields:
  762. *
  763. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  764. *
  765. * Btree extents can be referenced by:
  766. *
  767. * - Different subvolumes
  768. *
  769. * Both the implicit back refs and the full back refs for tree blocks
  770. * only consist of key. The key offset for the implicit back refs is
  771. * objectid of block's owner tree. The key offset for the full back refs
  772. * is the first byte of parent block.
  773. *
  774. * When implicit back refs is used, information about the lowest key and
  775. * level of the tree block are required. These information are stored in
  776. * tree block info structure.
  777. */
  778. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  779. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  780. struct btrfs_root *root,
  781. struct btrfs_path *path,
  782. u64 owner, u32 extra_size)
  783. {
  784. struct btrfs_extent_item *item;
  785. struct btrfs_extent_item_v0 *ei0;
  786. struct btrfs_extent_ref_v0 *ref0;
  787. struct btrfs_tree_block_info *bi;
  788. struct extent_buffer *leaf;
  789. struct btrfs_key key;
  790. struct btrfs_key found_key;
  791. u32 new_size = sizeof(*item);
  792. u64 refs;
  793. int ret;
  794. leaf = path->nodes[0];
  795. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  796. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  797. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  798. struct btrfs_extent_item_v0);
  799. refs = btrfs_extent_refs_v0(leaf, ei0);
  800. if (owner == (u64)-1) {
  801. while (1) {
  802. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  803. ret = btrfs_next_leaf(root, path);
  804. if (ret < 0)
  805. return ret;
  806. BUG_ON(ret > 0);
  807. leaf = path->nodes[0];
  808. }
  809. btrfs_item_key_to_cpu(leaf, &found_key,
  810. path->slots[0]);
  811. BUG_ON(key.objectid != found_key.objectid);
  812. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  813. path->slots[0]++;
  814. continue;
  815. }
  816. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  817. struct btrfs_extent_ref_v0);
  818. owner = btrfs_ref_objectid_v0(leaf, ref0);
  819. break;
  820. }
  821. }
  822. btrfs_release_path(root, path);
  823. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  824. new_size += sizeof(*bi);
  825. new_size -= sizeof(*ei0);
  826. ret = btrfs_search_slot(trans, root, &key, path,
  827. new_size + extra_size, 1);
  828. if (ret < 0)
  829. return ret;
  830. BUG_ON(ret);
  831. ret = btrfs_extend_item(trans, root, path, new_size);
  832. BUG_ON(ret);
  833. leaf = path->nodes[0];
  834. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  835. btrfs_set_extent_refs(leaf, item, refs);
  836. /* FIXME: get real generation */
  837. btrfs_set_extent_generation(leaf, item, 0);
  838. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  839. btrfs_set_extent_flags(leaf, item,
  840. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  841. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  842. bi = (struct btrfs_tree_block_info *)(item + 1);
  843. /* FIXME: get first key of the block */
  844. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  845. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  846. } else {
  847. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  848. }
  849. btrfs_mark_buffer_dirty(leaf);
  850. return 0;
  851. }
  852. #endif
  853. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  854. {
  855. u32 high_crc = ~(u32)0;
  856. u32 low_crc = ~(u32)0;
  857. __le64 lenum;
  858. lenum = cpu_to_le64(root_objectid);
  859. high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
  860. lenum = cpu_to_le64(owner);
  861. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  862. lenum = cpu_to_le64(offset);
  863. low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
  864. return ((u64)high_crc << 31) ^ (u64)low_crc;
  865. }
  866. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  867. struct btrfs_extent_data_ref *ref)
  868. {
  869. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  870. btrfs_extent_data_ref_objectid(leaf, ref),
  871. btrfs_extent_data_ref_offset(leaf, ref));
  872. }
  873. static int match_extent_data_ref(struct extent_buffer *leaf,
  874. struct btrfs_extent_data_ref *ref,
  875. u64 root_objectid, u64 owner, u64 offset)
  876. {
  877. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  878. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  879. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  880. return 0;
  881. return 1;
  882. }
  883. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  884. struct btrfs_root *root,
  885. struct btrfs_path *path,
  886. u64 bytenr, u64 parent,
  887. u64 root_objectid,
  888. u64 owner, u64 offset)
  889. {
  890. struct btrfs_key key;
  891. struct btrfs_extent_data_ref *ref;
  892. struct extent_buffer *leaf;
  893. u32 nritems;
  894. int ret;
  895. int recow;
  896. int err = -ENOENT;
  897. key.objectid = bytenr;
  898. if (parent) {
  899. key.type = BTRFS_SHARED_DATA_REF_KEY;
  900. key.offset = parent;
  901. } else {
  902. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  903. key.offset = hash_extent_data_ref(root_objectid,
  904. owner, offset);
  905. }
  906. again:
  907. recow = 0;
  908. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  909. if (ret < 0) {
  910. err = ret;
  911. goto fail;
  912. }
  913. if (parent) {
  914. if (!ret)
  915. return 0;
  916. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  917. key.type = BTRFS_EXTENT_REF_V0_KEY;
  918. btrfs_release_path(root, path);
  919. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  920. if (ret < 0) {
  921. err = ret;
  922. goto fail;
  923. }
  924. if (!ret)
  925. return 0;
  926. #endif
  927. goto fail;
  928. }
  929. leaf = path->nodes[0];
  930. nritems = btrfs_header_nritems(leaf);
  931. while (1) {
  932. if (path->slots[0] >= nritems) {
  933. ret = btrfs_next_leaf(root, path);
  934. if (ret < 0)
  935. err = ret;
  936. if (ret)
  937. goto fail;
  938. leaf = path->nodes[0];
  939. nritems = btrfs_header_nritems(leaf);
  940. recow = 1;
  941. }
  942. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  943. if (key.objectid != bytenr ||
  944. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  945. goto fail;
  946. ref = btrfs_item_ptr(leaf, path->slots[0],
  947. struct btrfs_extent_data_ref);
  948. if (match_extent_data_ref(leaf, ref, root_objectid,
  949. owner, offset)) {
  950. if (recow) {
  951. btrfs_release_path(root, path);
  952. goto again;
  953. }
  954. err = 0;
  955. break;
  956. }
  957. path->slots[0]++;
  958. }
  959. fail:
  960. return err;
  961. }
  962. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  963. struct btrfs_root *root,
  964. struct btrfs_path *path,
  965. u64 bytenr, u64 parent,
  966. u64 root_objectid, u64 owner,
  967. u64 offset, int refs_to_add)
  968. {
  969. struct btrfs_key key;
  970. struct extent_buffer *leaf;
  971. u32 size;
  972. u32 num_refs;
  973. int ret;
  974. key.objectid = bytenr;
  975. if (parent) {
  976. key.type = BTRFS_SHARED_DATA_REF_KEY;
  977. key.offset = parent;
  978. size = sizeof(struct btrfs_shared_data_ref);
  979. } else {
  980. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  981. key.offset = hash_extent_data_ref(root_objectid,
  982. owner, offset);
  983. size = sizeof(struct btrfs_extent_data_ref);
  984. }
  985. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  986. if (ret && ret != -EEXIST)
  987. goto fail;
  988. leaf = path->nodes[0];
  989. if (parent) {
  990. struct btrfs_shared_data_ref *ref;
  991. ref = btrfs_item_ptr(leaf, path->slots[0],
  992. struct btrfs_shared_data_ref);
  993. if (ret == 0) {
  994. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  995. } else {
  996. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  997. num_refs += refs_to_add;
  998. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  999. }
  1000. } else {
  1001. struct btrfs_extent_data_ref *ref;
  1002. while (ret == -EEXIST) {
  1003. ref = btrfs_item_ptr(leaf, path->slots[0],
  1004. struct btrfs_extent_data_ref);
  1005. if (match_extent_data_ref(leaf, ref, root_objectid,
  1006. owner, offset))
  1007. break;
  1008. btrfs_release_path(root, path);
  1009. key.offset++;
  1010. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1011. size);
  1012. if (ret && ret != -EEXIST)
  1013. goto fail;
  1014. leaf = path->nodes[0];
  1015. }
  1016. ref = btrfs_item_ptr(leaf, path->slots[0],
  1017. struct btrfs_extent_data_ref);
  1018. if (ret == 0) {
  1019. btrfs_set_extent_data_ref_root(leaf, ref,
  1020. root_objectid);
  1021. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1022. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1023. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1024. } else {
  1025. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1026. num_refs += refs_to_add;
  1027. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1028. }
  1029. }
  1030. btrfs_mark_buffer_dirty(leaf);
  1031. ret = 0;
  1032. fail:
  1033. btrfs_release_path(root, path);
  1034. return ret;
  1035. }
  1036. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1037. struct btrfs_root *root,
  1038. struct btrfs_path *path,
  1039. int refs_to_drop)
  1040. {
  1041. struct btrfs_key key;
  1042. struct btrfs_extent_data_ref *ref1 = NULL;
  1043. struct btrfs_shared_data_ref *ref2 = NULL;
  1044. struct extent_buffer *leaf;
  1045. u32 num_refs = 0;
  1046. int ret = 0;
  1047. leaf = path->nodes[0];
  1048. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1049. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1050. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1051. struct btrfs_extent_data_ref);
  1052. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1053. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1054. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1055. struct btrfs_shared_data_ref);
  1056. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1057. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1058. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1059. struct btrfs_extent_ref_v0 *ref0;
  1060. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1061. struct btrfs_extent_ref_v0);
  1062. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1063. #endif
  1064. } else {
  1065. BUG();
  1066. }
  1067. BUG_ON(num_refs < refs_to_drop);
  1068. num_refs -= refs_to_drop;
  1069. if (num_refs == 0) {
  1070. ret = btrfs_del_item(trans, root, path);
  1071. } else {
  1072. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1073. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1074. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1075. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1076. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1077. else {
  1078. struct btrfs_extent_ref_v0 *ref0;
  1079. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1080. struct btrfs_extent_ref_v0);
  1081. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1082. }
  1083. #endif
  1084. btrfs_mark_buffer_dirty(leaf);
  1085. }
  1086. return ret;
  1087. }
  1088. static noinline u32 extent_data_ref_count(struct btrfs_root *root,
  1089. struct btrfs_path *path,
  1090. struct btrfs_extent_inline_ref *iref)
  1091. {
  1092. struct btrfs_key key;
  1093. struct extent_buffer *leaf;
  1094. struct btrfs_extent_data_ref *ref1;
  1095. struct btrfs_shared_data_ref *ref2;
  1096. u32 num_refs = 0;
  1097. leaf = path->nodes[0];
  1098. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1099. if (iref) {
  1100. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1101. BTRFS_EXTENT_DATA_REF_KEY) {
  1102. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1103. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1104. } else {
  1105. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1106. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1107. }
  1108. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1109. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1110. struct btrfs_extent_data_ref);
  1111. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1112. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1113. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1114. struct btrfs_shared_data_ref);
  1115. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1116. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1117. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1118. struct btrfs_extent_ref_v0 *ref0;
  1119. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1120. struct btrfs_extent_ref_v0);
  1121. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1122. #endif
  1123. } else {
  1124. WARN_ON(1);
  1125. }
  1126. return num_refs;
  1127. }
  1128. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1129. struct btrfs_root *root,
  1130. struct btrfs_path *path,
  1131. u64 bytenr, u64 parent,
  1132. u64 root_objectid)
  1133. {
  1134. struct btrfs_key key;
  1135. int ret;
  1136. key.objectid = bytenr;
  1137. if (parent) {
  1138. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1139. key.offset = parent;
  1140. } else {
  1141. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1142. key.offset = root_objectid;
  1143. }
  1144. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1145. if (ret > 0)
  1146. ret = -ENOENT;
  1147. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1148. if (ret == -ENOENT && parent) {
  1149. btrfs_release_path(root, path);
  1150. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1151. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1152. if (ret > 0)
  1153. ret = -ENOENT;
  1154. }
  1155. #endif
  1156. return ret;
  1157. }
  1158. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1159. struct btrfs_root *root,
  1160. struct btrfs_path *path,
  1161. u64 bytenr, u64 parent,
  1162. u64 root_objectid)
  1163. {
  1164. struct btrfs_key key;
  1165. int ret;
  1166. key.objectid = bytenr;
  1167. if (parent) {
  1168. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1169. key.offset = parent;
  1170. } else {
  1171. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1172. key.offset = root_objectid;
  1173. }
  1174. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1175. btrfs_release_path(root, path);
  1176. return ret;
  1177. }
  1178. static inline int extent_ref_type(u64 parent, u64 owner)
  1179. {
  1180. int type;
  1181. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1182. if (parent > 0)
  1183. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1184. else
  1185. type = BTRFS_TREE_BLOCK_REF_KEY;
  1186. } else {
  1187. if (parent > 0)
  1188. type = BTRFS_SHARED_DATA_REF_KEY;
  1189. else
  1190. type = BTRFS_EXTENT_DATA_REF_KEY;
  1191. }
  1192. return type;
  1193. }
  1194. static int find_next_key(struct btrfs_path *path, int level,
  1195. struct btrfs_key *key)
  1196. {
  1197. for (; level < BTRFS_MAX_LEVEL; level++) {
  1198. if (!path->nodes[level])
  1199. break;
  1200. if (path->slots[level] + 1 >=
  1201. btrfs_header_nritems(path->nodes[level]))
  1202. continue;
  1203. if (level == 0)
  1204. btrfs_item_key_to_cpu(path->nodes[level], key,
  1205. path->slots[level] + 1);
  1206. else
  1207. btrfs_node_key_to_cpu(path->nodes[level], key,
  1208. path->slots[level] + 1);
  1209. return 0;
  1210. }
  1211. return 1;
  1212. }
  1213. /*
  1214. * look for inline back ref. if back ref is found, *ref_ret is set
  1215. * to the address of inline back ref, and 0 is returned.
  1216. *
  1217. * if back ref isn't found, *ref_ret is set to the address where it
  1218. * should be inserted, and -ENOENT is returned.
  1219. *
  1220. * if insert is true and there are too many inline back refs, the path
  1221. * points to the extent item, and -EAGAIN is returned.
  1222. *
  1223. * NOTE: inline back refs are ordered in the same way that back ref
  1224. * items in the tree are ordered.
  1225. */
  1226. static noinline_for_stack
  1227. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1228. struct btrfs_root *root,
  1229. struct btrfs_path *path,
  1230. struct btrfs_extent_inline_ref **ref_ret,
  1231. u64 bytenr, u64 num_bytes,
  1232. u64 parent, u64 root_objectid,
  1233. u64 owner, u64 offset, int insert)
  1234. {
  1235. struct btrfs_key key;
  1236. struct extent_buffer *leaf;
  1237. struct btrfs_extent_item *ei;
  1238. struct btrfs_extent_inline_ref *iref;
  1239. u64 flags;
  1240. u64 item_size;
  1241. unsigned long ptr;
  1242. unsigned long end;
  1243. int extra_size;
  1244. int type;
  1245. int want;
  1246. int ret;
  1247. int err = 0;
  1248. key.objectid = bytenr;
  1249. key.type = BTRFS_EXTENT_ITEM_KEY;
  1250. key.offset = num_bytes;
  1251. want = extent_ref_type(parent, owner);
  1252. if (insert) {
  1253. extra_size = btrfs_extent_inline_ref_size(want);
  1254. path->keep_locks = 1;
  1255. } else
  1256. extra_size = -1;
  1257. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1258. if (ret < 0) {
  1259. err = ret;
  1260. goto out;
  1261. }
  1262. BUG_ON(ret);
  1263. leaf = path->nodes[0];
  1264. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1265. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1266. if (item_size < sizeof(*ei)) {
  1267. if (!insert) {
  1268. err = -ENOENT;
  1269. goto out;
  1270. }
  1271. ret = convert_extent_item_v0(trans, root, path, owner,
  1272. extra_size);
  1273. if (ret < 0) {
  1274. err = ret;
  1275. goto out;
  1276. }
  1277. leaf = path->nodes[0];
  1278. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1279. }
  1280. #endif
  1281. BUG_ON(item_size < sizeof(*ei));
  1282. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1283. flags = btrfs_extent_flags(leaf, ei);
  1284. ptr = (unsigned long)(ei + 1);
  1285. end = (unsigned long)ei + item_size;
  1286. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1287. ptr += sizeof(struct btrfs_tree_block_info);
  1288. BUG_ON(ptr > end);
  1289. } else {
  1290. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  1291. }
  1292. err = -ENOENT;
  1293. while (1) {
  1294. if (ptr >= end) {
  1295. WARN_ON(ptr > end);
  1296. break;
  1297. }
  1298. iref = (struct btrfs_extent_inline_ref *)ptr;
  1299. type = btrfs_extent_inline_ref_type(leaf, iref);
  1300. if (want < type)
  1301. break;
  1302. if (want > type) {
  1303. ptr += btrfs_extent_inline_ref_size(type);
  1304. continue;
  1305. }
  1306. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1307. struct btrfs_extent_data_ref *dref;
  1308. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1309. if (match_extent_data_ref(leaf, dref, root_objectid,
  1310. owner, offset)) {
  1311. err = 0;
  1312. break;
  1313. }
  1314. if (hash_extent_data_ref_item(leaf, dref) <
  1315. hash_extent_data_ref(root_objectid, owner, offset))
  1316. break;
  1317. } else {
  1318. u64 ref_offset;
  1319. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1320. if (parent > 0) {
  1321. if (parent == ref_offset) {
  1322. err = 0;
  1323. break;
  1324. }
  1325. if (ref_offset < parent)
  1326. break;
  1327. } else {
  1328. if (root_objectid == ref_offset) {
  1329. err = 0;
  1330. break;
  1331. }
  1332. if (ref_offset < root_objectid)
  1333. break;
  1334. }
  1335. }
  1336. ptr += btrfs_extent_inline_ref_size(type);
  1337. }
  1338. if (err == -ENOENT && insert) {
  1339. if (item_size + extra_size >=
  1340. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1341. err = -EAGAIN;
  1342. goto out;
  1343. }
  1344. /*
  1345. * To add new inline back ref, we have to make sure
  1346. * there is no corresponding back ref item.
  1347. * For simplicity, we just do not add new inline back
  1348. * ref if there is any kind of item for this block
  1349. */
  1350. if (find_next_key(path, 0, &key) == 0 &&
  1351. key.objectid == bytenr &&
  1352. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1353. err = -EAGAIN;
  1354. goto out;
  1355. }
  1356. }
  1357. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1358. out:
  1359. if (insert) {
  1360. path->keep_locks = 0;
  1361. btrfs_unlock_up_safe(path, 1);
  1362. }
  1363. return err;
  1364. }
  1365. /*
  1366. * helper to add new inline back ref
  1367. */
  1368. static noinline_for_stack
  1369. int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1370. struct btrfs_root *root,
  1371. struct btrfs_path *path,
  1372. struct btrfs_extent_inline_ref *iref,
  1373. u64 parent, u64 root_objectid,
  1374. u64 owner, u64 offset, int refs_to_add,
  1375. struct btrfs_delayed_extent_op *extent_op)
  1376. {
  1377. struct extent_buffer *leaf;
  1378. struct btrfs_extent_item *ei;
  1379. unsigned long ptr;
  1380. unsigned long end;
  1381. unsigned long item_offset;
  1382. u64 refs;
  1383. int size;
  1384. int type;
  1385. int ret;
  1386. leaf = path->nodes[0];
  1387. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1388. item_offset = (unsigned long)iref - (unsigned long)ei;
  1389. type = extent_ref_type(parent, owner);
  1390. size = btrfs_extent_inline_ref_size(type);
  1391. ret = btrfs_extend_item(trans, root, path, size);
  1392. BUG_ON(ret);
  1393. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1394. refs = btrfs_extent_refs(leaf, ei);
  1395. refs += refs_to_add;
  1396. btrfs_set_extent_refs(leaf, ei, refs);
  1397. if (extent_op)
  1398. __run_delayed_extent_op(extent_op, leaf, ei);
  1399. ptr = (unsigned long)ei + item_offset;
  1400. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1401. if (ptr < end - size)
  1402. memmove_extent_buffer(leaf, ptr + size, ptr,
  1403. end - size - ptr);
  1404. iref = (struct btrfs_extent_inline_ref *)ptr;
  1405. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1406. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1407. struct btrfs_extent_data_ref *dref;
  1408. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1409. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1410. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1411. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1412. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1413. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1414. struct btrfs_shared_data_ref *sref;
  1415. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1416. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1417. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1418. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1419. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1420. } else {
  1421. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1422. }
  1423. btrfs_mark_buffer_dirty(leaf);
  1424. return 0;
  1425. }
  1426. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1427. struct btrfs_root *root,
  1428. struct btrfs_path *path,
  1429. struct btrfs_extent_inline_ref **ref_ret,
  1430. u64 bytenr, u64 num_bytes, u64 parent,
  1431. u64 root_objectid, u64 owner, u64 offset)
  1432. {
  1433. int ret;
  1434. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1435. bytenr, num_bytes, parent,
  1436. root_objectid, owner, offset, 0);
  1437. if (ret != -ENOENT)
  1438. return ret;
  1439. btrfs_release_path(root, path);
  1440. *ref_ret = NULL;
  1441. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1442. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1443. root_objectid);
  1444. } else {
  1445. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1446. root_objectid, owner, offset);
  1447. }
  1448. return ret;
  1449. }
  1450. /*
  1451. * helper to update/remove inline back ref
  1452. */
  1453. static noinline_for_stack
  1454. int update_inline_extent_backref(struct btrfs_trans_handle *trans,
  1455. struct btrfs_root *root,
  1456. struct btrfs_path *path,
  1457. struct btrfs_extent_inline_ref *iref,
  1458. int refs_to_mod,
  1459. struct btrfs_delayed_extent_op *extent_op)
  1460. {
  1461. struct extent_buffer *leaf;
  1462. struct btrfs_extent_item *ei;
  1463. struct btrfs_extent_data_ref *dref = NULL;
  1464. struct btrfs_shared_data_ref *sref = NULL;
  1465. unsigned long ptr;
  1466. unsigned long end;
  1467. u32 item_size;
  1468. int size;
  1469. int type;
  1470. int ret;
  1471. u64 refs;
  1472. leaf = path->nodes[0];
  1473. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1474. refs = btrfs_extent_refs(leaf, ei);
  1475. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1476. refs += refs_to_mod;
  1477. btrfs_set_extent_refs(leaf, ei, refs);
  1478. if (extent_op)
  1479. __run_delayed_extent_op(extent_op, leaf, ei);
  1480. type = btrfs_extent_inline_ref_type(leaf, iref);
  1481. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1482. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1483. refs = btrfs_extent_data_ref_count(leaf, dref);
  1484. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1485. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1486. refs = btrfs_shared_data_ref_count(leaf, sref);
  1487. } else {
  1488. refs = 1;
  1489. BUG_ON(refs_to_mod != -1);
  1490. }
  1491. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1492. refs += refs_to_mod;
  1493. if (refs > 0) {
  1494. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1495. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1496. else
  1497. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1498. } else {
  1499. size = btrfs_extent_inline_ref_size(type);
  1500. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1501. ptr = (unsigned long)iref;
  1502. end = (unsigned long)ei + item_size;
  1503. if (ptr + size < end)
  1504. memmove_extent_buffer(leaf, ptr, ptr + size,
  1505. end - ptr - size);
  1506. item_size -= size;
  1507. ret = btrfs_truncate_item(trans, root, path, item_size, 1);
  1508. BUG_ON(ret);
  1509. }
  1510. btrfs_mark_buffer_dirty(leaf);
  1511. return 0;
  1512. }
  1513. static noinline_for_stack
  1514. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1515. struct btrfs_root *root,
  1516. struct btrfs_path *path,
  1517. u64 bytenr, u64 num_bytes, u64 parent,
  1518. u64 root_objectid, u64 owner,
  1519. u64 offset, int refs_to_add,
  1520. struct btrfs_delayed_extent_op *extent_op)
  1521. {
  1522. struct btrfs_extent_inline_ref *iref;
  1523. int ret;
  1524. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1525. bytenr, num_bytes, parent,
  1526. root_objectid, owner, offset, 1);
  1527. if (ret == 0) {
  1528. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1529. ret = update_inline_extent_backref(trans, root, path, iref,
  1530. refs_to_add, extent_op);
  1531. } else if (ret == -ENOENT) {
  1532. ret = setup_inline_extent_backref(trans, root, path, iref,
  1533. parent, root_objectid,
  1534. owner, offset, refs_to_add,
  1535. extent_op);
  1536. }
  1537. return ret;
  1538. }
  1539. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1540. struct btrfs_root *root,
  1541. struct btrfs_path *path,
  1542. u64 bytenr, u64 parent, u64 root_objectid,
  1543. u64 owner, u64 offset, int refs_to_add)
  1544. {
  1545. int ret;
  1546. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1547. BUG_ON(refs_to_add != 1);
  1548. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1549. parent, root_objectid);
  1550. } else {
  1551. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1552. parent, root_objectid,
  1553. owner, offset, refs_to_add);
  1554. }
  1555. return ret;
  1556. }
  1557. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1558. struct btrfs_root *root,
  1559. struct btrfs_path *path,
  1560. struct btrfs_extent_inline_ref *iref,
  1561. int refs_to_drop, int is_data)
  1562. {
  1563. int ret;
  1564. BUG_ON(!is_data && refs_to_drop != 1);
  1565. if (iref) {
  1566. ret = update_inline_extent_backref(trans, root, path, iref,
  1567. -refs_to_drop, NULL);
  1568. } else if (is_data) {
  1569. ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
  1570. } else {
  1571. ret = btrfs_del_item(trans, root, path);
  1572. }
  1573. return ret;
  1574. }
  1575. static void btrfs_issue_discard(struct block_device *bdev,
  1576. u64 start, u64 len)
  1577. {
  1578. blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
  1579. BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
  1580. }
  1581. static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1582. u64 num_bytes)
  1583. {
  1584. int ret;
  1585. u64 map_length = num_bytes;
  1586. struct btrfs_multi_bio *multi = NULL;
  1587. if (!btrfs_test_opt(root, DISCARD))
  1588. return 0;
  1589. /* Tell the block device(s) that the sectors can be discarded */
  1590. ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
  1591. bytenr, &map_length, &multi, 0);
  1592. if (!ret) {
  1593. struct btrfs_bio_stripe *stripe = multi->stripes;
  1594. int i;
  1595. if (map_length > num_bytes)
  1596. map_length = num_bytes;
  1597. for (i = 0; i < multi->num_stripes; i++, stripe++) {
  1598. btrfs_issue_discard(stripe->dev->bdev,
  1599. stripe->physical,
  1600. map_length);
  1601. }
  1602. kfree(multi);
  1603. }
  1604. return ret;
  1605. }
  1606. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1607. struct btrfs_root *root,
  1608. u64 bytenr, u64 num_bytes, u64 parent,
  1609. u64 root_objectid, u64 owner, u64 offset)
  1610. {
  1611. int ret;
  1612. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1613. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1614. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1615. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  1616. parent, root_objectid, (int)owner,
  1617. BTRFS_ADD_DELAYED_REF, NULL);
  1618. } else {
  1619. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  1620. parent, root_objectid, owner, offset,
  1621. BTRFS_ADD_DELAYED_REF, NULL);
  1622. }
  1623. return ret;
  1624. }
  1625. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1626. struct btrfs_root *root,
  1627. u64 bytenr, u64 num_bytes,
  1628. u64 parent, u64 root_objectid,
  1629. u64 owner, u64 offset, int refs_to_add,
  1630. struct btrfs_delayed_extent_op *extent_op)
  1631. {
  1632. struct btrfs_path *path;
  1633. struct extent_buffer *leaf;
  1634. struct btrfs_extent_item *item;
  1635. u64 refs;
  1636. int ret;
  1637. int err = 0;
  1638. path = btrfs_alloc_path();
  1639. if (!path)
  1640. return -ENOMEM;
  1641. path->reada = 1;
  1642. path->leave_spinning = 1;
  1643. /* this will setup the path even if it fails to insert the back ref */
  1644. ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
  1645. path, bytenr, num_bytes, parent,
  1646. root_objectid, owner, offset,
  1647. refs_to_add, extent_op);
  1648. if (ret == 0)
  1649. goto out;
  1650. if (ret != -EAGAIN) {
  1651. err = ret;
  1652. goto out;
  1653. }
  1654. leaf = path->nodes[0];
  1655. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1656. refs = btrfs_extent_refs(leaf, item);
  1657. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1658. if (extent_op)
  1659. __run_delayed_extent_op(extent_op, leaf, item);
  1660. btrfs_mark_buffer_dirty(leaf);
  1661. btrfs_release_path(root->fs_info->extent_root, path);
  1662. path->reada = 1;
  1663. path->leave_spinning = 1;
  1664. /* now insert the actual backref */
  1665. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1666. path, bytenr, parent, root_objectid,
  1667. owner, offset, refs_to_add);
  1668. BUG_ON(ret);
  1669. out:
  1670. btrfs_free_path(path);
  1671. return err;
  1672. }
  1673. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1674. struct btrfs_root *root,
  1675. struct btrfs_delayed_ref_node *node,
  1676. struct btrfs_delayed_extent_op *extent_op,
  1677. int insert_reserved)
  1678. {
  1679. int ret = 0;
  1680. struct btrfs_delayed_data_ref *ref;
  1681. struct btrfs_key ins;
  1682. u64 parent = 0;
  1683. u64 ref_root = 0;
  1684. u64 flags = 0;
  1685. ins.objectid = node->bytenr;
  1686. ins.offset = node->num_bytes;
  1687. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1688. ref = btrfs_delayed_node_to_data_ref(node);
  1689. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1690. parent = ref->parent;
  1691. else
  1692. ref_root = ref->root;
  1693. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1694. if (extent_op) {
  1695. BUG_ON(extent_op->update_key);
  1696. flags |= extent_op->flags_to_set;
  1697. }
  1698. ret = alloc_reserved_file_extent(trans, root,
  1699. parent, ref_root, flags,
  1700. ref->objectid, ref->offset,
  1701. &ins, node->ref_mod);
  1702. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1703. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1704. node->num_bytes, parent,
  1705. ref_root, ref->objectid,
  1706. ref->offset, node->ref_mod,
  1707. extent_op);
  1708. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1709. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1710. node->num_bytes, parent,
  1711. ref_root, ref->objectid,
  1712. ref->offset, node->ref_mod,
  1713. extent_op);
  1714. } else {
  1715. BUG();
  1716. }
  1717. return ret;
  1718. }
  1719. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1720. struct extent_buffer *leaf,
  1721. struct btrfs_extent_item *ei)
  1722. {
  1723. u64 flags = btrfs_extent_flags(leaf, ei);
  1724. if (extent_op->update_flags) {
  1725. flags |= extent_op->flags_to_set;
  1726. btrfs_set_extent_flags(leaf, ei, flags);
  1727. }
  1728. if (extent_op->update_key) {
  1729. struct btrfs_tree_block_info *bi;
  1730. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1731. bi = (struct btrfs_tree_block_info *)(ei + 1);
  1732. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  1733. }
  1734. }
  1735. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  1736. struct btrfs_root *root,
  1737. struct btrfs_delayed_ref_node *node,
  1738. struct btrfs_delayed_extent_op *extent_op)
  1739. {
  1740. struct btrfs_key key;
  1741. struct btrfs_path *path;
  1742. struct btrfs_extent_item *ei;
  1743. struct extent_buffer *leaf;
  1744. u32 item_size;
  1745. int ret;
  1746. int err = 0;
  1747. path = btrfs_alloc_path();
  1748. if (!path)
  1749. return -ENOMEM;
  1750. key.objectid = node->bytenr;
  1751. key.type = BTRFS_EXTENT_ITEM_KEY;
  1752. key.offset = node->num_bytes;
  1753. path->reada = 1;
  1754. path->leave_spinning = 1;
  1755. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  1756. path, 0, 1);
  1757. if (ret < 0) {
  1758. err = ret;
  1759. goto out;
  1760. }
  1761. if (ret > 0) {
  1762. err = -EIO;
  1763. goto out;
  1764. }
  1765. leaf = path->nodes[0];
  1766. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1767. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1768. if (item_size < sizeof(*ei)) {
  1769. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  1770. path, (u64)-1, 0);
  1771. if (ret < 0) {
  1772. err = ret;
  1773. goto out;
  1774. }
  1775. leaf = path->nodes[0];
  1776. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1777. }
  1778. #endif
  1779. BUG_ON(item_size < sizeof(*ei));
  1780. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1781. __run_delayed_extent_op(extent_op, leaf, ei);
  1782. btrfs_mark_buffer_dirty(leaf);
  1783. out:
  1784. btrfs_free_path(path);
  1785. return err;
  1786. }
  1787. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  1788. struct btrfs_root *root,
  1789. struct btrfs_delayed_ref_node *node,
  1790. struct btrfs_delayed_extent_op *extent_op,
  1791. int insert_reserved)
  1792. {
  1793. int ret = 0;
  1794. struct btrfs_delayed_tree_ref *ref;
  1795. struct btrfs_key ins;
  1796. u64 parent = 0;
  1797. u64 ref_root = 0;
  1798. ins.objectid = node->bytenr;
  1799. ins.offset = node->num_bytes;
  1800. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1801. ref = btrfs_delayed_node_to_tree_ref(node);
  1802. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1803. parent = ref->parent;
  1804. else
  1805. ref_root = ref->root;
  1806. BUG_ON(node->ref_mod != 1);
  1807. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1808. BUG_ON(!extent_op || !extent_op->update_flags ||
  1809. !extent_op->update_key);
  1810. ret = alloc_reserved_tree_block(trans, root,
  1811. parent, ref_root,
  1812. extent_op->flags_to_set,
  1813. &extent_op->key,
  1814. ref->level, &ins);
  1815. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1816. ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
  1817. node->num_bytes, parent, ref_root,
  1818. ref->level, 0, 1, extent_op);
  1819. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1820. ret = __btrfs_free_extent(trans, root, node->bytenr,
  1821. node->num_bytes, parent, ref_root,
  1822. ref->level, 0, 1, extent_op);
  1823. } else {
  1824. BUG();
  1825. }
  1826. return ret;
  1827. }
  1828. /* helper function to actually process a single delayed ref entry */
  1829. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  1830. struct btrfs_root *root,
  1831. struct btrfs_delayed_ref_node *node,
  1832. struct btrfs_delayed_extent_op *extent_op,
  1833. int insert_reserved)
  1834. {
  1835. int ret;
  1836. if (btrfs_delayed_ref_is_head(node)) {
  1837. struct btrfs_delayed_ref_head *head;
  1838. /*
  1839. * we've hit the end of the chain and we were supposed
  1840. * to insert this extent into the tree. But, it got
  1841. * deleted before we ever needed to insert it, so all
  1842. * we have to do is clean up the accounting
  1843. */
  1844. BUG_ON(extent_op);
  1845. head = btrfs_delayed_node_to_head(node);
  1846. if (insert_reserved) {
  1847. btrfs_pin_extent(root, node->bytenr,
  1848. node->num_bytes, 1);
  1849. if (head->is_data) {
  1850. ret = btrfs_del_csums(trans, root,
  1851. node->bytenr,
  1852. node->num_bytes);
  1853. BUG_ON(ret);
  1854. }
  1855. }
  1856. mutex_unlock(&head->mutex);
  1857. return 0;
  1858. }
  1859. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  1860. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  1861. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  1862. insert_reserved);
  1863. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  1864. node->type == BTRFS_SHARED_DATA_REF_KEY)
  1865. ret = run_delayed_data_ref(trans, root, node, extent_op,
  1866. insert_reserved);
  1867. else
  1868. BUG();
  1869. return ret;
  1870. }
  1871. static noinline struct btrfs_delayed_ref_node *
  1872. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  1873. {
  1874. struct rb_node *node;
  1875. struct btrfs_delayed_ref_node *ref;
  1876. int action = BTRFS_ADD_DELAYED_REF;
  1877. again:
  1878. /*
  1879. * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
  1880. * this prevents ref count from going down to zero when
  1881. * there still are pending delayed ref.
  1882. */
  1883. node = rb_prev(&head->node.rb_node);
  1884. while (1) {
  1885. if (!node)
  1886. break;
  1887. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  1888. rb_node);
  1889. if (ref->bytenr != head->node.bytenr)
  1890. break;
  1891. if (ref->action == action)
  1892. return ref;
  1893. node = rb_prev(node);
  1894. }
  1895. if (action == BTRFS_ADD_DELAYED_REF) {
  1896. action = BTRFS_DROP_DELAYED_REF;
  1897. goto again;
  1898. }
  1899. return NULL;
  1900. }
  1901. static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
  1902. struct btrfs_root *root,
  1903. struct list_head *cluster)
  1904. {
  1905. struct btrfs_delayed_ref_root *delayed_refs;
  1906. struct btrfs_delayed_ref_node *ref;
  1907. struct btrfs_delayed_ref_head *locked_ref = NULL;
  1908. struct btrfs_delayed_extent_op *extent_op;
  1909. int ret;
  1910. int count = 0;
  1911. int must_insert_reserved = 0;
  1912. delayed_refs = &trans->transaction->delayed_refs;
  1913. while (1) {
  1914. if (!locked_ref) {
  1915. /* pick a new head ref from the cluster list */
  1916. if (list_empty(cluster))
  1917. break;
  1918. locked_ref = list_entry(cluster->next,
  1919. struct btrfs_delayed_ref_head, cluster);
  1920. /* grab the lock that says we are going to process
  1921. * all the refs for this head */
  1922. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  1923. /*
  1924. * we may have dropped the spin lock to get the head
  1925. * mutex lock, and that might have given someone else
  1926. * time to free the head. If that's true, it has been
  1927. * removed from our list and we can move on.
  1928. */
  1929. if (ret == -EAGAIN) {
  1930. locked_ref = NULL;
  1931. count++;
  1932. continue;
  1933. }
  1934. }
  1935. /*
  1936. * record the must insert reserved flag before we
  1937. * drop the spin lock.
  1938. */
  1939. must_insert_reserved = locked_ref->must_insert_reserved;
  1940. locked_ref->must_insert_reserved = 0;
  1941. extent_op = locked_ref->extent_op;
  1942. locked_ref->extent_op = NULL;
  1943. /*
  1944. * locked_ref is the head node, so we have to go one
  1945. * node back for any delayed ref updates
  1946. */
  1947. ref = select_delayed_ref(locked_ref);
  1948. if (!ref) {
  1949. /* All delayed refs have been processed, Go ahead
  1950. * and send the head node to run_one_delayed_ref,
  1951. * so that any accounting fixes can happen
  1952. */
  1953. ref = &locked_ref->node;
  1954. if (extent_op && must_insert_reserved) {
  1955. kfree(extent_op);
  1956. extent_op = NULL;
  1957. }
  1958. if (extent_op) {
  1959. spin_unlock(&delayed_refs->lock);
  1960. ret = run_delayed_extent_op(trans, root,
  1961. ref, extent_op);
  1962. BUG_ON(ret);
  1963. kfree(extent_op);
  1964. cond_resched();
  1965. spin_lock(&delayed_refs->lock);
  1966. continue;
  1967. }
  1968. list_del_init(&locked_ref->cluster);
  1969. locked_ref = NULL;
  1970. }
  1971. ref->in_tree = 0;
  1972. rb_erase(&ref->rb_node, &delayed_refs->root);
  1973. delayed_refs->num_entries--;
  1974. spin_unlock(&delayed_refs->lock);
  1975. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  1976. must_insert_reserved);
  1977. BUG_ON(ret);
  1978. btrfs_put_delayed_ref(ref);
  1979. kfree(extent_op);
  1980. count++;
  1981. cond_resched();
  1982. spin_lock(&delayed_refs->lock);
  1983. }
  1984. return count;
  1985. }
  1986. /*
  1987. * this starts processing the delayed reference count updates and
  1988. * extent insertions we have queued up so far. count can be
  1989. * 0, which means to process everything in the tree at the start
  1990. * of the run (but not newly added entries), or it can be some target
  1991. * number you'd like to process.
  1992. */
  1993. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  1994. struct btrfs_root *root, unsigned long count)
  1995. {
  1996. struct rb_node *node;
  1997. struct btrfs_delayed_ref_root *delayed_refs;
  1998. struct btrfs_delayed_ref_node *ref;
  1999. struct list_head cluster;
  2000. int ret;
  2001. int run_all = count == (unsigned long)-1;
  2002. int run_most = 0;
  2003. if (root == root->fs_info->extent_root)
  2004. root = root->fs_info->tree_root;
  2005. delayed_refs = &trans->transaction->delayed_refs;
  2006. INIT_LIST_HEAD(&cluster);
  2007. again:
  2008. spin_lock(&delayed_refs->lock);
  2009. if (count == 0) {
  2010. count = delayed_refs->num_entries * 2;
  2011. run_most = 1;
  2012. }
  2013. while (1) {
  2014. if (!(run_all || run_most) &&
  2015. delayed_refs->num_heads_ready < 64)
  2016. break;
  2017. /*
  2018. * go find something we can process in the rbtree. We start at
  2019. * the beginning of the tree, and then build a cluster
  2020. * of refs to process starting at the first one we are able to
  2021. * lock
  2022. */
  2023. ret = btrfs_find_ref_cluster(trans, &cluster,
  2024. delayed_refs->run_delayed_start);
  2025. if (ret)
  2026. break;
  2027. ret = run_clustered_refs(trans, root, &cluster);
  2028. BUG_ON(ret < 0);
  2029. count -= min_t(unsigned long, ret, count);
  2030. if (count == 0)
  2031. break;
  2032. }
  2033. if (run_all) {
  2034. node = rb_first(&delayed_refs->root);
  2035. if (!node)
  2036. goto out;
  2037. count = (unsigned long)-1;
  2038. while (node) {
  2039. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  2040. rb_node);
  2041. if (btrfs_delayed_ref_is_head(ref)) {
  2042. struct btrfs_delayed_ref_head *head;
  2043. head = btrfs_delayed_node_to_head(ref);
  2044. atomic_inc(&ref->refs);
  2045. spin_unlock(&delayed_refs->lock);
  2046. mutex_lock(&head->mutex);
  2047. mutex_unlock(&head->mutex);
  2048. btrfs_put_delayed_ref(ref);
  2049. cond_resched();
  2050. goto again;
  2051. }
  2052. node = rb_next(node);
  2053. }
  2054. spin_unlock(&delayed_refs->lock);
  2055. schedule_timeout(1);
  2056. goto again;
  2057. }
  2058. out:
  2059. spin_unlock(&delayed_refs->lock);
  2060. return 0;
  2061. }
  2062. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2063. struct btrfs_root *root,
  2064. u64 bytenr, u64 num_bytes, u64 flags,
  2065. int is_data)
  2066. {
  2067. struct btrfs_delayed_extent_op *extent_op;
  2068. int ret;
  2069. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  2070. if (!extent_op)
  2071. return -ENOMEM;
  2072. extent_op->flags_to_set = flags;
  2073. extent_op->update_flags = 1;
  2074. extent_op->update_key = 0;
  2075. extent_op->is_data = is_data ? 1 : 0;
  2076. ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
  2077. if (ret)
  2078. kfree(extent_op);
  2079. return ret;
  2080. }
  2081. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2082. struct btrfs_root *root,
  2083. struct btrfs_path *path,
  2084. u64 objectid, u64 offset, u64 bytenr)
  2085. {
  2086. struct btrfs_delayed_ref_head *head;
  2087. struct btrfs_delayed_ref_node *ref;
  2088. struct btrfs_delayed_data_ref *data_ref;
  2089. struct btrfs_delayed_ref_root *delayed_refs;
  2090. struct rb_node *node;
  2091. int ret = 0;
  2092. ret = -ENOENT;
  2093. delayed_refs = &trans->transaction->delayed_refs;
  2094. spin_lock(&delayed_refs->lock);
  2095. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2096. if (!head)
  2097. goto out;
  2098. if (!mutex_trylock(&head->mutex)) {
  2099. atomic_inc(&head->node.refs);
  2100. spin_unlock(&delayed_refs->lock);
  2101. btrfs_release_path(root->fs_info->extent_root, path);
  2102. mutex_lock(&head->mutex);
  2103. mutex_unlock(&head->mutex);
  2104. btrfs_put_delayed_ref(&head->node);
  2105. return -EAGAIN;
  2106. }
  2107. node = rb_prev(&head->node.rb_node);
  2108. if (!node)
  2109. goto out_unlock;
  2110. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2111. if (ref->bytenr != bytenr)
  2112. goto out_unlock;
  2113. ret = 1;
  2114. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
  2115. goto out_unlock;
  2116. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2117. node = rb_prev(node);
  2118. if (node) {
  2119. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2120. if (ref->bytenr == bytenr)
  2121. goto out_unlock;
  2122. }
  2123. if (data_ref->root != root->root_key.objectid ||
  2124. data_ref->objectid != objectid || data_ref->offset != offset)
  2125. goto out_unlock;
  2126. ret = 0;
  2127. out_unlock:
  2128. mutex_unlock(&head->mutex);
  2129. out:
  2130. spin_unlock(&delayed_refs->lock);
  2131. return ret;
  2132. }
  2133. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2134. struct btrfs_root *root,
  2135. struct btrfs_path *path,
  2136. u64 objectid, u64 offset, u64 bytenr)
  2137. {
  2138. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2139. struct extent_buffer *leaf;
  2140. struct btrfs_extent_data_ref *ref;
  2141. struct btrfs_extent_inline_ref *iref;
  2142. struct btrfs_extent_item *ei;
  2143. struct btrfs_key key;
  2144. u32 item_size;
  2145. int ret;
  2146. key.objectid = bytenr;
  2147. key.offset = (u64)-1;
  2148. key.type = BTRFS_EXTENT_ITEM_KEY;
  2149. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2150. if (ret < 0)
  2151. goto out;
  2152. BUG_ON(ret == 0);
  2153. ret = -ENOENT;
  2154. if (path->slots[0] == 0)
  2155. goto out;
  2156. path->slots[0]--;
  2157. leaf = path->nodes[0];
  2158. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2159. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2160. goto out;
  2161. ret = 1;
  2162. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2163. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2164. if (item_size < sizeof(*ei)) {
  2165. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2166. goto out;
  2167. }
  2168. #endif
  2169. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2170. if (item_size != sizeof(*ei) +
  2171. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2172. goto out;
  2173. if (btrfs_extent_generation(leaf, ei) <=
  2174. btrfs_root_last_snapshot(&root->root_item))
  2175. goto out;
  2176. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2177. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2178. BTRFS_EXTENT_DATA_REF_KEY)
  2179. goto out;
  2180. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2181. if (btrfs_extent_refs(leaf, ei) !=
  2182. btrfs_extent_data_ref_count(leaf, ref) ||
  2183. btrfs_extent_data_ref_root(leaf, ref) !=
  2184. root->root_key.objectid ||
  2185. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2186. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2187. goto out;
  2188. ret = 0;
  2189. out:
  2190. return ret;
  2191. }
  2192. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2193. struct btrfs_root *root,
  2194. u64 objectid, u64 offset, u64 bytenr)
  2195. {
  2196. struct btrfs_path *path;
  2197. int ret;
  2198. int ret2;
  2199. path = btrfs_alloc_path();
  2200. if (!path)
  2201. return -ENOENT;
  2202. do {
  2203. ret = check_committed_ref(trans, root, path, objectid,
  2204. offset, bytenr);
  2205. if (ret && ret != -ENOENT)
  2206. goto out;
  2207. ret2 = check_delayed_ref(trans, root, path, objectid,
  2208. offset, bytenr);
  2209. } while (ret2 == -EAGAIN);
  2210. if (ret2 && ret2 != -ENOENT) {
  2211. ret = ret2;
  2212. goto out;
  2213. }
  2214. if (ret != -ENOENT || ret2 != -ENOENT)
  2215. ret = 0;
  2216. out:
  2217. btrfs_free_path(path);
  2218. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2219. WARN_ON(ret > 0);
  2220. return ret;
  2221. }
  2222. #if 0
  2223. int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2224. struct extent_buffer *buf, u32 nr_extents)
  2225. {
  2226. struct btrfs_key key;
  2227. struct btrfs_file_extent_item *fi;
  2228. u64 root_gen;
  2229. u32 nritems;
  2230. int i;
  2231. int level;
  2232. int ret = 0;
  2233. int shared = 0;
  2234. if (!root->ref_cows)
  2235. return 0;
  2236. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  2237. shared = 0;
  2238. root_gen = root->root_key.offset;
  2239. } else {
  2240. shared = 1;
  2241. root_gen = trans->transid - 1;
  2242. }
  2243. level = btrfs_header_level(buf);
  2244. nritems = btrfs_header_nritems(buf);
  2245. if (level == 0) {
  2246. struct btrfs_leaf_ref *ref;
  2247. struct btrfs_extent_info *info;
  2248. ref = btrfs_alloc_leaf_ref(root, nr_extents);
  2249. if (!ref) {
  2250. ret = -ENOMEM;
  2251. goto out;
  2252. }
  2253. ref->root_gen = root_gen;
  2254. ref->bytenr = buf->start;
  2255. ref->owner = btrfs_header_owner(buf);
  2256. ref->generation = btrfs_header_generation(buf);
  2257. ref->nritems = nr_extents;
  2258. info = ref->extents;
  2259. for (i = 0; nr_extents > 0 && i < nritems; i++) {
  2260. u64 disk_bytenr;
  2261. btrfs_item_key_to_cpu(buf, &key, i);
  2262. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2263. continue;
  2264. fi = btrfs_item_ptr(buf, i,
  2265. struct btrfs_file_extent_item);
  2266. if (btrfs_file_extent_type(buf, fi) ==
  2267. BTRFS_FILE_EXTENT_INLINE)
  2268. continue;
  2269. disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2270. if (disk_bytenr == 0)
  2271. continue;
  2272. info->bytenr = disk_bytenr;
  2273. info->num_bytes =
  2274. btrfs_file_extent_disk_num_bytes(buf, fi);
  2275. info->objectid = key.objectid;
  2276. info->offset = key.offset;
  2277. info++;
  2278. }
  2279. ret = btrfs_add_leaf_ref(root, ref, shared);
  2280. if (ret == -EEXIST && shared) {
  2281. struct btrfs_leaf_ref *old;
  2282. old = btrfs_lookup_leaf_ref(root, ref->bytenr);
  2283. BUG_ON(!old);
  2284. btrfs_remove_leaf_ref(root, old);
  2285. btrfs_free_leaf_ref(root, old);
  2286. ret = btrfs_add_leaf_ref(root, ref, shared);
  2287. }
  2288. WARN_ON(ret);
  2289. btrfs_free_leaf_ref(root, ref);
  2290. }
  2291. out:
  2292. return ret;
  2293. }
  2294. /* when a block goes through cow, we update the reference counts of
  2295. * everything that block points to. The internal pointers of the block
  2296. * can be in just about any order, and it is likely to have clusters of
  2297. * things that are close together and clusters of things that are not.
  2298. *
  2299. * To help reduce the seeks that come with updating all of these reference
  2300. * counts, sort them by byte number before actual updates are done.
  2301. *
  2302. * struct refsort is used to match byte number to slot in the btree block.
  2303. * we sort based on the byte number and then use the slot to actually
  2304. * find the item.
  2305. *
  2306. * struct refsort is smaller than strcut btrfs_item and smaller than
  2307. * struct btrfs_key_ptr. Since we're currently limited to the page size
  2308. * for a btree block, there's no way for a kmalloc of refsorts for a
  2309. * single node to be bigger than a page.
  2310. */
  2311. struct refsort {
  2312. u64 bytenr;
  2313. u32 slot;
  2314. };
  2315. /*
  2316. * for passing into sort()
  2317. */
  2318. static int refsort_cmp(const void *a_void, const void *b_void)
  2319. {
  2320. const struct refsort *a = a_void;
  2321. const struct refsort *b = b_void;
  2322. if (a->bytenr < b->bytenr)
  2323. return -1;
  2324. if (a->bytenr > b->bytenr)
  2325. return 1;
  2326. return 0;
  2327. }
  2328. #endif
  2329. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2330. struct btrfs_root *root,
  2331. struct extent_buffer *buf,
  2332. int full_backref, int inc)
  2333. {
  2334. u64 bytenr;
  2335. u64 num_bytes;
  2336. u64 parent;
  2337. u64 ref_root;
  2338. u32 nritems;
  2339. struct btrfs_key key;
  2340. struct btrfs_file_extent_item *fi;
  2341. int i;
  2342. int level;
  2343. int ret = 0;
  2344. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2345. u64, u64, u64, u64, u64, u64);
  2346. ref_root = btrfs_header_owner(buf);
  2347. nritems = btrfs_header_nritems(buf);
  2348. level = btrfs_header_level(buf);
  2349. if (!root->ref_cows && level == 0)
  2350. return 0;
  2351. if (inc)
  2352. process_func = btrfs_inc_extent_ref;
  2353. else
  2354. process_func = btrfs_free_extent;
  2355. if (full_backref)
  2356. parent = buf->start;
  2357. else
  2358. parent = 0;
  2359. for (i = 0; i < nritems; i++) {
  2360. if (level == 0) {
  2361. btrfs_item_key_to_cpu(buf, &key, i);
  2362. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  2363. continue;
  2364. fi = btrfs_item_ptr(buf, i,
  2365. struct btrfs_file_extent_item);
  2366. if (btrfs_file_extent_type(buf, fi) ==
  2367. BTRFS_FILE_EXTENT_INLINE)
  2368. continue;
  2369. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2370. if (bytenr == 0)
  2371. continue;
  2372. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2373. key.offset -= btrfs_file_extent_offset(buf, fi);
  2374. ret = process_func(trans, root, bytenr, num_bytes,
  2375. parent, ref_root, key.objectid,
  2376. key.offset);
  2377. if (ret)
  2378. goto fail;
  2379. } else {
  2380. bytenr = btrfs_node_blockptr(buf, i);
  2381. num_bytes = btrfs_level_size(root, level - 1);
  2382. ret = process_func(trans, root, bytenr, num_bytes,
  2383. parent, ref_root, level - 1, 0);
  2384. if (ret)
  2385. goto fail;
  2386. }
  2387. }
  2388. return 0;
  2389. fail:
  2390. BUG();
  2391. return ret;
  2392. }
  2393. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2394. struct extent_buffer *buf, int full_backref)
  2395. {
  2396. return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
  2397. }
  2398. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2399. struct extent_buffer *buf, int full_backref)
  2400. {
  2401. return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
  2402. }
  2403. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2404. struct btrfs_root *root,
  2405. struct btrfs_path *path,
  2406. struct btrfs_block_group_cache *cache)
  2407. {
  2408. int ret;
  2409. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2410. unsigned long bi;
  2411. struct extent_buffer *leaf;
  2412. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2413. if (ret < 0)
  2414. goto fail;
  2415. BUG_ON(ret);
  2416. leaf = path->nodes[0];
  2417. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2418. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2419. btrfs_mark_buffer_dirty(leaf);
  2420. btrfs_release_path(extent_root, path);
  2421. fail:
  2422. if (ret)
  2423. return ret;
  2424. return 0;
  2425. }
  2426. static struct btrfs_block_group_cache *
  2427. next_block_group(struct btrfs_root *root,
  2428. struct btrfs_block_group_cache *cache)
  2429. {
  2430. struct rb_node *node;
  2431. spin_lock(&root->fs_info->block_group_cache_lock);
  2432. node = rb_next(&cache->cache_node);
  2433. btrfs_put_block_group(cache);
  2434. if (node) {
  2435. cache = rb_entry(node, struct btrfs_block_group_cache,
  2436. cache_node);
  2437. btrfs_get_block_group(cache);
  2438. } else
  2439. cache = NULL;
  2440. spin_unlock(&root->fs_info->block_group_cache_lock);
  2441. return cache;
  2442. }
  2443. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2444. struct btrfs_trans_handle *trans,
  2445. struct btrfs_path *path)
  2446. {
  2447. struct btrfs_root *root = block_group->fs_info->tree_root;
  2448. struct inode *inode = NULL;
  2449. u64 alloc_hint = 0;
  2450. int dcs = BTRFS_DC_ERROR;
  2451. int num_pages = 0;
  2452. int retries = 0;
  2453. int ret = 0;
  2454. /*
  2455. * If this block group is smaller than 100 megs don't bother caching the
  2456. * block group.
  2457. */
  2458. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2459. spin_lock(&block_group->lock);
  2460. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2461. spin_unlock(&block_group->lock);
  2462. return 0;
  2463. }
  2464. again:
  2465. inode = lookup_free_space_inode(root, block_group, path);
  2466. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2467. ret = PTR_ERR(inode);
  2468. btrfs_release_path(root, path);
  2469. goto out;
  2470. }
  2471. if (IS_ERR(inode)) {
  2472. BUG_ON(retries);
  2473. retries++;
  2474. if (block_group->ro)
  2475. goto out_free;
  2476. ret = create_free_space_inode(root, trans, block_group, path);
  2477. if (ret)
  2478. goto out_free;
  2479. goto again;
  2480. }
  2481. /*
  2482. * We want to set the generation to 0, that way if anything goes wrong
  2483. * from here on out we know not to trust this cache when we load up next
  2484. * time.
  2485. */
  2486. BTRFS_I(inode)->generation = 0;
  2487. ret = btrfs_update_inode(trans, root, inode);
  2488. WARN_ON(ret);
  2489. if (i_size_read(inode) > 0) {
  2490. ret = btrfs_truncate_free_space_cache(root, trans, path,
  2491. inode);
  2492. if (ret)
  2493. goto out_put;
  2494. }
  2495. spin_lock(&block_group->lock);
  2496. if (block_group->cached != BTRFS_CACHE_FINISHED) {
  2497. /* We're not cached, don't bother trying to write stuff out */
  2498. dcs = BTRFS_DC_WRITTEN;
  2499. spin_unlock(&block_group->lock);
  2500. goto out_put;
  2501. }
  2502. spin_unlock(&block_group->lock);
  2503. num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
  2504. if (!num_pages)
  2505. num_pages = 1;
  2506. /*
  2507. * Just to make absolutely sure we have enough space, we're going to
  2508. * preallocate 12 pages worth of space for each block group. In
  2509. * practice we ought to use at most 8, but we need extra space so we can
  2510. * add our header and have a terminator between the extents and the
  2511. * bitmaps.
  2512. */
  2513. num_pages *= 16;
  2514. num_pages *= PAGE_CACHE_SIZE;
  2515. ret = btrfs_check_data_free_space(inode, num_pages);
  2516. if (ret)
  2517. goto out_put;
  2518. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  2519. num_pages, num_pages,
  2520. &alloc_hint);
  2521. if (!ret)
  2522. dcs = BTRFS_DC_SETUP;
  2523. btrfs_free_reserved_data_space(inode, num_pages);
  2524. out_put:
  2525. iput(inode);
  2526. out_free:
  2527. btrfs_release_path(root, path);
  2528. out:
  2529. spin_lock(&block_group->lock);
  2530. block_group->disk_cache_state = dcs;
  2531. spin_unlock(&block_group->lock);
  2532. return ret;
  2533. }
  2534. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  2535. struct btrfs_root *root)
  2536. {
  2537. struct btrfs_block_group_cache *cache;
  2538. int err = 0;
  2539. struct btrfs_path *path;
  2540. u64 last = 0;
  2541. path = btrfs_alloc_path();
  2542. if (!path)
  2543. return -ENOMEM;
  2544. again:
  2545. while (1) {
  2546. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2547. while (cache) {
  2548. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  2549. break;
  2550. cache = next_block_group(root, cache);
  2551. }
  2552. if (!cache) {
  2553. if (last == 0)
  2554. break;
  2555. last = 0;
  2556. continue;
  2557. }
  2558. err = cache_save_setup(cache, trans, path);
  2559. last = cache->key.objectid + cache->key.offset;
  2560. btrfs_put_block_group(cache);
  2561. }
  2562. while (1) {
  2563. if (last == 0) {
  2564. err = btrfs_run_delayed_refs(trans, root,
  2565. (unsigned long)-1);
  2566. BUG_ON(err);
  2567. }
  2568. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2569. while (cache) {
  2570. if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
  2571. btrfs_put_block_group(cache);
  2572. goto again;
  2573. }
  2574. if (cache->dirty)
  2575. break;
  2576. cache = next_block_group(root, cache);
  2577. }
  2578. if (!cache) {
  2579. if (last == 0)
  2580. break;
  2581. last = 0;
  2582. continue;
  2583. }
  2584. if (cache->disk_cache_state == BTRFS_DC_SETUP)
  2585. cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
  2586. cache->dirty = 0;
  2587. last = cache->key.objectid + cache->key.offset;
  2588. err = write_one_cache_group(trans, root, path, cache);
  2589. BUG_ON(err);
  2590. btrfs_put_block_group(cache);
  2591. }
  2592. while (1) {
  2593. /*
  2594. * I don't think this is needed since we're just marking our
  2595. * preallocated extent as written, but just in case it can't
  2596. * hurt.
  2597. */
  2598. if (last == 0) {
  2599. err = btrfs_run_delayed_refs(trans, root,
  2600. (unsigned long)-1);
  2601. BUG_ON(err);
  2602. }
  2603. cache = btrfs_lookup_first_block_group(root->fs_info, last);
  2604. while (cache) {
  2605. /*
  2606. * Really this shouldn't happen, but it could if we
  2607. * couldn't write the entire preallocated extent and
  2608. * splitting the extent resulted in a new block.
  2609. */
  2610. if (cache->dirty) {
  2611. btrfs_put_block_group(cache);
  2612. goto again;
  2613. }
  2614. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2615. break;
  2616. cache = next_block_group(root, cache);
  2617. }
  2618. if (!cache) {
  2619. if (last == 0)
  2620. break;
  2621. last = 0;
  2622. continue;
  2623. }
  2624. btrfs_write_out_cache(root, trans, cache, path);
  2625. /*
  2626. * If we didn't have an error then the cache state is still
  2627. * NEED_WRITE, so we can set it to WRITTEN.
  2628. */
  2629. if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
  2630. cache->disk_cache_state = BTRFS_DC_WRITTEN;
  2631. last = cache->key.objectid + cache->key.offset;
  2632. btrfs_put_block_group(cache);
  2633. }
  2634. btrfs_free_path(path);
  2635. return 0;
  2636. }
  2637. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  2638. {
  2639. struct btrfs_block_group_cache *block_group;
  2640. int readonly = 0;
  2641. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  2642. if (!block_group || block_group->ro)
  2643. readonly = 1;
  2644. if (block_group)
  2645. btrfs_put_block_group(block_group);
  2646. return readonly;
  2647. }
  2648. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  2649. u64 total_bytes, u64 bytes_used,
  2650. struct btrfs_space_info **space_info)
  2651. {
  2652. struct btrfs_space_info *found;
  2653. int i;
  2654. int factor;
  2655. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  2656. BTRFS_BLOCK_GROUP_RAID10))
  2657. factor = 2;
  2658. else
  2659. factor = 1;
  2660. found = __find_space_info(info, flags);
  2661. if (found) {
  2662. spin_lock(&found->lock);
  2663. found->total_bytes += total_bytes;
  2664. found->disk_total += total_bytes * factor;
  2665. found->bytes_used += bytes_used;
  2666. found->disk_used += bytes_used * factor;
  2667. found->full = 0;
  2668. spin_unlock(&found->lock);
  2669. *space_info = found;
  2670. return 0;
  2671. }
  2672. found = kzalloc(sizeof(*found), GFP_NOFS);
  2673. if (!found)
  2674. return -ENOMEM;
  2675. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  2676. INIT_LIST_HEAD(&found->block_groups[i]);
  2677. init_rwsem(&found->groups_sem);
  2678. spin_lock_init(&found->lock);
  2679. found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
  2680. BTRFS_BLOCK_GROUP_SYSTEM |
  2681. BTRFS_BLOCK_GROUP_METADATA);
  2682. found->total_bytes = total_bytes;
  2683. found->disk_total = total_bytes * factor;
  2684. found->bytes_used = bytes_used;
  2685. found->disk_used = bytes_used * factor;
  2686. found->bytes_pinned = 0;
  2687. found->bytes_reserved = 0;
  2688. found->bytes_readonly = 0;
  2689. found->bytes_may_use = 0;
  2690. found->full = 0;
  2691. found->force_alloc = 0;
  2692. *space_info = found;
  2693. list_add_rcu(&found->list, &info->space_info);
  2694. atomic_set(&found->caching_threads, 0);
  2695. return 0;
  2696. }
  2697. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  2698. {
  2699. u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
  2700. BTRFS_BLOCK_GROUP_RAID1 |
  2701. BTRFS_BLOCK_GROUP_RAID10 |
  2702. BTRFS_BLOCK_GROUP_DUP);
  2703. if (extra_flags) {
  2704. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2705. fs_info->avail_data_alloc_bits |= extra_flags;
  2706. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2707. fs_info->avail_metadata_alloc_bits |= extra_flags;
  2708. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2709. fs_info->avail_system_alloc_bits |= extra_flags;
  2710. }
  2711. }
  2712. u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  2713. {
  2714. /*
  2715. * we add in the count of missing devices because we want
  2716. * to make sure that any RAID levels on a degraded FS
  2717. * continue to be honored.
  2718. */
  2719. u64 num_devices = root->fs_info->fs_devices->rw_devices +
  2720. root->fs_info->fs_devices->missing_devices;
  2721. if (num_devices == 1)
  2722. flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
  2723. if (num_devices < 4)
  2724. flags &= ~BTRFS_BLOCK_GROUP_RAID10;
  2725. if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
  2726. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2727. BTRFS_BLOCK_GROUP_RAID10))) {
  2728. flags &= ~BTRFS_BLOCK_GROUP_DUP;
  2729. }
  2730. if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
  2731. (flags & BTRFS_BLOCK_GROUP_RAID10)) {
  2732. flags &= ~BTRFS_BLOCK_GROUP_RAID1;
  2733. }
  2734. if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
  2735. ((flags & BTRFS_BLOCK_GROUP_RAID1) |
  2736. (flags & BTRFS_BLOCK_GROUP_RAID10) |
  2737. (flags & BTRFS_BLOCK_GROUP_DUP)))
  2738. flags &= ~BTRFS_BLOCK_GROUP_RAID0;
  2739. return flags;
  2740. }
  2741. static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
  2742. {
  2743. if (flags & BTRFS_BLOCK_GROUP_DATA)
  2744. flags |= root->fs_info->avail_data_alloc_bits &
  2745. root->fs_info->data_alloc_profile;
  2746. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  2747. flags |= root->fs_info->avail_system_alloc_bits &
  2748. root->fs_info->system_alloc_profile;
  2749. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  2750. flags |= root->fs_info->avail_metadata_alloc_bits &
  2751. root->fs_info->metadata_alloc_profile;
  2752. return btrfs_reduce_alloc_profile(root, flags);
  2753. }
  2754. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  2755. {
  2756. u64 flags;
  2757. if (data)
  2758. flags = BTRFS_BLOCK_GROUP_DATA;
  2759. else if (root == root->fs_info->chunk_root)
  2760. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  2761. else
  2762. flags = BTRFS_BLOCK_GROUP_METADATA;
  2763. return get_alloc_profile(root, flags);
  2764. }
  2765. void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
  2766. {
  2767. BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
  2768. BTRFS_BLOCK_GROUP_DATA);
  2769. }
  2770. /*
  2771. * This will check the space that the inode allocates from to make sure we have
  2772. * enough space for bytes.
  2773. */
  2774. int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
  2775. {
  2776. struct btrfs_space_info *data_sinfo;
  2777. struct btrfs_root *root = BTRFS_I(inode)->root;
  2778. u64 used;
  2779. int ret = 0, committed = 0, alloc_chunk = 1;
  2780. /* make sure bytes are sectorsize aligned */
  2781. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2782. if (root == root->fs_info->tree_root) {
  2783. alloc_chunk = 0;
  2784. committed = 1;
  2785. }
  2786. data_sinfo = BTRFS_I(inode)->space_info;
  2787. if (!data_sinfo)
  2788. goto alloc;
  2789. again:
  2790. /* make sure we have enough space to handle the data first */
  2791. spin_lock(&data_sinfo->lock);
  2792. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  2793. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  2794. data_sinfo->bytes_may_use;
  2795. if (used + bytes > data_sinfo->total_bytes) {
  2796. struct btrfs_trans_handle *trans;
  2797. /*
  2798. * if we don't have enough free bytes in this space then we need
  2799. * to alloc a new chunk.
  2800. */
  2801. if (!data_sinfo->full && alloc_chunk) {
  2802. u64 alloc_target;
  2803. data_sinfo->force_alloc = 1;
  2804. spin_unlock(&data_sinfo->lock);
  2805. alloc:
  2806. alloc_target = btrfs_get_alloc_profile(root, 1);
  2807. trans = btrfs_join_transaction(root, 1);
  2808. if (IS_ERR(trans))
  2809. return PTR_ERR(trans);
  2810. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  2811. bytes + 2 * 1024 * 1024,
  2812. alloc_target, 0);
  2813. btrfs_end_transaction(trans, root);
  2814. if (ret < 0) {
  2815. if (ret != -ENOSPC)
  2816. return ret;
  2817. else
  2818. goto commit_trans;
  2819. }
  2820. if (!data_sinfo) {
  2821. btrfs_set_inode_space_info(root, inode);
  2822. data_sinfo = BTRFS_I(inode)->space_info;
  2823. }
  2824. goto again;
  2825. }
  2826. spin_unlock(&data_sinfo->lock);
  2827. /* commit the current transaction and try again */
  2828. commit_trans:
  2829. if (!committed && !root->fs_info->open_ioctl_trans) {
  2830. committed = 1;
  2831. trans = btrfs_join_transaction(root, 1);
  2832. if (IS_ERR(trans))
  2833. return PTR_ERR(trans);
  2834. ret = btrfs_commit_transaction(trans, root);
  2835. if (ret)
  2836. return ret;
  2837. goto again;
  2838. }
  2839. #if 0 /* I hope we never need this code again, just in case */
  2840. printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
  2841. "%llu bytes_reserved, " "%llu bytes_pinned, "
  2842. "%llu bytes_readonly, %llu may use %llu total\n",
  2843. (unsigned long long)bytes,
  2844. (unsigned long long)data_sinfo->bytes_used,
  2845. (unsigned long long)data_sinfo->bytes_reserved,
  2846. (unsigned long long)data_sinfo->bytes_pinned,
  2847. (unsigned long long)data_sinfo->bytes_readonly,
  2848. (unsigned long long)data_sinfo->bytes_may_use,
  2849. (unsigned long long)data_sinfo->total_bytes);
  2850. #endif
  2851. return -ENOSPC;
  2852. }
  2853. data_sinfo->bytes_may_use += bytes;
  2854. BTRFS_I(inode)->reserved_bytes += bytes;
  2855. spin_unlock(&data_sinfo->lock);
  2856. return 0;
  2857. }
  2858. /*
  2859. * called when we are clearing an delalloc extent from the
  2860. * inode's io_tree or there was an error for whatever reason
  2861. * after calling btrfs_check_data_free_space
  2862. */
  2863. void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
  2864. {
  2865. struct btrfs_root *root = BTRFS_I(inode)->root;
  2866. struct btrfs_space_info *data_sinfo;
  2867. /* make sure bytes are sectorsize aligned */
  2868. bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  2869. data_sinfo = BTRFS_I(inode)->space_info;
  2870. spin_lock(&data_sinfo->lock);
  2871. data_sinfo->bytes_may_use -= bytes;
  2872. BTRFS_I(inode)->reserved_bytes -= bytes;
  2873. spin_unlock(&data_sinfo->lock);
  2874. }
  2875. static void force_metadata_allocation(struct btrfs_fs_info *info)
  2876. {
  2877. struct list_head *head = &info->space_info;
  2878. struct btrfs_space_info *found;
  2879. rcu_read_lock();
  2880. list_for_each_entry_rcu(found, head, list) {
  2881. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  2882. found->force_alloc = 1;
  2883. }
  2884. rcu_read_unlock();
  2885. }
  2886. static int should_alloc_chunk(struct btrfs_root *root,
  2887. struct btrfs_space_info *sinfo, u64 alloc_bytes)
  2888. {
  2889. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  2890. u64 thresh;
  2891. if (sinfo->bytes_used + sinfo->bytes_reserved +
  2892. alloc_bytes + 256 * 1024 * 1024 < num_bytes)
  2893. return 0;
  2894. if (sinfo->bytes_used + sinfo->bytes_reserved +
  2895. alloc_bytes < div_factor(num_bytes, 8))
  2896. return 0;
  2897. thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
  2898. thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
  2899. if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
  2900. return 0;
  2901. return 1;
  2902. }
  2903. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  2904. struct btrfs_root *extent_root, u64 alloc_bytes,
  2905. u64 flags, int force)
  2906. {
  2907. struct btrfs_space_info *space_info;
  2908. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  2909. int ret = 0;
  2910. mutex_lock(&fs_info->chunk_mutex);
  2911. flags = btrfs_reduce_alloc_profile(extent_root, flags);
  2912. space_info = __find_space_info(extent_root->fs_info, flags);
  2913. if (!space_info) {
  2914. ret = update_space_info(extent_root->fs_info, flags,
  2915. 0, 0, &space_info);
  2916. BUG_ON(ret);
  2917. }
  2918. BUG_ON(!space_info);
  2919. spin_lock(&space_info->lock);
  2920. if (space_info->force_alloc)
  2921. force = 1;
  2922. if (space_info->full) {
  2923. spin_unlock(&space_info->lock);
  2924. goto out;
  2925. }
  2926. if (!force && !should_alloc_chunk(extent_root, space_info,
  2927. alloc_bytes)) {
  2928. spin_unlock(&space_info->lock);
  2929. goto out;
  2930. }
  2931. spin_unlock(&space_info->lock);
  2932. /*
  2933. * If we have mixed data/metadata chunks we want to make sure we keep
  2934. * allocating mixed chunks instead of individual chunks.
  2935. */
  2936. if (btrfs_mixed_space_info(space_info))
  2937. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  2938. /*
  2939. * if we're doing a data chunk, go ahead and make sure that
  2940. * we keep a reasonable number of metadata chunks allocated in the
  2941. * FS as well.
  2942. */
  2943. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  2944. fs_info->data_chunk_allocations++;
  2945. if (!(fs_info->data_chunk_allocations %
  2946. fs_info->metadata_ratio))
  2947. force_metadata_allocation(fs_info);
  2948. }
  2949. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  2950. spin_lock(&space_info->lock);
  2951. if (ret)
  2952. space_info->full = 1;
  2953. else
  2954. ret = 1;
  2955. space_info->force_alloc = 0;
  2956. spin_unlock(&space_info->lock);
  2957. out:
  2958. mutex_unlock(&extent_root->fs_info->chunk_mutex);
  2959. return ret;
  2960. }
  2961. /*
  2962. * shrink metadata reservation for delalloc
  2963. */
  2964. static int shrink_delalloc(struct btrfs_trans_handle *trans,
  2965. struct btrfs_root *root, u64 to_reclaim, int sync)
  2966. {
  2967. struct btrfs_block_rsv *block_rsv;
  2968. struct btrfs_space_info *space_info;
  2969. u64 reserved;
  2970. u64 max_reclaim;
  2971. u64 reclaimed = 0;
  2972. int pause = 1;
  2973. int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
  2974. block_rsv = &root->fs_info->delalloc_block_rsv;
  2975. space_info = block_rsv->space_info;
  2976. smp_mb();
  2977. reserved = space_info->bytes_reserved;
  2978. if (reserved == 0)
  2979. return 0;
  2980. max_reclaim = min(reserved, to_reclaim);
  2981. while (1) {
  2982. /* have the flusher threads jump in and do some IO */
  2983. smp_mb();
  2984. nr_pages = min_t(unsigned long, nr_pages,
  2985. root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
  2986. writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
  2987. spin_lock(&space_info->lock);
  2988. if (reserved > space_info->bytes_reserved)
  2989. reclaimed += reserved - space_info->bytes_reserved;
  2990. reserved = space_info->bytes_reserved;
  2991. spin_unlock(&space_info->lock);
  2992. if (reserved == 0 || reclaimed >= max_reclaim)
  2993. break;
  2994. if (trans && trans->transaction->blocked)
  2995. return -EAGAIN;
  2996. __set_current_state(TASK_INTERRUPTIBLE);
  2997. schedule_timeout(pause);
  2998. pause <<= 1;
  2999. if (pause > HZ / 10)
  3000. pause = HZ / 10;
  3001. }
  3002. return reclaimed >= to_reclaim;
  3003. }
  3004. /*
  3005. * Retries tells us how many times we've called reserve_metadata_bytes. The
  3006. * idea is if this is the first call (retries == 0) then we will add to our
  3007. * reserved count if we can't make the allocation in order to hold our place
  3008. * while we go and try and free up space. That way for retries > 1 we don't try
  3009. * and add space, we just check to see if the amount of unused space is >= the
  3010. * total space, meaning that our reservation is valid.
  3011. *
  3012. * However if we don't intend to retry this reservation, pass -1 as retries so
  3013. * that it short circuits this logic.
  3014. */
  3015. static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
  3016. struct btrfs_root *root,
  3017. struct btrfs_block_rsv *block_rsv,
  3018. u64 orig_bytes, int flush)
  3019. {
  3020. struct btrfs_space_info *space_info = block_rsv->space_info;
  3021. u64 unused;
  3022. u64 num_bytes = orig_bytes;
  3023. int retries = 0;
  3024. int ret = 0;
  3025. bool reserved = false;
  3026. bool committed = false;
  3027. again:
  3028. ret = -ENOSPC;
  3029. if (reserved)
  3030. num_bytes = 0;
  3031. spin_lock(&space_info->lock);
  3032. unused = space_info->bytes_used + space_info->bytes_reserved +
  3033. space_info->bytes_pinned + space_info->bytes_readonly +
  3034. space_info->bytes_may_use;
  3035. /*
  3036. * The idea here is that we've not already over-reserved the block group
  3037. * then we can go ahead and save our reservation first and then start
  3038. * flushing if we need to. Otherwise if we've already overcommitted
  3039. * lets start flushing stuff first and then come back and try to make
  3040. * our reservation.
  3041. */
  3042. if (unused <= space_info->total_bytes) {
  3043. unused = space_info->total_bytes - unused;
  3044. if (unused >= num_bytes) {
  3045. if (!reserved)
  3046. space_info->bytes_reserved += orig_bytes;
  3047. ret = 0;
  3048. } else {
  3049. /*
  3050. * Ok set num_bytes to orig_bytes since we aren't
  3051. * overocmmitted, this way we only try and reclaim what
  3052. * we need.
  3053. */
  3054. num_bytes = orig_bytes;
  3055. }
  3056. } else {
  3057. /*
  3058. * Ok we're over committed, set num_bytes to the overcommitted
  3059. * amount plus the amount of bytes that we need for this
  3060. * reservation.
  3061. */
  3062. num_bytes = unused - space_info->total_bytes +
  3063. (orig_bytes * (retries + 1));
  3064. }
  3065. /*
  3066. * Couldn't make our reservation, save our place so while we're trying
  3067. * to reclaim space we can actually use it instead of somebody else
  3068. * stealing it from us.
  3069. */
  3070. if (ret && !reserved) {
  3071. space_info->bytes_reserved += orig_bytes;
  3072. reserved = true;
  3073. }
  3074. spin_unlock(&space_info->lock);
  3075. if (!ret)
  3076. return 0;
  3077. if (!flush)
  3078. goto out;
  3079. /*
  3080. * We do synchronous shrinking since we don't actually unreserve
  3081. * metadata until after the IO is completed.
  3082. */
  3083. ret = shrink_delalloc(trans, root, num_bytes, 1);
  3084. if (ret > 0)
  3085. return 0;
  3086. else if (ret < 0)
  3087. goto out;
  3088. /*
  3089. * So if we were overcommitted it's possible that somebody else flushed
  3090. * out enough space and we simply didn't have enough space to reclaim,
  3091. * so go back around and try again.
  3092. */
  3093. if (retries < 2) {
  3094. retries++;
  3095. goto again;
  3096. }
  3097. spin_lock(&space_info->lock);
  3098. /*
  3099. * Not enough space to be reclaimed, don't bother committing the
  3100. * transaction.
  3101. */
  3102. if (space_info->bytes_pinned < orig_bytes)
  3103. ret = -ENOSPC;
  3104. spin_unlock(&space_info->lock);
  3105. if (ret)
  3106. goto out;
  3107. ret = -EAGAIN;
  3108. if (trans || committed)
  3109. goto out;
  3110. ret = -ENOSPC;
  3111. trans = btrfs_join_transaction(root, 1);
  3112. if (IS_ERR(trans))
  3113. goto out;
  3114. ret = btrfs_commit_transaction(trans, root);
  3115. if (!ret) {
  3116. trans = NULL;
  3117. committed = true;
  3118. goto again;
  3119. }
  3120. out:
  3121. if (reserved) {
  3122. spin_lock(&space_info->lock);
  3123. space_info->bytes_reserved -= orig_bytes;
  3124. spin_unlock(&space_info->lock);
  3125. }
  3126. return ret;
  3127. }
  3128. static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
  3129. struct btrfs_root *root)
  3130. {
  3131. struct btrfs_block_rsv *block_rsv;
  3132. if (root->ref_cows)
  3133. block_rsv = trans->block_rsv;
  3134. else
  3135. block_rsv = root->block_rsv;
  3136. if (!block_rsv)
  3137. block_rsv = &root->fs_info->empty_block_rsv;
  3138. return block_rsv;
  3139. }
  3140. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  3141. u64 num_bytes)
  3142. {
  3143. int ret = -ENOSPC;
  3144. spin_lock(&block_rsv->lock);
  3145. if (block_rsv->reserved >= num_bytes) {
  3146. block_rsv->reserved -= num_bytes;
  3147. if (block_rsv->reserved < block_rsv->size)
  3148. block_rsv->full = 0;
  3149. ret = 0;
  3150. }
  3151. spin_unlock(&block_rsv->lock);
  3152. return ret;
  3153. }
  3154. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  3155. u64 num_bytes, int update_size)
  3156. {
  3157. spin_lock(&block_rsv->lock);
  3158. block_rsv->reserved += num_bytes;
  3159. if (update_size)
  3160. block_rsv->size += num_bytes;
  3161. else if (block_rsv->reserved >= block_rsv->size)
  3162. block_rsv->full = 1;
  3163. spin_unlock(&block_rsv->lock);
  3164. }
  3165. void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
  3166. struct btrfs_block_rsv *dest, u64 num_bytes)
  3167. {
  3168. struct btrfs_space_info *space_info = block_rsv->space_info;
  3169. spin_lock(&block_rsv->lock);
  3170. if (num_bytes == (u64)-1)
  3171. num_bytes = block_rsv->size;
  3172. block_rsv->size -= num_bytes;
  3173. if (block_rsv->reserved >= block_rsv->size) {
  3174. num_bytes = block_rsv->reserved - block_rsv->size;
  3175. block_rsv->reserved = block_rsv->size;
  3176. block_rsv->full = 1;
  3177. } else {
  3178. num_bytes = 0;
  3179. }
  3180. spin_unlock(&block_rsv->lock);
  3181. if (num_bytes > 0) {
  3182. if (dest) {
  3183. block_rsv_add_bytes(dest, num_bytes, 0);
  3184. } else {
  3185. spin_lock(&space_info->lock);
  3186. space_info->bytes_reserved -= num_bytes;
  3187. spin_unlock(&space_info->lock);
  3188. }
  3189. }
  3190. }
  3191. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  3192. struct btrfs_block_rsv *dst, u64 num_bytes)
  3193. {
  3194. int ret;
  3195. ret = block_rsv_use_bytes(src, num_bytes);
  3196. if (ret)
  3197. return ret;
  3198. block_rsv_add_bytes(dst, num_bytes, 1);
  3199. return 0;
  3200. }
  3201. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
  3202. {
  3203. memset(rsv, 0, sizeof(*rsv));
  3204. spin_lock_init(&rsv->lock);
  3205. atomic_set(&rsv->usage, 1);
  3206. rsv->priority = 6;
  3207. INIT_LIST_HEAD(&rsv->list);
  3208. }
  3209. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
  3210. {
  3211. struct btrfs_block_rsv *block_rsv;
  3212. struct btrfs_fs_info *fs_info = root->fs_info;
  3213. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  3214. if (!block_rsv)
  3215. return NULL;
  3216. btrfs_init_block_rsv(block_rsv);
  3217. block_rsv->space_info = __find_space_info(fs_info,
  3218. BTRFS_BLOCK_GROUP_METADATA);
  3219. return block_rsv;
  3220. }
  3221. void btrfs_free_block_rsv(struct btrfs_root *root,
  3222. struct btrfs_block_rsv *rsv)
  3223. {
  3224. if (rsv && atomic_dec_and_test(&rsv->usage)) {
  3225. btrfs_block_rsv_release(root, rsv, (u64)-1);
  3226. if (!rsv->durable)
  3227. kfree(rsv);
  3228. }
  3229. }
  3230. /*
  3231. * make the block_rsv struct be able to capture freed space.
  3232. * the captured space will re-add to the the block_rsv struct
  3233. * after transaction commit
  3234. */
  3235. void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
  3236. struct btrfs_block_rsv *block_rsv)
  3237. {
  3238. block_rsv->durable = 1;
  3239. mutex_lock(&fs_info->durable_block_rsv_mutex);
  3240. list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
  3241. mutex_unlock(&fs_info->durable_block_rsv_mutex);
  3242. }
  3243. int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
  3244. struct btrfs_root *root,
  3245. struct btrfs_block_rsv *block_rsv,
  3246. u64 num_bytes)
  3247. {
  3248. int ret;
  3249. if (num_bytes == 0)
  3250. return 0;
  3251. ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
  3252. if (!ret) {
  3253. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  3254. return 0;
  3255. }
  3256. return ret;
  3257. }
  3258. int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
  3259. struct btrfs_root *root,
  3260. struct btrfs_block_rsv *block_rsv,
  3261. u64 min_reserved, int min_factor)
  3262. {
  3263. u64 num_bytes = 0;
  3264. int commit_trans = 0;
  3265. int ret = -ENOSPC;
  3266. if (!block_rsv)
  3267. return 0;
  3268. spin_lock(&block_rsv->lock);
  3269. if (min_factor > 0)
  3270. num_bytes = div_factor(block_rsv->size, min_factor);
  3271. if (min_reserved > num_bytes)
  3272. num_bytes = min_reserved;
  3273. if (block_rsv->reserved >= num_bytes) {
  3274. ret = 0;
  3275. } else {
  3276. num_bytes -= block_rsv->reserved;
  3277. if (block_rsv->durable &&
  3278. block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
  3279. commit_trans = 1;
  3280. }
  3281. spin_unlock(&block_rsv->lock);
  3282. if (!ret)
  3283. return 0;
  3284. if (block_rsv->refill_used) {
  3285. ret = reserve_metadata_bytes(trans, root, block_rsv,
  3286. num_bytes, 0);
  3287. if (!ret) {
  3288. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  3289. return 0;
  3290. }
  3291. }
  3292. if (commit_trans) {
  3293. if (trans)
  3294. return -EAGAIN;
  3295. trans = btrfs_join_transaction(root, 1);
  3296. BUG_ON(IS_ERR(trans));
  3297. ret = btrfs_commit_transaction(trans, root);
  3298. return 0;
  3299. }
  3300. return -ENOSPC;
  3301. }
  3302. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  3303. struct btrfs_block_rsv *dst_rsv,
  3304. u64 num_bytes)
  3305. {
  3306. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3307. }
  3308. void btrfs_block_rsv_release(struct btrfs_root *root,
  3309. struct btrfs_block_rsv *block_rsv,
  3310. u64 num_bytes)
  3311. {
  3312. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3313. if (global_rsv->full || global_rsv == block_rsv ||
  3314. block_rsv->space_info != global_rsv->space_info)
  3315. global_rsv = NULL;
  3316. block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
  3317. }
  3318. /*
  3319. * helper to calculate size of global block reservation.
  3320. * the desired value is sum of space used by extent tree,
  3321. * checksum tree and root tree
  3322. */
  3323. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  3324. {
  3325. struct btrfs_space_info *sinfo;
  3326. u64 num_bytes;
  3327. u64 meta_used;
  3328. u64 data_used;
  3329. int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
  3330. #if 0
  3331. /*
  3332. * per tree used space accounting can be inaccuracy, so we
  3333. * can't rely on it.
  3334. */
  3335. spin_lock(&fs_info->extent_root->accounting_lock);
  3336. num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
  3337. spin_unlock(&fs_info->extent_root->accounting_lock);
  3338. spin_lock(&fs_info->csum_root->accounting_lock);
  3339. num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
  3340. spin_unlock(&fs_info->csum_root->accounting_lock);
  3341. spin_lock(&fs_info->tree_root->accounting_lock);
  3342. num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
  3343. spin_unlock(&fs_info->tree_root->accounting_lock);
  3344. #endif
  3345. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  3346. spin_lock(&sinfo->lock);
  3347. data_used = sinfo->bytes_used;
  3348. spin_unlock(&sinfo->lock);
  3349. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3350. spin_lock(&sinfo->lock);
  3351. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  3352. data_used = 0;
  3353. meta_used = sinfo->bytes_used;
  3354. spin_unlock(&sinfo->lock);
  3355. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  3356. csum_size * 2;
  3357. num_bytes += div64_u64(data_used + meta_used, 50);
  3358. if (num_bytes * 3 > meta_used)
  3359. num_bytes = div64_u64(meta_used, 3);
  3360. return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
  3361. }
  3362. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  3363. {
  3364. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  3365. struct btrfs_space_info *sinfo = block_rsv->space_info;
  3366. u64 num_bytes;
  3367. num_bytes = calc_global_metadata_size(fs_info);
  3368. spin_lock(&block_rsv->lock);
  3369. spin_lock(&sinfo->lock);
  3370. block_rsv->size = num_bytes;
  3371. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  3372. sinfo->bytes_reserved + sinfo->bytes_readonly +
  3373. sinfo->bytes_may_use;
  3374. if (sinfo->total_bytes > num_bytes) {
  3375. num_bytes = sinfo->total_bytes - num_bytes;
  3376. block_rsv->reserved += num_bytes;
  3377. sinfo->bytes_reserved += num_bytes;
  3378. }
  3379. if (block_rsv->reserved >= block_rsv->size) {
  3380. num_bytes = block_rsv->reserved - block_rsv->size;
  3381. sinfo->bytes_reserved -= num_bytes;
  3382. block_rsv->reserved = block_rsv->size;
  3383. block_rsv->full = 1;
  3384. }
  3385. #if 0
  3386. printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
  3387. block_rsv->size, block_rsv->reserved);
  3388. #endif
  3389. spin_unlock(&sinfo->lock);
  3390. spin_unlock(&block_rsv->lock);
  3391. }
  3392. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  3393. {
  3394. struct btrfs_space_info *space_info;
  3395. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3396. fs_info->chunk_block_rsv.space_info = space_info;
  3397. fs_info->chunk_block_rsv.priority = 10;
  3398. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  3399. fs_info->global_block_rsv.space_info = space_info;
  3400. fs_info->global_block_rsv.priority = 10;
  3401. fs_info->global_block_rsv.refill_used = 1;
  3402. fs_info->delalloc_block_rsv.space_info = space_info;
  3403. fs_info->trans_block_rsv.space_info = space_info;
  3404. fs_info->empty_block_rsv.space_info = space_info;
  3405. fs_info->empty_block_rsv.priority = 10;
  3406. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  3407. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  3408. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  3409. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  3410. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  3411. btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
  3412. btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
  3413. update_global_block_rsv(fs_info);
  3414. }
  3415. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  3416. {
  3417. block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
  3418. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  3419. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  3420. WARN_ON(fs_info->trans_block_rsv.size > 0);
  3421. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  3422. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  3423. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  3424. }
  3425. static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
  3426. {
  3427. return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
  3428. 3 * num_items;
  3429. }
  3430. int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
  3431. struct btrfs_root *root,
  3432. int num_items)
  3433. {
  3434. u64 num_bytes;
  3435. int ret;
  3436. if (num_items == 0 || root->fs_info->chunk_root == root)
  3437. return 0;
  3438. num_bytes = calc_trans_metadata_size(root, num_items);
  3439. ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
  3440. num_bytes);
  3441. if (!ret) {
  3442. trans->bytes_reserved += num_bytes;
  3443. trans->block_rsv = &root->fs_info->trans_block_rsv;
  3444. }
  3445. return ret;
  3446. }
  3447. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  3448. struct btrfs_root *root)
  3449. {
  3450. if (!trans->bytes_reserved)
  3451. return;
  3452. BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
  3453. btrfs_block_rsv_release(root, trans->block_rsv,
  3454. trans->bytes_reserved);
  3455. trans->bytes_reserved = 0;
  3456. }
  3457. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  3458. struct inode *inode)
  3459. {
  3460. struct btrfs_root *root = BTRFS_I(inode)->root;
  3461. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3462. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  3463. /*
  3464. * one for deleting orphan item, one for updating inode and
  3465. * two for calling btrfs_truncate_inode_items.
  3466. *
  3467. * btrfs_truncate_inode_items is a delete operation, it frees
  3468. * more space than it uses in most cases. So two units of
  3469. * metadata space should be enough for calling it many times.
  3470. * If all of the metadata space is used, we can commit
  3471. * transaction and use space it freed.
  3472. */
  3473. u64 num_bytes = calc_trans_metadata_size(root, 4);
  3474. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3475. }
  3476. void btrfs_orphan_release_metadata(struct inode *inode)
  3477. {
  3478. struct btrfs_root *root = BTRFS_I(inode)->root;
  3479. u64 num_bytes = calc_trans_metadata_size(root, 4);
  3480. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  3481. }
  3482. int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
  3483. struct btrfs_pending_snapshot *pending)
  3484. {
  3485. struct btrfs_root *root = pending->root;
  3486. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  3487. struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
  3488. /*
  3489. * two for root back/forward refs, two for directory entries
  3490. * and one for root of the snapshot.
  3491. */
  3492. u64 num_bytes = calc_trans_metadata_size(root, 5);
  3493. dst_rsv->space_info = src_rsv->space_info;
  3494. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  3495. }
  3496. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
  3497. {
  3498. return num_bytes >>= 3;
  3499. }
  3500. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  3501. {
  3502. struct btrfs_root *root = BTRFS_I(inode)->root;
  3503. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  3504. u64 to_reserve;
  3505. int nr_extents;
  3506. int ret;
  3507. if (btrfs_transaction_in_commit(root->fs_info))
  3508. schedule_timeout(1);
  3509. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3510. spin_lock(&BTRFS_I(inode)->accounting_lock);
  3511. nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
  3512. if (nr_extents > BTRFS_I(inode)->reserved_extents) {
  3513. nr_extents -= BTRFS_I(inode)->reserved_extents;
  3514. to_reserve = calc_trans_metadata_size(root, nr_extents);
  3515. } else {
  3516. nr_extents = 0;
  3517. to_reserve = 0;
  3518. }
  3519. spin_unlock(&BTRFS_I(inode)->accounting_lock);
  3520. to_reserve += calc_csum_metadata_size(inode, num_bytes);
  3521. ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
  3522. if (ret)
  3523. return ret;
  3524. spin_lock(&BTRFS_I(inode)->accounting_lock);
  3525. BTRFS_I(inode)->reserved_extents += nr_extents;
  3526. atomic_inc(&BTRFS_I(inode)->outstanding_extents);
  3527. spin_unlock(&BTRFS_I(inode)->accounting_lock);
  3528. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  3529. if (block_rsv->size > 512 * 1024 * 1024)
  3530. shrink_delalloc(NULL, root, to_reserve, 0);
  3531. return 0;
  3532. }
  3533. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  3534. {
  3535. struct btrfs_root *root = BTRFS_I(inode)->root;
  3536. u64 to_free;
  3537. int nr_extents;
  3538. num_bytes = ALIGN(num_bytes, root->sectorsize);
  3539. atomic_dec(&BTRFS_I(inode)->outstanding_extents);
  3540. spin_lock(&BTRFS_I(inode)->accounting_lock);
  3541. nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
  3542. if (nr_extents < BTRFS_I(inode)->reserved_extents) {
  3543. nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
  3544. BTRFS_I(inode)->reserved_extents -= nr_extents;
  3545. } else {
  3546. nr_extents = 0;
  3547. }
  3548. spin_unlock(&BTRFS_I(inode)->accounting_lock);
  3549. to_free = calc_csum_metadata_size(inode, num_bytes);
  3550. if (nr_extents > 0)
  3551. to_free += calc_trans_metadata_size(root, nr_extents);
  3552. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  3553. to_free);
  3554. }
  3555. int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
  3556. {
  3557. int ret;
  3558. ret = btrfs_check_data_free_space(inode, num_bytes);
  3559. if (ret)
  3560. return ret;
  3561. ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
  3562. if (ret) {
  3563. btrfs_free_reserved_data_space(inode, num_bytes);
  3564. return ret;
  3565. }
  3566. return 0;
  3567. }
  3568. void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
  3569. {
  3570. btrfs_delalloc_release_metadata(inode, num_bytes);
  3571. btrfs_free_reserved_data_space(inode, num_bytes);
  3572. }
  3573. static int update_block_group(struct btrfs_trans_handle *trans,
  3574. struct btrfs_root *root,
  3575. u64 bytenr, u64 num_bytes, int alloc)
  3576. {
  3577. struct btrfs_block_group_cache *cache = NULL;
  3578. struct btrfs_fs_info *info = root->fs_info;
  3579. u64 total = num_bytes;
  3580. u64 old_val;
  3581. u64 byte_in_group;
  3582. int factor;
  3583. /* block accounting for super block */
  3584. spin_lock(&info->delalloc_lock);
  3585. old_val = btrfs_super_bytes_used(&info->super_copy);
  3586. if (alloc)
  3587. old_val += num_bytes;
  3588. else
  3589. old_val -= num_bytes;
  3590. btrfs_set_super_bytes_used(&info->super_copy, old_val);
  3591. spin_unlock(&info->delalloc_lock);
  3592. while (total) {
  3593. cache = btrfs_lookup_block_group(info, bytenr);
  3594. if (!cache)
  3595. return -1;
  3596. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  3597. BTRFS_BLOCK_GROUP_RAID1 |
  3598. BTRFS_BLOCK_GROUP_RAID10))
  3599. factor = 2;
  3600. else
  3601. factor = 1;
  3602. /*
  3603. * If this block group has free space cache written out, we
  3604. * need to make sure to load it if we are removing space. This
  3605. * is because we need the unpinning stage to actually add the
  3606. * space back to the block group, otherwise we will leak space.
  3607. */
  3608. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  3609. cache_block_group(cache, trans, NULL, 1);
  3610. byte_in_group = bytenr - cache->key.objectid;
  3611. WARN_ON(byte_in_group > cache->key.offset);
  3612. spin_lock(&cache->space_info->lock);
  3613. spin_lock(&cache->lock);
  3614. if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
  3615. cache->disk_cache_state < BTRFS_DC_CLEAR)
  3616. cache->disk_cache_state = BTRFS_DC_CLEAR;
  3617. cache->dirty = 1;
  3618. old_val = btrfs_block_group_used(&cache->item);
  3619. num_bytes = min(total, cache->key.offset - byte_in_group);
  3620. if (alloc) {
  3621. old_val += num_bytes;
  3622. btrfs_set_block_group_used(&cache->item, old_val);
  3623. cache->reserved -= num_bytes;
  3624. cache->space_info->bytes_reserved -= num_bytes;
  3625. cache->space_info->bytes_used += num_bytes;
  3626. cache->space_info->disk_used += num_bytes * factor;
  3627. spin_unlock(&cache->lock);
  3628. spin_unlock(&cache->space_info->lock);
  3629. } else {
  3630. old_val -= num_bytes;
  3631. btrfs_set_block_group_used(&cache->item, old_val);
  3632. cache->pinned += num_bytes;
  3633. cache->space_info->bytes_pinned += num_bytes;
  3634. cache->space_info->bytes_used -= num_bytes;
  3635. cache->space_info->disk_used -= num_bytes * factor;
  3636. spin_unlock(&cache->lock);
  3637. spin_unlock(&cache->space_info->lock);
  3638. set_extent_dirty(info->pinned_extents,
  3639. bytenr, bytenr + num_bytes - 1,
  3640. GFP_NOFS | __GFP_NOFAIL);
  3641. }
  3642. btrfs_put_block_group(cache);
  3643. total -= num_bytes;
  3644. bytenr += num_bytes;
  3645. }
  3646. return 0;
  3647. }
  3648. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  3649. {
  3650. struct btrfs_block_group_cache *cache;
  3651. u64 bytenr;
  3652. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  3653. if (!cache)
  3654. return 0;
  3655. bytenr = cache->key.objectid;
  3656. btrfs_put_block_group(cache);
  3657. return bytenr;
  3658. }
  3659. static int pin_down_extent(struct btrfs_root *root,
  3660. struct btrfs_block_group_cache *cache,
  3661. u64 bytenr, u64 num_bytes, int reserved)
  3662. {
  3663. spin_lock(&cache->space_info->lock);
  3664. spin_lock(&cache->lock);
  3665. cache->pinned += num_bytes;
  3666. cache->space_info->bytes_pinned += num_bytes;
  3667. if (reserved) {
  3668. cache->reserved -= num_bytes;
  3669. cache->space_info->bytes_reserved -= num_bytes;
  3670. }
  3671. spin_unlock(&cache->lock);
  3672. spin_unlock(&cache->space_info->lock);
  3673. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  3674. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  3675. return 0;
  3676. }
  3677. /*
  3678. * this function must be called within transaction
  3679. */
  3680. int btrfs_pin_extent(struct btrfs_root *root,
  3681. u64 bytenr, u64 num_bytes, int reserved)
  3682. {
  3683. struct btrfs_block_group_cache *cache;
  3684. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  3685. BUG_ON(!cache);
  3686. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  3687. btrfs_put_block_group(cache);
  3688. return 0;
  3689. }
  3690. /*
  3691. * update size of reserved extents. this function may return -EAGAIN
  3692. * if 'reserve' is true or 'sinfo' is false.
  3693. */
  3694. static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
  3695. u64 num_bytes, int reserve, int sinfo)
  3696. {
  3697. int ret = 0;
  3698. if (sinfo) {
  3699. struct btrfs_space_info *space_info = cache->space_info;
  3700. spin_lock(&space_info->lock);
  3701. spin_lock(&cache->lock);
  3702. if (reserve) {
  3703. if (cache->ro) {
  3704. ret = -EAGAIN;
  3705. } else {
  3706. cache->reserved += num_bytes;
  3707. space_info->bytes_reserved += num_bytes;
  3708. }
  3709. } else {
  3710. if (cache->ro)
  3711. space_info->bytes_readonly += num_bytes;
  3712. cache->reserved -= num_bytes;
  3713. space_info->bytes_reserved -= num_bytes;
  3714. }
  3715. spin_unlock(&cache->lock);
  3716. spin_unlock(&space_info->lock);
  3717. } else {
  3718. spin_lock(&cache->lock);
  3719. if (cache->ro) {
  3720. ret = -EAGAIN;
  3721. } else {
  3722. if (reserve)
  3723. cache->reserved += num_bytes;
  3724. else
  3725. cache->reserved -= num_bytes;
  3726. }
  3727. spin_unlock(&cache->lock);
  3728. }
  3729. return ret;
  3730. }
  3731. int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  3732. struct btrfs_root *root)
  3733. {
  3734. struct btrfs_fs_info *fs_info = root->fs_info;
  3735. struct btrfs_caching_control *next;
  3736. struct btrfs_caching_control *caching_ctl;
  3737. struct btrfs_block_group_cache *cache;
  3738. down_write(&fs_info->extent_commit_sem);
  3739. list_for_each_entry_safe(caching_ctl, next,
  3740. &fs_info->caching_block_groups, list) {
  3741. cache = caching_ctl->block_group;
  3742. if (block_group_cache_done(cache)) {
  3743. cache->last_byte_to_unpin = (u64)-1;
  3744. list_del_init(&caching_ctl->list);
  3745. put_caching_control(caching_ctl);
  3746. } else {
  3747. cache->last_byte_to_unpin = caching_ctl->progress;
  3748. }
  3749. }
  3750. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  3751. fs_info->pinned_extents = &fs_info->freed_extents[1];
  3752. else
  3753. fs_info->pinned_extents = &fs_info->freed_extents[0];
  3754. up_write(&fs_info->extent_commit_sem);
  3755. update_global_block_rsv(fs_info);
  3756. return 0;
  3757. }
  3758. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  3759. {
  3760. struct btrfs_fs_info *fs_info = root->fs_info;
  3761. struct btrfs_block_group_cache *cache = NULL;
  3762. u64 len;
  3763. while (start <= end) {
  3764. if (!cache ||
  3765. start >= cache->key.objectid + cache->key.offset) {
  3766. if (cache)
  3767. btrfs_put_block_group(cache);
  3768. cache = btrfs_lookup_block_group(fs_info, start);
  3769. BUG_ON(!cache);
  3770. }
  3771. len = cache->key.objectid + cache->key.offset - start;
  3772. len = min(len, end + 1 - start);
  3773. if (start < cache->last_byte_to_unpin) {
  3774. len = min(len, cache->last_byte_to_unpin - start);
  3775. btrfs_add_free_space(cache, start, len);
  3776. }
  3777. start += len;
  3778. spin_lock(&cache->space_info->lock);
  3779. spin_lock(&cache->lock);
  3780. cache->pinned -= len;
  3781. cache->space_info->bytes_pinned -= len;
  3782. if (cache->ro) {
  3783. cache->space_info->bytes_readonly += len;
  3784. } else if (cache->reserved_pinned > 0) {
  3785. len = min(len, cache->reserved_pinned);
  3786. cache->reserved_pinned -= len;
  3787. cache->space_info->bytes_reserved += len;
  3788. }
  3789. spin_unlock(&cache->lock);
  3790. spin_unlock(&cache->space_info->lock);
  3791. }
  3792. if (cache)
  3793. btrfs_put_block_group(cache);
  3794. return 0;
  3795. }
  3796. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  3797. struct btrfs_root *root)
  3798. {
  3799. struct btrfs_fs_info *fs_info = root->fs_info;
  3800. struct extent_io_tree *unpin;
  3801. struct btrfs_block_rsv *block_rsv;
  3802. struct btrfs_block_rsv *next_rsv;
  3803. u64 start;
  3804. u64 end;
  3805. int idx;
  3806. int ret;
  3807. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  3808. unpin = &fs_info->freed_extents[1];
  3809. else
  3810. unpin = &fs_info->freed_extents[0];
  3811. while (1) {
  3812. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3813. EXTENT_DIRTY);
  3814. if (ret)
  3815. break;
  3816. ret = btrfs_discard_extent(root, start, end + 1 - start);
  3817. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3818. unpin_extent_range(root, start, end);
  3819. cond_resched();
  3820. }
  3821. mutex_lock(&fs_info->durable_block_rsv_mutex);
  3822. list_for_each_entry_safe(block_rsv, next_rsv,
  3823. &fs_info->durable_block_rsv_list, list) {
  3824. idx = trans->transid & 0x1;
  3825. if (block_rsv->freed[idx] > 0) {
  3826. block_rsv_add_bytes(block_rsv,
  3827. block_rsv->freed[idx], 0);
  3828. block_rsv->freed[idx] = 0;
  3829. }
  3830. if (atomic_read(&block_rsv->usage) == 0) {
  3831. btrfs_block_rsv_release(root, block_rsv, (u64)-1);
  3832. if (block_rsv->freed[0] == 0 &&
  3833. block_rsv->freed[1] == 0) {
  3834. list_del_init(&block_rsv->list);
  3835. kfree(block_rsv);
  3836. }
  3837. } else {
  3838. btrfs_block_rsv_release(root, block_rsv, 0);
  3839. }
  3840. }
  3841. mutex_unlock(&fs_info->durable_block_rsv_mutex);
  3842. return 0;
  3843. }
  3844. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  3845. struct btrfs_root *root,
  3846. u64 bytenr, u64 num_bytes, u64 parent,
  3847. u64 root_objectid, u64 owner_objectid,
  3848. u64 owner_offset, int refs_to_drop,
  3849. struct btrfs_delayed_extent_op *extent_op)
  3850. {
  3851. struct btrfs_key key;
  3852. struct btrfs_path *path;
  3853. struct btrfs_fs_info *info = root->fs_info;
  3854. struct btrfs_root *extent_root = info->extent_root;
  3855. struct extent_buffer *leaf;
  3856. struct btrfs_extent_item *ei;
  3857. struct btrfs_extent_inline_ref *iref;
  3858. int ret;
  3859. int is_data;
  3860. int extent_slot = 0;
  3861. int found_extent = 0;
  3862. int num_to_del = 1;
  3863. u32 item_size;
  3864. u64 refs;
  3865. path = btrfs_alloc_path();
  3866. if (!path)
  3867. return -ENOMEM;
  3868. path->reada = 1;
  3869. path->leave_spinning = 1;
  3870. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  3871. BUG_ON(!is_data && refs_to_drop != 1);
  3872. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  3873. bytenr, num_bytes, parent,
  3874. root_objectid, owner_objectid,
  3875. owner_offset);
  3876. if (ret == 0) {
  3877. extent_slot = path->slots[0];
  3878. while (extent_slot >= 0) {
  3879. btrfs_item_key_to_cpu(path->nodes[0], &key,
  3880. extent_slot);
  3881. if (key.objectid != bytenr)
  3882. break;
  3883. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3884. key.offset == num_bytes) {
  3885. found_extent = 1;
  3886. break;
  3887. }
  3888. if (path->slots[0] - extent_slot > 5)
  3889. break;
  3890. extent_slot--;
  3891. }
  3892. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3893. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  3894. if (found_extent && item_size < sizeof(*ei))
  3895. found_extent = 0;
  3896. #endif
  3897. if (!found_extent) {
  3898. BUG_ON(iref);
  3899. ret = remove_extent_backref(trans, extent_root, path,
  3900. NULL, refs_to_drop,
  3901. is_data);
  3902. BUG_ON(ret);
  3903. btrfs_release_path(extent_root, path);
  3904. path->leave_spinning = 1;
  3905. key.objectid = bytenr;
  3906. key.type = BTRFS_EXTENT_ITEM_KEY;
  3907. key.offset = num_bytes;
  3908. ret = btrfs_search_slot(trans, extent_root,
  3909. &key, path, -1, 1);
  3910. if (ret) {
  3911. printk(KERN_ERR "umm, got %d back from search"
  3912. ", was looking for %llu\n", ret,
  3913. (unsigned long long)bytenr);
  3914. btrfs_print_leaf(extent_root, path->nodes[0]);
  3915. }
  3916. BUG_ON(ret);
  3917. extent_slot = path->slots[0];
  3918. }
  3919. } else {
  3920. btrfs_print_leaf(extent_root, path->nodes[0]);
  3921. WARN_ON(1);
  3922. printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
  3923. "parent %llu root %llu owner %llu offset %llu\n",
  3924. (unsigned long long)bytenr,
  3925. (unsigned long long)parent,
  3926. (unsigned long long)root_objectid,
  3927. (unsigned long long)owner_objectid,
  3928. (unsigned long long)owner_offset);
  3929. }
  3930. leaf = path->nodes[0];
  3931. item_size = btrfs_item_size_nr(leaf, extent_slot);
  3932. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  3933. if (item_size < sizeof(*ei)) {
  3934. BUG_ON(found_extent || extent_slot != path->slots[0]);
  3935. ret = convert_extent_item_v0(trans, extent_root, path,
  3936. owner_objectid, 0);
  3937. BUG_ON(ret < 0);
  3938. btrfs_release_path(extent_root, path);
  3939. path->leave_spinning = 1;
  3940. key.objectid = bytenr;
  3941. key.type = BTRFS_EXTENT_ITEM_KEY;
  3942. key.offset = num_bytes;
  3943. ret = btrfs_search_slot(trans, extent_root, &key, path,
  3944. -1, 1);
  3945. if (ret) {
  3946. printk(KERN_ERR "umm, got %d back from search"
  3947. ", was looking for %llu\n", ret,
  3948. (unsigned long long)bytenr);
  3949. btrfs_print_leaf(extent_root, path->nodes[0]);
  3950. }
  3951. BUG_ON(ret);
  3952. extent_slot = path->slots[0];
  3953. leaf = path->nodes[0];
  3954. item_size = btrfs_item_size_nr(leaf, extent_slot);
  3955. }
  3956. #endif
  3957. BUG_ON(item_size < sizeof(*ei));
  3958. ei = btrfs_item_ptr(leaf, extent_slot,
  3959. struct btrfs_extent_item);
  3960. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  3961. struct btrfs_tree_block_info *bi;
  3962. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  3963. bi = (struct btrfs_tree_block_info *)(ei + 1);
  3964. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  3965. }
  3966. refs = btrfs_extent_refs(leaf, ei);
  3967. BUG_ON(refs < refs_to_drop);
  3968. refs -= refs_to_drop;
  3969. if (refs > 0) {
  3970. if (extent_op)
  3971. __run_delayed_extent_op(extent_op, leaf, ei);
  3972. /*
  3973. * In the case of inline back ref, reference count will
  3974. * be updated by remove_extent_backref
  3975. */
  3976. if (iref) {
  3977. BUG_ON(!found_extent);
  3978. } else {
  3979. btrfs_set_extent_refs(leaf, ei, refs);
  3980. btrfs_mark_buffer_dirty(leaf);
  3981. }
  3982. if (found_extent) {
  3983. ret = remove_extent_backref(trans, extent_root, path,
  3984. iref, refs_to_drop,
  3985. is_data);
  3986. BUG_ON(ret);
  3987. }
  3988. } else {
  3989. if (found_extent) {
  3990. BUG_ON(is_data && refs_to_drop !=
  3991. extent_data_ref_count(root, path, iref));
  3992. if (iref) {
  3993. BUG_ON(path->slots[0] != extent_slot);
  3994. } else {
  3995. BUG_ON(path->slots[0] != extent_slot + 1);
  3996. path->slots[0] = extent_slot;
  3997. num_to_del = 2;
  3998. }
  3999. }
  4000. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  4001. num_to_del);
  4002. BUG_ON(ret);
  4003. btrfs_release_path(extent_root, path);
  4004. if (is_data) {
  4005. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  4006. BUG_ON(ret);
  4007. } else {
  4008. invalidate_mapping_pages(info->btree_inode->i_mapping,
  4009. bytenr >> PAGE_CACHE_SHIFT,
  4010. (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
  4011. }
  4012. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  4013. BUG_ON(ret);
  4014. }
  4015. btrfs_free_path(path);
  4016. return ret;
  4017. }
  4018. /*
  4019. * when we free an block, it is possible (and likely) that we free the last
  4020. * delayed ref for that extent as well. This searches the delayed ref tree for
  4021. * a given extent, and if there are no other delayed refs to be processed, it
  4022. * removes it from the tree.
  4023. */
  4024. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  4025. struct btrfs_root *root, u64 bytenr)
  4026. {
  4027. struct btrfs_delayed_ref_head *head;
  4028. struct btrfs_delayed_ref_root *delayed_refs;
  4029. struct btrfs_delayed_ref_node *ref;
  4030. struct rb_node *node;
  4031. int ret = 0;
  4032. delayed_refs = &trans->transaction->delayed_refs;
  4033. spin_lock(&delayed_refs->lock);
  4034. head = btrfs_find_delayed_ref_head(trans, bytenr);
  4035. if (!head)
  4036. goto out;
  4037. node = rb_prev(&head->node.rb_node);
  4038. if (!node)
  4039. goto out;
  4040. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  4041. /* there are still entries for this ref, we can't drop it */
  4042. if (ref->bytenr == bytenr)
  4043. goto out;
  4044. if (head->extent_op) {
  4045. if (!head->must_insert_reserved)
  4046. goto out;
  4047. kfree(head->extent_op);
  4048. head->extent_op = NULL;
  4049. }
  4050. /*
  4051. * waiting for the lock here would deadlock. If someone else has it
  4052. * locked they are already in the process of dropping it anyway
  4053. */
  4054. if (!mutex_trylock(&head->mutex))
  4055. goto out;
  4056. /*
  4057. * at this point we have a head with no other entries. Go
  4058. * ahead and process it.
  4059. */
  4060. head->node.in_tree = 0;
  4061. rb_erase(&head->node.rb_node, &delayed_refs->root);
  4062. delayed_refs->num_entries--;
  4063. /*
  4064. * we don't take a ref on the node because we're removing it from the
  4065. * tree, so we just steal the ref the tree was holding.
  4066. */
  4067. delayed_refs->num_heads--;
  4068. if (list_empty(&head->cluster))
  4069. delayed_refs->num_heads_ready--;
  4070. list_del_init(&head->cluster);
  4071. spin_unlock(&delayed_refs->lock);
  4072. BUG_ON(head->extent_op);
  4073. if (head->must_insert_reserved)
  4074. ret = 1;
  4075. mutex_unlock(&head->mutex);
  4076. btrfs_put_delayed_ref(&head->node);
  4077. return ret;
  4078. out:
  4079. spin_unlock(&delayed_refs->lock);
  4080. return 0;
  4081. }
  4082. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  4083. struct btrfs_root *root,
  4084. struct extent_buffer *buf,
  4085. u64 parent, int last_ref)
  4086. {
  4087. struct btrfs_block_rsv *block_rsv;
  4088. struct btrfs_block_group_cache *cache = NULL;
  4089. int ret;
  4090. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4091. ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
  4092. parent, root->root_key.objectid,
  4093. btrfs_header_level(buf),
  4094. BTRFS_DROP_DELAYED_REF, NULL);
  4095. BUG_ON(ret);
  4096. }
  4097. if (!last_ref)
  4098. return;
  4099. block_rsv = get_block_rsv(trans, root);
  4100. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  4101. if (block_rsv->space_info != cache->space_info)
  4102. goto out;
  4103. if (btrfs_header_generation(buf) == trans->transid) {
  4104. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  4105. ret = check_ref_cleanup(trans, root, buf->start);
  4106. if (!ret)
  4107. goto pin;
  4108. }
  4109. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  4110. pin_down_extent(root, cache, buf->start, buf->len, 1);
  4111. goto pin;
  4112. }
  4113. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  4114. btrfs_add_free_space(cache, buf->start, buf->len);
  4115. ret = update_reserved_bytes(cache, buf->len, 0, 0);
  4116. if (ret == -EAGAIN) {
  4117. /* block group became read-only */
  4118. update_reserved_bytes(cache, buf->len, 0, 1);
  4119. goto out;
  4120. }
  4121. ret = 1;
  4122. spin_lock(&block_rsv->lock);
  4123. if (block_rsv->reserved < block_rsv->size) {
  4124. block_rsv->reserved += buf->len;
  4125. ret = 0;
  4126. }
  4127. spin_unlock(&block_rsv->lock);
  4128. if (ret) {
  4129. spin_lock(&cache->space_info->lock);
  4130. cache->space_info->bytes_reserved -= buf->len;
  4131. spin_unlock(&cache->space_info->lock);
  4132. }
  4133. goto out;
  4134. }
  4135. pin:
  4136. if (block_rsv->durable && !cache->ro) {
  4137. ret = 0;
  4138. spin_lock(&cache->lock);
  4139. if (!cache->ro) {
  4140. cache->reserved_pinned += buf->len;
  4141. ret = 1;
  4142. }
  4143. spin_unlock(&cache->lock);
  4144. if (ret) {
  4145. spin_lock(&block_rsv->lock);
  4146. block_rsv->freed[trans->transid & 0x1] += buf->len;
  4147. spin_unlock(&block_rsv->lock);
  4148. }
  4149. }
  4150. out:
  4151. btrfs_put_block_group(cache);
  4152. }
  4153. int btrfs_free_extent(struct btrfs_trans_handle *trans,
  4154. struct btrfs_root *root,
  4155. u64 bytenr, u64 num_bytes, u64 parent,
  4156. u64 root_objectid, u64 owner, u64 offset)
  4157. {
  4158. int ret;
  4159. /*
  4160. * tree log blocks never actually go into the extent allocation
  4161. * tree, just update pinning info and exit early.
  4162. */
  4163. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  4164. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  4165. /* unlocks the pinned mutex */
  4166. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  4167. ret = 0;
  4168. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  4169. ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
  4170. parent, root_objectid, (int)owner,
  4171. BTRFS_DROP_DELAYED_REF, NULL);
  4172. BUG_ON(ret);
  4173. } else {
  4174. ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
  4175. parent, root_objectid, owner,
  4176. offset, BTRFS_DROP_DELAYED_REF, NULL);
  4177. BUG_ON(ret);
  4178. }
  4179. return ret;
  4180. }
  4181. static u64 stripe_align(struct btrfs_root *root, u64 val)
  4182. {
  4183. u64 mask = ((u64)root->stripesize - 1);
  4184. u64 ret = (val + mask) & ~mask;
  4185. return ret;
  4186. }
  4187. /*
  4188. * when we wait for progress in the block group caching, its because
  4189. * our allocation attempt failed at least once. So, we must sleep
  4190. * and let some progress happen before we try again.
  4191. *
  4192. * This function will sleep at least once waiting for new free space to
  4193. * show up, and then it will check the block group free space numbers
  4194. * for our min num_bytes. Another option is to have it go ahead
  4195. * and look in the rbtree for a free extent of a given size, but this
  4196. * is a good start.
  4197. */
  4198. static noinline int
  4199. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  4200. u64 num_bytes)
  4201. {
  4202. struct btrfs_caching_control *caching_ctl;
  4203. DEFINE_WAIT(wait);
  4204. caching_ctl = get_caching_control(cache);
  4205. if (!caching_ctl)
  4206. return 0;
  4207. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  4208. (cache->free_space >= num_bytes));
  4209. put_caching_control(caching_ctl);
  4210. return 0;
  4211. }
  4212. static noinline int
  4213. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  4214. {
  4215. struct btrfs_caching_control *caching_ctl;
  4216. DEFINE_WAIT(wait);
  4217. caching_ctl = get_caching_control(cache);
  4218. if (!caching_ctl)
  4219. return 0;
  4220. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  4221. put_caching_control(caching_ctl);
  4222. return 0;
  4223. }
  4224. static int get_block_group_index(struct btrfs_block_group_cache *cache)
  4225. {
  4226. int index;
  4227. if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
  4228. index = 0;
  4229. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
  4230. index = 1;
  4231. else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
  4232. index = 2;
  4233. else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
  4234. index = 3;
  4235. else
  4236. index = 4;
  4237. return index;
  4238. }
  4239. enum btrfs_loop_type {
  4240. LOOP_FIND_IDEAL = 0,
  4241. LOOP_CACHING_NOWAIT = 1,
  4242. LOOP_CACHING_WAIT = 2,
  4243. LOOP_ALLOC_CHUNK = 3,
  4244. LOOP_NO_EMPTY_SIZE = 4,
  4245. };
  4246. /*
  4247. * walks the btree of allocated extents and find a hole of a given size.
  4248. * The key ins is changed to record the hole:
  4249. * ins->objectid == block start
  4250. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  4251. * ins->offset == number of blocks
  4252. * Any available blocks before search_start are skipped.
  4253. */
  4254. static noinline int find_free_extent(struct btrfs_trans_handle *trans,
  4255. struct btrfs_root *orig_root,
  4256. u64 num_bytes, u64 empty_size,
  4257. u64 search_start, u64 search_end,
  4258. u64 hint_byte, struct btrfs_key *ins,
  4259. int data)
  4260. {
  4261. int ret = 0;
  4262. struct btrfs_root *root = orig_root->fs_info->extent_root;
  4263. struct btrfs_free_cluster *last_ptr = NULL;
  4264. struct btrfs_block_group_cache *block_group = NULL;
  4265. int empty_cluster = 2 * 1024 * 1024;
  4266. int allowed_chunk_alloc = 0;
  4267. int done_chunk_alloc = 0;
  4268. struct btrfs_space_info *space_info;
  4269. int last_ptr_loop = 0;
  4270. int loop = 0;
  4271. int index = 0;
  4272. bool found_uncached_bg = false;
  4273. bool failed_cluster_refill = false;
  4274. bool failed_alloc = false;
  4275. bool use_cluster = true;
  4276. u64 ideal_cache_percent = 0;
  4277. u64 ideal_cache_offset = 0;
  4278. WARN_ON(num_bytes < root->sectorsize);
  4279. btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
  4280. ins->objectid = 0;
  4281. ins->offset = 0;
  4282. space_info = __find_space_info(root->fs_info, data);
  4283. if (!space_info) {
  4284. printk(KERN_ERR "No space info for %d\n", data);
  4285. return -ENOSPC;
  4286. }
  4287. /*
  4288. * If the space info is for both data and metadata it means we have a
  4289. * small filesystem and we can't use the clustering stuff.
  4290. */
  4291. if (btrfs_mixed_space_info(space_info))
  4292. use_cluster = false;
  4293. if (orig_root->ref_cows || empty_size)
  4294. allowed_chunk_alloc = 1;
  4295. if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
  4296. last_ptr = &root->fs_info->meta_alloc_cluster;
  4297. if (!btrfs_test_opt(root, SSD))
  4298. empty_cluster = 64 * 1024;
  4299. }
  4300. if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
  4301. btrfs_test_opt(root, SSD)) {
  4302. last_ptr = &root->fs_info->data_alloc_cluster;
  4303. }
  4304. if (last_ptr) {
  4305. spin_lock(&last_ptr->lock);
  4306. if (last_ptr->block_group)
  4307. hint_byte = last_ptr->window_start;
  4308. spin_unlock(&last_ptr->lock);
  4309. }
  4310. search_start = max(search_start, first_logical_byte(root, 0));
  4311. search_start = max(search_start, hint_byte);
  4312. if (!last_ptr)
  4313. empty_cluster = 0;
  4314. if (search_start == hint_byte) {
  4315. ideal_cache:
  4316. block_group = btrfs_lookup_block_group(root->fs_info,
  4317. search_start);
  4318. /*
  4319. * we don't want to use the block group if it doesn't match our
  4320. * allocation bits, or if its not cached.
  4321. *
  4322. * However if we are re-searching with an ideal block group
  4323. * picked out then we don't care that the block group is cached.
  4324. */
  4325. if (block_group && block_group_bits(block_group, data) &&
  4326. (block_group->cached != BTRFS_CACHE_NO ||
  4327. search_start == ideal_cache_offset)) {
  4328. down_read(&space_info->groups_sem);
  4329. if (list_empty(&block_group->list) ||
  4330. block_group->ro) {
  4331. /*
  4332. * someone is removing this block group,
  4333. * we can't jump into the have_block_group
  4334. * target because our list pointers are not
  4335. * valid
  4336. */
  4337. btrfs_put_block_group(block_group);
  4338. up_read(&space_info->groups_sem);
  4339. } else {
  4340. index = get_block_group_index(block_group);
  4341. goto have_block_group;
  4342. }
  4343. } else if (block_group) {
  4344. btrfs_put_block_group(block_group);
  4345. }
  4346. }
  4347. search:
  4348. down_read(&space_info->groups_sem);
  4349. list_for_each_entry(block_group, &space_info->block_groups[index],
  4350. list) {
  4351. u64 offset;
  4352. int cached;
  4353. btrfs_get_block_group(block_group);
  4354. search_start = block_group->key.objectid;
  4355. /*
  4356. * this can happen if we end up cycling through all the
  4357. * raid types, but we want to make sure we only allocate
  4358. * for the proper type.
  4359. */
  4360. if (!block_group_bits(block_group, data)) {
  4361. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  4362. BTRFS_BLOCK_GROUP_RAID1 |
  4363. BTRFS_BLOCK_GROUP_RAID10;
  4364. /*
  4365. * if they asked for extra copies and this block group
  4366. * doesn't provide them, bail. This does allow us to
  4367. * fill raid0 from raid1.
  4368. */
  4369. if ((data & extra) && !(block_group->flags & extra))
  4370. goto loop;
  4371. }
  4372. have_block_group:
  4373. if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
  4374. u64 free_percent;
  4375. ret = cache_block_group(block_group, trans,
  4376. orig_root, 1);
  4377. if (block_group->cached == BTRFS_CACHE_FINISHED)
  4378. goto have_block_group;
  4379. free_percent = btrfs_block_group_used(&block_group->item);
  4380. free_percent *= 100;
  4381. free_percent = div64_u64(free_percent,
  4382. block_group->key.offset);
  4383. free_percent = 100 - free_percent;
  4384. if (free_percent > ideal_cache_percent &&
  4385. likely(!block_group->ro)) {
  4386. ideal_cache_offset = block_group->key.objectid;
  4387. ideal_cache_percent = free_percent;
  4388. }
  4389. /*
  4390. * We only want to start kthread caching if we are at
  4391. * the point where we will wait for caching to make
  4392. * progress, or if our ideal search is over and we've
  4393. * found somebody to start caching.
  4394. */
  4395. if (loop > LOOP_CACHING_NOWAIT ||
  4396. (loop > LOOP_FIND_IDEAL &&
  4397. atomic_read(&space_info->caching_threads) < 2)) {
  4398. ret = cache_block_group(block_group, trans,
  4399. orig_root, 0);
  4400. BUG_ON(ret);
  4401. }
  4402. found_uncached_bg = true;
  4403. /*
  4404. * If loop is set for cached only, try the next block
  4405. * group.
  4406. */
  4407. if (loop == LOOP_FIND_IDEAL)
  4408. goto loop;
  4409. }
  4410. cached = block_group_cache_done(block_group);
  4411. if (unlikely(!cached))
  4412. found_uncached_bg = true;
  4413. if (unlikely(block_group->ro))
  4414. goto loop;
  4415. /*
  4416. * Ok we want to try and use the cluster allocator, so lets look
  4417. * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
  4418. * have tried the cluster allocator plenty of times at this
  4419. * point and not have found anything, so we are likely way too
  4420. * fragmented for the clustering stuff to find anything, so lets
  4421. * just skip it and let the allocator find whatever block it can
  4422. * find
  4423. */
  4424. if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
  4425. /*
  4426. * the refill lock keeps out other
  4427. * people trying to start a new cluster
  4428. */
  4429. spin_lock(&last_ptr->refill_lock);
  4430. if (last_ptr->block_group &&
  4431. (last_ptr->block_group->ro ||
  4432. !block_group_bits(last_ptr->block_group, data))) {
  4433. offset = 0;
  4434. goto refill_cluster;
  4435. }
  4436. offset = btrfs_alloc_from_cluster(block_group, last_ptr,
  4437. num_bytes, search_start);
  4438. if (offset) {
  4439. /* we have a block, we're done */
  4440. spin_unlock(&last_ptr->refill_lock);
  4441. goto checks;
  4442. }
  4443. spin_lock(&last_ptr->lock);
  4444. /*
  4445. * whoops, this cluster doesn't actually point to
  4446. * this block group. Get a ref on the block
  4447. * group is does point to and try again
  4448. */
  4449. if (!last_ptr_loop && last_ptr->block_group &&
  4450. last_ptr->block_group != block_group) {
  4451. btrfs_put_block_group(block_group);
  4452. block_group = last_ptr->block_group;
  4453. btrfs_get_block_group(block_group);
  4454. spin_unlock(&last_ptr->lock);
  4455. spin_unlock(&last_ptr->refill_lock);
  4456. last_ptr_loop = 1;
  4457. search_start = block_group->key.objectid;
  4458. /*
  4459. * we know this block group is properly
  4460. * in the list because
  4461. * btrfs_remove_block_group, drops the
  4462. * cluster before it removes the block
  4463. * group from the list
  4464. */
  4465. goto have_block_group;
  4466. }
  4467. spin_unlock(&last_ptr->lock);
  4468. refill_cluster:
  4469. /*
  4470. * this cluster didn't work out, free it and
  4471. * start over
  4472. */
  4473. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4474. last_ptr_loop = 0;
  4475. /* allocate a cluster in this block group */
  4476. ret = btrfs_find_space_cluster(trans, root,
  4477. block_group, last_ptr,
  4478. offset, num_bytes,
  4479. empty_cluster + empty_size);
  4480. if (ret == 0) {
  4481. /*
  4482. * now pull our allocation out of this
  4483. * cluster
  4484. */
  4485. offset = btrfs_alloc_from_cluster(block_group,
  4486. last_ptr, num_bytes,
  4487. search_start);
  4488. if (offset) {
  4489. /* we found one, proceed */
  4490. spin_unlock(&last_ptr->refill_lock);
  4491. goto checks;
  4492. }
  4493. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  4494. && !failed_cluster_refill) {
  4495. spin_unlock(&last_ptr->refill_lock);
  4496. failed_cluster_refill = true;
  4497. wait_block_group_cache_progress(block_group,
  4498. num_bytes + empty_cluster + empty_size);
  4499. goto have_block_group;
  4500. }
  4501. /*
  4502. * at this point we either didn't find a cluster
  4503. * or we weren't able to allocate a block from our
  4504. * cluster. Free the cluster we've been trying
  4505. * to use, and go to the next block group
  4506. */
  4507. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  4508. spin_unlock(&last_ptr->refill_lock);
  4509. goto loop;
  4510. }
  4511. offset = btrfs_find_space_for_alloc(block_group, search_start,
  4512. num_bytes, empty_size);
  4513. /*
  4514. * If we didn't find a chunk, and we haven't failed on this
  4515. * block group before, and this block group is in the middle of
  4516. * caching and we are ok with waiting, then go ahead and wait
  4517. * for progress to be made, and set failed_alloc to true.
  4518. *
  4519. * If failed_alloc is true then we've already waited on this
  4520. * block group once and should move on to the next block group.
  4521. */
  4522. if (!offset && !failed_alloc && !cached &&
  4523. loop > LOOP_CACHING_NOWAIT) {
  4524. wait_block_group_cache_progress(block_group,
  4525. num_bytes + empty_size);
  4526. failed_alloc = true;
  4527. goto have_block_group;
  4528. } else if (!offset) {
  4529. goto loop;
  4530. }
  4531. checks:
  4532. search_start = stripe_align(root, offset);
  4533. /* move on to the next group */
  4534. if (search_start + num_bytes >= search_end) {
  4535. btrfs_add_free_space(block_group, offset, num_bytes);
  4536. goto loop;
  4537. }
  4538. /* move on to the next group */
  4539. if (search_start + num_bytes >
  4540. block_group->key.objectid + block_group->key.offset) {
  4541. btrfs_add_free_space(block_group, offset, num_bytes);
  4542. goto loop;
  4543. }
  4544. ins->objectid = search_start;
  4545. ins->offset = num_bytes;
  4546. if (offset < search_start)
  4547. btrfs_add_free_space(block_group, offset,
  4548. search_start - offset);
  4549. BUG_ON(offset > search_start);
  4550. ret = update_reserved_bytes(block_group, num_bytes, 1,
  4551. (data & BTRFS_BLOCK_GROUP_DATA));
  4552. if (ret == -EAGAIN) {
  4553. btrfs_add_free_space(block_group, offset, num_bytes);
  4554. goto loop;
  4555. }
  4556. /* we are all good, lets return */
  4557. ins->objectid = search_start;
  4558. ins->offset = num_bytes;
  4559. if (offset < search_start)
  4560. btrfs_add_free_space(block_group, offset,
  4561. search_start - offset);
  4562. BUG_ON(offset > search_start);
  4563. break;
  4564. loop:
  4565. failed_cluster_refill = false;
  4566. failed_alloc = false;
  4567. BUG_ON(index != get_block_group_index(block_group));
  4568. btrfs_put_block_group(block_group);
  4569. }
  4570. up_read(&space_info->groups_sem);
  4571. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  4572. goto search;
  4573. /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
  4574. * for them to make caching progress. Also
  4575. * determine the best possible bg to cache
  4576. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  4577. * caching kthreads as we move along
  4578. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  4579. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  4580. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  4581. * again
  4582. */
  4583. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
  4584. (found_uncached_bg || empty_size || empty_cluster ||
  4585. allowed_chunk_alloc)) {
  4586. index = 0;
  4587. if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
  4588. found_uncached_bg = false;
  4589. loop++;
  4590. if (!ideal_cache_percent &&
  4591. atomic_read(&space_info->caching_threads))
  4592. goto search;
  4593. /*
  4594. * 1 of the following 2 things have happened so far
  4595. *
  4596. * 1) We found an ideal block group for caching that
  4597. * is mostly full and will cache quickly, so we might
  4598. * as well wait for it.
  4599. *
  4600. * 2) We searched for cached only and we didn't find
  4601. * anything, and we didn't start any caching kthreads
  4602. * either, so chances are we will loop through and
  4603. * start a couple caching kthreads, and then come back
  4604. * around and just wait for them. This will be slower
  4605. * because we will have 2 caching kthreads reading at
  4606. * the same time when we could have just started one
  4607. * and waited for it to get far enough to give us an
  4608. * allocation, so go ahead and go to the wait caching
  4609. * loop.
  4610. */
  4611. loop = LOOP_CACHING_WAIT;
  4612. search_start = ideal_cache_offset;
  4613. ideal_cache_percent = 0;
  4614. goto ideal_cache;
  4615. } else if (loop == LOOP_FIND_IDEAL) {
  4616. /*
  4617. * Didn't find a uncached bg, wait on anything we find
  4618. * next.
  4619. */
  4620. loop = LOOP_CACHING_WAIT;
  4621. goto search;
  4622. }
  4623. if (loop < LOOP_CACHING_WAIT) {
  4624. loop++;
  4625. goto search;
  4626. }
  4627. if (loop == LOOP_ALLOC_CHUNK) {
  4628. empty_size = 0;
  4629. empty_cluster = 0;
  4630. }
  4631. if (allowed_chunk_alloc) {
  4632. ret = do_chunk_alloc(trans, root, num_bytes +
  4633. 2 * 1024 * 1024, data, 1);
  4634. allowed_chunk_alloc = 0;
  4635. done_chunk_alloc = 1;
  4636. } else if (!done_chunk_alloc) {
  4637. space_info->force_alloc = 1;
  4638. }
  4639. if (loop < LOOP_NO_EMPTY_SIZE) {
  4640. loop++;
  4641. goto search;
  4642. }
  4643. ret = -ENOSPC;
  4644. } else if (!ins->objectid) {
  4645. ret = -ENOSPC;
  4646. }
  4647. /* we found what we needed */
  4648. if (ins->objectid) {
  4649. if (!(data & BTRFS_BLOCK_GROUP_DATA))
  4650. trans->block_group = block_group->key.objectid;
  4651. btrfs_put_block_group(block_group);
  4652. ret = 0;
  4653. }
  4654. return ret;
  4655. }
  4656. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  4657. int dump_block_groups)
  4658. {
  4659. struct btrfs_block_group_cache *cache;
  4660. int index = 0;
  4661. spin_lock(&info->lock);
  4662. printk(KERN_INFO "space_info has %llu free, is %sfull\n",
  4663. (unsigned long long)(info->total_bytes - info->bytes_used -
  4664. info->bytes_pinned - info->bytes_reserved -
  4665. info->bytes_readonly),
  4666. (info->full) ? "" : "not ");
  4667. printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
  4668. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  4669. (unsigned long long)info->total_bytes,
  4670. (unsigned long long)info->bytes_used,
  4671. (unsigned long long)info->bytes_pinned,
  4672. (unsigned long long)info->bytes_reserved,
  4673. (unsigned long long)info->bytes_may_use,
  4674. (unsigned long long)info->bytes_readonly);
  4675. spin_unlock(&info->lock);
  4676. if (!dump_block_groups)
  4677. return;
  4678. down_read(&info->groups_sem);
  4679. again:
  4680. list_for_each_entry(cache, &info->block_groups[index], list) {
  4681. spin_lock(&cache->lock);
  4682. printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
  4683. "%llu pinned %llu reserved\n",
  4684. (unsigned long long)cache->key.objectid,
  4685. (unsigned long long)cache->key.offset,
  4686. (unsigned long long)btrfs_block_group_used(&cache->item),
  4687. (unsigned long long)cache->pinned,
  4688. (unsigned long long)cache->reserved);
  4689. btrfs_dump_free_space(cache, bytes);
  4690. spin_unlock(&cache->lock);
  4691. }
  4692. if (++index < BTRFS_NR_RAID_TYPES)
  4693. goto again;
  4694. up_read(&info->groups_sem);
  4695. }
  4696. int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
  4697. struct btrfs_root *root,
  4698. u64 num_bytes, u64 min_alloc_size,
  4699. u64 empty_size, u64 hint_byte,
  4700. u64 search_end, struct btrfs_key *ins,
  4701. u64 data)
  4702. {
  4703. int ret;
  4704. u64 search_start = 0;
  4705. data = btrfs_get_alloc_profile(root, data);
  4706. again:
  4707. /*
  4708. * the only place that sets empty_size is btrfs_realloc_node, which
  4709. * is not called recursively on allocations
  4710. */
  4711. if (empty_size || root->ref_cows)
  4712. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  4713. num_bytes + 2 * 1024 * 1024, data, 0);
  4714. WARN_ON(num_bytes < root->sectorsize);
  4715. ret = find_free_extent(trans, root, num_bytes, empty_size,
  4716. search_start, search_end, hint_byte,
  4717. ins, data);
  4718. if (ret == -ENOSPC && num_bytes > min_alloc_size) {
  4719. num_bytes = num_bytes >> 1;
  4720. num_bytes = num_bytes & ~(root->sectorsize - 1);
  4721. num_bytes = max(num_bytes, min_alloc_size);
  4722. do_chunk_alloc(trans, root->fs_info->extent_root,
  4723. num_bytes, data, 1);
  4724. goto again;
  4725. }
  4726. if (ret == -ENOSPC) {
  4727. struct btrfs_space_info *sinfo;
  4728. sinfo = __find_space_info(root->fs_info, data);
  4729. printk(KERN_ERR "btrfs allocation failed flags %llu, "
  4730. "wanted %llu\n", (unsigned long long)data,
  4731. (unsigned long long)num_bytes);
  4732. dump_space_info(sinfo, num_bytes, 1);
  4733. }
  4734. return ret;
  4735. }
  4736. int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
  4737. {
  4738. struct btrfs_block_group_cache *cache;
  4739. int ret = 0;
  4740. cache = btrfs_lookup_block_group(root->fs_info, start);
  4741. if (!cache) {
  4742. printk(KERN_ERR "Unable to find block group for %llu\n",
  4743. (unsigned long long)start);
  4744. return -ENOSPC;
  4745. }
  4746. ret = btrfs_discard_extent(root, start, len);
  4747. btrfs_add_free_space(cache, start, len);
  4748. update_reserved_bytes(cache, len, 0, 1);
  4749. btrfs_put_block_group(cache);
  4750. return ret;
  4751. }
  4752. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  4753. struct btrfs_root *root,
  4754. u64 parent, u64 root_objectid,
  4755. u64 flags, u64 owner, u64 offset,
  4756. struct btrfs_key *ins, int ref_mod)
  4757. {
  4758. int ret;
  4759. struct btrfs_fs_info *fs_info = root->fs_info;
  4760. struct btrfs_extent_item *extent_item;
  4761. struct btrfs_extent_inline_ref *iref;
  4762. struct btrfs_path *path;
  4763. struct extent_buffer *leaf;
  4764. int type;
  4765. u32 size;
  4766. if (parent > 0)
  4767. type = BTRFS_SHARED_DATA_REF_KEY;
  4768. else
  4769. type = BTRFS_EXTENT_DATA_REF_KEY;
  4770. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  4771. path = btrfs_alloc_path();
  4772. BUG_ON(!path);
  4773. path->leave_spinning = 1;
  4774. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  4775. ins, size);
  4776. BUG_ON(ret);
  4777. leaf = path->nodes[0];
  4778. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  4779. struct btrfs_extent_item);
  4780. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  4781. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  4782. btrfs_set_extent_flags(leaf, extent_item,
  4783. flags | BTRFS_EXTENT_FLAG_DATA);
  4784. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  4785. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  4786. if (parent > 0) {
  4787. struct btrfs_shared_data_ref *ref;
  4788. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  4789. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  4790. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  4791. } else {
  4792. struct btrfs_extent_data_ref *ref;
  4793. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  4794. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  4795. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  4796. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  4797. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  4798. }
  4799. btrfs_mark_buffer_dirty(path->nodes[0]);
  4800. btrfs_free_path(path);
  4801. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  4802. if (ret) {
  4803. printk(KERN_ERR "btrfs update block group failed for %llu "
  4804. "%llu\n", (unsigned long long)ins->objectid,
  4805. (unsigned long long)ins->offset);
  4806. BUG();
  4807. }
  4808. return ret;
  4809. }
  4810. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  4811. struct btrfs_root *root,
  4812. u64 parent, u64 root_objectid,
  4813. u64 flags, struct btrfs_disk_key *key,
  4814. int level, struct btrfs_key *ins)
  4815. {
  4816. int ret;
  4817. struct btrfs_fs_info *fs_info = root->fs_info;
  4818. struct btrfs_extent_item *extent_item;
  4819. struct btrfs_tree_block_info *block_info;
  4820. struct btrfs_extent_inline_ref *iref;
  4821. struct btrfs_path *path;
  4822. struct extent_buffer *leaf;
  4823. u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
  4824. path = btrfs_alloc_path();
  4825. BUG_ON(!path);
  4826. path->leave_spinning = 1;
  4827. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  4828. ins, size);
  4829. BUG_ON(ret);
  4830. leaf = path->nodes[0];
  4831. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  4832. struct btrfs_extent_item);
  4833. btrfs_set_extent_refs(leaf, extent_item, 1);
  4834. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  4835. btrfs_set_extent_flags(leaf, extent_item,
  4836. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  4837. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  4838. btrfs_set_tree_block_key(leaf, block_info, key);
  4839. btrfs_set_tree_block_level(leaf, block_info, level);
  4840. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  4841. if (parent > 0) {
  4842. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  4843. btrfs_set_extent_inline_ref_type(leaf, iref,
  4844. BTRFS_SHARED_BLOCK_REF_KEY);
  4845. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  4846. } else {
  4847. btrfs_set_extent_inline_ref_type(leaf, iref,
  4848. BTRFS_TREE_BLOCK_REF_KEY);
  4849. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  4850. }
  4851. btrfs_mark_buffer_dirty(leaf);
  4852. btrfs_free_path(path);
  4853. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  4854. if (ret) {
  4855. printk(KERN_ERR "btrfs update block group failed for %llu "
  4856. "%llu\n", (unsigned long long)ins->objectid,
  4857. (unsigned long long)ins->offset);
  4858. BUG();
  4859. }
  4860. return ret;
  4861. }
  4862. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  4863. struct btrfs_root *root,
  4864. u64 root_objectid, u64 owner,
  4865. u64 offset, struct btrfs_key *ins)
  4866. {
  4867. int ret;
  4868. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  4869. ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
  4870. 0, root_objectid, owner, offset,
  4871. BTRFS_ADD_DELAYED_EXTENT, NULL);
  4872. return ret;
  4873. }
  4874. /*
  4875. * this is used by the tree logging recovery code. It records that
  4876. * an extent has been allocated and makes sure to clear the free
  4877. * space cache bits as well
  4878. */
  4879. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  4880. struct btrfs_root *root,
  4881. u64 root_objectid, u64 owner, u64 offset,
  4882. struct btrfs_key *ins)
  4883. {
  4884. int ret;
  4885. struct btrfs_block_group_cache *block_group;
  4886. struct btrfs_caching_control *caching_ctl;
  4887. u64 start = ins->objectid;
  4888. u64 num_bytes = ins->offset;
  4889. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  4890. cache_block_group(block_group, trans, NULL, 0);
  4891. caching_ctl = get_caching_control(block_group);
  4892. if (!caching_ctl) {
  4893. BUG_ON(!block_group_cache_done(block_group));
  4894. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  4895. BUG_ON(ret);
  4896. } else {
  4897. mutex_lock(&caching_ctl->mutex);
  4898. if (start >= caching_ctl->progress) {
  4899. ret = add_excluded_extent(root, start, num_bytes);
  4900. BUG_ON(ret);
  4901. } else if (start + num_bytes <= caching_ctl->progress) {
  4902. ret = btrfs_remove_free_space(block_group,
  4903. start, num_bytes);
  4904. BUG_ON(ret);
  4905. } else {
  4906. num_bytes = caching_ctl->progress - start;
  4907. ret = btrfs_remove_free_space(block_group,
  4908. start, num_bytes);
  4909. BUG_ON(ret);
  4910. start = caching_ctl->progress;
  4911. num_bytes = ins->objectid + ins->offset -
  4912. caching_ctl->progress;
  4913. ret = add_excluded_extent(root, start, num_bytes);
  4914. BUG_ON(ret);
  4915. }
  4916. mutex_unlock(&caching_ctl->mutex);
  4917. put_caching_control(caching_ctl);
  4918. }
  4919. ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
  4920. BUG_ON(ret);
  4921. btrfs_put_block_group(block_group);
  4922. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  4923. 0, owner, offset, ins, 1);
  4924. return ret;
  4925. }
  4926. struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
  4927. struct btrfs_root *root,
  4928. u64 bytenr, u32 blocksize,
  4929. int level)
  4930. {
  4931. struct extent_buffer *buf;
  4932. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  4933. if (!buf)
  4934. return ERR_PTR(-ENOMEM);
  4935. btrfs_set_header_generation(buf, trans->transid);
  4936. btrfs_set_buffer_lockdep_class(buf, level);
  4937. btrfs_tree_lock(buf);
  4938. clean_tree_block(trans, root, buf);
  4939. btrfs_set_lock_blocking(buf);
  4940. btrfs_set_buffer_uptodate(buf);
  4941. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  4942. /*
  4943. * we allow two log transactions at a time, use different
  4944. * EXENT bit to differentiate dirty pages.
  4945. */
  4946. if (root->log_transid % 2 == 0)
  4947. set_extent_dirty(&root->dirty_log_pages, buf->start,
  4948. buf->start + buf->len - 1, GFP_NOFS);
  4949. else
  4950. set_extent_new(&root->dirty_log_pages, buf->start,
  4951. buf->start + buf->len - 1, GFP_NOFS);
  4952. } else {
  4953. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  4954. buf->start + buf->len - 1, GFP_NOFS);
  4955. }
  4956. trans->blocks_used++;
  4957. /* this returns a buffer locked for blocking */
  4958. return buf;
  4959. }
  4960. static struct btrfs_block_rsv *
  4961. use_block_rsv(struct btrfs_trans_handle *trans,
  4962. struct btrfs_root *root, u32 blocksize)
  4963. {
  4964. struct btrfs_block_rsv *block_rsv;
  4965. int ret;
  4966. block_rsv = get_block_rsv(trans, root);
  4967. if (block_rsv->size == 0) {
  4968. ret = reserve_metadata_bytes(trans, root, block_rsv,
  4969. blocksize, 0);
  4970. if (ret)
  4971. return ERR_PTR(ret);
  4972. return block_rsv;
  4973. }
  4974. ret = block_rsv_use_bytes(block_rsv, blocksize);
  4975. if (!ret)
  4976. return block_rsv;
  4977. return ERR_PTR(-ENOSPC);
  4978. }
  4979. static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
  4980. {
  4981. block_rsv_add_bytes(block_rsv, blocksize, 0);
  4982. block_rsv_release_bytes(block_rsv, NULL, 0);
  4983. }
  4984. /*
  4985. * finds a free extent and does all the dirty work required for allocation
  4986. * returns the key for the extent through ins, and a tree buffer for
  4987. * the first block of the extent through buf.
  4988. *
  4989. * returns the tree buffer or NULL.
  4990. */
  4991. struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
  4992. struct btrfs_root *root, u32 blocksize,
  4993. u64 parent, u64 root_objectid,
  4994. struct btrfs_disk_key *key, int level,
  4995. u64 hint, u64 empty_size)
  4996. {
  4997. struct btrfs_key ins;
  4998. struct btrfs_block_rsv *block_rsv;
  4999. struct extent_buffer *buf;
  5000. u64 flags = 0;
  5001. int ret;
  5002. block_rsv = use_block_rsv(trans, root, blocksize);
  5003. if (IS_ERR(block_rsv))
  5004. return ERR_CAST(block_rsv);
  5005. ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
  5006. empty_size, hint, (u64)-1, &ins, 0);
  5007. if (ret) {
  5008. unuse_block_rsv(block_rsv, blocksize);
  5009. return ERR_PTR(ret);
  5010. }
  5011. buf = btrfs_init_new_buffer(trans, root, ins.objectid,
  5012. blocksize, level);
  5013. BUG_ON(IS_ERR(buf));
  5014. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  5015. if (parent == 0)
  5016. parent = ins.objectid;
  5017. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5018. } else
  5019. BUG_ON(parent > 0);
  5020. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  5021. struct btrfs_delayed_extent_op *extent_op;
  5022. extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
  5023. BUG_ON(!extent_op);
  5024. if (key)
  5025. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  5026. else
  5027. memset(&extent_op->key, 0, sizeof(extent_op->key));
  5028. extent_op->flags_to_set = flags;
  5029. extent_op->update_key = 1;
  5030. extent_op->update_flags = 1;
  5031. extent_op->is_data = 0;
  5032. ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
  5033. ins.offset, parent, root_objectid,
  5034. level, BTRFS_ADD_DELAYED_EXTENT,
  5035. extent_op);
  5036. BUG_ON(ret);
  5037. }
  5038. return buf;
  5039. }
  5040. struct walk_control {
  5041. u64 refs[BTRFS_MAX_LEVEL];
  5042. u64 flags[BTRFS_MAX_LEVEL];
  5043. struct btrfs_key update_progress;
  5044. int stage;
  5045. int level;
  5046. int shared_level;
  5047. int update_ref;
  5048. int keep_locks;
  5049. int reada_slot;
  5050. int reada_count;
  5051. };
  5052. #define DROP_REFERENCE 1
  5053. #define UPDATE_BACKREF 2
  5054. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  5055. struct btrfs_root *root,
  5056. struct walk_control *wc,
  5057. struct btrfs_path *path)
  5058. {
  5059. u64 bytenr;
  5060. u64 generation;
  5061. u64 refs;
  5062. u64 flags;
  5063. u32 nritems;
  5064. u32 blocksize;
  5065. struct btrfs_key key;
  5066. struct extent_buffer *eb;
  5067. int ret;
  5068. int slot;
  5069. int nread = 0;
  5070. if (path->slots[wc->level] < wc->reada_slot) {
  5071. wc->reada_count = wc->reada_count * 2 / 3;
  5072. wc->reada_count = max(wc->reada_count, 2);
  5073. } else {
  5074. wc->reada_count = wc->reada_count * 3 / 2;
  5075. wc->reada_count = min_t(int, wc->reada_count,
  5076. BTRFS_NODEPTRS_PER_BLOCK(root));
  5077. }
  5078. eb = path->nodes[wc->level];
  5079. nritems = btrfs_header_nritems(eb);
  5080. blocksize = btrfs_level_size(root, wc->level - 1);
  5081. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  5082. if (nread >= wc->reada_count)
  5083. break;
  5084. cond_resched();
  5085. bytenr = btrfs_node_blockptr(eb, slot);
  5086. generation = btrfs_node_ptr_generation(eb, slot);
  5087. if (slot == path->slots[wc->level])
  5088. goto reada;
  5089. if (wc->stage == UPDATE_BACKREF &&
  5090. generation <= root->root_key.offset)
  5091. continue;
  5092. /* We don't lock the tree block, it's OK to be racy here */
  5093. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5094. &refs, &flags);
  5095. BUG_ON(ret);
  5096. BUG_ON(refs == 0);
  5097. if (wc->stage == DROP_REFERENCE) {
  5098. if (refs == 1)
  5099. goto reada;
  5100. if (wc->level == 1 &&
  5101. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5102. continue;
  5103. if (!wc->update_ref ||
  5104. generation <= root->root_key.offset)
  5105. continue;
  5106. btrfs_node_key_to_cpu(eb, &key, slot);
  5107. ret = btrfs_comp_cpu_keys(&key,
  5108. &wc->update_progress);
  5109. if (ret < 0)
  5110. continue;
  5111. } else {
  5112. if (wc->level == 1 &&
  5113. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5114. continue;
  5115. }
  5116. reada:
  5117. ret = readahead_tree_block(root, bytenr, blocksize,
  5118. generation);
  5119. if (ret)
  5120. break;
  5121. nread++;
  5122. }
  5123. wc->reada_slot = slot;
  5124. }
  5125. /*
  5126. * hepler to process tree block while walking down the tree.
  5127. *
  5128. * when wc->stage == UPDATE_BACKREF, this function updates
  5129. * back refs for pointers in the block.
  5130. *
  5131. * NOTE: return value 1 means we should stop walking down.
  5132. */
  5133. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  5134. struct btrfs_root *root,
  5135. struct btrfs_path *path,
  5136. struct walk_control *wc, int lookup_info)
  5137. {
  5138. int level = wc->level;
  5139. struct extent_buffer *eb = path->nodes[level];
  5140. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5141. int ret;
  5142. if (wc->stage == UPDATE_BACKREF &&
  5143. btrfs_header_owner(eb) != root->root_key.objectid)
  5144. return 1;
  5145. /*
  5146. * when reference count of tree block is 1, it won't increase
  5147. * again. once full backref flag is set, we never clear it.
  5148. */
  5149. if (lookup_info &&
  5150. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  5151. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  5152. BUG_ON(!path->locks[level]);
  5153. ret = btrfs_lookup_extent_info(trans, root,
  5154. eb->start, eb->len,
  5155. &wc->refs[level],
  5156. &wc->flags[level]);
  5157. BUG_ON(ret);
  5158. BUG_ON(wc->refs[level] == 0);
  5159. }
  5160. if (wc->stage == DROP_REFERENCE) {
  5161. if (wc->refs[level] > 1)
  5162. return 1;
  5163. if (path->locks[level] && !wc->keep_locks) {
  5164. btrfs_tree_unlock(eb);
  5165. path->locks[level] = 0;
  5166. }
  5167. return 0;
  5168. }
  5169. /* wc->stage == UPDATE_BACKREF */
  5170. if (!(wc->flags[level] & flag)) {
  5171. BUG_ON(!path->locks[level]);
  5172. ret = btrfs_inc_ref(trans, root, eb, 1);
  5173. BUG_ON(ret);
  5174. ret = btrfs_dec_ref(trans, root, eb, 0);
  5175. BUG_ON(ret);
  5176. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  5177. eb->len, flag, 0);
  5178. BUG_ON(ret);
  5179. wc->flags[level] |= flag;
  5180. }
  5181. /*
  5182. * the block is shared by multiple trees, so it's not good to
  5183. * keep the tree lock
  5184. */
  5185. if (path->locks[level] && level > 0) {
  5186. btrfs_tree_unlock(eb);
  5187. path->locks[level] = 0;
  5188. }
  5189. return 0;
  5190. }
  5191. /*
  5192. * hepler to process tree block pointer.
  5193. *
  5194. * when wc->stage == DROP_REFERENCE, this function checks
  5195. * reference count of the block pointed to. if the block
  5196. * is shared and we need update back refs for the subtree
  5197. * rooted at the block, this function changes wc->stage to
  5198. * UPDATE_BACKREF. if the block is shared and there is no
  5199. * need to update back, this function drops the reference
  5200. * to the block.
  5201. *
  5202. * NOTE: return value 1 means we should stop walking down.
  5203. */
  5204. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  5205. struct btrfs_root *root,
  5206. struct btrfs_path *path,
  5207. struct walk_control *wc, int *lookup_info)
  5208. {
  5209. u64 bytenr;
  5210. u64 generation;
  5211. u64 parent;
  5212. u32 blocksize;
  5213. struct btrfs_key key;
  5214. struct extent_buffer *next;
  5215. int level = wc->level;
  5216. int reada = 0;
  5217. int ret = 0;
  5218. generation = btrfs_node_ptr_generation(path->nodes[level],
  5219. path->slots[level]);
  5220. /*
  5221. * if the lower level block was created before the snapshot
  5222. * was created, we know there is no need to update back refs
  5223. * for the subtree
  5224. */
  5225. if (wc->stage == UPDATE_BACKREF &&
  5226. generation <= root->root_key.offset) {
  5227. *lookup_info = 1;
  5228. return 1;
  5229. }
  5230. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  5231. blocksize = btrfs_level_size(root, level - 1);
  5232. next = btrfs_find_tree_block(root, bytenr, blocksize);
  5233. if (!next) {
  5234. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  5235. if (!next)
  5236. return -ENOMEM;
  5237. reada = 1;
  5238. }
  5239. btrfs_tree_lock(next);
  5240. btrfs_set_lock_blocking(next);
  5241. ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
  5242. &wc->refs[level - 1],
  5243. &wc->flags[level - 1]);
  5244. BUG_ON(ret);
  5245. BUG_ON(wc->refs[level - 1] == 0);
  5246. *lookup_info = 0;
  5247. if (wc->stage == DROP_REFERENCE) {
  5248. if (wc->refs[level - 1] > 1) {
  5249. if (level == 1 &&
  5250. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5251. goto skip;
  5252. if (!wc->update_ref ||
  5253. generation <= root->root_key.offset)
  5254. goto skip;
  5255. btrfs_node_key_to_cpu(path->nodes[level], &key,
  5256. path->slots[level]);
  5257. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  5258. if (ret < 0)
  5259. goto skip;
  5260. wc->stage = UPDATE_BACKREF;
  5261. wc->shared_level = level - 1;
  5262. }
  5263. } else {
  5264. if (level == 1 &&
  5265. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  5266. goto skip;
  5267. }
  5268. if (!btrfs_buffer_uptodate(next, generation)) {
  5269. btrfs_tree_unlock(next);
  5270. free_extent_buffer(next);
  5271. next = NULL;
  5272. *lookup_info = 1;
  5273. }
  5274. if (!next) {
  5275. if (reada && level == 1)
  5276. reada_walk_down(trans, root, wc, path);
  5277. next = read_tree_block(root, bytenr, blocksize, generation);
  5278. btrfs_tree_lock(next);
  5279. btrfs_set_lock_blocking(next);
  5280. }
  5281. level--;
  5282. BUG_ON(level != btrfs_header_level(next));
  5283. path->nodes[level] = next;
  5284. path->slots[level] = 0;
  5285. path->locks[level] = 1;
  5286. wc->level = level;
  5287. if (wc->level == 1)
  5288. wc->reada_slot = 0;
  5289. return 0;
  5290. skip:
  5291. wc->refs[level - 1] = 0;
  5292. wc->flags[level - 1] = 0;
  5293. if (wc->stage == DROP_REFERENCE) {
  5294. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  5295. parent = path->nodes[level]->start;
  5296. } else {
  5297. BUG_ON(root->root_key.objectid !=
  5298. btrfs_header_owner(path->nodes[level]));
  5299. parent = 0;
  5300. }
  5301. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  5302. root->root_key.objectid, level - 1, 0);
  5303. BUG_ON(ret);
  5304. }
  5305. btrfs_tree_unlock(next);
  5306. free_extent_buffer(next);
  5307. *lookup_info = 1;
  5308. return 1;
  5309. }
  5310. /*
  5311. * hepler to process tree block while walking up the tree.
  5312. *
  5313. * when wc->stage == DROP_REFERENCE, this function drops
  5314. * reference count on the block.
  5315. *
  5316. * when wc->stage == UPDATE_BACKREF, this function changes
  5317. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  5318. * to UPDATE_BACKREF previously while processing the block.
  5319. *
  5320. * NOTE: return value 1 means we should stop walking up.
  5321. */
  5322. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  5323. struct btrfs_root *root,
  5324. struct btrfs_path *path,
  5325. struct walk_control *wc)
  5326. {
  5327. int ret;
  5328. int level = wc->level;
  5329. struct extent_buffer *eb = path->nodes[level];
  5330. u64 parent = 0;
  5331. if (wc->stage == UPDATE_BACKREF) {
  5332. BUG_ON(wc->shared_level < level);
  5333. if (level < wc->shared_level)
  5334. goto out;
  5335. ret = find_next_key(path, level + 1, &wc->update_progress);
  5336. if (ret > 0)
  5337. wc->update_ref = 0;
  5338. wc->stage = DROP_REFERENCE;
  5339. wc->shared_level = -1;
  5340. path->slots[level] = 0;
  5341. /*
  5342. * check reference count again if the block isn't locked.
  5343. * we should start walking down the tree again if reference
  5344. * count is one.
  5345. */
  5346. if (!path->locks[level]) {
  5347. BUG_ON(level == 0);
  5348. btrfs_tree_lock(eb);
  5349. btrfs_set_lock_blocking(eb);
  5350. path->locks[level] = 1;
  5351. ret = btrfs_lookup_extent_info(trans, root,
  5352. eb->start, eb->len,
  5353. &wc->refs[level],
  5354. &wc->flags[level]);
  5355. BUG_ON(ret);
  5356. BUG_ON(wc->refs[level] == 0);
  5357. if (wc->refs[level] == 1) {
  5358. btrfs_tree_unlock(eb);
  5359. path->locks[level] = 0;
  5360. return 1;
  5361. }
  5362. }
  5363. }
  5364. /* wc->stage == DROP_REFERENCE */
  5365. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  5366. if (wc->refs[level] == 1) {
  5367. if (level == 0) {
  5368. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5369. ret = btrfs_dec_ref(trans, root, eb, 1);
  5370. else
  5371. ret = btrfs_dec_ref(trans, root, eb, 0);
  5372. BUG_ON(ret);
  5373. }
  5374. /* make block locked assertion in clean_tree_block happy */
  5375. if (!path->locks[level] &&
  5376. btrfs_header_generation(eb) == trans->transid) {
  5377. btrfs_tree_lock(eb);
  5378. btrfs_set_lock_blocking(eb);
  5379. path->locks[level] = 1;
  5380. }
  5381. clean_tree_block(trans, root, eb);
  5382. }
  5383. if (eb == root->node) {
  5384. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5385. parent = eb->start;
  5386. else
  5387. BUG_ON(root->root_key.objectid !=
  5388. btrfs_header_owner(eb));
  5389. } else {
  5390. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  5391. parent = path->nodes[level + 1]->start;
  5392. else
  5393. BUG_ON(root->root_key.objectid !=
  5394. btrfs_header_owner(path->nodes[level + 1]));
  5395. }
  5396. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  5397. out:
  5398. wc->refs[level] = 0;
  5399. wc->flags[level] = 0;
  5400. return 0;
  5401. }
  5402. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  5403. struct btrfs_root *root,
  5404. struct btrfs_path *path,
  5405. struct walk_control *wc)
  5406. {
  5407. int level = wc->level;
  5408. int lookup_info = 1;
  5409. int ret;
  5410. while (level >= 0) {
  5411. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  5412. if (ret > 0)
  5413. break;
  5414. if (level == 0)
  5415. break;
  5416. if (path->slots[level] >=
  5417. btrfs_header_nritems(path->nodes[level]))
  5418. break;
  5419. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  5420. if (ret > 0) {
  5421. path->slots[level]++;
  5422. continue;
  5423. } else if (ret < 0)
  5424. return ret;
  5425. level = wc->level;
  5426. }
  5427. return 0;
  5428. }
  5429. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  5430. struct btrfs_root *root,
  5431. struct btrfs_path *path,
  5432. struct walk_control *wc, int max_level)
  5433. {
  5434. int level = wc->level;
  5435. int ret;
  5436. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  5437. while (level < max_level && path->nodes[level]) {
  5438. wc->level = level;
  5439. if (path->slots[level] + 1 <
  5440. btrfs_header_nritems(path->nodes[level])) {
  5441. path->slots[level]++;
  5442. return 0;
  5443. } else {
  5444. ret = walk_up_proc(trans, root, path, wc);
  5445. if (ret > 0)
  5446. return 0;
  5447. if (path->locks[level]) {
  5448. btrfs_tree_unlock(path->nodes[level]);
  5449. path->locks[level] = 0;
  5450. }
  5451. free_extent_buffer(path->nodes[level]);
  5452. path->nodes[level] = NULL;
  5453. level++;
  5454. }
  5455. }
  5456. return 1;
  5457. }
  5458. /*
  5459. * drop a subvolume tree.
  5460. *
  5461. * this function traverses the tree freeing any blocks that only
  5462. * referenced by the tree.
  5463. *
  5464. * when a shared tree block is found. this function decreases its
  5465. * reference count by one. if update_ref is true, this function
  5466. * also make sure backrefs for the shared block and all lower level
  5467. * blocks are properly updated.
  5468. */
  5469. int btrfs_drop_snapshot(struct btrfs_root *root,
  5470. struct btrfs_block_rsv *block_rsv, int update_ref)
  5471. {
  5472. struct btrfs_path *path;
  5473. struct btrfs_trans_handle *trans;
  5474. struct btrfs_root *tree_root = root->fs_info->tree_root;
  5475. struct btrfs_root_item *root_item = &root->root_item;
  5476. struct walk_control *wc;
  5477. struct btrfs_key key;
  5478. int err = 0;
  5479. int ret;
  5480. int level;
  5481. path = btrfs_alloc_path();
  5482. BUG_ON(!path);
  5483. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5484. BUG_ON(!wc);
  5485. trans = btrfs_start_transaction(tree_root, 0);
  5486. if (block_rsv)
  5487. trans->block_rsv = block_rsv;
  5488. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  5489. level = btrfs_header_level(root->node);
  5490. path->nodes[level] = btrfs_lock_root_node(root);
  5491. btrfs_set_lock_blocking(path->nodes[level]);
  5492. path->slots[level] = 0;
  5493. path->locks[level] = 1;
  5494. memset(&wc->update_progress, 0,
  5495. sizeof(wc->update_progress));
  5496. } else {
  5497. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  5498. memcpy(&wc->update_progress, &key,
  5499. sizeof(wc->update_progress));
  5500. level = root_item->drop_level;
  5501. BUG_ON(level == 0);
  5502. path->lowest_level = level;
  5503. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  5504. path->lowest_level = 0;
  5505. if (ret < 0) {
  5506. err = ret;
  5507. goto out;
  5508. }
  5509. WARN_ON(ret > 0);
  5510. /*
  5511. * unlock our path, this is safe because only this
  5512. * function is allowed to delete this snapshot
  5513. */
  5514. btrfs_unlock_up_safe(path, 0);
  5515. level = btrfs_header_level(root->node);
  5516. while (1) {
  5517. btrfs_tree_lock(path->nodes[level]);
  5518. btrfs_set_lock_blocking(path->nodes[level]);
  5519. ret = btrfs_lookup_extent_info(trans, root,
  5520. path->nodes[level]->start,
  5521. path->nodes[level]->len,
  5522. &wc->refs[level],
  5523. &wc->flags[level]);
  5524. BUG_ON(ret);
  5525. BUG_ON(wc->refs[level] == 0);
  5526. if (level == root_item->drop_level)
  5527. break;
  5528. btrfs_tree_unlock(path->nodes[level]);
  5529. WARN_ON(wc->refs[level] != 1);
  5530. level--;
  5531. }
  5532. }
  5533. wc->level = level;
  5534. wc->shared_level = -1;
  5535. wc->stage = DROP_REFERENCE;
  5536. wc->update_ref = update_ref;
  5537. wc->keep_locks = 0;
  5538. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5539. while (1) {
  5540. ret = walk_down_tree(trans, root, path, wc);
  5541. if (ret < 0) {
  5542. err = ret;
  5543. break;
  5544. }
  5545. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  5546. if (ret < 0) {
  5547. err = ret;
  5548. break;
  5549. }
  5550. if (ret > 0) {
  5551. BUG_ON(wc->stage != DROP_REFERENCE);
  5552. break;
  5553. }
  5554. if (wc->stage == DROP_REFERENCE) {
  5555. level = wc->level;
  5556. btrfs_node_key(path->nodes[level],
  5557. &root_item->drop_progress,
  5558. path->slots[level]);
  5559. root_item->drop_level = level;
  5560. }
  5561. BUG_ON(wc->level == 0);
  5562. if (btrfs_should_end_transaction(trans, tree_root)) {
  5563. ret = btrfs_update_root(trans, tree_root,
  5564. &root->root_key,
  5565. root_item);
  5566. BUG_ON(ret);
  5567. btrfs_end_transaction_throttle(trans, tree_root);
  5568. trans = btrfs_start_transaction(tree_root, 0);
  5569. if (block_rsv)
  5570. trans->block_rsv = block_rsv;
  5571. }
  5572. }
  5573. btrfs_release_path(root, path);
  5574. BUG_ON(err);
  5575. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  5576. BUG_ON(ret);
  5577. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  5578. ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
  5579. NULL, NULL);
  5580. BUG_ON(ret < 0);
  5581. if (ret > 0) {
  5582. /* if we fail to delete the orphan item this time
  5583. * around, it'll get picked up the next time.
  5584. *
  5585. * The most common failure here is just -ENOENT.
  5586. */
  5587. btrfs_del_orphan_item(trans, tree_root,
  5588. root->root_key.objectid);
  5589. }
  5590. }
  5591. if (root->in_radix) {
  5592. btrfs_free_fs_root(tree_root->fs_info, root);
  5593. } else {
  5594. free_extent_buffer(root->node);
  5595. free_extent_buffer(root->commit_root);
  5596. kfree(root);
  5597. }
  5598. out:
  5599. btrfs_end_transaction_throttle(trans, tree_root);
  5600. kfree(wc);
  5601. btrfs_free_path(path);
  5602. return err;
  5603. }
  5604. /*
  5605. * drop subtree rooted at tree block 'node'.
  5606. *
  5607. * NOTE: this function will unlock and release tree block 'node'
  5608. */
  5609. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  5610. struct btrfs_root *root,
  5611. struct extent_buffer *node,
  5612. struct extent_buffer *parent)
  5613. {
  5614. struct btrfs_path *path;
  5615. struct walk_control *wc;
  5616. int level;
  5617. int parent_level;
  5618. int ret = 0;
  5619. int wret;
  5620. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  5621. path = btrfs_alloc_path();
  5622. BUG_ON(!path);
  5623. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  5624. BUG_ON(!wc);
  5625. btrfs_assert_tree_locked(parent);
  5626. parent_level = btrfs_header_level(parent);
  5627. extent_buffer_get(parent);
  5628. path->nodes[parent_level] = parent;
  5629. path->slots[parent_level] = btrfs_header_nritems(parent);
  5630. btrfs_assert_tree_locked(node);
  5631. level = btrfs_header_level(node);
  5632. path->nodes[level] = node;
  5633. path->slots[level] = 0;
  5634. path->locks[level] = 1;
  5635. wc->refs[parent_level] = 1;
  5636. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  5637. wc->level = level;
  5638. wc->shared_level = -1;
  5639. wc->stage = DROP_REFERENCE;
  5640. wc->update_ref = 0;
  5641. wc->keep_locks = 1;
  5642. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  5643. while (1) {
  5644. wret = walk_down_tree(trans, root, path, wc);
  5645. if (wret < 0) {
  5646. ret = wret;
  5647. break;
  5648. }
  5649. wret = walk_up_tree(trans, root, path, wc, parent_level);
  5650. if (wret < 0)
  5651. ret = wret;
  5652. if (wret != 0)
  5653. break;
  5654. }
  5655. kfree(wc);
  5656. btrfs_free_path(path);
  5657. return ret;
  5658. }
  5659. #if 0
  5660. static unsigned long calc_ra(unsigned long start, unsigned long last,
  5661. unsigned long nr)
  5662. {
  5663. return min(last, start + nr - 1);
  5664. }
  5665. static noinline int relocate_inode_pages(struct inode *inode, u64 start,
  5666. u64 len)
  5667. {
  5668. u64 page_start;
  5669. u64 page_end;
  5670. unsigned long first_index;
  5671. unsigned long last_index;
  5672. unsigned long i;
  5673. struct page *page;
  5674. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  5675. struct file_ra_state *ra;
  5676. struct btrfs_ordered_extent *ordered;
  5677. unsigned int total_read = 0;
  5678. unsigned int total_dirty = 0;
  5679. int ret = 0;
  5680. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  5681. mutex_lock(&inode->i_mutex);
  5682. first_index = start >> PAGE_CACHE_SHIFT;
  5683. last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
  5684. /* make sure the dirty trick played by the caller work */
  5685. ret = invalidate_inode_pages2_range(inode->i_mapping,
  5686. first_index, last_index);
  5687. if (ret)
  5688. goto out_unlock;
  5689. file_ra_state_init(ra, inode->i_mapping);
  5690. for (i = first_index ; i <= last_index; i++) {
  5691. if (total_read % ra->ra_pages == 0) {
  5692. btrfs_force_ra(inode->i_mapping, ra, NULL, i,
  5693. calc_ra(i, last_index, ra->ra_pages));
  5694. }
  5695. total_read++;
  5696. again:
  5697. if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
  5698. BUG_ON(1);
  5699. page = grab_cache_page(inode->i_mapping, i);
  5700. if (!page) {
  5701. ret = -ENOMEM;
  5702. goto out_unlock;
  5703. }
  5704. if (!PageUptodate(page)) {
  5705. btrfs_readpage(NULL, page);
  5706. lock_page(page);
  5707. if (!PageUptodate(page)) {
  5708. unlock_page(page);
  5709. page_cache_release(page);
  5710. ret = -EIO;
  5711. goto out_unlock;
  5712. }
  5713. }
  5714. wait_on_page_writeback(page);
  5715. page_start = (u64)page->index << PAGE_CACHE_SHIFT;
  5716. page_end = page_start + PAGE_CACHE_SIZE - 1;
  5717. lock_extent(io_tree, page_start, page_end, GFP_NOFS);
  5718. ordered = btrfs_lookup_ordered_extent(inode, page_start);
  5719. if (ordered) {
  5720. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  5721. unlock_page(page);
  5722. page_cache_release(page);
  5723. btrfs_start_ordered_extent(inode, ordered, 1);
  5724. btrfs_put_ordered_extent(ordered);
  5725. goto again;
  5726. }
  5727. set_page_extent_mapped(page);
  5728. if (i == first_index)
  5729. set_extent_bits(io_tree, page_start, page_end,
  5730. EXTENT_BOUNDARY, GFP_NOFS);
  5731. btrfs_set_extent_delalloc(inode, page_start, page_end);
  5732. set_page_dirty(page);
  5733. total_dirty++;
  5734. unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
  5735. unlock_page(page);
  5736. page_cache_release(page);
  5737. }
  5738. out_unlock:
  5739. kfree(ra);
  5740. mutex_unlock(&inode->i_mutex);
  5741. balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
  5742. return ret;
  5743. }
  5744. static noinline int relocate_data_extent(struct inode *reloc_inode,
  5745. struct btrfs_key *extent_key,
  5746. u64 offset)
  5747. {
  5748. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  5749. struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
  5750. struct extent_map *em;
  5751. u64 start = extent_key->objectid - offset;
  5752. u64 end = start + extent_key->offset - 1;
  5753. em = alloc_extent_map(GFP_NOFS);
  5754. BUG_ON(!em || IS_ERR(em));
  5755. em->start = start;
  5756. em->len = extent_key->offset;
  5757. em->block_len = extent_key->offset;
  5758. em->block_start = extent_key->objectid;
  5759. em->bdev = root->fs_info->fs_devices->latest_bdev;
  5760. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  5761. /* setup extent map to cheat btrfs_readpage */
  5762. lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
  5763. while (1) {
  5764. int ret;
  5765. write_lock(&em_tree->lock);
  5766. ret = add_extent_mapping(em_tree, em);
  5767. write_unlock(&em_tree->lock);
  5768. if (ret != -EEXIST) {
  5769. free_extent_map(em);
  5770. break;
  5771. }
  5772. btrfs_drop_extent_cache(reloc_inode, start, end, 0);
  5773. }
  5774. unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
  5775. return relocate_inode_pages(reloc_inode, start, extent_key->offset);
  5776. }
  5777. struct btrfs_ref_path {
  5778. u64 extent_start;
  5779. u64 nodes[BTRFS_MAX_LEVEL];
  5780. u64 root_objectid;
  5781. u64 root_generation;
  5782. u64 owner_objectid;
  5783. u32 num_refs;
  5784. int lowest_level;
  5785. int current_level;
  5786. int shared_level;
  5787. struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
  5788. u64 new_nodes[BTRFS_MAX_LEVEL];
  5789. };
  5790. struct disk_extent {
  5791. u64 ram_bytes;
  5792. u64 disk_bytenr;
  5793. u64 disk_num_bytes;
  5794. u64 offset;
  5795. u64 num_bytes;
  5796. u8 compression;
  5797. u8 encryption;
  5798. u16 other_encoding;
  5799. };
  5800. static int is_cowonly_root(u64 root_objectid)
  5801. {
  5802. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  5803. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  5804. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  5805. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  5806. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  5807. root_objectid == BTRFS_CSUM_TREE_OBJECTID)
  5808. return 1;
  5809. return 0;
  5810. }
  5811. static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
  5812. struct btrfs_root *extent_root,
  5813. struct btrfs_ref_path *ref_path,
  5814. int first_time)
  5815. {
  5816. struct extent_buffer *leaf;
  5817. struct btrfs_path *path;
  5818. struct btrfs_extent_ref *ref;
  5819. struct btrfs_key key;
  5820. struct btrfs_key found_key;
  5821. u64 bytenr;
  5822. u32 nritems;
  5823. int level;
  5824. int ret = 1;
  5825. path = btrfs_alloc_path();
  5826. if (!path)
  5827. return -ENOMEM;
  5828. if (first_time) {
  5829. ref_path->lowest_level = -1;
  5830. ref_path->current_level = -1;
  5831. ref_path->shared_level = -1;
  5832. goto walk_up;
  5833. }
  5834. walk_down:
  5835. level = ref_path->current_level - 1;
  5836. while (level >= -1) {
  5837. u64 parent;
  5838. if (level < ref_path->lowest_level)
  5839. break;
  5840. if (level >= 0)
  5841. bytenr = ref_path->nodes[level];
  5842. else
  5843. bytenr = ref_path->extent_start;
  5844. BUG_ON(bytenr == 0);
  5845. parent = ref_path->nodes[level + 1];
  5846. ref_path->nodes[level + 1] = 0;
  5847. ref_path->current_level = level;
  5848. BUG_ON(parent == 0);
  5849. key.objectid = bytenr;
  5850. key.offset = parent + 1;
  5851. key.type = BTRFS_EXTENT_REF_KEY;
  5852. ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
  5853. if (ret < 0)
  5854. goto out;
  5855. BUG_ON(ret == 0);
  5856. leaf = path->nodes[0];
  5857. nritems = btrfs_header_nritems(leaf);
  5858. if (path->slots[0] >= nritems) {
  5859. ret = btrfs_next_leaf(extent_root, path);
  5860. if (ret < 0)
  5861. goto out;
  5862. if (ret > 0)
  5863. goto next;
  5864. leaf = path->nodes[0];
  5865. }
  5866. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5867. if (found_key.objectid == bytenr &&
  5868. found_key.type == BTRFS_EXTENT_REF_KEY) {
  5869. if (level < ref_path->shared_level)
  5870. ref_path->shared_level = level;
  5871. goto found;
  5872. }
  5873. next:
  5874. level--;
  5875. btrfs_release_path(extent_root, path);
  5876. cond_resched();
  5877. }
  5878. /* reached lowest level */
  5879. ret = 1;
  5880. goto out;
  5881. walk_up:
  5882. level = ref_path->current_level;
  5883. while (level < BTRFS_MAX_LEVEL - 1) {
  5884. u64 ref_objectid;
  5885. if (level >= 0)
  5886. bytenr = ref_path->nodes[level];
  5887. else
  5888. bytenr = ref_path->extent_start;
  5889. BUG_ON(bytenr == 0);
  5890. key.objectid = bytenr;
  5891. key.offset = 0;
  5892. key.type = BTRFS_EXTENT_REF_KEY;
  5893. ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
  5894. if (ret < 0)
  5895. goto out;
  5896. leaf = path->nodes[0];
  5897. nritems = btrfs_header_nritems(leaf);
  5898. if (path->slots[0] >= nritems) {
  5899. ret = btrfs_next_leaf(extent_root, path);
  5900. if (ret < 0)
  5901. goto out;
  5902. if (ret > 0) {
  5903. /* the extent was freed by someone */
  5904. if (ref_path->lowest_level == level)
  5905. goto out;
  5906. btrfs_release_path(extent_root, path);
  5907. goto walk_down;
  5908. }
  5909. leaf = path->nodes[0];
  5910. }
  5911. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  5912. if (found_key.objectid != bytenr ||
  5913. found_key.type != BTRFS_EXTENT_REF_KEY) {
  5914. /* the extent was freed by someone */
  5915. if (ref_path->lowest_level == level) {
  5916. ret = 1;
  5917. goto out;
  5918. }
  5919. btrfs_release_path(extent_root, path);
  5920. goto walk_down;
  5921. }
  5922. found:
  5923. ref = btrfs_item_ptr(leaf, path->slots[0],
  5924. struct btrfs_extent_ref);
  5925. ref_objectid = btrfs_ref_objectid(leaf, ref);
  5926. if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
  5927. if (first_time) {
  5928. level = (int)ref_objectid;
  5929. BUG_ON(level >= BTRFS_MAX_LEVEL);
  5930. ref_path->lowest_level = level;
  5931. ref_path->current_level = level;
  5932. ref_path->nodes[level] = bytenr;
  5933. } else {
  5934. WARN_ON(ref_objectid != level);
  5935. }
  5936. } else {
  5937. WARN_ON(level != -1);
  5938. }
  5939. first_time = 0;
  5940. if (ref_path->lowest_level == level) {
  5941. ref_path->owner_objectid = ref_objectid;
  5942. ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
  5943. }
  5944. /*
  5945. * the block is tree root or the block isn't in reference
  5946. * counted tree.
  5947. */
  5948. if (found_key.objectid == found_key.offset ||
  5949. is_cowonly_root(btrfs_ref_root(leaf, ref))) {
  5950. ref_path->root_objectid = btrfs_ref_root(leaf, ref);
  5951. ref_path->root_generation =
  5952. btrfs_ref_generation(leaf, ref);
  5953. if (level < 0) {
  5954. /* special reference from the tree log */
  5955. ref_path->nodes[0] = found_key.offset;
  5956. ref_path->current_level = 0;
  5957. }
  5958. ret = 0;
  5959. goto out;
  5960. }
  5961. level++;
  5962. BUG_ON(ref_path->nodes[level] != 0);
  5963. ref_path->nodes[level] = found_key.offset;
  5964. ref_path->current_level = level;
  5965. /*
  5966. * the reference was created in the running transaction,
  5967. * no need to continue walking up.
  5968. */
  5969. if (btrfs_ref_generation(leaf, ref) == trans->transid) {
  5970. ref_path->root_objectid = btrfs_ref_root(leaf, ref);
  5971. ref_path->root_generation =
  5972. btrfs_ref_generation(leaf, ref);
  5973. ret = 0;
  5974. goto out;
  5975. }
  5976. btrfs_release_path(extent_root, path);
  5977. cond_resched();
  5978. }
  5979. /* reached max tree level, but no tree root found. */
  5980. BUG();
  5981. out:
  5982. btrfs_free_path(path);
  5983. return ret;
  5984. }
  5985. static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
  5986. struct btrfs_root *extent_root,
  5987. struct btrfs_ref_path *ref_path,
  5988. u64 extent_start)
  5989. {
  5990. memset(ref_path, 0, sizeof(*ref_path));
  5991. ref_path->extent_start = extent_start;
  5992. return __next_ref_path(trans, extent_root, ref_path, 1);
  5993. }
  5994. static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
  5995. struct btrfs_root *extent_root,
  5996. struct btrfs_ref_path *ref_path)
  5997. {
  5998. return __next_ref_path(trans, extent_root, ref_path, 0);
  5999. }
  6000. static noinline int get_new_locations(struct inode *reloc_inode,
  6001. struct btrfs_key *extent_key,
  6002. u64 offset, int no_fragment,
  6003. struct disk_extent **extents,
  6004. int *nr_extents)
  6005. {
  6006. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  6007. struct btrfs_path *path;
  6008. struct btrfs_file_extent_item *fi;
  6009. struct extent_buffer *leaf;
  6010. struct disk_extent *exts = *extents;
  6011. struct btrfs_key found_key;
  6012. u64 cur_pos;
  6013. u64 last_byte;
  6014. u32 nritems;
  6015. int nr = 0;
  6016. int max = *nr_extents;
  6017. int ret;
  6018. WARN_ON(!no_fragment && *extents);
  6019. if (!exts) {
  6020. max = 1;
  6021. exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
  6022. if (!exts)
  6023. return -ENOMEM;
  6024. }
  6025. path = btrfs_alloc_path();
  6026. BUG_ON(!path);
  6027. cur_pos = extent_key->objectid - offset;
  6028. last_byte = extent_key->objectid + extent_key->offset;
  6029. ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
  6030. cur_pos, 0);
  6031. if (ret < 0)
  6032. goto out;
  6033. if (ret > 0) {
  6034. ret = -ENOENT;
  6035. goto out;
  6036. }
  6037. while (1) {
  6038. leaf = path->nodes[0];
  6039. nritems = btrfs_header_nritems(leaf);
  6040. if (path->slots[0] >= nritems) {
  6041. ret = btrfs_next_leaf(root, path);
  6042. if (ret < 0)
  6043. goto out;
  6044. if (ret > 0)
  6045. break;
  6046. leaf = path->nodes[0];
  6047. }
  6048. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  6049. if (found_key.offset != cur_pos ||
  6050. found_key.type != BTRFS_EXTENT_DATA_KEY ||
  6051. found_key.objectid != reloc_inode->i_ino)
  6052. break;
  6053. fi = btrfs_item_ptr(leaf, path->slots[0],
  6054. struct btrfs_file_extent_item);
  6055. if (btrfs_file_extent_type(leaf, fi) !=
  6056. BTRFS_FILE_EXTENT_REG ||
  6057. btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
  6058. break;
  6059. if (nr == max) {
  6060. struct disk_extent *old = exts;
  6061. max *= 2;
  6062. exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
  6063. memcpy(exts, old, sizeof(*exts) * nr);
  6064. if (old != *extents)
  6065. kfree(old);
  6066. }
  6067. exts[nr].disk_bytenr =
  6068. btrfs_file_extent_disk_bytenr(leaf, fi);
  6069. exts[nr].disk_num_bytes =
  6070. btrfs_file_extent_disk_num_bytes(leaf, fi);
  6071. exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
  6072. exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
  6073. exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
  6074. exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
  6075. exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
  6076. exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
  6077. fi);
  6078. BUG_ON(exts[nr].offset > 0);
  6079. BUG_ON(exts[nr].compression || exts[nr].encryption);
  6080. BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
  6081. cur_pos += exts[nr].num_bytes;
  6082. nr++;
  6083. if (cur_pos + offset >= last_byte)
  6084. break;
  6085. if (no_fragment) {
  6086. ret = 1;
  6087. goto out;
  6088. }
  6089. path->slots[0]++;
  6090. }
  6091. BUG_ON(cur_pos + offset > last_byte);
  6092. if (cur_pos + offset < last_byte) {
  6093. ret = -ENOENT;
  6094. goto out;
  6095. }
  6096. ret = 0;
  6097. out:
  6098. btrfs_free_path(path);
  6099. if (ret) {
  6100. if (exts != *extents)
  6101. kfree(exts);
  6102. } else {
  6103. *extents = exts;
  6104. *nr_extents = nr;
  6105. }
  6106. return ret;
  6107. }
  6108. static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
  6109. struct btrfs_root *root,
  6110. struct btrfs_path *path,
  6111. struct btrfs_key *extent_key,
  6112. struct btrfs_key *leaf_key,
  6113. struct btrfs_ref_path *ref_path,
  6114. struct disk_extent *new_extents,
  6115. int nr_extents)
  6116. {
  6117. struct extent_buffer *leaf;
  6118. struct btrfs_file_extent_item *fi;
  6119. struct inode *inode = NULL;
  6120. struct btrfs_key key;
  6121. u64 lock_start = 0;
  6122. u64 lock_end = 0;
  6123. u64 num_bytes;
  6124. u64 ext_offset;
  6125. u64 search_end = (u64)-1;
  6126. u32 nritems;
  6127. int nr_scaned = 0;
  6128. int extent_locked = 0;
  6129. int extent_type;
  6130. int ret;
  6131. memcpy(&key, leaf_key, sizeof(key));
  6132. if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
  6133. if (key.objectid < ref_path->owner_objectid ||
  6134. (key.objectid == ref_path->owner_objectid &&
  6135. key.type < BTRFS_EXTENT_DATA_KEY)) {
  6136. key.objectid = ref_path->owner_objectid;
  6137. key.type = BTRFS_EXTENT_DATA_KEY;
  6138. key.offset = 0;
  6139. }
  6140. }
  6141. while (1) {
  6142. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  6143. if (ret < 0)
  6144. goto out;
  6145. leaf = path->nodes[0];
  6146. nritems = btrfs_header_nritems(leaf);
  6147. next:
  6148. if (extent_locked && ret > 0) {
  6149. /*
  6150. * the file extent item was modified by someone
  6151. * before the extent got locked.
  6152. */
  6153. unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
  6154. lock_end, GFP_NOFS);
  6155. extent_locked = 0;
  6156. }
  6157. if (path->slots[0] >= nritems) {
  6158. if (++nr_scaned > 2)
  6159. break;
  6160. BUG_ON(extent_locked);
  6161. ret = btrfs_next_leaf(root, path);
  6162. if (ret < 0)
  6163. goto out;
  6164. if (ret > 0)
  6165. break;
  6166. leaf = path->nodes[0];
  6167. nritems = btrfs_header_nritems(leaf);
  6168. }
  6169. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  6170. if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
  6171. if ((key.objectid > ref_path->owner_objectid) ||
  6172. (key.objectid == ref_path->owner_objectid &&
  6173. key.type > BTRFS_EXTENT_DATA_KEY) ||
  6174. key.offset >= search_end)
  6175. break;
  6176. }
  6177. if (inode && key.objectid != inode->i_ino) {
  6178. BUG_ON(extent_locked);
  6179. btrfs_release_path(root, path);
  6180. mutex_unlock(&inode->i_mutex);
  6181. iput(inode);
  6182. inode = NULL;
  6183. continue;
  6184. }
  6185. if (key.type != BTRFS_EXTENT_DATA_KEY) {
  6186. path->slots[0]++;
  6187. ret = 1;
  6188. goto next;
  6189. }
  6190. fi = btrfs_item_ptr(leaf, path->slots[0],
  6191. struct btrfs_file_extent_item);
  6192. extent_type = btrfs_file_extent_type(leaf, fi);
  6193. if ((extent_type != BTRFS_FILE_EXTENT_REG &&
  6194. extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
  6195. (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  6196. extent_key->objectid)) {
  6197. path->slots[0]++;
  6198. ret = 1;
  6199. goto next;
  6200. }
  6201. num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
  6202. ext_offset = btrfs_file_extent_offset(leaf, fi);
  6203. if (search_end == (u64)-1) {
  6204. search_end = key.offset - ext_offset +
  6205. btrfs_file_extent_ram_bytes(leaf, fi);
  6206. }
  6207. if (!extent_locked) {
  6208. lock_start = key.offset;
  6209. lock_end = lock_start + num_bytes - 1;
  6210. } else {
  6211. if (lock_start > key.offset ||
  6212. lock_end + 1 < key.offset + num_bytes) {
  6213. unlock_extent(&BTRFS_I(inode)->io_tree,
  6214. lock_start, lock_end, GFP_NOFS);
  6215. extent_locked = 0;
  6216. }
  6217. }
  6218. if (!inode) {
  6219. btrfs_release_path(root, path);
  6220. inode = btrfs_iget_locked(root->fs_info->sb,
  6221. key.objectid, root);
  6222. if (inode->i_state & I_NEW) {
  6223. BTRFS_I(inode)->root = root;
  6224. BTRFS_I(inode)->location.objectid =
  6225. key.objectid;
  6226. BTRFS_I(inode)->location.type =
  6227. BTRFS_INODE_ITEM_KEY;
  6228. BTRFS_I(inode)->location.offset = 0;
  6229. btrfs_read_locked_inode(inode);
  6230. unlock_new_inode(inode);
  6231. }
  6232. /*
  6233. * some code call btrfs_commit_transaction while
  6234. * holding the i_mutex, so we can't use mutex_lock
  6235. * here.
  6236. */
  6237. if (is_bad_inode(inode) ||
  6238. !mutex_trylock(&inode->i_mutex)) {
  6239. iput(inode);
  6240. inode = NULL;
  6241. key.offset = (u64)-1;
  6242. goto skip;
  6243. }
  6244. }
  6245. if (!extent_locked) {
  6246. struct btrfs_ordered_extent *ordered;
  6247. btrfs_release_path(root, path);
  6248. lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
  6249. lock_end, GFP_NOFS);
  6250. ordered = btrfs_lookup_first_ordered_extent(inode,
  6251. lock_end);
  6252. if (ordered &&
  6253. ordered->file_offset <= lock_end &&
  6254. ordered->file_offset + ordered->len > lock_start) {
  6255. unlock_extent(&BTRFS_I(inode)->io_tree,
  6256. lock_start, lock_end, GFP_NOFS);
  6257. btrfs_start_ordered_extent(inode, ordered, 1);
  6258. btrfs_put_ordered_extent(ordered);
  6259. key.offset += num_bytes;
  6260. goto skip;
  6261. }
  6262. if (ordered)
  6263. btrfs_put_ordered_extent(ordered);
  6264. extent_locked = 1;
  6265. continue;
  6266. }
  6267. if (nr_extents == 1) {
  6268. /* update extent pointer in place */
  6269. btrfs_set_file_extent_disk_bytenr(leaf, fi,
  6270. new_extents[0].disk_bytenr);
  6271. btrfs_set_file_extent_disk_num_bytes(leaf, fi,
  6272. new_extents[0].disk_num_bytes);
  6273. btrfs_mark_buffer_dirty(leaf);
  6274. btrfs_drop_extent_cache(inode, key.offset,
  6275. key.offset + num_bytes - 1, 0);
  6276. ret = btrfs_inc_extent_ref(trans, root,
  6277. new_extents[0].disk_bytenr,
  6278. new_extents[0].disk_num_bytes,
  6279. leaf->start,
  6280. root->root_key.objectid,
  6281. trans->transid,
  6282. key.objectid);
  6283. BUG_ON(ret);
  6284. ret = btrfs_free_extent(trans, root,
  6285. extent_key->objectid,
  6286. extent_key->offset,
  6287. leaf->start,
  6288. btrfs_header_owner(leaf),
  6289. btrfs_header_generation(leaf),
  6290. key.objectid, 0);
  6291. BUG_ON(ret);
  6292. btrfs_release_path(root, path);
  6293. key.offset += num_bytes;
  6294. } else {
  6295. BUG_ON(1);
  6296. #if 0
  6297. u64 alloc_hint;
  6298. u64 extent_len;
  6299. int i;
  6300. /*
  6301. * drop old extent pointer at first, then insert the
  6302. * new pointers one bye one
  6303. */
  6304. btrfs_release_path(root, path);
  6305. ret = btrfs_drop_extents(trans, root, inode, key.offset,
  6306. key.offset + num_bytes,
  6307. key.offset, &alloc_hint);
  6308. BUG_ON(ret);
  6309. for (i = 0; i < nr_extents; i++) {
  6310. if (ext_offset >= new_extents[i].num_bytes) {
  6311. ext_offset -= new_extents[i].num_bytes;
  6312. continue;
  6313. }
  6314. extent_len = min(new_extents[i].num_bytes -
  6315. ext_offset, num_bytes);
  6316. ret = btrfs_insert_empty_item(trans, root,
  6317. path, &key,
  6318. sizeof(*fi));
  6319. BUG_ON(ret);
  6320. leaf = path->nodes[0];
  6321. fi = btrfs_item_ptr(leaf, path->slots[0],
  6322. struct btrfs_file_extent_item);
  6323. btrfs_set_file_extent_generation(leaf, fi,
  6324. trans->transid);
  6325. btrfs_set_file_extent_type(leaf, fi,
  6326. BTRFS_FILE_EXTENT_REG);
  6327. btrfs_set_file_extent_disk_bytenr(leaf, fi,
  6328. new_extents[i].disk_bytenr);
  6329. btrfs_set_file_extent_disk_num_bytes(leaf, fi,
  6330. new_extents[i].disk_num_bytes);
  6331. btrfs_set_file_extent_ram_bytes(leaf, fi,
  6332. new_extents[i].ram_bytes);
  6333. btrfs_set_file_extent_compression(leaf, fi,
  6334. new_extents[i].compression);
  6335. btrfs_set_file_extent_encryption(leaf, fi,
  6336. new_extents[i].encryption);
  6337. btrfs_set_file_extent_other_encoding(leaf, fi,
  6338. new_extents[i].other_encoding);
  6339. btrfs_set_file_extent_num_bytes(leaf, fi,
  6340. extent_len);
  6341. ext_offset += new_extents[i].offset;
  6342. btrfs_set_file_extent_offset(leaf, fi,
  6343. ext_offset);
  6344. btrfs_mark_buffer_dirty(leaf);
  6345. btrfs_drop_extent_cache(inode, key.offset,
  6346. key.offset + extent_len - 1, 0);
  6347. ret = btrfs_inc_extent_ref(trans, root,
  6348. new_extents[i].disk_bytenr,
  6349. new_extents[i].disk_num_bytes,
  6350. leaf->start,
  6351. root->root_key.objectid,
  6352. trans->transid, key.objectid);
  6353. BUG_ON(ret);
  6354. btrfs_release_path(root, path);
  6355. inode_add_bytes(inode, extent_len);
  6356. ext_offset = 0;
  6357. num_bytes -= extent_len;
  6358. key.offset += extent_len;
  6359. if (num_bytes == 0)
  6360. break;
  6361. }
  6362. BUG_ON(i >= nr_extents);
  6363. #endif
  6364. }
  6365. if (extent_locked) {
  6366. unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
  6367. lock_end, GFP_NOFS);
  6368. extent_locked = 0;
  6369. }
  6370. skip:
  6371. if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
  6372. key.offset >= search_end)
  6373. break;
  6374. cond_resched();
  6375. }
  6376. ret = 0;
  6377. out:
  6378. btrfs_release_path(root, path);
  6379. if (inode) {
  6380. mutex_unlock(&inode->i_mutex);
  6381. if (extent_locked) {
  6382. unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
  6383. lock_end, GFP_NOFS);
  6384. }
  6385. iput(inode);
  6386. }
  6387. return ret;
  6388. }
  6389. int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
  6390. struct btrfs_root *root,
  6391. struct extent_buffer *buf, u64 orig_start)
  6392. {
  6393. int level;
  6394. int ret;
  6395. BUG_ON(btrfs_header_generation(buf) != trans->transid);
  6396. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  6397. level = btrfs_header_level(buf);
  6398. if (level == 0) {
  6399. struct btrfs_leaf_ref *ref;
  6400. struct btrfs_leaf_ref *orig_ref;
  6401. orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
  6402. if (!orig_ref)
  6403. return -ENOENT;
  6404. ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
  6405. if (!ref) {
  6406. btrfs_free_leaf_ref(root, orig_ref);
  6407. return -ENOMEM;
  6408. }
  6409. ref->nritems = orig_ref->nritems;
  6410. memcpy(ref->extents, orig_ref->extents,
  6411. sizeof(ref->extents[0]) * ref->nritems);
  6412. btrfs_free_leaf_ref(root, orig_ref);
  6413. ref->root_gen = trans->transid;
  6414. ref->bytenr = buf->start;
  6415. ref->owner = btrfs_header_owner(buf);
  6416. ref->generation = btrfs_header_generation(buf);
  6417. ret = btrfs_add_leaf_ref(root, ref, 0);
  6418. WARN_ON(ret);
  6419. btrfs_free_leaf_ref(root, ref);
  6420. }
  6421. return 0;
  6422. }
  6423. static noinline int invalidate_extent_cache(struct btrfs_root *root,
  6424. struct extent_buffer *leaf,
  6425. struct btrfs_block_group_cache *group,
  6426. struct btrfs_root *target_root)
  6427. {
  6428. struct btrfs_key key;
  6429. struct inode *inode = NULL;
  6430. struct btrfs_file_extent_item *fi;
  6431. struct extent_state *cached_state = NULL;
  6432. u64 num_bytes;
  6433. u64 skip_objectid = 0;
  6434. u32 nritems;
  6435. u32 i;
  6436. nritems = btrfs_header_nritems(leaf);
  6437. for (i = 0; i < nritems; i++) {
  6438. btrfs_item_key_to_cpu(leaf, &key, i);
  6439. if (key.objectid == skip_objectid ||
  6440. key.type != BTRFS_EXTENT_DATA_KEY)
  6441. continue;
  6442. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  6443. if (btrfs_file_extent_type(leaf, fi) ==
  6444. BTRFS_FILE_EXTENT_INLINE)
  6445. continue;
  6446. if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
  6447. continue;
  6448. if (!inode || inode->i_ino != key.objectid) {
  6449. iput(inode);
  6450. inode = btrfs_ilookup(target_root->fs_info->sb,
  6451. key.objectid, target_root, 1);
  6452. }
  6453. if (!inode) {
  6454. skip_objectid = key.objectid;
  6455. continue;
  6456. }
  6457. num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
  6458. lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
  6459. key.offset + num_bytes - 1, 0, &cached_state,
  6460. GFP_NOFS);
  6461. btrfs_drop_extent_cache(inode, key.offset,
  6462. key.offset + num_bytes - 1, 1);
  6463. unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
  6464. key.offset + num_bytes - 1, &cached_state,
  6465. GFP_NOFS);
  6466. cond_resched();
  6467. }
  6468. iput(inode);
  6469. return 0;
  6470. }
  6471. static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
  6472. struct btrfs_root *root,
  6473. struct extent_buffer *leaf,
  6474. struct btrfs_block_group_cache *group,
  6475. struct inode *reloc_inode)
  6476. {
  6477. struct btrfs_key key;
  6478. struct btrfs_key extent_key;
  6479. struct btrfs_file_extent_item *fi;
  6480. struct btrfs_leaf_ref *ref;
  6481. struct disk_extent *new_extent;
  6482. u64 bytenr;
  6483. u64 num_bytes;
  6484. u32 nritems;
  6485. u32 i;
  6486. int ext_index;
  6487. int nr_extent;
  6488. int ret;
  6489. new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
  6490. BUG_ON(!new_extent);
  6491. ref = btrfs_lookup_leaf_ref(root, leaf->start);
  6492. BUG_ON(!ref);
  6493. ext_index = -1;
  6494. nritems = btrfs_header_nritems(leaf);
  6495. for (i = 0; i < nritems; i++) {
  6496. btrfs_item_key_to_cpu(leaf, &key, i);
  6497. if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
  6498. continue;
  6499. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  6500. if (btrfs_file_extent_type(leaf, fi) ==
  6501. BTRFS_FILE_EXTENT_INLINE)
  6502. continue;
  6503. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  6504. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  6505. if (bytenr == 0)
  6506. continue;
  6507. ext_index++;
  6508. if (bytenr >= group->key.objectid + group->key.offset ||
  6509. bytenr + num_bytes <= group->key.objectid)
  6510. continue;
  6511. extent_key.objectid = bytenr;
  6512. extent_key.offset = num_bytes;
  6513. extent_key.type = BTRFS_EXTENT_ITEM_KEY;
  6514. nr_extent = 1;
  6515. ret = get_new_locations(reloc_inode, &extent_key,
  6516. group->key.objectid, 1,
  6517. &new_extent, &nr_extent);
  6518. if (ret > 0)
  6519. continue;
  6520. BUG_ON(ret < 0);
  6521. BUG_ON(ref->extents[ext_index].bytenr != bytenr);
  6522. BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
  6523. ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
  6524. ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
  6525. btrfs_set_file_extent_disk_bytenr(leaf, fi,
  6526. new_extent->disk_bytenr);
  6527. btrfs_set_file_extent_disk_num_bytes(leaf, fi,
  6528. new_extent->disk_num_bytes);
  6529. btrfs_mark_buffer_dirty(leaf);
  6530. ret = btrfs_inc_extent_ref(trans, root,
  6531. new_extent->disk_bytenr,
  6532. new_extent->disk_num_bytes,
  6533. leaf->start,
  6534. root->root_key.objectid,
  6535. trans->transid, key.objectid);
  6536. BUG_ON(ret);
  6537. ret = btrfs_free_extent(trans, root,
  6538. bytenr, num_bytes, leaf->start,
  6539. btrfs_header_owner(leaf),
  6540. btrfs_header_generation(leaf),
  6541. key.objectid, 0);
  6542. BUG_ON(ret);
  6543. cond_resched();
  6544. }
  6545. kfree(new_extent);
  6546. BUG_ON(ext_index + 1 != ref->nritems);
  6547. btrfs_free_leaf_ref(root, ref);
  6548. return 0;
  6549. }
  6550. int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
  6551. struct btrfs_root *root)
  6552. {
  6553. struct btrfs_root *reloc_root;
  6554. int ret;
  6555. if (root->reloc_root) {
  6556. reloc_root = root->reloc_root;
  6557. root->reloc_root = NULL;
  6558. list_add(&reloc_root->dead_list,
  6559. &root->fs_info->dead_reloc_roots);
  6560. btrfs_set_root_bytenr(&reloc_root->root_item,
  6561. reloc_root->node->start);
  6562. btrfs_set_root_level(&root->root_item,
  6563. btrfs_header_level(reloc_root->node));
  6564. memset(&reloc_root->root_item.drop_progress, 0,
  6565. sizeof(struct btrfs_disk_key));
  6566. reloc_root->root_item.drop_level = 0;
  6567. ret = btrfs_update_root(trans, root->fs_info->tree_root,
  6568. &reloc_root->root_key,
  6569. &reloc_root->root_item);
  6570. BUG_ON(ret);
  6571. }
  6572. return 0;
  6573. }
  6574. int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
  6575. {
  6576. struct btrfs_trans_handle *trans;
  6577. struct btrfs_root *reloc_root;
  6578. struct btrfs_root *prev_root = NULL;
  6579. struct list_head dead_roots;
  6580. int ret;
  6581. unsigned long nr;
  6582. INIT_LIST_HEAD(&dead_roots);
  6583. list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
  6584. while (!list_empty(&dead_roots)) {
  6585. reloc_root = list_entry(dead_roots.prev,
  6586. struct btrfs_root, dead_list);
  6587. list_del_init(&reloc_root->dead_list);
  6588. BUG_ON(reloc_root->commit_root != NULL);
  6589. while (1) {
  6590. trans = btrfs_join_transaction(root, 1);
  6591. BUG_ON(!trans);
  6592. mutex_lock(&root->fs_info->drop_mutex);
  6593. ret = btrfs_drop_snapshot(trans, reloc_root);
  6594. if (ret != -EAGAIN)
  6595. break;
  6596. mutex_unlock(&root->fs_info->drop_mutex);
  6597. nr = trans->blocks_used;
  6598. ret = btrfs_end_transaction(trans, root);
  6599. BUG_ON(ret);
  6600. btrfs_btree_balance_dirty(root, nr);
  6601. }
  6602. free_extent_buffer(reloc_root->node);
  6603. ret = btrfs_del_root(trans, root->fs_info->tree_root,
  6604. &reloc_root->root_key);
  6605. BUG_ON(ret);
  6606. mutex_unlock(&root->fs_info->drop_mutex);
  6607. nr = trans->blocks_used;
  6608. ret = btrfs_end_transaction(trans, root);
  6609. BUG_ON(ret);
  6610. btrfs_btree_balance_dirty(root, nr);
  6611. kfree(prev_root);
  6612. prev_root = reloc_root;
  6613. }
  6614. if (prev_root) {
  6615. btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
  6616. kfree(prev_root);
  6617. }
  6618. return 0;
  6619. }
  6620. int btrfs_add_dead_reloc_root(struct btrfs_root *root)
  6621. {
  6622. list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
  6623. return 0;
  6624. }
  6625. int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
  6626. {
  6627. struct btrfs_root *reloc_root;
  6628. struct btrfs_trans_handle *trans;
  6629. struct btrfs_key location;
  6630. int found;
  6631. int ret;
  6632. mutex_lock(&root->fs_info->tree_reloc_mutex);
  6633. ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
  6634. BUG_ON(ret);
  6635. found = !list_empty(&root->fs_info->dead_reloc_roots);
  6636. mutex_unlock(&root->fs_info->tree_reloc_mutex);
  6637. if (found) {
  6638. trans = btrfs_start_transaction(root, 1);
  6639. BUG_ON(!trans);
  6640. ret = btrfs_commit_transaction(trans, root);
  6641. BUG_ON(ret);
  6642. }
  6643. location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
  6644. location.offset = (u64)-1;
  6645. location.type = BTRFS_ROOT_ITEM_KEY;
  6646. reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
  6647. BUG_ON(!reloc_root);
  6648. btrfs_orphan_cleanup(reloc_root);
  6649. return 0;
  6650. }
  6651. static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
  6652. struct btrfs_root *root)
  6653. {
  6654. struct btrfs_root *reloc_root;
  6655. struct extent_buffer *eb;
  6656. struct btrfs_root_item *root_item;
  6657. struct btrfs_key root_key;
  6658. int ret;
  6659. BUG_ON(!root->ref_cows);
  6660. if (root->reloc_root)
  6661. return 0;
  6662. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  6663. BUG_ON(!root_item);
  6664. ret = btrfs_copy_root(trans, root, root->commit_root,
  6665. &eb, BTRFS_TREE_RELOC_OBJECTID);
  6666. BUG_ON(ret);
  6667. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  6668. root_key.offset = root->root_key.objectid;
  6669. root_key.type = BTRFS_ROOT_ITEM_KEY;
  6670. memcpy(root_item, &root->root_item, sizeof(root_item));
  6671. btrfs_set_root_refs(root_item, 0);
  6672. btrfs_set_root_bytenr(root_item, eb->start);
  6673. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  6674. btrfs_set_root_generation(root_item, trans->transid);
  6675. btrfs_tree_unlock(eb);
  6676. free_extent_buffer(eb);
  6677. ret = btrfs_insert_root(trans, root->fs_info->tree_root,
  6678. &root_key, root_item);
  6679. BUG_ON(ret);
  6680. kfree(root_item);
  6681. reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
  6682. &root_key);
  6683. BUG_ON(!reloc_root);
  6684. reloc_root->last_trans = trans->transid;
  6685. reloc_root->commit_root = NULL;
  6686. reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
  6687. root->reloc_root = reloc_root;
  6688. return 0;
  6689. }
  6690. /*
  6691. * Core function of space balance.
  6692. *
  6693. * The idea is using reloc trees to relocate tree blocks in reference
  6694. * counted roots. There is one reloc tree for each subvol, and all
  6695. * reloc trees share same root key objectid. Reloc trees are snapshots
  6696. * of the latest committed roots of subvols (root->commit_root).
  6697. *
  6698. * To relocate a tree block referenced by a subvol, there are two steps.
  6699. * COW the block through subvol's reloc tree, then update block pointer
  6700. * in the subvol to point to the new block. Since all reloc trees share
  6701. * same root key objectid, doing special handing for tree blocks owned
  6702. * by them is easy. Once a tree block has been COWed in one reloc tree,
  6703. * we can use the resulting new block directly when the same block is
  6704. * required to COW again through other reloc trees. By this way, relocated
  6705. * tree blocks are shared between reloc trees, so they are also shared
  6706. * between subvols.
  6707. */
  6708. static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
  6709. struct btrfs_root *root,
  6710. struct btrfs_path *path,
  6711. struct btrfs_key *first_key,
  6712. struct btrfs_ref_path *ref_path,
  6713. struct btrfs_block_group_cache *group,
  6714. struct inode *reloc_inode)
  6715. {
  6716. struct btrfs_root *reloc_root;
  6717. struct extent_buffer *eb = NULL;
  6718. struct btrfs_key *keys;
  6719. u64 *nodes;
  6720. int level;
  6721. int shared_level;
  6722. int lowest_level = 0;
  6723. int ret;
  6724. if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
  6725. lowest_level = ref_path->owner_objectid;
  6726. if (!root->ref_cows) {
  6727. path->lowest_level = lowest_level;
  6728. ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
  6729. BUG_ON(ret < 0);
  6730. path->lowest_level = 0;
  6731. btrfs_release_path(root, path);
  6732. return 0;
  6733. }
  6734. mutex_lock(&root->fs_info->tree_reloc_mutex);
  6735. ret = init_reloc_tree(trans, root);
  6736. BUG_ON(ret);
  6737. reloc_root = root->reloc_root;
  6738. shared_level = ref_path->shared_level;
  6739. ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
  6740. keys = ref_path->node_keys;
  6741. nodes = ref_path->new_nodes;
  6742. memset(&keys[shared_level + 1], 0,
  6743. sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
  6744. memset(&nodes[shared_level + 1], 0,
  6745. sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
  6746. if (nodes[lowest_level] == 0) {
  6747. path->lowest_level = lowest_level;
  6748. ret = btrfs_search_slot(trans, reloc_root, first_key, path,
  6749. 0, 1);
  6750. BUG_ON(ret);
  6751. for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
  6752. eb = path->nodes[level];
  6753. if (!eb || eb == reloc_root->node)
  6754. break;
  6755. nodes[level] = eb->start;
  6756. if (level == 0)
  6757. btrfs_item_key_to_cpu(eb, &keys[level], 0);
  6758. else
  6759. btrfs_node_key_to_cpu(eb, &keys[level], 0);
  6760. }
  6761. if (nodes[0] &&
  6762. ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
  6763. eb = path->nodes[0];
  6764. ret = replace_extents_in_leaf(trans, reloc_root, eb,
  6765. group, reloc_inode);
  6766. BUG_ON(ret);
  6767. }
  6768. btrfs_release_path(reloc_root, path);
  6769. } else {
  6770. ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
  6771. lowest_level);
  6772. BUG_ON(ret);
  6773. }
  6774. /*
  6775. * replace tree blocks in the fs tree with tree blocks in
  6776. * the reloc tree.
  6777. */
  6778. ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
  6779. BUG_ON(ret < 0);
  6780. if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
  6781. ret = btrfs_search_slot(trans, reloc_root, first_key, path,
  6782. 0, 0);
  6783. BUG_ON(ret);
  6784. extent_buffer_get(path->nodes[0]);
  6785. eb = path->nodes[0];
  6786. btrfs_release_path(reloc_root, path);
  6787. ret = invalidate_extent_cache(reloc_root, eb, group, root);
  6788. BUG_ON(ret);
  6789. free_extent_buffer(eb);
  6790. }
  6791. mutex_unlock(&root->fs_info->tree_reloc_mutex);
  6792. path->lowest_level = 0;
  6793. return 0;
  6794. }
  6795. static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
  6796. struct btrfs_root *root,
  6797. struct btrfs_path *path,
  6798. struct btrfs_key *first_key,
  6799. struct btrfs_ref_path *ref_path)
  6800. {
  6801. int ret;
  6802. ret = relocate_one_path(trans, root, path, first_key,
  6803. ref_path, NULL, NULL);
  6804. BUG_ON(ret);
  6805. return 0;
  6806. }
  6807. static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
  6808. struct btrfs_root *extent_root,
  6809. struct btrfs_path *path,
  6810. struct btrfs_key *extent_key)
  6811. {
  6812. int ret;
  6813. ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
  6814. if (ret)
  6815. goto out;
  6816. ret = btrfs_del_item(trans, extent_root, path);
  6817. out:
  6818. btrfs_release_path(extent_root, path);
  6819. return ret;
  6820. }
  6821. static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
  6822. struct btrfs_ref_path *ref_path)
  6823. {
  6824. struct btrfs_key root_key;
  6825. root_key.objectid = ref_path->root_objectid;
  6826. root_key.type = BTRFS_ROOT_ITEM_KEY;
  6827. if (is_cowonly_root(ref_path->root_objectid))
  6828. root_key.offset = 0;
  6829. else
  6830. root_key.offset = (u64)-1;
  6831. return btrfs_read_fs_root_no_name(fs_info, &root_key);
  6832. }
  6833. static noinline int relocate_one_extent(struct btrfs_root *extent_root,
  6834. struct btrfs_path *path,
  6835. struct btrfs_key *extent_key,
  6836. struct btrfs_block_group_cache *group,
  6837. struct inode *reloc_inode, int pass)
  6838. {
  6839. struct btrfs_trans_handle *trans;
  6840. struct btrfs_root *found_root;
  6841. struct btrfs_ref_path *ref_path = NULL;
  6842. struct disk_extent *new_extents = NULL;
  6843. int nr_extents = 0;
  6844. int loops;
  6845. int ret;
  6846. int level;
  6847. struct btrfs_key first_key;
  6848. u64 prev_block = 0;
  6849. trans = btrfs_start_transaction(extent_root, 1);
  6850. BUG_ON(!trans);
  6851. if (extent_key->objectid == 0) {
  6852. ret = del_extent_zero(trans, extent_root, path, extent_key);
  6853. goto out;
  6854. }
  6855. ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
  6856. if (!ref_path) {
  6857. ret = -ENOMEM;
  6858. goto out;
  6859. }
  6860. for (loops = 0; ; loops++) {
  6861. if (loops == 0) {
  6862. ret = btrfs_first_ref_path(trans, extent_root, ref_path,
  6863. extent_key->objectid);
  6864. } else {
  6865. ret = btrfs_next_ref_path(trans, extent_root, ref_path);
  6866. }
  6867. if (ret < 0)
  6868. goto out;
  6869. if (ret > 0)
  6870. break;
  6871. if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  6872. ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  6873. continue;
  6874. found_root = read_ref_root(extent_root->fs_info, ref_path);
  6875. BUG_ON(!found_root);
  6876. /*
  6877. * for reference counted tree, only process reference paths
  6878. * rooted at the latest committed root.
  6879. */
  6880. if (found_root->ref_cows &&
  6881. ref_path->root_generation != found_root->root_key.offset)
  6882. continue;
  6883. if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
  6884. if (pass == 0) {
  6885. /*
  6886. * copy data extents to new locations
  6887. */
  6888. u64 group_start = group->key.objectid;
  6889. ret = relocate_data_extent(reloc_inode,
  6890. extent_key,
  6891. group_start);
  6892. if (ret < 0)
  6893. goto out;
  6894. break;
  6895. }
  6896. level = 0;
  6897. } else {
  6898. level = ref_path->owner_objectid;
  6899. }
  6900. if (prev_block != ref_path->nodes[level]) {
  6901. struct extent_buffer *eb;
  6902. u64 block_start = ref_path->nodes[level];
  6903. u64 block_size = btrfs_level_size(found_root, level);
  6904. eb = read_tree_block(found_root, block_start,
  6905. block_size, 0);
  6906. btrfs_tree_lock(eb);
  6907. BUG_ON(level != btrfs_header_level(eb));
  6908. if (level == 0)
  6909. btrfs_item_key_to_cpu(eb, &first_key, 0);
  6910. else
  6911. btrfs_node_key_to_cpu(eb, &first_key, 0);
  6912. btrfs_tree_unlock(eb);
  6913. free_extent_buffer(eb);
  6914. prev_block = block_start;
  6915. }
  6916. mutex_lock(&extent_root->fs_info->trans_mutex);
  6917. btrfs_record_root_in_trans(found_root);
  6918. mutex_unlock(&extent_root->fs_info->trans_mutex);
  6919. if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
  6920. /*
  6921. * try to update data extent references while
  6922. * keeping metadata shared between snapshots.
  6923. */
  6924. if (pass == 1) {
  6925. ret = relocate_one_path(trans, found_root,
  6926. path, &first_key, ref_path,
  6927. group, reloc_inode);
  6928. if (ret < 0)
  6929. goto out;
  6930. continue;
  6931. }
  6932. /*
  6933. * use fallback method to process the remaining
  6934. * references.
  6935. */
  6936. if (!new_extents) {
  6937. u64 group_start = group->key.objectid;
  6938. new_extents = kmalloc(sizeof(*new_extents),
  6939. GFP_NOFS);
  6940. nr_extents = 1;
  6941. ret = get_new_locations(reloc_inode,
  6942. extent_key,
  6943. group_start, 1,
  6944. &new_extents,
  6945. &nr_extents);
  6946. if (ret)
  6947. goto out;
  6948. }
  6949. ret = replace_one_extent(trans, found_root,
  6950. path, extent_key,
  6951. &first_key, ref_path,
  6952. new_extents, nr_extents);
  6953. } else {
  6954. ret = relocate_tree_block(trans, found_root, path,
  6955. &first_key, ref_path);
  6956. }
  6957. if (ret < 0)
  6958. goto out;
  6959. }
  6960. ret = 0;
  6961. out:
  6962. btrfs_end_transaction(trans, extent_root);
  6963. kfree(new_extents);
  6964. kfree(ref_path);
  6965. return ret;
  6966. }
  6967. #endif
  6968. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  6969. {
  6970. u64 num_devices;
  6971. u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
  6972. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  6973. /*
  6974. * we add in the count of missing devices because we want
  6975. * to make sure that any RAID levels on a degraded FS
  6976. * continue to be honored.
  6977. */
  6978. num_devices = root->fs_info->fs_devices->rw_devices +
  6979. root->fs_info->fs_devices->missing_devices;
  6980. if (num_devices == 1) {
  6981. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6982. stripped = flags & ~stripped;
  6983. /* turn raid0 into single device chunks */
  6984. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6985. return stripped;
  6986. /* turn mirroring into duplication */
  6987. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  6988. BTRFS_BLOCK_GROUP_RAID10))
  6989. return stripped | BTRFS_BLOCK_GROUP_DUP;
  6990. return flags;
  6991. } else {
  6992. /* they already had raid on here, just return */
  6993. if (flags & stripped)
  6994. return flags;
  6995. stripped |= BTRFS_BLOCK_GROUP_DUP;
  6996. stripped = flags & ~stripped;
  6997. /* switch duplicated blocks with raid1 */
  6998. if (flags & BTRFS_BLOCK_GROUP_DUP)
  6999. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  7000. /* turn single device chunks into raid0 */
  7001. return stripped | BTRFS_BLOCK_GROUP_RAID0;
  7002. }
  7003. return flags;
  7004. }
  7005. static int set_block_group_ro(struct btrfs_block_group_cache *cache)
  7006. {
  7007. struct btrfs_space_info *sinfo = cache->space_info;
  7008. u64 num_bytes;
  7009. int ret = -ENOSPC;
  7010. if (cache->ro)
  7011. return 0;
  7012. spin_lock(&sinfo->lock);
  7013. spin_lock(&cache->lock);
  7014. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  7015. cache->bytes_super - btrfs_block_group_used(&cache->item);
  7016. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  7017. sinfo->bytes_may_use + sinfo->bytes_readonly +
  7018. cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
  7019. sinfo->bytes_readonly += num_bytes;
  7020. sinfo->bytes_reserved += cache->reserved_pinned;
  7021. cache->reserved_pinned = 0;
  7022. cache->ro = 1;
  7023. ret = 0;
  7024. }
  7025. spin_unlock(&cache->lock);
  7026. spin_unlock(&sinfo->lock);
  7027. return ret;
  7028. }
  7029. int btrfs_set_block_group_ro(struct btrfs_root *root,
  7030. struct btrfs_block_group_cache *cache)
  7031. {
  7032. struct btrfs_trans_handle *trans;
  7033. u64 alloc_flags;
  7034. int ret;
  7035. BUG_ON(cache->ro);
  7036. trans = btrfs_join_transaction(root, 1);
  7037. BUG_ON(IS_ERR(trans));
  7038. alloc_flags = update_block_group_flags(root, cache->flags);
  7039. if (alloc_flags != cache->flags)
  7040. do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
  7041. ret = set_block_group_ro(cache);
  7042. if (!ret)
  7043. goto out;
  7044. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  7045. ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
  7046. if (ret < 0)
  7047. goto out;
  7048. ret = set_block_group_ro(cache);
  7049. out:
  7050. btrfs_end_transaction(trans, root);
  7051. return ret;
  7052. }
  7053. /*
  7054. * helper to account the unused space of all the readonly block group in the
  7055. * list. takes mirrors into account.
  7056. */
  7057. static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
  7058. {
  7059. struct btrfs_block_group_cache *block_group;
  7060. u64 free_bytes = 0;
  7061. int factor;
  7062. list_for_each_entry(block_group, groups_list, list) {
  7063. spin_lock(&block_group->lock);
  7064. if (!block_group->ro) {
  7065. spin_unlock(&block_group->lock);
  7066. continue;
  7067. }
  7068. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  7069. BTRFS_BLOCK_GROUP_RAID10 |
  7070. BTRFS_BLOCK_GROUP_DUP))
  7071. factor = 2;
  7072. else
  7073. factor = 1;
  7074. free_bytes += (block_group->key.offset -
  7075. btrfs_block_group_used(&block_group->item)) *
  7076. factor;
  7077. spin_unlock(&block_group->lock);
  7078. }
  7079. return free_bytes;
  7080. }
  7081. /*
  7082. * helper to account the unused space of all the readonly block group in the
  7083. * space_info. takes mirrors into account.
  7084. */
  7085. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  7086. {
  7087. int i;
  7088. u64 free_bytes = 0;
  7089. spin_lock(&sinfo->lock);
  7090. for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  7091. if (!list_empty(&sinfo->block_groups[i]))
  7092. free_bytes += __btrfs_get_ro_block_group_free_space(
  7093. &sinfo->block_groups[i]);
  7094. spin_unlock(&sinfo->lock);
  7095. return free_bytes;
  7096. }
  7097. int btrfs_set_block_group_rw(struct btrfs_root *root,
  7098. struct btrfs_block_group_cache *cache)
  7099. {
  7100. struct btrfs_space_info *sinfo = cache->space_info;
  7101. u64 num_bytes;
  7102. BUG_ON(!cache->ro);
  7103. spin_lock(&sinfo->lock);
  7104. spin_lock(&cache->lock);
  7105. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  7106. cache->bytes_super - btrfs_block_group_used(&cache->item);
  7107. sinfo->bytes_readonly -= num_bytes;
  7108. cache->ro = 0;
  7109. spin_unlock(&cache->lock);
  7110. spin_unlock(&sinfo->lock);
  7111. return 0;
  7112. }
  7113. /*
  7114. * checks to see if its even possible to relocate this block group.
  7115. *
  7116. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  7117. * ok to go ahead and try.
  7118. */
  7119. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  7120. {
  7121. struct btrfs_block_group_cache *block_group;
  7122. struct btrfs_space_info *space_info;
  7123. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  7124. struct btrfs_device *device;
  7125. int full = 0;
  7126. int ret = 0;
  7127. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  7128. /* odd, couldn't find the block group, leave it alone */
  7129. if (!block_group)
  7130. return -1;
  7131. /* no bytes used, we're good */
  7132. if (!btrfs_block_group_used(&block_group->item))
  7133. goto out;
  7134. space_info = block_group->space_info;
  7135. spin_lock(&space_info->lock);
  7136. full = space_info->full;
  7137. /*
  7138. * if this is the last block group we have in this space, we can't
  7139. * relocate it unless we're able to allocate a new chunk below.
  7140. *
  7141. * Otherwise, we need to make sure we have room in the space to handle
  7142. * all of the extents from this block group. If we can, we're good
  7143. */
  7144. if ((space_info->total_bytes != block_group->key.offset) &&
  7145. (space_info->bytes_used + space_info->bytes_reserved +
  7146. space_info->bytes_pinned + space_info->bytes_readonly +
  7147. btrfs_block_group_used(&block_group->item) <
  7148. space_info->total_bytes)) {
  7149. spin_unlock(&space_info->lock);
  7150. goto out;
  7151. }
  7152. spin_unlock(&space_info->lock);
  7153. /*
  7154. * ok we don't have enough space, but maybe we have free space on our
  7155. * devices to allocate new chunks for relocation, so loop through our
  7156. * alloc devices and guess if we have enough space. However, if we
  7157. * were marked as full, then we know there aren't enough chunks, and we
  7158. * can just return.
  7159. */
  7160. ret = -1;
  7161. if (full)
  7162. goto out;
  7163. mutex_lock(&root->fs_info->chunk_mutex);
  7164. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  7165. u64 min_free = btrfs_block_group_used(&block_group->item);
  7166. u64 dev_offset;
  7167. /*
  7168. * check to make sure we can actually find a chunk with enough
  7169. * space to fit our block group in.
  7170. */
  7171. if (device->total_bytes > device->bytes_used + min_free) {
  7172. ret = find_free_dev_extent(NULL, device, min_free,
  7173. &dev_offset, NULL);
  7174. if (!ret)
  7175. break;
  7176. ret = -1;
  7177. }
  7178. }
  7179. mutex_unlock(&root->fs_info->chunk_mutex);
  7180. out:
  7181. btrfs_put_block_group(block_group);
  7182. return ret;
  7183. }
  7184. static int find_first_block_group(struct btrfs_root *root,
  7185. struct btrfs_path *path, struct btrfs_key *key)
  7186. {
  7187. int ret = 0;
  7188. struct btrfs_key found_key;
  7189. struct extent_buffer *leaf;
  7190. int slot;
  7191. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  7192. if (ret < 0)
  7193. goto out;
  7194. while (1) {
  7195. slot = path->slots[0];
  7196. leaf = path->nodes[0];
  7197. if (slot >= btrfs_header_nritems(leaf)) {
  7198. ret = btrfs_next_leaf(root, path);
  7199. if (ret == 0)
  7200. continue;
  7201. if (ret < 0)
  7202. goto out;
  7203. break;
  7204. }
  7205. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  7206. if (found_key.objectid >= key->objectid &&
  7207. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  7208. ret = 0;
  7209. goto out;
  7210. }
  7211. path->slots[0]++;
  7212. }
  7213. out:
  7214. return ret;
  7215. }
  7216. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  7217. {
  7218. struct btrfs_block_group_cache *block_group;
  7219. u64 last = 0;
  7220. while (1) {
  7221. struct inode *inode;
  7222. block_group = btrfs_lookup_first_block_group(info, last);
  7223. while (block_group) {
  7224. spin_lock(&block_group->lock);
  7225. if (block_group->iref)
  7226. break;
  7227. spin_unlock(&block_group->lock);
  7228. block_group = next_block_group(info->tree_root,
  7229. block_group);
  7230. }
  7231. if (!block_group) {
  7232. if (last == 0)
  7233. break;
  7234. last = 0;
  7235. continue;
  7236. }
  7237. inode = block_group->inode;
  7238. block_group->iref = 0;
  7239. block_group->inode = NULL;
  7240. spin_unlock(&block_group->lock);
  7241. iput(inode);
  7242. last = block_group->key.objectid + block_group->key.offset;
  7243. btrfs_put_block_group(block_group);
  7244. }
  7245. }
  7246. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  7247. {
  7248. struct btrfs_block_group_cache *block_group;
  7249. struct btrfs_space_info *space_info;
  7250. struct btrfs_caching_control *caching_ctl;
  7251. struct rb_node *n;
  7252. down_write(&info->extent_commit_sem);
  7253. while (!list_empty(&info->caching_block_groups)) {
  7254. caching_ctl = list_entry(info->caching_block_groups.next,
  7255. struct btrfs_caching_control, list);
  7256. list_del(&caching_ctl->list);
  7257. put_caching_control(caching_ctl);
  7258. }
  7259. up_write(&info->extent_commit_sem);
  7260. spin_lock(&info->block_group_cache_lock);
  7261. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  7262. block_group = rb_entry(n, struct btrfs_block_group_cache,
  7263. cache_node);
  7264. rb_erase(&block_group->cache_node,
  7265. &info->block_group_cache_tree);
  7266. spin_unlock(&info->block_group_cache_lock);
  7267. down_write(&block_group->space_info->groups_sem);
  7268. list_del(&block_group->list);
  7269. up_write(&block_group->space_info->groups_sem);
  7270. if (block_group->cached == BTRFS_CACHE_STARTED)
  7271. wait_block_group_cache_done(block_group);
  7272. btrfs_remove_free_space_cache(block_group);
  7273. btrfs_put_block_group(block_group);
  7274. spin_lock(&info->block_group_cache_lock);
  7275. }
  7276. spin_unlock(&info->block_group_cache_lock);
  7277. /* now that all the block groups are freed, go through and
  7278. * free all the space_info structs. This is only called during
  7279. * the final stages of unmount, and so we know nobody is
  7280. * using them. We call synchronize_rcu() once before we start,
  7281. * just to be on the safe side.
  7282. */
  7283. synchronize_rcu();
  7284. release_global_block_rsv(info);
  7285. while(!list_empty(&info->space_info)) {
  7286. space_info = list_entry(info->space_info.next,
  7287. struct btrfs_space_info,
  7288. list);
  7289. if (space_info->bytes_pinned > 0 ||
  7290. space_info->bytes_reserved > 0) {
  7291. WARN_ON(1);
  7292. dump_space_info(space_info, 0, 0);
  7293. }
  7294. list_del(&space_info->list);
  7295. kfree(space_info);
  7296. }
  7297. return 0;
  7298. }
  7299. static void __link_block_group(struct btrfs_space_info *space_info,
  7300. struct btrfs_block_group_cache *cache)
  7301. {
  7302. int index = get_block_group_index(cache);
  7303. down_write(&space_info->groups_sem);
  7304. list_add_tail(&cache->list, &space_info->block_groups[index]);
  7305. up_write(&space_info->groups_sem);
  7306. }
  7307. int btrfs_read_block_groups(struct btrfs_root *root)
  7308. {
  7309. struct btrfs_path *path;
  7310. int ret;
  7311. struct btrfs_block_group_cache *cache;
  7312. struct btrfs_fs_info *info = root->fs_info;
  7313. struct btrfs_space_info *space_info;
  7314. struct btrfs_key key;
  7315. struct btrfs_key found_key;
  7316. struct extent_buffer *leaf;
  7317. int need_clear = 0;
  7318. u64 cache_gen;
  7319. root = info->extent_root;
  7320. key.objectid = 0;
  7321. key.offset = 0;
  7322. btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
  7323. path = btrfs_alloc_path();
  7324. if (!path)
  7325. return -ENOMEM;
  7326. cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
  7327. if (cache_gen != 0 &&
  7328. btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
  7329. need_clear = 1;
  7330. if (btrfs_test_opt(root, CLEAR_CACHE))
  7331. need_clear = 1;
  7332. if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
  7333. printk(KERN_INFO "btrfs: disk space caching is enabled\n");
  7334. while (1) {
  7335. ret = find_first_block_group(root, path, &key);
  7336. if (ret > 0)
  7337. break;
  7338. if (ret != 0)
  7339. goto error;
  7340. leaf = path->nodes[0];
  7341. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  7342. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  7343. if (!cache) {
  7344. ret = -ENOMEM;
  7345. goto error;
  7346. }
  7347. atomic_set(&cache->count, 1);
  7348. spin_lock_init(&cache->lock);
  7349. spin_lock_init(&cache->tree_lock);
  7350. cache->fs_info = info;
  7351. INIT_LIST_HEAD(&cache->list);
  7352. INIT_LIST_HEAD(&cache->cluster_list);
  7353. if (need_clear)
  7354. cache->disk_cache_state = BTRFS_DC_CLEAR;
  7355. /*
  7356. * we only want to have 32k of ram per block group for keeping
  7357. * track of free space, and if we pass 1/2 of that we want to
  7358. * start converting things over to using bitmaps
  7359. */
  7360. cache->extents_thresh = ((1024 * 32) / 2) /
  7361. sizeof(struct btrfs_free_space);
  7362. read_extent_buffer(leaf, &cache->item,
  7363. btrfs_item_ptr_offset(leaf, path->slots[0]),
  7364. sizeof(cache->item));
  7365. memcpy(&cache->key, &found_key, sizeof(found_key));
  7366. key.objectid = found_key.objectid + found_key.offset;
  7367. btrfs_release_path(root, path);
  7368. cache->flags = btrfs_block_group_flags(&cache->item);
  7369. cache->sectorsize = root->sectorsize;
  7370. /*
  7371. * check for two cases, either we are full, and therefore
  7372. * don't need to bother with the caching work since we won't
  7373. * find any space, or we are empty, and we can just add all
  7374. * the space in and be done with it. This saves us _alot_ of
  7375. * time, particularly in the full case.
  7376. */
  7377. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  7378. exclude_super_stripes(root, cache);
  7379. cache->last_byte_to_unpin = (u64)-1;
  7380. cache->cached = BTRFS_CACHE_FINISHED;
  7381. free_excluded_extents(root, cache);
  7382. } else if (btrfs_block_group_used(&cache->item) == 0) {
  7383. exclude_super_stripes(root, cache);
  7384. cache->last_byte_to_unpin = (u64)-1;
  7385. cache->cached = BTRFS_CACHE_FINISHED;
  7386. add_new_free_space(cache, root->fs_info,
  7387. found_key.objectid,
  7388. found_key.objectid +
  7389. found_key.offset);
  7390. free_excluded_extents(root, cache);
  7391. }
  7392. ret = update_space_info(info, cache->flags, found_key.offset,
  7393. btrfs_block_group_used(&cache->item),
  7394. &space_info);
  7395. BUG_ON(ret);
  7396. cache->space_info = space_info;
  7397. spin_lock(&cache->space_info->lock);
  7398. cache->space_info->bytes_readonly += cache->bytes_super;
  7399. spin_unlock(&cache->space_info->lock);
  7400. __link_block_group(space_info, cache);
  7401. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7402. BUG_ON(ret);
  7403. set_avail_alloc_bits(root->fs_info, cache->flags);
  7404. if (btrfs_chunk_readonly(root, cache->key.objectid))
  7405. set_block_group_ro(cache);
  7406. }
  7407. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  7408. if (!(get_alloc_profile(root, space_info->flags) &
  7409. (BTRFS_BLOCK_GROUP_RAID10 |
  7410. BTRFS_BLOCK_GROUP_RAID1 |
  7411. BTRFS_BLOCK_GROUP_DUP)))
  7412. continue;
  7413. /*
  7414. * avoid allocating from un-mirrored block group if there are
  7415. * mirrored block groups.
  7416. */
  7417. list_for_each_entry(cache, &space_info->block_groups[3], list)
  7418. set_block_group_ro(cache);
  7419. list_for_each_entry(cache, &space_info->block_groups[4], list)
  7420. set_block_group_ro(cache);
  7421. }
  7422. init_global_block_rsv(info);
  7423. ret = 0;
  7424. error:
  7425. btrfs_free_path(path);
  7426. return ret;
  7427. }
  7428. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  7429. struct btrfs_root *root, u64 bytes_used,
  7430. u64 type, u64 chunk_objectid, u64 chunk_offset,
  7431. u64 size)
  7432. {
  7433. int ret;
  7434. struct btrfs_root *extent_root;
  7435. struct btrfs_block_group_cache *cache;
  7436. extent_root = root->fs_info->extent_root;
  7437. root->fs_info->last_trans_log_full_commit = trans->transid;
  7438. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  7439. if (!cache)
  7440. return -ENOMEM;
  7441. cache->key.objectid = chunk_offset;
  7442. cache->key.offset = size;
  7443. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  7444. cache->sectorsize = root->sectorsize;
  7445. cache->fs_info = root->fs_info;
  7446. /*
  7447. * we only want to have 32k of ram per block group for keeping track
  7448. * of free space, and if we pass 1/2 of that we want to start
  7449. * converting things over to using bitmaps
  7450. */
  7451. cache->extents_thresh = ((1024 * 32) / 2) /
  7452. sizeof(struct btrfs_free_space);
  7453. atomic_set(&cache->count, 1);
  7454. spin_lock_init(&cache->lock);
  7455. spin_lock_init(&cache->tree_lock);
  7456. INIT_LIST_HEAD(&cache->list);
  7457. INIT_LIST_HEAD(&cache->cluster_list);
  7458. btrfs_set_block_group_used(&cache->item, bytes_used);
  7459. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  7460. cache->flags = type;
  7461. btrfs_set_block_group_flags(&cache->item, type);
  7462. cache->last_byte_to_unpin = (u64)-1;
  7463. cache->cached = BTRFS_CACHE_FINISHED;
  7464. exclude_super_stripes(root, cache);
  7465. add_new_free_space(cache, root->fs_info, chunk_offset,
  7466. chunk_offset + size);
  7467. free_excluded_extents(root, cache);
  7468. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  7469. &cache->space_info);
  7470. BUG_ON(ret);
  7471. spin_lock(&cache->space_info->lock);
  7472. cache->space_info->bytes_readonly += cache->bytes_super;
  7473. spin_unlock(&cache->space_info->lock);
  7474. __link_block_group(cache->space_info, cache);
  7475. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  7476. BUG_ON(ret);
  7477. ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
  7478. sizeof(cache->item));
  7479. BUG_ON(ret);
  7480. set_avail_alloc_bits(extent_root->fs_info, type);
  7481. return 0;
  7482. }
  7483. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  7484. struct btrfs_root *root, u64 group_start)
  7485. {
  7486. struct btrfs_path *path;
  7487. struct btrfs_block_group_cache *block_group;
  7488. struct btrfs_free_cluster *cluster;
  7489. struct btrfs_root *tree_root = root->fs_info->tree_root;
  7490. struct btrfs_key key;
  7491. struct inode *inode;
  7492. int ret;
  7493. int factor;
  7494. root = root->fs_info->extent_root;
  7495. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  7496. BUG_ON(!block_group);
  7497. BUG_ON(!block_group->ro);
  7498. memcpy(&key, &block_group->key, sizeof(key));
  7499. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  7500. BTRFS_BLOCK_GROUP_RAID1 |
  7501. BTRFS_BLOCK_GROUP_RAID10))
  7502. factor = 2;
  7503. else
  7504. factor = 1;
  7505. /* make sure this block group isn't part of an allocation cluster */
  7506. cluster = &root->fs_info->data_alloc_cluster;
  7507. spin_lock(&cluster->refill_lock);
  7508. btrfs_return_cluster_to_free_space(block_group, cluster);
  7509. spin_unlock(&cluster->refill_lock);
  7510. /*
  7511. * make sure this block group isn't part of a metadata
  7512. * allocation cluster
  7513. */
  7514. cluster = &root->fs_info->meta_alloc_cluster;
  7515. spin_lock(&cluster->refill_lock);
  7516. btrfs_return_cluster_to_free_space(block_group, cluster);
  7517. spin_unlock(&cluster->refill_lock);
  7518. path = btrfs_alloc_path();
  7519. BUG_ON(!path);
  7520. inode = lookup_free_space_inode(root, block_group, path);
  7521. if (!IS_ERR(inode)) {
  7522. btrfs_orphan_add(trans, inode);
  7523. clear_nlink(inode);
  7524. /* One for the block groups ref */
  7525. spin_lock(&block_group->lock);
  7526. if (block_group->iref) {
  7527. block_group->iref = 0;
  7528. block_group->inode = NULL;
  7529. spin_unlock(&block_group->lock);
  7530. iput(inode);
  7531. } else {
  7532. spin_unlock(&block_group->lock);
  7533. }
  7534. /* One for our lookup ref */
  7535. iput(inode);
  7536. }
  7537. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  7538. key.offset = block_group->key.objectid;
  7539. key.type = 0;
  7540. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  7541. if (ret < 0)
  7542. goto out;
  7543. if (ret > 0)
  7544. btrfs_release_path(tree_root, path);
  7545. if (ret == 0) {
  7546. ret = btrfs_del_item(trans, tree_root, path);
  7547. if (ret)
  7548. goto out;
  7549. btrfs_release_path(tree_root, path);
  7550. }
  7551. spin_lock(&root->fs_info->block_group_cache_lock);
  7552. rb_erase(&block_group->cache_node,
  7553. &root->fs_info->block_group_cache_tree);
  7554. spin_unlock(&root->fs_info->block_group_cache_lock);
  7555. down_write(&block_group->space_info->groups_sem);
  7556. /*
  7557. * we must use list_del_init so people can check to see if they
  7558. * are still on the list after taking the semaphore
  7559. */
  7560. list_del_init(&block_group->list);
  7561. up_write(&block_group->space_info->groups_sem);
  7562. if (block_group->cached == BTRFS_CACHE_STARTED)
  7563. wait_block_group_cache_done(block_group);
  7564. btrfs_remove_free_space_cache(block_group);
  7565. spin_lock(&block_group->space_info->lock);
  7566. block_group->space_info->total_bytes -= block_group->key.offset;
  7567. block_group->space_info->bytes_readonly -= block_group->key.offset;
  7568. block_group->space_info->disk_total -= block_group->key.offset * factor;
  7569. spin_unlock(&block_group->space_info->lock);
  7570. memcpy(&key, &block_group->key, sizeof(key));
  7571. btrfs_clear_space_info_full(root->fs_info);
  7572. btrfs_put_block_group(block_group);
  7573. btrfs_put_block_group(block_group);
  7574. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  7575. if (ret > 0)
  7576. ret = -EIO;
  7577. if (ret < 0)
  7578. goto out;
  7579. ret = btrfs_del_item(trans, root, path);
  7580. out:
  7581. btrfs_free_path(path);
  7582. return ret;
  7583. }
  7584. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  7585. {
  7586. return unpin_extent_range(root, start, end);
  7587. }
  7588. int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
  7589. u64 num_bytes)
  7590. {
  7591. return btrfs_discard_extent(root, bytenr, num_bytes);
  7592. }